xref: /linux/net/ipv4/tcp_input.c (revision 309dd9942155c090b774cec29c5982922fece446)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <linux/bitops.h>
74 #include <net/dst.h>
75 #include <net/tcp.h>
76 #include <net/tcp_ecn.h>
77 #include <net/proto_memory.h>
78 #include <net/inet_common.h>
79 #include <linux/ipsec.h>
80 #include <linux/unaligned.h>
81 #include <linux/errqueue.h>
82 #include <trace/events/tcp.h>
83 #include <linux/jump_label_ratelimit.h>
84 #include <net/busy_poll.h>
85 #include <net/mptcp.h>
86 
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 
89 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
90 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
91 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
92 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
93 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
94 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
95 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
96 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
97 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
98 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
99 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
100 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
101 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
102 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
103 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
104 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
105 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
106 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
107 #define FLAG_TS_PROGRESS	0x40000 /* Positive timestamp delta */
108 
109 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
112 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
113 
114 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
115 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
116 
117 #define REXMIT_NONE	0 /* no loss recovery to do */
118 #define REXMIT_LOST	1 /* retransmit packets marked lost */
119 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
120 
121 #if IS_ENABLED(CONFIG_TLS_DEVICE)
122 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
123 
124 void clean_acked_data_enable(struct tcp_sock *tp,
125 			     void (*cad)(struct sock *sk, u32 ack_seq))
126 {
127 	tp->tcp_clean_acked = cad;
128 	static_branch_deferred_inc(&clean_acked_data_enabled);
129 }
130 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
131 
132 void clean_acked_data_disable(struct tcp_sock *tp)
133 {
134 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
135 	tp->tcp_clean_acked = NULL;
136 }
137 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
138 
139 void clean_acked_data_flush(void)
140 {
141 	static_key_deferred_flush(&clean_acked_data_enabled);
142 }
143 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
144 #endif
145 
146 #ifdef CONFIG_CGROUP_BPF
147 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
148 {
149 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
150 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
151 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
152 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
153 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
154 	struct bpf_sock_ops_kern sock_ops;
155 
156 	if (likely(!unknown_opt && !parse_all_opt))
157 		return;
158 
159 	/* The skb will be handled in the
160 	 * bpf_skops_established() or
161 	 * bpf_skops_write_hdr_opt().
162 	 */
163 	switch (sk->sk_state) {
164 	case TCP_SYN_RECV:
165 	case TCP_SYN_SENT:
166 	case TCP_LISTEN:
167 		return;
168 	}
169 
170 	sock_owned_by_me(sk);
171 
172 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
173 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
174 	sock_ops.is_fullsock = 1;
175 	sock_ops.is_locked_tcp_sock = 1;
176 	sock_ops.sk = sk;
177 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
178 
179 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
180 }
181 
182 static void bpf_skops_established(struct sock *sk, int bpf_op,
183 				  struct sk_buff *skb)
184 {
185 	struct bpf_sock_ops_kern sock_ops;
186 
187 	sock_owned_by_me(sk);
188 
189 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
190 	sock_ops.op = bpf_op;
191 	sock_ops.is_fullsock = 1;
192 	sock_ops.is_locked_tcp_sock = 1;
193 	sock_ops.sk = sk;
194 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
195 	if (skb)
196 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
197 
198 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
199 }
200 #else
201 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
202 {
203 }
204 
205 static void bpf_skops_established(struct sock *sk, int bpf_op,
206 				  struct sk_buff *skb)
207 {
208 }
209 #endif
210 
211 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb,
212 				    unsigned int len)
213 {
214 	struct net_device *dev;
215 
216 	rcu_read_lock();
217 	dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
218 	if (!dev || len >= READ_ONCE(dev->mtu))
219 		pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
220 			dev ? dev->name : "Unknown driver");
221 	rcu_read_unlock();
222 }
223 
224 /* Adapt the MSS value used to make delayed ack decision to the
225  * real world.
226  */
227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 	struct inet_connection_sock *icsk = inet_csk(sk);
230 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 	unsigned int len;
232 
233 	icsk->icsk_ack.last_seg_size = 0;
234 
235 	/* skb->len may jitter because of SACKs, even if peer
236 	 * sends good full-sized frames.
237 	 */
238 	len = skb_shinfo(skb)->gso_size ? : skb->len;
239 	if (len >= icsk->icsk_ack.rcv_mss) {
240 		/* Note: divides are still a bit expensive.
241 		 * For the moment, only adjust scaling_ratio
242 		 * when we update icsk_ack.rcv_mss.
243 		 */
244 		if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
245 			u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
246 			u8 old_ratio = tcp_sk(sk)->scaling_ratio;
247 
248 			do_div(val, skb->truesize);
249 			tcp_sk(sk)->scaling_ratio = val ? val : 1;
250 
251 			if (old_ratio != tcp_sk(sk)->scaling_ratio) {
252 				struct tcp_sock *tp = tcp_sk(sk);
253 
254 				val = tcp_win_from_space(sk, sk->sk_rcvbuf);
255 				tcp_set_window_clamp(sk, val);
256 
257 				if (tp->window_clamp < tp->rcvq_space.space)
258 					tp->rcvq_space.space = tp->window_clamp;
259 			}
260 		}
261 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
262 					       tcp_sk(sk)->advmss);
263 		/* Account for possibly-removed options */
264 		DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE,
265 				tcp_gro_dev_warn, sk, skb, len);
266 		/* If the skb has a len of exactly 1*MSS and has the PSH bit
267 		 * set then it is likely the end of an application write. So
268 		 * more data may not be arriving soon, and yet the data sender
269 		 * may be waiting for an ACK if cwnd-bound or using TX zero
270 		 * copy. So we set ICSK_ACK_PUSHED here so that
271 		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
272 		 * reads all of the data and is not ping-pong. If len > MSS
273 		 * then this logic does not matter (and does not hurt) because
274 		 * tcp_cleanup_rbuf() will always ACK immediately if the app
275 		 * reads data and there is more than an MSS of unACKed data.
276 		 */
277 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
278 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
279 	} else {
280 		/* Otherwise, we make more careful check taking into account,
281 		 * that SACKs block is variable.
282 		 *
283 		 * "len" is invariant segment length, including TCP header.
284 		 */
285 		len += skb->data - skb_transport_header(skb);
286 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
287 		    /* If PSH is not set, packet should be
288 		     * full sized, provided peer TCP is not badly broken.
289 		     * This observation (if it is correct 8)) allows
290 		     * to handle super-low mtu links fairly.
291 		     */
292 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
293 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
294 			/* Subtract also invariant (if peer is RFC compliant),
295 			 * tcp header plus fixed timestamp option length.
296 			 * Resulting "len" is MSS free of SACK jitter.
297 			 */
298 			len -= tcp_sk(sk)->tcp_header_len;
299 			icsk->icsk_ack.last_seg_size = len;
300 			if (len == lss) {
301 				icsk->icsk_ack.rcv_mss = len;
302 				return;
303 			}
304 		}
305 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
306 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
307 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
308 	}
309 }
310 
311 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
312 {
313 	struct inet_connection_sock *icsk = inet_csk(sk);
314 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
315 
316 	if (quickacks == 0)
317 		quickacks = 2;
318 	quickacks = min(quickacks, max_quickacks);
319 	if (quickacks > icsk->icsk_ack.quick)
320 		icsk->icsk_ack.quick = quickacks;
321 }
322 
323 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
324 {
325 	struct inet_connection_sock *icsk = inet_csk(sk);
326 
327 	tcp_incr_quickack(sk, max_quickacks);
328 	inet_csk_exit_pingpong_mode(sk);
329 	icsk->icsk_ack.ato = TCP_ATO_MIN;
330 }
331 
332 /* Send ACKs quickly, if "quick" count is not exhausted
333  * and the session is not interactive.
334  */
335 
336 static bool tcp_in_quickack_mode(struct sock *sk)
337 {
338 	const struct inet_connection_sock *icsk = inet_csk(sk);
339 
340 	return icsk->icsk_ack.dst_quick_ack ||
341 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
342 }
343 
344 static void tcp_data_ecn_check(struct sock *sk, const struct sk_buff *skb)
345 {
346 	struct tcp_sock *tp = tcp_sk(sk);
347 
348 	if (tcp_ecn_disabled(tp))
349 		return;
350 
351 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
352 	case INET_ECN_NOT_ECT:
353 		/* Funny extension: if ECT is not set on a segment,
354 		 * and we already seen ECT on a previous segment,
355 		 * it is probably a retransmit.
356 		 */
357 		if (tp->ecn_flags & TCP_ECN_SEEN)
358 			tcp_enter_quickack_mode(sk, 2);
359 		break;
360 	case INET_ECN_CE:
361 		if (tcp_ca_needs_ecn(sk))
362 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
363 
364 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR) &&
365 		    tcp_ecn_mode_rfc3168(tp)) {
366 			/* Better not delay acks, sender can have a very low cwnd */
367 			tcp_enter_quickack_mode(sk, 2);
368 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
369 		}
370 		/* As for RFC3168 ECN, the TCP_ECN_SEEN flag is set by
371 		 * tcp_data_ecn_check() when the ECN codepoint of
372 		 * received TCP data contains ECT(0), ECT(1), or CE.
373 		 */
374 		if (!tcp_ecn_mode_rfc3168(tp))
375 			break;
376 		tp->ecn_flags |= TCP_ECN_SEEN;
377 		break;
378 	default:
379 		if (tcp_ca_needs_ecn(sk))
380 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
381 		if (!tcp_ecn_mode_rfc3168(tp))
382 			break;
383 		tp->ecn_flags |= TCP_ECN_SEEN;
384 		break;
385 	}
386 }
387 
388 /* Returns true if the byte counters can be used */
389 static bool tcp_accecn_process_option(struct tcp_sock *tp,
390 				      const struct sk_buff *skb,
391 				      u32 delivered_bytes, int flag)
392 {
393 	u8 estimate_ecnfield = tp->est_ecnfield;
394 	bool ambiguous_ecn_bytes_incr = false;
395 	bool first_changed = false;
396 	unsigned int optlen;
397 	bool order1, res;
398 	unsigned int i;
399 	u8 *ptr;
400 
401 	if (tcp_accecn_opt_fail_recv(tp))
402 		return false;
403 
404 	if (!(flag & FLAG_SLOWPATH) || !tp->rx_opt.accecn) {
405 		if (!tp->saw_accecn_opt) {
406 			/* Too late to enable after this point due to
407 			 * potential counter wraps
408 			 */
409 			if (tp->bytes_sent >= (1 << 23) - 1) {
410 				u8 saw_opt = TCP_ACCECN_OPT_FAIL_SEEN;
411 
412 				tcp_accecn_saw_opt_fail_recv(tp, saw_opt);
413 			}
414 			return false;
415 		}
416 
417 		if (estimate_ecnfield) {
418 			u8 ecnfield = estimate_ecnfield - 1;
419 
420 			tp->delivered_ecn_bytes[ecnfield] += delivered_bytes;
421 			return true;
422 		}
423 		return false;
424 	}
425 
426 	ptr = skb_transport_header(skb) + tp->rx_opt.accecn;
427 	optlen = ptr[1] - 2;
428 	if (WARN_ON_ONCE(ptr[0] != TCPOPT_ACCECN0 && ptr[0] != TCPOPT_ACCECN1))
429 		return false;
430 	order1 = (ptr[0] == TCPOPT_ACCECN1);
431 	ptr += 2;
432 
433 	if (tp->saw_accecn_opt < TCP_ACCECN_OPT_COUNTER_SEEN) {
434 		tp->saw_accecn_opt = tcp_accecn_option_init(skb,
435 							    tp->rx_opt.accecn);
436 		if (tp->saw_accecn_opt == TCP_ACCECN_OPT_FAIL_SEEN)
437 			tcp_accecn_fail_mode_set(tp, TCP_ACCECN_OPT_FAIL_RECV);
438 	}
439 
440 	res = !!estimate_ecnfield;
441 	for (i = 0; i < 3; i++) {
442 		u32 init_offset;
443 		u8 ecnfield;
444 		s32 delta;
445 		u32 *cnt;
446 
447 		if (optlen < TCPOLEN_ACCECN_PERFIELD)
448 			break;
449 
450 		ecnfield = tcp_accecn_optfield_to_ecnfield(i, order1);
451 		init_offset = tcp_accecn_field_init_offset(ecnfield);
452 		cnt = &tp->delivered_ecn_bytes[ecnfield - 1];
453 		delta = tcp_update_ecn_bytes(cnt, ptr, init_offset);
454 		if (delta && delta < 0) {
455 			res = false;
456 			ambiguous_ecn_bytes_incr = true;
457 		}
458 		if (delta && ecnfield != estimate_ecnfield) {
459 			if (!first_changed) {
460 				tp->est_ecnfield = ecnfield;
461 				first_changed = true;
462 			} else {
463 				res = false;
464 				ambiguous_ecn_bytes_incr = true;
465 			}
466 		}
467 
468 		optlen -= TCPOLEN_ACCECN_PERFIELD;
469 		ptr += TCPOLEN_ACCECN_PERFIELD;
470 	}
471 	if (ambiguous_ecn_bytes_incr)
472 		tp->est_ecnfield = 0;
473 
474 	return res;
475 }
476 
477 static void tcp_count_delivered_ce(struct tcp_sock *tp, u32 ecn_count)
478 {
479 	tp->delivered_ce += ecn_count;
480 }
481 
482 /* Updates the delivered and delivered_ce counts */
483 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
484 				bool ece_ack)
485 {
486 	tp->delivered += delivered;
487 	if (tcp_ecn_mode_rfc3168(tp) && ece_ack)
488 		tcp_count_delivered_ce(tp, delivered);
489 }
490 
491 #define PKTS_ACKED_WEIGHT	6
492 #define PKTS_ACKED_PREC		6
493 #define ACK_COMP_THRESH		4
494 
495 /* Returns the ECN CE delta */
496 static u32 __tcp_accecn_process(struct sock *sk, const struct sk_buff *skb,
497 				u32 delivered_pkts, u32 delivered_bytes,
498 				int flag)
499 {
500 	u32 old_ceb = tcp_sk(sk)->delivered_ecn_bytes[INET_ECN_CE - 1];
501 	const struct tcphdr *th = tcp_hdr(skb);
502 	struct tcp_sock *tp = tcp_sk(sk);
503 	u32 delta, safe_delta, d_ceb;
504 	bool opt_deltas_valid;
505 	u32 corrected_ace;
506 	u32 ewma;
507 
508 	/* Reordered ACK or uncertain due to lack of data to send and ts */
509 	if (!(flag & (FLAG_FORWARD_PROGRESS | FLAG_TS_PROGRESS)))
510 		return 0;
511 
512 	opt_deltas_valid = tcp_accecn_process_option(tp, skb,
513 						     delivered_bytes, flag);
514 
515 	if (delivered_pkts) {
516 		if (!tp->pkts_acked_ewma) {
517 			ewma = delivered_pkts << PKTS_ACKED_PREC;
518 		} else {
519 			ewma = tp->pkts_acked_ewma;
520 			ewma = (((ewma << PKTS_ACKED_WEIGHT) - ewma) +
521 				(delivered_pkts << PKTS_ACKED_PREC)) >>
522 				PKTS_ACKED_WEIGHT;
523 		}
524 		tp->pkts_acked_ewma = min_t(u32, ewma, 0xFFFFU);
525 	}
526 
527 	if (!(flag & FLAG_SLOWPATH)) {
528 		/* AccECN counter might overflow on large ACKs */
529 		if (delivered_pkts <= TCP_ACCECN_CEP_ACE_MASK)
530 			return 0;
531 	}
532 
533 	/* ACE field is not available during handshake */
534 	if (flag & FLAG_SYN_ACKED)
535 		return 0;
536 
537 	if (tp->received_ce_pending >= TCP_ACCECN_ACE_MAX_DELTA)
538 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
539 
540 	corrected_ace = tcp_accecn_ace(th) - TCP_ACCECN_CEP_INIT_OFFSET;
541 	delta = (corrected_ace - tp->delivered_ce) & TCP_ACCECN_CEP_ACE_MASK;
542 	if (delivered_pkts <= TCP_ACCECN_CEP_ACE_MASK)
543 		return delta;
544 
545 	safe_delta = delivered_pkts -
546 		     ((delivered_pkts - delta) & TCP_ACCECN_CEP_ACE_MASK);
547 
548 	if (opt_deltas_valid) {
549 		d_ceb = tp->delivered_ecn_bytes[INET_ECN_CE - 1] - old_ceb;
550 		if (!d_ceb)
551 			return delta;
552 
553 		if ((delivered_pkts >= (TCP_ACCECN_CEP_ACE_MASK + 1) * 2) &&
554 		    (tcp_is_sack(tp) ||
555 		     ((1 << inet_csk(sk)->icsk_ca_state) &
556 		      (TCPF_CA_Open | TCPF_CA_CWR)))) {
557 			u32 est_d_cep;
558 
559 			if (delivered_bytes <= d_ceb)
560 				return safe_delta;
561 
562 			est_d_cep = DIV_ROUND_UP_ULL((u64)d_ceb *
563 						     delivered_pkts,
564 						     delivered_bytes);
565 			return min(safe_delta,
566 				   delta +
567 				   (est_d_cep & ~TCP_ACCECN_CEP_ACE_MASK));
568 		}
569 
570 		if (d_ceb > delta * tp->mss_cache)
571 			return safe_delta;
572 		if (d_ceb <
573 		    safe_delta * tp->mss_cache >> TCP_ACCECN_SAFETY_SHIFT)
574 			return delta;
575 	} else if (tp->pkts_acked_ewma > (ACK_COMP_THRESH << PKTS_ACKED_PREC))
576 		return delta;
577 
578 	return safe_delta;
579 }
580 
581 static u32 tcp_accecn_process(struct sock *sk, const struct sk_buff *skb,
582 			      u32 delivered_pkts, u32 delivered_bytes,
583 			      int *flag)
584 {
585 	struct tcp_sock *tp = tcp_sk(sk);
586 	u32 delta;
587 
588 	delta = __tcp_accecn_process(sk, skb, delivered_pkts,
589 				     delivered_bytes, *flag);
590 	if (delta > 0) {
591 		tcp_count_delivered_ce(tp, delta);
592 		*flag |= FLAG_ECE;
593 		/* Recalculate header predictor */
594 		if (tp->pred_flags)
595 			tcp_fast_path_on(tp);
596 	}
597 	return delta;
598 }
599 
600 /* Buffer size and advertised window tuning.
601  *
602  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
603  */
604 
605 static void tcp_sndbuf_expand(struct sock *sk)
606 {
607 	const struct tcp_sock *tp = tcp_sk(sk);
608 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
609 	int sndmem, per_mss;
610 	u32 nr_segs;
611 
612 	/* Worst case is non GSO/TSO : each frame consumes one skb
613 	 * and skb->head is kmalloced using power of two area of memory
614 	 */
615 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
616 		  MAX_TCP_HEADER +
617 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
618 
619 	per_mss = roundup_pow_of_two(per_mss) +
620 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
621 
622 	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
623 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
624 
625 	/* Fast Recovery (RFC 5681 3.2) :
626 	 * Cubic needs 1.7 factor, rounded to 2 to include
627 	 * extra cushion (application might react slowly to EPOLLOUT)
628 	 */
629 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
630 	sndmem *= nr_segs * per_mss;
631 
632 	if (sk->sk_sndbuf < sndmem)
633 		WRITE_ONCE(sk->sk_sndbuf,
634 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
635 }
636 
637 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
638  *
639  * All tcp_full_space() is split to two parts: "network" buffer, allocated
640  * forward and advertised in receiver window (tp->rcv_wnd) and
641  * "application buffer", required to isolate scheduling/application
642  * latencies from network.
643  * window_clamp is maximal advertised window. It can be less than
644  * tcp_full_space(), in this case tcp_full_space() - window_clamp
645  * is reserved for "application" buffer. The less window_clamp is
646  * the smoother our behaviour from viewpoint of network, but the lower
647  * throughput and the higher sensitivity of the connection to losses. 8)
648  *
649  * rcv_ssthresh is more strict window_clamp used at "slow start"
650  * phase to predict further behaviour of this connection.
651  * It is used for two goals:
652  * - to enforce header prediction at sender, even when application
653  *   requires some significant "application buffer". It is check #1.
654  * - to prevent pruning of receive queue because of misprediction
655  *   of receiver window. Check #2.
656  *
657  * The scheme does not work when sender sends good segments opening
658  * window and then starts to feed us spaghetti. But it should work
659  * in common situations. Otherwise, we have to rely on queue collapsing.
660  */
661 
662 /* Slow part of check#2. */
663 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
664 			     unsigned int skbtruesize)
665 {
666 	const struct tcp_sock *tp = tcp_sk(sk);
667 	/* Optimize this! */
668 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
669 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
670 
671 	while (tp->rcv_ssthresh <= window) {
672 		if (truesize <= skb->len)
673 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
674 
675 		truesize >>= 1;
676 		window >>= 1;
677 	}
678 	return 0;
679 }
680 
681 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
682  * can play nice with us, as sk_buff and skb->head might be either
683  * freed or shared with up to MAX_SKB_FRAGS segments.
684  * Only give a boost to drivers using page frag(s) to hold the frame(s),
685  * and if no payload was pulled in skb->head before reaching us.
686  */
687 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
688 {
689 	u32 truesize = skb->truesize;
690 
691 	if (adjust && !skb_headlen(skb)) {
692 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
693 		/* paranoid check, some drivers might be buggy */
694 		if (unlikely((int)truesize < (int)skb->len))
695 			truesize = skb->truesize;
696 	}
697 	return truesize;
698 }
699 
700 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
701 			    bool adjust)
702 {
703 	struct tcp_sock *tp = tcp_sk(sk);
704 	int room;
705 
706 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
707 
708 	if (room <= 0)
709 		return;
710 
711 	/* Check #1 */
712 	if (!tcp_under_memory_pressure(sk)) {
713 		unsigned int truesize = truesize_adjust(adjust, skb);
714 		int incr;
715 
716 		/* Check #2. Increase window, if skb with such overhead
717 		 * will fit to rcvbuf in future.
718 		 */
719 		if (tcp_win_from_space(sk, truesize) <= skb->len)
720 			incr = 2 * tp->advmss;
721 		else
722 			incr = __tcp_grow_window(sk, skb, truesize);
723 
724 		if (incr) {
725 			incr = max_t(int, incr, 2 * skb->len);
726 			tp->rcv_ssthresh += min(room, incr);
727 			inet_csk(sk)->icsk_ack.quick |= 1;
728 		}
729 	} else {
730 		/* Under pressure:
731 		 * Adjust rcv_ssthresh according to reserved mem
732 		 */
733 		tcp_adjust_rcv_ssthresh(sk);
734 	}
735 }
736 
737 /* 3. Try to fixup all. It is made immediately after connection enters
738  *    established state.
739  */
740 static void tcp_init_buffer_space(struct sock *sk)
741 {
742 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
743 	struct tcp_sock *tp = tcp_sk(sk);
744 	int maxwin;
745 
746 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
747 		tcp_sndbuf_expand(sk);
748 
749 	tcp_mstamp_refresh(tp);
750 	tp->rcvq_space.time = tp->tcp_mstamp;
751 	tp->rcvq_space.seq = tp->copied_seq;
752 
753 	maxwin = tcp_full_space(sk);
754 
755 	if (tp->window_clamp >= maxwin) {
756 		WRITE_ONCE(tp->window_clamp, maxwin);
757 
758 		if (tcp_app_win && maxwin > 4 * tp->advmss)
759 			WRITE_ONCE(tp->window_clamp,
760 				   max(maxwin - (maxwin >> tcp_app_win),
761 				       4 * tp->advmss));
762 	}
763 
764 	/* Force reservation of one segment. */
765 	if (tcp_app_win &&
766 	    tp->window_clamp > 2 * tp->advmss &&
767 	    tp->window_clamp + tp->advmss > maxwin)
768 		WRITE_ONCE(tp->window_clamp,
769 			   max(2 * tp->advmss, maxwin - tp->advmss));
770 
771 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
772 	tp->snd_cwnd_stamp = tcp_jiffies32;
773 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
774 				    (u32)TCP_INIT_CWND * tp->advmss);
775 }
776 
777 /* 4. Recalculate window clamp after socket hit its memory bounds. */
778 static void tcp_clamp_window(struct sock *sk)
779 {
780 	struct tcp_sock *tp = tcp_sk(sk);
781 	struct inet_connection_sock *icsk = inet_csk(sk);
782 	struct net *net = sock_net(sk);
783 	int rmem2;
784 
785 	icsk->icsk_ack.quick = 0;
786 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
787 
788 	if (sk->sk_rcvbuf < rmem2 &&
789 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
790 	    !tcp_under_memory_pressure(sk) &&
791 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
792 		WRITE_ONCE(sk->sk_rcvbuf,
793 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
794 	}
795 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
796 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
797 }
798 
799 /* Initialize RCV_MSS value.
800  * RCV_MSS is an our guess about MSS used by the peer.
801  * We haven't any direct information about the MSS.
802  * It's better to underestimate the RCV_MSS rather than overestimate.
803  * Overestimations make us ACKing less frequently than needed.
804  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
805  */
806 void tcp_initialize_rcv_mss(struct sock *sk)
807 {
808 	const struct tcp_sock *tp = tcp_sk(sk);
809 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
810 
811 	hint = min(hint, tp->rcv_wnd / 2);
812 	hint = min(hint, TCP_MSS_DEFAULT);
813 	hint = max(hint, TCP_MIN_MSS);
814 
815 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
816 }
817 EXPORT_IPV6_MOD(tcp_initialize_rcv_mss);
818 
819 /* Receiver "autotuning" code.
820  *
821  * The algorithm for RTT estimation w/o timestamps is based on
822  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
823  * <https://public.lanl.gov/radiant/pubs.html#DRS>
824  *
825  * More detail on this code can be found at
826  * <http://staff.psc.edu/jheffner/>,
827  * though this reference is out of date.  A new paper
828  * is pending.
829  */
830 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
831 {
832 	u32 new_sample, old_sample = tp->rcv_rtt_est.rtt_us;
833 	long m = sample << 3;
834 
835 	if (old_sample == 0 || m < old_sample) {
836 		new_sample = m;
837 	} else {
838 		/* If we sample in larger samples in the non-timestamp
839 		 * case, we could grossly overestimate the RTT especially
840 		 * with chatty applications or bulk transfer apps which
841 		 * are stalled on filesystem I/O.
842 		 *
843 		 * Also, since we are only going for a minimum in the
844 		 * non-timestamp case, we do not smooth things out
845 		 * else with timestamps disabled convergence takes too
846 		 * long.
847 		 */
848 		if (win_dep)
849 			return;
850 		/* Do not use this sample if receive queue is not empty. */
851 		if (tp->rcv_nxt != tp->copied_seq)
852 			return;
853 		new_sample = old_sample - (old_sample >> 3) + sample;
854 	}
855 
856 	tp->rcv_rtt_est.rtt_us = new_sample;
857 }
858 
859 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
860 {
861 	u32 delta_us;
862 
863 	if (tp->rcv_rtt_est.time == 0)
864 		goto new_measure;
865 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
866 		return;
867 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
868 	if (!delta_us)
869 		delta_us = 1;
870 	tcp_rcv_rtt_update(tp, delta_us, 1);
871 
872 new_measure:
873 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
874 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
875 }
876 
877 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp, u32 min_delta)
878 {
879 	u32 delta, delta_us;
880 
881 	delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr;
882 	if (tp->tcp_usec_ts)
883 		return delta;
884 
885 	if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
886 		if (!delta)
887 			delta = min_delta;
888 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
889 		return delta_us;
890 	}
891 	return -1;
892 }
893 
894 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
895 					  const struct sk_buff *skb)
896 {
897 	struct tcp_sock *tp = tcp_sk(sk);
898 
899 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
900 		return;
901 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
902 
903 	if (TCP_SKB_CB(skb)->end_seq -
904 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
905 		s32 delta = tcp_rtt_tsopt_us(tp, 0);
906 
907 		if (delta > 0)
908 			tcp_rcv_rtt_update(tp, delta, 0);
909 	}
910 }
911 
912 void tcp_rcvbuf_grow(struct sock *sk, u32 newval)
913 {
914 	const struct net *net = sock_net(sk);
915 	struct tcp_sock *tp = tcp_sk(sk);
916 	u32 rcvwin, rcvbuf, cap, oldval;
917 	u32 rtt_threshold, rtt_us;
918 	u64 grow;
919 
920 	oldval = tp->rcvq_space.space;
921 	tp->rcvq_space.space = newval;
922 
923 	if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) ||
924 	    (sk->sk_userlocks & SOCK_RCVBUF_LOCK))
925 		return;
926 
927 	/* DRS is always one RTT late. */
928 	rcvwin = newval << 1;
929 
930 	rtt_us = tp->rcv_rtt_est.rtt_us >> 3;
931 	rtt_threshold = READ_ONCE(net->ipv4.sysctl_tcp_rcvbuf_low_rtt);
932 	if (rtt_us < rtt_threshold) {
933 		/* For small RTT, we set @grow to rcvwin * rtt_us/rtt_threshold.
934 		 * It might take few additional ms to reach 'line rate',
935 		 * but will avoid sk_rcvbuf inflation and poor cache use.
936 		 */
937 		grow = div_u64((u64)rcvwin * rtt_us, rtt_threshold);
938 	} else {
939 		/* slow start: allow the sender to double its rate. */
940 		grow = div_u64(((u64)rcvwin << 1) * (newval - oldval), oldval);
941 	}
942 	rcvwin += grow;
943 
944 	if (!RB_EMPTY_ROOT(&tp->out_of_order_queue))
945 		rcvwin += TCP_SKB_CB(tp->ooo_last_skb)->end_seq - tp->rcv_nxt;
946 
947 	cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
948 
949 	rcvbuf = min_t(u32, tcp_space_from_win(sk, rcvwin), cap);
950 	if (rcvbuf > sk->sk_rcvbuf) {
951 		WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
952 		/* Make the window clamp follow along.  */
953 		WRITE_ONCE(tp->window_clamp,
954 			   tcp_win_from_space(sk, rcvbuf));
955 	}
956 }
957 /*
958  * This function should be called every time data is copied to user space.
959  * It calculates the appropriate TCP receive buffer space.
960  */
961 void tcp_rcv_space_adjust(struct sock *sk)
962 {
963 	struct tcp_sock *tp = tcp_sk(sk);
964 	int time, inq, copied;
965 
966 	trace_tcp_rcv_space_adjust(sk);
967 
968 	if (unlikely(!tp->rcv_rtt_est.rtt_us))
969 		return;
970 
971 	/* We do not refresh tp->tcp_mstamp here.
972 	 * Some platforms have expensive ktime_get() implementations.
973 	 * Using the last cached value is enough for DRS.
974 	 */
975 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
976 	if (time < (tp->rcv_rtt_est.rtt_us >> 3))
977 		return;
978 
979 	/* Number of bytes copied to user in last RTT */
980 	copied = tp->copied_seq - tp->rcvq_space.seq;
981 	/* Number of bytes in receive queue. */
982 	inq = tp->rcv_nxt - tp->copied_seq;
983 	copied -= inq;
984 	if (copied <= tp->rcvq_space.space)
985 		goto new_measure;
986 
987 	trace_tcp_rcvbuf_grow(sk, time);
988 
989 	tcp_rcvbuf_grow(sk, copied);
990 
991 new_measure:
992 	tp->rcvq_space.seq = tp->copied_seq;
993 	tp->rcvq_space.time = tp->tcp_mstamp;
994 }
995 
996 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb)
997 {
998 #if IS_ENABLED(CONFIG_IPV6)
999 	struct inet_connection_sock *icsk = inet_csk(sk);
1000 
1001 	if (skb->protocol == htons(ETH_P_IPV6))
1002 		icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb)));
1003 #endif
1004 }
1005 
1006 /* There is something which you must keep in mind when you analyze the
1007  * behavior of the tp->ato delayed ack timeout interval.  When a
1008  * connection starts up, we want to ack as quickly as possible.  The
1009  * problem is that "good" TCP's do slow start at the beginning of data
1010  * transmission.  The means that until we send the first few ACK's the
1011  * sender will sit on his end and only queue most of his data, because
1012  * he can only send snd_cwnd unacked packets at any given time.  For
1013  * each ACK we send, he increments snd_cwnd and transmits more of his
1014  * queue.  -DaveM
1015  */
1016 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1017 {
1018 	struct tcp_sock *tp = tcp_sk(sk);
1019 	struct inet_connection_sock *icsk = inet_csk(sk);
1020 	u32 now;
1021 
1022 	inet_csk_schedule_ack(sk);
1023 
1024 	tcp_measure_rcv_mss(sk, skb);
1025 
1026 	tcp_rcv_rtt_measure(tp);
1027 
1028 	now = tcp_jiffies32;
1029 
1030 	if (!icsk->icsk_ack.ato) {
1031 		/* The _first_ data packet received, initialize
1032 		 * delayed ACK engine.
