xref: /linux/arch/arm64/include/asm/kvm_arm.h (revision 183ac2b2ad5a558a749df5656c1f1df691c7c328)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #ifndef __ARM64_KVM_ARM_H__
8 #define __ARM64_KVM_ARM_H__
9 
10 #include <asm/esr.h>
11 #include <asm/memory.h>
12 #include <asm/sysreg.h>
13 #include <asm/types.h>
14 
15 /*
16  * Because I'm terribly lazy and that repainting the whole of the KVM
17  * code with the proper names is a pain, use a helper to map the names
18  * inherited from AArch32 with the new fancy nomenclature. One day...
19  */
20 #define	__HCR(x)	HCR_EL2_##x
21 
22 #define HCR_TID5	__HCR(TID5)
23 #define HCR_DCT		__HCR(DCT)
24 #define HCR_ATA_SHIFT	__HCR(ATA_SHIFT)
25 #define HCR_ATA		__HCR(ATA)
26 #define HCR_TTLBOS	__HCR(TTLBOS)
27 #define HCR_TTLBIS	__HCR(TTLBIS)
28 #define HCR_ENSCXT	__HCR(EnSCXT)
29 #define HCR_TOCU	__HCR(TOCU)
30 #define HCR_AMVOFFEN	__HCR(AMVOFFEN)
31 #define HCR_TICAB	__HCR(TICAB)
32 #define HCR_TID4	__HCR(TID4)
33 #define HCR_FIEN	__HCR(FIEN)
34 #define HCR_FWB		__HCR(FWB)
35 #define HCR_NV2		__HCR(NV2)
36 #define HCR_AT		__HCR(AT)
37 #define HCR_NV1		__HCR(NV1)
38 #define HCR_NV		__HCR(NV)
39 #define HCR_API		__HCR(API)
40 #define HCR_APK		__HCR(APK)
41 #define HCR_TEA		__HCR(TEA)
42 #define HCR_TERR	__HCR(TERR)
43 #define HCR_TLOR	__HCR(TLOR)
44 #define HCR_E2H		__HCR(E2H)
45 #define HCR_ID		__HCR(ID)
46 #define HCR_CD		__HCR(CD)
47 #define HCR_RW		__HCR(RW)
48 #define HCR_TRVM	__HCR(TRVM)
49 #define HCR_HCD		__HCR(HCD)
50 #define HCR_TDZ		__HCR(TDZ)
51 #define HCR_TGE		__HCR(TGE)
52 #define HCR_TVM		__HCR(TVM)
53 #define HCR_TTLB	__HCR(TTLB)
54 #define HCR_TPU		__HCR(TPU)
55 #define HCR_TPC		__HCR(TPCP)
56 #define HCR_TSW		__HCR(TSW)
57 #define HCR_TACR	__HCR(TACR)
58 #define HCR_TIDCP	__HCR(TIDCP)
59 #define HCR_TSC		__HCR(TSC)
60 #define HCR_TID3	__HCR(TID3)
61 #define HCR_TID2	__HCR(TID2)
62 #define HCR_TID1	__HCR(TID1)
63 #define HCR_TID0	__HCR(TID0)
64 #define HCR_TWE		__HCR(TWE)
65 #define HCR_TWI		__HCR(TWI)
66 #define HCR_DC		__HCR(DC)
67 #define HCR_BSU		__HCR(BSU)
68 #define HCR_BSU_IS	__HCR(BSU_IS)
69 #define HCR_FB		__HCR(FB)
70 #define HCR_VSE		__HCR(VSE)
71 #define HCR_VI		__HCR(VI)
72 #define HCR_VF		__HCR(VF)
73 #define HCR_AMO		__HCR(AMO)
74 #define HCR_IMO		__HCR(IMO)
75 #define HCR_FMO		__HCR(FMO)
76 #define HCR_PTW		__HCR(PTW)
77 #define HCR_SWIO	__HCR(SWIO)
78 #define HCR_VM		__HCR(VM)
79 
80 /*
81  * The bits we set in HCR:
