1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the TCP module. 8 * 9 * Version: @(#)tcp.h 1.0.5 05/23/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 */ 14 #ifndef _TCP_H 15 #define _TCP_H 16 17 #define FASTRETRANS_DEBUG 1 18 19 #include <linux/list.h> 20 #include <linux/tcp.h> 21 #include <linux/bug.h> 22 #include <linux/slab.h> 23 #include <linux/cache.h> 24 #include <linux/percpu.h> 25 #include <linux/skbuff.h> 26 #include <linux/kref.h> 27 #include <linux/ktime.h> 28 #include <linux/indirect_call_wrapper.h> 29 #include <linux/bits.h> 30 31 #include <net/inet_connection_sock.h> 32 #include <net/inet_timewait_sock.h> 33 #include <net/inet_hashtables.h> 34 #include <net/checksum.h> 35 #include <net/request_sock.h> 36 #include <net/sock_reuseport.h> 37 #include <net/sock.h> 38 #include <net/snmp.h> 39 #include <net/ip.h> 40 #include <net/tcp_states.h> 41 #include <net/tcp_ao.h> 42 #include <net/inet_ecn.h> 43 #include <net/dst.h> 44 #include <net/mptcp.h> 45 #include <net/xfrm.h> 46 47 #include <linux/seq_file.h> 48 #include <linux/memcontrol.h> 49 #include <linux/bpf-cgroup.h> 50 #include <linux/siphash.h> 51 52 extern struct inet_hashinfo tcp_hashinfo; 53 54 DECLARE_PER_CPU(unsigned int, tcp_orphan_count); 55 int tcp_orphan_count_sum(void); 56 57 static inline void tcp_orphan_count_inc(void) 58 { 59 this_cpu_inc(tcp_orphan_count); 60 } 61 62 static inline void tcp_orphan_count_dec(void) 63 { 64 this_cpu_dec(tcp_orphan_count); 65 } 66 67 DECLARE_PER_CPU(u32, tcp_tw_isn); 68 69 void tcp_time_wait(struct sock *sk, int state, int timeo); 70 71 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER) 72 #define MAX_TCP_OPTION_SPACE 40 73 #define TCP_MIN_SND_MSS 48 74 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE) 75 76 /* 77 * Never offer a window over 32767 without using window scaling. Some 78 * poor stacks do signed 16bit maths! 79 */ 80 #define MAX_TCP_WINDOW 32767U 81 82 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */ 83 #define TCP_MIN_MSS 88U 84 85 /* The initial MTU to use for probing */ 86 #define TCP_BASE_MSS 1024 87 88 /* probing interval, default to 10 minutes as per RFC4821 */ 89 #define TCP_PROBE_INTERVAL 600 90 91 /* Specify interval when tcp mtu probing will stop */ 92 #define TCP_PROBE_THRESHOLD 8 93 94 /* After receiving this amount of duplicate ACKs fast retransmit starts. */ 95 #define TCP_FASTRETRANS_THRESH 3 96 97 /* Maximal number of ACKs sent quickly to accelerate slow-start. */ 98 #define TCP_MAX_QUICKACKS 16U 99 100 /* Maximal number of window scale according to RFC1323 */ 101 #define TCP_MAX_WSCALE 14U 102 103 /* Default sending frequency of accurate ECN option per RTT */ 104 #define TCP_ACCECN_OPTION_BEACON 3 105 106 /* urg_data states */ 107 #define TCP_URG_VALID 0x0100 108 #define TCP_URG_NOTYET 0x0200 109 #define TCP_URG_READ 0x0400 110 111 #define TCP_RETR1 3 /* 112 * This is how many retries it does before it 113 * tries to figure out if the gateway is 114 * down. Minimal RFC value is 3; it corresponds 115 * to ~3sec-8min depending on RTO. 116 */ 117 118 #define TCP_RETR2 15 /* 119 * This should take at least 120 * 90 minutes to time out. 121 * RFC1122 says that the limit is 100 sec. 122 * 15 is ~13-30min depending on RTO. 123 */ 124 125 #define TCP_SYN_RETRIES 6 /* This is how many retries are done 126 * when active opening a connection. 127 * RFC1122 says the minimum retry MUST 128 * be at least 180secs. Nevertheless 129 * this value is corresponding to 130 * 63secs of retransmission with the 131 * current initial RTO. 132 */ 133 134 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done 135 * when passive opening a connection. 136 * This is corresponding to 31secs of 137 * retransmission with the current 138 * initial RTO. 139 */ 140 141 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT 142 * state, about 60 seconds */ 143 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN 144 /* BSD style FIN_WAIT2 deadlock breaker. 145 * It used to be 3min, new value is 60sec, 146 * to combine FIN-WAIT-2 timeout with 147 * TIME-WAIT timer. 148 */ 149 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */ 150 151 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */ 152 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX); 153 154 #if HZ >= 100 155 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */ 156 #define TCP_ATO_MIN ((unsigned)(HZ/25)) 157 #else 158 #define TCP_DELACK_MIN 4U 159 #define TCP_ATO_MIN 4U 160 #endif 161 #define TCP_RTO_MAX_SEC 120 162 #define TCP_RTO_MAX ((unsigned)(TCP_RTO_MAX_SEC * HZ)) 163 #define TCP_RTO_MIN ((unsigned)(HZ / 5)) 164 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */ 165 166 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */ 167 168 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */ 169 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now 170 * used as a fallback RTO for the 171 * initial data transmission if no 172 * valid RTT sample has been acquired, 173 * most likely due to retrans in 3WHS. 174 */ 175 176 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes 177 * for local resources. 