1033 		 */
1034 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
1035 		icsk->icsk_ack.ato = TCP_ATO_MIN;
1036 	} else {
1037 		int m = now - icsk->icsk_ack.lrcvtime;
1038 
1039 		if (m <= TCP_ATO_MIN / 2) {
1040 			/* The fastest case is the first. */
1041 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
1042 		} else if (m < icsk->icsk_ack.ato) {
1043 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
1044 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
1045 				icsk->icsk_ack.ato = icsk->icsk_rto;
1046 		} else if (m > icsk->icsk_rto) {
1047 			/* Too long gap. Apparently sender failed to
1048 			 * restart window, so that we send ACKs quickly.
1049 			 */
1050 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
1051 		}
1052 	}
1053 	icsk->icsk_ack.lrcvtime = now;
1054 	tcp_save_lrcv_flowlabel(sk, skb);
1055 
1056 	tcp_data_ecn_check(sk, skb);
1057 
1058 	if (skb->len >= 128)
1059 		tcp_grow_window(sk, skb, true);
1060 }
1061 
1062 /* Called to compute a smoothed rtt estimate. The data fed to this
1063  * routine either comes from timestamps, or from segments that were
1064  * known _not_ to have been retransmitted [see Karn/Partridge
1065  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
1066  * piece by Van Jacobson.
1067  * NOTE: the next three routines used to be one big routine.
1068  * To save cycles in the RFC 1323 implementation it was better to break
1069  * it up into three procedures. -- erics
1070  */
1071 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1072 {
1073 	struct tcp_sock *tp = tcp_sk(sk);
1074 	long m = mrtt_us; /* RTT */
1075 	u32 srtt = tp->srtt_us;
1076 
1077 	/*	The following amusing code comes from Jacobson's
1078 	 *	article in SIGCOMM '88.  Note that rtt and mdev
1079 	 *	are scaled versions of rtt and mean deviation.
1080 	 *	This is designed to be as fast as possible
1081 	 *	m stands for "measurement".
1082 	 *
1083 	 *	On a 1990 paper the rto value is changed to:
1084 	 *	RTO = rtt + 4 * mdev
1085 	 *
1086 	 * Funny. This algorithm seems to be very broken.
1087 	 * These formulae increase RTO, when it should be decreased, increase
1088 	 * too slowly, when it should be increased quickly, decrease too quickly
1089 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
1090 	 * does not matter how to _calculate_ it. Seems, it was trap
1091 	 * that VJ failed to avoid. 8)
1092 	 */
1093 	if (srtt != 0) {
1094 		m -= (srtt >> 3);	/* m is now error in rtt est */
1095 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
1096 		if (m < 0) {
1097 			m = -m;		/* m is now abs(error) */
1098 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
1099 			/* This is similar to one of Eifel findings.
1100 			 * Eifel blocks mdev updates when rtt decreases.
1101 			 * This solution is a bit different: we use finer gain
1102 			 * for mdev in this case (alpha*beta).
1103 			 * Like Eifel it also prevents growth of rto,
1104 			 * but also it limits too fast rto decreases,
1105 			 * happening in pure Eifel.
1106 			 */
1107 			if (m > 0)
1108 				m >>= 3;
1109 		} else {
1110 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
1111 		}
1112 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
1113 		if (tp->mdev_us > tp->mdev_max_us) {
1114 			tp->mdev_max_us = tp->mdev_us;
1115 			if (tp->mdev_max_us > tp->rttvar_us)
1116 				tp->rttvar_us = tp->mdev_max_us;
1117 		}
1118 		if (after(tp->snd_una, tp->rtt_seq)) {
1119 			if (tp->mdev_max_us < tp->rttvar_us)
1120 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1121 			tp->rtt_seq = tp->snd_nxt;
1122 			tp->mdev_max_us = tcp_rto_min_us(sk);
1123 
1124 			tcp_bpf_rtt(sk, mrtt_us, srtt);
1125 		}
1126 	} else {
1127 		/* no previous measure. */
1128 		srtt = m << 3;		/* take the measured time to be rtt */
1129 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
1130 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
1131 		tp->mdev_max_us = tp->rttvar_us;
1132 		tp->rtt_seq = tp->snd_nxt;
1133 
1134 		tcp_bpf_rtt(sk, mrtt_us, srtt);
1135 	}
1136 	tp->srtt_us = max(1U, srtt);
1137 }
1138 
1139 void tcp_update_pacing_rate(struct sock *sk)
1140 {
1141 	const struct tcp_sock *tp = tcp_sk(sk);
1142 	u64 rate;
1143 
1144 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
1145 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
1146 
1147 	/* current rate is (cwnd * mss) / srtt
1148 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
1149 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
1150 	 *
1151 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
1152 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
1153 	 *	 end of slow start and should slow down.
1154 	 */
1155 	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
1156 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
1157 	else
1158 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
1159 
1160 	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
1161 
1162 	if (likely(tp->srtt_us))
1163 		do_div(rate, tp->srtt_us);
1164 
1165 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
1166 	 * without any lock. We want to make sure compiler wont store
1167 	 * intermediate values in this location.
1168 	 */
1169 	WRITE_ONCE(sk->sk_pacing_rate,
1170 		   min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate)));
1171 }
1172 
1173 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
1174  * routine referred to above.
1175  */
1176 void tcp_set_rto(struct sock *sk)
1177 {
1178 	const struct tcp_sock *tp = tcp_sk(sk);
1179 	/* Old crap is replaced with new one. 8)
1180 	 *
1181 	 * More seriously:
1182 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
1183 	 *    It cannot be less due to utterly erratic ACK generation made
1184 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
1185 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
1186 	 *    is invisible. Actually, Linux-2.4 also generates erratic
1187 	 *    ACKs in some circumstances.
1188 	 */
1189 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1190 
1191 	/* 2. Fixups made earlier cannot be right.
1192 	 *    If we do not estimate RTO correctly without them,
1193 	 *    all the algo is pure shit and should be replaced
1194 	 *    with correct one. It is exactly, which we pretend to do.
1195 	 */
1196 
1197 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
1198 	 * guarantees that rto is higher.
1199 	 */
1200 	tcp_bound_rto(sk);
1201 }
1202 
1203 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1204 {
1205 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
1206 
1207 	if (!cwnd)
1208 		cwnd = TCP_INIT_CWND;
1209 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1210 }
1211 
1212 struct tcp_sacktag_state {
1213 	/* Timestamps for earliest and latest never-retransmitted segment
1214 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1215 	 * but congestion control should still get an accurate delay signal.
1216 	 */
1217 	u64	first_sackt;
1218 	u64	last_sackt;
1219 	u32	reord;
1220 	u32	sack_delivered;
1221 	u32	delivered_bytes;
1222 	int	flag;
1223 	unsigned int mss_now;
1224 	struct rate_sample *rate;
1225 };
1226 
1227 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1228  * and spurious retransmission information if this DSACK is unlikely caused by
1229  * sender's action:
1230  * - DSACKed sequence range is larger than maximum receiver's window.
1231  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1232  */
1233 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1234 			  u32 end_seq, struct tcp_sacktag_state *state)
1235 {
1236 	u32 seq_len, dup_segs = 1;
1237 
1238 	if (!before(start_seq, end_seq))
1239 		return 0;
1240 
1241 	seq_len = end_seq - start_seq;
1242 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1243 	if (seq_len > tp->max_window)
1244 		return 0;
1245 	if (seq_len > tp->mss_cache)
1246 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1247 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1248 		state->flag |= FLAG_DSACK_TLP;
1249 
1250 	tp->dsack_dups += dup_segs;
1251 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1252 	if (tp->dsack_dups > tp->total_retrans)
1253 		return 0;
1254 
1255 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1256 	/* We increase the RACK ordering window in rounds where we receive
1257 	 * DSACKs that may have been due to reordering causing RACK to trigger
1258 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1259 	 * without having seen reordering, or that match TLP probes (TLP
1260 	 * is timer-driven, not triggered by RACK).
1261 	 */
1262 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1263 		tp->rack.dsack_seen = 1;
1264 
1265 	state->flag |= FLAG_DSACKING_ACK;
1266 	/* A spurious retransmission is delivered */
1267 	state->sack_delivered += dup_segs;
1268 
1269 	return dup_segs;
1270 }
1271 
1272 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1273  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1274  * distance is approximated in full-mss packet distance ("reordering").
1275  */
1276 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1277 				      const int ts)
1278 {
1279 	struct tcp_sock *tp = tcp_sk(sk);
1280 	const u32 mss = tp->mss_cache;
1281 	u32 fack, metric;
1282 
1283 	fack = tcp_highest_sack_seq(tp);
1284 	if (!before(low_seq, fack))
1285 		return;
1286 
1287 	metric = fack - low_seq;
1288 	if ((metric > tp->reordering * mss) && mss) {
1289 #if FASTRETRANS_DEBUG > 1
1290 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1291 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1292 			 tp->reordering,
1293 			 0,
1294 			 tp->sacked_out,
1295 			 tp->undo_marker ? tp->undo_retrans : 0);
1296 #endif
1297 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1298 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1299 	}
1300 
1301 	/* This exciting event is worth to be remembered. 8) */
1302 	tp->reord_seen++;
1303 	NET_INC_STATS(sock_net(sk),
1304 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1305 }
1306 
1307  /* This must be called before lost_out or retrans_out are updated
1308   * on a new loss, because we want to know if all skbs previously
1309   * known to be lost have already been retransmitted, indicating
1310   * that this newly lost skb is our next skb to retransmit.
1311   */
1312 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1313 {
1314 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1315 	    (tp->retransmit_skb_hint &&
1316 	     before(TCP_SKB_CB(skb)->seq,
1317 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1318 		tp->retransmit_skb_hint = skb;
1319 }
1320 
1321 /* Sum the number of packets on the wire we have marked as lost, and
1322  * notify the congestion control module that the given skb was marked lost.
1323  */
1324 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1325 {
1326 	tp->lost += tcp_skb_pcount(skb);
1327 }
1328 
1329 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1330 {
1331 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1332 	struct tcp_sock *tp = tcp_sk(sk);
1333 
1334 	if (sacked & TCPCB_SACKED_ACKED)
1335 		return;
1336 
1337 	tcp_verify_retransmit_hint(tp, skb);
1338 	if (sacked & TCPCB_LOST) {
1339 		if (sacked & TCPCB_SACKED_RETRANS) {
1340 			/* Account for retransmits that are lost again */
1341 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1342 			tp->retrans_out -= tcp_skb_pcount(skb);
1343 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1344 				      tcp_skb_pcount(skb));
1345 			tcp_notify_skb_loss_event(tp, skb);
1346 		}
1347 	} else {
1348 		tp->lost_out += tcp_skb_pcount(skb);
1349 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1350 		tcp_notify_skb_loss_event(tp, skb);
1351 	}
1352 }
1353 
1354 /* This procedure tags the retransmission queue when SACKs arrive.
1355  *
1356  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1357  * Packets in queue with these bits set are counted in variables
1358  * sacked_out, retrans_out and lost_out, correspondingly.
1359  *
1360  * Valid combinations are:
1361  * Tag  InFlight	Description
1362  * 0	1		- orig segment is in flight.
1363  * S	0		- nothing flies, orig reached receiver.
1364  * L	0		- nothing flies, orig lost by net.
1365  * R	2		- both orig and retransmit are in flight.
1366  * L|R	1		- orig is lost, retransmit is in flight.
1367  * S|R  1		- orig reached receiver, retrans is still in flight.
1368  * (L|S|R is logically valid, it could occur when L|R is sacked,
1369  *  but it is equivalent to plain S and code short-circuits it to S.
1370  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1371  *
1372  * These 6 states form finite state machine, controlled by the following events:
1373  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1374  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1375  * 3. Loss detection event of two flavors:
1376  *	A. Scoreboard estimator decided the packet is lost.
1377  *	   A'. Reno "three dupacks" marks head of queue lost.
1378  *	B. SACK arrives sacking SND.NXT at the moment, when the
1379  *	   segment was retransmitted.
1380  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1381  *
1382  * It is pleasant to note, that state diagram turns out to be commutative,
1383  * so that we are allowed not to be bothered by order of our actions,
1384  * when multiple events arrive simultaneously. (see the function below).
1385  *
1386  * Reordering detection.
1387  * --------------------
1388  * Reordering metric is maximal distance, which a packet can be displaced
1389  * in packet stream. With SACKs we can estimate it:
1390  *
1391  * 1. SACK fills old hole and the corresponding segment was not
1392  *    ever retransmitted -> reordering. Alas, we cannot use it
1393  *    when segment was retransmitted.
1394  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1395  *    for retransmitted and already SACKed segment -> reordering..
1396  * Both of these heuristics are not used in Loss state, when we cannot
1397  * account for retransmits accurately.
1398  *
1399  * SACK block validation.
1400  * ----------------------
1401  *
1402  * SACK block range validation checks that the received SACK block fits to
1403  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1404  * Note that SND.UNA is not included to the range though being valid because
1405  * it means that the receiver is rather inconsistent with itself reporting
1406  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1407  * perfectly valid, however, in light of RFC2018 which explicitly states
1408  * that "SACK block MUST reflect the newest segment.  Even if the newest
1409  * segment is going to be discarded ...", not that it looks very clever
1410  * in case of head skb. Due to potentional receiver driven attacks, we
1411  * choose to avoid immediate execution of a walk in write queue due to
1412  * reneging and defer head skb's loss recovery to standard loss recovery
1413  * procedure that will eventually trigger (nothing forbids us doing this).
1414  *
1415  * Implements also blockage to start_seq wrap-around. Problem lies in the
1416  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1417  * there's no guarantee that it will be before snd_nxt (n). The problem
1418  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1419  * wrap (s_w):
1420  *
1421  *         <- outs wnd ->                          <- wrapzone ->
1422  *         u     e      n                         u_w   e_w  s n_w
1423  *         |     |      |                          |     |   |  |
1424  * |<------------+------+----- TCP seqno space --------------+---------->|
1425  * ...-- <2^31 ->|                                           |<--------...
1426  * ...---- >2^31 ------>|                                    |<--------...
1427  *
1428  * Current code wouldn't be vulnerable but it's better still to discard such
1429  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1430  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1431  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1432  * equal to the ideal case (infinite seqno space without wrap caused issues).
1433  *
1434  * With D-SACK the lower bound is extended to cover sequence space below
1435  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1436  * again, D-SACK block must not to go across snd_una (for the same reason as
1437  * for the normal SACK blocks, explained above). But there all simplicity
1438  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1439  * fully below undo_marker they do not affect behavior in anyway and can
1440  * therefore be safely ignored. In rare cases (which are more or less
1441  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1442  * fragmentation and packet reordering past skb's retransmission. To consider
1443  * them correctly, the acceptable range must be extended even more though
1444  * the exact amount is rather hard to quantify. However, tp->max_window can
1445  * be used as an exaggerated estimate.
1446  */
1447 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1448 				   u32 start_seq, u32 end_seq)
1449 {
1450 	/* Too far in future, or reversed (interpretation is ambiguous) */
1451 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1452 		return false;
1453 
1454 	/* Nasty start_seq wrap-around check (see comments above) */
1455 	if (!before(start_seq, tp->snd_nxt))
1456 		return false;
1457 
1458 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1459 	 * start_seq == snd_una is non-sensical (see comments above)
1460 	 */
1461 	if (after(start_seq, tp->snd_una))
1462 		return true;
1463 
1464 	if (!is_dsack || !tp->undo_marker)
1465 		return false;
1466 
1467 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1468 	if (after(end_seq, tp->snd_una))
1469 		return false;
1470 
1471 	if (!before(start_seq, tp->undo_marker))
1472 		return true;
1473 
1474 	/* Too old */
1475 	if (!after(end_seq, tp->undo_marker))
1476 		return false;
1477 
1478 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1479 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1480 	 */
1481 	return !before(start_seq, end_seq - tp->max_window);
1482 }
1483 
1484 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1485 			    struct tcp_sack_block_wire *sp, int num_sacks,
1486 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1487 {
1488 	struct tcp_sock *tp = tcp_sk(sk);
1489 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1490 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1491 	u32 dup_segs;
1492 
1493 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1494 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1495 	} else if (num_sacks > 1) {
1496 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1497 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1498 
1499 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1500 			return false;
1501 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1502 	} else {
1503 		return false;
1504 	}
1505 
1506 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1507 	if (!dup_segs) {	/* Skip dubious DSACK */
1508 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1509 		return false;
1510 	}
1511 
1512 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1513 
1514 	/* D-SACK for already forgotten data... Do dumb counting. */
1515 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1516 	    !after(end_seq_0, prior_snd_una) &&
1517 	    after(end_seq_0, tp->undo_marker))
1518 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1519 
1520 	return true;
1521 }
1522 
1523 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1524  * the incoming SACK may not exactly match but we can find smaller MSS
1525  * aligned portion of it that matches. Therefore we might need to fragment
1526  * which may fail and creates some hassle (caller must handle error case
1527  * returns).
1528  *
1529  * FIXME: this could be merged to shift decision code
1530  */
1531 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1532 				  u32 start_seq, u32 end_seq)
1533 {
1534 	int err;
1535 	bool in_sack;
1536 	unsigned int pkt_len;
1537 	unsigned int mss;
1538 
1539 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1540 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1541 
1542 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1543 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1544 		mss = tcp_skb_mss(skb);
1545 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1546 
1547 		if (!in_sack) {
1548 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1549 			if (pkt_len < mss)
1550 				pkt_len = mss;
1551 		} else {
1552 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1553 			if (pkt_len < mss)
1554 				return -EINVAL;
1555 		}
1556 
1557 		/* Round if necessary so that SACKs cover only full MSSes
1558 		 * and/or the remaining small portion (if present)
1559 		 */
1560 		if (pkt_len > mss) {
1561 			unsigned int new_len = (pkt_len / mss) * mss;
1562 			if (!in_sack && new_len < pkt_len)
1563 				new_len += mss;
1564 			pkt_len = new_len;
1565 		}
1566 
1567 		if (pkt_len >= skb->len && !in_sack)
1568 			return 0;
1569 
1570 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1571 				   pkt_len, mss, GFP_ATOMIC);
1572 		if (err < 0)
1573 			return err;
1574 	}
1575 
1576 	return in_sack;
1577 }
1578 
1579 /* Record the most recently (re)sent time among the (s)acked packets
1580  * This is "Step 3: Advance RACK.xmit_time and update RACK.RTT" from
1581  * draft-cheng-tcpm-rack-00.txt
1582  */
1583 static void tcp_rack_advance(struct tcp_sock *tp, u8 sacked,
1584 			     u32 end_seq, u64 xmit_time)
1585 {
1586 	u32 rtt_us;
1587 
1588 	rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, xmit_time);
1589 	if (rtt_us < tcp_min_rtt(tp) && (sacked & TCPCB_RETRANS)) {
1590 		/* If the sacked packet was retransmitted, it's ambiguous
1591 		 * whether the retransmission or the original (or the prior
1592 		 * retransmission) was sacked.
1593 		 *
1594 		 * If the original is lost, there is no ambiguity. Otherwise
1595 		 * we assume the original can be delayed up to aRTT + min_rtt.
1596 		 * the aRTT term is bounded by the fast recovery or timeout,
1597 		 * so it's at least one RTT (i.e., retransmission is at least
1598 		 * an RTT later).
1599 		 */
1600 		return;
1601 	}
1602 	tp->rack.advanced = 1;
1603 	tp->rack.rtt_us = rtt_us;
1604 	if (tcp_skb_sent_after(xmit_time, tp->rack.mstamp,
1605 			       end_seq, tp->rack.end_seq)) {
1606 		tp->rack.mstamp = xmit_time;
1607 		tp->rack.end_seq = end_seq;
1608 	}
1609 }
1610 
1611 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1612 static u8 tcp_sacktag_one(struct sock *sk,
1613 			  struct tcp_sacktag_state *state, u8 sacked,
1614 			  u32 start_seq, u32 end_seq,
1615 			  int dup_sack, int pcount, u32 plen,
1616 			  u64 xmit_time)
1617 {
1618 	struct tcp_sock *tp = tcp_sk(sk);
1619 
1620 	/* Account D-SACK for retransmitted packet. */
1621 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1622 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1623 		    after(end_seq, tp->undo_marker))
1624 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1625 		if ((sacked & TCPCB_SACKED_ACKED) &&
1626 		    before(start_seq, state->reord))
1627 				state->reord = start_seq;
1628 	}
1629 
1630 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1631 	if (!after(end_seq, tp->snd_una))
1632 		return sacked;
1633 
1634 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1635 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1636 
1637 		if (sacked & TCPCB_SACKED_RETRANS) {
1638 			/* If the segment is not tagged as lost,
1639 			 * we do not clear RETRANS, believing
1640 			 * that retransmission is still in flight.
1641 			 */
1642 			if (sacked & TCPCB_LOST) {
1643 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1644 				tp->lost_out -= pcount;
1645 				tp->retrans_out -= pcount;
1646 			}
1647 		} else {
1648 			if (!(sacked & TCPCB_RETRANS)) {
1649 				/* New sack for not retransmitted frame,
1650 				 * which was in hole. It is reordering.
1651 				 */
1652 				if (before(start_seq,
1653 					   tcp_highest_sack_seq(tp)) &&
1654 				    before(start_seq, state->reord))
1655 					state->reord = start_seq;
1656 
1657 				if (!after(end_seq, tp->high_seq))
1658 					state->flag |= FLAG_ORIG_SACK_ACKED;
1659 				if (state->first_sackt == 0)
1660 					state->first_sackt = xmit_time;
1661 				state->last_sackt = xmit_time;
1662 			}
1663 
1664 			if (sacked & TCPCB_LOST) {
1665 				sacked &= ~TCPCB_LOST;
1666 				tp->lost_out -= pcount;
1667 			}
1668 		}
1669 
1670 		sacked |= TCPCB_SACKED_ACKED;
1671 		state->flag |= FLAG_DATA_SACKED;
1672 		tp->sacked_out += pcount;
1673 		/* Out-of-order packets delivered */
1674 		state->sack_delivered += pcount;
1675 		state->delivered_bytes += plen;
1676 	}
1677 
1678 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1679 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1680 	 * are accounted above as well.
1681 	 */
1682 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1683 		sacked &= ~TCPCB_SACKED_RETRANS;
1684 		tp->retrans_out -= pcount;
1685 	}
1686 
1687 	return sacked;
1688 }
1689 
1690 /* The bandwidth estimator estimates the rate at which the network
1691  * can currently deliver outbound data packets for this flow. At a high
1692  * level, it operates by taking a delivery rate sample for each ACK.
1693  *
1694  * A rate sample records the rate at which the network delivered packets
1695  * for this flow, calculated over the time interval between the transmission
1696  * of a data packet and the acknowledgment of that packet.
1697  *
1698  * Specifically, over the interval between each transmit and corresponding ACK,
1699  * the estimator generates a delivery rate sample. Typically it uses the rate
1700  * at which packets were acknowledged. However, the approach of using only the
1701  * acknowledgment rate faces a challenge under the prevalent ACK decimation or
1702  * compression: packets can temporarily appear to be delivered much quicker
1703  * than the bottleneck rate. Since it is physically impossible to do that in a
1704  * sustained fashion, when the estimator notices that the ACK rate is faster
1705  * than the transmit rate, it uses the latter:
1706  *
1707  *    send_rate = #pkts_delivered/(last_snd_time - first_snd_time)
1708  *    ack_rate  = #pkts_delivered/(last_ack_time - first_ack_time)
1709  *    bw = min(send_rate, ack_rate)
1710  *
1711  * Notice the estimator essentially estimates the goodput, not always the
1712  * network bottleneck link rate when the sending or receiving is limited by
1713  * other factors like applications or receiver window limits.  The estimator
1714  * deliberately avoids using the inter-packet spacing approach because that
1715  * approach requires a large number of samples and sophisticated filtering.
1716  *
1717  * TCP flows can often be application-limited in request/response workloads.
1718  * The estimator marks a bandwidth sample as application-limited if there
1719  * was some moment during the sampled window of packets when there was no data
1720  * ready to send in the write queue.
1721  */
1722 
1723 /* Update the connection delivery information and generate a rate sample. */
1724 static void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1725 			 bool is_sack_reneg, struct rate_sample *rs)
1726 {
1727 	struct tcp_sock *tp = tcp_sk(sk);
1728 	u32 snd_us, ack_us;
1729 
1730 	/* Clear app limited if bubble is acked and gone. */
1731 	if (tp->app_limited && after(tp->delivered, tp->app_limited))
1732 		tp->app_limited = 0;
1733 
1734 	/* TODO: there are multiple places throughout tcp_ack() to get
1735 	 * current time. Refactor the code using a new "tcp_acktag_state"
1736 	 * to carry current time, flags, stats like "tcp_sacktag_state".
1737 	 */
1738 	if (delivered)
1739 		tp->delivered_mstamp = tp->tcp_mstamp;
1740 
1741 	rs->acked_sacked = delivered;	/* freshly ACKed or SACKed */
1742 	rs->losses = lost;		/* freshly marked lost */
1743 	/* Return an invalid sample if no timing information is available or
1744 	 * in recovery from loss with SACK reneging. Rate samples taken during
1745 	 * a SACK reneging event may overestimate bw by including packets that
1746 	 * were SACKed before the reneg.
1747 	 */
1748 	if (!rs->prior_mstamp || is_sack_reneg) {
1749 		rs->delivered = -1;
1750 		rs->interval_us = -1;
1751 		return;
1752 	}
1753 	rs->delivered   = tp->delivered - rs->prior_delivered;
1754 
1755 	rs->delivered_ce = tp->delivered_ce - rs->prior_delivered_ce;
1756 	/* delivered_ce occupies less than 32 bits in the skb control block */
1757 	rs->delivered_ce &= TCPCB_DELIVERED_CE_MASK;
1758 
1759 	/* Model sending data and receiving ACKs as separate pipeline phases
1760 	 * for a window. Usually the ACK phase is longer, but with ACK
1761 	 * compression the send phase can be longer. To be safe we use the
1762 	 * longer phase.
1763 	 */
1764 	snd_us = rs->interval_us;				/* send phase */
1765 	ack_us = tcp_stamp_us_delta(tp->tcp_mstamp,
1766 				    rs->prior_mstamp); /* ack phase */
1767 	rs->interval_us = max(snd_us, ack_us);
1768 
1769 	/* Record both segment send and ack receive intervals */
1770 	rs->snd_interval_us = snd_us;
1771 	rs->rcv_interval_us = ack_us;
1772 
1773 	/* Normally we expect interval_us >= min-rtt.
1774 	 * Note that rate may still be over-estimated when a spuriously
1775 	 * retransmistted skb was first (s)acked because "interval_us"
1776 	 * is under-estimated (up to an RTT). However continuously
1777 	 * measuring the delivery rate during loss recovery is crucial
1778 	 * for connections suffer heavy or prolonged losses.
1779 	 */
1780 	if (unlikely(rs->interval_us < tcp_min_rtt(tp))) {
1781 		if (!rs->is_retrans)
1782 			pr_debug("tcp rate: %ld %d %u %u %u\n",
1783 				 rs->interval_us, rs->delivered,
1784 				 inet_csk(sk)->icsk_ca_state,
1785 				 tp->rx_opt.sack_ok, tcp_min_rtt(tp));
1786 		rs->interval_us = -1;
1787 		return;
1788 	}
1789 
1790 	/* Record the last non-app-limited or the highest app-limited bw */
1791 	if (!rs->is_app_limited ||
1792 	    ((u64)rs->delivered * tp->rate_interval_us >=
1793 	     (u64)tp->rate_delivered * rs->interval_us)) {
1794 		tp->rate_delivered = rs->delivered;
1795 		tp->rate_interval_us = rs->interval_us;
1796 		tp->rate_app_limited = rs->is_app_limited;
1797 	}
1798 }
1799 
1800 /* When an skb is sacked or acked, we fill in the rate sample with the (prior)
1801  * delivery information when the skb was last transmitted.
1802  *
1803  * If an ACK (s)acks multiple skbs (e.g., stretched-acks), this function is
1804  * called multiple times. We favor the information from the most recently
1805  * sent skb, i.e., the skb with the most recently sent time and the highest
1806  * sequence.
1807  */
1808 static void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1809 				   struct rate_sample *rs)
1810 {
1811 	struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
1812 	struct tcp_sock *tp = tcp_sk(sk);
1813 	u64 tx_tstamp;
1814 
1815 	if (!scb->tx.delivered_mstamp)
1816 		return;
1817 
1818 	tx_tstamp = tcp_skb_timestamp_us(skb);
1819 	if (!rs->prior_delivered ||
1820 	    tcp_skb_sent_after(tx_tstamp, tp->first_tx_mstamp,
1821 			       scb->end_seq, rs->last_end_seq)) {
1822 		rs->prior_delivered_ce  = scb->tx.delivered_ce;
1823 		rs->prior_delivered  = scb->tx.delivered;
1824 		rs->prior_mstamp     = scb->tx.delivered_mstamp;
1825 		rs->is_app_limited   = scb->tx.is_app_limited;
1826 		rs->is_retrans	     = scb->sacked & TCPCB_RETRANS;
1827 		rs->last_end_seq     = scb->end_seq;
1828 
1829 		/* Record send time of most recently ACKed packet: */
1830 		tp->first_tx_mstamp  = tx_tstamp;
1831 		/* Find the duration of the "send phase" of this window: */
1832 		rs->interval_us = tcp_stamp_us_delta(tp->first_tx_mstamp,
1833 						     scb->tx.first_tx_mstamp);
1834 
1835 	}
1836 	/* Mark off the skb delivered once it's sacked to avoid being
1837 	 * used again when it's cumulatively acked. For acked packets
1838 	 * we don't need to reset since it'll be freed soon.
1839 	 */
1840 	if (scb->sacked & TCPCB_SACKED_ACKED)
1841 		scb->tx.delivered_mstamp = 0;
1842 }
1843 
1844 /* Shift newly-SACKed bytes from this skb to the immediately previous
1845  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1846  */
1847 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1848 			    struct sk_buff *skb,
1849 			    struct tcp_sacktag_state *state,
1850 			    unsigned int pcount, int shifted, int mss,
1851 			    bool dup_sack)
1852 {
1853 	struct tcp_sock *tp = tcp_sk(sk);
1854 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1855 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1856 
1857 	BUG_ON(!pcount);
1858 
1859 	/* Adjust counters and hints for the newly sacked sequence
1860 	 * range but discard the return value since prev is already
1861 	 * marked. We must tag the range first because the seq
1862 	 * advancement below implicitly advances
1863 	 * tcp_highest_sack_seq() when skb is highest_sack.
1864 	 */
1865 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1866 			start_seq, end_seq, dup_sack, pcount, skb->len,
1867 			tcp_skb_timestamp_us(skb));
1868 	tcp_rate_skb_delivered(sk, skb, state->rate);
1869 
1870 	TCP_SKB_CB(prev)->end_seq += shifted;
1871 	TCP_SKB_CB(skb)->seq += shifted;
1872 
1873 	tcp_skb_pcount_add(prev, pcount);
1874 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1875 	tcp_skb_pcount_add(skb, -pcount);
1876 
1877 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1878 	 * in theory this shouldn't be necessary but as long as DSACK
1879 	 * code can come after this skb later on it's better to keep
1880 	 * setting gso_size to something.
1881 	 */
1882 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1883 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1884 
1885 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1886 	if (tcp_skb_pcount(skb) <= 1)
1887 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1888 
1889 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1890 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1891 
1892 	if (skb->len > 0) {
1893 		BUG_ON(!tcp_skb_pcount(skb));
1894 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1895 		return false;
1896 	}
1897 
1898 	/* Whole SKB was eaten :-) */
1899 
1900 	if (skb == tp->retransmit_skb_hint)
1901 		tp->retransmit_skb_hint = prev;
1902 
1903 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1904 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1905 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1906 		TCP_SKB_CB(prev)->end_seq++;
1907 
1908 	if (skb == tcp_highest_sack(sk))
1909 		tcp_advance_highest_sack(sk, skb);
1910 
1911 	tcp_skb_collapse_tstamp(prev, skb);
1912 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1913 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1914 
1915 	tcp_rtx_queue_unlink_and_free(skb, sk);
1916 
1917 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1918 
1919 	return true;
1920 }
1921 
1922 /* I wish gso_size would have a bit more sane initialization than
1923  * something-or-zero which complicates things
1924  */
1925 static int tcp_skb_seglen(const struct sk_buff *skb)
1926 {
1927 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1928 }
1929 
1930 /* Shifting pages past head area doesn't work */
1931 static int skb_can_shift(const struct sk_buff *skb)
1932 {
1933 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1934 }
1935 
1936 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1937 		  int pcount, int shiftlen)
1938 {
1939 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1940 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1941 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1942 	 * even if current MSS is bigger.