82  * TLOR:	Trap LORegion register accesses
83  * RW:		64bit by default, can be overridden for 32bit VMs
84  * TACR:	Trap ACTLR
85  * TSC:		Trap SMC
86  * TSW:		Trap cache operations by set/way
87  * TWE:		Trap WFE
88  * TWI:		Trap WFI
89  * TIDCP:	Trap L2CTLR/L2ECTLR
90  * BSU_IS:	Upgrade barriers to the inner shareable domain
91  * FB:		Force broadcast of all maintenance operations
92  * AMO:		Override CPSR.A and enable signaling with VA
93  * IMO:		Override CPSR.I and enable signaling with VI
94  * FMO:		Override CPSR.F and enable signaling with VF
95  * SWIO:	Turn set/way invalidates into set/way clean+invalidate
96  * PTW:		Take a stage2 fault if a stage1 walk steps in device memory
97  * TID3:	Trap EL1 reads of group 3 ID registers
98  * TID1:	Trap REVIDR_EL1, AIDR_EL1, and SMIDR_EL1
99  */
100 #define HCR_GUEST_FLAGS (HCR_TSC | HCR_TSW | HCR_TWE | HCR_TWI | HCR_VM | \
101 			 HCR_BSU_IS | HCR_FB | HCR_TACR | \
102 			 HCR_AMO | HCR_SWIO | HCR_TIDCP | HCR_RW | HCR_TLOR | \
103 			 HCR_FMO | HCR_IMO | HCR_PTW | HCR_TID3 | HCR_TID1)
104 #define HCR_HOST_NVHE_FLAGS (HCR_RW | HCR_API | HCR_APK)
105 #define HCR_HOST_NVHE_PROTECTED_FLAGS (HCR_HOST_NVHE_FLAGS | HCR_TSC)
106 #define HCR_HOST_VHE_FLAGS (HCR_RW | HCR_TGE | HCR_E2H | HCR_AMO | HCR_IMO | HCR_FMO)
107 
108 #define MPAMHCR_HOST_FLAGS	0
109 
110 /* TCR_EL2 Registers bits */
111 #define TCR_EL2_DS		(1UL << 32)
112 #define TCR_EL2_RES1		((1U << 31) | (1 << 23))
113 #define TCR_EL2_HPD		(1 << 24)
114 #define TCR_EL2_HA		(1 << 21)
115 #define TCR_EL2_TBI		(1 << 20)
116 #define TCR_EL2_PS_SHIFT	16
117 #define TCR_EL2_PS_MASK		(7 << TCR_EL2_PS_SHIFT)
118 #define TCR_EL2_PS_40B		(2 << TCR_EL2_PS_SHIFT)
119 #define TCR_EL2_TG0_MASK	TCR_TG0_MASK
120 #define TCR_EL2_SH0_MASK	TCR_SH0_MASK
121 #define TCR_EL2_ORGN0_MASK	TCR_ORGN0_MASK
122 #define TCR_EL2_IRGN0_MASK	TCR_IRGN0_MASK
123 #define TCR_EL2_T0SZ_MASK	0x3f
124 #define TCR_EL2_MASK	(TCR_EL2_TG0_MASK | TCR_EL2_SH0_MASK | \
125 			 TCR_EL2_ORGN0_MASK | TCR_EL2_IRGN0_MASK)
126 
127 /*
128  * The VTCR_EL2 is configured per VM and is initialised in kvm_init_stage2_mmu.
129  *
130  * Note that when using 4K pages, we concatenate two first level page tables
131  * together. With 16K pages, we concatenate 16 first level page tables.
132  *
133  */
134 
135 /*
136  * VTCR_EL2:SL0 indicates the entry level for Stage2 translation.
137  * Interestingly, it depends on the page size.