178 */ 179 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */ 180 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */ 181 #define TCP_KEEPALIVE_INTVL (75*HZ) 182 183 #define MAX_TCP_KEEPIDLE 32767 184 #define MAX_TCP_KEEPINTVL 32767 185 #define MAX_TCP_KEEPCNT 127 186 #define MAX_TCP_SYNCNT 127 187 188 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds 189 * to avoid overflows. This assumes a clock smaller than 1 Mhz. 190 * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz. 191 */ 192 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC) 193 194 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated 195 * after this time. It should be equal 196 * (or greater than) TCP_TIMEWAIT_LEN 197 * to provide reliability equal to one 198 * provided by timewait state. 199 */ 200 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host 201 * timestamps. It must be less than 202 * minimal timewait lifetime. 203 */ 204 /* 205 * TCP option 206 */ 207 208 #define TCPOPT_NOP 1 /* Padding */ 209 #define TCPOPT_EOL 0 /* End of options */ 210 #define TCPOPT_MSS 2 /* Segment size negotiating */ 211 #define TCPOPT_WINDOW 3 /* Window scaling */ 212 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ 213 #define TCPOPT_SACK 5 /* SACK Block */ 214 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ 215 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */ 216 #define TCPOPT_AO 29 /* Authentication Option (RFC5925) */ 217 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */ 218 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */ 219 #define TCPOPT_ACCECN0 172 /* 0xAC: Accurate ECN Order 0 */ 220 #define TCPOPT_ACCECN1 174 /* 0xAE: Accurate ECN Order 1 */ 221 #define TCPOPT_EXP 254 /* Experimental */ 222 /* Magic number to be after the option value for sharing TCP 223 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt 224 */ 225 #define TCPOPT_FASTOPEN_MAGIC 0xF989 226 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9 227 228 /* 229 * TCP option lengths 230 */ 231 232 #define TCPOLEN_MSS 4 233 #define TCPOLEN_WINDOW 3 234 #define TCPOLEN_SACK_PERM 2 235 #define TCPOLEN_TIMESTAMP 10 236 #define TCPOLEN_MD5SIG 18 237 #define TCPOLEN_FASTOPEN_BASE 2 238 #define TCPOLEN_ACCECN_BASE 2 239 #define TCPOLEN_EXP_FASTOPEN_BASE 4 240 #define TCPOLEN_EXP_SMC_BASE 6 241 242 /* But this is what stacks really send out. */ 243 #define TCPOLEN_TSTAMP_ALIGNED 12 244 #define TCPOLEN_WSCALE_ALIGNED 4 245 #define TCPOLEN_SACKPERM_ALIGNED 4 246 #define TCPOLEN_SACK_BASE 2 247 #define TCPOLEN_SACK_BASE_ALIGNED 4 248 #define TCPOLEN_SACK_PERBLOCK 8 249 #define TCPOLEN_MD5SIG_ALIGNED 20 250 #define TCPOLEN_MSS_ALIGNED 4 251 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8 252 #define TCPOLEN_ACCECN_PERFIELD 3 253 254 /* Maximum number of byte counters in AccECN option + size */ 255 #define TCP_ACCECN_NUMFIELDS 3 256 #define TCP_ACCECN_MAXSIZE (TCPOLEN_ACCECN_BASE + \ 257 TCPOLEN_ACCECN_PERFIELD * \ 258 TCP_ACCECN_NUMFIELDS) 259 #define TCP_ACCECN_SAFETY_SHIFT 1 /* SAFETY_FACTOR in accecn draft */ 260 261 /* Flags in tp->nonagle */ 262 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */ 263 #define TCP_NAGLE_CORK 2 /* Socket is corked */ 264 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */ 265 266 /* TCP thin-stream limits */ 267 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */ 268 269 /* TCP initial congestion window as per rfc6928 */ 270 #define TCP_INIT_CWND 10 271 272 /* Bit Flags for sysctl_tcp_fastopen */ 273 #define TFO_CLIENT_ENABLE 1 274 #define TFO_SERVER_ENABLE 2 275 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */ 276 277 /* Accept SYN data w/o any cookie option */ 278 #define TFO_SERVER_COOKIE_NOT_REQD 0x200 279 280 /* Force enable TFO on all listeners, i.e., not requiring the 281 * TCP_FASTOPEN socket option. 