1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Broadcom GENET (Gigabit Ethernet) controller driver
4 *
5 * Copyright (c) 2014-2024 Broadcom
6 */
7
8 #define pr_fmt(fmt) "bcmgenet: " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/fcntl.h>
16 #include <linux/interrupt.h>
17 #include <linux/string.h>
18 #include <linux/if_ether.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/delay.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/pm.h>
25 #include <linux/clk.h>
26 #include <net/arp.h>
27
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/netdevice.h>
31 #include <linux/inetdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/in.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/phy.h>
38 #include <linux/platform_data/bcmgenet.h>
39
40 #include <linux/unaligned.h>
41
42 #include "bcmgenet.h"
43
44 /* Maximum number of hardware queues, downsized if needed */
45 #define GENET_MAX_MQ_CNT 4
46
47 /* Default highest priority queue for multi queue support */
48 #define GENET_Q0_PRIORITY 0
49
50 #define GENET_Q16_RX_BD_CNT \
51 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
52 #define GENET_Q16_TX_BD_CNT \
53 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
54
55 #define RX_BUF_LENGTH 2048
56 #define SKB_ALIGNMENT 32
57
58 /* Tx/Rx DMA register offset, skip 256 descriptors */
59 #define WORDS_PER_BD(p) (p->hw_params->words_per_bd)
60 #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32))
61
62 #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \
63 TOTAL_DESC * DMA_DESC_SIZE)
64
65 #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \
66 TOTAL_DESC * DMA_DESC_SIZE)
67
68 /* Forward declarations */
69 static void bcmgenet_set_rx_mode(struct net_device *dev);
70
bcmgenet_writel(u32 value,void __iomem * offset)71 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
72 {
73 /* MIPS chips strapped for BE will automagically configure the
74 * peripheral registers for CPU-native byte order.
75 */
76 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
77 __raw_writel(value, offset);
78 else
79 writel_relaxed(value, offset);
80 }
81
bcmgenet_readl(void __iomem * offset)82 static inline u32 bcmgenet_readl(void __iomem *offset)
83 {
84 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
85 return __raw_readl(offset);
86 else
87 return readl_relaxed(offset);
88 }
89
dmadesc_set_length_status(struct bcmgenet_priv * priv,void __iomem * d,u32 value)90 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
91 void __iomem *d, u32 value)
92 {
93 bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
94 }
95
dmadesc_set_addr(struct bcmgenet_priv * priv,void __iomem * d,dma_addr_t addr)96 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
97 void __iomem *d,
98 dma_addr_t addr)
99 {
100 bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
101
102 /* Register writes to GISB bus can take couple hundred nanoseconds
103 * and are done for each packet, save these expensive writes unless
104 * the platform is explicitly configured for 64-bits/LPAE.
105 */
106 #ifdef CONFIG_PHYS_ADDR_T_64BIT
107 if (priv->hw_params->flags & GENET_HAS_40BITS)
108 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
109 #endif
110 }
111
112 /* Combined address + length/status setter */
dmadesc_set(struct bcmgenet_priv * priv,void __iomem * d,dma_addr_t addr,u32 val)113 static inline void dmadesc_set(struct bcmgenet_priv *priv,
114 void __iomem *d, dma_addr_t addr, u32 val)
115 {
116 dmadesc_set_addr(priv, d, addr);
117 dmadesc_set_length_status(priv, d, val);
118 }
119
120 #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x"
121
122 #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
123 NETIF_MSG_LINK)
124
bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv * priv)125 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
126 {
127 if (GENET_IS_V1(priv))
128 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
129 else
130 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
131 }
132
bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv * priv,u32 val)133 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
134 {
135 if (GENET_IS_V1(priv))
136 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
137 else
138 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
139 }
140
141 /* These macros are defined to deal with register map change
142 * between GENET1.1 and GENET2. Only those currently being used
143 * by driver are defined.
144 */
bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv * priv)145 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
146 {
147 if (GENET_IS_V1(priv))
148 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
149 else
150 return bcmgenet_readl(priv->base +
151 priv->hw_params->tbuf_offset + TBUF_CTRL);
152 }
153
bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv * priv,u32 val)154 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
155 {
156 if (GENET_IS_V1(priv))
157 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
158 else
159 bcmgenet_writel(val, priv->base +
160 priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162
bcmgenet_bp_mc_get(struct bcmgenet_priv * priv)163 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
164 {
165 if (GENET_IS_V1(priv))
166 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
167 else
168 return bcmgenet_readl(priv->base +
169 priv->hw_params->tbuf_offset + TBUF_BP_MC);
170 }
171
bcmgenet_bp_mc_set(struct bcmgenet_priv * priv,u32 val)172 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
173 {
174 if (GENET_IS_V1(priv))
175 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
176 else
177 bcmgenet_writel(val, priv->base +
178 priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180
181 /* RX/TX DMA register accessors */
182 enum dma_reg {
183 DMA_RING_CFG = 0,
184 DMA_CTRL,
185 DMA_STATUS,
186 DMA_SCB_BURST_SIZE,
187 DMA_ARB_CTRL,
188 DMA_PRIORITY_0,
189 DMA_PRIORITY_1,
190 DMA_PRIORITY_2,
191 DMA_INDEX2RING_0,
192 DMA_INDEX2RING_1,
193 DMA_INDEX2RING_2,
194 DMA_INDEX2RING_3,
195 DMA_INDEX2RING_4,
196 DMA_INDEX2RING_5,
197 DMA_INDEX2RING_6,
198 DMA_INDEX2RING_7,
199 DMA_RING0_TIMEOUT,
200 DMA_RING1_TIMEOUT,
201 DMA_RING2_TIMEOUT,
202 DMA_RING3_TIMEOUT,
203 DMA_RING4_TIMEOUT,
204 DMA_RING5_TIMEOUT,
205 DMA_RING6_TIMEOUT,
206 DMA_RING7_TIMEOUT,
207 DMA_RING8_TIMEOUT,
208 DMA_RING9_TIMEOUT,
209 DMA_RING10_TIMEOUT,
210 DMA_RING11_TIMEOUT,
211 DMA_RING12_TIMEOUT,
212 DMA_RING13_TIMEOUT,
213 DMA_RING14_TIMEOUT,
214 DMA_RING15_TIMEOUT,
215 DMA_RING16_TIMEOUT,
216 };
217
218 static const u8 bcmgenet_dma_regs_v3plus[] = {
219 [DMA_RING_CFG] = 0x00,
220 [DMA_CTRL] = 0x04,
221 [DMA_STATUS] = 0x08,
222 [DMA_SCB_BURST_SIZE] = 0x0C,
223 [DMA_ARB_CTRL] = 0x2C,
224 [DMA_PRIORITY_0] = 0x30,
225 [DMA_PRIORITY_1] = 0x34,
226 [DMA_PRIORITY_2] = 0x38,
227 [DMA_RING0_TIMEOUT] = 0x2C,
228 [DMA_RING1_TIMEOUT] = 0x30,
229 [DMA_RING2_TIMEOUT] = 0x34,
230 [DMA_RING3_TIMEOUT] = 0x38,
231 [DMA_RING4_TIMEOUT] = 0x3c,
232 [DMA_RING5_TIMEOUT] = 0x40,
233 [DMA_RING6_TIMEOUT] = 0x44,
234 [DMA_RING7_TIMEOUT] = 0x48,
235 [DMA_RING8_TIMEOUT] = 0x4c,
236 [DMA_RING9_TIMEOUT] = 0x50,
237 [DMA_RING10_TIMEOUT] = 0x54,
238 [DMA_RING11_TIMEOUT] = 0x58,
239 [DMA_RING12_TIMEOUT] = 0x5c,
240 [DMA_RING13_TIMEOUT] = 0x60,
241 [DMA_RING14_TIMEOUT] = 0x64,
242 [DMA_RING15_TIMEOUT] = 0x68,
243 [DMA_RING16_TIMEOUT] = 0x6C,
244 [DMA_INDEX2RING_0] = 0x70,
245 [DMA_INDEX2RING_1] = 0x74,
246 [DMA_INDEX2RING_2] = 0x78,
247 [DMA_INDEX2RING_3] = 0x7C,
248 [DMA_INDEX2RING_4] = 0x80,
249 [DMA_INDEX2RING_5] = 0x84,
250 [DMA_INDEX2RING_6] = 0x88,
251 [DMA_INDEX2RING_7] = 0x8C,
252 };
253
254 static const u8 bcmgenet_dma_regs_v2[] = {
255 [DMA_RING_CFG] = 0x00,
256 [DMA_CTRL] = 0x04,
257 [DMA_STATUS] = 0x08,
258 [DMA_SCB_BURST_SIZE] = 0x0C,
259 [DMA_ARB_CTRL] = 0x30,
260 [DMA_PRIORITY_0] = 0x34,
261 [DMA_PRIORITY_1] = 0x38,
262 [DMA_PRIORITY_2] = 0x3C,
263 [DMA_RING0_TIMEOUT] = 0x2C,
264 [DMA_RING1_TIMEOUT] = 0x30,
265 [DMA_RING2_TIMEOUT] = 0x34,
266 [DMA_RING3_TIMEOUT] = 0x38,
267 [DMA_RING4_TIMEOUT] = 0x3c,
268 [DMA_RING5_TIMEOUT] = 0x40,
269 [DMA_RING6_TIMEOUT] = 0x44,
270 [DMA_RING7_TIMEOUT] = 0x48,
271 [DMA_RING8_TIMEOUT] = 0x4c,
272 [DMA_RING9_TIMEOUT] = 0x50,
273 [DMA_RING10_TIMEOUT] = 0x54,
274 [DMA_RING11_TIMEOUT] = 0x58,
275 [DMA_RING12_TIMEOUT] = 0x5c,
276 [DMA_RING13_TIMEOUT] = 0x60,
277 [DMA_RING14_TIMEOUT] = 0x64,
278 [DMA_RING15_TIMEOUT] = 0x68,
279 [DMA_RING16_TIMEOUT] = 0x6C,
280 };
281
282 static const u8 bcmgenet_dma_regs_v1[] = {
283 [DMA_CTRL] = 0x00,
284 [DMA_STATUS] = 0x04,
285 [DMA_SCB_BURST_SIZE] = 0x0C,
286 [DMA_ARB_CTRL] = 0x30,
287 [DMA_PRIORITY_0] = 0x34,
288 [DMA_PRIORITY_1] = 0x38,
289 [DMA_PRIORITY_2] = 0x3C,
290 [DMA_RING0_TIMEOUT] = 0x2C,
291 [DMA_RING1_TIMEOUT] = 0x30,
292 [DMA_RING2_TIMEOUT] = 0x34,
293 [DMA_RING3_TIMEOUT] = 0x38,
294 [DMA_RING4_TIMEOUT] = 0x3c,
295 [DMA_RING5_TIMEOUT] = 0x40,
296 [DMA_RING6_TIMEOUT] = 0x44,
297 [DMA_RING7_TIMEOUT] = 0x48,
298 [DMA_RING8_TIMEOUT] = 0x4c,
299 [DMA_RING9_TIMEOUT] = 0x50,
300 [DMA_RING10_TIMEOUT] = 0x54,
301 [DMA_RING11_TIMEOUT] = 0x58,
302 [DMA_RING12_TIMEOUT] = 0x5c,
303 [DMA_RING13_TIMEOUT] = 0x60,
304 [DMA_RING14_TIMEOUT] = 0x64,
305 [DMA_RING15_TIMEOUT] = 0x68,
306 [DMA_RING16_TIMEOUT] = 0x6C,
307 };
308
309 /* Set at runtime once bcmgenet version is known */
310 static const u8 *bcmgenet_dma_regs;
311
dev_to_priv(struct device * dev)312 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
313 {
314 return netdev_priv(dev_get_drvdata(dev));
315 }
316
bcmgenet_tdma_readl(struct bcmgenet_priv * priv,enum dma_reg r)317 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
318 enum dma_reg r)
319 {
320 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
321 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
322 }
323
bcmgenet_tdma_writel(struct bcmgenet_priv * priv,u32 val,enum dma_reg r)324 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
325 u32 val, enum dma_reg r)
326 {
327 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
328 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
329 }
330
bcmgenet_rdma_readl(struct bcmgenet_priv * priv,enum dma_reg r)331 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
332 enum dma_reg r)
333 {
334 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
335 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
336 }
337
bcmgenet_rdma_writel(struct bcmgenet_priv * priv,u32 val,enum dma_reg r)338 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
339 u32 val, enum dma_reg r)
340 {
341 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
342 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
343 }
344
345 /* RDMA/TDMA ring registers and accessors
346 * we merge the common fields and just prefix with T/D the registers
347 * having different meaning depending on the direction
348 */
349 enum dma_ring_reg {
350 TDMA_READ_PTR = 0,
351 RDMA_WRITE_PTR = TDMA_READ_PTR,
352 TDMA_READ_PTR_HI,
353 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
354 TDMA_CONS_INDEX,
355 RDMA_PROD_INDEX = TDMA_CONS_INDEX,
356 TDMA_PROD_INDEX,
357 RDMA_CONS_INDEX = TDMA_PROD_INDEX,
358 DMA_RING_BUF_SIZE,
359 DMA_START_ADDR,
360 DMA_START_ADDR_HI,
361 DMA_END_ADDR,
362 DMA_END_ADDR_HI,
363 DMA_MBUF_DONE_THRESH,
364 TDMA_FLOW_PERIOD,
365 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
366 TDMA_WRITE_PTR,
367 RDMA_READ_PTR = TDMA_WRITE_PTR,
368 TDMA_WRITE_PTR_HI,
369 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
370 };
371
372 /* GENET v4 supports 40-bits pointer addressing
373 * for obvious reasons the LO and HI word parts
374 * are contiguous, but this offsets the other
375 * registers.