138  * See D.10.2.121, VTCR_EL2, in ARM DDI 0487C.a
139  *
140  *	-----------------------------------------
141  *	| Entry level		|  4K  | 16K/64K |
142  *	------------------------------------------
143  *	| Level: 0		|  2   |   -     |
144  *	------------------------------------------
145  *	| Level: 1		|  1   |   2     |
146  *	------------------------------------------
147  *	| Level: 2		|  0   |   1     |
148  *	------------------------------------------
149  *	| Level: 3		|  -   |   0     |
150  *	------------------------------------------
151  *
152  * The table roughly translates to :
153  *
154  *	SL0(PAGE_SIZE, Entry_level) = TGRAN_SL0_BASE - Entry_Level
155  *
156  * Where TGRAN_SL0_BASE is a magic number depending on the page size:
157  * 	TGRAN_SL0_BASE(4K) = 2
158  *	TGRAN_SL0_BASE(16K) = 3
159  *	TGRAN_SL0_BASE(64K) = 3
160  * provided we take care of ruling out the unsupported cases and
161  * Entry_Level = 4 - Number_of_levels.
162  *
163  */
164 #ifdef CONFIG_ARM64_64K_PAGES
165 
166 #define VTCR_EL2_TGRAN			64K
167 #define VTCR_EL2_TGRAN_SL0_BASE		3UL
168 
169 #elif defined(CONFIG_ARM64_16K_PAGES)
170 
171 #define VTCR_EL2_TGRAN			16K
172 #define VTCR_EL2_TGRAN_SL0_BASE		3UL
173 
174 #else	/* 4K */
175 
176 #define VTCR_EL2_TGRAN			4K
177 #define VTCR_EL2_TGRAN_SL0_BASE		2UL
178 
179 #endif
180 
181 #define VTCR_EL2_LVLS_TO_SL0(levels)	\
182 	FIELD_PREP(VTCR_EL2_SL0, (VTCR_EL2_TGRAN_SL0_BASE - (4 - (levels))))
183 #define VTCR_EL2_SL0_TO_LVLS(sl0)	\
184 	((sl0) + 4 - VTCR_EL2_TGRAN_SL0_BASE)
185 #define VTCR_EL2_LVLS(vtcr)		\
186 	VTCR_EL2_SL0_TO_LVLS(FIELD_GET(VTCR_EL2_SL0, (vtcr)))
187 
188 #define VTCR_EL2_FLAGS	(SYS_FIELD_PREP_ENUM(VTCR_EL2, SH0, INNER)	    | \
189 			 SYS_FIELD_PREP_ENUM(VTCR_EL2, ORGN0, WBWA)	    | \
190 			 SYS_FIELD_PREP_ENUM(VTCR_EL2, IRGN0, WBWA)	    | \
191 			 SYS_FIELD_PREP_ENUM(VTCR_EL2, TG0, VTCR_EL2_TGRAN) | \
192 			 VTCR_EL2_RES1)
193 
194 #define VTCR_EL2_IPA(vtcr)		(64 - FIELD_GET(VTCR_EL2_T0SZ, (vtcr)))
195 
196 /*
197  * ARM VMSAv8-64 defines an algorithm for finding the translation table
198  * descriptors in section D4.2.8 in ARM DDI 0487C.a.
199  *
200  * The algorithm defines the expectations on the translation table
201  * addresses for each level, based on PAGE_SIZE, entry level
202  * and the translation table size (T0SZ). The variable "x" in the
203  * algorithm determines the alignment of a table base address at a given
204  * level and thus determines the alignment of VTTBR:BADDR for stage2
205  * page table entry level.
206  * Since the number of bits resolved at the entry level could vary
207  * depending on the T0SZ, the value of "x" is defined based on a
208  * Magic constant for a given PAGE_SIZE and Entry Level. The
209  * intermediate levels must be always aligned to the PAGE_SIZE (i.e,
210  * x = PAGE_SHIFT).