1943 	 */
1944 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1945 		return 0;
1946 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1947 		return 0;
1948 	return skb_shift(to, from, shiftlen);
1949 }
1950 
1951 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1952  * skb.
1953  */
1954 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1955 					  struct tcp_sacktag_state *state,
1956 					  u32 start_seq, u32 end_seq,
1957 					  bool dup_sack)
1958 {
1959 	struct tcp_sock *tp = tcp_sk(sk);
1960 	struct sk_buff *prev;
1961 	int mss;
1962 	int pcount = 0;
1963 	int len;
1964 	int in_sack;
1965 
1966 	/* Normally R but no L won't result in plain S */
1967 	if (!dup_sack &&
1968 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1969 		goto fallback;
1970 	if (!skb_can_shift(skb))
1971 		goto fallback;
1972 	/* This frame is about to be dropped (was ACKed). */
1973 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1974 		goto fallback;
1975 
1976 	/* Can only happen with delayed DSACK + discard craziness */
1977 	prev = skb_rb_prev(skb);
1978 	if (!prev)
1979 		goto fallback;
1980 
1981 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1982 		goto fallback;
1983 
1984 	if (!tcp_skb_can_collapse(prev, skb))
1985 		goto fallback;
1986 
1987 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1988 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1989 
1990 	if (in_sack) {
1991 		len = skb->len;
1992 		pcount = tcp_skb_pcount(skb);
1993 		mss = tcp_skb_seglen(skb);
1994 
1995 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1996 		 * drop this restriction as unnecessary
1997 		 */
1998 		if (mss != tcp_skb_seglen(prev))
1999 			goto fallback;
2000 	} else {
2001 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
2002 			goto noop;
2003 		/* CHECKME: This is non-MSS split case only?, this will
2004 		 * cause skipped skbs due to advancing loop btw, original
2005 		 * has that feature too
2006 		 */
2007 		if (tcp_skb_pcount(skb) <= 1)
2008 			goto noop;
2009 
2010 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
2011 		if (!in_sack) {
2012 			/* TODO: head merge to next could be attempted here
2013 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
2014 			 * though it might not be worth of the additional hassle
2015 			 *
2016 			 * ...we can probably just fallback to what was done
2017 			 * previously. We could try merging non-SACKed ones
2018 			 * as well but it probably isn't going to buy off
2019 			 * because later SACKs might again split them, and
2020 			 * it would make skb timestamp tracking considerably
2021 			 * harder problem.
2022 			 */
2023 			goto fallback;
2024 		}
2025 
2026 		len = end_seq - TCP_SKB_CB(skb)->seq;
2027 		BUG_ON(len < 0);
2028 		BUG_ON(len > skb->len);
2029 
2030 		/* MSS boundaries should be honoured or else pcount will
2031 		 * severely break even though it makes things bit trickier.
2032 		 * Optimize common case to avoid most of the divides
2033 		 */
2034 		mss = tcp_skb_mss(skb);
2035 
2036 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
2037 		 * drop this restriction as unnecessary
2038 		 */
2039 		if (mss != tcp_skb_seglen(prev))
2040 			goto fallback;
2041 
2042 		if (len == mss) {
2043 			pcount = 1;
2044 		} else if (len < mss) {
2045 			goto noop;
2046 		} else {
2047 			pcount = len / mss;
2048 			len = pcount * mss;
2049 		}
2050 	}
2051 
2052 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
2053 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
2054 		goto fallback;
2055 
2056 	if (!tcp_skb_shift(prev, skb, pcount, len))
2057 		goto fallback;
2058 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
2059 		goto out;
2060 
2061 	/* Hole filled allows collapsing with the next as well, this is very
2062 	 * useful when hole on every nth skb pattern happens
2063 	 */
2064 	skb = skb_rb_next(prev);
2065 	if (!skb)
2066 		goto out;
2067 
2068 	if (!skb_can_shift(skb) ||
2069 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
2070 	    (mss != tcp_skb_seglen(skb)))
2071 		goto out;
2072 
2073 	if (!tcp_skb_can_collapse(prev, skb))
2074 		goto out;
2075 	len = skb->len;
2076 	pcount = tcp_skb_pcount(skb);
2077 	if (tcp_skb_shift(prev, skb, pcount, len))
2078 		tcp_shifted_skb(sk, prev, skb, state, pcount,
2079 				len, mss, 0);
2080 
2081 out:
2082 	return prev;
2083 
2084 noop:
2085 	return skb;
2086 
2087 fallback:
2088 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
2089 	return NULL;
2090 }
2091 
2092 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
2093 					struct tcp_sack_block *next_dup,
2094 					struct tcp_sacktag_state *state,
2095 					u32 start_seq, u32 end_seq,
2096 					bool dup_sack_in)
2097 {
2098 	struct tcp_sock *tp = tcp_sk(sk);
2099 	struct sk_buff *tmp;
2100 
2101 	skb_rbtree_walk_from(skb) {
2102 		int in_sack = 0;
2103 		bool dup_sack = dup_sack_in;
2104 
2105 		/* queue is in-order => we can short-circuit the walk early */
2106 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
2107 			break;
2108 
2109 		if (next_dup  &&
2110 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
2111 			in_sack = tcp_match_skb_to_sack(sk, skb,
2112 							next_dup->start_seq,
2113 							next_dup->end_seq);
2114 			if (in_sack > 0)
2115 				dup_sack = true;
2116 		}
2117 
2118 		/* skb reference here is a bit tricky to get right, since
2119 		 * shifting can eat and free both this skb and the next,
2120 		 * so not even _safe variant of the loop is enough.
2121 		 */
2122 		if (in_sack <= 0) {
2123 			tmp = tcp_shift_skb_data(sk, skb, state,
2124 						 start_seq, end_seq, dup_sack);
2125 			if (tmp) {
2126 				if (tmp != skb) {
2127 					skb = tmp;
2128 					continue;
2129 				}
2130 
2131 				in_sack = 0;
2132 			} else {
2133 				in_sack = tcp_match_skb_to_sack(sk, skb,
2134 								start_seq,
2135 								end_seq);
2136 			}
2137 		}
2138 
2139 		if (unlikely(in_sack < 0))
2140 			break;
2141 
2142 		if (in_sack) {
2143 			TCP_SKB_CB(skb)->sacked =
2144 				tcp_sacktag_one(sk,
2145 						state,
2146 						TCP_SKB_CB(skb)->sacked,
2147 						TCP_SKB_CB(skb)->seq,
2148 						TCP_SKB_CB(skb)->end_seq,
2149 						dup_sack,
2150 						tcp_skb_pcount(skb),
2151 						skb->len,
2152 						tcp_skb_timestamp_us(skb));
2153 			tcp_rate_skb_delivered(sk, skb, state->rate);
2154 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2155 				list_del_init(&skb->tcp_tsorted_anchor);
2156 
2157 			if (!before(TCP_SKB_CB(skb)->seq,
2158 				    tcp_highest_sack_seq(tp)))
2159 				tcp_advance_highest_sack(sk, skb);
2160 		}
2161 	}
2162 	return skb;
2163 }
2164 
2165 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
2166 {
2167 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
2168 	struct sk_buff *skb;
2169 
2170 	while (*p) {
2171 		parent = *p;
2172 		skb = rb_to_skb(parent);
2173 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
2174 			p = &parent->rb_left;
2175 			continue;
2176 		}
2177 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
2178 			p = &parent->rb_right;
2179 			continue;
2180 		}
2181 		return skb;
2182 	}
2183 	return NULL;
2184 }
2185 
2186 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
2187 					u32 skip_to_seq)
2188 {
2189 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
2190 		return skb;
2191 
2192 	return tcp_sacktag_bsearch(sk, skip_to_seq);
2193 }
2194 
2195 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
2196 						struct sock *sk,
2197 						struct tcp_sack_block *next_dup,
2198 						struct tcp_sacktag_state *state,
2199 						u32 skip_to_seq)
2200 {
2201 	if (!next_dup)
2202 		return skb;
2203 
2204 	if (before(next_dup->start_seq, skip_to_seq)) {
2205 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
2206 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
2207 				       next_dup->start_seq, next_dup->end_seq,
2208 				       1);
2209 	}
2210 
2211 	return skb;
2212 }
2213 
2214 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
2215 {
2216 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
2217 }
2218 
2219 static int
2220 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
2221 			u32 prior_snd_una, struct tcp_sacktag_state *state)
2222 {
2223 	struct tcp_sock *tp = tcp_sk(sk);
2224 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
2225 				    TCP_SKB_CB(ack_skb)->sacked);
2226 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
2227 	struct tcp_sack_block sp[TCP_NUM_SACKS];
2228 	struct tcp_sack_block *cache;
2229 	struct sk_buff *skb;
2230 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
2231 	int used_sacks;
2232 	bool found_dup_sack = false;
2233 	int i, j;
2234 	int first_sack_index;
2235 
2236 	state->flag = 0;
2237 	state->reord = tp->snd_nxt;
2238 
2239 	if (!tp->sacked_out)
2240 		tcp_highest_sack_reset(sk);
2241 
2242 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
2243 					 num_sacks, prior_snd_una, state);
2244 
2245 	/* Eliminate too old ACKs, but take into
2246 	 * account more or less fresh ones, they can
2247 	 * contain valid SACK info.
2248 	 */
2249 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
2250 		return 0;
2251 
2252 	if (!tp->packets_out)
2253 		goto out;
2254 
2255 	used_sacks = 0;
2256 	first_sack_index = 0;
2257 	for (i = 0; i < num_sacks; i++) {
2258 		bool dup_sack = !i && found_dup_sack;
2259 
2260 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
2261 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
2262 
2263 		if (!tcp_is_sackblock_valid(tp, dup_sack,
2264 					    sp[used_sacks].start_seq,
2265 					    sp[used_sacks].end_seq)) {
2266 			int mib_idx;
2267 
2268 			if (dup_sack) {
2269 				if (!tp->undo_marker)
2270 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
2271 				else
2272 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
2273 			} else {
2274 				/* Don't count olds caused by ACK reordering */
2275 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
2276 				    !after(sp[used_sacks].end_seq, tp->snd_una))
2277 					continue;
2278 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
2279 			}
2280 
2281 			NET_INC_STATS(sock_net(sk), mib_idx);
2282 			if (i == 0)
2283 				first_sack_index = -1;
2284 			continue;
2285 		}
2286 
2287 		/* Ignore very old stuff early */
2288 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
2289 			if (i == 0)
2290 				first_sack_index = -1;
2291 			continue;
2292 		}
2293 
2294 		used_sacks++;
2295 	}
2296 
2297 	/* order SACK blocks to allow in order walk of the retrans queue */
2298 	for (i = used_sacks - 1; i > 0; i--) {
2299 		for (j = 0; j < i; j++) {
2300 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
2301 				swap(sp[j], sp[j + 1]);
2302 
2303 				/* Track where the first SACK block goes to */
2304 				if (j == first_sack_index)
2305 					first_sack_index = j + 1;
2306 			}
2307 		}
2308 	}
2309 
2310 	state->mss_now = tcp_current_mss(sk);
2311 	skb = NULL;
2312 	i = 0;
2313 
2314 	if (!tp->sacked_out) {
2315 		/* It's already past, so skip checking against it */
2316 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
2317 	} else {
2318 		cache = tp->recv_sack_cache;
2319 		/* Skip empty blocks in at head of the cache */
2320 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
2321 		       !cache->end_seq)
2322 			cache++;
2323 	}
2324 
2325 	while (i < used_sacks) {
2326 		u32 start_seq = sp[i].start_seq;
2327 		u32 end_seq = sp[i].end_seq;
2328 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
2329 		struct tcp_sack_block *next_dup = NULL;
2330 
2331 		if (found_dup_sack && ((i + 1) == first_sack_index))
2332 			next_dup = &sp[i + 1];
2333 
2334 		/* Skip too early cached blocks */
2335 		while (tcp_sack_cache_ok(tp, cache) &&
2336 		       !before(start_seq, cache->end_seq))
2337 			cache++;
2338 
2339 		/* Can skip some work by looking recv_sack_cache? */
2340 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
2341 		    after(end_seq, cache->start_seq)) {
2342 
2343 			/* Head todo? */
2344 			if (before(start_seq, cache->start_seq)) {
2345 				skb = tcp_sacktag_skip(skb, sk, start_seq);
2346 				skb = tcp_sacktag_walk(skb, sk, next_dup,
2347 						       state,
2348 						       start_seq,
2349 						       cache->start_seq,
2350 						       dup_sack);
2351 			}
2352 
2353 			/* Rest of the block already fully processed? */
2354 			if (!after(end_seq, cache->end_seq))
2355 				goto advance_sp;
2356 
2357 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
2358 						       state,
2359 						       cache->end_seq);
2360 
2361 			/* ...tail remains todo... */
2362 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
2363 				/* ...but better entrypoint exists! */
2364 				skb = tcp_highest_sack(sk);
2365 				if (!skb)
2366 					break;
2367 				cache++;
2368 				goto walk;
2369 			}
2370 
2371 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
2372 			/* Check overlap against next cached too (past this one already) */
2373 			cache++;
2374 			continue;
2375 		}
2376 
2377 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
2378 			skb = tcp_highest_sack(sk);
2379 			if (!skb)
2380 				break;
2381 		}
2382 		skb = tcp_sacktag_skip(skb, sk, start_seq);
2383 
2384 walk:
2385 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2386 				       start_seq, end_seq, dup_sack);
2387 
2388 advance_sp:
2389 		i++;
2390 	}
2391 
2392 	/* Clear the head of the cache sack blocks so we can skip it next time */
2393 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2394 		tp->recv_sack_cache[i].start_seq = 0;
2395 		tp->recv_sack_cache[i].end_seq = 0;
2396 	}
2397 	for (j = 0; j < used_sacks; j++)
2398 		tp->recv_sack_cache[i++] = sp[j];
2399 
2400 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2401 		tcp_check_sack_reordering(sk, state->reord, 0);
2402 
2403 	tcp_verify_left_out(tp);
2404 out:
2405 
2406 #if FASTRETRANS_DEBUG > 0
2407 	WARN_ON((int)tp->sacked_out < 0);
2408 	WARN_ON((int)tp->lost_out < 0);
2409 	WARN_ON((int)tp->retrans_out < 0);
2410 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2411 #endif
2412 	return state->flag;
2413 }
2414 
2415 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2416  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2417  */
2418 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2419 {
2420 	u32 holes;
2421 
2422 	holes = max(tp->lost_out, 1U);
2423 	holes = min(holes, tp->packets_out);
2424 
2425 	if ((tp->sacked_out + holes) > tp->packets_out) {
2426 		tp->sacked_out = tp->packets_out - holes;
2427 		return true;
2428 	}
2429 	return false;
2430 }
2431 
2432 /* If we receive more dupacks than we expected counting segments
2433  * in assumption of absent reordering, interpret this as reordering.
2434  * The only another reason could be bug in receiver TCP.
2435  */
2436 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2437 {
2438 	struct tcp_sock *tp = tcp_sk(sk);
2439 
2440 	if (!tcp_limit_reno_sacked(tp))
2441 		return;
2442 
2443 	tp->reordering = min_t(u32, tp->packets_out + addend,
2444 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2445 	tp->reord_seen++;
2446 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2447 }
2448 
2449 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2450 
2451 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2452 {
2453 	if (num_dupack) {
2454 		struct tcp_sock *tp = tcp_sk(sk);
2455 		u32 prior_sacked = tp->sacked_out;
2456 		s32 delivered;
2457 
2458 		tp->sacked_out += num_dupack;
2459 		tcp_check_reno_reordering(sk, 0);
2460 		delivered = tp->sacked_out - prior_sacked;
2461 		if (delivered > 0)
2462 			tcp_count_delivered(tp, delivered, ece_ack);
2463 		tcp_verify_left_out(tp);
2464 	}
2465 }
2466 
2467 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2468 
2469 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2470 {
2471 	struct tcp_sock *tp = tcp_sk(sk);
2472 
2473 	if (acked > 0) {
2474 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2475 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2476 				    ece_ack);
2477 		if (acked - 1 >= tp->sacked_out)
2478 			tp->sacked_out = 0;
2479 		else
2480 			tp->sacked_out -= acked - 1;
2481 	}
2482 	tcp_check_reno_reordering(sk, acked);
2483 	tcp_verify_left_out(tp);
2484 }
2485 
2486 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2487 {
2488 	tp->sacked_out = 0;
2489 }
2490 
2491 void tcp_clear_retrans(struct tcp_sock *tp)
2492 {
2493 	tp->retrans_out = 0;
2494 	tp->lost_out = 0;
2495 	tp->undo_marker = 0;
2496 	tp->undo_retrans = -1;
2497 	tp->sacked_out = 0;
2498 	tp->rto_stamp = 0;
2499 	tp->total_rto = 0;
2500 	tp->total_rto_recoveries = 0;
2501 	tp->total_rto_time = 0;
2502 }
2503 
2504 static inline void tcp_init_undo(struct tcp_sock *tp)
2505 {
2506 	tp->undo_marker = tp->snd_una;
2507 
2508 	/* Retransmission still in flight may cause DSACKs later. */
2509 	/* First, account for regular retransmits in flight: */
2510 	tp->undo_retrans = tp->retrans_out;
2511 	/* Next, account for TLP retransmits in flight: */
2512 	if (tp->tlp_high_seq && tp->tlp_retrans)
2513 		tp->undo_retrans++;
2514 	/* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
2515 	if (!tp->undo_retrans)
2516 		tp->undo_retrans = -1;
2517 }
2518 
2519 /* If we detect SACK reneging, forget all SACK information
2520  * and reset tags completely, otherwise preserve SACKs. If receiver
2521  * dropped its ofo queue, we will know this due to reneging detection.
2522  */
2523 static void tcp_timeout_mark_lost(struct sock *sk)
2524 {
2525 	struct tcp_sock *tp = tcp_sk(sk);
2526 	struct sk_buff *skb, *head;
2527 	bool is_reneg;			/* is receiver reneging on SACKs? */
2528 
2529 	head = tcp_rtx_queue_head(sk);
2530 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2531 	if (is_reneg) {
2532 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2533 		tp->sacked_out = 0;
2534 		/* Mark SACK reneging until we recover from this loss event. */
2535 		tp->is_sack_reneg = 1;
2536 	} else if (tcp_is_reno(tp)) {
2537 		tcp_reset_reno_sack(tp);
2538 	}
2539 
2540 	skb = head;
2541 	skb_rbtree_walk_from(skb) {
2542 		if (is_reneg)
2543 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2544 		else if (skb != head && tcp_rack_skb_timeout(tp, skb, 0) > 0)
2545 			continue; /* Don't mark recently sent ones lost yet */
2546 		tcp_mark_skb_lost(sk, skb);
2547 	}
2548 	tcp_verify_left_out(tp);
2549 	tcp_clear_all_retrans_hints(tp);
2550 }
2551 
2552 /* Enter Loss state. */
2553 void tcp_enter_loss(struct sock *sk)
2554 {
2555 	const struct inet_connection_sock *icsk = inet_csk(sk);
2556 	struct tcp_sock *tp = tcp_sk(sk);
2557 	struct net *net = sock_net(sk);
2558 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2559 	u8 reordering;
2560 
2561 	tcp_timeout_mark_lost(sk);
2562 
2563 	/* Reduce ssthresh if it has not yet been made inside this window. */
2564 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2565 	    !after(tp->high_seq, tp->snd_una) ||
2566 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2567 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2568 		tp->prior_cwnd = tcp_snd_cwnd(tp);
2569 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2570 		tcp_ca_event(sk, CA_EVENT_LOSS);
2571 		tcp_init_undo(tp);
2572 	}
2573 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2574 	tp->snd_cwnd_cnt   = 0;
2575 	tp->snd_cwnd_stamp = tcp_jiffies32;
2576 
2577 	/* Timeout in disordered state after receiving substantial DUPACKs
2578 	 * suggests that the degree of reordering is over-estimated.
2579 	 */
2580 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2581 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2582 	    tp->sacked_out >= reordering)
2583 		tp->reordering = min_t(unsigned int, tp->reordering,
2584 				       reordering);
2585 
2586 	tcp_set_ca_state(sk, TCP_CA_Loss);
2587 	tp->high_seq = tp->snd_nxt;
2588 	tp->tlp_high_seq = 0;
2589 	tcp_ecn_queue_cwr(tp);
2590 
2591 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2592 	 * loss recovery is underway except recurring timeout(s) on
2593 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2594 	 */
2595 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2596 		   (new_recovery || icsk->icsk_retransmits) &&
2597 		   !inet_csk(sk)->icsk_mtup.probe_size;
2598 }
2599 
2600 /* If ACK arrived pointing to a remembered SACK, it means that our
2601  * remembered SACKs do not reflect real state of receiver i.e.
2602  * receiver _host_ is heavily congested (or buggy).
2603  *
2604  * To avoid big spurious retransmission bursts due to transient SACK
2605  * scoreboard oddities that look like reneging, we give the receiver a
2606  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2607  * restore sanity to the SACK scoreboard. If the apparent reneging
2608  * persists until this RTO then we'll clear the SACK scoreboard.
2609  */
2610 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2611 {
2612 	if (*ack_flag & FLAG_SACK_RENEGING &&
2613 	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2614 		struct tcp_sock *tp = tcp_sk(sk);
2615 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2616 					  msecs_to_jiffies(10));
2617 
2618 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, false);
2619 		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2620 		return true;
2621 	}
2622 	return false;
2623 }
2624 
2625 /* Linux NewReno/SACK/ECN state machine.
2626  * --------------------------------------
2627  *
2628  * "Open"	Normal state, no dubious events, fast path.
2629  * "Disorder"   In all the respects it is "Open",
2630  *		but requires a bit more attention. It is entered when
2631  *		we see some SACKs or dupacks. It is split of "Open"
2632  *		mainly to move some processing from fast path to slow one.
2633  * "CWR"	CWND was reduced due to some Congestion Notification event.
2634  *		It can be ECN, ICMP source quench, local device congestion.
2635  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2636  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2637  *
2638  * tcp_fastretrans_alert() is entered:
2639  * - each incoming ACK, if state is not "Open"
2640  * - when arrived ACK is unusual, namely:
2641  *	* SACK
2642  *	* Duplicate ACK.
2643  *	* ECN ECE.
2644  *
2645  * Counting packets in flight is pretty simple.
2646  *
2647  *	in_flight = packets_out - left_out + retrans_out
2648  *
2649  *	packets_out is SND.NXT-SND.UNA counted in packets.
2650  *
2651  *	retrans_out is number of retransmitted segments.
2652  *
2653  *	left_out is number of segments left network, but not ACKed yet.
2654  *
2655  *		left_out = sacked_out + lost_out
2656  *
2657  *     sacked_out: Packets, which arrived to receiver out of order
2658  *		   and hence not ACKed. With SACKs this number is simply
2659  *		   amount of SACKed data. Even without SACKs
2660  *		   it is easy to give pretty reliable estimate of this number,
2661  *		   counting duplicate ACKs.
2662  *
2663  *       lost_out: Packets lost by network. TCP has no explicit
2664  *		   "loss notification" feedback from network (for now).
2665  *		   It means that this number can be only _guessed_.
2666  *		   Actually, it is the heuristics to predict lossage that
2667  *		   distinguishes different algorithms.
2668  *
2669  *	F.e. after RTO, when all the queue is considered as lost,
2670  *	lost_out = packets_out and in_flight = retrans_out.
2671  *
2672  *		Essentially, we have now a few algorithms detecting
2673  *		lost packets.
2674  *
2675  *		If the receiver supports SACK:
2676  *
2677  *		RACK (RFC8985): RACK is a newer loss detection algorithm
2678  *		(2017-) that checks timing instead of counting DUPACKs.
2679  *		Essentially a packet is considered lost if it's not S/ACKed
2680  *		after RTT + reordering_window, where both metrics are
2681  *		dynamically measured and adjusted. This is implemented in
2682  *		tcp_rack_mark_lost.
2683  *
2684  *		If the receiver does not support SACK:
2685  *
2686  *		NewReno (RFC6582): in Recovery we assume that one segment
2687  *		is lost (classic Reno). While we are in Recovery and
2688  *		a partial ACK arrives, we assume that one more packet
2689  *		is lost (NewReno). This heuristics are the same in NewReno
2690  *		and SACK.
2691  *
2692  * The really tricky (and requiring careful tuning) part of the algorithm
2693  * is hidden in the RACK code in tcp_recovery.c and tcp_xmit_retransmit_queue().
2694  * The first determines the moment _when_ we should reduce CWND and,
2695  * hence, slow down forward transmission. In fact, it determines the moment
2696  * when we decide that hole is caused by loss, rather than by a reorder.
2697  *
2698  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2699  * holes, caused by lost packets.
2700  *
2701  * And the most logically complicated part of algorithm is undo
2702  * heuristics. We detect false retransmits due to both too early
2703  * fast retransmit (reordering) and underestimated RTO, analyzing
2704  * timestamps and D-SACKs. When we detect that some segments were
2705  * retransmitted by mistake and CWND reduction was wrong, we undo
2706  * window reduction and abort recovery phase. This logic is hidden
2707  * inside several functions named tcp_try_undo_<something>.
2708  */
2709 
2710 /* This function decides, when we should leave Disordered state
2711  * and enter Recovery phase, reducing congestion window.
2712  *
2713  * Main question: may we further continue forward transmission
2714  * with the same cwnd?
2715  */
2716 static bool tcp_time_to_recover(const struct tcp_sock *tp)
2717 {
2718 	/* Has loss detection marked at least one packet lost? */
2719 	return tp->lost_out != 0;
2720 }
2721 
2722 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2723 {
2724 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2725 	       before(tp->rx_opt.rcv_tsecr, when);
2726 }
2727 
2728 /* skb is spurious retransmitted if the returned timestamp echo
2729  * reply is prior to the skb transmission time
2730  */
2731 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2732 				     const struct sk_buff *skb)
2733 {
2734 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2735 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb));
2736 }
2737 
2738 /* Nothing was retransmitted or returned timestamp is less
2739  * than timestamp of the first retransmission.
2740  */
2741 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2742 {
2743 	const struct sock *sk = (const struct sock *)tp;
2744 
2745 	/* Received an echoed timestamp before the first retransmission? */
2746 	if (tp->retrans_stamp)
2747 		return tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2748 
2749 	/* We set tp->retrans_stamp upon the first retransmission of a loss
2750 	 * recovery episode, so normally if tp->retrans_stamp is 0 then no
2751 	 * retransmission has happened yet (likely due to TSQ, which can cause
2752 	 * fast retransmits to be delayed). So if snd_una advanced while
2753 	 * (tp->retrans_stamp is 0 then apparently a packet was merely delayed,
2754 	 * not lost. But there are exceptions where we retransmit but then
2755 	 * clear tp->retrans_stamp, so we check for those exceptions.
2756 	 */
2757 
2758 	/* (1) For non-SACK connections, tcp_is_non_sack_preventing_reopen()
2759 	 * clears tp->retrans_stamp when snd_una == high_seq.
2760 	 */
2761 	if (!tcp_is_sack(tp) && !before(tp->snd_una, tp->high_seq))
2762 		return false;
2763 
2764 	/* (2) In TCP_SYN_SENT tcp_clean_rtx_queue() clears tp->retrans_stamp
2765 	 * when setting FLAG_SYN_ACKED is set, even if the SYN was
2766 	 * retransmitted.
2767 	 */
2768 	if (sk->sk_state == TCP_SYN_SENT)
2769 		return false;
2770 
2771 	return true;	/* tp->retrans_stamp is zero; no retransmit yet */
2772 }
2773 
2774 /* Undo procedures. */
2775 
2776 /* We can clear retrans_stamp when there are no retransmissions in the
2777  * window. It would seem that it is trivially available for us in
2778  * tp->retrans_out, however, that kind of assumptions doesn't consider
2779  * what will happen if errors occur when sending retransmission for the
2780  * second time. ...It could the that such segment has only
2781  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2782  * the head skb is enough except for some reneging corner cases that
2783  * are not worth the effort.
2784  *
2785  * Main reason for all this complexity is the fact that connection dying
2786  * time now depends on the validity of the retrans_stamp, in particular,
2787  * that successive retransmissions of a segment must not advance
2788  * retrans_stamp under any conditions.
2789  */
2790 static bool tcp_any_retrans_done(const struct sock *sk)
2791 {
2792 	const struct tcp_sock *tp = tcp_sk(sk);
2793 	struct sk_buff *skb;
2794 
2795 	if (tp->retrans_out)
2796 		return true;
2797 
2798 	skb = tcp_rtx_queue_head(sk);
2799 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2800 		return true;
2801 
2802 	return false;
2803 }
2804 
2805 /* If loss recovery is finished and there are no retransmits out in the
2806  * network, then we clear retrans_stamp so that upon the next loss recovery
2807  * retransmits_timed_out() and timestamp-undo are using the correct value.
2808  */
2809 static void tcp_retrans_stamp_cleanup(struct sock *sk)
2810 {
2811 	if (!tcp_any_retrans_done(sk))
2812 		tcp_sk(sk)->retrans_stamp = 0;
2813 }
2814 
2815 static void DBGUNDO(struct sock *sk, const char *msg)
2816 {
2817 #if FASTRETRANS_DEBUG > 1
2818 	struct tcp_sock *tp = tcp_sk(sk);
2819 	struct inet_sock *inet = inet_sk(sk);
2820 
2821 	if (sk->sk_family == AF_INET) {
2822 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2823 			 msg,
2824 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2825 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2826 			 tp->snd_ssthresh, tp->prior_ssthresh,
2827 			 tp->packets_out);
2828 	}
2829 #if IS_ENABLED(CONFIG_IPV6)
2830 	else if (sk->sk_family == AF_INET6) {
2831 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2832 			 msg,
2833 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2834 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2835 			 tp->snd_ssthresh, tp->prior_ssthresh,
2836 			 tp->packets_out);
2837 	}
2838 #endif
2839 #endif
2840 }
2841 
2842 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2843 {
2844 	struct tcp_sock *tp = tcp_sk(sk);
2845 
2846 	if (unmark_loss) {
2847 		struct sk_buff *skb;
2848 
2849 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2850 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2851 		}
2852 		tp->lost_out = 0;
2853 		tcp_clear_all_retrans_hints(tp);
2854 	}
2855 
2856 	if (tp->prior_ssthresh) {
2857 		const struct inet_connection_sock *icsk = inet_csk(sk);
2858 
2859 		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2860 
2861 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2862 			tp->snd_ssthresh = tp->prior_ssthresh;
2863 			tcp_ecn_withdraw_cwr(tp);
2864 		}
2865 	}
2866 	tp->snd_cwnd_stamp = tcp_jiffies32;
2867 	tp->undo_marker = 0;
2868 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2869 }
2870 
2871 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2872 {
2873 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2874 }
2875 
2876 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2877 {
2878 	struct tcp_sock *tp = tcp_sk(sk);
2879 
2880 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2881 		/* Hold old state until something *above* high_seq
2882 		 * is ACKed. For Reno it is MUST to prevent false
2883 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2884 		if (!tcp_any_retrans_done(sk))
2885 			tp->retrans_stamp = 0;
2886 		return true;
2887 	}
2888 	return false;
2889 }
2890 
2891 /* People celebrate: "We love our President!" */
2892 static bool tcp_try_undo_recovery(struct sock *sk)
2893 {
2894 	struct tcp_sock *tp = tcp_sk(sk);
2895 
2896 	if (tcp_may_undo(tp)) {
2897 		int mib_idx;
2898 
2899 		/* Happy end! We did not retransmit anything
2900 		 * or our original transmission succeeded.
2901 		 */
2902 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2903 		tcp_undo_cwnd_reduction(sk, false);
2904 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2905 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2906 		else
2907 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2908 
2909 		NET_INC_STATS(sock_net(sk), mib_idx);
2910 	} else if (tp->rack.reo_wnd_persist) {
2911 		tp->rack.reo_wnd_persist--;
2912 	}
2913 	if (tcp_is_non_sack_preventing_reopen(sk))
2914 		return true;
2915 	tcp_set_ca_state(sk, TCP_CA_Open);
2916 	tp->is_sack_reneg = 0;
2917 	return false;
2918 }
2919 
2920 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2921 static bool tcp_try_undo_dsack(struct sock *sk)
2922 {
2923 	struct tcp_sock *tp = tcp_sk(sk);
2924 
2925 	if (tp->undo_marker && !tp->undo_retrans) {
2926 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2927 					       tp->rack.reo_wnd_persist + 1);
2928 		DBGUNDO(sk, "D-SACK");
2929 		tcp_undo_cwnd_reduction(sk, false);
2930 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2931 		return true;
2932 	}
2933 	return false;
2934 }
2935 
2936 /* Undo during loss recovery after partial ACK or using F-RTO. */
2937 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2938 {
2939 	struct tcp_sock *tp = tcp_sk(sk);
2940 
2941 	if (frto_undo || tcp_may_undo(tp)) {
2942 		tcp_undo_cwnd_reduction(sk, true);
2943 
2944 		DBGUNDO(sk, "partial loss");
2945 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2946 		if (frto_undo)
2947 			NET_INC_STATS(sock_net(sk),
2948 					LINUX_MIB_TCPSPURIOUSRTOS);
2949 		WRITE_ONCE(inet_csk(sk)->icsk_retransmits, 0);
2950 		if (tcp_is_non_sack_preventing_reopen(sk))
2951 			return true;
2952 		if (frto_undo || tcp_is_sack(tp)) {
2953 			tcp_set_ca_state(sk, TCP_CA_Open);
2954 			tp->is_sack_reneg = 0;
2955 		}
2956 		return true;
2957 	}
2958 	return false;
2959 }
2960 
2961 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2962  * It computes the number of packets to send (sndcnt) based on packets newly
2963  * delivered:
2964  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2965  *	cwnd reductions across a full RTT.