376 */
377 static const u8 genet_dma_ring_regs_v4[] = {
378 [TDMA_READ_PTR] = 0x00,
379 [TDMA_READ_PTR_HI] = 0x04,
380 [TDMA_CONS_INDEX] = 0x08,
381 [TDMA_PROD_INDEX] = 0x0C,
382 [DMA_RING_BUF_SIZE] = 0x10,
383 [DMA_START_ADDR] = 0x14,
384 [DMA_START_ADDR_HI] = 0x18,
385 [DMA_END_ADDR] = 0x1C,
386 [DMA_END_ADDR_HI] = 0x20,
387 [DMA_MBUF_DONE_THRESH] = 0x24,
388 [TDMA_FLOW_PERIOD] = 0x28,
389 [TDMA_WRITE_PTR] = 0x2C,
390 [TDMA_WRITE_PTR_HI] = 0x30,
391 };
392
393 static const u8 genet_dma_ring_regs_v123[] = {
394 [TDMA_READ_PTR] = 0x00,
395 [TDMA_CONS_INDEX] = 0x04,
396 [TDMA_PROD_INDEX] = 0x08,
397 [DMA_RING_BUF_SIZE] = 0x0C,
398 [DMA_START_ADDR] = 0x10,
399 [DMA_END_ADDR] = 0x14,
400 [DMA_MBUF_DONE_THRESH] = 0x18,
401 [TDMA_FLOW_PERIOD] = 0x1C,
402 [TDMA_WRITE_PTR] = 0x20,
403 };
404
405 /* Set at runtime once GENET version is known */
406 static const u8 *genet_dma_ring_regs;
407
bcmgenet_tdma_ring_readl(struct bcmgenet_priv * priv,unsigned int ring,enum dma_ring_reg r)408 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
409 unsigned int ring,
410 enum dma_ring_reg r)
411 {
412 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
413 (DMA_RING_SIZE * ring) +
414 genet_dma_ring_regs[r]);
415 }
416
bcmgenet_tdma_ring_writel(struct bcmgenet_priv * priv,unsigned int ring,u32 val,enum dma_ring_reg r)417 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
418 unsigned int ring, u32 val,
419 enum dma_ring_reg r)
420 {
421 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
422 (DMA_RING_SIZE * ring) +
423 genet_dma_ring_regs[r]);
424 }
425
bcmgenet_rdma_ring_readl(struct bcmgenet_priv * priv,unsigned int ring,enum dma_ring_reg r)426 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
427 unsigned int ring,
428 enum dma_ring_reg r)
429 {
430 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
431 (DMA_RING_SIZE * ring) +
432 genet_dma_ring_regs[r]);
433 }
434
bcmgenet_rdma_ring_writel(struct bcmgenet_priv * priv,unsigned int ring,u32 val,enum dma_ring_reg r)435 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
436 unsigned int ring, u32 val,
437 enum dma_ring_reg r)
438 {
439 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
440 (DMA_RING_SIZE * ring) +
441 genet_dma_ring_regs[r]);
442 }
443
bcmgenet_hfb_enable_filter(struct bcmgenet_priv * priv,u32 f_index)444 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
445 {
446 u32 offset;
447 u32 reg;
448
449 offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
450 reg = bcmgenet_hfb_reg_readl(priv, offset);
451 reg |= (1 << (f_index % 32));
452 bcmgenet_hfb_reg_writel(priv, reg, offset);
453 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
454 reg |= RBUF_HFB_EN;
455 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
456 }
457
bcmgenet_hfb_disable_filter(struct bcmgenet_priv * priv,u32 f_index)458 static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
459 {
460 u32 offset, reg, reg1;
461
462 offset = HFB_FLT_ENABLE_V3PLUS;
463 reg = bcmgenet_hfb_reg_readl(priv, offset);
464 reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
465 if (f_index < 32) {
466 reg1 &= ~(1 << (f_index % 32));
467 bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
468 } else {
469 reg &= ~(1 << (f_index % 32));
470 bcmgenet_hfb_reg_writel(priv, reg, offset);
471 }
472 if (!reg && !reg1) {
473 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
474 reg &= ~RBUF_HFB_EN;
475 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
476 }
477 }
478
bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv * priv,u32 f_index,u32 rx_queue)479 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
480 u32 f_index, u32 rx_queue)
481 {
482 u32 offset;
483 u32 reg;
484
485 offset = f_index / 8;
486 reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
487 reg &= ~(0xF << (4 * (f_index % 8)));
488 reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
489 bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
490 }
491
bcmgenet_hfb_set_filter_length(struct bcmgenet_priv * priv,u32 f_index,u32 f_length)492 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
493 u32 f_index, u32 f_length)
494 {
495 u32 offset;
496 u32 reg;
497
498 offset = HFB_FLT_LEN_V3PLUS +
499 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
500 sizeof(u32);
501 reg = bcmgenet_hfb_reg_readl(priv, offset);
502 reg &= ~(0xFF << (8 * (f_index % 4)));
503 reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
504 bcmgenet_hfb_reg_writel(priv, reg, offset);
505 }
506
bcmgenet_hfb_validate_mask(void * mask,size_t size)507 static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
508 {
509 while (size) {
510 switch (*(unsigned char *)mask++) {
511 case 0x00:
512 case 0x0f:
513 case 0xf0:
514 case 0xff:
515 size--;
516 continue;
517 default:
518 return -EINVAL;
519 }
520 }
521
522 return 0;
523 }
524
525 #define VALIDATE_MASK(x) \
526 bcmgenet_hfb_validate_mask(&(x), sizeof(x))
527
bcmgenet_hfb_insert_data(struct bcmgenet_priv * priv,u32 f_index,u32 offset,void * val,void * mask,size_t size)528 static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index,
529 u32 offset, void *val, void *mask,
530 size_t size)
531 {
532 u32 index, tmp;
533
534 index = f_index * priv->hw_params->hfb_filter_size + offset / 2;
535 tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32));
536
537 while (size--) {
538 if (offset++ & 1) {
539 tmp &= ~0x300FF;
540 tmp |= (*(unsigned char *)val++);
541 switch ((*(unsigned char *)mask++)) {
542 case 0xFF:
543 tmp |= 0x30000;
544 break;
545 case 0xF0:
546 tmp |= 0x20000;
547 break;
548 case 0x0F:
549 tmp |= 0x10000;
550 break;
551 }
552 bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32));
553 if (size)
554 tmp = bcmgenet_hfb_readl(priv,
555 index * sizeof(u32));
556 } else {
557 tmp &= ~0xCFF00;
558 tmp |= (*(unsigned char *)val++) << 8;
559 switch ((*(unsigned char *)mask++)) {
560 case 0xFF:
561 tmp |= 0xC0000;
562 break;
563 case 0xF0:
564 tmp |= 0x80000;
565 break;
566 case 0x0F:
567 tmp |= 0x40000;
568 break;
569 }
570 if (!size)
571 bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32));
572 }
573 }
574
575 return 0;
576 }
577
bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv * priv,struct bcmgenet_rxnfc_rule * rule)578 static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
579 struct bcmgenet_rxnfc_rule *rule)
580 {
581 struct ethtool_rx_flow_spec *fs = &rule->fs;
582 u32 offset = 0, f_length = 0, f;
583 u8 val_8, mask_8;
584 __be16 val_16;
585 u16 mask_16;
586 size_t size;
587
588 f = fs->location;
589 if (fs->flow_type & FLOW_MAC_EXT) {
590 bcmgenet_hfb_insert_data(priv, f, 0,
591 &fs->h_ext.h_dest, &fs->m_ext.h_dest,
592 sizeof(fs->h_ext.h_dest));
593 }
594
595 if (fs->flow_type & FLOW_EXT) {
596 if (fs->m_ext.vlan_etype ||
597 fs->m_ext.vlan_tci) {
598 bcmgenet_hfb_insert_data(priv, f, 12,
599 &fs->h_ext.vlan_etype,
600 &fs->m_ext.vlan_etype,
601 sizeof(fs->h_ext.vlan_etype));
602 bcmgenet_hfb_insert_data(priv, f, 14,
603 &fs->h_ext.vlan_tci,
604 &fs->m_ext.vlan_tci,
605 sizeof(fs->h_ext.vlan_tci));
606 offset += VLAN_HLEN;
607 f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
608 }
609 }
610
611 switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
612 case ETHER_FLOW:
613 f_length += DIV_ROUND_UP(ETH_HLEN, 2);
614 bcmgenet_hfb_insert_data(priv, f, 0,
615 &fs->h_u.ether_spec.h_dest,
616 &fs->m_u.ether_spec.h_dest,
617 sizeof(fs->h_u.ether_spec.h_dest));
618 bcmgenet_hfb_insert_data(priv, f, ETH_ALEN,
619 &fs->h_u.ether_spec.h_source,
620 &fs->m_u.ether_spec.h_source,
621 sizeof(fs->h_u.ether_spec.h_source));
622 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
623 &fs->h_u.ether_spec.h_proto,
624 &fs->m_u.ether_spec.h_proto,
625 sizeof(fs->h_u.ether_spec.h_proto));
626 break;
627 case IP_USER_FLOW:
628 f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
629 /* Specify IP Ether Type */
630 val_16 = htons(ETH_P_IP);
631 mask_16 = 0xFFFF;
632 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
633 &val_16, &mask_16, sizeof(val_16));
634 bcmgenet_hfb_insert_data(priv, f, 15 + offset,
635 &fs->h_u.usr_ip4_spec.tos,
636 &fs->m_u.usr_ip4_spec.tos,
637 sizeof(fs->h_u.usr_ip4_spec.tos));
638 bcmgenet_hfb_insert_data(priv, f, 23 + offset,
639 &fs->h_u.usr_ip4_spec.proto,
640 &fs->m_u.usr_ip4_spec.proto,
641 sizeof(fs->h_u.usr_ip4_spec.proto));
642 bcmgenet_hfb_insert_data(priv, f, 26 + offset,
643 &fs->h_u.usr_ip4_spec.ip4src,
644 &fs->m_u.usr_ip4_spec.ip4src,
645 sizeof(fs->h_u.usr_ip4_spec.ip4src));
646 bcmgenet_hfb_insert_data(priv, f, 30 + offset,
647 &fs->h_u.usr_ip4_spec.ip4dst,
648 &fs->m_u.usr_ip4_spec.ip4dst,
649 sizeof(fs->h_u.usr_ip4_spec.ip4dst));
650 if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
651 break;
652
653 /* Only supports 20 byte IPv4 header */
654 val_8 = 0x45;
655 mask_8 = 0xFF;
656 bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset,
657 &val_8, &mask_8,
658 sizeof(val_8));
659 size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
660 bcmgenet_hfb_insert_data(priv, f,
661 ETH_HLEN + 20 + offset,
662 &fs->h_u.usr_ip4_spec.l4_4_bytes,
663 &fs->m_u.usr_ip4_spec.l4_4_bytes,
664 size);
665 f_length += DIV_ROUND_UP(size, 2);
666 break;
667 }
668
669 bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length);
670 if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
671 /* Ring 0 flows can be handled by the default Descriptor Ring
672 * We'll map them to ring 0, but don't enable the filter
673 */
674 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0);
675 rule->state = BCMGENET_RXNFC_STATE_DISABLED;
676 } else {
677 /* Other Rx rings are direct mapped here */
678 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f,
679 fs->ring_cookie);
680 bcmgenet_hfb_enable_filter(priv, f);
681 rule->state = BCMGENET_RXNFC_STATE_ENABLED;
682 }
683 }
684
685 /* bcmgenet_hfb_clear
686 *
687 * Clear Hardware Filter Block and disable all filtering.
688 */
bcmgenet_hfb_clear_filter(struct bcmgenet_priv * priv,u32 f_index)689 static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index)
690 {
691 u32 base, i;
692
693 base = f_index * priv->hw_params->hfb_filter_size;
694 for (i = 0; i < priv->hw_params->hfb_filter_size; i++)
695 bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32));
696 }
697
bcmgenet_hfb_clear(struct bcmgenet_priv * priv)698 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
699 {
700 u32 i;
701
702 if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
703 return;
704
705 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
706 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
707 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
708
709 for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
710 bcmgenet_rdma_writel(priv, 0x0, i);
711
712 for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
713 bcmgenet_hfb_reg_writel(priv, 0x0,
714 HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
715
716 for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++)
717 bcmgenet_hfb_clear_filter(priv, i);
718 }
719
bcmgenet_hfb_init(struct bcmgenet_priv * priv)720 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
721 {
722 int i;
723
724 INIT_LIST_HEAD(&priv->rxnfc_list);
725 if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
726 return;
727
728 for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
729 INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
730 priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
731 }
732
733 bcmgenet_hfb_clear(priv);
734 }
735
bcmgenet_begin(struct net_device * dev)736 static int bcmgenet_begin(struct net_device *dev)
737 {
738 struct bcmgenet_priv *priv = netdev_priv(dev);
739
740 /* Turn on the clock */
741 return clk_prepare_enable(priv->clk);
742 }
743
bcmgenet_complete(struct net_device * dev)744 static void bcmgenet_complete(struct net_device *dev)
745 {
746 struct bcmgenet_priv *priv = netdev_priv(dev);
747
748 /* Turn off the clock */
749 clk_disable_unprepare(priv->clk);
750 }
751
bcmgenet_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)752 static int bcmgenet_get_link_ksettings(struct net_device *dev,
753 struct ethtool_link_ksettings *cmd)
754 {
755 if (!netif_running(dev))
756 return -EINVAL;
757
758 if (!dev->phydev)
759 return -ENODEV;
760
761 phy_ethtool_ksettings_get(dev->phydev, cmd);
762
763 return 0;
764 }
765
bcmgenet_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)766 static int bcmgenet_set_link_ksettings(struct net_device *dev,
767 const struct ethtool_link_ksettings *cmd)
768 {
769 if (!netif_running(dev))
770 return -EINVAL;
771
772 if (!dev->phydev)
773 return -ENODEV;
774
775 return phy_ethtool_ksettings_set(dev->phydev, cmd);
776 }
777
bcmgenet_set_features(struct net_device * dev,netdev_features_t features)778 static int bcmgenet_set_features(struct net_device *dev,
779 netdev_features_t features)
780 {
781 struct bcmgenet_priv *priv = netdev_priv(dev);
782 u32 reg;
783 int ret;
784
785 ret = clk_prepare_enable(priv->clk);
786 if (ret)
787 return ret;
788
789 /* Make sure we reflect the value of CRC_CMD_FWD */
790 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
791 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
792
793 clk_disable_unprepare(priv->clk);
794
795 return ret;
796 }
797
bcmgenet_get_msglevel(struct net_device * dev)798 static u32 bcmgenet_get_msglevel(struct net_device *dev)
799 {
800 struct bcmgenet_priv *priv = netdev_priv(dev);
801
802 return priv->msg_enable;
803 }
804
bcmgenet_set_msglevel(struct net_device * dev,u32 level)805 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
806 {
807 struct bcmgenet_priv *priv = netdev_priv(dev);
808
809 priv->msg_enable = level;
810 }
811
bcmgenet_get_coalesce(struct net_device * dev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)812 static int bcmgenet_get_coalesce(struct net_device *dev,
813 struct ethtool_coalesce *ec,
814 struct kernel_ethtool_coalesce *kernel_coal,
815 struct netlink_ext_ack *extack)
816 {
817 struct bcmgenet_priv *priv = netdev_priv(dev);
818 struct bcmgenet_rx_ring *ring;
819 unsigned int i;
820
821 ec->tx_max_coalesced_frames =
822 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
823 DMA_MBUF_DONE_THRESH);
824 ec->rx_max_coalesced_frames =
825 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
826 DMA_MBUF_DONE_THRESH);
827 ec->rx_coalesce_usecs =
828 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
829
830 for (i = 0; i < priv->hw_params->rx_queues; i++) {
831 ring = &priv->rx_rings[i];
832 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
833 }
834 ring = &priv->rx_rings[DESC_INDEX];
835 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
836
837 return 0;
838 }
839
bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring * ring,u32 usecs,u32 pkts)840 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
841 u32 usecs, u32 pkts)
842 {
843 struct bcmgenet_priv *priv = ring->priv;
844 unsigned int i = ring->index;
845 u32 reg;
846
847 bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
848
849 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
850 reg &= ~DMA_TIMEOUT_MASK;
851 reg |= DIV_ROUND_UP(usecs * 1000, 8192);
852 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
853 }
854
bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring * ring,struct ethtool_coalesce * ec)855 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
856 struct ethtool_coalesce *ec)
857 {
858 struct dim_cq_moder moder;
859 u32 usecs, pkts;
860
861 ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
862 ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
863 usecs = ring->rx_coalesce_usecs;
864 pkts = ring->rx_max_coalesced_frames;
865
866 if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
867 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
868 usecs = moder.usec;
869 pkts = moder.pkts;
870 }
871
872 ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
873 bcmgenet_set_rx_coalesce(ring, usecs, pkts);
874 }
875
bcmgenet_set_coalesce(struct net_device * dev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)876 static int bcmgenet_set_coalesce(struct net_device *dev,
877 struct ethtool_coalesce *ec,
878 struct kernel_ethtool_coalesce *kernel_coal,
879 struct netlink_ext_ack *extack)
880 {
881 struct bcmgenet_priv *priv = netdev_priv(dev);
882 unsigned int i;
883
884 /* Base system clock is 125Mhz, DMA timeout is this reference clock
885 * divided by 1024, which yields roughly 8.192us, our maximum value
886 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
887 */
888 if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
889 ec->tx_max_coalesced_frames == 0 ||
890 ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
891 ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
892 return -EINVAL;
893
894 if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
895 return -EINVAL;
896
897 /* GENET TDMA hardware does not support a configurable timeout, but will
898 * always generate an interrupt either after MBDONE packets have been
899 * transmitted, or when the ring is empty.