211  *
212  * The value of "x" for entry level is calculated as :
213  *    x = Magic_N - T0SZ
214  *
215  * where Magic_N is an integer depending on the page size and the entry
216  * level of the page table as below:
217  *
218  *	--------------------------------------------
219  *	| Entry level		|  4K    16K   64K |
220  *	--------------------------------------------
221  *	| Level: 0 (4 levels)	| 28   |  -  |  -  |
222  *	--------------------------------------------
223  *	| Level: 1 (3 levels)	| 37   | 31  | 25  |
224  *	--------------------------------------------
225  *	| Level: 2 (2 levels)	| 46   | 42  | 38  |
226  *	--------------------------------------------
227  *	| Level: 3 (1 level)	| -    | 53  | 51  |
228  *	--------------------------------------------
229  *
230  * We have a magic formula for the Magic_N below:
231  *
232  *  Magic_N(PAGE_SIZE, Level) = 64 - ((PAGE_SHIFT - 3) * Number_of_levels)
233  *
234  * where Number_of_levels = (4 - Level). We are only interested in the
235  * value for Entry_Level for the stage2 page table.
236  *
237  * So, given that T0SZ = (64 - IPA_SHIFT), we can compute 'x' as follows:
238  *
239  *	x = (64 - ((PAGE_SHIFT - 3) * Number_of_levels)) - (64 - IPA_SHIFT)
240  *	  = IPA_SHIFT - ((PAGE_SHIFT - 3) * Number of levels)
241  *
242  * Here is one way to explain the Magic Formula:
243  *
244  *  x = log2(Size_of_Entry_Level_Table)
245  *
246  * Since, we can resolve (PAGE_SHIFT - 3) bits at each level, and another
247  * PAGE_SHIFT bits in the PTE, we have :
248  *
249  *  Bits_Entry_level = IPA_SHIFT - ((PAGE_SHIFT - 3) * (n - 1) + PAGE_SHIFT)
250  *		     = IPA_SHIFT - (PAGE_SHIFT - 3) * n - 3
251  *  where n = number of levels, and since each pointer is 8bytes, we have:
252  *
253  *  x = Bits_Entry_Level + 3
254  *    = IPA_SHIFT - (PAGE_SHIFT - 3) * n
255  *
256  * The only constraint here is that, we have to find the number of page table
257  * levels for a given IPA size (which we do, see stage2_pt_levels())
258  */
259 #define ARM64_VTTBR_X(ipa, levels)	((ipa) - ((levels) * (PAGE_SHIFT - 3)))
260 
261 #define VTTBR_CNP_BIT     (UL(1))
262 #define VTTBR_VMID_SHIFT  (UL(48))
263 #define VTTBR_VMID_MASK(size) (_AT(u64, (1 << size) - 1) << VTTBR_VMID_SHIFT)
264 
265 /* Hyp System Trap Register */
266 #define HSTR_EL2_T(x)	(1 << x)
267 
268 /* Hyp Coprocessor Trap Register Shifts */
269 #define CPTR_EL2_TFP_SHIFT 10
270 
271 /* Hyp Coprocessor Trap Register */
272 #define CPTR_EL2_TCPAC	(1U << 31)
273 #define CPTR_EL2_TAM	(1 << 30)
274 #define CPTR_EL2_TTA	(1 << 20)
275 #define CPTR_EL2_TSM	(1 << 12)
276 #define CPTR_EL2_TFP	(1 << CPTR_EL2_TFP_SHIFT)
277 #define CPTR_EL2_TZ	(1 << 8)
278 #define CPTR_NVHE_EL2_RES1	(BIT(13) | BIT(9) | GENMASK(7, 0))
279 #define CPTR_NVHE_EL2_RES0	(GENMASK(63, 32) |	\
280 				 GENMASK(29, 21) |	\
281 				 GENMASK(19, 14) |	\
282 				 BIT(11))
283 
284 #define CPTR_VHE_EL2_RES0	(GENMASK(63, 32) |	\
285 				 GENMASK(27, 26) |	\
286 				 GENMASK(23, 22) |	\
287 				 GENMASK(19, 18) |	\
288 				 GENMASK(15, 0))
289 
290 /*
291  * Polarity masks for HCRX_EL2, limited to the bits that we know about
292  * at this point in time. It doesn't mean that we actually *handle*
293  * them, but that at least those that are not advertised to a guest
294  * will be RES0 for that guest.