2966  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2967  *      But when SND_UNA is acked without further losses,
2968  *      slow starts cwnd up to ssthresh to speed up the recovery.
2969  */
2970 static void tcp_init_cwnd_reduction(struct sock *sk)
2971 {
2972 	struct tcp_sock *tp = tcp_sk(sk);
2973 
2974 	tp->high_seq = tp->snd_nxt;
2975 	tp->tlp_high_seq = 0;
2976 	tp->snd_cwnd_cnt = 0;
2977 	tp->prior_cwnd = tcp_snd_cwnd(tp);
2978 	tp->prr_delivered = 0;
2979 	tp->prr_out = 0;
2980 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2981 	tcp_ecn_queue_cwr(tp);
2982 }
2983 
2984 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2985 {
2986 	struct tcp_sock *tp = tcp_sk(sk);
2987 	int sndcnt = 0;
2988 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2989 
2990 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2991 		return;
2992 
2993 	trace_tcp_cwnd_reduction_tp(sk, newly_acked_sacked, newly_lost, flag);
2994 
2995 	tp->prr_delivered += newly_acked_sacked;
2996 	if (delta < 0) {
2997 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2998 			       tp->prior_cwnd - 1;
2999 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3000 	} else {
3001 		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
3002 			       newly_acked_sacked);
3003 		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
3004 			sndcnt++;
3005 		sndcnt = min(delta, sndcnt);
3006 	}
3007 	/* Force a fast retransmit upon entering fast recovery */
3008 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
3009 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
3010 }
3011 
3012 static inline void tcp_end_cwnd_reduction(struct sock *sk)
3013 {
3014 	struct tcp_sock *tp = tcp_sk(sk);
3015 
3016 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
3017 		return;
3018 
3019 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
3020 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
3021 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
3022 		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
3023 		tp->snd_cwnd_stamp = tcp_jiffies32;
3024 	}
3025 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
3026 }
3027 
3028 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
3029 void tcp_enter_cwr(struct sock *sk)
3030 {
3031 	struct tcp_sock *tp = tcp_sk(sk);
3032 
3033 	tp->prior_ssthresh = 0;
3034 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
3035 		tp->undo_marker = 0;
3036 		tcp_init_cwnd_reduction(sk);
3037 		tcp_set_ca_state(sk, TCP_CA_CWR);
3038 	}
3039 }
3040 EXPORT_SYMBOL(tcp_enter_cwr);
3041 
3042 static void tcp_try_keep_open(struct sock *sk)
3043 {
3044 	struct tcp_sock *tp = tcp_sk(sk);
3045 	int state = TCP_CA_Open;
3046 
3047 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
3048 		state = TCP_CA_Disorder;
3049 
3050 	if (inet_csk(sk)->icsk_ca_state != state) {
3051 		tcp_set_ca_state(sk, state);
3052 		tp->high_seq = tp->snd_nxt;
3053 	}
3054 }
3055 
3056 static void tcp_try_to_open(struct sock *sk, int flag)
3057 {
3058 	struct tcp_sock *tp = tcp_sk(sk);
3059 
3060 	tcp_verify_left_out(tp);
3061 
3062 	if (!tcp_any_retrans_done(sk))
3063 		tp->retrans_stamp = 0;
3064 
3065 	if (flag & FLAG_ECE)
3066 		tcp_enter_cwr(sk);
3067 
3068 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
3069 		tcp_try_keep_open(sk);
3070 	}
3071 }
3072 
3073 static void tcp_mtup_probe_failed(struct sock *sk)
3074 {
3075 	struct inet_connection_sock *icsk = inet_csk(sk);
3076 
3077 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
3078 	icsk->icsk_mtup.probe_size = 0;
3079 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
3080 }
3081 
3082 static void tcp_mtup_probe_success(struct sock *sk)
3083 {
3084 	struct tcp_sock *tp = tcp_sk(sk);
3085 	struct inet_connection_sock *icsk = inet_csk(sk);
3086 	u64 val;
3087 
3088 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
3089 
3090 	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
3091 	do_div(val, icsk->icsk_mtup.probe_size);
3092 	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
3093 	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
3094 
3095 	tp->snd_cwnd_cnt = 0;
3096 	tp->snd_cwnd_stamp = tcp_jiffies32;
3097 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
3098 
3099 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
3100 	icsk->icsk_mtup.probe_size = 0;
3101 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3102 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
3103 }
3104 
3105 /* Sometimes we deduce that packets have been dropped due to reasons other than
3106  * congestion, like path MTU reductions or failed client TFO attempts. In these
3107  * cases we call this function to retransmit as many packets as cwnd allows,
3108  * without reducing cwnd. Given that retransmits will set retrans_stamp to a
3109  * non-zero value (and may do so in a later calling context due to TSQ), we
3110  * also enter CA_Loss so that we track when all retransmitted packets are ACKed
3111  * and clear retrans_stamp when that happens (to ensure later recurring RTOs
3112  * are using the correct retrans_stamp and don't declare ETIMEDOUT
3113  * prematurely).
3114  */
3115 static void tcp_non_congestion_loss_retransmit(struct sock *sk)
3116 {
3117 	const struct inet_connection_sock *icsk = inet_csk(sk);
3118 	struct tcp_sock *tp = tcp_sk(sk);
3119 
3120 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
3121 		tp->high_seq = tp->snd_nxt;
3122 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
3123 		tp->prior_ssthresh = 0;
3124 		tp->undo_marker = 0;
3125 		tcp_set_ca_state(sk, TCP_CA_Loss);
3126 	}
3127 	tcp_xmit_retransmit_queue(sk);
3128 }
3129 
3130 /* Do a simple retransmit without using the backoff mechanisms in
3131  * tcp_timer. This is used for path mtu discovery.
3132  * The socket is already locked here.
3133  */
3134 void tcp_simple_retransmit(struct sock *sk)
3135 {
3136 	struct tcp_sock *tp = tcp_sk(sk);
3137 	struct sk_buff *skb;
3138 	int mss;
3139 
3140 	/* A fastopen SYN request is stored as two separate packets within
3141 	 * the retransmit queue, this is done by tcp_send_syn_data().
3142 	 * As a result simply checking the MSS of the frames in the queue
3143 	 * will not work for the SYN packet.
3144 	 *
3145 	 * Us being here is an indication of a path MTU issue so we can
3146 	 * assume that the fastopen SYN was lost and just mark all the
3147 	 * frames in the retransmit queue as lost. We will use an MSS of
3148 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
3149 	 */
3150 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
3151 		mss = -1;
3152 	else
3153 		mss = tcp_current_mss(sk);
3154 
3155 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
3156 		if (tcp_skb_seglen(skb) > mss)
3157 			tcp_mark_skb_lost(sk, skb);
3158 	}
3159 
3160 	if (!tp->lost_out)
3161 		return;
3162 
3163 	if (tcp_is_reno(tp))
3164 		tcp_limit_reno_sacked(tp);
3165 
3166 	tcp_verify_left_out(tp);
3167 
3168 	/* Don't muck with the congestion window here.
3169 	 * Reason is that we do not increase amount of _data_
3170 	 * in network, but units changed and effective
3171 	 * cwnd/ssthresh really reduced now.
3172 	 */
3173 	tcp_non_congestion_loss_retransmit(sk);
3174 }
3175 EXPORT_IPV6_MOD(tcp_simple_retransmit);
3176 
3177 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
3178 {
3179 	struct tcp_sock *tp = tcp_sk(sk);
3180 	int mib_idx;
3181 
3182 	/* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */
3183 	tcp_retrans_stamp_cleanup(sk);
3184 
3185 	if (tcp_is_reno(tp))
3186 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
3187 	else
3188 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3189 
3190 	NET_INC_STATS(sock_net(sk), mib_idx);
3191 
3192 	tp->prior_ssthresh = 0;
3193 	tcp_init_undo(tp);
3194 
3195 	if (!tcp_in_cwnd_reduction(sk)) {
3196 		if (!ece_ack)
3197 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
3198 		tcp_init_cwnd_reduction(sk);
3199 	}
3200 	tcp_set_ca_state(sk, TCP_CA_Recovery);
3201 }
3202 
3203 static void tcp_update_rto_time(struct tcp_sock *tp)
3204 {
3205 	if (tp->rto_stamp) {
3206 		tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp;
3207 		tp->rto_stamp = 0;
3208 	}
3209 }
3210 
3211 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
3212  * recovered or spurious. Otherwise retransmits more on partial ACKs.
3213  */
3214 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
3215 			     int *rexmit)
3216 {
3217 	struct tcp_sock *tp = tcp_sk(sk);
3218 	bool recovered = !before(tp->snd_una, tp->high_seq);
3219 
3220 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
3221 	    tcp_try_undo_loss(sk, false))
3222 		return;
3223 
3224 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
3225 		/* Step 3.b. A timeout is spurious if not all data are
3226 		 * lost, i.e., never-retransmitted data are (s)acked.
3227 		 */
3228 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
3229 		    tcp_try_undo_loss(sk, true))
3230 			return;
3231 
3232 		if (after(tp->snd_nxt, tp->high_seq)) {
3233 			if (flag & FLAG_DATA_SACKED || num_dupack)
3234 				tp->frto = 0; /* Step 3.a. loss was real */
3235 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
3236 			tp->high_seq = tp->snd_nxt;
3237 			/* Step 2.b. Try send new data (but deferred until cwnd
3238 			 * is updated in tcp_ack()). Otherwise fall back to
3239 			 * the conventional recovery.
3240 			 */
3241 			if (!tcp_write_queue_empty(sk) &&
3242 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
3243 				*rexmit = REXMIT_NEW;
3244 				return;
3245 			}
3246 			tp->frto = 0;
3247 		}
3248 	}
3249 
3250 	if (recovered) {
3251 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
3252 		tcp_try_undo_recovery(sk);
3253 		return;
3254 	}
3255 	if (tcp_is_reno(tp)) {
3256 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
3257 		 * delivered. Lower inflight to clock out (re)transmissions.
3258 		 */
3259 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
3260 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
3261 		else if (flag & FLAG_SND_UNA_ADVANCED)
3262 			tcp_reset_reno_sack(tp);
3263 	}
3264 	*rexmit = REXMIT_LOST;
3265 }
3266 
3267 /* Undo during fast recovery after partial ACK. */
3268 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
3269 {
3270 	struct tcp_sock *tp = tcp_sk(sk);
3271 
3272 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
3273 		/* Plain luck! Hole if filled with delayed
3274 		 * packet, rather than with a retransmit. Check reordering.
3275 		 */
3276 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
3277 
3278 		/* We are getting evidence that the reordering degree is higher
3279 		 * than we realized. If there are no retransmits out then we
3280 		 * can undo. Otherwise we clock out new packets but do not
3281 		 * mark more packets lost or retransmit more.
3282 		 */
3283 		if (tp->retrans_out)
3284 			return true;
3285 
3286 		if (!tcp_any_retrans_done(sk))
3287 			tp->retrans_stamp = 0;
3288 
3289 		DBGUNDO(sk, "partial recovery");
3290 		tcp_undo_cwnd_reduction(sk, true);
3291 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
3292 		tcp_try_keep_open(sk);
3293 	}
3294 	return false;
3295 }
3296 
3297 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
3298 {
3299 	struct tcp_sock *tp = tcp_sk(sk);
3300 
3301 	if (tcp_rtx_queue_empty(sk))
3302 		return;
3303 
3304 	if (unlikely(tcp_is_reno(tp))) {
3305 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
3306 	} else {
3307 		u32 prior_retrans = tp->retrans_out;
3308 
3309 		if (tcp_rack_mark_lost(sk))
3310 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
3311 		if (prior_retrans > tp->retrans_out)
3312 			*ack_flag |= FLAG_LOST_RETRANS;
3313 	}
3314 }
3315 
3316 /* Process an event, which can update packets-in-flight not trivially.
3317  * Main goal of this function is to calculate new estimate for left_out,
3318  * taking into account both packets sitting in receiver's buffer and
3319  * packets lost by network.
3320  *
3321  * Besides that it updates the congestion state when packet loss or ECN
3322  * is detected. But it does not reduce the cwnd, it is done by the
3323  * congestion control later.
3324  *
3325  * It does _not_ decide what to send, it is made in function
3326  * tcp_xmit_retransmit_queue().
3327  */
3328 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3329 				  int num_dupack, int *ack_flag, int *rexmit)
3330 {
3331 	struct inet_connection_sock *icsk = inet_csk(sk);
3332 	struct tcp_sock *tp = tcp_sk(sk);
3333 	int flag = *ack_flag;
3334 	bool ece_ack = flag & FLAG_ECE;
3335 
3336 	if (!tp->packets_out && tp->sacked_out)
3337 		tp->sacked_out = 0;
3338 
3339 	/* Now state machine starts.
3340 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3341 	if (ece_ack)
3342 		tp->prior_ssthresh = 0;
3343 
3344 	/* B. In all the states check for reneging SACKs. */
3345 	if (tcp_check_sack_reneging(sk, ack_flag))
3346 		return;
3347 
3348 	/* C. Check consistency of the current state. */
3349 	tcp_verify_left_out(tp);
3350 
3351 	/* D. Check state exit conditions. State can be terminated
3352 	 *    when high_seq is ACKed. */
3353 	if (icsk->icsk_ca_state == TCP_CA_Open) {
3354 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3355 		tp->retrans_stamp = 0;
3356 	} else if (!before(tp->snd_una, tp->high_seq)) {
3357 		switch (icsk->icsk_ca_state) {
3358 		case TCP_CA_CWR:
3359 			/* CWR is to be held something *above* high_seq
3360 			 * is ACKed for CWR bit to reach receiver. */
3361 			if (tp->snd_una != tp->high_seq) {
3362 				tcp_end_cwnd_reduction(sk);
3363 				tcp_set_ca_state(sk, TCP_CA_Open);
3364 			}
3365 			break;
3366 
3367 		case TCP_CA_Recovery:
3368 			if (tcp_is_reno(tp))
3369 				tcp_reset_reno_sack(tp);
3370 			if (tcp_try_undo_recovery(sk))
3371 				return;
3372 			tcp_end_cwnd_reduction(sk);
3373 			break;
3374 		}
3375 	}
3376 
3377 	/* E. Process state. */
3378 	switch (icsk->icsk_ca_state) {
3379 	case TCP_CA_Recovery:
3380 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3381 			if (tcp_is_reno(tp))
3382 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
3383 		} else if (tcp_try_undo_partial(sk, prior_snd_una))
3384 			return;
3385 
3386 		if (tcp_try_undo_dsack(sk))
3387 			tcp_try_to_open(sk, flag);
3388 
3389 		tcp_identify_packet_loss(sk, ack_flag);
3390 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3391 			if (!tcp_time_to_recover(tp))
3392 				return;
3393 			/* Undo reverts the recovery state. If loss is evident,
3394 			 * starts a new recovery (e.g. reordering then loss);
3395 			 */
3396 			tcp_enter_recovery(sk, ece_ack);
3397 		}
3398 		break;
3399 	case TCP_CA_Loss:
3400 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3401 		if (icsk->icsk_ca_state != TCP_CA_Loss)
3402 			tcp_update_rto_time(tp);
3403 		tcp_identify_packet_loss(sk, ack_flag);
3404 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3405 		      (*ack_flag & FLAG_LOST_RETRANS)))
3406 			return;
3407 		/* Change state if cwnd is undone or retransmits are lost */
3408 		fallthrough;
3409 	default:
3410 		if (tcp_is_reno(tp)) {
3411 			if (flag & FLAG_SND_UNA_ADVANCED)
3412 				tcp_reset_reno_sack(tp);
3413 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3414 		}
3415 
3416 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3417 			tcp_try_undo_dsack(sk);
3418 
3419 		tcp_identify_packet_loss(sk, ack_flag);
3420 		if (!tcp_time_to_recover(tp)) {
3421 			tcp_try_to_open(sk, flag);
3422 			return;
3423 		}
3424 
3425 		/* MTU probe failure: don't reduce cwnd */
3426 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3427 		    icsk->icsk_mtup.probe_size &&
3428 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3429 			tcp_mtup_probe_failed(sk);
3430 			/* Restores the reduction we did in tcp_mtup_probe() */
3431 			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3432 			tcp_simple_retransmit(sk);
3433 			return;
3434 		}
3435 
3436 		/* Otherwise enter Recovery state */
3437 		tcp_enter_recovery(sk, ece_ack);
3438 	}
3439 
3440 	*rexmit = REXMIT_LOST;
3441 }
3442 
3443 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3444 {
3445 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3446 	struct tcp_sock *tp = tcp_sk(sk);
3447 
3448 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3449 		/* If the remote keeps returning delayed ACKs, eventually
3450 		 * the min filter would pick it up and overestimate the
3451 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3452 		 */
3453 		return;
3454 	}
3455 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3456 			   rtt_us ? : jiffies_to_usecs(1));
3457 }
3458 
3459 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3460 			       long seq_rtt_us, long sack_rtt_us,
3461 			       long ca_rtt_us, struct rate_sample *rs)
3462 {
3463 	const struct tcp_sock *tp = tcp_sk(sk);
3464 
3465 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3466 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3467 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3468 	 * is acked (RFC6298).
3469 	 */
3470 	if (seq_rtt_us < 0)
3471 		seq_rtt_us = sack_rtt_us;
3472 
3473 	/* RTTM Rule: A TSecr value received in a segment is used to
3474 	 * update the averaged RTT measurement only if the segment
3475 	 * acknowledges some new data, i.e., only if it advances the
3476 	 * left edge of the send window.
3477 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3478 	 */
3479 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp &&
3480 	    tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED)
3481 		seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp, 1);
3482 
3483 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3484 	if (seq_rtt_us < 0)
3485 		return false;
3486 
3487 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3488 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3489 	 * values will be skipped with the seq_rtt_us < 0 check above.
3490 	 */
3491 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3492 	tcp_rtt_estimator(sk, seq_rtt_us);
3493 	tcp_set_rto(sk);
3494 
3495 	/* RFC6298: only reset backoff on valid RTT measurement. */
3496 	inet_csk(sk)->icsk_backoff = 0;
3497 	return true;
3498 }
3499 
3500 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3501 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3502 {
3503 	struct rate_sample rs;
3504 	long rtt_us = -1L;
3505 
3506 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3507 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3508 
3509 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3510 }
3511 
3512 
3513 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3514 {
3515 	const struct inet_connection_sock *icsk = inet_csk(sk);
3516 
3517 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3518 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3519 }
3520 
3521 /* Restart timer after forward progress on connection.
3522  * RFC2988 recommends to restart timer to now+rto.
3523  */
3524 void tcp_rearm_rto(struct sock *sk)
3525 {
3526 	const struct inet_connection_sock *icsk = inet_csk(sk);
3527 	struct tcp_sock *tp = tcp_sk(sk);
3528 
3529 	/* If the retrans timer is currently being used by Fast Open
3530 	 * for SYN-ACK retrans purpose, stay put.
3531 	 */
3532 	if (rcu_access_pointer(tp->fastopen_rsk))
3533 		return;
3534 
3535 	if (!tp->packets_out) {
3536 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3537 	} else {
3538 		u32 rto = inet_csk(sk)->icsk_rto;
3539 		/* Offset the time elapsed after installing regular RTO */
3540 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3541 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3542 			s64 delta_us = tcp_rto_delta_us(sk);
3543 			/* delta_us may not be positive if the socket is locked
3544 			 * when the retrans timer fires and is rescheduled.
3545 			 */
3546 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3547 		}
3548 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, true);
3549 	}
3550 }
3551 
3552 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3553 static void tcp_set_xmit_timer(struct sock *sk)
3554 {
3555 	if (!tcp_schedule_loss_probe(sk, true))
3556 		tcp_rearm_rto(sk);
3557 }
3558 
3559 /* If we get here, the whole TSO packet has not been acked. */
3560 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3561 {
3562 	struct tcp_sock *tp = tcp_sk(sk);
3563 	u32 packets_acked;
3564 
3565 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3566 
3567 	packets_acked = tcp_skb_pcount(skb);
3568 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3569 		return 0;
3570 	packets_acked -= tcp_skb_pcount(skb);
3571 
3572 	if (packets_acked) {
3573 		BUG_ON(tcp_skb_pcount(skb) == 0);
3574 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3575 	}
3576 
3577 	return packets_acked;
3578 }
3579 
3580 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3581 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3582 {
3583 	const struct skb_shared_info *shinfo;
3584 
3585 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3586 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3587 		return;
3588 
3589 	shinfo = skb_shinfo(skb);
3590 	if (!before(shinfo->tskey, prior_snd_una) &&
3591 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3592 		tcp_skb_tsorted_save(skb) {
3593 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3594 		} tcp_skb_tsorted_restore(skb);
3595 	}
3596 }
3597 
3598 /* Remove acknowledged frames from the retransmission queue. If our packet
3599  * is before the ack sequence we can discard it as it's confirmed to have
3600  * arrived at the other end.
3601  */
3602 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3603 			       u32 prior_fack, u32 prior_snd_una,
3604 			       struct tcp_sacktag_state *sack, bool ece_ack)
3605 {
3606 	const struct inet_connection_sock *icsk = inet_csk(sk);
3607 	u64 first_ackt, last_ackt;
3608 	struct tcp_sock *tp = tcp_sk(sk);
3609 	u32 prior_sacked = tp->sacked_out;
3610 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3611 	struct sk_buff *skb, *next;
3612 	bool fully_acked = true;
3613 	long sack_rtt_us = -1L;
3614 	long seq_rtt_us = -1L;
3615 	long ca_rtt_us = -1L;
3616 	u32 pkts_acked = 0;
3617 	bool rtt_update;
3618 	int flag = 0;
3619 
3620 	first_ackt = 0;
3621 
3622 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3623 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3624 		const u32 start_seq = scb->seq;
3625 		u8 sacked = scb->sacked;
3626 		u32 acked_pcount;
3627 
3628 		/* Determine how many packets and what bytes were acked, tso and else */
3629 		if (after(scb->end_seq, tp->snd_una)) {
3630 			if (tcp_skb_pcount(skb) == 1 ||
3631 			    !after(tp->snd_una, scb->seq))
3632 				break;
3633 
3634 			acked_pcount = tcp_tso_acked(sk, skb);
3635 			if (!acked_pcount)
3636 				break;
3637 			fully_acked = false;
3638 		} else {
3639 			acked_pcount = tcp_skb_pcount(skb);
3640 		}
3641 
3642 		if (unlikely(sacked & TCPCB_RETRANS)) {
3643 			if (sacked & TCPCB_SACKED_RETRANS)
3644 				tp->retrans_out -= acked_pcount;
3645 			flag |= FLAG_RETRANS_DATA_ACKED;
3646 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3647 			last_ackt = tcp_skb_timestamp_us(skb);
3648 			WARN_ON_ONCE(last_ackt == 0);
3649 			if (!first_ackt)
3650 				first_ackt = last_ackt;
3651 
3652 			if (before(start_seq, reord))
3653 				reord = start_seq;
3654 			if (!after(scb->end_seq, tp->high_seq))
3655 				flag |= FLAG_ORIG_SACK_ACKED;
3656 		}
3657 
3658 		if (sacked & TCPCB_SACKED_ACKED) {
3659 			tp->sacked_out -= acked_pcount;
3660 			/* snd_una delta covers these skbs */
3661 			sack->delivered_bytes -= skb->len;
3662 		} else if (tcp_is_sack(tp)) {
3663 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3664 			if (!tcp_skb_spurious_retrans(tp, skb))
3665 				tcp_rack_advance(tp, sacked, scb->end_seq,
3666 						 tcp_skb_timestamp_us(skb));
3667 		}
3668 		if (sacked & TCPCB_LOST)
3669 			tp->lost_out -= acked_pcount;
3670 
3671 		tp->packets_out -= acked_pcount;
3672 		pkts_acked += acked_pcount;
3673 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3674 
3675 		/* Initial outgoing SYN's get put onto the write_queue
3676 		 * just like anything else we transmit.  It is not
3677 		 * true data, and if we misinform our callers that
3678 		 * this ACK acks real data, we will erroneously exit
3679 		 * connection startup slow start one packet too
3680 		 * quickly.  This is severely frowned upon behavior.
3681 		 */
3682 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3683 			flag |= FLAG_DATA_ACKED;
3684 		} else {
3685 			flag |= FLAG_SYN_ACKED;
3686 			tp->retrans_stamp = 0;
3687 		}
3688 
3689 		if (!fully_acked)
3690 			break;
3691 
3692 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3693 
3694 		next = skb_rb_next(skb);
3695 		if (unlikely(skb == tp->retransmit_skb_hint))
3696 			tp->retransmit_skb_hint = NULL;
3697 		tcp_highest_sack_replace(sk, skb, next);
3698 		tcp_rtx_queue_unlink_and_free(skb, sk);
3699 	}
3700 
3701 	if (!skb)
3702 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3703 
3704 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3705 		tp->snd_up = tp->snd_una;
3706 
3707 	if (skb) {
3708 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3709 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3710 			flag |= FLAG_SACK_RENEGING;
3711 	}
3712 
3713 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3714 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3715 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3716 
3717 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3718 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3719 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3720 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3721 			/* Conservatively mark a delayed ACK. It's typically
3722 			 * from a lone runt packet over the round trip to
3723 			 * a receiver w/o out-of-order or CE events.
3724 			 */
3725 			flag |= FLAG_ACK_MAYBE_DELAYED;
3726 		}
3727 	}
3728 	if (sack->first_sackt) {
3729 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3730 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3731 	}
3732 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3733 					ca_rtt_us, sack->rate);
3734 
3735 	if (flag & FLAG_ACKED) {
3736 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3737 		if (unlikely(icsk->icsk_mtup.probe_size &&
3738 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3739 			tcp_mtup_probe_success(sk);
3740 		}
3741 
3742 		if (tcp_is_reno(tp)) {
3743 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3744 
3745 			/* If any of the cumulatively ACKed segments was
3746 			 * retransmitted, non-SACK case cannot confirm that
3747 			 * progress was due to original transmission due to
3748 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3749 			 * the packets may have been never retransmitted.
3750 			 */
3751 			if (flag & FLAG_RETRANS_DATA_ACKED)
3752 				flag &= ~FLAG_ORIG_SACK_ACKED;
3753 		} else {
3754 			/* Non-retransmitted hole got filled? That's reordering */
3755 			if (before(reord, prior_fack))
3756 				tcp_check_sack_reordering(sk, reord, 0);
3757 		}
3758 
3759 		sack->delivered_bytes = (skb ?
3760 					 TCP_SKB_CB(skb)->seq : tp->snd_una) -
3761 					 prior_snd_una;
3762 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3763 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3764 						    tcp_skb_timestamp_us(skb))) {
3765 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3766 		 * after when the head was last (re)transmitted. Otherwise the
3767 		 * timeout may continue to extend in loss recovery.
3768 		 */
3769 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3770 	}
3771 
3772 	if (icsk->icsk_ca_ops->pkts_acked) {
3773 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3774 					     .rtt_us = sack->rate->rtt_us };
3775 
3776 		sample.in_flight = tp->mss_cache *
3777 			(tp->delivered - sack->rate->prior_delivered);
3778 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3779 	}
3780 
3781 #if FASTRETRANS_DEBUG > 0
3782 	WARN_ON((int)tp->sacked_out < 0);
3783 	WARN_ON((int)tp->lost_out < 0);
3784 	WARN_ON((int)tp->retrans_out < 0);
3785 	if (!tp->packets_out && tcp_is_sack(tp)) {
3786 		icsk = inet_csk(sk);
3787 		if (tp->lost_out) {
3788 			pr_debug("Leak l=%u %d\n",
3789 				 tp->lost_out, icsk->icsk_ca_state);
3790 			tp->lost_out = 0;
3791 		}
3792 		if (tp->sacked_out) {
3793 			pr_debug("Leak s=%u %d\n",
3794 				 tp->sacked_out, icsk->icsk_ca_state);
3795 			tp->sacked_out = 0;
3796 		}
3797 		if (tp->retrans_out) {
3798 			pr_debug("Leak r=%u %d\n",
3799 				 tp->retrans_out, icsk->icsk_ca_state);
3800 			tp->retrans_out = 0;
3801 		}
3802 	}
3803 #endif
3804 	return flag;
3805 }
3806 
3807 static void tcp_ack_probe(struct sock *sk)
3808 {
3809 	struct inet_connection_sock *icsk = inet_csk(sk);
3810 	struct sk_buff *head = tcp_send_head(sk);
3811 	const struct tcp_sock *tp = tcp_sk(sk);
3812 
3813 	/* Was it a usable window open? */
3814 	if (!head)
3815 		return;
3816 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3817 		icsk->icsk_backoff = 0;
3818 		icsk->icsk_probes_tstamp = 0;
3819 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3820 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3821 		 * This function is not for random using!
3822 		 */
3823 	} else {
3824 		unsigned long when = tcp_probe0_when(sk, tcp_rto_max(sk));
3825 
3826 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3827 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, true);
3828 	}
3829 }
3830 
3831 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3832 {
3833 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3834 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3835 }
3836 
3837 /* Decide wheather to run the increase function of congestion control. */
3838 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3839 {
3840 	/* If reordering is high then always grow cwnd whenever data is
3841 	 * delivered regardless of its ordering. Otherwise stay conservative
3842 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3843 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3844 	 * cwnd in tcp_fastretrans_alert() based on more states.
3845 	 */
3846 	if (tcp_sk(sk)->reordering >
3847 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3848 		return flag & FLAG_FORWARD_PROGRESS;
3849 
3850 	return flag & FLAG_DATA_ACKED;
3851 }
3852 
3853 /* The "ultimate" congestion control function that aims to replace the rigid
3854  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3855  * It's called toward the end of processing an ACK with precise rate
3856  * information. All transmission or retransmission are delayed afterwards.
3857  */
3858 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3859 			     int flag, const struct rate_sample *rs)
3860 {
3861 	const struct inet_connection_sock *icsk = inet_csk(sk);
3862 
3863 	if (icsk->icsk_ca_ops->cong_control) {
3864 		icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs);
3865 		return;
3866 	}
3867 
3868 	if (tcp_in_cwnd_reduction(sk)) {
3869 		/* Reduce cwnd if state mandates */
3870 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3871 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3872 		/* Advance cwnd if state allows */
3873 		tcp_cong_avoid(sk, ack, acked_sacked);
3874 	}
3875 	tcp_update_pacing_rate(sk);
3876 }
3877 
3878 /* Check that window update is acceptable.
3879  * The function assumes that snd_una<=ack<=snd_next.
3880  */
3881 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3882 					const u32 ack, const u32 ack_seq,
3883 					const u32 nwin)
3884 {
3885 	return	after(ack, tp->snd_una) ||
3886 		after(ack_seq, tp->snd_wl1) ||
3887 		(ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3888 }
3889 
3890 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack)
3891 {
3892 #ifdef CONFIG_TCP_AO
3893 	struct tcp_ao_info *ao;
3894 
3895 	if (!static_branch_unlikely(&tcp_ao_needed.key))
3896 		return;
3897 
3898 	ao = rcu_dereference_protected(tp->ao_info,
3899 				       lockdep_sock_is_held((struct sock *)tp));
3900 	if (ao && ack < tp->snd_una) {
3901 		ao->snd_sne++;
3902 		trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne);
3903 	}
3904 #endif
3905 }
3906 
3907 /* If we update tp->snd_una, also update tp->bytes_acked */
3908 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3909 {
3910 	u32 delta = ack - tp->snd_una;
3911 
3912 	sock_owned_by_me((struct sock *)tp);
3913 	tp->bytes_acked += delta;
3914 	tcp_snd_sne_update(tp, ack);
3915 	tp->snd_una = ack;
3916 }
3917 
3918 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq)
3919 {
3920 #ifdef CONFIG_TCP_AO
3921 	struct tcp_ao_info *ao;
3922 
3923 	if (!static_branch_unlikely(&tcp_ao_needed.key))
3924 		return;
3925 
3926 	ao = rcu_dereference_protected(tp->ao_info,
3927 				       lockdep_sock_is_held((struct sock *)tp));
3928 	if (ao && seq < tp->rcv_nxt) {
3929 		ao->rcv_sne++;
3930 		trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne);
3931 	}
3932 #endif
3933 }
3934 
3935 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3936 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3937 {
3938 	u32 delta = seq - tp->rcv_nxt;
3939 
3940 	sock_owned_by_me((struct sock *)tp);
3941 	tp->bytes_received += delta;
3942 	tcp_rcv_sne_update(tp, seq);
3943 	WRITE_ONCE(tp->rcv_nxt, seq);
3944 }
3945 
3946 /* Update our send window.