900 */
901
902 /* Program all TX queues with the same values, as there is no
903 * ethtool knob to do coalescing on a per-queue basis
904 */
905 for (i = 0; i < priv->hw_params->tx_queues; i++)
906 bcmgenet_tdma_ring_writel(priv, i,
907 ec->tx_max_coalesced_frames,
908 DMA_MBUF_DONE_THRESH);
909 bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
910 ec->tx_max_coalesced_frames,
911 DMA_MBUF_DONE_THRESH);
912
913 for (i = 0; i < priv->hw_params->rx_queues; i++)
914 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
915 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
916
917 return 0;
918 }
919
bcmgenet_get_pauseparam(struct net_device * dev,struct ethtool_pauseparam * epause)920 static void bcmgenet_get_pauseparam(struct net_device *dev,
921 struct ethtool_pauseparam *epause)
922 {
923 struct bcmgenet_priv *priv;
924 u32 umac_cmd;
925
926 priv = netdev_priv(dev);
927
928 epause->autoneg = priv->autoneg_pause;
929
930 if (netif_carrier_ok(dev)) {
931 /* report active state when link is up */
932 umac_cmd = bcmgenet_umac_readl(priv, UMAC_CMD);
933 epause->tx_pause = !(umac_cmd & CMD_TX_PAUSE_IGNORE);
934 epause->rx_pause = !(umac_cmd & CMD_RX_PAUSE_IGNORE);
935 } else {
936 /* otherwise report stored settings */
937 epause->tx_pause = priv->tx_pause;
938 epause->rx_pause = priv->rx_pause;
939 }
940 }
941
bcmgenet_set_pauseparam(struct net_device * dev,struct ethtool_pauseparam * epause)942 static int bcmgenet_set_pauseparam(struct net_device *dev,
943 struct ethtool_pauseparam *epause)
944 {
945 struct bcmgenet_priv *priv = netdev_priv(dev);
946
947 if (!dev->phydev)
948 return -ENODEV;
949
950 if (!phy_validate_pause(dev->phydev, epause))
951 return -EINVAL;
952
953 priv->autoneg_pause = !!epause->autoneg;
954 priv->tx_pause = !!epause->tx_pause;
955 priv->rx_pause = !!epause->rx_pause;
956
957 bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause);
958
959 return 0;
960 }
961
962 /* standard ethtool support functions. */
963 enum bcmgenet_stat_type {
964 BCMGENET_STAT_NETDEV = -1,
965 BCMGENET_STAT_MIB_RX,
966 BCMGENET_STAT_MIB_TX,
967 BCMGENET_STAT_RUNT,
968 BCMGENET_STAT_MISC,
969 BCMGENET_STAT_SOFT,
970 };
971
972 struct bcmgenet_stats {
973 char stat_string[ETH_GSTRING_LEN];
974 int stat_sizeof;
975 int stat_offset;
976 enum bcmgenet_stat_type type;
977 /* reg offset from UMAC base for misc counters */
978 u16 reg_offset;
979 };
980
981 #define STAT_NETDEV(m) { \
982 .stat_string = __stringify(m), \
983 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
984 .stat_offset = offsetof(struct net_device_stats, m), \
985 .type = BCMGENET_STAT_NETDEV, \
986 }
987
988 #define STAT_GENET_MIB(str, m, _type) { \
989 .stat_string = str, \
990 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
991 .stat_offset = offsetof(struct bcmgenet_priv, m), \
992 .type = _type, \
993 }
994
995 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
996 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
997 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
998 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
999
1000 #define STAT_GENET_MISC(str, m, offset) { \
1001 .stat_string = str, \
1002 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
1003 .stat_offset = offsetof(struct bcmgenet_priv, m), \
1004 .type = BCMGENET_STAT_MISC, \
1005 .reg_offset = offset, \
1006 }
1007
1008 #define STAT_GENET_Q(num) \
1009 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
1010 tx_rings[num].packets), \
1011 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
1012 tx_rings[num].bytes), \
1013 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
1014 rx_rings[num].bytes), \
1015 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
1016 rx_rings[num].packets), \
1017 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
1018 rx_rings[num].errors), \
1019 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
1020 rx_rings[num].dropped)
1021
1022 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
1023 * between the end of TX stats and the beginning of the RX RUNT
1024 */
1025 #define BCMGENET_STAT_OFFSET 0xc
1026
1027 /* Hardware counters must be kept in sync because the order/offset
1028 * is important here (order in structure declaration = order in hardware)
1029 */
1030 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1031 /* general stats */
1032 STAT_NETDEV(rx_packets),
1033 STAT_NETDEV(tx_packets),
1034 STAT_NETDEV(rx_bytes),
1035 STAT_NETDEV(tx_bytes),
1036 STAT_NETDEV(rx_errors),
1037 STAT_NETDEV(tx_errors),
1038 STAT_NETDEV(rx_dropped),
1039 STAT_NETDEV(tx_dropped),
1040 STAT_NETDEV(multicast),
1041 /* UniMAC RSV counters */
1042 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1043 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1044 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1045 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1046 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1047 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1048 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1049 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1050 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1051 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1052 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1053 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1054 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1055 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1056 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1057 STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1058 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1059 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1060 STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1061 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1062 STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1063 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1064 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1065 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1066 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1067 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1068 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1069 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1070 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1071 /* UniMAC TSV counters */
1072 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1073 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1074 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1075 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1076 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1077 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1078 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1079 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1080 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1081 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1082 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1083 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1084 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1085 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1086 STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1087 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1088 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1089 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1090 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1091 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1092 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1093 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1094 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1095 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1096 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1097 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1098 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1099 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1100 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1101 /* UniMAC RUNT counters */
1102 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1103 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1104 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1105 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1106 /* Misc UniMAC counters */
1107 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1108 UMAC_RBUF_OVFL_CNT_V1),
1109 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1110 UMAC_RBUF_ERR_CNT_V1),
1111 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1112 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1113 STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1114 STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1115 STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1116 STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1117 mib.tx_realloc_tsb_failed),
1118 /* Per TX queues */
1119 STAT_GENET_Q(0),
1120 STAT_GENET_Q(1),
1121 STAT_GENET_Q(2),
1122 STAT_GENET_Q(3),
1123 STAT_GENET_Q(16),
1124 };
1125
1126 #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats)
1127
bcmgenet_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1128 static void bcmgenet_get_drvinfo(struct net_device *dev,
1129 struct ethtool_drvinfo *info)
1130 {
1131 strscpy(info->driver, "bcmgenet", sizeof(info->driver));
1132 }
1133
bcmgenet_get_sset_count(struct net_device * dev,int string_set)1134 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1135 {
1136 switch (string_set) {
1137 case ETH_SS_STATS:
1138 return BCMGENET_STATS_LEN;
1139 default:
1140 return -EOPNOTSUPP;
1141 }
1142 }
1143
bcmgenet_get_strings(struct net_device * dev,u32 stringset,u8 * data)1144 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1145 u8 *data)
1146 {
1147 int i;
1148
1149 switch (stringset) {
1150 case ETH_SS_STATS:
1151 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1152 memcpy(data + i * ETH_GSTRING_LEN,
1153 bcmgenet_gstrings_stats[i].stat_string,
1154 ETH_GSTRING_LEN);
1155 }
1156 break;
1157 }
1158 }
1159
bcmgenet_update_stat_misc(struct bcmgenet_priv * priv,u16 offset)1160 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1161 {
1162 u16 new_offset;
1163 u32 val;
1164
1165 switch (offset) {
1166 case UMAC_RBUF_OVFL_CNT_V1:
1167 if (GENET_IS_V2(priv))
1168 new_offset = RBUF_OVFL_CNT_V2;
1169 else
1170 new_offset = RBUF_OVFL_CNT_V3PLUS;
1171
1172 val = bcmgenet_rbuf_readl(priv, new_offset);
1173 /* clear if overflowed */
1174 if (val == ~0)
1175 bcmgenet_rbuf_writel(priv, 0, new_offset);
1176 break;
1177 case UMAC_RBUF_ERR_CNT_V1:
1178 if (GENET_IS_V2(priv))
1179 new_offset = RBUF_ERR_CNT_V2;
1180 else
1181 new_offset = RBUF_ERR_CNT_V3PLUS;
1182
1183 val = bcmgenet_rbuf_readl(priv, new_offset);
1184 /* clear if overflowed */
1185 if (val == ~0)
1186 bcmgenet_rbuf_writel(priv, 0, new_offset);
1187 break;
1188 default:
1189 val = bcmgenet_umac_readl(priv, offset);
1190 /* clear if overflowed */
1191 if (val == ~0)
1192 bcmgenet_umac_writel(priv, 0, offset);
1193 break;
1194 }
1195
1196 return val;
1197 }
1198
bcmgenet_update_mib_counters(struct bcmgenet_priv * priv)1199 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1200 {
1201 int i, j = 0;
1202
1203 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1204 const struct bcmgenet_stats *s;
1205 u8 offset = 0;
1206 u32 val = 0;
1207 char *p;
1208
1209 s = &bcmgenet_gstrings_stats[i];
1210 switch (s->type) {
1211 case BCMGENET_STAT_NETDEV:
1212 case BCMGENET_STAT_SOFT:
1213 continue;
1214 case BCMGENET_STAT_RUNT:
1215 offset += BCMGENET_STAT_OFFSET;
1216 fallthrough;
1217 case BCMGENET_STAT_MIB_TX:
1218 offset += BCMGENET_STAT_OFFSET;
1219 fallthrough;
1220 case BCMGENET_STAT_MIB_RX:
1221 val = bcmgenet_umac_readl(priv,
1222 UMAC_MIB_START + j + offset);
1223 offset = 0; /* Reset Offset */
1224 break;
1225 case BCMGENET_STAT_MISC:
1226 if (GENET_IS_V1(priv)) {
1227 val = bcmgenet_umac_readl(priv, s->reg_offset);
1228 /* clear if overflowed */
1229 if (val == ~0)
1230 bcmgenet_umac_writel(priv, 0,
1231 s->reg_offset);
1232 } else {
1233 val = bcmgenet_update_stat_misc(priv,
1234 s->reg_offset);
1235 }
1236 break;
1237 }
1238
1239 j += s->stat_sizeof;
1240 p = (char *)priv + s->stat_offset;
1241 *(u32 *)p = val;
1242 }
1243 }
1244
bcmgenet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)1245 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1246 struct ethtool_stats *stats,
1247 u64 *data)
1248 {
1249 struct bcmgenet_priv *priv = netdev_priv(dev);
1250 int i;
1251
1252 if (netif_running(dev))
1253 bcmgenet_update_mib_counters(priv);
1254
1255 dev->netdev_ops->ndo_get_stats(dev);
1256
1257 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1258 const struct bcmgenet_stats *s;
1259 char *p;
1260
1261 s = &bcmgenet_gstrings_stats[i];
1262 if (s->type == BCMGENET_STAT_NETDEV)
1263 p = (char *)&dev->stats;
1264 else
1265 p = (char *)priv;
1266 p += s->stat_offset;
1267 if (sizeof(unsigned long) != sizeof(u32) &&
1268 s->stat_sizeof == sizeof(unsigned long))
1269 data[i] = *(unsigned long *)p;
1270 else
1271 data[i] = *(u32 *)p;
1272 }
1273 }
1274
bcmgenet_eee_enable_set(struct net_device * dev,bool enable,bool tx_lpi_enabled)1275 void bcmgenet_eee_enable_set(struct net_device *dev, bool enable,
1276 bool tx_lpi_enabled)
1277 {
1278 struct bcmgenet_priv *priv = netdev_priv(dev);
1279 u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1280 u32 reg;
1281
1282 if (enable && !priv->clk_eee_enabled) {
1283 clk_prepare_enable(priv->clk_eee);
1284 priv->clk_eee_enabled = true;
1285 }
1286
1287 reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1288 if (enable)
1289 reg |= EEE_EN;
1290 else
1291 reg &= ~EEE_EN;
1292 bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1293
1294 /* Enable EEE and switch to a 27Mhz clock automatically */
1295 reg = bcmgenet_readl(priv->base + off);
1296 if (tx_lpi_enabled)
1297 reg |= TBUF_EEE_EN | TBUF_PM_EN;
1298 else
1299 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1300 bcmgenet_writel(reg, priv->base + off);
1301
1302 /* Do the same for thing for RBUF */
1303 reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1304 if (enable)
1305 reg |= RBUF_EEE_EN | RBUF_PM_EN;
1306 else
1307 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1308 bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1309
1310 if (!enable && priv->clk_eee_enabled) {
1311 clk_disable_unprepare(priv->clk_eee);
1312 priv->clk_eee_enabled = false;
1313 }
1314
1315 priv->eee.eee_enabled = enable;
1316 priv->eee.tx_lpi_enabled = tx_lpi_enabled;
1317 }
1318
bcmgenet_get_eee(struct net_device * dev,struct ethtool_keee * e)1319 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_keee *e)
1320 {
1321 struct bcmgenet_priv *priv = netdev_priv(dev);
1322 struct ethtool_keee *p = &priv->eee;
1323
1324 if (GENET_IS_V1(priv))
1325 return -EOPNOTSUPP;
1326
1327 if (!dev->phydev)
1328 return -ENODEV;
1329
1330 e->tx_lpi_enabled = p->tx_lpi_enabled;
1331 e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1332
1333 return phy_ethtool_get_eee(dev->phydev, e);
1334 }
1335
bcmgenet_set_eee(struct net_device * dev,struct ethtool_keee * e)1336 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_keee *e)
1337 {
1338 struct bcmgenet_priv *priv = netdev_priv(dev);
1339 struct ethtool_keee *p = &priv->eee;
1340 bool active;
1341
1342 if (GENET_IS_V1(priv))
1343 return -EOPNOTSUPP;
1344
1345 if (!dev->phydev)
1346 return -ENODEV;
1347
1348 p->eee_enabled = e->eee_enabled;
1349
1350 if (!p->eee_enabled) {
1351 bcmgenet_eee_enable_set(dev, false, false);
1352 } else {
1353 active = phy_init_eee(dev->phydev, false) >= 0;
1354 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1355 bcmgenet_eee_enable_set(dev, active, e->tx_lpi_enabled);
1356 }
1357
1358 return phy_ethtool_set_eee(dev->phydev, e);
1359 }
1360
bcmgenet_validate_flow(struct net_device * dev,struct ethtool_rxnfc * cmd)1361 static int bcmgenet_validate_flow(struct net_device *dev,
1362 struct ethtool_rxnfc *cmd)
1363 {
1364 struct ethtool_usrip4_spec *l4_mask;
1365 struct ethhdr *eth_mask;
1366
1367 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES &&
1368 cmd->fs.location != RX_CLS_LOC_ANY) {
1369 netdev_err(dev, "rxnfc: Invalid location (%d)\n",
1370 cmd->fs.location);
1371 return -EINVAL;
1372 }
1373
1374 switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1375 case IP_USER_FLOW:
1376 l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1377 /* don't allow mask which isn't valid */
1378 if (VALIDATE_MASK(l4_mask->ip4src) ||
1379 VALIDATE_MASK(l4_mask->ip4dst) ||
1380 VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1381 VALIDATE_MASK(l4_mask->proto) ||
1382 VALIDATE_MASK(l4_mask->ip_ver) ||
1383 VALIDATE_MASK(l4_mask->tos)) {
1384 netdev_err(dev, "rxnfc: Unsupported mask\n");
1385 return -EINVAL;
1386 }
1387 break;
1388 case ETHER_FLOW:
1389 eth_mask = &cmd->fs.m_u.ether_spec;
1390 /* don't allow mask which isn't valid */
1391 if (VALIDATE_MASK(eth_mask->h_dest) ||
1392 VALIDATE_MASK(eth_mask->h_source) ||
1393 VALIDATE_MASK(eth_mask->h_proto)) {
1394 netdev_err(dev, "rxnfc: Unsupported mask\n");
1395 return -EINVAL;
1396 }
1397 break;
1398 default:
1399 netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
1400 cmd->fs.flow_type);
1401 return -EINVAL;
1402 }
1403
1404 if ((cmd->fs.flow_type & FLOW_EXT)) {
1405 /* don't allow mask which isn't valid */
1406 if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1407 VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1408 netdev_err(dev, "rxnfc: Unsupported mask\n");
1409 return -EINVAL;
1410 }
1411 if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1412 netdev_err(dev, "rxnfc: user-def not supported\n");
1413 return -EINVAL;
1414 }
1415 }
1416
1417 if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1418 /* don't allow mask which isn't valid */
1419 if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1420 netdev_err(dev, "rxnfc: Unsupported mask\n");
1421 return -EINVAL;
1422 }
1423 }
1424
1425 return 0;
1426 }
1427
bcmgenet_insert_flow(struct net_device * dev,struct ethtool_rxnfc * cmd)1428 static int bcmgenet_insert_flow(struct net_device *dev,
1429 struct ethtool_rxnfc *cmd)
1430 {
1431 struct bcmgenet_priv *priv = netdev_priv(dev);
1432 struct bcmgenet_rxnfc_rule *loc_rule;
1433 int err, i;
1434
1435 if (priv->hw_params->hfb_filter_size < 128) {
1436 netdev_err(dev, "rxnfc: Not supported by this device\n");
1437 return -EINVAL;
1438 }
1439
1440 if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1441 cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1442 netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
1443 cmd->fs.ring_cookie);
1444 return -EINVAL;
1445 }
1446
1447 err = bcmgenet_validate_flow(dev, cmd);
1448 if (err)
1449 return err;
1450
1451 if (cmd->fs.location == RX_CLS_LOC_ANY) {
1452 list_for_each_entry(loc_rule, &priv->rxnfc_list, list) {
1453 cmd->fs.location = loc_rule->fs.location;
1454 err = memcmp(&loc_rule->fs, &cmd->fs,
1455 sizeof(struct ethtool_rx_flow_spec));
1456 if (!err)
1457 /* rule exists so return current location */
1458 return 0;
1459 }
1460 for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
1461 loc_rule = &priv->rxnfc_rules[i];
1462 if (loc_rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1463 cmd->fs.location = i;
1464 break;
1465 }
1466 }
1467 if (i == MAX_NUM_OF_FS_RULES) {
1468 cmd->fs.location = RX_CLS_LOC_ANY;
1469 return -ENOSPC;
1470 }
1471 } else {
1472 loc_rule = &priv->rxnfc_rules[cmd->fs.location];
1473 }
1474 if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1475 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1476 if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1477 list_del(&loc_rule->list);
1478 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1479 }
1480 loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1481 memcpy(&loc_rule->fs, &cmd->fs,
1482 sizeof(struct ethtool_rx_flow_spec));
1483
1484 bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
1485
1486 list_add_tail(&loc_rule->list, &priv->rxnfc_list);
1487
1488 return 0;
1489 }
1490
bcmgenet_delete_flow(struct net_device * dev,struct ethtool_rxnfc * cmd)1491 static int bcmgenet_delete_flow(struct net_device *dev,
1492 struct ethtool_rxnfc *cmd)
1493 {
1494 struct bcmgenet_priv *priv = netdev_priv(dev);
1495 struct bcmgenet_rxnfc_rule *rule;
1496 int err = 0;
1497
1498 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1499 return -EINVAL;
1500
1501 rule = &priv->rxnfc_rules[cmd->fs.location];
1502 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1503 err = -ENOENT;
1504 goto out;
1505 }
1506
1507 if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1508 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1509 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1510 list_del(&rule->list);
1511 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1512 }
1513 rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1514 memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1515
1516 out:
1517 return err;
1518 }
1519
bcmgenet_set_rxnfc(struct net_device * dev,struct ethtool_rxnfc * cmd)1520 static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1521 {
1522 struct bcmgenet_priv *priv = netdev_priv(dev);
1523 int err = 0;
1524
1525 switch (cmd->cmd) {
1526 case ETHTOOL_SRXCLSRLINS:
1527 err = bcmgenet_insert_flow(dev, cmd);