295  */
296 #define __HCRX_EL2_MASK		(BIT_ULL(6))
297 #define __HCRX_EL2_nMASK	(GENMASK_ULL(24, 14) | \
298 				 GENMASK_ULL(11, 7)  | \
299 				 GENMASK_ULL(5, 0))
300 #define __HCRX_EL2_RES0		~(__HCRX_EL2_nMASK | __HCRX_EL2_MASK)
301 #define __HCRX_EL2_RES1		~(__HCRX_EL2_nMASK | \
302 				  __HCRX_EL2_MASK  | \
303 				  __HCRX_EL2_RES0)
304 
305 /* Hyp Prefetch Fault Address Register (HPFAR/HDFAR) */
306 #define HPFAR_MASK	(~UL(0xf))
307 /*
308  * We have
309  *	PAR	[PA_Shift - 1	: 12] = PA	[PA_Shift - 1 : 12]
310  *	HPFAR	[PA_Shift - 9	: 4]  = FIPA	[PA_Shift - 1 : 12]
311  *
312  * Always assume 52 bit PA since at this point, we don't know how many PA bits
313  * the page table has been set up for. This should be safe since unused address
314  * bits in PAR are res0.
315  */
316 #define PAR_TO_HPFAR(par)		\
317 	(((par) & GENMASK_ULL(52 - 1, 12)) >> 8)
318 
319 #define FAR_TO_FIPA_OFFSET(far) ((far) & GENMASK_ULL(11, 0))
320 
321 #define ECN(x) { ESR_ELx_EC_##x, #x }
322 
323 #define kvm_arm_exception_class \
324 	ECN(UNKNOWN), ECN(WFx), ECN(CP15_32), ECN(CP15_64), ECN(CP14_MR), \
325 	ECN(CP14_LS), ECN(FP_ASIMD), ECN(CP10_ID), ECN(PAC), ECN(CP14_64), \
326 	ECN(SVC64), ECN(HVC64), ECN(SMC64), ECN(SYS64), ECN(SVE), \
327 	ECN(IMP_DEF), ECN(IABT_LOW), ECN(IABT_CUR), \
328 	ECN(PC_ALIGN), ECN(DABT_LOW), ECN(DABT_CUR), \
329 	ECN(SP_ALIGN), ECN(FP_EXC32), ECN(FP_EXC64), ECN(SERROR), \
330 	ECN(BREAKPT_LOW), ECN(BREAKPT_CUR), ECN(SOFTSTP_LOW), \
331 	ECN(SOFTSTP_CUR), ECN(WATCHPT_LOW), ECN(WATCHPT_CUR), \
332 	ECN(BKPT32), ECN(VECTOR32), ECN(BRK64), ECN(ERET)
333 
334 #define kvm_mode_names				\
335 	{ PSR_MODE_EL0t,	"EL0t" },	\
336 	{ PSR_MODE_EL1t,	"EL1t" },	\
337 	{ PSR_MODE_EL1h,	"EL1h" },	\
338 	{ PSR_MODE_EL2t,	"EL2t" },	\
339 	{ PSR_MODE_EL2h,	"EL2h" },	\
340 	{ PSR_MODE_EL3t,	"EL3t" },	\
341 	{ PSR_MODE_EL3h,	"EL3h" },	\
342 	{ PSR_AA32_MODE_USR,	"32-bit USR" },	\
343 	{ PSR_AA32_MODE_FIQ,	"32-bit FIQ" },	\
344 	{ PSR_AA32_MODE_IRQ,	"32-bit IRQ" },	\
345 	{ PSR_AA32_MODE_SVC,	"32-bit SVC" },	\
346 	{ PSR_AA32_MODE_ABT,	"32-bit ABT" },	\
347 	{ PSR_AA32_MODE_HYP,	"32-bit HYP" },	\
348 	{ PSR_AA32_MODE_UND,	"32-bit UND" },	\
349 	{ PSR_AA32_MODE_SYS,	"32-bit SYS" }
350 
351 #endif /* __ARM64_KVM_ARM_H__ */
352