3947  *
3948  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3949  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3950  */
3951 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3952 				 u32 ack_seq)
3953 {
3954 	struct tcp_sock *tp = tcp_sk(sk);
3955 	int flag = 0;
3956 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3957 
3958 	if (likely(!tcp_hdr(skb)->syn))
3959 		nwin <<= tp->rx_opt.snd_wscale;
3960 
3961 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3962 		flag |= FLAG_WIN_UPDATE;
3963 		tcp_update_wl(tp, ack_seq);
3964 
3965 		if (tp->snd_wnd != nwin) {
3966 			tp->snd_wnd = nwin;
3967 
3968 			/* Note, it is the only place, where
3969 			 * fast path is recovered for sending TCP.
3970 			 */
3971 			tp->pred_flags = 0;
3972 			tcp_fast_path_check(sk);
3973 
3974 			if (!tcp_write_queue_empty(sk))
3975 				tcp_slow_start_after_idle_check(sk);
3976 
3977 			if (nwin > tp->max_window) {
3978 				tp->max_window = nwin;
3979 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3980 			}
3981 		}
3982 	}
3983 
3984 	tcp_snd_una_update(tp, ack);
3985 
3986 	return flag;
3987 }
3988 
3989 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3990 				   u32 *last_oow_ack_time)
3991 {
3992 	/* Paired with the WRITE_ONCE() in this function. */
3993 	u32 val = READ_ONCE(*last_oow_ack_time);
3994 
3995 	if (val) {
3996 		s32 elapsed = (s32)(tcp_jiffies32 - val);
3997 
3998 		if (0 <= elapsed &&
3999 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
4000 			NET_INC_STATS(net, mib_idx);
4001 			return true;	/* rate-limited: don't send yet! */
4002 		}
4003 	}
4004 
4005 	/* Paired with the prior READ_ONCE() and with itself,
4006 	 * as we might be lockless.
4007 	 */
4008 	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
4009 
4010 	return false;	/* not rate-limited: go ahead, send dupack now! */
4011 }
4012 
4013 /* Return true if we're currently rate-limiting out-of-window ACKs and
4014  * thus shouldn't send a dupack right now. We rate-limit dupacks in
4015  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
4016  * attacks that send repeated SYNs or ACKs for the same connection. To
4017  * do this, we do not send a duplicate SYNACK or ACK if the remote
4018  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
4019  */
4020 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
4021 			  int mib_idx, u32 *last_oow_ack_time)
4022 {
4023 	/* Data packets without SYNs are not likely part of an ACK loop. */
4024 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
4025 	    !tcp_hdr(skb)->syn)
4026 		return false;
4027 
4028 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
4029 }
4030 
4031 static void tcp_send_ack_reflect_ect(struct sock *sk, bool accecn_reflector)
4032 {
4033 	struct tcp_sock *tp = tcp_sk(sk);
4034 	u16 flags = 0;
4035 
4036 	if (accecn_reflector)
4037 		flags = tcp_accecn_reflector_flags(tp->syn_ect_rcv);
4038 	__tcp_send_ack(sk, tp->rcv_nxt, flags);
4039 }
4040 
4041 /* RFC 5961 7 [ACK Throttling] */
4042 static void tcp_send_challenge_ack(struct sock *sk, bool accecn_reflector)
4043 {
4044 	struct tcp_sock *tp = tcp_sk(sk);
4045 	struct net *net = sock_net(sk);
4046 	u32 count, now, ack_limit;
4047 
4048 	/* First check our per-socket dupack rate limit. */
4049 	if (__tcp_oow_rate_limited(net,
4050 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
4051 				   &tp->last_oow_ack_time))
4052 		return;
4053 
4054 	ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
4055 	if (ack_limit == INT_MAX)
4056 		goto send_ack;
4057 
4058 	/* Then check host-wide RFC 5961 rate limit. */
4059 	now = jiffies / HZ;
4060 	if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
4061 		u32 half = (ack_limit + 1) >> 1;
4062 
4063 		WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
4064 		WRITE_ONCE(net->ipv4.tcp_challenge_count,
4065 			   get_random_u32_inclusive(half, ack_limit + half - 1));
4066 	}
4067 	count = READ_ONCE(net->ipv4.tcp_challenge_count);
4068 	if (count > 0) {
4069 		WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
4070 send_ack:
4071 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
4072 		tcp_send_ack_reflect_ect(sk, accecn_reflector);
4073 	}
4074 }
4075 
4076 static void tcp_store_ts_recent(struct tcp_sock *tp)
4077 {
4078 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4079 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
4080 }
4081 
4082 static int __tcp_replace_ts_recent(struct tcp_sock *tp, s32 tstamp_delta)
4083 {
4084 	tcp_store_ts_recent(tp);
4085 	return tstamp_delta > 0 ? FLAG_TS_PROGRESS : 0;
4086 }
4087 
4088 static int tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4089 {
4090 	s32 delta;
4091 
4092 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4093 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
4094 		 * extra check below makes sure this can only happen
4095 		 * for pure ACK frames.  -DaveM
4096 		 *
4097 		 * Not only, also it occurs for expired timestamps.
4098 		 */
4099 
4100 		if (tcp_paws_check(&tp->rx_opt, 0)) {
4101 			delta = tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent;
4102 			return __tcp_replace_ts_recent(tp, delta);
4103 		}
4104 	}
4105 
4106 	return 0;
4107 }
4108 
4109 /* This routine deals with acks during a TLP episode and ends an episode by
4110  * resetting tlp_high_seq. Ref: TLP algorithm in RFC8985
4111  */
4112 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
4113 {
4114 	struct tcp_sock *tp = tcp_sk(sk);
4115 
4116 	if (before(ack, tp->tlp_high_seq))
4117 		return;
4118 
4119 	if (!tp->tlp_retrans) {
4120 		/* TLP of new data has been acknowledged */
4121 		tp->tlp_high_seq = 0;
4122 	} else if (flag & FLAG_DSACK_TLP) {
4123 		/* This DSACK means original and TLP probe arrived; no loss */
4124 		tp->tlp_high_seq = 0;
4125 	} else if (after(ack, tp->tlp_high_seq)) {
4126 		/* ACK advances: there was a loss, so reduce cwnd. Reset
4127 		 * tlp_high_seq in tcp_init_cwnd_reduction()
4128 		 */
4129 		tcp_init_cwnd_reduction(sk);
4130 		tcp_set_ca_state(sk, TCP_CA_CWR);
4131 		tcp_end_cwnd_reduction(sk);
4132 		tcp_try_keep_open(sk);
4133 		NET_INC_STATS(sock_net(sk),
4134 				LINUX_MIB_TCPLOSSPROBERECOVERY);
4135 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
4136 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
4137 		/* Pure dupack: original and TLP probe arrived; no loss */
4138 		tp->tlp_high_seq = 0;
4139 	}
4140 }
4141 
4142 static void tcp_in_ack_event(struct sock *sk, int flag)
4143 {
4144 	const struct inet_connection_sock *icsk = inet_csk(sk);
4145 
4146 	if (icsk->icsk_ca_ops->in_ack_event) {
4147 		u32 ack_ev_flags = 0;
4148 
4149 		if (flag & FLAG_WIN_UPDATE)
4150 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
4151 		if (flag & FLAG_SLOWPATH) {
4152 			ack_ev_flags |= CA_ACK_SLOWPATH;
4153 			if (flag & FLAG_ECE)
4154 				ack_ev_flags |= CA_ACK_ECE;
4155 		}
4156 
4157 		icsk->icsk_ca_ops->in_ack_event(sk, ack_ev_flags);
4158 	}
4159 }
4160 
4161 /* Congestion control has updated the cwnd already. So if we're in
4162  * loss recovery then now we do any new sends (for FRTO) or
4163  * retransmits (for CA_Loss or CA_recovery) that make sense.
4164  */
4165 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
4166 {
4167 	struct tcp_sock *tp = tcp_sk(sk);
4168 
4169 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
4170 		return;
4171 
4172 	if (unlikely(rexmit == REXMIT_NEW)) {
4173 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
4174 					  TCP_NAGLE_OFF);
4175 		if (after(tp->snd_nxt, tp->high_seq))
4176 			return;
4177 		tp->frto = 0;
4178 	}
4179 	tcp_xmit_retransmit_queue(sk);
4180 }
4181 
4182 /* Returns the number of packets newly acked or sacked by the current ACK */
4183 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered,
4184 			       u32 ecn_count, int flag)
4185 {
4186 	const struct net *net = sock_net(sk);
4187 	struct tcp_sock *tp = tcp_sk(sk);
4188 	u32 delivered;
4189 
4190 	delivered = tp->delivered - prior_delivered;
4191 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
4192 
4193 	if (flag & FLAG_ECE) {
4194 		if (tcp_ecn_mode_rfc3168(tp))
4195 			ecn_count = delivered;
4196 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, ecn_count);
4197 	}
4198 
4199 	return delivered;
4200 }
4201 
4202 /* Updates the RACK's reo_wnd based on DSACK and no. of recoveries.
4203  *
4204  * If a DSACK is received that seems like it may have been due to reordering
4205  * triggering fast recovery, increment reo_wnd by min_rtt/4 (upper bounded
4206  * by srtt), since there is possibility that spurious retransmission was
4207  * due to reordering delay longer than reo_wnd.
4208  *
4209  * Persist the current reo_wnd value for TCP_RACK_RECOVERY_THRESH (16)
4210  * no. of successful recoveries (accounts for full DSACK-based loss
4211  * recovery undo). After that, reset it to default (min_rtt/4).
4212  *
4213  * At max, reo_wnd is incremented only once per rtt. So that the new
4214  * DSACK on which we are reacting, is due to the spurious retx (approx)
4215  * after the reo_wnd has been updated last time.
4216  *
4217  * reo_wnd is tracked in terms of steps (of min_rtt/4), rather than
4218  * absolute value to account for change in rtt.
4219  */
4220 static void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs)
4221 {
4222 	struct tcp_sock *tp = tcp_sk(sk);
4223 
4224 	if ((READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
4225 	     TCP_RACK_STATIC_REO_WND) ||
4226 	    !rs->prior_delivered)
4227 		return;
4228 
4229 	/* Disregard DSACK if a rtt has not passed since we adjusted reo_wnd */
4230 	if (before(rs->prior_delivered, tp->rack.last_delivered))
4231 		tp->rack.dsack_seen = 0;
4232 
4233 	/* Adjust the reo_wnd if update is pending */
4234 	if (tp->rack.dsack_seen) {
4235 		tp->rack.reo_wnd_steps = min_t(u32, 0xFF,
4236 					       tp->rack.reo_wnd_steps + 1);
4237 		tp->rack.dsack_seen = 0;
4238 		tp->rack.last_delivered = tp->delivered;
4239 		tp->rack.reo_wnd_persist = TCP_RACK_RECOVERY_THRESH;
4240 	} else if (!tp->rack.reo_wnd_persist) {
4241 		tp->rack.reo_wnd_steps = 1;
4242 	}
4243 }
4244 
4245 /* This routine deals with incoming acks, but not outgoing ones. */
4246 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
4247 {
4248 	struct inet_connection_sock *icsk = inet_csk(sk);
4249 	struct tcp_sock *tp = tcp_sk(sk);
4250 	struct tcp_sacktag_state sack_state;
4251 	struct rate_sample rs = { .prior_delivered = 0 };
4252 	u32 prior_snd_una = tp->snd_una;
4253 	bool is_sack_reneg = tp->is_sack_reneg;
4254 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
4255 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4256 	int num_dupack = 0;
4257 	int prior_packets = tp->packets_out;
4258 	u32 delivered = tp->delivered;
4259 	u32 lost = tp->lost;
4260 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
4261 	u32 ecn_count = 0;	  /* Did we receive ECE/an AccECN ACE update? */
4262 	u32 prior_fack;
4263 
4264 	sack_state.first_sackt = 0;
4265 	sack_state.rate = &rs;
4266 	sack_state.sack_delivered = 0;
4267 	sack_state.delivered_bytes = 0;
4268 
4269 	/* We very likely will need to access rtx queue. */
4270 	prefetch(sk->tcp_rtx_queue.rb_node);
4271 
4272 	/* If the ack is older than previous acks
4273 	 * then we can probably ignore it.
4274 	 */
4275 	if (before(ack, prior_snd_una)) {
4276 		u32 max_window;
4277 
4278 		/* do not accept ACK for bytes we never sent. */
4279 		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
4280 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
4281 		if (before(ack, prior_snd_una - max_window)) {
4282 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
4283 				tcp_send_challenge_ack(sk, false);
4284 			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
4285 		}
4286 		goto old_ack;
4287 	}
4288 
4289 	/* If the ack includes data we haven't sent yet, discard
4290 	 * this segment (RFC793 Section 3.9).
4291 	 */
4292 	if (after(ack, tp->snd_nxt))
4293 		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
4294 
4295 	if (after(ack, prior_snd_una)) {
4296 		flag |= FLAG_SND_UNA_ADVANCED;
4297 		WRITE_ONCE(icsk->icsk_retransmits, 0);
4298 
4299 #if IS_ENABLED(CONFIG_TLS_DEVICE)
4300 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
4301 			if (tp->tcp_clean_acked)
4302 				tp->tcp_clean_acked(sk, ack);
4303 #endif
4304 	}
4305 
4306 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
4307 	rs.prior_in_flight = tcp_packets_in_flight(tp);
4308 
4309 	/* ts_recent update must be made after we are sure that the packet
4310 	 * is in window.
4311 	 */
4312 	if (flag & FLAG_UPDATE_TS_RECENT)
4313 		flag |= tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4314 
4315 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
4316 	    FLAG_SND_UNA_ADVANCED) {
4317 		/* Window is constant, pure forward advance.
4318 		 * No more checks are required.
4319 		 * Note, we use the fact that SND.UNA>=SND.WL2.
4320 		 */
4321 		tcp_update_wl(tp, ack_seq);
4322 		tcp_snd_una_update(tp, ack);
4323 		flag |= FLAG_WIN_UPDATE;
4324 
4325 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
4326 	} else {
4327 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
4328 			flag |= FLAG_DATA;
4329 		else
4330 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
4331 
4332 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
4333 
4334 		if (TCP_SKB_CB(skb)->sacked)
4335 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4336 							&sack_state);
4337 
4338 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb)))
4339 			flag |= FLAG_ECE;
4340 
4341 		if (sack_state.sack_delivered)
4342 			tcp_count_delivered(tp, sack_state.sack_delivered,
4343 					    flag & FLAG_ECE);
4344 	}
4345 
4346 	/* This is a deviation from RFC3168 since it states that:
4347 	 * "When the TCP data sender is ready to set the CWR bit after reducing
4348 	 * the congestion window, it SHOULD set the CWR bit only on the first
4349 	 * new data packet that it transmits."
4350 	 * We accept CWR on pure ACKs to be more robust
4351 	 * with widely-deployed TCP implementations that do this.
4352 	 */
4353 	tcp_ecn_accept_cwr(sk, skb);
4354 
4355 	/* We passed data and got it acked, remove any soft error
4356 	 * log. Something worked...
4357 	 */
4358 	if (READ_ONCE(sk->sk_err_soft))
4359 		WRITE_ONCE(sk->sk_err_soft, 0);
4360 	WRITE_ONCE(icsk->icsk_probes_out, 0);
4361 	tp->rcv_tstamp = tcp_jiffies32;
4362 	if (!prior_packets)
4363 		goto no_queue;
4364 
4365 	/* See if we can take anything off of the retransmit queue. */
4366 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
4367 				    &sack_state, flag & FLAG_ECE);
4368 
4369 	tcp_rack_update_reo_wnd(sk, &rs);
4370 
4371 	if (tcp_ecn_mode_accecn(tp))
4372 		ecn_count = tcp_accecn_process(sk, skb,
4373 					       tp->delivered - delivered,
4374 					       sack_state.delivered_bytes,
4375 					       &flag);
4376 
4377 	tcp_in_ack_event(sk, flag);
4378 
4379 	if (unlikely(tp->tlp_high_seq))
4380 		tcp_process_tlp_ack(sk, ack, flag);
4381 
4382 	if (tcp_ack_is_dubious(sk, flag)) {
4383 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
4384 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
4385 			num_dupack = 1;
4386 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
4387 			if (!(flag & FLAG_DATA))
4388 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4389 		}
4390 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4391 				      &rexmit);
4392 	}
4393 
4394 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
4395 	if (flag & FLAG_SET_XMIT_TIMER)
4396 		tcp_set_xmit_timer(sk);
4397 
4398 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
4399 		sk_dst_confirm(sk);
4400 
4401 	delivered = tcp_newly_delivered(sk, delivered, ecn_count, flag);
4402 
4403 	lost = tp->lost - lost;			/* freshly marked lost */
4404 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
4405 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
4406 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
4407 	tcp_xmit_recovery(sk, rexmit);
4408 	return 1;
4409 
4410 no_queue:
4411 	if (tcp_ecn_mode_accecn(tp))
4412 		ecn_count = tcp_accecn_process(sk, skb,
4413 					       tp->delivered - delivered,
4414 					       sack_state.delivered_bytes,
4415 					       &flag);
4416 	tcp_in_ack_event(sk, flag);
4417 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
4418 	if (flag & FLAG_DSACKING_ACK) {
4419 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4420 				      &rexmit);
4421 		tcp_newly_delivered(sk, delivered, ecn_count, flag);
4422 	}
4423 	/* If this ack opens up a zero window, clear backoff.  It was
4424 	 * being used to time the probes, and is probably far higher than
4425 	 * it needs to be for normal retransmission.
4426 	 */
4427 	tcp_ack_probe(sk);
4428 
4429 	if (unlikely(tp->tlp_high_seq))
4430 		tcp_process_tlp_ack(sk, ack, flag);
4431 	return 1;
4432 
4433 old_ack:
4434 	/* If data was SACKed, tag it and see if we should send more data.
4435 	 * If data was DSACKed, see if we can undo a cwnd reduction.
4436 	 */
4437 	if (TCP_SKB_CB(skb)->sacked) {
4438 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4439 						&sack_state);
4440 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4441 				      &rexmit);
4442 		tcp_newly_delivered(sk, delivered, ecn_count, flag);
4443 		tcp_xmit_recovery(sk, rexmit);
4444 	}
4445 
4446 	return 0;
4447 }
4448 
4449 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4450 				      bool syn, struct tcp_fastopen_cookie *foc,
4451 				      bool exp_opt)
4452 {
4453 	/* Valid only in SYN or SYN-ACK with an even length.  */
4454 	if (!foc || !syn || len < 0 || (len & 1))
4455 		return;
4456 
4457 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4458 	    len <= TCP_FASTOPEN_COOKIE_MAX)
4459 		memcpy(foc->val, cookie, len);
4460 	else if (len != 0)
4461 		len = -1;
4462 	foc->len = len;
4463 	foc->exp = exp_opt;
4464 }
4465 
4466 static bool smc_parse_options(const struct tcphdr *th,
4467 			      struct tcp_options_received *opt_rx,
4468 			      const unsigned char *ptr,
4469 			      int opsize)
4470 {
4471 #if IS_ENABLED(CONFIG_SMC)
4472 	if (static_branch_unlikely(&tcp_have_smc)) {
4473 		if (th->syn && !(opsize & 1) &&
4474 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
4475 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4476 			opt_rx->smc_ok = 1;
4477 			return true;
4478 		}
4479 	}
4480 #endif
4481 	return false;
4482 }
4483 
4484 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4485  * value on success.
4486  */
4487 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4488 {
4489 	const unsigned char *ptr = (const unsigned char *)(th + 1);
4490 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4491 	u16 mss = 0;
4492 
4493 	while (length > 0) {
4494 		int opcode = *ptr++;
4495 		int opsize;
4496 
4497 		switch (opcode) {
4498 		case TCPOPT_EOL:
4499 			return mss;
4500 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4501 			length--;
4502 			continue;
4503 		default:
4504 			if (length < 2)
4505 				return mss;
4506 			opsize = *ptr++;
4507 			if (opsize < 2) /* "silly options" */
4508 				return mss;
4509 			if (opsize > length)
4510 				return mss;	/* fail on partial options */
4511 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4512 				u16 in_mss = get_unaligned_be16(ptr);
4513 
4514 				if (in_mss) {
4515 					if (user_mss && user_mss < in_mss)
4516 						in_mss = user_mss;
4517 					mss = in_mss;
4518 				}
4519 			}
4520 			ptr += opsize - 2;
4521 			length -= opsize;
4522 		}
4523 	}
4524 	return mss;
4525 }
4526 
4527 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4528  * But, this can also be called on packets in the established flow when
4529  * the fast version below fails.
4530  */
4531 void tcp_parse_options(const struct net *net,
4532 		       const struct sk_buff *skb,
4533 		       struct tcp_options_received *opt_rx, int estab,
4534 		       struct tcp_fastopen_cookie *foc)
4535 {
4536 	const unsigned char *ptr;
4537 	const struct tcphdr *th = tcp_hdr(skb);
4538 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4539 
4540 	ptr = (const unsigned char *)(th + 1);
4541 	opt_rx->saw_tstamp = 0;
4542 	opt_rx->accecn = 0;
4543 	opt_rx->saw_unknown = 0;
4544 
4545 	while (length > 0) {
4546 		int opcode = *ptr++;
4547 		int opsize;
4548 
4549 		switch (opcode) {
4550 		case TCPOPT_EOL:
4551 			return;
4552 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4553 			length--;
4554 			continue;
4555 		default:
4556 			if (length < 2)
4557 				return;
4558 			opsize = *ptr++;
4559 			if (opsize < 2) /* "silly options" */
4560 				return;
4561 			if (opsize > length)
4562 				return;	/* don't parse partial options */
4563 			switch (opcode) {
4564 			case TCPOPT_MSS:
4565 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4566 					u16 in_mss = get_unaligned_be16(ptr);
4567 					if (in_mss) {
4568 						if (opt_rx->user_mss &&
4569 						    opt_rx->user_mss < in_mss)
4570 							in_mss = opt_rx->user_mss;
4571 						opt_rx->mss_clamp = in_mss;
4572 					}
4573 				}
4574 				break;
4575 			case TCPOPT_WINDOW:
4576 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4577 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4578 					__u8 snd_wscale = *(__u8 *)ptr;
4579 					opt_rx->wscale_ok = 1;
4580 					if (snd_wscale > TCP_MAX_WSCALE) {
4581 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4582 								     __func__,
4583 								     snd_wscale,
4584 								     TCP_MAX_WSCALE);
4585 						snd_wscale = TCP_MAX_WSCALE;
4586 					}
4587 					opt_rx->snd_wscale = snd_wscale;
4588 				}
4589 				break;
4590 			case TCPOPT_TIMESTAMP:
4591 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4592 				    ((estab && opt_rx->tstamp_ok) ||
4593 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4594 					opt_rx->saw_tstamp = 1;
4595 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4596 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4597 				}
4598 				break;
4599 			case TCPOPT_SACK_PERM:
4600 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4601 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4602 					opt_rx->sack_ok = TCP_SACK_SEEN;
4603 					tcp_sack_reset(opt_rx);
4604 				}
4605 				break;
4606 
4607 			case TCPOPT_SACK:
4608 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4609 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4610 				   opt_rx->sack_ok) {
4611 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4612 				}
4613 				break;
4614 #ifdef CONFIG_TCP_MD5SIG
4615 			case TCPOPT_MD5SIG:
4616 				/* The MD5 Hash has already been
4617 				 * checked (see tcp_v{4,6}_rcv()).
4618 				 */
4619 				break;
4620 #endif
4621 #ifdef CONFIG_TCP_AO
4622 			case TCPOPT_AO:
4623 				/* TCP AO has already been checked
4624 				 * (see tcp_inbound_ao_hash()).
4625 				 */
4626 				break;
4627 #endif
4628 			case TCPOPT_FASTOPEN:
4629 				tcp_parse_fastopen_option(
4630 					opsize - TCPOLEN_FASTOPEN_BASE,
4631 					ptr, th->syn, foc, false);
4632 				break;
4633 
4634 			case TCPOPT_ACCECN0:
4635 			case TCPOPT_ACCECN1:
4636 				/* Save offset of AccECN option in TCP header */
4637 				opt_rx->accecn = (ptr - 2) - (__u8 *)th;
4638 				break;
4639 
4640 			case TCPOPT_EXP:
4641 				/* Fast Open option shares code 254 using a
4642 				 * 16 bits magic number.
4643 				 */
4644 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4645 				    get_unaligned_be16(ptr) ==
4646 				    TCPOPT_FASTOPEN_MAGIC) {
4647 					tcp_parse_fastopen_option(opsize -
4648 						TCPOLEN_EXP_FASTOPEN_BASE,
4649 						ptr + 2, th->syn, foc, true);
4650 					break;
4651 				}
4652 
4653 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4654 					break;
4655 
4656 				opt_rx->saw_unknown = 1;
4657 				break;
4658 
4659 			default:
4660 				opt_rx->saw_unknown = 1;
4661 			}
4662 			ptr += opsize-2;
4663 			length -= opsize;
4664 		}
4665 	}
4666 }
4667 EXPORT_SYMBOL(tcp_parse_options);
4668 
4669 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4670 {
4671 	const __be32 *ptr = (const __be32 *)(th + 1);
4672 
4673 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4674 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4675 		tp->rx_opt.saw_tstamp = 1;
4676 		++ptr;
4677 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4678 		++ptr;
4679 		if (*ptr)
4680 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4681 		else
4682 			tp->rx_opt.rcv_tsecr = 0;
4683 		return true;
4684 	}
4685 	return false;
4686 }
4687 
4688 /* Fast parse options. This hopes to only see timestamps.
4689  * If it is wrong it falls back on tcp_parse_options().
4690  */
4691 static bool tcp_fast_parse_options(const struct net *net,
4692 				   const struct sk_buff *skb,
4693 				   const struct tcphdr *th, struct tcp_sock *tp)
4694 {
4695 	/* In the spirit of fast parsing, compare doff directly to constant
4696 	 * values.  Because equality is used, short doff can be ignored here.
4697 	 */
4698 	if (th->doff == (sizeof(*th) / 4)) {
4699 		tp->rx_opt.saw_tstamp = 0;
4700 		tp->rx_opt.accecn = 0;
4701 		return false;
4702 	} else if (tp->rx_opt.tstamp_ok &&
4703 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4704 		if (tcp_parse_aligned_timestamp(tp, th)) {
4705 			tp->rx_opt.accecn = 0;
4706 			return true;
4707 		}
4708 	}
4709 
4710 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4711 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4712 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4713 
4714 	return true;
4715 }
4716 
4717 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4718 /*
4719  * Parse Signature options
4720  */
4721 int tcp_do_parse_auth_options(const struct tcphdr *th,
4722 			      const u8 **md5_hash, const u8 **ao_hash)
4723 {
4724 	int length = (th->doff << 2) - sizeof(*th);
4725 	const u8 *ptr = (const u8 *)(th + 1);
4726 	unsigned int minlen = TCPOLEN_MD5SIG;
4727 
4728 	if (IS_ENABLED(CONFIG_TCP_AO))
4729 		minlen = sizeof(struct tcp_ao_hdr) + 1;
4730 
4731 	*md5_hash = NULL;
4732 	*ao_hash = NULL;
4733 
4734 	/* If not enough data remaining, we can short cut */
4735 	while (length >= minlen) {
4736 		int opcode = *ptr++;
4737 		int opsize;
4738 
4739 		switch (opcode) {
4740 		case TCPOPT_EOL:
4741 			return 0;
4742 		case TCPOPT_NOP:
4743 			length--;
4744 			continue;
4745 		default:
4746 			opsize = *ptr++;
4747 			if (opsize < 2 || opsize > length)
4748 				return -EINVAL;
4749 			if (opcode == TCPOPT_MD5SIG) {
4750 				if (opsize != TCPOLEN_MD5SIG)
4751 					return -EINVAL;
4752 				if (unlikely(*md5_hash || *ao_hash))
4753 					return -EEXIST;
4754 				*md5_hash = ptr;
4755 			} else if (opcode == TCPOPT_AO) {
4756 				if (opsize <= sizeof(struct tcp_ao_hdr))
4757 					return -EINVAL;
4758 				if (unlikely(*md5_hash || *ao_hash))
4759 					return -EEXIST;
4760 				*ao_hash = ptr;
4761 			}
4762 		}
4763 		ptr += opsize - 2;
4764 		length -= opsize;
4765 	}
4766 	return 0;
4767 }
4768 EXPORT_SYMBOL(tcp_do_parse_auth_options);
4769 #endif
4770 
4771 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4772  *
4773  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4774  * it can pass through stack. So, the following predicate verifies that
4775  * this segment is not used for anything but congestion avoidance or
4776  * fast retransmit. Moreover, we even are able to eliminate most of such
4777  * second order effects, if we apply some small "replay" window (~RTO)
4778  * to timestamp space.
4779  *
4780  * All these measures still do not guarantee that we reject wrapped ACKs
4781  * on networks with high bandwidth, when sequence space is recycled fastly,
4782  * but it guarantees that such events will be very rare and do not affect
4783  * connection seriously. This doesn't look nice, but alas, PAWS is really
4784  * buggy extension.
4785  *
4786  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4787  * states that events when retransmit arrives after original data are rare.
4788  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4789  * the biggest problem on large power networks even with minor reordering.
4790  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4791  * up to bandwidth of 18Gigabit/sec. 8) ]
4792  */
4793 
4794 /* Estimates max number of increments of remote peer TSval in
4795  * a replay window (based on our current RTO estimation).
4796  */
4797 static u32 tcp_tsval_replay(const struct sock *sk)
4798 {
4799 	/* If we use usec TS resolution,
4800 	 * then expect the remote peer to use the same resolution.
4801 	 */
4802 	if (tcp_sk(sk)->tcp_usec_ts)
4803 		return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ);
4804 
4805 	/* RFC 7323 recommends a TSval clock between 1ms and 1sec.
4806 	 * We know that some OS (including old linux) can use 1200 Hz.
4807 	 */
4808 	return inet_csk(sk)->icsk_rto * 1200 / HZ;
4809 }
4810 
4811 static enum skb_drop_reason tcp_disordered_ack_check(const struct sock *sk,
4812 						     const struct sk_buff *skb)
4813 {
4814 	const struct tcp_sock *tp = tcp_sk(sk);
4815 	const struct tcphdr *th = tcp_hdr(skb);
4816 	SKB_DR_INIT(reason, TCP_RFC7323_PAWS);
4817 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4818 	u32 seq = TCP_SKB_CB(skb)->seq;
4819 
4820 	/* 1. Is this not a pure ACK ? */
4821 	if (!th->ack || seq != TCP_SKB_CB(skb)->end_seq)
4822 		return reason;
4823 
4824 	/* 2. Is its sequence not the expected one ? */
4825 	if (seq != tp->rcv_nxt)
4826 		return before(seq, tp->rcv_nxt) ?
4827 			SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK :
4828 			reason;
4829 
4830 	/* 3. Is this not a duplicate ACK ? */
4831 	if (ack != tp->snd_una)
4832 		return reason;
4833 
4834 	/* 4. Is this updating the window ? */
4835 	if (tcp_may_update_window(tp, ack, seq, ntohs(th->window) <<
4836 						tp->rx_opt.snd_wscale))
4837 		return reason;
4838 
4839 	/* 5. Is this not in the replay window ? */
4840 	if ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) >
4841 	    tcp_tsval_replay(sk))
4842 		return reason;
4843 
4844 	return 0;
4845 }
4846 
4847 /* Check segment sequence number for validity.
4848  *
4849  * Segment controls are considered valid, if the segment
4850  * fits to the window after truncation to the window. Acceptability
4851  * of data (and SYN, FIN, of course) is checked separately.
4852  * See tcp_data_queue(), for example.