1528 break;
1529 case ETHTOOL_SRXCLSRLDEL:
1530 err = bcmgenet_delete_flow(dev, cmd);
1531 break;
1532 default:
1533 netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
1534 cmd->cmd);
1535 return -EINVAL;
1536 }
1537
1538 return err;
1539 }
1540
bcmgenet_get_flow(struct net_device * dev,struct ethtool_rxnfc * cmd,int loc)1541 static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1542 int loc)
1543 {
1544 struct bcmgenet_priv *priv = netdev_priv(dev);
1545 struct bcmgenet_rxnfc_rule *rule;
1546 int err = 0;
1547
1548 if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1549 return -EINVAL;
1550
1551 rule = &priv->rxnfc_rules[loc];
1552 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1553 err = -ENOENT;
1554 else
1555 memcpy(&cmd->fs, &rule->fs,
1556 sizeof(struct ethtool_rx_flow_spec));
1557
1558 return err;
1559 }
1560
bcmgenet_get_num_flows(struct bcmgenet_priv * priv)1561 static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1562 {
1563 struct list_head *pos;
1564 int res = 0;
1565
1566 list_for_each(pos, &priv->rxnfc_list)
1567 res++;
1568
1569 return res;
1570 }
1571
bcmgenet_get_rxnfc(struct net_device * dev,struct ethtool_rxnfc * cmd,u32 * rule_locs)1572 static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1573 u32 *rule_locs)
1574 {
1575 struct bcmgenet_priv *priv = netdev_priv(dev);
1576 struct bcmgenet_rxnfc_rule *rule;
1577 int err = 0;
1578 int i = 0;
1579
1580 switch (cmd->cmd) {
1581 case ETHTOOL_GRXRINGS:
1582 cmd->data = priv->hw_params->rx_queues ?: 1;
1583 break;
1584 case ETHTOOL_GRXCLSRLCNT:
1585 cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1586 cmd->data = MAX_NUM_OF_FS_RULES | RX_CLS_LOC_SPECIAL;
1587 break;
1588 case ETHTOOL_GRXCLSRULE:
1589 err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
1590 break;
1591 case ETHTOOL_GRXCLSRLALL:
1592 list_for_each_entry(rule, &priv->rxnfc_list, list)
1593 if (i < cmd->rule_cnt)
1594 rule_locs[i++] = rule->fs.location;
1595 cmd->rule_cnt = i;
1596 cmd->data = MAX_NUM_OF_FS_RULES;
1597 break;
1598 default:
1599 err = -EOPNOTSUPP;
1600 break;
1601 }
1602
1603 return err;
1604 }
1605
1606 /* standard ethtool support functions. */
1607 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1608 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1609 ETHTOOL_COALESCE_MAX_FRAMES |
1610 ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1611 .begin = bcmgenet_begin,
1612 .complete = bcmgenet_complete,
1613 .get_strings = bcmgenet_get_strings,
1614 .get_sset_count = bcmgenet_get_sset_count,
1615 .get_ethtool_stats = bcmgenet_get_ethtool_stats,
1616 .get_drvinfo = bcmgenet_get_drvinfo,
1617 .get_link = ethtool_op_get_link,
1618 .get_msglevel = bcmgenet_get_msglevel,
1619 .set_msglevel = bcmgenet_set_msglevel,
1620 .get_wol = bcmgenet_get_wol,
1621 .set_wol = bcmgenet_set_wol,
1622 .get_eee = bcmgenet_get_eee,
1623 .set_eee = bcmgenet_set_eee,
1624 .nway_reset = phy_ethtool_nway_reset,
1625 .get_coalesce = bcmgenet_get_coalesce,
1626 .set_coalesce = bcmgenet_set_coalesce,
1627 .get_link_ksettings = bcmgenet_get_link_ksettings,
1628 .set_link_ksettings = bcmgenet_set_link_ksettings,
1629 .get_ts_info = ethtool_op_get_ts_info,
1630 .get_rxnfc = bcmgenet_get_rxnfc,
1631 .set_rxnfc = bcmgenet_set_rxnfc,
1632 .get_pauseparam = bcmgenet_get_pauseparam,
1633 .set_pauseparam = bcmgenet_set_pauseparam,
1634 };
1635
1636 /* Power down the unimac, based on mode. */
bcmgenet_power_down(struct bcmgenet_priv * priv,enum bcmgenet_power_mode mode)1637 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1638 enum bcmgenet_power_mode mode)
1639 {
1640 int ret = 0;
1641 u32 reg;
1642
1643 switch (mode) {
1644 case GENET_POWER_CABLE_SENSE:
1645 phy_detach(priv->dev->phydev);
1646 break;
1647
1648 case GENET_POWER_WOL_MAGIC:
1649 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1650 break;
1651
1652 case GENET_POWER_PASSIVE:
1653 /* Power down LED */
1654 if (priv->hw_params->flags & GENET_HAS_EXT) {
1655 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1656 if (GENET_IS_V5(priv) && !priv->ephy_16nm)
1657 reg |= EXT_PWR_DOWN_PHY_EN |
1658 EXT_PWR_DOWN_PHY_RD |
1659 EXT_PWR_DOWN_PHY_SD |
1660 EXT_PWR_DOWN_PHY_RX |
1661 EXT_PWR_DOWN_PHY_TX |
1662 EXT_IDDQ_GLBL_PWR;
1663 else
1664 reg |= EXT_PWR_DOWN_PHY;
1665
1666 reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1667 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1668
1669 bcmgenet_phy_power_set(priv->dev, false);
1670 }
1671 break;
1672 default:
1673 break;
1674 }
1675
1676 return ret;
1677 }
1678
bcmgenet_power_up(struct bcmgenet_priv * priv,enum bcmgenet_power_mode mode)1679 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1680 enum bcmgenet_power_mode mode)
1681 {
1682 u32 reg;
1683
1684 if (!(priv->hw_params->flags & GENET_HAS_EXT))
1685 return;
1686
1687 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1688
1689 switch (mode) {
1690 case GENET_POWER_PASSIVE:
1691 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS |
1692 EXT_ENERGY_DET_MASK);
1693 if (GENET_IS_V5(priv) && !priv->ephy_16nm) {
1694 reg &= ~(EXT_PWR_DOWN_PHY_EN |
1695 EXT_PWR_DOWN_PHY_RD |
1696 EXT_PWR_DOWN_PHY_SD |
1697 EXT_PWR_DOWN_PHY_RX |
1698 EXT_PWR_DOWN_PHY_TX |
1699 EXT_IDDQ_GLBL_PWR);
1700 reg |= EXT_PHY_RESET;
1701 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1702 mdelay(1);
1703
1704 reg &= ~EXT_PHY_RESET;
1705 } else {
1706 reg &= ~EXT_PWR_DOWN_PHY;
1707 reg |= EXT_PWR_DN_EN_LD;
1708 }
1709 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1710 bcmgenet_phy_power_set(priv->dev, true);
1711 break;
1712
1713 case GENET_POWER_CABLE_SENSE:
1714 /* enable APD */
1715 if (!GENET_IS_V5(priv)) {
1716 reg |= EXT_PWR_DN_EN_LD;
1717 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1718 }
1719 break;
1720 case GENET_POWER_WOL_MAGIC:
1721 bcmgenet_wol_power_up_cfg(priv, mode);
1722 return;
1723 default:
1724 break;
1725 }
1726 }
1727
bcmgenet_get_txcb(struct bcmgenet_priv * priv,struct bcmgenet_tx_ring * ring)1728 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1729 struct bcmgenet_tx_ring *ring)
1730 {
1731 struct enet_cb *tx_cb_ptr;
1732
1733 tx_cb_ptr = ring->cbs;
1734 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1735
1736 /* Advancing local write pointer */
1737 if (ring->write_ptr == ring->end_ptr)
1738 ring->write_ptr = ring->cb_ptr;
1739 else
1740 ring->write_ptr++;
1741
1742 return tx_cb_ptr;
1743 }
1744
bcmgenet_put_txcb(struct bcmgenet_priv * priv,struct bcmgenet_tx_ring * ring)1745 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1746 struct bcmgenet_tx_ring *ring)
1747 {
1748 struct enet_cb *tx_cb_ptr;
1749
1750 tx_cb_ptr = ring->cbs;
1751 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1752
1753 /* Rewinding local write pointer */
1754 if (ring->write_ptr == ring->cb_ptr)
1755 ring->write_ptr = ring->end_ptr;
1756 else
1757 ring->write_ptr--;
1758
1759 return tx_cb_ptr;
1760 }
1761
bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring * ring)1762 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1763 {
1764 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1765 INTRL2_CPU_MASK_SET);
1766 }
1767
bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring * ring)1768 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1769 {
1770 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1771 INTRL2_CPU_MASK_CLEAR);
1772 }
1773
bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring * ring)1774 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1775 {
1776 bcmgenet_intrl2_1_writel(ring->priv,
1777 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1778 INTRL2_CPU_MASK_SET);
1779 }
1780
bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring * ring)1781 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1782 {
1783 bcmgenet_intrl2_1_writel(ring->priv,
1784 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1785 INTRL2_CPU_MASK_CLEAR);
1786 }
1787
bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring * ring)1788 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1789 {
1790 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1791 INTRL2_CPU_MASK_SET);
1792 }
1793
bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring * ring)1794 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1795 {
1796 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1797 INTRL2_CPU_MASK_CLEAR);
1798 }
1799
bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring * ring)1800 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1801 {
1802 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1803 INTRL2_CPU_MASK_CLEAR);
1804 }
1805
bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring * ring)1806 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1807 {
1808 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1809 INTRL2_CPU_MASK_SET);
1810 }
1811
1812 /* Simple helper to free a transmit control block's resources
1813 * Returns an skb when the last transmit control block associated with the
1814 * skb is freed. The skb should be freed by the caller if necessary.
1815 */
bcmgenet_free_tx_cb(struct device * dev,struct enet_cb * cb)1816 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1817 struct enet_cb *cb)
1818 {
1819 struct sk_buff *skb;
1820
1821 skb = cb->skb;
1822
1823 if (skb) {
1824 cb->skb = NULL;
1825 if (cb == GENET_CB(skb)->first_cb)
1826 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1827 dma_unmap_len(cb, dma_len),
1828 DMA_TO_DEVICE);
1829 else
1830 dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1831 dma_unmap_len(cb, dma_len),
1832 DMA_TO_DEVICE);
1833 dma_unmap_addr_set(cb, dma_addr, 0);
1834
1835 if (cb == GENET_CB(skb)->last_cb)
1836 return skb;
1837
1838 } else if (dma_unmap_addr(cb, dma_addr)) {
1839 dma_unmap_page(dev,
1840 dma_unmap_addr(cb, dma_addr),
1841 dma_unmap_len(cb, dma_len),
1842 DMA_TO_DEVICE);
1843 dma_unmap_addr_set(cb, dma_addr, 0);
1844 }
1845
1846 return NULL;
1847 }
1848
1849 /* Simple helper to free a receive control block's resources */
bcmgenet_free_rx_cb(struct device * dev,struct enet_cb * cb)1850 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1851 struct enet_cb *cb)
1852 {
1853 struct sk_buff *skb;
1854
1855 skb = cb->skb;
1856 cb->skb = NULL;
1857
1858 if (dma_unmap_addr(cb, dma_addr)) {
1859 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1860 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1861 dma_unmap_addr_set(cb, dma_addr, 0);
1862 }
1863
1864 return skb;
1865 }
1866
1867 /* Unlocked version of the reclaim routine */
__bcmgenet_tx_reclaim(struct net_device * dev,struct bcmgenet_tx_ring * ring)1868 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1869 struct bcmgenet_tx_ring *ring)
1870 {
1871 struct bcmgenet_priv *priv = netdev_priv(dev);
1872 unsigned int txbds_processed = 0;
1873 unsigned int bytes_compl = 0;
1874 unsigned int pkts_compl = 0;
1875 unsigned int txbds_ready;
1876 unsigned int c_index;
1877 struct sk_buff *skb;
1878
1879 /* Clear status before servicing to reduce spurious interrupts */
1880 if (ring->index == DESC_INDEX)
1881 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1882 INTRL2_CPU_CLEAR);
1883 else
1884 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1885 INTRL2_CPU_CLEAR);
1886
1887 /* Compute how many buffers are transmitted since last xmit call */
1888 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1889 & DMA_C_INDEX_MASK;
1890 txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1891
1892 netif_dbg(priv, tx_done, dev,
1893 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1894 __func__, ring->index, ring->c_index, c_index, txbds_ready);
1895
1896 /* Reclaim transmitted buffers */
1897 while (txbds_processed < txbds_ready) {
1898 skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1899 &priv->tx_cbs[ring->clean_ptr]);
1900 if (skb) {
1901 pkts_compl++;
1902 bytes_compl += GENET_CB(skb)->bytes_sent;
1903 dev_consume_skb_any(skb);
1904 }
1905
1906 txbds_processed++;
1907 if (likely(ring->clean_ptr < ring->end_ptr))
1908 ring->clean_ptr++;
1909 else
1910 ring->clean_ptr = ring->cb_ptr;
1911 }
1912
1913 ring->free_bds += txbds_processed;
1914 ring->c_index = c_index;
1915
1916 ring->packets += pkts_compl;
1917 ring->bytes += bytes_compl;
1918
1919 netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1920 pkts_compl, bytes_compl);
1921
1922 return txbds_processed;
1923 }
1924
bcmgenet_tx_reclaim(struct net_device * dev,struct bcmgenet_tx_ring * ring)1925 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1926 struct bcmgenet_tx_ring *ring)
1927 {
1928 unsigned int released;
1929
1930 spin_lock_bh(&ring->lock);
1931 released = __bcmgenet_tx_reclaim(dev, ring);
1932 spin_unlock_bh(&ring->lock);
1933
1934 return released;
1935 }
1936
bcmgenet_tx_poll(struct napi_struct * napi,int budget)1937 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1938 {
1939 struct bcmgenet_tx_ring *ring =
1940 container_of(napi, struct bcmgenet_tx_ring, napi);
1941 unsigned int work_done = 0;
1942 struct netdev_queue *txq;
1943
1944 spin_lock(&ring->lock);
1945 work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1946 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1947 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1948 netif_tx_wake_queue(txq);
1949 }
1950 spin_unlock(&ring->lock);
1951
1952 if (work_done == 0) {
1953 napi_complete(napi);
1954 ring->int_enable(ring);
1955
1956 return 0;
1957 }
1958
1959 return budget;
1960 }
1961
bcmgenet_tx_reclaim_all(struct net_device * dev)1962 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1963 {
1964 struct bcmgenet_priv *priv = netdev_priv(dev);
1965 int i;
1966
1967 if (netif_is_multiqueue(dev)) {
1968 for (i = 0; i < priv->hw_params->tx_queues; i++)
1969 bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1970 }
1971
1972 bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1973 }
1974
1975 /* Reallocate the SKB to put enough headroom in front of it and insert
1976 * the transmit checksum offsets in the descriptors
1977 */
bcmgenet_add_tsb(struct net_device * dev,struct sk_buff * skb)1978 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1979 struct sk_buff *skb)
1980 {
1981 struct bcmgenet_priv *priv = netdev_priv(dev);
1982 struct status_64 *status = NULL;
1983 struct sk_buff *new_skb;
1984 u16 offset;
1985 u8 ip_proto;
1986 __be16 ip_ver;
1987 u32 tx_csum_info;
1988
1989 if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1990 /* If 64 byte status block enabled, must make sure skb has
1991 * enough headroom for us to insert 64B status block.
1992 */
1993 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1994 if (!new_skb) {
1995 dev_kfree_skb_any(skb);
1996 priv->mib.tx_realloc_tsb_failed++;
1997 dev->stats.tx_dropped++;
1998 return NULL;
1999 }
2000 dev_consume_skb_any(skb);
2001 skb = new_skb;
2002 priv->mib.tx_realloc_tsb++;
2003 }
2004
2005 skb_push(skb, sizeof(*status));
2006 status = (struct status_64 *)skb->data;
2007
2008 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2009 ip_ver = skb->protocol;
2010 switch (ip_ver) {
2011 case htons(ETH_P_IP):
2012 ip_proto = ip_hdr(skb)->protocol;
2013 break;
2014 case htons(ETH_P_IPV6):
2015 ip_proto = ipv6_hdr(skb)->nexthdr;
2016 break;
2017 default:
2018 /* don't use UDP flag */
2019 ip_proto = 0;
2020 break;
2021 }
2022
2023 offset = skb_checksum_start_offset(skb) - sizeof(*status);
2024 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
2025 (offset + skb->csum_offset) |
2026 STATUS_TX_CSUM_LV;
2027
2028 /* Set the special UDP flag for UDP */
2029 if (ip_proto == IPPROTO_UDP)
2030 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
2031
2032 status->tx_csum_info = tx_csum_info;
2033 }
2034
2035 return skb;
2036 }
2037
bcmgenet_hide_tsb(struct sk_buff * skb)2038 static void bcmgenet_hide_tsb(struct sk_buff *skb)
2039 {
2040 __skb_pull(skb, sizeof(struct status_64));
2041 }
2042
bcmgenet_xmit(struct sk_buff * skb,struct net_device * dev)2043 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
2044 {
2045 struct bcmgenet_priv *priv = netdev_priv(dev);
2046 struct device *kdev = &priv->pdev->dev;
2047 struct bcmgenet_tx_ring *ring = NULL;
2048 struct enet_cb *tx_cb_ptr;
2049 struct netdev_queue *txq;
2050 int nr_frags, index;
2051 dma_addr_t mapping;
2052 unsigned int size;
2053 skb_frag_t *frag;
2054 u32 len_stat;
2055 int ret;
2056 int i;
2057
2058 index = skb_get_queue_mapping(skb);
2059 /* Mapping strategy:
2060 * queue_mapping = 0, unclassified, packet xmited through ring16
2061 * queue_mapping = 1, goes to ring 0. (highest priority queue
2062 * queue_mapping = 2, goes to ring 1.
2063 * queue_mapping = 3, goes to ring 2.
2064 * queue_mapping = 4, goes to ring 3.
2065 */
2066 if (index == 0)
2067 index = DESC_INDEX;
2068 else
2069 index -= 1;
2070
2071 ring = &priv->tx_rings[index];
2072 txq = netdev_get_tx_queue(dev, ring->queue);
2073
2074 nr_frags = skb_shinfo(skb)->nr_frags;
2075
2076 spin_lock(&ring->lock);
2077 if (ring->free_bds <= (nr_frags + 1)) {
2078 if (!netif_tx_queue_stopped(txq))
2079 netif_tx_stop_queue(txq);
2080 ret = NETDEV_TX_BUSY;
2081 goto out;
2082 }
2083
2084 /* Retain how many bytes will be sent on the wire, without TSB inserted
2085 * by transmit checksum offload
2086 */
2087 GENET_CB(skb)->bytes_sent = skb->len;
2088
2089 /* add the Transmit Status Block */
2090 skb = bcmgenet_add_tsb(dev, skb);
2091 if (!skb) {
2092 ret = NETDEV_TX_OK;
2093 goto out;
2094 }
2095
2096 for (i = 0; i <= nr_frags; i++) {
2097 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2098
2099 BUG_ON(!tx_cb_ptr);
2100
2101 if (!i) {
2102 /* Transmit single SKB or head of fragment list */
2103 GENET_CB(skb)->first_cb = tx_cb_ptr;
2104 size = skb_headlen(skb);
2105 mapping = dma_map_single(kdev, skb->data, size,
2106 DMA_TO_DEVICE);
2107 } else {
2108 /* xmit fragment */
2109 frag = &skb_shinfo(skb)->frags[i - 1];
2110 size = skb_frag_size(frag);
2111 mapping = skb_frag_dma_map(kdev, frag, 0, size,
2112 DMA_TO_DEVICE);
2113 }
2114
2115 ret = dma_mapping_error(kdev, mapping);
2116 if (ret) {
2117 priv->mib.tx_dma_failed++;
2118 netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2119 ret = NETDEV_TX_OK;
2120 goto out_unmap_frags;
2121 }
2122 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2123 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2124
2125 tx_cb_ptr->skb = skb;
2126
2127 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2128 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2129
2130 /* Note: if we ever change from DMA_TX_APPEND_CRC below we
2131 * will need to restore software padding of "runt" packets
2132 */
2133 len_stat |= DMA_TX_APPEND_CRC;
2134
2135 if (!i) {
2136 len_stat |= DMA_SOP;
2137 if (skb->ip_summed == CHECKSUM_PARTIAL)
2138 len_stat |= DMA_TX_DO_CSUM;
2139 }
2140 if (i == nr_frags)
2141 len_stat |= DMA_EOP;
2142
2143 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
2144 }
2145
2146 GENET_CB(skb)->last_cb = tx_cb_ptr;
2147
2148 bcmgenet_hide_tsb(skb);
2149 skb_tx_timestamp(skb);
2150
2151 /* Decrement total BD count and advance our write pointer */
2152 ring->free_bds -= nr_frags + 1;
2153 ring->prod_index += nr_frags + 1;
2154 ring->prod_index &= DMA_P_INDEX_MASK;
2155
2156 netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
2157
2158 if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2159 netif_tx_stop_queue(txq);
2160
2161 if (!netdev_xmit_more() || netif_xmit_stopped(txq))
2162 /* Packets are ready, update producer index */
2163 bcmgenet_tdma_ring_writel(priv, ring->index,
2164 ring->prod_index, TDMA_PROD_INDEX);
2165 out:
2166 spin_unlock(&ring->lock);
2167
2168 return ret;
2169
2170 out_unmap_frags:
2171 /* Back up for failed control block mapping */
2172 bcmgenet_put_txcb(priv, ring);
2173
2174 /* Unmap successfully mapped control blocks */
2175 while (i-- > 0) {
2176 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2177 bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
2178 }
2179
2180 dev_kfree_skb(skb);
2181 goto out;
2182 }
2183
bcmgenet_rx_refill(struct bcmgenet_priv * priv,struct enet_cb * cb)2184 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2185 struct enet_cb *cb)
2186 {
2187 struct device *kdev = &priv->pdev->dev;
2188 struct sk_buff *skb;
2189 struct sk_buff *rx_skb;
2190 dma_addr_t mapping;
2191
2192 /* Allocate a new Rx skb */
2193 skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
2194 GFP_ATOMIC | __GFP_NOWARN);
2195 if (!skb) {
2196 priv->mib.alloc_rx_buff_failed++;
2197 netif_err(priv, rx_err, priv->dev,
2198 "%s: Rx skb allocation failed\n", __func__);
2199 return NULL;
2200 }
2201
2202 /* DMA-map the new Rx skb */
2203 mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2204 DMA_FROM_DEVICE);
2205 if (dma_mapping_error(kdev, mapping)) {
2206 priv->mib.rx_dma_failed++;
2207 dev_kfree_skb_any(skb);
2208 netif_err(priv, rx_err, priv->dev,
2209 "%s: Rx skb DMA mapping failed\n", __func__);
2210 return NULL;
2211 }
2212
2213 /* Grab the current Rx skb from the ring and DMA-unmap it */
2214 rx_skb = bcmgenet_free_rx_cb(kdev, cb);
2215
2216 /* Put the new Rx skb on the ring */
2217 cb->skb = skb;
2218 dma_unmap_addr_set(cb, dma_addr, mapping);
2219 dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2220 dmadesc_set_addr(priv, cb->bd_addr, mapping);
2221
2222 /* Return the current Rx skb to caller */
2223 return rx_skb;
2224 }
2225
2226 /* bcmgenet_desc_rx - descriptor based rx process.
2227 * this could be called from bottom half, or from NAPI polling method.
2228 */
bcmgenet_desc_rx(struct bcmgenet_rx_ring * ring,unsigned int budget)2229 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2230 unsigned int budget)
2231 {
2232 struct bcmgenet_priv *priv = ring->priv;
2233 struct net_device *dev = priv->dev;
2234 struct enet_cb *cb;
2235 struct sk_buff *skb;
2236 u32 dma_length_status;
2237 unsigned long dma_flag;
2238 int len;
2239 unsigned int rxpktprocessed = 0, rxpkttoprocess;
2240 unsigned int bytes_processed = 0;
2241 unsigned int p_index, mask;
2242 unsigned int discards;
2243
2244 /* Clear status before servicing to reduce spurious interrupts */
2245 if (ring->index == DESC_INDEX) {
2246 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2247 INTRL2_CPU_CLEAR);
2248 } else {
2249 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2250 bcmgenet_intrl2_1_writel(priv,
2251 mask,
2252 INTRL2_CPU_CLEAR);
2253 }
2254
2255 p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
2256
2257 discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2258 DMA_P_INDEX_DISCARD_CNT_MASK;
2259 if (discards > ring->old_discards) {
2260 discards = discards - ring->old_discards;
2261 ring->errors += discards;
2262 ring->old_discards += discards;
2263
2264 /* Clear HW register when we reach 75% of maximum 0xFFFF */
2265 if (ring->old_discards >= 0xC000) {
2266 ring->old_discards = 0;
2267 bcmgenet_rdma_ring_writel(priv, ring->index, 0,
2268 RDMA_PROD_INDEX);
2269 }
2270 }
2271
2272 p_index &= DMA_P_INDEX_MASK;
2273 rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2274
2275 netif_dbg(priv, rx_status, dev,
2276 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2277
2278 while ((rxpktprocessed < rxpkttoprocess) &&
2279 (rxpktprocessed < budget)) {
2280 struct status_64 *status;
2281 __be16 rx_csum;
2282
2283 cb = &priv->rx_cbs[ring->read_ptr];
2284 skb = bcmgenet_rx_refill(priv, cb);
2285
2286 if (unlikely(!skb)) {
2287 ring->dropped++;
2288 goto next;
2289 }
2290
2291 status = (struct status_64 *)skb->data;
2292 dma_length_status = status->length_status;
2293 if (dev->features & NETIF_F_RXCSUM) {
2294 rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2295 if (rx_csum) {
2296 skb->csum = (__force __wsum)ntohs(rx_csum);
2297 skb->ip_summed = CHECKSUM_COMPLETE;
2298 }
2299 }
2300
2301 /* DMA flags and length are still valid no matter how
2302 * we got the Receive Status Vector (64B RSB or register)
2303 */
2304 dma_flag = dma_length_status & 0xffff;
2305 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2306
2307 netif_dbg(priv, rx_status, dev,
2308 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2309 __func__, p_index, ring->c_index,
2310 ring->read_ptr, dma_length_status);
2311
2312 if (unlikely(len > RX_BUF_LENGTH)) {
2313 netif_err(priv, rx_status, dev, "oversized packet\n");
2314 dev->stats.rx_length_errors++;
2315 dev->stats.rx_errors++;
2316 dev_kfree_skb_any(skb);
2317 goto next;
2318 }
2319
2320 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2321 netif_err(priv, rx_status, dev,
2322 "dropping fragmented packet!\n");
2323 ring->errors++;
2324 dev_kfree_skb_any(skb);
2325 goto next;
2326 }
2327
2328 /* report errors */
2329 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2330 DMA_RX_OV |
2331 DMA_RX_NO |
2332 DMA_RX_LG |
2333 DMA_RX_RXER))) {
2334 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2335 (unsigned int)dma_flag);
2336 if (dma_flag & DMA_RX_CRC_ERROR)
2337 dev->stats.rx_crc_errors++;
2338 if (dma_flag & DMA_RX_OV)
2339 dev->stats.rx_over_errors++;
2340 if (dma_flag & DMA_RX_NO)
2341 dev->stats.rx_frame_errors++;
2342 if (dma_flag & DMA_RX_LG)
2343 dev->stats.rx_length_errors++;
2344 dev->stats.rx_errors++;
2345 dev_kfree_skb_any(skb);
2346 goto next;
2347 } /* error packet */
2348
2349 skb_put(skb, len);
2350
2351 /* remove RSB and hardware 2bytes added for IP alignment */
2352 skb_pull(skb, 66);
2353 len -= 66;
2354
2355 if (priv->crc_fwd_en) {
2356 skb_trim(skb, len - ETH_FCS_LEN);
2357 len -= ETH_FCS_LEN;
2358 }
2359
2360 bytes_processed += len;
2361
2362 /*Finish setting up the received SKB and send it to the kernel*/
2363 skb->protocol = eth_type_trans(skb, priv->dev);
2364 ring->packets++;
2365 ring->bytes += len;
2366 if (dma_flag & DMA_RX_MULT)
2367 dev->stats.multicast++;
2368
2369 /* Notify kernel */
2370 napi_gro_receive(&ring->napi, skb);
2371 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2372
2373 next:
2374 rxpktprocessed++;
2375 if (likely(ring->read_ptr < ring->end_ptr))
2376 ring->read_ptr++;
2377 else
2378 ring->read_ptr = ring->cb_ptr;
2379
2380 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2381 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
2382 }
2383
2384 ring->dim.bytes = bytes_processed;
2385 ring->dim.packets = rxpktprocessed;
2386
2387 return rxpktprocessed;
2388 }
2389
2390 /* Rx NAPI polling method */
bcmgenet_rx_poll(struct napi_struct * napi,int budget)2391 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2392 {
2393 struct bcmgenet_rx_ring *ring = container_of(napi,
2394 struct bcmgenet_rx_ring, napi);
2395 struct dim_sample dim_sample = {};
2396 unsigned int work_done;
2397
2398 work_done = bcmgenet_desc_rx(ring, budget);
2399
2400 if (work_done < budget) {
2401 napi_complete_done(napi, work_done);
2402 ring->int_enable(ring);
2403 }
2404
2405 if (ring->dim.use_dim) {
2406 dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
2407 ring->dim.bytes, &dim_sample);
2408 net_dim(&ring->dim.dim, dim_sample);
2409 }
2410
2411 return work_done;
2412 }
2413
bcmgenet_dim_work(struct work_struct * work)2414 static void bcmgenet_dim_work(struct work_struct *work)
2415 {
2416 struct dim *dim = container_of(work, struct dim, work);
2417 struct bcmgenet_net_dim *ndim =
2418 container_of(dim, struct bcmgenet_net_dim, dim);
2419 struct bcmgenet_rx_ring *ring =
2420 container_of(ndim, struct bcmgenet_rx_ring, dim);
2421 struct dim_cq_moder cur_profile =
2422 net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
2423
2424 bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
2425 dim->state = DIM_START_MEASURE;
2426 }
2427
2428 /* Assign skb to RX DMA descriptor. */
bcmgenet_alloc_rx_buffers(struct bcmgenet_priv * priv,struct bcmgenet_rx_ring * ring)2429 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2430 struct bcmgenet_rx_ring *ring)
2431 {
2432 struct enet_cb *cb;
2433 struct sk_buff *skb;
2434 int i;
2435
2436 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2437
2438 /* loop here for each buffer needing assign */
2439 for (i = 0; i < ring->size; i++) {
2440 cb = ring->cbs + i;
2441 skb = bcmgenet_rx_refill(priv, cb);
2442 if (skb)
2443 dev_consume_skb_any(skb);
2444 if (!cb->skb)
2445 return -ENOMEM;
2446 }
2447
2448 return 0;
2449 }
2450
bcmgenet_free_rx_buffers(struct bcmgenet_priv * priv)2451 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2452 {
2453 struct sk_buff *skb;
2454 struct enet_cb *cb;
2455 int i;
2456
2457 for (i = 0; i < priv->num_rx_bds; i++) {
2458 cb = &priv->rx_cbs[i];
2459
2460 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
2461 if (skb)
2462 dev_consume_skb_any(skb);
2463 }
2464 }
2465
umac_enable_set(struct bcmgenet_priv * priv,u32 mask,bool enable)2466 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2467 {
2468 u32 reg;
2469
2470 spin_lock_bh(&priv->reg_lock);
2471 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2472 if (reg & CMD_SW_RESET) {
2473 spin_unlock_bh(&priv->reg_lock);
2474 return;
2475 }
2476 if (enable)
2477 reg |= mask;
2478 else
2479 reg &= ~mask;
2480 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2481 spin_unlock_bh(&priv->reg_lock);
2482
2483 /* UniMAC stops on a packet boundary, wait for a full-size packet
2484 * to be processed
2485 */
2486 if (enable == 0)
2487 usleep_range(1000, 2000);
2488 }
2489
reset_umac(struct bcmgenet_priv * priv)2490 static void reset_umac(struct bcmgenet_priv *priv)
2491 {
2492 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2493 bcmgenet_rbuf_ctrl_set(priv, 0);
2494 udelay(10);
2495
2496 /* issue soft reset and disable MAC while updating its registers */
2497 spin_lock_bh(&priv->reg_lock);
2498 bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2499 udelay(2);
2500 spin_unlock_bh(&priv->reg_lock);
2501 }
2502
bcmgenet_intr_disable(struct bcmgenet_priv * priv)2503 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2504 {
2505 /* Mask all interrupts.*/
2506 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2507 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2508 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2509 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2510 }
2511
bcmgenet_link_intr_enable(struct bcmgenet_priv * priv)2512 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2513 {
2514 u32 int0_enable = 0;
2515
2516 /* Monitor cable plug/unplugged event for internal PHY, external PHY
2517 * and MoCA PHY
2518 */
2519 if (priv->internal_phy) {
2520 int0_enable |= UMAC_IRQ_LINK_EVENT;
2521 if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2522 int0_enable |= UMAC_IRQ_PHY_DET_R;
2523 } else if (priv->ext_phy) {
2524 int0_enable |= UMAC_IRQ_LINK_EVENT;
2525 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2526 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2527 int0_enable |= UMAC_IRQ_LINK_EVENT;
2528 }
2529 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2530 }
2531
init_umac(struct bcmgenet_priv * priv)2532 static void init_umac(struct bcmgenet_priv *priv)
2533 {
2534 struct device *kdev = &priv->pdev->dev;
2535 u32 reg;
2536 u32 int0_enable = 0;
2537
2538 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2539
2540 reset_umac(priv);
2541
2542 /* clear tx/rx counter */
2543 bcmgenet_umac_writel(priv,
2544 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2545 UMAC_MIB_CTRL);
2546 bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2547
2548 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2549
2550 /* init tx registers, enable TSB */
2551 reg = bcmgenet_tbuf_ctrl_get(priv);
2552 reg |= TBUF_64B_EN;
2553 bcmgenet_tbuf_ctrl_set(priv, reg);
2554
2555 /* init rx registers, enable ip header optimization and RSB */
2556 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2557 reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2558 bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2559
2560 /* enable rx checksumming */
2561 reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2562 reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2563 /* If UniMAC forwards CRC, we need to skip over it to get
2564 * a valid CHK bit to be set in the per-packet status word
2565 */
2566 if (priv->crc_fwd_en)
2567 reg |= RBUF_SKIP_FCS;
2568 else
2569 reg &= ~RBUF_SKIP_FCS;
2570 bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
2571
2572 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2573 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2574
2575 bcmgenet_intr_disable(priv);
2576
2577 /* Configure backpressure vectors for MoCA */
2578 if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2579 reg = bcmgenet_bp_mc_get(priv);
2580 reg |= BIT(priv->hw_params->bp_in_en_shift);
2581
2582 /* bp_mask: back pressure mask */
2583 if (netif_is_multiqueue(priv->dev))
2584 reg |= priv->hw_params->bp_in_mask;
2585 else
2586 reg &= ~priv->hw_params->bp_in_mask;
2587 bcmgenet_bp_mc_set(priv, reg);
2588 }
2589
2590 /* Enable MDIO interrupts on GENET v3+ */
2591 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2592 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2593
2594 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2595
2596 dev_dbg(kdev, "done init umac\n");
2597 }
2598
bcmgenet_init_dim(struct bcmgenet_rx_ring * ring,void (* cb)(struct work_struct * work))2599 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2600 void (*cb)(struct work_struct *work))
2601 {
2602 struct bcmgenet_net_dim *dim = &ring->dim;
2603
2604 INIT_WORK(&dim->dim.work, cb);
2605 dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2606 dim->event_ctr = 0;
2607 dim->packets = 0;
2608 dim->bytes = 0;
2609 }
2610
bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring * ring)2611 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2612 {
2613 struct bcmgenet_net_dim *dim = &ring->dim;
2614 struct dim_cq_moder moder;
2615 u32 usecs, pkts;
2616
2617 usecs = ring->rx_coalesce_usecs;
2618 pkts = ring->rx_max_coalesced_frames;
2619
2620 /* If DIM was enabled, re-apply default parameters */
2621 if (dim->use_dim) {
2622 moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2623 usecs = moder.usec;
2624 pkts = moder.pkts;
2625 }
2626
2627 bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2628 }
2629
2630 /* Initialize a Tx ring along with corresponding hardware registers */
bcmgenet_init_tx_ring(struct bcmgenet_priv * priv,unsigned int index,unsigned int size,unsigned int start_ptr,unsigned int end_ptr)2631 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2632 unsigned int index, unsigned int size,
2633 unsigned int start_ptr, unsigned int end_ptr)
2634 {
2635 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2636 u32 words_per_bd = WORDS_PER_BD(priv);
2637 u32 flow_period_val = 0;
2638
2639 spin_lock_init(&ring->lock);
2640 ring->priv = priv;
2641 ring->index = index;
2642 if (index == DESC_INDEX) {
2643 ring->queue = 0;
2644 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2645 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2646 } else {
2647 ring->queue = index + 1;
2648 ring->int_enable = bcmgenet_tx_ring_int_enable;
2649 ring->int_disable = bcmgenet_tx_ring_int_disable;
2650 }
2651 ring->cbs = priv->tx_cbs + start_ptr;
2652 ring->size = size;
2653 ring->clean_ptr = start_ptr;
2654 ring->c_index = 0;
2655 ring->free_bds = size;
2656 ring->write_ptr = start_ptr;
2657 ring->cb_ptr = start_ptr;
2658 ring->end_ptr = end_ptr - 1;
2659 ring->prod_index = 0;
2660
2661 /* Set flow period for ring != 16 */
2662 if (index != DESC_INDEX)
2663 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2664
2665 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2666 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2667 bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2668 /* Disable rate control for now */
2669 bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2670 TDMA_FLOW_PERIOD);
2671 bcmgenet_tdma_ring_writel(priv, index,
2672 ((size << DMA_RING_SIZE_SHIFT) |
2673 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2674
2675 /* Set start and end address, read and write pointers */
2676 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2677 DMA_START_ADDR);
2678 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2679 TDMA_READ_PTR);
2680 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2681 TDMA_WRITE_PTR);
2682 bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2683 DMA_END_ADDR);
2684
2685 /* Initialize Tx NAPI */
2686 netif_napi_add_tx(priv->dev, &ring->napi, bcmgenet_tx_poll);
2687 }
2688
2689 /* Initialize a RDMA ring */
bcmgenet_init_rx_ring(struct bcmgenet_priv * priv,unsigned int index,unsigned int size,unsigned int start_ptr,unsigned int end_ptr)2690 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2691 unsigned int index, unsigned int size,
2692 unsigned int start_ptr, unsigned int end_ptr)
2693 {
2694 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2695 u32 words_per_bd = WORDS_PER_BD(priv);
2696 int ret;
2697
2698 ring->priv = priv;
2699 ring->index = index;
2700 if (index == DESC_INDEX) {
2701 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2702 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2703 } else {
2704 ring->int_enable = bcmgenet_rx_ring_int_enable;
2705 ring->int_disable = bcmgenet_rx_ring_int_disable;
2706 }
2707 ring->cbs = priv->rx_cbs + start_ptr;
2708 ring->size = size;
2709 ring->c_index = 0;
2710 ring->read_ptr = start_ptr;
2711 ring->cb_ptr = start_ptr;
2712 ring->end_ptr = end_ptr - 1;
2713
2714 ret = bcmgenet_alloc_rx_buffers(priv, ring);
2715 if (ret)
2716 return ret;
2717
2718 bcmgenet_init_dim(ring, bcmgenet_dim_work);
2719 bcmgenet_init_rx_coalesce(ring);
2720
2721 /* Initialize Rx NAPI */
2722 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll);
2723
2724 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2725 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2726 bcmgenet_rdma_ring_writel(priv, index,
2727 ((size << DMA_RING_SIZE_SHIFT) |
2728 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2729 bcmgenet_rdma_ring_writel(priv, index,
2730 (DMA_FC_THRESH_LO <<
2731 DMA_XOFF_THRESHOLD_SHIFT) |
2732 DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2733
2734 /* Set start and end address, read and write pointers */
2735 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2736 DMA_START_ADDR);
2737 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2738 RDMA_READ_PTR);
2739 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2740 RDMA_WRITE_PTR);
2741 bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2742 DMA_END_ADDR);
2743
2744 return ret;
2745 }
2746
bcmgenet_enable_tx_napi(struct bcmgenet_priv * priv)2747 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2748 {
2749 unsigned int i;
2750 struct bcmgenet_tx_ring *ring;
2751
2752 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2753 ring = &priv->tx_rings[i];
2754 napi_enable(&ring->napi);
2755 ring->int_enable(ring);
2756 }
2757
2758 ring = &priv->tx_rings[DESC_INDEX];
2759 napi_enable(&ring->napi);
2760 ring->int_enable(ring);
2761 }
2762
bcmgenet_disable_tx_napi(struct bcmgenet_priv * priv)2763 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2764 {
2765 unsigned int i;
2766 struct bcmgenet_tx_ring *ring;
2767
2768 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2769 ring = &priv->tx_rings[i];
2770 napi_disable(&ring->napi);
2771 }
2772
2773 ring = &priv->tx_rings[DESC_INDEX];
2774 napi_disable(&ring->napi);
2775 }
2776
bcmgenet_fini_tx_napi(struct bcmgenet_priv * priv)2777 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2778 {
2779 unsigned int i;
2780 struct bcmgenet_tx_ring *ring;
2781
2782 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2783 ring = &priv->tx_rings[i];
2784 netif_napi_del(&ring->napi);
2785 }
2786
2787 ring = &priv->tx_rings[DESC_INDEX];
2788 netif_napi_del(&ring->napi);
2789 }
2790
2791 /* Initialize Tx queues
2792 *
2793 * Queues 0-3 are priority-based, each one has 32 descriptors,
2794 * with queue 0 being the highest priority queue.