4853  *
4854  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4855  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4856  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4857  * (borrowed from freebsd)
4858  */
4859 
4860 static enum skb_drop_reason tcp_sequence(const struct sock *sk,
4861 					 u32 seq, u32 end_seq)
4862 {
4863 	const struct tcp_sock *tp = tcp_sk(sk);
4864 
4865 	if (before(end_seq, tp->rcv_wup))
4866 		return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4867 
4868 	if (after(end_seq, tp->rcv_nxt + tcp_receive_window(tp))) {
4869 		if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4870 			return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4871 
4872 		/* Only accept this packet if receive queue is empty. */
4873 		if (skb_queue_len(&sk->sk_receive_queue))
4874 			return SKB_DROP_REASON_TCP_INVALID_END_SEQUENCE;
4875 	}
4876 
4877 	return SKB_NOT_DROPPED_YET;
4878 }
4879 
4880 
4881 void tcp_done_with_error(struct sock *sk, int err)
4882 {
4883 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4884 	WRITE_ONCE(sk->sk_err, err);
4885 	smp_wmb();
4886 
4887 	tcp_write_queue_purge(sk);
4888 	tcp_done(sk);
4889 
4890 	if (!sock_flag(sk, SOCK_DEAD))
4891 		sk_error_report(sk);
4892 }
4893 EXPORT_IPV6_MOD(tcp_done_with_error);
4894 
4895 /* When we get a reset we do this. */
4896 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4897 {
4898 	int err;
4899 
4900 	trace_tcp_receive_reset(sk);
4901 
4902 	/* mptcp can't tell us to ignore reset pkts,
4903 	 * so just ignore the return value of mptcp_incoming_options().
4904 	 */
4905 	if (sk_is_mptcp(sk))
4906 		mptcp_incoming_options(sk, skb);
4907 
4908 	/* We want the right error as BSD sees it (and indeed as we do). */
4909 	switch (sk->sk_state) {
4910 	case TCP_SYN_SENT:
4911 		err = ECONNREFUSED;
4912 		break;
4913 	case TCP_CLOSE_WAIT:
4914 		err = EPIPE;
4915 		break;
4916 	case TCP_CLOSE:
4917 		return;
4918 	default:
4919 		err = ECONNRESET;
4920 	}
4921 	tcp_done_with_error(sk, err);
4922 }
4923 
4924 /*
4925  * 	Process the FIN bit. This now behaves as it is supposed to work
4926  *	and the FIN takes effect when it is validly part of sequence
4927  *	space. Not before when we get holes.
4928  *
4929  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4930  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4931  *	TIME-WAIT)
4932  *
4933  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4934  *	close and we go into CLOSING (and later onto TIME-WAIT)
4935  *
4936  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4937  */
4938 void tcp_fin(struct sock *sk)
4939 {
4940 	struct tcp_sock *tp = tcp_sk(sk);
4941 
4942 	inet_csk_schedule_ack(sk);
4943 
4944 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4945 	sock_set_flag(sk, SOCK_DONE);
4946 
4947 	switch (sk->sk_state) {
4948 	case TCP_SYN_RECV:
4949 	case TCP_ESTABLISHED:
4950 		/* Move to CLOSE_WAIT */
4951 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4952 		inet_csk_enter_pingpong_mode(sk);
4953 		break;
4954 
4955 	case TCP_CLOSE_WAIT:
4956 	case TCP_CLOSING:
4957 		/* Received a retransmission of the FIN, do
4958 		 * nothing.
4959 		 */
4960 		break;
4961 	case TCP_LAST_ACK:
4962 		/* RFC793: Remain in the LAST-ACK state. */
4963 		break;
4964 
4965 	case TCP_FIN_WAIT1:
4966 		/* This case occurs when a simultaneous close
4967 		 * happens, we must ack the received FIN and
4968 		 * enter the CLOSING state.
4969 		 */
4970 		tcp_send_ack(sk);
4971 		tcp_set_state(sk, TCP_CLOSING);
4972 		break;
4973 	case TCP_FIN_WAIT2:
4974 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4975 		tcp_send_ack(sk);
4976 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4977 		break;
4978 	default:
4979 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4980 		 * cases we should never reach this piece of code.
4981 		 */
4982 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4983 		       __func__, sk->sk_state);
4984 		break;
4985 	}
4986 
4987 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4988 	 * Probably, we should reset in this case. For now drop them.
4989 	 */
4990 	skb_rbtree_purge(&tp->out_of_order_queue);
4991 	if (tcp_is_sack(tp))
4992 		tcp_sack_reset(&tp->rx_opt);
4993 
4994 	if (!sock_flag(sk, SOCK_DEAD)) {
4995 		sk->sk_state_change(sk);
4996 
4997 		/* Do not send POLL_HUP for half duplex close. */
4998 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4999 		    sk->sk_state == TCP_CLOSE)
5000 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
5001 		else
5002 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
5003 	}
5004 }
5005 
5006 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
5007 				  u32 end_seq)
5008 {
5009 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
5010 		if (before(seq, sp->start_seq))
5011 			sp->start_seq = seq;
5012 		if (after(end_seq, sp->end_seq))
5013 			sp->end_seq = end_seq;
5014 		return true;
5015 	}
5016 	return false;
5017 }
5018 
5019 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
5020 {
5021 	struct tcp_sock *tp = tcp_sk(sk);
5022 
5023 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
5024 		int mib_idx;
5025 
5026 		if (before(seq, tp->rcv_nxt))
5027 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
5028 		else
5029 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
5030 
5031 		NET_INC_STATS(sock_net(sk), mib_idx);
5032 
5033 		tp->rx_opt.dsack = 1;
5034 		tp->duplicate_sack[0].start_seq = seq;
5035 		tp->duplicate_sack[0].end_seq = end_seq;
5036 	}
5037 }
5038 
5039 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
5040 {
5041 	struct tcp_sock *tp = tcp_sk(sk);
5042 
5043 	if (!tp->rx_opt.dsack)
5044 		tcp_dsack_set(sk, seq, end_seq);
5045 	else
5046 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
5047 }
5048 
5049 static void tcp_rcv_spurious_retrans(struct sock *sk,
5050 				     const struct sk_buff *skb)
5051 {
5052 	struct tcp_sock *tp = tcp_sk(sk);
5053 
5054 	/* When the ACK path fails or drops most ACKs, the sender would
5055 	 * timeout and spuriously retransmit the same segment repeatedly.
5056 	 * If it seems our ACKs are not reaching the other side,
5057 	 * based on receiving a duplicate data segment with new flowlabel
5058 	 * (suggesting the sender suffered an RTO), and we are not already
5059 	 * repathing due to our own RTO, then rehash the socket to repath our
5060 	 * packets.
5061 	 */
5062 #if IS_ENABLED(CONFIG_IPV6)
5063 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss &&
5064 	    skb->protocol == htons(ETH_P_IPV6) &&
5065 	    (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel !=
5066 	     ntohl(ip6_flowlabel(ipv6_hdr(skb)))) &&
5067 	    sk_rethink_txhash(sk))
5068 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
5069 
5070 	/* Save last flowlabel after a spurious retrans. */
5071 	tcp_save_lrcv_flowlabel(sk, skb);
5072 #endif
5073 	/* Check DSACK info to detect that the previous ACK carrying the
5074 	 * AccECN option was lost after the second retransmision, and then
5075 	 * stop sending AccECN option in all subsequent ACKs.
5076 	 */
5077 	if (tcp_ecn_mode_accecn(tp) &&
5078 	    tp->accecn_opt_sent_w_dsack &&
5079 	    TCP_SKB_CB(skb)->seq == tp->duplicate_sack[0].start_seq)
5080 		tcp_accecn_fail_mode_set(tp, TCP_ACCECN_OPT_FAIL_SEND);
5081 }
5082 
5083 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
5084 {
5085 	struct tcp_sock *tp = tcp_sk(sk);
5086 
5087 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5088 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5089 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5090 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5091 
5092 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
5093 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
5094 
5095 			tcp_rcv_spurious_retrans(sk, skb);
5096 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
5097 				end_seq = tp->rcv_nxt;
5098 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
5099 		}
5100 	}
5101 
5102 	tcp_send_ack(sk);
5103 }
5104 
5105 /* These routines update the SACK block as out-of-order packets arrive or
5106  * in-order packets close up the sequence space.
5107  */
5108 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
5109 {
5110 	int this_sack;
5111 	struct tcp_sack_block *sp = &tp->selective_acks[0];
5112 	struct tcp_sack_block *swalk = sp + 1;
5113 
5114 	/* See if the recent change to the first SACK eats into
5115 	 * or hits the sequence space of other SACK blocks, if so coalesce.
5116 	 */
5117 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
5118 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
5119 			int i;
5120 
5121 			/* Zap SWALK, by moving every further SACK up by one slot.
5122 			 * Decrease num_sacks.
5123 			 */
5124 			tp->rx_opt.num_sacks--;
5125 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
5126 				sp[i] = sp[i + 1];
5127 			continue;
5128 		}
5129 		this_sack++;
5130 		swalk++;
5131 	}
5132 }
5133 
5134 void tcp_sack_compress_send_ack(struct sock *sk)
5135 {
5136 	struct tcp_sock *tp = tcp_sk(sk);
5137 
5138 	if (!tp->compressed_ack)
5139 		return;
5140 
5141 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
5142 		__sock_put(sk);
5143 
5144 	/* Since we have to send one ack finally,
5145 	 * substract one from tp->compressed_ack to keep
5146 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
5147 	 */
5148 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5149 		      tp->compressed_ack - 1);
5150 
5151 	tp->compressed_ack = 0;
5152 	tcp_send_ack(sk);
5153 }
5154 
5155 /* Reasonable amount of sack blocks included in TCP SACK option
5156  * The max is 4, but this becomes 3 if TCP timestamps are there.
5157  * Given that SACK packets might be lost, be conservative and use 2.
5158  */
5159 #define TCP_SACK_BLOCKS_EXPECTED 2
5160 
5161 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
5162 {
5163 	struct tcp_sock *tp = tcp_sk(sk);
5164 	struct tcp_sack_block *sp = &tp->selective_acks[0];
5165 	int cur_sacks = tp->rx_opt.num_sacks;
5166 	int this_sack;
5167 
5168 	if (!cur_sacks)
5169 		goto new_sack;
5170 
5171 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
5172 		if (tcp_sack_extend(sp, seq, end_seq)) {
5173 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
5174 				tcp_sack_compress_send_ack(sk);
5175 			/* Rotate this_sack to the first one. */
5176 			for (; this_sack > 0; this_sack--, sp--)
5177 				swap(*sp, *(sp - 1));
5178 			if (cur_sacks > 1)
5179 				tcp_sack_maybe_coalesce(tp);
5180 			return;
5181 		}
5182 	}
5183 
5184 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
5185 		tcp_sack_compress_send_ack(sk);
5186 
5187 	/* Could not find an adjacent existing SACK, build a new one,
5188 	 * put it at the front, and shift everyone else down.  We
5189 	 * always know there is at least one SACK present already here.
5190 	 *
5191 	 * If the sack array is full, forget about the last one.
5192 	 */
5193 	if (this_sack >= TCP_NUM_SACKS) {
5194 		this_sack--;
5195 		tp->rx_opt.num_sacks--;
5196 		sp--;
5197 	}
5198 	for (; this_sack > 0; this_sack--, sp--)
5199 		*sp = *(sp - 1);
5200 
5201 new_sack:
5202 	/* Build the new head SACK, and we're done. */
5203 	sp->start_seq = seq;
5204 	sp->end_seq = end_seq;
5205 	tp->rx_opt.num_sacks++;
5206 }
5207 
5208 /* RCV.NXT advances, some SACKs should be eaten. */
5209 
5210 static void tcp_sack_remove(struct tcp_sock *tp)
5211 {
5212 	struct tcp_sack_block *sp = &tp->selective_acks[0];
5213 	int num_sacks = tp->rx_opt.num_sacks;
5214 	int this_sack;
5215 
5216 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
5217 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5218 		tp->rx_opt.num_sacks = 0;
5219 		return;
5220 	}
5221 
5222 	for (this_sack = 0; this_sack < num_sacks;) {
5223 		/* Check if the start of the sack is covered by RCV.NXT. */
5224 		if (!before(tp->rcv_nxt, sp->start_seq)) {
5225 			int i;
5226 
5227 			/* RCV.NXT must cover all the block! */
5228 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
5229 
5230 			/* Zap this SACK, by moving forward any other SACKS. */
5231 			for (i = this_sack+1; i < num_sacks; i++)
5232 				tp->selective_acks[i-1] = tp->selective_acks[i];
5233 			num_sacks--;
5234 			continue;
5235 		}
5236 		this_sack++;
5237 		sp++;
5238 	}
5239 	tp->rx_opt.num_sacks = num_sacks;
5240 }
5241 
5242 /**
5243  * tcp_try_coalesce - try to merge skb to prior one
5244  * @sk: socket
5245  * @to: prior buffer
5246  * @from: buffer to add in queue
5247  * @fragstolen: pointer to boolean
5248  *
5249  * Before queueing skb @from after @to, try to merge them
5250  * to reduce overall memory use and queue lengths, if cost is small.
5251  * Packets in ofo or receive queues can stay a long time.
5252  * Better try to coalesce them right now to avoid future collapses.
5253  * Returns true if caller should free @from instead of queueing it
5254  */
5255 static bool tcp_try_coalesce(struct sock *sk,
5256 			     struct sk_buff *to,
5257 			     struct sk_buff *from,
5258 			     bool *fragstolen)
5259 {
5260 	int delta;
5261 
5262 	*fragstolen = false;
5263 
5264 	/* Its possible this segment overlaps with prior segment in queue */
5265 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
5266 		return false;
5267 
5268 	if (!tcp_skb_can_collapse_rx(to, from))
5269 		return false;
5270 
5271 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
5272 		return false;
5273 
5274 	atomic_add(delta, &sk->sk_rmem_alloc);
5275 	sk_mem_charge(sk, delta);
5276 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
5277 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
5278 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
5279 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
5280 
5281 	if (TCP_SKB_CB(from)->has_rxtstamp) {
5282 		TCP_SKB_CB(to)->has_rxtstamp = true;
5283 		to->tstamp = from->tstamp;
5284 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
5285 	}
5286 
5287 	return true;
5288 }
5289 
5290 static bool tcp_ooo_try_coalesce(struct sock *sk,
5291 			     struct sk_buff *to,
5292 			     struct sk_buff *from,
5293 			     bool *fragstolen)
5294 {
5295 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
5296 
5297 	/* In case tcp_drop_reason() is called later, update to->gso_segs */
5298 	if (res) {
5299 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
5300 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
5301 
5302 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
5303 	}
5304 	return res;
5305 }
5306 
5307 noinline_for_tracing static void
5308 tcp_drop_reason(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
5309 {
5310 	sk_drops_skbadd(sk, skb);
5311 	sk_skb_reason_drop(sk, skb, reason);
5312 }
5313 
5314 /* This one checks to see if we can put data from the
5315  * out_of_order queue into the receive_queue.
5316  */
5317 static void tcp_ofo_queue(struct sock *sk)
5318 {
5319 	struct tcp_sock *tp = tcp_sk(sk);
5320 	__u32 dsack_high = tp->rcv_nxt;
5321 	bool fin, fragstolen, eaten;
5322 	struct sk_buff *skb, *tail;
5323 	struct rb_node *p;
5324 
5325 	p = rb_first(&tp->out_of_order_queue);
5326 	while (p) {
5327 		skb = rb_to_skb(p);
5328 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5329 			break;
5330 
5331 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
5332 			__u32 dsack = dsack_high;
5333 
5334 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
5335 				dsack = TCP_SKB_CB(skb)->end_seq;
5336 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
5337 		}
5338 		p = rb_next(p);
5339 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
5340 
5341 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
5342 			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
5343 			continue;
5344 		}
5345 
5346 		tail = skb_peek_tail(&sk->sk_receive_queue);
5347 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
5348 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5349 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
5350 		if (!eaten)
5351 			tcp_add_receive_queue(sk, skb);
5352 		else
5353 			kfree_skb_partial(skb, fragstolen);
5354 
5355 		if (unlikely(fin)) {
5356 			tcp_fin(sk);
5357 			/* tcp_fin() purges tp->out_of_order_queue,
5358 			 * so we must end this loop right now.
5359 			 */
5360 			break;
5361 		}
5362 	}
5363 }
5364 
5365 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
5366 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
5367 
5368 /* Check if this incoming skb can be added to socket receive queues
5369  * while satisfying sk->sk_rcvbuf limit.
5370  *
5371  * In theory we should use skb->truesize, but this can cause problems
5372  * when applications use too small SO_RCVBUF values.
5373  * When LRO / hw gro is used, the socket might have a high tp->scaling_ratio,
5374  * allowing RWIN to be close to available space.
5375  * Whenever the receive queue gets full, we can receive a small packet
5376  * filling RWIN, but with a high skb->truesize, because most NIC use 4K page
5377  * plus sk_buff metadata even when receiving less than 1500 bytes of payload.
5378  *
5379  * Note that we use skb->len to decide to accept or drop this packet,
5380  * but sk->sk_rmem_alloc is the sum of all skb->truesize.
5381  */
5382 static bool tcp_can_ingest(const struct sock *sk, const struct sk_buff *skb)
5383 {
5384 	unsigned int rmem = atomic_read(&sk->sk_rmem_alloc);
5385 
5386 	return rmem + skb->len <= sk->sk_rcvbuf;
5387 }
5388 
5389 static int tcp_try_rmem_schedule(struct sock *sk, const struct sk_buff *skb,
5390 				 unsigned int size)
5391 {
5392 	if (!tcp_can_ingest(sk, skb) ||
5393 	    !sk_rmem_schedule(sk, skb, size)) {
5394 
5395 		if (tcp_prune_queue(sk, skb) < 0)
5396 			return -1;
5397 
5398 		while (!sk_rmem_schedule(sk, skb, size)) {
5399 			if (!tcp_prune_ofo_queue(sk, skb))
5400 				return -1;
5401 		}
5402 	}
5403 	return 0;
5404 }
5405 
5406 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
5407 {
5408 	struct tcp_sock *tp = tcp_sk(sk);
5409 	struct rb_node **p, *parent;
5410 	struct sk_buff *skb1;
5411 	u32 seq, end_seq;
5412 	bool fragstolen;
5413 
5414 	tcp_save_lrcv_flowlabel(sk, skb);
5415 	tcp_data_ecn_check(sk, skb);
5416 
5417 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
5418 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
5419 		sk->sk_data_ready(sk);
5420 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
5421 		return;
5422 	}
5423 
5424 	tcp_measure_rcv_mss(sk, skb);
5425 	/* Disable header prediction. */
5426 	tp->pred_flags = 0;
5427 	inet_csk_schedule_ack(sk);
5428 
5429 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
5430 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
5431 	seq = TCP_SKB_CB(skb)->seq;
5432 	end_seq = TCP_SKB_CB(skb)->end_seq;
5433 
5434 	p = &tp->out_of_order_queue.rb_node;
5435 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5436 		/* Initial out of order segment, build 1 SACK. */
5437 		if (tcp_is_sack(tp)) {
5438 			tp->rx_opt.num_sacks = 1;
5439 			tp->selective_acks[0].start_seq = seq;
5440 			tp->selective_acks[0].end_seq = end_seq;
5441 		}
5442 		rb_link_node(&skb->rbnode, NULL, p);
5443 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5444 		tp->ooo_last_skb = skb;
5445 		goto end;
5446 	}
5447 
5448 	/* In the typical case, we are adding an skb to the end of the list.
5449 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
5450 	 */
5451 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
5452 				 skb, &fragstolen)) {
5453 coalesce_done:
5454 		/* For non sack flows, do not grow window to force DUPACK
5455 		 * and trigger fast retransmit.
5456 		 */
5457 		if (tcp_is_sack(tp))
5458 			tcp_grow_window(sk, skb, true);
5459 		kfree_skb_partial(skb, fragstolen);
5460 		skb = NULL;
5461 		goto add_sack;
5462 	}
5463 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
5464 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
5465 		parent = &tp->ooo_last_skb->rbnode;
5466 		p = &parent->rb_right;
5467 		goto insert;
5468 	}
5469 
5470 	/* Find place to insert this segment. Handle overlaps on the way. */
5471 	parent = NULL;
5472 	while (*p) {
5473 		parent = *p;
5474 		skb1 = rb_to_skb(parent);
5475 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
5476 			p = &parent->rb_left;
5477 			continue;
5478 		}
5479 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
5480 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5481 				/* All the bits are present. Drop. */
5482 				NET_INC_STATS(sock_net(sk),
5483 					      LINUX_MIB_TCPOFOMERGE);
5484 				tcp_drop_reason(sk, skb,
5485 						SKB_DROP_REASON_TCP_OFOMERGE);
5486 				skb = NULL;
5487 				tcp_dsack_set(sk, seq, end_seq);
5488 				goto add_sack;
5489 			}
5490 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
5491 				/* Partial overlap. */
5492 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
5493 			} else {
5494 				/* skb's seq == skb1's seq and skb covers skb1.
5495 				 * Replace skb1 with skb.
5496 				 */
5497 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
5498 						&tp->out_of_order_queue);
5499 				tcp_dsack_extend(sk,
5500 						 TCP_SKB_CB(skb1)->seq,
5501 						 TCP_SKB_CB(skb1)->end_seq);
5502 				NET_INC_STATS(sock_net(sk),
5503 					      LINUX_MIB_TCPOFOMERGE);
5504 				tcp_drop_reason(sk, skb1,
5505 						SKB_DROP_REASON_TCP_OFOMERGE);
5506 				goto merge_right;
5507 			}
5508 		} else if (tcp_ooo_try_coalesce(sk, skb1,
5509 						skb, &fragstolen)) {
5510 			goto coalesce_done;
5511 		}
5512 		p = &parent->rb_right;
5513 	}
5514 insert:
5515 	/* Insert segment into RB tree. */
5516 	rb_link_node(&skb->rbnode, parent, p);
5517 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5518 
5519 merge_right:
5520 	/* Remove other segments covered by skb. */
5521 	while ((skb1 = skb_rb_next(skb)) != NULL) {
5522 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5523 			break;
5524 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5525 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5526 					 end_seq);
5527 			break;
5528 		}
5529 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5530 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5531 				 TCP_SKB_CB(skb1)->end_seq);
5532 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5533 		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5534 	}
5535 	/* If there is no skb after us, we are the last_skb ! */
5536 	if (!skb1)
5537 		tp->ooo_last_skb = skb;
5538 
5539 add_sack:
5540 	if (tcp_is_sack(tp))
5541 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
5542 end:
5543 	if (skb) {
5544 		/* For non sack flows, do not grow window to force DUPACK
5545 		 * and trigger fast retransmit.
5546 		 */
5547 		if (tcp_is_sack(tp))
5548 			tcp_grow_window(sk, skb, false);
5549 		skb_condense(skb);
5550 		skb_set_owner_r(skb, sk);
5551 	}
5552 	/* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */
5553 	if (sk->sk_socket)
5554 		tcp_rcvbuf_grow(sk, tp->rcvq_space.space);
5555 }
5556 
5557 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5558 				      bool *fragstolen)
5559 {
5560 	int eaten;
5561 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5562 
5563 	eaten = (tail &&
5564 		 tcp_try_coalesce(sk, tail,
5565 				  skb, fragstolen)) ? 1 : 0;
5566 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5567 	if (!eaten) {
5568 		tcp_add_receive_queue(sk, skb);
5569 		skb_set_owner_r(skb, sk);
5570 	}
5571 	return eaten;
5572 }
5573 
5574 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5575 {
5576 	struct sk_buff *skb;
5577 	int err = -ENOMEM;
5578 	int data_len = 0;
5579 	bool fragstolen;
5580 
5581 	if (size == 0)
5582 		return 0;
5583 
5584 	if (size > PAGE_SIZE) {
5585 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5586 
5587 		data_len = npages << PAGE_SHIFT;
5588 		size = data_len + (size & ~PAGE_MASK);
5589 	}
5590 	skb = alloc_skb_with_frags(size - data_len, data_len,
5591 				   PAGE_ALLOC_COSTLY_ORDER,
5592 				   &err, sk->sk_allocation);
5593 	if (!skb)
5594 		goto err;
5595 
5596 	skb_put(skb, size - data_len);
5597 	skb->data_len = data_len;
5598 	skb->len = size;
5599 
5600 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5601 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5602 		goto err_free;
5603 	}
5604 
5605 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5606 	if (err)
5607 		goto err_free;
5608 
5609 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5610 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5611 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5612 
5613 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5614 		WARN_ON_ONCE(fragstolen); /* should not happen */
5615 		__kfree_skb(skb);
5616 	}
5617 	return size;
5618 
5619 err_free:
5620 	kfree_skb(skb);
5621 err:
5622 	return err;
5623 
5624 }
5625 
5626 void tcp_data_ready(struct sock *sk)
5627 {
5628 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5629 		sk->sk_data_ready(sk);
5630 }
5631 
5632 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5633 {
5634 	struct tcp_sock *tp = tcp_sk(sk);
5635 	enum skb_drop_reason reason;
5636 	bool fragstolen;
5637 	int eaten;
5638 
5639 	/* If a subflow has been reset, the packet should not continue
5640 	 * to be processed, drop the packet.
5641 	 */
5642 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5643 		__kfree_skb(skb);
5644 		return;
5645 	}
5646 
5647 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5648 		__kfree_skb(skb);
5649 		return;
5650 	}
5651 	tcp_cleanup_skb(skb);
5652 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5653 
5654 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5655 	tp->rx_opt.dsack = 0;
5656 
5657 	/*  Queue data for delivery to the user.
5658 	 *  Packets in sequence go to the receive queue.
5659 	 *  Out of sequence packets to the out_of_order_queue.
5660 	 */
5661 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5662 		if (tcp_receive_window(tp) == 0) {
5663 			/* Some stacks are known to send bare FIN packets
5664 			 * in a loop even if we send RWIN 0 in our ACK.
5665 			 * Accepting this FIN does not hurt memory pressure
5666 			 * because the FIN flag will simply be merged to the
5667 			 * receive queue tail skb in most cases.
5668 			 */
5669 			if (!skb->len &&
5670 			    (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
5671 				goto queue_and_out;
5672 
5673 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5674 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5675 			goto out_of_window;
5676 		}
5677 
5678 		/* Ok. In sequence. In window. */
5679 queue_and_out:
5680 		if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5681 			/* TODO: maybe ratelimit these WIN 0 ACK ? */
5682 			inet_csk(sk)->icsk_ack.pending |=
5683 					(ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5684 			inet_csk_schedule_ack(sk);
5685 			sk->sk_data_ready(sk);
5686 
5687 			if (skb_queue_len(&sk->sk_receive_queue) && skb->len) {
5688 				reason = SKB_DROP_REASON_PROTO_MEM;
5689 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5690 				goto drop;
5691 			}
5692 			sk_forced_mem_schedule(sk, skb->truesize);
5693 		}
5694 
5695 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5696 		if (skb->len)
5697 			tcp_event_data_recv(sk, skb);
5698 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5699 			tcp_fin(sk);
5700 
5701 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5702 			tcp_ofo_queue(sk);
5703 
5704 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5705 			 * gap in queue is filled.
5706 			 */
5707 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5708 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5709 		}
5710 
5711 		if (tp->rx_opt.num_sacks)
5712 			tcp_sack_remove(tp);
5713 
5714 		tcp_fast_path_check(sk);
5715 
5716 		if (eaten > 0)
5717 			kfree_skb_partial(skb, fragstolen);
5718 		if (!sock_flag(sk, SOCK_DEAD))
5719 			tcp_data_ready(sk);
5720 		return;
5721 	}
5722 
5723 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5724 		tcp_rcv_spurious_retrans(sk, skb);
5725 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5726 		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5727 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5728 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5729 
5730 out_of_window:
5731 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5732 		inet_csk_schedule_ack(sk);
5733 drop:
5734 		tcp_drop_reason(sk, skb, reason);
5735 		return;
5736 	}
5737 
5738 	/* Out of window. F.e. zero window probe. */
5739 	if (!before(TCP_SKB_CB(skb)->seq,
5740 		    tp->rcv_nxt + tcp_receive_window(tp))) {
5741 		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5742 		goto out_of_window;
5743 	}
5744 
5745 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5746 		/* Partial packet, seq < rcv_next < end_seq */
5747 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5748 
5749 		/* If window is closed, drop tail of packet. But after
5750 		 * remembering D-SACK for its head made in previous line.
5751 		 */
5752 		if (!tcp_receive_window(tp)) {
5753 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5754 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5755 			goto out_of_window;
5756 		}
5757 		goto queue_and_out;
5758 	}
5759 
5760 	tcp_data_queue_ofo(sk, skb);
5761 }
5762 
5763 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5764 {
5765 	if (list)
5766 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5767 
5768 	return skb_rb_next(skb);
5769 }
5770 
5771 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5772 					struct sk_buff_head *list,
5773 					struct rb_root *root)
5774 {
5775 	struct sk_buff *next = tcp_skb_next(skb, list);
5776 
5777 	if (list)
5778 		__skb_unlink(skb, list);
5779 	else
5780 		rb_erase(&skb->rbnode, root);
5781 
5782 	__kfree_skb(skb);
5783 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5784 
5785 	return next;
5786 }
5787 
5788 /* Collapse contiguous sequence of skbs head..tail with
5789  * sequence numbers start..end.
5790  *
5791  * If tail is NULL, this means until the end of the queue.
5792  *
5793  * Segments with FIN/SYN are not collapsed (only because this
5794  * simplifies code)
5795  */
5796 static void
5797 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5798 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5799 {
5800 	struct sk_buff *skb = head, *n;
5801 	struct sk_buff_head tmp;
5802 	bool end_of_skbs;
5803 
5804 	/* First, check that queue is collapsible and find
5805 	 * the point where collapsing can be useful.
5806 	 */
5807 restart:
5808 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5809 		n = tcp_skb_next(skb, list);
5810 
5811 		if (!skb_frags_readable(skb))
5812 			goto skip_this;
5813 
5814 		/* No new bits? It is possible on ofo queue. */
5815 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5816 			skb = tcp_collapse_one(sk, skb, list, root);
5817 			if (!skb)
5818 				break;
5819 			goto restart;
5820 		}
5821 
5822 		/* The first skb to collapse is:
5823 		 * - not SYN/FIN and
5824 		 * - bloated or contains data before "start" or
5825 		 *   overlaps to the next one and mptcp allow collapsing.
5826 		 */
5827 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5828 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5829 		     before(TCP_SKB_CB(skb)->seq, start))) {
5830 			end_of_skbs = false;
5831 			break;
5832 		}
5833 
5834 		if (n && n != tail && skb_frags_readable(n) &&
5835 		    tcp_skb_can_collapse_rx(skb, n) &&
5836 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5837 			end_of_skbs = false;
5838 			break;
5839 		}
5840 
5841 skip_this:
5842 		/* Decided to skip this, advance start seq. */
5843 		start = TCP_SKB_CB(skb)->end_seq;
5844 	}
5845 	if (end_of_skbs ||
5846 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5847 	    !skb_frags_readable(skb))
5848 		return;
5849 
5850 	__skb_queue_head_init(&tmp);
5851 
5852 	while (before(start, end)) {
5853 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5854 		struct sk_buff *nskb;
5855 
5856 		nskb = alloc_skb(copy, GFP_ATOMIC);
5857 		if (!nskb)
5858 			break;
5859 
5860 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5861 		skb_copy_decrypted(nskb, skb);
5862 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5863 		if (list)
5864 			__skb_queue_before(list, skb, nskb);
5865 		else
5866 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5867 		skb_set_owner_r(nskb, sk);
5868 		mptcp_skb_ext_move(nskb, skb);
5869 
5870 		/* Copy data, releasing collapsed skbs. */
5871 		while (copy > 0) {
5872 			int offset = start - TCP_SKB_CB(skb)->seq;
5873 			int size = TCP_SKB_CB(skb)->end_seq - start;
5874 
5875 			BUG_ON(offset < 0);
5876 			if (size > 0) {
5877 				size = min(copy, size);
5878 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5879 					BUG();
5880 				TCP_SKB_CB(nskb)->end_seq += size;
5881 				copy -= size;
5882 				start += size;
5883 			}
5884 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5885 				skb = tcp_collapse_one(sk, skb, list, root);
5886 				if (!skb ||
5887 				    skb == tail ||
5888 				    !tcp_skb_can_collapse_rx(nskb, skb) ||
5889 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5890 				    !skb_frags_readable(skb))
5891 					goto end;
5892 			}
5893 		}
5894 	}
5895 end:
5896 	skb_queue_walk_safe(&tmp, skb, n)
5897 		tcp_rbtree_insert(root, skb);
5898 }
5899 
5900 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5901  * and tcp_collapse() them until all the queue is collapsed.