2795 *
2796 * Queue 16 is the default Tx queue with
2797 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2798 *
2799 * The transmit control block pool is then partitioned as follows:
2800 * - Tx queue 0 uses tx_cbs[0..31]
2801 * - Tx queue 1 uses tx_cbs[32..63]
2802 * - Tx queue 2 uses tx_cbs[64..95]
2803 * - Tx queue 3 uses tx_cbs[96..127]
2804 * - Tx queue 16 uses tx_cbs[128..255]
2805 */
bcmgenet_init_tx_queues(struct net_device * dev)2806 static void bcmgenet_init_tx_queues(struct net_device *dev)
2807 {
2808 struct bcmgenet_priv *priv = netdev_priv(dev);
2809 u32 i, dma_enable;
2810 u32 dma_ctrl, ring_cfg;
2811 u32 dma_priority[3] = {0, 0, 0};
2812
2813 dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2814 dma_enable = dma_ctrl & DMA_EN;
2815 dma_ctrl &= ~DMA_EN;
2816 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2817
2818 dma_ctrl = 0;
2819 ring_cfg = 0;
2820
2821 /* Enable strict priority arbiter mode */
2822 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2823
2824 /* Initialize Tx priority queues */
2825 for (i = 0; i < priv->hw_params->tx_queues; i++) {
2826 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2827 i * priv->hw_params->tx_bds_per_q,
2828 (i + 1) * priv->hw_params->tx_bds_per_q);
2829 ring_cfg |= (1 << i);
2830 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2831 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2832 ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2833 }
2834
2835 /* Initialize Tx default queue 16 */
2836 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2837 priv->hw_params->tx_queues *
2838 priv->hw_params->tx_bds_per_q,
2839 TOTAL_DESC);
2840 ring_cfg |= (1 << DESC_INDEX);
2841 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2842 dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2843 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2844 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2845
2846 /* Set Tx queue priorities */
2847 bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2848 bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2849 bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2850
2851 /* Enable Tx queues */
2852 bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2853
2854 /* Enable Tx DMA */
2855 if (dma_enable)
2856 dma_ctrl |= DMA_EN;
2857 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2858 }
2859
bcmgenet_enable_rx_napi(struct bcmgenet_priv * priv)2860 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2861 {
2862 unsigned int i;
2863 struct bcmgenet_rx_ring *ring;
2864
2865 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2866 ring = &priv->rx_rings[i];
2867 napi_enable(&ring->napi);
2868 ring->int_enable(ring);
2869 }
2870
2871 ring = &priv->rx_rings[DESC_INDEX];
2872 napi_enable(&ring->napi);
2873 ring->int_enable(ring);
2874 }
2875
bcmgenet_disable_rx_napi(struct bcmgenet_priv * priv)2876 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2877 {
2878 unsigned int i;
2879 struct bcmgenet_rx_ring *ring;
2880
2881 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2882 ring = &priv->rx_rings[i];
2883 napi_disable(&ring->napi);
2884 cancel_work_sync(&ring->dim.dim.work);
2885 }
2886
2887 ring = &priv->rx_rings[DESC_INDEX];
2888 napi_disable(&ring->napi);
2889 cancel_work_sync(&ring->dim.dim.work);
2890 }
2891
bcmgenet_fini_rx_napi(struct bcmgenet_priv * priv)2892 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2893 {
2894 unsigned int i;
2895 struct bcmgenet_rx_ring *ring;
2896
2897 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2898 ring = &priv->rx_rings[i];
2899 netif_napi_del(&ring->napi);
2900 }
2901
2902 ring = &priv->rx_rings[DESC_INDEX];
2903 netif_napi_del(&ring->napi);
2904 }
2905
2906 /* Initialize Rx queues
2907 *
2908 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2909 * used to direct traffic to these queues.
2910 *
2911 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2912 */
bcmgenet_init_rx_queues(struct net_device * dev)2913 static int bcmgenet_init_rx_queues(struct net_device *dev)
2914 {
2915 struct bcmgenet_priv *priv = netdev_priv(dev);
2916 u32 i;
2917 u32 dma_enable;
2918 u32 dma_ctrl;
2919 u32 ring_cfg;
2920 int ret;
2921
2922 dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2923 dma_enable = dma_ctrl & DMA_EN;
2924 dma_ctrl &= ~DMA_EN;
2925 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2926
2927 dma_ctrl = 0;
2928 ring_cfg = 0;
2929
2930 /* Initialize Rx priority queues */
2931 for (i = 0; i < priv->hw_params->rx_queues; i++) {
2932 ret = bcmgenet_init_rx_ring(priv, i,
2933 priv->hw_params->rx_bds_per_q,
2934 i * priv->hw_params->rx_bds_per_q,
2935 (i + 1) *
2936 priv->hw_params->rx_bds_per_q);
2937 if (ret)
2938 return ret;
2939
2940 ring_cfg |= (1 << i);
2941 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2942 }
2943
2944 /* Initialize Rx default queue 16 */
2945 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2946 priv->hw_params->rx_queues *
2947 priv->hw_params->rx_bds_per_q,
2948 TOTAL_DESC);
2949 if (ret)
2950 return ret;
2951
2952 ring_cfg |= (1 << DESC_INDEX);
2953 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2954
2955 /* Enable rings */
2956 bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2957
2958 /* Configure ring as descriptor ring and re-enable DMA if enabled */
2959 if (dma_enable)
2960 dma_ctrl |= DMA_EN;
2961 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2962
2963 return 0;
2964 }
2965
bcmgenet_dma_teardown(struct bcmgenet_priv * priv)2966 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2967 {
2968 int ret = 0;
2969 int timeout = 0;
2970 u32 reg;
2971 u32 dma_ctrl;
2972 int i;
2973
2974 /* Disable TDMA to stop add more frames in TX DMA */
2975 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2976 reg &= ~DMA_EN;
2977 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2978
2979 /* Check TDMA status register to confirm TDMA is disabled */
2980 while (timeout++ < DMA_TIMEOUT_VAL) {
2981 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2982 if (reg & DMA_DISABLED)
2983 break;
2984
2985 udelay(1);
2986 }
2987
2988 if (timeout == DMA_TIMEOUT_VAL) {
2989 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2990 ret = -ETIMEDOUT;
2991 }
2992
2993 /* Wait 10ms for packet drain in both tx and rx dma */
2994 usleep_range(10000, 20000);
2995
2996 /* Disable RDMA */
2997 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2998 reg &= ~DMA_EN;
2999 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3000
3001 timeout = 0;
3002 /* Check RDMA status register to confirm RDMA is disabled */
3003 while (timeout++ < DMA_TIMEOUT_VAL) {
3004 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
3005 if (reg & DMA_DISABLED)
3006 break;
3007
3008 udelay(1);
3009 }
3010
3011 if (timeout == DMA_TIMEOUT_VAL) {
3012 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
3013 ret = -ETIMEDOUT;
3014 }
3015
3016 dma_ctrl = 0;
3017 for (i = 0; i < priv->hw_params->rx_queues; i++)
3018 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3019 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3020 reg &= ~dma_ctrl;
3021 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3022
3023 dma_ctrl = 0;
3024 for (i = 0; i < priv->hw_params->tx_queues; i++)
3025 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3026 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3027 reg &= ~dma_ctrl;
3028 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3029
3030 return ret;
3031 }
3032
bcmgenet_fini_dma(struct bcmgenet_priv * priv)3033 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
3034 {
3035 struct netdev_queue *txq;
3036 int i;
3037
3038 bcmgenet_fini_rx_napi(priv);
3039 bcmgenet_fini_tx_napi(priv);
3040
3041 for (i = 0; i < priv->num_tx_bds; i++)
3042 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
3043 priv->tx_cbs + i));
3044
3045 for (i = 0; i < priv->hw_params->tx_queues; i++) {
3046 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
3047 netdev_tx_reset_queue(txq);
3048 }
3049
3050 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
3051 netdev_tx_reset_queue(txq);
3052
3053 bcmgenet_free_rx_buffers(priv);
3054 kfree(priv->rx_cbs);
3055 kfree(priv->tx_cbs);
3056 }
3057
3058 /* init_edma: Initialize DMA control register */
bcmgenet_init_dma(struct bcmgenet_priv * priv)3059 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
3060 {
3061 int ret;
3062 unsigned int i;
3063 struct enet_cb *cb;
3064
3065 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
3066
3067 /* Initialize common Rx ring structures */
3068 priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3069 priv->num_rx_bds = TOTAL_DESC;
3070 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
3071 GFP_KERNEL);
3072 if (!priv->rx_cbs)
3073 return -ENOMEM;
3074
3075 for (i = 0; i < priv->num_rx_bds; i++) {
3076 cb = priv->rx_cbs + i;
3077 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3078 }
3079
3080 /* Initialize common TX ring structures */
3081 priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3082 priv->num_tx_bds = TOTAL_DESC;
3083 priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
3084 GFP_KERNEL);
3085 if (!priv->tx_cbs) {
3086 kfree(priv->rx_cbs);
3087 return -ENOMEM;
3088 }
3089
3090 for (i = 0; i < priv->num_tx_bds; i++) {
3091 cb = priv->tx_cbs + i;
3092 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3093 }
3094
3095 /* Init rDma */
3096 bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
3097 DMA_SCB_BURST_SIZE);
3098
3099 /* Initialize Rx queues */
3100 ret = bcmgenet_init_rx_queues(priv->dev);
3101 if (ret) {
3102 netdev_err(priv->dev, "failed to initialize Rx queues\n");
3103 bcmgenet_free_rx_buffers(priv);
3104 kfree(priv->rx_cbs);
3105 kfree(priv->tx_cbs);
3106 return ret;
3107 }
3108
3109 /* Init tDma */
3110 bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
3111 DMA_SCB_BURST_SIZE);
3112
3113 /* Initialize Tx queues */
3114 bcmgenet_init_tx_queues(priv->dev);
3115
3116 return 0;
3117 }
3118
3119 /* Interrupt bottom half */
bcmgenet_irq_task(struct work_struct * work)3120 static void bcmgenet_irq_task(struct work_struct *work)
3121 {
3122 unsigned int status;
3123 struct bcmgenet_priv *priv = container_of(
3124 work, struct bcmgenet_priv, bcmgenet_irq_work);
3125
3126 netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3127
3128 spin_lock_irq(&priv->lock);
3129 status = priv->irq0_stat;
3130 priv->irq0_stat = 0;
3131 spin_unlock_irq(&priv->lock);
3132
3133 if (status & UMAC_IRQ_PHY_DET_R &&
3134 priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3135 phy_init_hw(priv->dev->phydev);
3136 genphy_config_aneg(priv->dev->phydev);
3137 }
3138
3139 /* Link UP/DOWN event */
3140 if (status & UMAC_IRQ_LINK_EVENT)
3141 phy_mac_interrupt(priv->dev->phydev);
3142
3143 }
3144
3145 /* bcmgenet_isr1: handle Rx and Tx priority queues */
bcmgenet_isr1(int irq,void * dev_id)3146 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3147 {
3148 struct bcmgenet_priv *priv = dev_id;
3149 struct bcmgenet_rx_ring *rx_ring;
3150 struct bcmgenet_tx_ring *tx_ring;
3151 unsigned int index, status;
3152
3153 /* Read irq status */
3154 status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3155 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3156
3157 /* clear interrupts */
3158 bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
3159
3160 netif_dbg(priv, intr, priv->dev,
3161 "%s: IRQ=0x%x\n", __func__, status);
3162
3163 /* Check Rx priority queue interrupts */
3164 for (index = 0; index < priv->hw_params->rx_queues; index++) {
3165 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3166 continue;
3167
3168 rx_ring = &priv->rx_rings[index];
3169 rx_ring->dim.event_ctr++;
3170
3171 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3172 rx_ring->int_disable(rx_ring);
3173 __napi_schedule_irqoff(&rx_ring->napi);
3174 }
3175 }
3176
3177 /* Check Tx priority queue interrupts */
3178 for (index = 0; index < priv->hw_params->tx_queues; index++) {
3179 if (!(status & BIT(index)))
3180 continue;
3181
3182 tx_ring = &priv->tx_rings[index];
3183
3184 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3185 tx_ring->int_disable(tx_ring);
3186 __napi_schedule_irqoff(&tx_ring->napi);
3187 }
3188 }
3189
3190 return IRQ_HANDLED;
3191 }
3192
3193 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
bcmgenet_isr0(int irq,void * dev_id)3194 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3195 {
3196 struct bcmgenet_priv *priv = dev_id;
3197 struct bcmgenet_rx_ring *rx_ring;
3198 struct bcmgenet_tx_ring *tx_ring;
3199 unsigned int status;
3200 unsigned long flags;
3201
3202 /* Read irq status */
3203 status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3204 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3205
3206 /* clear interrupts */
3207 bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
3208
3209 netif_dbg(priv, intr, priv->dev,
3210 "IRQ=0x%x\n", status);
3211
3212 if (status & UMAC_IRQ_RXDMA_DONE) {
3213 rx_ring = &priv->rx_rings[DESC_INDEX];
3214 rx_ring->dim.event_ctr++;
3215
3216 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3217 rx_ring->int_disable(rx_ring);
3218 __napi_schedule_irqoff(&rx_ring->napi);
3219 }
3220 }
3221
3222 if (status & UMAC_IRQ_TXDMA_DONE) {
3223 tx_ring = &priv->tx_rings[DESC_INDEX];
3224
3225 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3226 tx_ring->int_disable(tx_ring);
3227 __napi_schedule_irqoff(&tx_ring->napi);
3228 }
3229 }
3230
3231 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3232 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3233 wake_up(&priv->wq);
3234 }
3235
3236 /* all other interested interrupts handled in bottom half */
3237 status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3238 if (status) {
3239 /* Save irq status for bottom-half processing. */
3240 spin_lock_irqsave(&priv->lock, flags);
3241 priv->irq0_stat |= status;
3242 spin_unlock_irqrestore(&priv->lock, flags);
3243
3244 schedule_work(&priv->bcmgenet_irq_work);
3245 }
3246
3247 return IRQ_HANDLED;
3248 }
3249
bcmgenet_wol_isr(int irq,void * dev_id)3250 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3251 {
3252 /* Acknowledge the interrupt */
3253 return IRQ_HANDLED;
3254 }
3255
bcmgenet_umac_reset(struct bcmgenet_priv * priv)3256 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3257 {
3258 u32 reg;
3259
3260 reg = bcmgenet_rbuf_ctrl_get(priv);
3261 reg |= BIT(1);
3262 bcmgenet_rbuf_ctrl_set(priv, reg);
3263 udelay(10);
3264
3265 reg &= ~BIT(1);
3266 bcmgenet_rbuf_ctrl_set(priv, reg);
3267 udelay(10);
3268 }
3269
bcmgenet_set_hw_addr(struct bcmgenet_priv * priv,const unsigned char * addr)3270 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3271 const unsigned char *addr)
3272 {
3273 bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
3274 bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
3275 }
3276
bcmgenet_get_hw_addr(struct bcmgenet_priv * priv,unsigned char * addr)3277 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3278 unsigned char *addr)
3279 {
3280 u32 addr_tmp;
3281
3282 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3283 put_unaligned_be32(addr_tmp, &addr[0]);
3284 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3285 put_unaligned_be16(addr_tmp, &addr[4]);
3286 }
3287
3288 /* Returns a reusable dma control register value */
bcmgenet_dma_disable(struct bcmgenet_priv * priv,bool flush_rx)3289 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv, bool flush_rx)
3290 {
3291 unsigned int i;
3292 u32 reg;
3293 u32 dma_ctrl;
3294
3295 /* disable DMA */
3296 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3297 for (i = 0; i < priv->hw_params->tx_queues; i++)
3298 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3299 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3300 reg &= ~dma_ctrl;
3301 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3302
3303 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3304 for (i = 0; i < priv->hw_params->rx_queues; i++)
3305 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3306 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3307 reg &= ~dma_ctrl;
3308 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3309
3310 bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
3311 udelay(10);
3312 bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
3313
3314 if (flush_rx) {
3315 reg = bcmgenet_rbuf_ctrl_get(priv);
3316 bcmgenet_rbuf_ctrl_set(priv, reg | BIT(0));
3317 udelay(10);
3318 bcmgenet_rbuf_ctrl_set(priv, reg);
3319 udelay(10);
3320 }
3321
3322 return dma_ctrl;
3323 }
3324
bcmgenet_enable_dma(struct bcmgenet_priv * priv,u32 dma_ctrl)3325 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3326 {
3327 u32 reg;
3328
3329 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3330 reg |= dma_ctrl;
3331 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3332
3333 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3334 reg |= dma_ctrl;
3335 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3336 }
3337
bcmgenet_netif_start(struct net_device * dev)3338 static void bcmgenet_netif_start(struct net_device *dev)
3339 {
3340 struct bcmgenet_priv *priv = netdev_priv(dev);
3341
3342 /* Start the network engine */
3343 netif_addr_lock_bh(dev);
3344 bcmgenet_set_rx_mode(dev);
3345 netif_addr_unlock_bh(dev);
3346 bcmgenet_enable_rx_napi(priv);
3347
3348 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
3349
3350 bcmgenet_enable_tx_napi(priv);
3351
3352 /* Monitor link interrupts now */
3353 bcmgenet_link_intr_enable(priv);
3354
3355 phy_start(dev->phydev);
3356 }
3357
bcmgenet_open(struct net_device * dev)3358 static int bcmgenet_open(struct net_device *dev)
3359 {
3360 struct bcmgenet_priv *priv = netdev_priv(dev);
3361 unsigned long dma_ctrl;
3362 int ret;
3363
3364 netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3365
3366 /* Turn on the clock */
3367 clk_prepare_enable(priv->clk);
3368
3369 /* If this is an internal GPHY, power it back on now, before UniMAC is
3370 * brought out of reset as absolutely no UniMAC activity is allowed
3371 */
3372 if (priv->internal_phy)
3373 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3374
3375 /* take MAC out of reset */
3376 bcmgenet_umac_reset(priv);
3377
3378 init_umac(priv);
3379
3380 /* Apply features again in case we changed them while interface was
3381 * down
3382 */
3383 bcmgenet_set_features(dev, dev->features);
3384
3385 bcmgenet_set_hw_addr(priv, dev->dev_addr);
3386
3387 /* Disable RX/TX DMA and flush TX and RX queues */
3388 dma_ctrl = bcmgenet_dma_disable(priv, true);
3389
3390 /* Reinitialize TDMA and RDMA and SW housekeeping */
3391 ret = bcmgenet_init_dma(priv);
3392 if (ret) {
3393 netdev_err(dev, "failed to initialize DMA\n");
3394 goto err_clk_disable;
3395 }
3396
3397 /* Always enable ring 16 - descriptor ring */
3398 bcmgenet_enable_dma(priv, dma_ctrl);
3399
3400 /* HFB init */
3401 bcmgenet_hfb_init(priv);
3402
3403 ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
3404 dev->name, priv);
3405 if (ret < 0) {
3406 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
3407 goto err_fini_dma;
3408 }
3409
3410 ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
3411 dev->name, priv);
3412 if (ret < 0) {
3413 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
3414 goto err_irq0;
3415 }
3416
3417 ret = bcmgenet_mii_probe(dev);
3418 if (ret) {
3419 netdev_err(dev, "failed to connect to PHY\n");
3420 goto err_irq1;
3421 }
3422
3423 bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause);
3424
3425 bcmgenet_netif_start(dev);
3426
3427 netif_tx_start_all_queues(dev);
3428
3429 return 0;
3430
3431 err_irq1:
3432 free_irq(priv->irq1, priv);
3433 err_irq0:
3434 free_irq(priv->irq0, priv);
3435 err_fini_dma:
3436 bcmgenet_dma_teardown(priv);
3437 bcmgenet_fini_dma(priv);
3438 err_clk_disable:
3439 if (priv->internal_phy)
3440 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3441 clk_disable_unprepare(priv->clk);
3442 return ret;
3443 }
3444
bcmgenet_netif_stop(struct net_device * dev,bool stop_phy)3445 static void bcmgenet_netif_stop(struct net_device *dev, bool stop_phy)
3446 {
3447 struct bcmgenet_priv *priv = netdev_priv(dev);
3448
3449 bcmgenet_disable_tx_napi(priv);
3450 netif_tx_disable(dev);
3451
3452 /* Disable MAC receive */
3453 umac_enable_set(priv, CMD_RX_EN, false);
3454
3455 bcmgenet_dma_teardown(priv);
3456
3457 /* Disable MAC transmit. TX DMA disabled must be done before this */
3458 umac_enable_set(priv, CMD_TX_EN, false);
3459
3460 if (stop_phy)
3461 phy_stop(dev->phydev);
3462 bcmgenet_disable_rx_napi(priv);
3463 bcmgenet_intr_disable(priv);
3464
3465 /* Wait for pending work items to complete. Since interrupts are
3466 * disabled no new work will be scheduled.
3467 */
3468 cancel_work_sync(&priv->bcmgenet_irq_work);
3469
3470 /* tx reclaim */
3471 bcmgenet_tx_reclaim_all(dev);
3472 bcmgenet_fini_dma(priv);
3473 }
3474
bcmgenet_close(struct net_device * dev)3475 static int bcmgenet_close(struct net_device *dev)
3476 {
3477 struct bcmgenet_priv *priv = netdev_priv(dev);
3478 int ret = 0;
3479
3480 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3481
3482 bcmgenet_netif_stop(dev, false);
3483
3484 /* Really kill the PHY state machine and disconnect from it */
3485 phy_disconnect(dev->phydev);
3486
3487 free_irq(priv->irq0, priv);
3488 free_irq(priv->irq1, priv);
3489
3490 if (priv->internal_phy)
3491 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3492
3493 clk_disable_unprepare(priv->clk);
3494
3495 return ret;
3496 }
3497
bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring * ring)3498 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3499 {
3500 struct bcmgenet_priv *priv = ring->priv;
3501 u32 p_index, c_index, intsts, intmsk;
3502 struct netdev_queue *txq;
3503 unsigned int free_bds;
3504 bool txq_stopped;
3505
3506 if (!netif_msg_tx_err(priv))
3507 return;
3508
3509 txq = netdev_get_tx_queue(priv->dev, ring->queue);
3510
3511 spin_lock(&ring->lock);
3512 if (ring->index == DESC_INDEX) {
3513 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3514 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3515 } else {
3516 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3517 intmsk = 1 << ring->index;
3518 }
3519 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3520 p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3521 txq_stopped = netif_tx_queue_stopped(txq);
3522 free_bds = ring->free_bds;
3523 spin_unlock(&ring->lock);
3524
3525 netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3526 "TX queue status: %s, interrupts: %s\n"
3527 "(sw)free_bds: %d (sw)size: %d\n"
3528 "(sw)p_index: %d (hw)p_index: %d\n"
3529 "(sw)c_index: %d (hw)c_index: %d\n"
3530 "(sw)clean_p: %d (sw)write_p: %d\n"
3531 "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3532 ring->index, ring->queue,
3533 txq_stopped ? "stopped" : "active",
3534 intsts & intmsk ? "enabled" : "disabled",
3535 free_bds, ring->size,
3536 ring->prod_index, p_index & DMA_P_INDEX_MASK,
3537 ring->c_index, c_index & DMA_C_INDEX_MASK,
3538 ring->clean_ptr, ring->write_ptr,
3539 ring->cb_ptr, ring->end_ptr);
3540 }
3541
bcmgenet_timeout(struct net_device * dev,unsigned int txqueue)3542 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3543 {
3544 struct bcmgenet_priv *priv = netdev_priv(dev);
3545 u32 int0_enable = 0;
3546 u32 int1_enable = 0;
3547 unsigned int q;
3548
3549 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3550
3551 for (q = 0; q < priv->hw_params->tx_queues; q++)
3552 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3553 bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3554
3555 bcmgenet_tx_reclaim_all(dev);
3556
3557 for (q = 0; q < priv->hw_params->tx_queues; q++)
3558 int1_enable |= (1 << q);
3559
3560 int0_enable = UMAC_IRQ_TXDMA_DONE;
3561
3562 /* Re-enable TX interrupts if disabled */
3563 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3564 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3565
3566 netif_trans_update(dev);
3567
3568 dev->stats.tx_errors++;
3569
3570 netif_tx_wake_all_queues(dev);
3571 }
3572
3573 #define MAX_MDF_FILTER 17
3574
bcmgenet_set_mdf_addr(struct bcmgenet_priv * priv,const unsigned char * addr,int * i)3575 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3576 const unsigned char *addr,
3577 int *i)
3578 {
3579 bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3580 UMAC_MDF_ADDR + (*i * 4));
3581 bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3582 addr[4] << 8 | addr[5],
3583 UMAC_MDF_ADDR + ((*i + 1) * 4));
3584 *i += 2;
3585 }
3586
bcmgenet_set_rx_mode(struct net_device * dev)3587 static void bcmgenet_set_rx_mode(struct net_device *dev)
3588 {
3589 struct bcmgenet_priv *priv = netdev_priv(dev);
3590 struct netdev_hw_addr *ha;
3591 int i, nfilter;
3592 u32 reg;
3593
3594 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3595
3596 /* Number of filters needed */
3597 nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3598
3599 /*
3600 * Turn on promicuous mode for three scenarios
3601 * 1. IFF_PROMISC flag is set
3602 * 2. IFF_ALLMULTI flag is set
3603 * 3. The number of filters needed exceeds the number filters
3604 * supported by the hardware.
3605 */
3606 spin_lock(&priv->reg_lock);
3607 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3608 if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3609 (nfilter > MAX_MDF_FILTER)) {
3610 reg |= CMD_PROMISC;
3611 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3612 spin_unlock(&priv->reg_lock);
3613 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3614 return;
3615 } else {
3616 reg &= ~CMD_PROMISC;
3617 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3618 spin_unlock(&priv->reg_lock);
3619 }
3620
3621 /* update MDF filter */
3622 i = 0;
3623 /* Broadcast */
3624 bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3625 /* my own address.*/
3626 bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3627
3628 /* Unicast */
3629 netdev_for_each_uc_addr(ha, dev)
3630 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3631
3632 /* Multicast */
3633 netdev_for_each_mc_addr(ha, dev)
3634 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3635
3636 /* Enable filters */
3637 reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3638 bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3639 }
3640
3641 /* Set the hardware MAC address. */
bcmgenet_set_mac_addr(struct net_device * dev,void * p)3642 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3643 {
3644 struct sockaddr *addr = p;
3645
3646 /* Setting the MAC address at the hardware level is not possible
3647 * without disabling the UniMAC RX/TX enable bits.
3648 */
3649 if (netif_running(dev))
3650 return -EBUSY;
3651
3652 eth_hw_addr_set(dev, addr->sa_data);
3653
3654 return 0;
3655 }
3656
bcmgenet_get_stats(struct net_device * dev)3657 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3658 {
3659 struct bcmgenet_priv *priv = netdev_priv(dev);
3660 unsigned long tx_bytes = 0, tx_packets = 0;
3661 unsigned long rx_bytes = 0, rx_packets = 0;
3662 unsigned long rx_errors = 0, rx_dropped = 0;
3663 struct bcmgenet_tx_ring *tx_ring;
3664 struct bcmgenet_rx_ring *rx_ring;
3665 unsigned int q;
3666
3667 for (q = 0; q < priv->hw_params->tx_queues; q++) {
3668 tx_ring = &priv->tx_rings[q];
3669 tx_bytes += tx_ring->bytes;
3670 tx_packets += tx_ring->packets;
3671 }
3672 tx_ring = &priv->tx_rings[DESC_INDEX];
3673 tx_bytes += tx_ring->bytes;
3674 tx_packets += tx_ring->packets;
3675
3676 for (q = 0; q < priv->hw_params->rx_queues; q++) {
3677 rx_ring = &priv->rx_rings[q];
3678
3679 rx_bytes += rx_ring->bytes;
3680 rx_packets += rx_ring->packets;
3681 rx_errors += rx_ring->errors;
3682 rx_dropped += rx_ring->dropped;
3683 }
3684 rx_ring = &priv->rx_rings[DESC_INDEX];
3685 rx_bytes += rx_ring->bytes;
3686 rx_packets += rx_ring->packets;
3687 rx_errors += rx_ring->errors;
3688 rx_dropped += rx_ring->dropped;
3689
3690 dev->stats.tx_bytes = tx_bytes;
3691 dev->stats.tx_packets = tx_packets;
3692 dev->stats.rx_bytes = rx_bytes;
3693 dev->stats.rx_packets = rx_packets;
3694 dev->stats.rx_errors = rx_errors;
3695 dev->stats.rx_missed_errors = rx_errors;
3696 dev->stats.rx_dropped = rx_dropped;
3697 return &dev->stats;
3698 }
3699
bcmgenet_change_carrier(struct net_device * dev,bool new_carrier)3700 static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier)
3701 {
3702 struct bcmgenet_priv *priv = netdev_priv(dev);
3703
3704 if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) ||
3705 priv->phy_interface != PHY_INTERFACE_MODE_MOCA)
3706 return -EOPNOTSUPP;
3707
3708 if (new_carrier)
3709 netif_carrier_on(dev);
3710 else
3711 netif_carrier_off(dev);
3712
3713 return 0;
3714 }
3715
3716 static const struct net_device_ops bcmgenet_netdev_ops = {
3717 .ndo_open = bcmgenet_open,
3718 .ndo_stop = bcmgenet_close,
3719 .ndo_start_xmit = bcmgenet_xmit,
3720 .ndo_tx_timeout = bcmgenet_timeout,
3721 .ndo_set_rx_mode = bcmgenet_set_rx_mode,
3722 .ndo_set_mac_address = bcmgenet_set_mac_addr,
3723 .ndo_eth_ioctl = phy_do_ioctl_running,
3724 .ndo_set_features = bcmgenet_set_features,
3725 .ndo_get_stats = bcmgenet_get_stats,
3726 .ndo_change_carrier = bcmgenet_change_carrier,
3727 };
3728
3729 /* Array of GENET hardware parameters/characteristics */
3730 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3731 [GENET_V1] = {
3732 .tx_queues = 0,
3733 .tx_bds_per_q = 0,
3734 .rx_queues = 0,
3735 .rx_bds_per_q = 0,
3736 .bp_in_en_shift = 16,
3737 .bp_in_mask = 0xffff,
3738 .hfb_filter_cnt = 16,
3739 .qtag_mask = 0x1F,
3740 .hfb_offset = 0x1000,
3741 .rdma_offset = 0x2000,
3742 .tdma_offset = 0x3000,
3743 .words_per_bd = 2,
3744 },
3745 [GENET_V2] = {
3746 .tx_queues = 4,
3747 .tx_bds_per_q = 32,
3748 .rx_queues = 0,
3749 .rx_bds_per_q = 0,
3750 .bp_in_en_shift = 16,
3751 .bp_in_mask = 0xffff,
3752 .hfb_filter_cnt = 16,
3753 .qtag_mask = 0x1F,
3754 .tbuf_offset = 0x0600,
3755 .hfb_offset = 0x1000,
3756 .hfb_reg_offset = 0x2000,
3757 .rdma_offset = 0x3000,
3758 .tdma_offset = 0x4000,
3759 .words_per_bd = 2,
3760 .flags = GENET_HAS_EXT,
3761 },
3762 [GENET_V3] = {
3763 .tx_queues = 4,
3764 .tx_bds_per_q = 32,
3765 .rx_queues = 0,
3766 .rx_bds_per_q = 0,
3767 .bp_in_en_shift = 17,
3768 .bp_in_mask = 0x1ffff,
3769 .hfb_filter_cnt = 48,
3770 .hfb_filter_size = 128,
3771 .qtag_mask = 0x3F,
3772 .tbuf_offset = 0x0600,
3773 .hfb_offset = 0x8000,
3774 .hfb_reg_offset = 0xfc00,
3775 .rdma_offset = 0x10000,
3776 .tdma_offset = 0x11000,
3777 .words_per_bd = 2,
3778 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3779 GENET_HAS_MOCA_LINK_DET,
3780 },
3781 [GENET_V4] = {
3782 .tx_queues = 4,
3783 .tx_bds_per_q = 32,
3784 .rx_queues = 0,
3785 .rx_bds_per_q = 0,
3786 .bp_in_en_shift = 17,
3787 .bp_in_mask = 0x1ffff,
3788 .hfb_filter_cnt = 48,
3789 .hfb_filter_size = 128,
3790 .qtag_mask = 0x3F,
3791 .tbuf_offset = 0x0600,
3792 .hfb_offset = 0x8000,
3793 .hfb_reg_offset = 0xfc00,
3794 .rdma_offset = 0x2000,
3795 .tdma_offset = 0x4000,
3796 .words_per_bd = 3,
3797 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3798 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3799 },
3800 [GENET_V5] = {
3801 .tx_queues = 4,
3802 .tx_bds_per_q = 32,
3803 .rx_queues = 0,
3804 .rx_bds_per_q = 0,
3805 .bp_in_en_shift = 17,
3806 .bp_in_mask = 0x1ffff,
3807 .hfb_filter_cnt = 48,
3808 .hfb_filter_size = 128,
3809 .qtag_mask = 0x3F,
3810 .tbuf_offset = 0x0600,
3811 .hfb_offset = 0x8000,
3812 .hfb_reg_offset = 0xfc00,
3813 .rdma_offset = 0x2000,
3814 .tdma_offset = 0x4000,
3815 .words_per_bd = 3,
3816 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3817 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3818 },
3819 };
3820
3821 /* Infer hardware parameters from the detected GENET version */
bcmgenet_set_hw_params(struct bcmgenet_priv * priv)3822 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3823 {
3824 struct bcmgenet_hw_params *params;
3825 u32 reg;
3826 u8 major;
3827 u16 gphy_rev;
3828
3829 if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3830 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3831 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3832 } else if (GENET_IS_V3(priv)) {
3833 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3834 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3835 } else if (GENET_IS_V2(priv)) {
3836 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3837 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3838 } else if (GENET_IS_V1(priv)) {
3839 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3840 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3841 }
3842
3843 /* enum genet_version starts at 1 */
3844 priv->hw_params = &bcmgenet_hw_params[priv->version];
3845 params = priv->hw_params;
3846
3847 /* Read GENET HW version */
3848 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3849 major = (reg >> 24 & 0x0f);
3850 if (major == 6)
3851 major = 5;
3852 else if (major == 5)
3853 major = 4;
3854 else if (major == 0)
3855 major = 1;
3856 if (major != priv->version) {
3857 dev_err(&priv->pdev->dev,
3858 "GENET version mismatch, got: %d, configured for: %d\n",
3859 major, priv->version);
3860 }
3861
3862 /* Print the GENET core version */
3863 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3864 major, (reg >> 16) & 0x0f, reg & 0xffff);
3865
3866 /* Store the integrated PHY revision for the MDIO probing function
3867 * to pass this information to the PHY driver. The PHY driver expects
3868 * to find the PHY major revision in bits 15:8 while the GENET register
3869 * stores that information in bits 7:0, account for that.