5902  */
5903 static void tcp_collapse_ofo_queue(struct sock *sk)
5904 {
5905 	struct tcp_sock *tp = tcp_sk(sk);
5906 	u32 range_truesize, sum_tiny = 0;
5907 	struct sk_buff *skb, *head;
5908 	u32 start, end;
5909 
5910 	skb = skb_rb_first(&tp->out_of_order_queue);
5911 new_range:
5912 	if (!skb) {
5913 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5914 		return;
5915 	}
5916 	start = TCP_SKB_CB(skb)->seq;
5917 	end = TCP_SKB_CB(skb)->end_seq;
5918 	range_truesize = skb->truesize;
5919 
5920 	for (head = skb;;) {
5921 		skb = skb_rb_next(skb);
5922 
5923 		/* Range is terminated when we see a gap or when
5924 		 * we are at the queue end.
5925 		 */
5926 		if (!skb ||
5927 		    after(TCP_SKB_CB(skb)->seq, end) ||
5928 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5929 			/* Do not attempt collapsing tiny skbs */
5930 			if (range_truesize != head->truesize ||
5931 			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5932 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5933 					     head, skb, start, end);
5934 			} else {
5935 				sum_tiny += range_truesize;
5936 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5937 					return;
5938 			}
5939 			goto new_range;
5940 		}
5941 
5942 		range_truesize += skb->truesize;
5943 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5944 			start = TCP_SKB_CB(skb)->seq;
5945 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5946 			end = TCP_SKB_CB(skb)->end_seq;
5947 	}
5948 }
5949 
5950 /*
5951  * Clean the out-of-order queue to make room.
5952  * We drop high sequences packets to :
5953  * 1) Let a chance for holes to be filled.
5954  *    This means we do not drop packets from ooo queue if their sequence
5955  *    is before incoming packet sequence.
5956  * 2) not add too big latencies if thousands of packets sit there.
5957  *    (But if application shrinks SO_RCVBUF, we could still end up
5958  *     freeing whole queue here)
5959  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5960  *
5961  * Return true if queue has shrunk.
5962  */
5963 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5964 {
5965 	struct tcp_sock *tp = tcp_sk(sk);
5966 	struct rb_node *node, *prev;
5967 	bool pruned = false;
5968 	int goal;
5969 
5970 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5971 		return false;
5972 
5973 	goal = sk->sk_rcvbuf >> 3;
5974 	node = &tp->ooo_last_skb->rbnode;
5975 
5976 	do {
5977 		struct sk_buff *skb = rb_to_skb(node);
5978 
5979 		/* If incoming skb would land last in ofo queue, stop pruning. */
5980 		if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5981 			break;
5982 		pruned = true;
5983 		prev = rb_prev(node);
5984 		rb_erase(node, &tp->out_of_order_queue);
5985 		goal -= skb->truesize;
5986 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5987 		tp->ooo_last_skb = rb_to_skb(prev);
5988 		if (!prev || goal <= 0) {
5989 			if (tcp_can_ingest(sk, in_skb) &&
5990 			    !tcp_under_memory_pressure(sk))
5991 				break;
5992 			goal = sk->sk_rcvbuf >> 3;
5993 		}
5994 		node = prev;
5995 	} while (node);
5996 
5997 	if (pruned) {
5998 		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5999 		/* Reset SACK state.  A conforming SACK implementation will
6000 		 * do the same at a timeout based retransmit.  When a connection
6001 		 * is in a sad state like this, we care only about integrity
6002 		 * of the connection not performance.
6003 		 */
6004 		if (tp->rx_opt.sack_ok)
6005 			tcp_sack_reset(&tp->rx_opt);
6006 	}
6007 	return pruned;
6008 }
6009 
6010 /* Reduce allocated memory if we can, trying to get
6011  * the socket within its memory limits again.
6012  *
6013  * Return less than zero if we should start dropping frames
6014  * until the socket owning process reads some of the data
6015  * to stabilize the situation.
6016  */
6017 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
6018 {
6019 	struct tcp_sock *tp = tcp_sk(sk);
6020 
6021 	/* Do nothing if our queues are empty. */
6022 	if (!atomic_read(&sk->sk_rmem_alloc))
6023 		return -1;
6024 
6025 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
6026 
6027 	if (!tcp_can_ingest(sk, in_skb))
6028 		tcp_clamp_window(sk);
6029 	else if (tcp_under_memory_pressure(sk))
6030 		tcp_adjust_rcv_ssthresh(sk);
6031 
6032 	if (tcp_can_ingest(sk, in_skb))
6033 		return 0;
6034 
6035 	tcp_collapse_ofo_queue(sk);
6036 	if (!skb_queue_empty(&sk->sk_receive_queue))
6037 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
6038 			     skb_peek(&sk->sk_receive_queue),
6039 			     NULL,
6040 			     tp->copied_seq, tp->rcv_nxt);
6041 
6042 	if (tcp_can_ingest(sk, in_skb))
6043 		return 0;
6044 
6045 	/* Collapsing did not help, destructive actions follow.
6046 	 * This must not ever occur. */
6047 
6048 	tcp_prune_ofo_queue(sk, in_skb);
6049 
6050 	if (tcp_can_ingest(sk, in_skb))
6051 		return 0;
6052 
6053 	/* If we are really being abused, tell the caller to silently
6054 	 * drop receive data on the floor.  It will get retransmitted
6055 	 * and hopefully then we'll have sufficient space.
6056 	 */
6057 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
6058 
6059 	/* Massive buffer overcommit. */
6060 	tp->pred_flags = 0;
6061 	return -1;
6062 }
6063 
6064 static bool tcp_should_expand_sndbuf(struct sock *sk)
6065 {
6066 	const struct tcp_sock *tp = tcp_sk(sk);
6067 
6068 	/* If the user specified a specific send buffer setting, do
6069 	 * not modify it.
6070 	 */
6071 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
6072 		return false;
6073 
6074 	/* If we are under global TCP memory pressure, do not expand.  */
6075 	if (tcp_under_memory_pressure(sk)) {
6076 		int unused_mem = sk_unused_reserved_mem(sk);
6077 
6078 		/* Adjust sndbuf according to reserved mem. But make sure
6079 		 * it never goes below SOCK_MIN_SNDBUF.
6080 		 * See sk_stream_moderate_sndbuf() for more details.
6081 		 */
6082 		if (unused_mem > SOCK_MIN_SNDBUF)
6083 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
6084 
6085 		return false;
6086 	}
6087 
6088 	/* If we are under soft global TCP memory pressure, do not expand.  */
6089 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
6090 		return false;
6091 
6092 	/* If we filled the congestion window, do not expand.  */
6093 	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
6094 		return false;
6095 
6096 	return true;
6097 }
6098 
6099 static void tcp_new_space(struct sock *sk)
6100 {
6101 	struct tcp_sock *tp = tcp_sk(sk);
6102 
6103 	if (tcp_should_expand_sndbuf(sk)) {
6104 		tcp_sndbuf_expand(sk);
6105 		tp->snd_cwnd_stamp = tcp_jiffies32;
6106 	}
6107 
6108 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
6109 }
6110 
6111 /* Caller made space either from:
6112  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
6113  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
6114  *
6115  * We might be able to generate EPOLLOUT to the application if:
6116  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
6117  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
6118  *    small enough that tcp_stream_memory_free() decides it
6119  *    is time to generate EPOLLOUT.
6120  */
6121 void __tcp_check_space(struct sock *sk)
6122 {
6123 	tcp_new_space(sk);
6124 	if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
6125 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
6126 }
6127 
6128 static inline void tcp_data_snd_check(struct sock *sk)
6129 {
6130 	tcp_push_pending_frames(sk);
6131 	tcp_check_space(sk);
6132 }
6133 
6134 /*
6135  * Check if sending an ack is needed.
6136  */
6137 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
6138 {
6139 	struct tcp_sock *tp = tcp_sk(sk);
6140 	struct net *net = sock_net(sk);
6141 	unsigned long rtt;
6142 	u64 delay;
6143 
6144 	    /* More than one full frame received... */
6145 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
6146 	     /* ... and right edge of window advances far enough.
6147 	      * (tcp_recvmsg() will send ACK otherwise).
6148 	      * If application uses SO_RCVLOWAT, we want send ack now if
6149 	      * we have not received enough bytes to satisfy the condition.
6150 	      */
6151 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
6152 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
6153 	    /* We ACK each frame or... */
6154 	    tcp_in_quickack_mode(sk) ||
6155 	    /* Protocol state mandates a one-time immediate ACK */
6156 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
6157 		/* If we are running from __release_sock() in user context,
6158 		 * Defer the ack until tcp_release_cb().
6159 		 */
6160 		if (sock_owned_by_user_nocheck(sk) &&
6161 		    READ_ONCE(net->ipv4.sysctl_tcp_backlog_ack_defer)) {
6162 			set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags);
6163 			return;
6164 		}
6165 send_now:
6166 		tcp_send_ack(sk);
6167 		return;
6168 	}
6169 
6170 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
6171 		tcp_send_delayed_ack(sk);
6172 		return;
6173 	}
6174 
6175 	if (!tcp_is_sack(tp) ||
6176 	    tp->compressed_ack >= READ_ONCE(net->ipv4.sysctl_tcp_comp_sack_nr))
6177 		goto send_now;
6178 
6179 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
6180 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
6181 		tp->dup_ack_counter = 0;
6182 	}
6183 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
6184 		tp->dup_ack_counter++;
6185 		goto send_now;
6186 	}
6187 	tp->compressed_ack++;
6188 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
6189 		return;
6190 
6191 	/* compress ack timer : comp_sack_rtt_percent of rtt,
6192 	 * but no more than tcp_comp_sack_delay_ns.
6193 	 */
6194 
6195 	rtt = tp->rcv_rtt_est.rtt_us;
6196 	if (tp->srtt_us && tp->srtt_us < rtt)
6197 		rtt = tp->srtt_us;
6198 
6199 	/* delay = (rtt >> 3) * NSEC_PER_USEC * comp_sack_rtt_percent / 100
6200 	 * ->
6201 	 * delay = rtt * 1.25 * comp_sack_rtt_percent
6202 	 */
6203 	delay = (u64)(rtt + (rtt >> 2)) *
6204 		READ_ONCE(net->ipv4.sysctl_tcp_comp_sack_rtt_percent);
6205 
6206 	delay = min(delay, READ_ONCE(net->ipv4.sysctl_tcp_comp_sack_delay_ns));
6207 
6208 	sock_hold(sk);
6209 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
6210 			       READ_ONCE(net->ipv4.sysctl_tcp_comp_sack_slack_ns),
6211 			       HRTIMER_MODE_REL_PINNED_SOFT);
6212 }
6213 
6214 static inline void tcp_ack_snd_check(struct sock *sk)
6215 {
6216 	if (!inet_csk_ack_scheduled(sk)) {
6217 		/* We sent a data segment already. */
6218 		return;
6219 	}
6220 	__tcp_ack_snd_check(sk, 1);
6221 }
6222 
6223 /*
6224  *	This routine is only called when we have urgent data
6225  *	signaled. Its the 'slow' part of tcp_urg. It could be
6226  *	moved inline now as tcp_urg is only called from one
6227  *	place. We handle URGent data wrong. We have to - as
6228  *	BSD still doesn't use the correction from RFC961.
6229  *	For 1003.1g we should support a new option TCP_STDURG to permit
6230  *	either form (or just set the sysctl tcp_stdurg).
6231  */
6232 
6233 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
6234 {
6235 	struct tcp_sock *tp = tcp_sk(sk);
6236 	u32 ptr = ntohs(th->urg_ptr);
6237 
6238 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
6239 		ptr--;
6240 	ptr += ntohl(th->seq);
6241 
6242 	/* Ignore urgent data that we've already seen and read. */
6243 	if (after(tp->copied_seq, ptr))
6244 		return;
6245 
6246 	/* Do not replay urg ptr.
6247 	 *
6248 	 * NOTE: interesting situation not covered by specs.
6249 	 * Misbehaving sender may send urg ptr, pointing to segment,
6250 	 * which we already have in ofo queue. We are not able to fetch
6251 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
6252 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
6253 	 * situations. But it is worth to think about possibility of some
6254 	 * DoSes using some hypothetical application level deadlock.
6255 	 */
6256 	if (before(ptr, tp->rcv_nxt))
6257 		return;
6258 
6259 	/* Do we already have a newer (or duplicate) urgent pointer? */
6260 	if (tp->urg_data && !after(ptr, tp->urg_seq))
6261 		return;
6262 
6263 	/* Tell the world about our new urgent pointer. */
6264 	sk_send_sigurg(sk);
6265 
6266 	/* We may be adding urgent data when the last byte read was
6267 	 * urgent. To do this requires some care. We cannot just ignore
6268 	 * tp->copied_seq since we would read the last urgent byte again
6269 	 * as data, nor can we alter copied_seq until this data arrives
6270 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
6271 	 *
6272 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
6273 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
6274 	 * and expect that both A and B disappear from stream. This is _wrong_.
6275 	 * Though this happens in BSD with high probability, this is occasional.
6276 	 * Any application relying on this is buggy. Note also, that fix "works"
6277 	 * only in this artificial test. Insert some normal data between A and B and we will
6278 	 * decline of BSD again. Verdict: it is better to remove to trap
6279 	 * buggy users.
6280 	 */
6281 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
6282 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
6283 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
6284 		tp->copied_seq++;
6285 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
6286 			__skb_unlink(skb, &sk->sk_receive_queue);
6287 			__kfree_skb(skb);
6288 		}
6289 	}
6290 
6291 	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
6292 	WRITE_ONCE(tp->urg_seq, ptr);
6293 
6294 	/* Disable header prediction. */
6295 	tp->pred_flags = 0;
6296 }
6297 
6298 /* This is the 'fast' part of urgent handling. */
6299 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
6300 {
6301 	struct tcp_sock *tp = tcp_sk(sk);
6302 
6303 	/* Check if we get a new urgent pointer - normally not. */
6304 	if (unlikely(th->urg))
6305 		tcp_check_urg(sk, th);
6306 
6307 	/* Do we wait for any urgent data? - normally not... */
6308 	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
6309 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
6310 			  th->syn;
6311 
6312 		/* Is the urgent pointer pointing into this packet? */
6313 		if (ptr < skb->len) {
6314 			u8 tmp;
6315 			if (skb_copy_bits(skb, ptr, &tmp, 1))
6316 				BUG();
6317 			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
6318 			if (!sock_flag(sk, SOCK_DEAD))
6319 				sk->sk_data_ready(sk);
6320 		}
6321 	}
6322 }
6323 
6324 /* Accept RST for rcv_nxt - 1 after a FIN.
6325  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
6326  * FIN is sent followed by a RST packet. The RST is sent with the same
6327  * sequence number as the FIN, and thus according to RFC 5961 a challenge
6328  * ACK should be sent. However, Mac OSX rate limits replies to challenge
6329  * ACKs on the closed socket. In addition middleboxes can drop either the
6330  * challenge ACK or a subsequent RST.
6331  */
6332 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
6333 {
6334 	const struct tcp_sock *tp = tcp_sk(sk);
6335 
6336 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
6337 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
6338 					       TCPF_CLOSING));
6339 }
6340 
6341 /* Does PAWS and seqno based validation of an incoming segment, flags will
6342  * play significant role here.
6343  */
6344 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
6345 				  const struct tcphdr *th, int syn_inerr)
6346 {
6347 	struct tcp_sock *tp = tcp_sk(sk);
6348 	bool accecn_reflector = false;
6349 	SKB_DR(reason);
6350 
6351 	/* RFC1323: H1. Apply PAWS check first. */
6352 	if (!tcp_fast_parse_options(sock_net(sk), skb, th, tp) ||
6353 	    !tp->rx_opt.saw_tstamp ||
6354 	    tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW))
6355 		goto step1;
6356 
6357 	reason = tcp_disordered_ack_check(sk, skb);
6358 	if (!reason)
6359 		goto step1;
6360 	/* Reset is accepted even if it did not pass PAWS. */
6361 	if (th->rst)
6362 		goto step1;
6363 	if (unlikely(th->syn))
6364 		goto syn_challenge;
6365 
6366 	/* Old ACK are common, increment PAWS_OLD_ACK
6367 	 * and do not send a dupack.
6368 	 */
6369 	if (reason == SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK) {
6370 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWS_OLD_ACK);
6371 		goto discard;
6372 	}
6373 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
6374 	if (!tcp_oow_rate_limited(sock_net(sk), skb,
6375 				  LINUX_MIB_TCPACKSKIPPEDPAWS,
6376 				  &tp->last_oow_ack_time))
6377 		tcp_send_dupack(sk, skb);
6378 	goto discard;
6379 
6380 step1:
6381 	/* Step 1: check sequence number */
6382 	reason = tcp_sequence(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
6383 	if (reason) {
6384 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
6385 		 * (RST) segments are validated by checking their SEQ-fields."
6386 		 * And page 69: "If an incoming segment is not acceptable,
6387 		 * an acknowledgment should be sent in reply (unless the RST
6388 		 * bit is set, if so drop the segment and return)".
6389 		 */
6390 		if (!th->rst) {
6391 			if (th->syn)
6392 				goto syn_challenge;
6393 
6394 			if (reason == SKB_DROP_REASON_TCP_INVALID_SEQUENCE ||
6395 			    reason == SKB_DROP_REASON_TCP_INVALID_END_SEQUENCE)
6396 				NET_INC_STATS(sock_net(sk),
6397 					      LINUX_MIB_BEYOND_WINDOW);
6398 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
6399 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
6400 						  &tp->last_oow_ack_time))
6401 				tcp_send_dupack(sk, skb);
6402 		} else if (tcp_reset_check(sk, skb)) {
6403 			goto reset;
6404 		}
6405 		goto discard;
6406 	}
6407 
6408 	/* Step 2: check RST bit */
6409 	if (th->rst) {
6410 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
6411 		 * FIN and SACK too if available):
6412 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
6413 		 * the right-most SACK block,
6414 		 * then
6415 		 *     RESET the connection
6416 		 * else
6417 		 *     Send a challenge ACK
6418 		 */
6419 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
6420 		    tcp_reset_check(sk, skb))
6421 			goto reset;
6422 
6423 		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
6424 			struct tcp_sack_block *sp = &tp->selective_acks[0];
6425 			int max_sack = sp[0].end_seq;
6426 			int this_sack;
6427 
6428 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
6429 			     ++this_sack) {
6430 				max_sack = after(sp[this_sack].end_seq,
6431 						 max_sack) ?
6432 					sp[this_sack].end_seq : max_sack;
6433 			}
6434 
6435 			if (TCP_SKB_CB(skb)->seq == max_sack)
6436 				goto reset;
6437 		}
6438 
6439 		/* Disable TFO if RST is out-of-order
6440 		 * and no data has been received
6441 		 * for current active TFO socket
6442 		 */
6443 		if (tp->syn_fastopen && !tp->data_segs_in &&
6444 		    sk->sk_state == TCP_ESTABLISHED)
6445 			tcp_fastopen_active_disable(sk);
6446 		tcp_send_challenge_ack(sk, false);
6447 		SKB_DR_SET(reason, TCP_RESET);
6448 		goto discard;
6449 	}
6450 
6451 	/* step 3: check security and precedence [ignored] */
6452 
6453 	/* step 4: Check for a SYN
6454 	 * RFC 5961 4.2 : Send a challenge ack
6455 	 */
6456 	if (th->syn) {
6457 		if (tcp_ecn_mode_accecn(tp)) {
6458 			accecn_reflector = true;
6459 			tp->syn_ect_rcv = TCP_SKB_CB(skb)->ip_dsfield &
6460 					  INET_ECN_MASK;
6461 			if (tp->rx_opt.accecn &&
6462 			    tp->saw_accecn_opt < TCP_ACCECN_OPT_COUNTER_SEEN) {
6463 				u8 saw_opt = tcp_accecn_option_init(skb, tp->rx_opt.accecn);
6464 
6465 				tcp_accecn_saw_opt_fail_recv(tp, saw_opt);
6466 				tcp_accecn_opt_demand_min(sk, 1);
6467 			}
6468 		}
6469 		if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack &&
6470 		    TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq &&
6471 		    TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt &&
6472 		    TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt)
6473 			goto pass;
6474 syn_challenge:
6475 		if (syn_inerr)
6476 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6477 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
6478 		tcp_send_challenge_ack(sk, accecn_reflector);
6479 		SKB_DR_SET(reason, TCP_INVALID_SYN);
6480 		goto discard;
6481 	}
6482 
6483 pass:
6484 	bpf_skops_parse_hdr(sk, skb);
6485 
6486 	return true;
6487 
6488 discard:
6489 	tcp_drop_reason(sk, skb, reason);
6490 	return false;
6491 
6492 reset:
6493 	tcp_reset(sk, skb);
6494 	__kfree_skb(skb);
6495 	return false;
6496 }
6497 
6498 /*
6499  *	TCP receive function for the ESTABLISHED state.
6500  *
6501  *	It is split into a fast path and a slow path. The fast path is
6502  * 	disabled when:
6503  *	- A zero window was announced from us - zero window probing
6504  *        is only handled properly in the slow path.
6505  *	- Out of order segments arrived.
6506  *	- Urgent data is expected.
6507  *	- There is no buffer space left
6508  *	- Unexpected TCP flags/window values/header lengths are received
6509  *	  (detected by checking the TCP header against pred_flags)
6510  *	- Data is sent in both directions. Fast path only supports pure senders
6511  *	  or pure receivers (this means either the sequence number or the ack
6512  *	  value must stay constant)
6513  *	- Unexpected TCP option.
6514  *
6515  *	When these conditions are not satisfied it drops into a standard
6516  *	receive procedure patterned after RFC793 to handle all cases.
6517  *	The first three cases are guaranteed by proper pred_flags setting,
6518  *	the rest is checked inline. Fast processing is turned on in
6519  *	tcp_data_queue when everything is OK.
6520  */
6521 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
6522 {
6523 	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
6524 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
6525 	struct tcp_sock *tp = tcp_sk(sk);
6526 	unsigned int len = skb->len;
6527 
6528 	/* TCP congestion window tracking */
6529 	trace_tcp_probe(sk, skb);
6530 
6531 	tcp_mstamp_refresh(tp);
6532 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
6533 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6534 	/*
6535 	 *	Header prediction.
6536 	 *	The code loosely follows the one in the famous
6537 	 *	"30 instruction TCP receive" Van Jacobson mail.
6538 	 *
6539 	 *	Van's trick is to deposit buffers into socket queue
6540 	 *	on a device interrupt, to call tcp_recv function
6541 	 *	on the receive process context and checksum and copy
6542 	 *	the buffer to user space. smart...
6543 	 *
6544 	 *	Our current scheme is not silly either but we take the
6545 	 *	extra cost of the net_bh soft interrupt processing...
6546 	 *	We do checksum and copy also but from device to kernel.
6547 	 */
6548 
6549 	tp->rx_opt.saw_tstamp = 0;
6550 	tp->rx_opt.accecn = 0;
6551 
6552 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
6553 	 *	if header_prediction is to be made
6554 	 *	'S' will always be tp->tcp_header_len >> 2
6555 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
6556 	 *  turn it off	(when there are holes in the receive
6557 	 *	 space for instance)
6558 	 *	PSH flag is ignored.
6559 	 */
6560 
6561 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6562 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6563 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6564 		int tcp_header_len = tp->tcp_header_len;
6565 		s32 delta = 0;
6566 		int flag = 0;
6567 
6568 		/* Timestamp header prediction: tcp_header_len
6569 		 * is automatically equal to th->doff*4 due to pred_flags
6570 		 * match.
6571 		 */
6572 
6573 		/* Check timestamp */
6574 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6575 			/* No? Slow path! */
6576 			if (!tcp_parse_aligned_timestamp(tp, th))
6577 				goto slow_path;
6578 
6579 			delta = tp->rx_opt.rcv_tsval -
6580 				tp->rx_opt.ts_recent;
6581 			/* If PAWS failed, check it more carefully in slow path */
6582 			if (delta < 0)
6583 				goto slow_path;
6584 
6585 			/* DO NOT update ts_recent here, if checksum fails
6586 			 * and timestamp was corrupted part, it will result
6587 			 * in a hung connection since we will drop all
6588 			 * future packets due to the PAWS test.
6589 			 */
6590 		}
6591 
6592 		if (len <= tcp_header_len) {
6593 			/* Bulk data transfer: sender */
6594 			if (len == tcp_header_len) {
6595 				/* Predicted packet is in window by definition.
6596 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6597 				 * Hence, check seq<=rcv_wup reduces to:
6598 				 */
6599 				if (tcp_header_len ==
6600 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6601 				    tp->rcv_nxt == tp->rcv_wup)
6602 					flag |= __tcp_replace_ts_recent(tp,
6603 									delta);
6604 
6605 				tcp_ecn_received_counters(sk, skb, 0);
6606 
6607 				/* We know that such packets are checksummed
6608 				 * on entry.
6609 				 */
6610 				tcp_ack(sk, skb, flag);
6611 				__kfree_skb(skb);
6612 				tcp_data_snd_check(sk);
6613 				/* When receiving pure ack in fast path, update
6614 				 * last ts ecr directly instead of calling
6615 				 * tcp_rcv_rtt_measure_ts()
6616 				 */
6617 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6618 				return;
6619 			} else { /* Header too small */
6620 				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6621 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6622 				goto discard;
6623 			}
6624 		} else {
6625 			int eaten = 0;
6626 			bool fragstolen = false;
6627 
6628 			if (tcp_checksum_complete(skb))
6629 				goto csum_error;
6630 
6631 			if (after(TCP_SKB_CB(skb)->end_seq,
6632 				  tp->rcv_nxt + tcp_receive_window(tp)))
6633 				goto validate;
6634 
6635 			if ((int)skb->truesize > sk->sk_forward_alloc)
6636 				goto step5;
6637 
6638 			/* Predicted packet is in window by definition.
6639 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6640 			 * Hence, check seq<=rcv_wup reduces to:
6641 			 */
6642 			if (tcp_header_len ==
6643 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6644 			    tp->rcv_nxt == tp->rcv_wup)
6645 				flag |= __tcp_replace_ts_recent(tp,
6646 								delta);
6647 
6648 			tcp_rcv_rtt_measure_ts(sk, skb);
6649 
6650 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6651 
6652 			/* Bulk data transfer: receiver */
6653 			tcp_cleanup_skb(skb);
6654 			__skb_pull(skb, tcp_header_len);
6655 			tcp_ecn_received_counters(sk, skb,
6656 						  len - tcp_header_len);
6657 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6658 
6659 			tcp_event_data_recv(sk, skb);
6660 
6661 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6662 				/* Well, only one small jumplet in fast path... */
6663 				tcp_ack(sk, skb, flag | FLAG_DATA);
6664 				tcp_data_snd_check(sk);
6665 				if (!inet_csk_ack_scheduled(sk))
6666 					goto no_ack;
6667 			} else {
6668 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6669 			}
6670 
6671 			__tcp_ack_snd_check(sk, 0);
6672 no_ack:
6673 			if (eaten)
6674 				kfree_skb_partial(skb, fragstolen);
6675 			tcp_data_ready(sk);
6676 			return;
6677 		}
6678 	}
6679 
6680 slow_path:
6681 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6682 		goto csum_error;
6683 
6684 	if (!th->ack && !th->rst && !th->syn) {
6685 		reason = SKB_DROP_REASON_TCP_FLAGS;
6686 		goto discard;
6687 	}
6688 
6689 	/*
6690 	 *	Standard slow path.
6691 	 */
6692 validate:
6693 	if (!tcp_validate_incoming(sk, skb, th, 1))
6694 		return;
6695 
6696 step5:
6697 	tcp_ecn_received_counters_payload(sk, skb);
6698 
6699 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6700 	if ((int)reason < 0) {
6701 		reason = -reason;
6702 		goto discard;
6703 	}
6704 	tcp_rcv_rtt_measure_ts(sk, skb);
6705 
6706 	/* Process urgent data. */
6707 	tcp_urg(sk, skb, th);
6708 
6709 	/* step 7: process the segment text */
6710 	tcp_data_queue(sk, skb);
6711 
6712 	tcp_data_snd_check(sk);
6713 	tcp_ack_snd_check(sk);
6714 	return;
6715 
6716 csum_error:
6717 	reason = SKB_DROP_REASON_TCP_CSUM;
6718 	trace_tcp_bad_csum(skb);
6719 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6720 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6721 
6722 discard:
6723 	tcp_drop_reason(sk, skb, reason);
6724 }
6725 EXPORT_IPV6_MOD(tcp_rcv_established);
6726 
6727 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6728 {
6729 	struct inet_connection_sock *icsk = inet_csk(sk);
6730 	struct tcp_sock *tp = tcp_sk(sk);
6731 
6732 	tcp_mtup_init(sk);
6733 	icsk->icsk_af_ops->rebuild_header(sk);
6734 	tcp_init_metrics(sk);
6735 
6736 	/* Initialize the congestion window to start the transfer.
6737 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6738 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6739 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6740 	 * retransmission has occurred.
6741 	 */
6742 	if (tp->total_retrans > 1 && tp->undo_marker)
6743 		tcp_snd_cwnd_set(tp, 1);
6744 	else
6745 		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6746 	tp->snd_cwnd_stamp = tcp_jiffies32;
6747 
6748 	bpf_skops_established(sk, bpf_op, skb);
6749 	/* Initialize congestion control unless BPF initialized it already: */
6750 	if (!icsk->icsk_ca_initialized)
6751 		tcp_init_congestion_control(sk);
6752 	tcp_init_buffer_space(sk);
6753 }
6754 
6755 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6756 {
6757 	struct tcp_sock *tp = tcp_sk(sk);
6758 	struct inet_connection_sock *icsk = inet_csk(sk);
6759 
6760 	tcp_ao_finish_connect(sk, skb);
6761 	tcp_set_state(sk, TCP_ESTABLISHED);
6762 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6763 
6764 	if (skb) {
6765 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6766 		security_inet_conn_established(sk, skb);
6767 		sk_mark_napi_id(sk, skb);
6768 	}
6769 
6770 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6771 
6772 	/* Prevent spurious tcp_cwnd_restart() on first data
6773 	 * packet.
6774 	 */
6775 	tp->lsndtime = tcp_jiffies32;
6776 
6777 	if (sock_flag(sk, SOCK_KEEPOPEN))
6778 		tcp_reset_keepalive_timer(sk, keepalive_time_when(tp));
6779 
6780 	if (!tp->rx_opt.snd_wscale)
6781 		__tcp_fast_path_on(tp, tp->snd_wnd);
6782 	else
6783 		tp->pred_flags = 0;
6784 }
6785 
6786 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6787 				    struct tcp_fastopen_cookie *cookie)
6788 {
6789 	struct tcp_sock *tp = tcp_sk(sk);
6790 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6791 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6792 	bool syn_drop = false;
6793 
6794 	if (mss == READ_ONCE(tp->rx_opt.user_mss)) {
6795 		struct tcp_options_received opt;
6796 
6797 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6798 		tcp_clear_options(&opt);
6799 		opt.user_mss = opt.mss_clamp = 0;
6800 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6801 		mss = opt.mss_clamp;
6802 	}
6803 
6804 	if (!tp->syn_fastopen) {
6805 		/* Ignore an unsolicited cookie */
6806 		cookie->len = -1;
6807 	} else if (tp->total_retrans) {
6808 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6809 		 * acknowledges data. Presumably the remote received only
6810 		 * the retransmitted (regular) SYNs: either the original
6811 		 * SYN-data or the corresponding SYN-ACK was dropped.
6812 		 */
6813 		syn_drop = (cookie->len < 0 && data);
6814 	} else if (cookie->len < 0 && !tp->syn_data) {
6815 		/* We requested a cookie but didn't get it. If we did not use
6816 		 * the (old) exp opt format then try so next time (try_exp=1).
6817 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6818 		 */
6819 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6820 	}
6821 
6822 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6823 
6824 	if (data) { /* Retransmit unacked data in SYN */
6825 		if (tp->total_retrans)
6826 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6827 		else
6828 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6829 		skb_rbtree_walk_from(data)
6830 			 tcp_mark_skb_lost(sk, data);
6831 		tcp_non_congestion_loss_retransmit(sk);
6832 		NET_INC_STATS(sock_net(sk),
6833 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6834 		return true;
6835 	}
6836 	tp->syn_data_acked = tp->syn_data;
6837 	if (tp->syn_data_acked) {
6838 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6839 		/* SYN-data is counted as two separate packets in tcp_ack() */
6840 		if (tp->delivered > 1)
6841 			--tp->delivered;
6842 	}
6843 
6844 	tcp_fastopen_add_skb(sk, synack);
6845 
6846 	return false;
6847 }
6848 
6849 static void smc_check_reset_syn(struct tcp_sock *tp)
6850 {
6851 #if IS_ENABLED(CONFIG_SMC)
6852 	if (static_branch_unlikely(&tcp_have_smc)) {
6853 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6854 			tp->syn_smc = 0;
6855 	}
6856 #endif
6857 }
6858 
6859 static void tcp_try_undo_spurious_syn(struct sock *sk)
6860 {
6861 	struct tcp_sock *tp = tcp_sk(sk);
6862 	u32 syn_stamp;
6863 
6864 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6865 	 * spurious if the ACK's timestamp option echo value matches the
6866 	 * original SYN timestamp.