3870 *
3871 * On newer chips, starting with PHY revision G0, a new scheme is
3872 * deployed similar to the Starfighter 2 switch with GPHY major
3873 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3874 * is reserved as well as special value 0x01ff, we have a small
3875 * heuristic to check for the new GPHY revision and re-arrange things
3876 * so the GPHY driver is happy.
3877 */
3878 gphy_rev = reg & 0xffff;
3879
3880 if (GENET_IS_V5(priv)) {
3881 /* The EPHY revision should come from the MDIO registers of
3882 * the PHY not from GENET.
3883 */
3884 if (gphy_rev != 0) {
3885 pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3886 gphy_rev);
3887 }
3888 /* This is reserved so should require special treatment */
3889 } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3890 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3891 return;
3892 /* This is the good old scheme, just GPHY major, no minor nor patch */
3893 } else if ((gphy_rev & 0xf0) != 0) {
3894 priv->gphy_rev = gphy_rev << 8;
3895 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3896 } else if ((gphy_rev & 0xff00) != 0) {
3897 priv->gphy_rev = gphy_rev;
3898 }
3899
3900 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3901 if (!(params->flags & GENET_HAS_40BITS))
3902 pr_warn("GENET does not support 40-bits PA\n");
3903 #endif
3904
3905 pr_debug("Configuration for version: %d\n"
3906 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3907 "BP << en: %2d, BP msk: 0x%05x\n"
3908 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3909 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3910 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3911 "Words/BD: %d\n",
3912 priv->version,
3913 params->tx_queues, params->tx_bds_per_q,
3914 params->rx_queues, params->rx_bds_per_q,
3915 params->bp_in_en_shift, params->bp_in_mask,
3916 params->hfb_filter_cnt, params->qtag_mask,
3917 params->tbuf_offset, params->hfb_offset,
3918 params->hfb_reg_offset,
3919 params->rdma_offset, params->tdma_offset,
3920 params->words_per_bd);
3921 }
3922
3923 struct bcmgenet_plat_data {
3924 enum bcmgenet_version version;
3925 u32 dma_max_burst_length;
3926 bool ephy_16nm;
3927 };
3928
3929 static const struct bcmgenet_plat_data v1_plat_data = {
3930 .version = GENET_V1,
3931 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3932 };
3933
3934 static const struct bcmgenet_plat_data v2_plat_data = {
3935 .version = GENET_V2,
3936 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3937 };
3938
3939 static const struct bcmgenet_plat_data v3_plat_data = {
3940 .version = GENET_V3,
3941 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3942 };
3943
3944 static const struct bcmgenet_plat_data v4_plat_data = {
3945 .version = GENET_V4,
3946 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3947 };
3948
3949 static const struct bcmgenet_plat_data v5_plat_data = {
3950 .version = GENET_V5,
3951 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3952 };
3953
3954 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3955 .version = GENET_V5,
3956 .dma_max_burst_length = 0x08,
3957 };
3958
3959 static const struct bcmgenet_plat_data bcm7712_plat_data = {
3960 .version = GENET_V5,
3961 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3962 .ephy_16nm = true,
3963 };
3964
3965 static const struct of_device_id bcmgenet_match[] = {
3966 { .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3967 { .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3968 { .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3969 { .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3970 { .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3971 { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3972 { .compatible = "brcm,bcm7712-genet-v5", .data = &bcm7712_plat_data },
3973 { },
3974 };
3975 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3976
bcmgenet_probe(struct platform_device * pdev)3977 static int bcmgenet_probe(struct platform_device *pdev)
3978 {
3979 struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3980 const struct bcmgenet_plat_data *pdata;
3981 struct bcmgenet_priv *priv;
3982 struct net_device *dev;
3983 unsigned int i;
3984 int err = -EIO;
3985
3986 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3987 dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3988 GENET_MAX_MQ_CNT + 1);
3989 if (!dev) {
3990 dev_err(&pdev->dev, "can't allocate net device\n");
3991 return -ENOMEM;
3992 }
3993
3994 priv = netdev_priv(dev);
3995 priv->irq0 = platform_get_irq(pdev, 0);
3996 if (priv->irq0 < 0) {
3997 err = priv->irq0;
3998 goto err;
3999 }
4000 priv->irq1 = platform_get_irq(pdev, 1);
4001 if (priv->irq1 < 0) {
4002 err = priv->irq1;
4003 goto err;
4004 }
4005 priv->wol_irq = platform_get_irq_optional(pdev, 2);
4006 if (priv->wol_irq == -EPROBE_DEFER) {
4007 err = priv->wol_irq;
4008 goto err;
4009 }
4010
4011 priv->base = devm_platform_ioremap_resource(pdev, 0);
4012 if (IS_ERR(priv->base)) {
4013 err = PTR_ERR(priv->base);
4014 goto err;
4015 }
4016
4017 spin_lock_init(&priv->reg_lock);
4018 spin_lock_init(&priv->lock);
4019
4020 /* Set default pause parameters */
4021 priv->autoneg_pause = 1;
4022 priv->tx_pause = 1;
4023 priv->rx_pause = 1;
4024
4025 SET_NETDEV_DEV(dev, &pdev->dev);
4026 dev_set_drvdata(&pdev->dev, dev);
4027 dev->watchdog_timeo = 2 * HZ;
4028 dev->ethtool_ops = &bcmgenet_ethtool_ops;
4029 dev->netdev_ops = &bcmgenet_netdev_ops;
4030
4031 priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
4032
4033 /* Set default features */
4034 dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
4035 NETIF_F_RXCSUM;
4036 dev->hw_features |= dev->features;
4037 dev->vlan_features |= dev->features;
4038
4039 /* Request the WOL interrupt and advertise suspend if available */
4040 priv->wol_irq_disabled = true;
4041 if (priv->wol_irq > 0) {
4042 err = devm_request_irq(&pdev->dev, priv->wol_irq,
4043 bcmgenet_wol_isr, 0, dev->name, priv);
4044 if (!err)
4045 device_set_wakeup_capable(&pdev->dev, 1);
4046 }
4047
4048 /* Set the needed headroom to account for any possible
4049 * features enabling/disabling at runtime
4050 */
4051 dev->needed_headroom += 64;
4052
4053 priv->dev = dev;
4054 priv->pdev = pdev;
4055
4056 pdata = device_get_match_data(&pdev->dev);
4057 if (pdata) {
4058 priv->version = pdata->version;
4059 priv->dma_max_burst_length = pdata->dma_max_burst_length;
4060 priv->ephy_16nm = pdata->ephy_16nm;
4061 } else {
4062 priv->version = pd->genet_version;
4063 priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
4064 }
4065
4066 priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
4067 if (IS_ERR(priv->clk)) {
4068 dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
4069 err = PTR_ERR(priv->clk);
4070 goto err;
4071 }
4072
4073 err = clk_prepare_enable(priv->clk);
4074 if (err)
4075 goto err;
4076
4077 bcmgenet_set_hw_params(priv);
4078
4079 err = -EIO;
4080 if (priv->hw_params->flags & GENET_HAS_40BITS)
4081 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
4082 if (err)
4083 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4084 if (err)
4085 goto err_clk_disable;
4086
4087 /* Mii wait queue */
4088 init_waitqueue_head(&priv->wq);
4089 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4090 priv->rx_buf_len = RX_BUF_LENGTH;
4091 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4092
4093 priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
4094 if (IS_ERR(priv->clk_wol)) {
4095 dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4096 err = PTR_ERR(priv->clk_wol);
4097 goto err_clk_disable;
4098 }
4099
4100 priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
4101 if (IS_ERR(priv->clk_eee)) {
4102 dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4103 err = PTR_ERR(priv->clk_eee);
4104 goto err_clk_disable;
4105 }
4106
4107 /* If this is an internal GPHY, power it on now, before UniMAC is
4108 * brought out of reset as absolutely no UniMAC activity is allowed
4109 */
4110 if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4111 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4112
4113 if (pd && !IS_ERR_OR_NULL(pd->mac_address))
4114 eth_hw_addr_set(dev, pd->mac_address);
4115 else
4116 if (device_get_ethdev_address(&pdev->dev, dev))
4117 if (has_acpi_companion(&pdev->dev)) {
4118 u8 addr[ETH_ALEN];
4119
4120 bcmgenet_get_hw_addr(priv, addr);
4121 eth_hw_addr_set(dev, addr);
4122 }
4123
4124 if (!is_valid_ether_addr(dev->dev_addr)) {
4125 dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4126 eth_hw_addr_random(dev);
4127 }
4128
4129 reset_umac(priv);
4130
4131 err = bcmgenet_mii_init(dev);
4132 if (err)
4133 goto err_clk_disable;
4134
4135 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues
4136 * just the ring 16 descriptor based TX
4137 */
4138 netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
4139 netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
4140
4141 /* Set default coalescing parameters */
4142 for (i = 0; i < priv->hw_params->rx_queues; i++)
4143 priv->rx_rings[i].rx_max_coalesced_frames = 1;
4144 priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4145
4146 /* libphy will determine the link state */
4147 netif_carrier_off(dev);
4148
4149 /* Turn off the main clock, WOL clock is handled separately */
4150 clk_disable_unprepare(priv->clk);
4151
4152 err = register_netdev(dev);
4153 if (err) {
4154 bcmgenet_mii_exit(dev);
4155 goto err;
4156 }
4157
4158 return err;
4159
4160 err_clk_disable:
4161 clk_disable_unprepare(priv->clk);
4162 err:
4163 free_netdev(dev);
4164 return err;
4165 }
4166
bcmgenet_remove(struct platform_device * pdev)4167 static void bcmgenet_remove(struct platform_device *pdev)
4168 {
4169 struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
4170
4171 dev_set_drvdata(&pdev->dev, NULL);
4172 unregister_netdev(priv->dev);
4173 bcmgenet_mii_exit(priv->dev);
4174 free_netdev(priv->dev);
4175 }
4176
bcmgenet_shutdown(struct platform_device * pdev)4177 static void bcmgenet_shutdown(struct platform_device *pdev)
4178 {
4179 bcmgenet_remove(pdev);
4180 }
4181
4182 #ifdef CONFIG_PM_SLEEP
bcmgenet_resume_noirq(struct device * d)4183 static int bcmgenet_resume_noirq(struct device *d)
4184 {
4185 struct net_device *dev = dev_get_drvdata(d);
4186 struct bcmgenet_priv *priv = netdev_priv(dev);
4187 int ret;
4188 u32 reg;
4189
4190 if (!netif_running(dev))
4191 return 0;
4192
4193 /* Turn on the clock */
4194 ret = clk_prepare_enable(priv->clk);
4195 if (ret)
4196 return ret;
4197
4198 if (device_may_wakeup(d) && priv->wolopts) {
4199 /* Account for Wake-on-LAN events and clear those events
4200 * (Some devices need more time between enabling the clocks
4201 * and the interrupt register reflecting the wake event so
4202 * read the register twice)
4203 */
4204 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4205 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4206 if (reg & UMAC_IRQ_WAKE_EVENT)
4207 pm_wakeup_event(&priv->pdev->dev, 0);
4208 }
4209
4210 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4211
4212 return 0;
4213 }
4214
bcmgenet_resume(struct device * d)4215 static int bcmgenet_resume(struct device *d)
4216 {
4217 struct net_device *dev = dev_get_drvdata(d);
4218 struct bcmgenet_priv *priv = netdev_priv(dev);
4219 struct bcmgenet_rxnfc_rule *rule;
4220 unsigned long dma_ctrl;
4221 int ret;
4222
4223 if (!netif_running(dev))
4224 return 0;
4225
4226 /* From WOL-enabled suspend, switch to regular clock */
4227 if (device_may_wakeup(d) && priv->wolopts)
4228 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
4229
4230 /* If this is an internal GPHY, power it back on now, before UniMAC is
4231 * brought out of reset as absolutely no UniMAC activity is allowed
4232 */
4233 if (priv->internal_phy)
4234 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4235
4236 bcmgenet_umac_reset(priv);
4237
4238 init_umac(priv);
4239
4240 phy_init_hw(dev->phydev);
4241
4242 /* Speed settings must be restored */
4243 genphy_config_aneg(dev->phydev);
4244 bcmgenet_mii_config(priv->dev, false);
4245
4246 /* Restore enabled features */
4247 bcmgenet_set_features(dev, dev->features);
4248
4249 bcmgenet_set_hw_addr(priv, dev->dev_addr);
4250
4251 /* Restore hardware filters */
4252 bcmgenet_hfb_clear(priv);
4253 list_for_each_entry(rule, &priv->rxnfc_list, list)
4254 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
4255 bcmgenet_hfb_create_rxnfc_filter(priv, rule);
4256
4257 /* Disable RX/TX DMA and flush TX queues */
4258 dma_ctrl = bcmgenet_dma_disable(priv, false);
4259
4260 /* Reinitialize TDMA and RDMA and SW housekeeping */
4261 ret = bcmgenet_init_dma(priv);
4262 if (ret) {
4263 netdev_err(dev, "failed to initialize DMA\n");
4264 goto out_clk_disable;
4265 }
4266
4267 /* Always enable ring 16 - descriptor ring */
4268 bcmgenet_enable_dma(priv, dma_ctrl);
4269
4270 if (!device_may_wakeup(d))
4271 phy_resume(dev->phydev);
4272
4273 bcmgenet_netif_start(dev);
4274
4275 netif_device_attach(dev);
4276
4277 return 0;
4278
4279 out_clk_disable:
4280 if (priv->internal_phy)
4281 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4282 clk_disable_unprepare(priv->clk);
4283 return ret;
4284 }
4285
bcmgenet_suspend(struct device * d)4286 static int bcmgenet_suspend(struct device *d)
4287 {
4288 struct net_device *dev = dev_get_drvdata(d);
4289 struct bcmgenet_priv *priv = netdev_priv(dev);
4290
4291 if (!netif_running(dev))
4292 return 0;
4293
4294 netif_device_detach(dev);
4295
4296 bcmgenet_netif_stop(dev, true);
4297
4298 if (!device_may_wakeup(d))
4299 phy_suspend(dev->phydev);
4300
4301 /* Disable filtering */
4302 bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
4303
4304 return 0;
4305 }
4306
bcmgenet_suspend_noirq(struct device * d)4307 static int bcmgenet_suspend_noirq(struct device *d)
4308 {
4309 struct net_device *dev = dev_get_drvdata(d);
4310 struct bcmgenet_priv *priv = netdev_priv(dev);
4311 int ret = 0;
4312
4313 if (!netif_running(dev))
4314 return 0;
4315
4316 /* Prepare the device for Wake-on-LAN and switch to the slow clock */
4317 if (device_may_wakeup(d) && priv->wolopts)
4318 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
4319 else if (priv->internal_phy)
4320 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4321
4322 /* Let the framework handle resumption and leave the clocks on */
4323 if (ret)
4324 return ret;
4325
4326 /* Turn off the clocks */
4327 clk_disable_unprepare(priv->clk);
4328
4329 return 0;
4330 }
4331 #else
4332 #define bcmgenet_suspend NULL
4333 #define bcmgenet_suspend_noirq NULL
4334 #define bcmgenet_resume NULL
4335 #define bcmgenet_resume_noirq NULL
4336 #endif /* CONFIG_PM_SLEEP */
4337
4338 static const struct dev_pm_ops bcmgenet_pm_ops = {
4339 .suspend = bcmgenet_suspend,
4340 .suspend_noirq = bcmgenet_suspend_noirq,
4341 .resume = bcmgenet_resume,
4342 .resume_noirq = bcmgenet_resume_noirq,
4343 };
4344
4345 static const struct acpi_device_id genet_acpi_match[] = {
4346 { "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4347 { },
4348 };
4349 MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4350
4351 static struct platform_driver bcmgenet_driver = {
4352 .probe = bcmgenet_probe,
4353 .remove_new = bcmgenet_remove,
4354 .shutdown = bcmgenet_shutdown,
4355 .driver = {
4356 .name = "bcmgenet",
4357 .of_match_table = bcmgenet_match,
4358 .pm = &bcmgenet_pm_ops,
4359 .acpi_match_table = genet_acpi_match,
4360 },
4361 };
4362 module_platform_driver(bcmgenet_driver);
4363
4364 MODULE_AUTHOR("Broadcom Corporation");
4365 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4366 MODULE_ALIAS("platform:bcmgenet");
4367 MODULE_LICENSE("GPL");
4368 MODULE_SOFTDEP("pre: mdio-bcm-unimac");
4369