6867 	 */
6868 	syn_stamp = tp->retrans_stamp;
6869 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6870 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6871 		tp->undo_marker = 0;
6872 }
6873 
6874 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6875 					 const struct tcphdr *th)
6876 {
6877 	struct inet_connection_sock *icsk = inet_csk(sk);
6878 	struct tcp_sock *tp = tcp_sk(sk);
6879 	struct tcp_fastopen_cookie foc = { .len = -1 };
6880 	int saved_clamp = tp->rx_opt.mss_clamp;
6881 	bool fastopen_fail;
6882 	SKB_DR(reason);
6883 
6884 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6885 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6886 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6887 
6888 	if (th->ack) {
6889 		/* rfc793:
6890 		 * "If the state is SYN-SENT then
6891 		 *    first check the ACK bit
6892 		 *      If the ACK bit is set
6893 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6894 		 *        a reset (unless the RST bit is set, if so drop
6895 		 *        the segment and return)"
6896 		 */
6897 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6898 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6899 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6900 			if (icsk->icsk_retransmits == 0)
6901 				tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
6902 						     TCP_TIMEOUT_MIN, false);
6903 			SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE);
6904 			goto reset_and_undo;
6905 		}
6906 
6907 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6908 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6909 			     tcp_time_stamp_ts(tp))) {
6910 			NET_INC_STATS(sock_net(sk),
6911 					LINUX_MIB_PAWSACTIVEREJECTED);
6912 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6913 			goto reset_and_undo;
6914 		}
6915 
6916 		/* Now ACK is acceptable.
6917 		 *
6918 		 * "If the RST bit is set
6919 		 *    If the ACK was acceptable then signal the user "error:
6920 		 *    connection reset", drop the segment, enter CLOSED state,
6921 		 *    delete TCB, and return."
6922 		 */
6923 
6924 		if (th->rst) {
6925 			tcp_reset(sk, skb);
6926 consume:
6927 			__kfree_skb(skb);
6928 			return 0;
6929 		}
6930 
6931 		/* rfc793:
6932 		 *   "fifth, if neither of the SYN or RST bits is set then
6933 		 *    drop the segment and return."
6934 		 *
6935 		 *    See note below!
6936 		 *                                        --ANK(990513)
6937 		 */
6938 		if (!th->syn) {
6939 			SKB_DR_SET(reason, TCP_FLAGS);
6940 			goto discard_and_undo;
6941 		}
6942 		/* rfc793:
6943 		 *   "If the SYN bit is on ...
6944 		 *    are acceptable then ...
6945 		 *    (our SYN has been ACKed), change the connection
6946 		 *    state to ESTABLISHED..."
6947 		 */
6948 
6949 		if (tcp_ecn_mode_any(tp))
6950 			tcp_ecn_rcv_synack(sk, skb, th,
6951 					   TCP_SKB_CB(skb)->ip_dsfield);
6952 
6953 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6954 		tcp_try_undo_spurious_syn(sk);
6955 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6956 
6957 		/* Ok.. it's good. Set up sequence numbers and
6958 		 * move to established.
6959 		 */
6960 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6961 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6962 
6963 		/* RFC1323: The window in SYN & SYN/ACK segments is
6964 		 * never scaled.
6965 		 */
6966 		tp->snd_wnd = ntohs(th->window);
6967 
6968 		if (!tp->rx_opt.wscale_ok) {
6969 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6970 			WRITE_ONCE(tp->window_clamp,
6971 				   min(tp->window_clamp, 65535U));
6972 		}
6973 
6974 		if (tp->rx_opt.saw_tstamp) {
6975 			tp->rx_opt.tstamp_ok	   = 1;
6976 			tp->tcp_header_len =
6977 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6978 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6979 			tcp_store_ts_recent(tp);
6980 		} else {
6981 			tp->tcp_header_len = sizeof(struct tcphdr);
6982 		}
6983 
6984 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6985 		tcp_initialize_rcv_mss(sk);
6986 
6987 		/* Remember, tcp_poll() does not lock socket!
6988 		 * Change state from SYN-SENT only after copied_seq
6989 		 * is initialized. */
6990 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6991 
6992 		smc_check_reset_syn(tp);
6993 
6994 		smp_mb();
6995 
6996 		tcp_finish_connect(sk, skb);
6997 
6998 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6999 				tcp_rcv_fastopen_synack(sk, skb, &foc);
7000 
7001 		if (!sock_flag(sk, SOCK_DEAD)) {
7002 			sk->sk_state_change(sk);
7003 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
7004 		}
7005 		if (fastopen_fail)
7006 			return -1;
7007 		if (sk->sk_write_pending ||
7008 		    READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
7009 		    inet_csk_in_pingpong_mode(sk)) {
7010 			/* Save one ACK. Data will be ready after
7011 			 * several ticks, if write_pending is set.
7012 			 *
7013 			 * It may be deleted, but with this feature tcpdumps
7014 			 * look so _wonderfully_ clever, that I was not able
7015 			 * to stand against the temptation 8)     --ANK
7016 			 */
7017 			inet_csk_schedule_ack(sk);
7018 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
7019 			tcp_reset_xmit_timer(sk, ICSK_TIME_DACK,
7020 					     TCP_DELACK_MAX, false);
7021 			goto consume;
7022 		}
7023 		tcp_send_ack_reflect_ect(sk, tcp_ecn_mode_accecn(tp));
7024 		return -1;
7025 	}
7026 
7027 	/* No ACK in the segment */
7028 
7029 	if (th->rst) {
7030 		/* rfc793:
7031 		 * "If the RST bit is set
7032 		 *
7033 		 *      Otherwise (no ACK) drop the segment and return."
7034 		 */
7035 		SKB_DR_SET(reason, TCP_RESET);
7036 		goto discard_and_undo;
7037 	}
7038 
7039 	/* PAWS check. */
7040 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
7041 	    tcp_paws_reject(&tp->rx_opt, 0)) {
7042 		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
7043 		goto discard_and_undo;
7044 	}
7045 	if (th->syn) {
7046 		/* We see SYN without ACK. It is attempt of
7047 		 * simultaneous connect with crossed SYNs.
7048 		 * Particularly, it can be connect to self.
7049 		 */
7050 #ifdef CONFIG_TCP_AO
7051 		struct tcp_ao_info *ao;
7052 
7053 		ao = rcu_dereference_protected(tp->ao_info,
7054 					       lockdep_sock_is_held(sk));
7055 		if (ao) {
7056 			WRITE_ONCE(ao->risn, th->seq);
7057 			ao->rcv_sne = 0;
7058 		}
7059 #endif
7060 		tcp_set_state(sk, TCP_SYN_RECV);
7061 
7062 		if (tp->rx_opt.saw_tstamp) {
7063 			tp->rx_opt.tstamp_ok = 1;
7064 			tcp_store_ts_recent(tp);
7065 			tp->tcp_header_len =
7066 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
7067 		} else {
7068 			tp->tcp_header_len = sizeof(struct tcphdr);
7069 		}
7070 
7071 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
7072 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
7073 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
7074 
7075 		/* RFC1323: The window in SYN & SYN/ACK segments is
7076 		 * never scaled.
7077 		 */
7078 		tp->snd_wnd    = ntohs(th->window);
7079 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
7080 		tp->max_window = tp->snd_wnd;
7081 
7082 		tcp_ecn_rcv_syn(sk, th, skb);
7083 
7084 		tcp_mtup_init(sk);
7085 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
7086 		tcp_initialize_rcv_mss(sk);
7087 
7088 		tcp_send_synack(sk);
7089 #if 0
7090 		/* Note, we could accept data and URG from this segment.
7091 		 * There are no obstacles to make this (except that we must
7092 		 * either change tcp_recvmsg() to prevent it from returning data
7093 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
7094 		 *
7095 		 * However, if we ignore data in ACKless segments sometimes,
7096 		 * we have no reasons to accept it sometimes.
7097 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
7098 		 * is not flawless. So, discard packet for sanity.
7099 		 * Uncomment this return to process the data.
7100 		 */
7101 		return -1;
7102 #else
7103 		goto consume;
7104 #endif
7105 	}
7106 	/* "fifth, if neither of the SYN or RST bits is set then
7107 	 * drop the segment and return."
7108 	 */
7109 
7110 discard_and_undo:
7111 	tcp_clear_options(&tp->rx_opt);
7112 	tp->rx_opt.mss_clamp = saved_clamp;
7113 	tcp_drop_reason(sk, skb, reason);
7114 	return 0;
7115 
7116 reset_and_undo:
7117 	tcp_clear_options(&tp->rx_opt);
7118 	tp->rx_opt.mss_clamp = saved_clamp;
7119 	/* we can reuse/return @reason to its caller to handle the exception */
7120 	return reason;
7121 }
7122 
7123 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
7124 {
7125 	struct tcp_sock *tp = tcp_sk(sk);
7126 	struct request_sock *req;
7127 
7128 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
7129 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
7130 	 */
7131 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
7132 		tcp_try_undo_recovery(sk);
7133 
7134 	tcp_update_rto_time(tp);
7135 	WRITE_ONCE(inet_csk(sk)->icsk_retransmits, 0);
7136 	/* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set
7137 	 * retrans_stamp but don't enter CA_Loss, so in case that happened we
7138 	 * need to zero retrans_stamp here to prevent spurious
7139 	 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us
7140 	 * to enter CA_Recovery then we need to leave retrans_stamp as it was
7141 	 * set entering CA_Recovery, for correct retransmits_timed_out() and
7142 	 * undo behavior.
7143 	 */
7144 	tcp_retrans_stamp_cleanup(sk);
7145 
7146 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
7147 	 * we no longer need req so release it.
7148 	 */
7149 	req = rcu_dereference_protected(tp->fastopen_rsk,
7150 					lockdep_sock_is_held(sk));
7151 	reqsk_fastopen_remove(sk, req, false);
7152 
7153 	/* Re-arm the timer because data may have been sent out.
7154 	 * This is similar to the regular data transmission case
7155 	 * when new data has just been ack'ed.
7156 	 *
7157 	 * (TFO) - we could try to be more aggressive and
7158 	 * retransmitting any data sooner based on when they
7159 	 * are sent out.
7160 	 */
7161 	tcp_rearm_rto(sk);
7162 }
7163 
7164 /*
7165  *	This function implements the receiving procedure of RFC 793 for
7166  *	all states except ESTABLISHED and TIME_WAIT.
7167  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
7168  *	address independent.
7169  */
7170 
7171 enum skb_drop_reason
7172 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
7173 {
7174 	struct tcp_sock *tp = tcp_sk(sk);
7175 	struct inet_connection_sock *icsk = inet_csk(sk);
7176 	const struct tcphdr *th = tcp_hdr(skb);
7177 	struct request_sock *req;
7178 	int queued = 0;
7179 	SKB_DR(reason);
7180 
7181 	switch (sk->sk_state) {
7182 	case TCP_CLOSE:
7183 		SKB_DR_SET(reason, TCP_CLOSE);
7184 		goto discard;
7185 
7186 	case TCP_LISTEN:
7187 		if (th->ack)
7188 			return SKB_DROP_REASON_TCP_FLAGS;
7189 
7190 		if (th->rst) {
7191 			SKB_DR_SET(reason, TCP_RESET);
7192 			goto discard;
7193 		}
7194 		if (th->syn) {
7195 			if (th->fin) {
7196 				SKB_DR_SET(reason, TCP_FLAGS);
7197 				goto discard;
7198 			}
7199 			/* It is possible that we process SYN packets from backlog,
7200 			 * so we need to make sure to disable BH and RCU right there.
7201 			 */
7202 			rcu_read_lock();
7203 			local_bh_disable();
7204 			icsk->icsk_af_ops->conn_request(sk, skb);
7205 			local_bh_enable();
7206 			rcu_read_unlock();
7207 
7208 			consume_skb(skb);
7209 			return 0;
7210 		}
7211 		SKB_DR_SET(reason, TCP_FLAGS);
7212 		goto discard;
7213 
7214 	case TCP_SYN_SENT:
7215 		tp->rx_opt.saw_tstamp = 0;
7216 		tcp_mstamp_refresh(tp);
7217 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
7218 		if (queued >= 0)
7219 			return queued;
7220 
7221 		/* Do step6 onward by hand. */
7222 		tcp_urg(sk, skb, th);
7223 		__kfree_skb(skb);
7224 		tcp_data_snd_check(sk);
7225 		return 0;
7226 	}
7227 
7228 	tcp_mstamp_refresh(tp);
7229 	tp->rx_opt.saw_tstamp = 0;
7230 	req = rcu_dereference_protected(tp->fastopen_rsk,
7231 					lockdep_sock_is_held(sk));
7232 	if (req) {
7233 		bool req_stolen;
7234 
7235 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
7236 		    sk->sk_state != TCP_FIN_WAIT1);
7237 
7238 		SKB_DR_SET(reason, TCP_FASTOPEN);
7239 		if (!tcp_check_req(sk, skb, req, true, &req_stolen, &reason))
7240 			goto discard;
7241 	}
7242 
7243 	if (!th->ack && !th->rst && !th->syn) {
7244 		SKB_DR_SET(reason, TCP_FLAGS);
7245 		goto discard;
7246 	}
7247 	if (!tcp_validate_incoming(sk, skb, th, 0))
7248 		return 0;
7249 
7250 	/* step 5: check the ACK field */
7251 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH |
7252 				  FLAG_UPDATE_TS_RECENT |
7253 				  FLAG_NO_CHALLENGE_ACK);
7254 
7255 	if ((int)reason <= 0) {
7256 		if (sk->sk_state == TCP_SYN_RECV) {
7257 			/* send one RST */
7258 			if (!reason)
7259 				return SKB_DROP_REASON_TCP_OLD_ACK;
7260 			return -reason;
7261 		}
7262 		/* accept old ack during closing */
7263 		if ((int)reason < 0) {
7264 			tcp_send_challenge_ack(sk, false);
7265 			reason = -reason;
7266 			goto discard;
7267 		}
7268 	}
7269 	SKB_DR_SET(reason, NOT_SPECIFIED);
7270 	switch (sk->sk_state) {
7271 	case TCP_SYN_RECV:
7272 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
7273 		if (!tp->srtt_us)
7274 			tcp_synack_rtt_meas(sk, req);
7275 
7276 		if (tp->rx_opt.tstamp_ok)
7277 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
7278 
7279 		if (req) {
7280 			tcp_rcv_synrecv_state_fastopen(sk);
7281 		} else {
7282 			tcp_try_undo_spurious_syn(sk);
7283 			tp->retrans_stamp = 0;
7284 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
7285 					  skb);
7286 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
7287 		}
7288 		tcp_ao_established(sk);
7289 		smp_mb();
7290 		tcp_set_state(sk, TCP_ESTABLISHED);
7291 		sk->sk_state_change(sk);
7292 
7293 		/* Note, that this wakeup is only for marginal crossed SYN case.
7294 		 * Passively open sockets are not waked up, because
7295 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
7296 		 */
7297 		if (sk->sk_socket)
7298 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
7299 
7300 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
7301 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
7302 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
7303 
7304 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
7305 			tcp_update_pacing_rate(sk);
7306 
7307 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
7308 		tp->lsndtime = tcp_jiffies32;
7309 
7310 		tcp_initialize_rcv_mss(sk);
7311 		if (tcp_ecn_mode_accecn(tp))
7312 			tcp_accecn_third_ack(sk, skb, tp->syn_ect_snt);
7313 		tcp_fast_path_on(tp);
7314 		if (sk->sk_shutdown & SEND_SHUTDOWN)
7315 			tcp_shutdown(sk, SEND_SHUTDOWN);
7316 
7317 		break;
7318 
7319 	case TCP_FIN_WAIT1: {
7320 		int tmo;
7321 
7322 		if (req)
7323 			tcp_rcv_synrecv_state_fastopen(sk);
7324 
7325 		if (tp->snd_una != tp->write_seq)
7326 			break;
7327 
7328 		tcp_set_state(sk, TCP_FIN_WAIT2);
7329 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
7330 
7331 		sk_dst_confirm(sk);
7332 
7333 		if (!sock_flag(sk, SOCK_DEAD)) {
7334 			/* Wake up lingering close() */
7335 			sk->sk_state_change(sk);
7336 			break;
7337 		}
7338 
7339 		if (READ_ONCE(tp->linger2) < 0) {
7340 			tcp_done(sk);
7341 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
7342 			return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
7343 		}
7344 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
7345 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
7346 			/* Receive out of order FIN after close() */
7347 			if (tp->syn_fastopen && th->fin)
7348 				tcp_fastopen_active_disable(sk);
7349 			tcp_done(sk);
7350 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
7351 			return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
7352 		}
7353 
7354 		tmo = tcp_fin_time(sk);
7355 		if (tmo > TCP_TIMEWAIT_LEN) {
7356 			tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
7357 		} else if (th->fin || sock_owned_by_user(sk)) {
7358 			/* Bad case. We could lose such FIN otherwise.
7359 			 * It is not a big problem, but it looks confusing
7360 			 * and not so rare event. We still can lose it now,
7361 			 * if it spins in bh_lock_sock(), but it is really
7362 			 * marginal case.
7363 			 */
7364 			tcp_reset_keepalive_timer(sk, tmo);
7365 		} else {
7366 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
7367 			goto consume;
7368 		}
7369 		break;
7370 	}
7371 
7372 	case TCP_CLOSING:
7373 		if (tp->snd_una == tp->write_seq) {
7374 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
7375 			goto consume;
7376 		}
7377 		break;
7378 
7379 	case TCP_LAST_ACK:
7380 		if (tp->snd_una == tp->write_seq) {
7381 			tcp_update_metrics(sk);
7382 			tcp_done(sk);
7383 			goto consume;
7384 		}
7385 		break;
7386 	}
7387 
7388 	/* step 6: check the URG bit */
7389 	tcp_urg(sk, skb, th);
7390 
7391 	/* step 7: process the segment text */
7392 	switch (sk->sk_state) {
7393 	case TCP_CLOSE_WAIT:
7394 	case TCP_CLOSING:
7395 	case TCP_LAST_ACK:
7396 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
7397 			/* If a subflow has been reset, the packet should not
7398 			 * continue to be processed, drop the packet.
7399 			 */
7400 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
7401 				goto discard;
7402 			break;
7403 		}
7404 		fallthrough;
7405 	case TCP_FIN_WAIT1:
7406 	case TCP_FIN_WAIT2:
7407 		/* RFC 793 says to queue data in these states,
7408 		 * RFC 1122 says we MUST send a reset.
7409 		 * BSD 4.4 also does reset.
7410 		 */
7411 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
7412 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
7413 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
7414 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
7415 				tcp_reset(sk, skb);
7416 				return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
7417 			}
7418 		}
7419 		fallthrough;
7420 	case TCP_ESTABLISHED:
7421 		tcp_data_queue(sk, skb);
7422 		queued = 1;
7423 		break;
7424 	}
7425 
7426 	/* tcp_data could move socket to TIME-WAIT */
7427 	if (sk->sk_state != TCP_CLOSE) {
7428 		tcp_data_snd_check(sk);
7429 		tcp_ack_snd_check(sk);
7430 	}
7431 
7432 	if (!queued) {
7433 discard:
7434 		tcp_drop_reason(sk, skb, reason);
7435 	}
7436 	return 0;
7437 
7438 consume:
7439 	__kfree_skb(skb);
7440 	return 0;
7441 }
7442 EXPORT_IPV6_MOD(tcp_rcv_state_process);
7443 
7444 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
7445 {
7446 	struct inet_request_sock *ireq = inet_rsk(req);
7447 
7448 	if (family == AF_INET)
7449 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
7450 				    &ireq->ir_rmt_addr, port);
7451 #if IS_ENABLED(CONFIG_IPV6)
7452 	else if (family == AF_INET6)
7453 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
7454 				    &ireq->ir_v6_rmt_addr, port);
7455 #endif
7456 }
7457 
7458 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
7459  *
7460  * If we receive a SYN packet with these bits set, it means a
7461  * network is playing bad games with TOS bits. In order to
7462  * avoid possible false congestion notifications, we disable
7463  * TCP ECN negotiation.
7464  *
7465  * Exception: tcp_ca wants ECN. This is required for DCTCP
7466  * congestion control: Linux DCTCP asserts ECT on all packets,
7467  * including SYN, which is most optimal solution; however,
7468  * others, such as FreeBSD do not.
7469  *
7470  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
7471  * set, indicating the use of a future TCP extension (such as AccECN). See
7472  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
7473  * extensions.
7474  */
7475 static void tcp_ecn_create_request(struct request_sock *req,
7476 				   const struct sk_buff *skb,
7477 				   const struct sock *listen_sk,
7478 				   const struct dst_entry *dst)
7479 {
7480 	const struct tcphdr *th = tcp_hdr(skb);
7481 	const struct net *net = sock_net(listen_sk);
7482 	bool th_ecn = th->ece && th->cwr;
7483 	bool ect, ecn_ok;
7484 	u32 ecn_ok_dst;
7485 
7486 	if (tcp_accecn_syn_requested(th) &&
7487 	    (READ_ONCE(net->ipv4.sysctl_tcp_ecn) >= 3 ||
7488 	     tcp_ca_needs_accecn(listen_sk))) {
7489 		inet_rsk(req)->ecn_ok = 1;
7490 		tcp_rsk(req)->accecn_ok = 1;
7491 		tcp_rsk(req)->syn_ect_rcv = TCP_SKB_CB(skb)->ip_dsfield &
7492 					    INET_ECN_MASK;
7493 		return;
7494 	}
7495 
7496 	if (!th_ecn)
7497 		return;
7498 
7499 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
7500 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
7501 	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
7502 
7503 	if (((!ect || th->res1 || th->ae) && ecn_ok) ||
7504 	    tcp_ca_needs_ecn(listen_sk) ||
7505 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
7506 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
7507 		inet_rsk(req)->ecn_ok = 1;
7508 }
7509 
7510 static void tcp_openreq_init(struct request_sock *req,
7511 			     const struct tcp_options_received *rx_opt,
7512 			     struct sk_buff *skb, const struct sock *sk)
7513 {
7514 	struct inet_request_sock *ireq = inet_rsk(req);
7515 
7516 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
7517 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
7518 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
7519 	tcp_rsk(req)->snt_synack = 0;
7520 	tcp_rsk(req)->snt_tsval_first = 0;
7521 	tcp_rsk(req)->last_oow_ack_time = 0;
7522 	tcp_rsk(req)->accecn_ok = 0;
7523 	tcp_rsk(req)->saw_accecn_opt = TCP_ACCECN_OPT_NOT_SEEN;
7524 	tcp_rsk(req)->accecn_fail_mode = 0;
7525 	tcp_rsk(req)->syn_ect_rcv = 0;
7526 	tcp_rsk(req)->syn_ect_snt = 0;
7527 	req->mss = rx_opt->mss_clamp;
7528 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
7529 	ireq->tstamp_ok = rx_opt->tstamp_ok;
7530 	ireq->sack_ok = rx_opt->sack_ok;
7531 	ireq->snd_wscale = rx_opt->snd_wscale;
7532 	ireq->wscale_ok = rx_opt->wscale_ok;
7533 	ireq->acked = 0;
7534 	ireq->ecn_ok = 0;
7535 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
7536 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
7537 	ireq->ir_mark = inet_request_mark(sk, skb);
7538 #if IS_ENABLED(CONFIG_SMC)
7539 	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
7540 			tcp_sk(sk)->smc_hs_congested(sk));
7541 #endif
7542 }
7543 
7544 /*
7545  * Return true if a syncookie should be sent
7546  */
7547 static bool tcp_syn_flood_action(struct sock *sk, const char *proto)
7548 {
7549 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
7550 	const char *msg = "Dropping request";
7551 	struct net *net = sock_net(sk);
7552 	bool want_cookie = false;
7553 	u8 syncookies;
7554 
7555 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7556 
7557 #ifdef CONFIG_SYN_COOKIES
7558 	if (syncookies) {
7559 		msg = "Sending cookies";
7560 		want_cookie = true;
7561 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
7562 	} else
7563 #endif
7564 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7565 
7566 	if (syncookies != 2 && !READ_ONCE(queue->synflood_warned)) {
7567 		WRITE_ONCE(queue->synflood_warned, 1);
7568 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7569 			net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7570 					proto, inet6_rcv_saddr(sk),
7571 					sk->sk_num, msg);
7572 		} else {
7573 			net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7574 					proto, &sk->sk_rcv_saddr,
7575 					sk->sk_num, msg);
7576 		}
7577 	}
7578 
7579 	return want_cookie;
7580 }
7581 
7582 static void tcp_reqsk_record_syn(const struct sock *sk,
7583 				 struct request_sock *req,
7584 				 const struct sk_buff *skb)
7585 {
7586 	if (tcp_sk(sk)->save_syn) {
7587 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7588 		struct saved_syn *saved_syn;
7589 		u32 mac_hdrlen;
7590 		void *base;
7591 
7592 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
7593 			base = skb_mac_header(skb);
7594 			mac_hdrlen = skb_mac_header_len(skb);
7595 			len += mac_hdrlen;
7596 		} else {
7597 			base = skb_network_header(skb);
7598 			mac_hdrlen = 0;
7599 		}
7600 
7601 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
7602 				    GFP_ATOMIC);
7603 		if (saved_syn) {
7604 			saved_syn->mac_hdrlen = mac_hdrlen;
7605 			saved_syn->network_hdrlen = skb_network_header_len(skb);
7606 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7607 			memcpy(saved_syn->data, base, len);
7608 			req->saved_syn = saved_syn;
7609 		}
7610 	}
7611 }
7612 
7613 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
7614  * used for SYN cookie generation.
7615  */
7616 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7617 			  const struct tcp_request_sock_ops *af_ops,
7618 			  struct sock *sk, struct tcphdr *th)
7619 {
7620 	struct tcp_sock *tp = tcp_sk(sk);
7621 	u16 mss;
7622 
7623 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7624 	    !inet_csk_reqsk_queue_is_full(sk))
7625 		return 0;
7626 
7627 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7628 		return 0;
7629 
7630 	if (sk_acceptq_is_full(sk)) {
7631 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7632 		return 0;
7633 	}
7634 
7635 	mss = tcp_parse_mss_option(th, READ_ONCE(tp->rx_opt.user_mss));
7636 	if (!mss)
7637 		mss = af_ops->mss_clamp;
7638 
7639 	return mss;
7640 }
7641 EXPORT_IPV6_MOD_GPL(tcp_get_syncookie_mss);
7642 
7643 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7644 		     const struct tcp_request_sock_ops *af_ops,
7645 		     struct sock *sk, struct sk_buff *skb)
7646 {
7647 	struct tcp_fastopen_cookie foc = { .len = -1 };
7648 	struct tcp_options_received tmp_opt;
7649 	const struct tcp_sock *tp = tcp_sk(sk);
7650 	struct net *net = sock_net(sk);
7651 	struct sock *fastopen_sk = NULL;
7652 	struct request_sock *req;
7653 	bool want_cookie = false;
7654 	struct dst_entry *dst;
7655 	struct flowi fl;
7656 	u8 syncookies;
7657 	u32 isn;
7658 
7659 #ifdef CONFIG_TCP_AO
7660 	const struct tcp_ao_hdr *aoh;
7661 #endif
7662 
7663 	isn = __this_cpu_read(tcp_tw_isn);
7664 	if (isn) {
7665 		/* TW buckets are converted to open requests without
7666 		 * limitations, they conserve resources and peer is
7667 		 * evidently real one.
7668 		 */
7669 		__this_cpu_write(tcp_tw_isn, 0);
7670 	} else {
7671 		syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7672 
7673 		if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) {
7674 			want_cookie = tcp_syn_flood_action(sk,
7675 							   rsk_ops->slab_name);
7676 			if (!want_cookie)
7677 				goto drop;
7678 		}
7679 	}
7680 
7681 	if (sk_acceptq_is_full(sk)) {
7682 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7683 		goto drop;
7684 	}
7685 
7686 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7687 	if (!req)
7688 		goto drop;
7689 
7690 	req->syncookie = want_cookie;
7691 	tcp_rsk(req)->af_specific = af_ops;
7692 	tcp_rsk(req)->ts_off = 0;
7693 	tcp_rsk(req)->req_usec_ts = false;
7694 #if IS_ENABLED(CONFIG_MPTCP)
7695 	tcp_rsk(req)->is_mptcp = 0;
7696 #endif
7697 
7698 	tcp_clear_options(&tmp_opt);
7699 	tmp_opt.mss_clamp = af_ops->mss_clamp;
7700 	tmp_opt.user_mss  = READ_ONCE(tp->rx_opt.user_mss);
7701 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7702 			  want_cookie ? NULL : &foc);
7703 
7704 	if (want_cookie && !tmp_opt.saw_tstamp)
7705 		tcp_clear_options(&tmp_opt);
7706 
7707 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7708 		tmp_opt.smc_ok = 0;
7709 
7710 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7711 	tcp_openreq_init(req, &tmp_opt, skb, sk);
7712 	inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7713 
7714 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
7715 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7716 
7717 	dst = af_ops->route_req(sk, skb, &fl, req, isn);
7718 	if (!dst)
7719 		goto drop_and_free;
7720 
7721 	if (tmp_opt.tstamp_ok) {
7722 		tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
7723 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7724 	}
7725 	if (!want_cookie && !isn) {
7726 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7727 
7728 		/* Kill the following clause, if you dislike this way. */
7729 		if (!syncookies &&
7730 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7731 		     (max_syn_backlog >> 2)) &&
7732 		    !tcp_peer_is_proven(req, dst)) {
7733 			/* Without syncookies last quarter of
7734 			 * backlog is filled with destinations,
7735 			 * proven to be alive.
7736 			 * It means that we continue to communicate
7737 			 * to destinations, already remembered
7738 			 * to the moment of synflood.
7739 			 */
7740 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7741 				    rsk_ops->family);
7742 			goto drop_and_release;
7743 		}
7744 
7745 		isn = af_ops->init_seq(skb);
7746 	}
7747 
7748 	tcp_ecn_create_request(req, skb, sk, dst);
7749 
7750 	if (want_cookie) {
7751 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7752 		if (!tmp_opt.tstamp_ok)
7753 			inet_rsk(req)->ecn_ok = 0;
7754 	}
7755 
7756 #ifdef CONFIG_TCP_AO
7757 	if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
7758 		goto drop_and_release; /* Invalid TCP options */
7759 	if (aoh) {
7760 		tcp_rsk(req)->used_tcp_ao = true;
7761 		tcp_rsk(req)->ao_rcv_next = aoh->keyid;
7762 		tcp_rsk(req)->ao_keyid = aoh->rnext_keyid;
7763 
7764 	} else {
7765 		tcp_rsk(req)->used_tcp_ao = false;
7766 	}
7767 #endif
7768 	tcp_rsk(req)->snt_isn = isn;
7769 	tcp_rsk(req)->txhash = net_tx_rndhash();
7770 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7771 	tcp_openreq_init_rwin(req, sk, dst);
7772 	sk_rx_queue_set(req_to_sk(req), skb);
7773 	if (!want_cookie) {
7774 		tcp_reqsk_record_syn(sk, req, skb);
7775 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7776 	}
7777 	if (fastopen_sk) {
7778 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7779 				    &foc, TCP_SYNACK_FASTOPEN, skb);
7780 		/* Add the child socket directly into the accept queue */
7781 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7782 			bh_unlock_sock(fastopen_sk);
7783 			sock_put(fastopen_sk);
7784 			goto drop_and_free;
7785 		}
7786 		sk->sk_data_ready(sk);
7787 		bh_unlock_sock(fastopen_sk);
7788 		sock_put(fastopen_sk);
7789 	} else {
7790 		tcp_rsk(req)->tfo_listener = false;
7791 		if (!want_cookie &&
7792 		    unlikely(!inet_csk_reqsk_queue_hash_add(sk, req))) {
7793 			reqsk_free(req);
7794 			dst_release(dst);
7795 			return 0;
7796 		}
7797 		af_ops->send_synack(sk, dst, &fl, req, &foc,
7798 				    !want_cookie ? TCP_SYNACK_NORMAL :
7799 						   TCP_SYNACK_COOKIE,
7800 				    skb);
7801 		if (want_cookie) {
7802 			reqsk_free(req);
7803 			return 0;
7804 		}
7805 	}
7806 	reqsk_put(req);
7807 	return 0;
7808 
7809 drop_and_release:
7810 	dst_release(dst);
7811 drop_and_free:
7812 	__reqsk_free(req);
7813 drop:
7814 	tcp_listendrop(sk);
7815 	return 0;
7816 }
7817 EXPORT_IPV6_MOD(tcp_conn_request);
7818