282 */ 283 #define TFO_SERVER_WO_SOCKOPT1 0x400 284 285 286 /* sysctl variables for tcp */ 287 extern int sysctl_tcp_max_orphans; 288 extern long sysctl_tcp_mem[3]; 289 290 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */ 291 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */ 292 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */ 293 294 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 295 296 extern struct percpu_counter tcp_sockets_allocated; 297 extern unsigned long tcp_memory_pressure; 298 299 /* optimized version of sk_under_memory_pressure() for TCP sockets */ 300 static inline bool tcp_under_memory_pressure(const struct sock *sk) 301 { 302 if (mem_cgroup_sk_enabled(sk) && 303 mem_cgroup_sk_under_memory_pressure(sk)) 304 return true; 305 306 return READ_ONCE(tcp_memory_pressure); 307 } 308 /* 309 * The next routines deal with comparing 32 bit unsigned ints 310 * and worry about wraparound (automatic with unsigned arithmetic). 311 */ 312 313 static inline bool before(__u32 seq1, __u32 seq2) 314 { 315 return (__s32)(seq1-seq2) < 0; 316 } 317 #define after(seq2, seq1) before(seq1, seq2) 318 319 /* is s2<=s1<=s3 ? */ 320 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3) 321 { 322 return seq3 - seq2 >= seq1 - seq2; 323 } 324 325 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 326 { 327 sk_wmem_queued_add(sk, -skb->truesize); 328 if (!skb_zcopy_pure(skb)) 329 sk_mem_uncharge(sk, skb->truesize); 330 else 331 sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb))); 332 __kfree_skb(skb); 333 } 334 335 void sk_forced_mem_schedule(struct sock *sk, int size); 336 337 bool tcp_check_oom(const struct sock *sk, int shift); 338 339 340 extern struct proto tcp_prot; 341 342 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field) 343 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field) 344 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field) 345 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val) 346 347 void tcp_tsq_work_init(void); 348 349 int tcp_v4_err(struct sk_buff *skb, u32); 350 351 void tcp_shutdown(struct sock *sk, int how); 352 353 int tcp_v4_early_demux(struct sk_buff *skb); 354 int tcp_v4_rcv(struct sk_buff *skb); 355 356 void tcp_remove_empty_skb(struct sock *sk); 357 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 358 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size); 359 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 360 size_t size, struct ubuf_info *uarg); 361 void tcp_splice_eof(struct socket *sock); 362 int tcp_send_mss(struct sock *sk, int *size_goal, int flags); 363 int tcp_wmem_schedule(struct sock *sk, int copy); 364 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, 365 int size_goal); 366 void tcp_release_cb(struct sock *sk); 367 void tcp_wfree(struct sk_buff *skb); 368 void tcp_write_timer_handler(struct sock *sk); 369 void tcp_delack_timer_handler(struct sock *sk); 370 int tcp_ioctl(struct sock *sk, int cmd, int *karg); 371 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb); 372 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb); 373 void tcp_rcvbuf_grow(struct sock *sk); 374 void tcp_rcv_space_adjust(struct sock *sk); 375 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp); 376 void tcp_twsk_destructor(struct sock *sk); 377 void tcp_twsk_purge(struct list_head *net_exit_list); 378 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos, 379 struct pipe_inode_info *pipe, size_t len, 380 unsigned int flags); 381 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 382 bool force_schedule); 383 384 static inline void tcp_dec_quickack_mode(struct sock *sk) 385 { 386 struct inet_connection_sock *icsk = inet_csk(sk); 387 388 if (icsk->icsk_ack.quick) { 389 /* How many ACKs S/ACKing new data have we sent? */ 390 const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0; 391 392 if (pkts >= icsk->icsk_ack.quick) { 393 icsk->icsk_ack.quick = 0; 394 /* Leaving quickack mode we deflate ATO. */ 395 icsk->icsk_ack.ato = TCP_ATO_MIN; 396 } else 397 icsk->icsk_ack.quick -= pkts; 398 } 399 } 400 401 #define TCP_ECN_MODE_RFC3168 BIT(0) 402 #define TCP_ECN_QUEUE_CWR BIT(1) 403 #define TCP_ECN_DEMAND_CWR BIT(2) 404 #define TCP_ECN_SEEN BIT(3) 405 #define TCP_ECN_MODE_ACCECN BIT(4) 406 407 #define TCP_ECN_DISABLED 0 408 #define TCP_ECN_MODE_PENDING (TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN) 409 #define TCP_ECN_MODE_ANY (TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN) 410 411 static inline bool tcp_ecn_mode_any(const struct tcp_sock *tp) 412 { 413 return tp->ecn_flags & TCP_ECN_MODE_ANY; 414 } 415 416 static inline bool tcp_ecn_mode_rfc3168(const struct tcp_sock *tp) 417 { 418 return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_RFC3168; 419 } 420 421 static inline bool tcp_ecn_mode_accecn(const struct tcp_sock *tp) 422 { 423 return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_ACCECN; 424 } 425 426 static inline bool tcp_ecn_disabled(const struct tcp_sock *tp) 427 { 428 return !tcp_ecn_mode_any(tp); 429 } 430 431 static inline bool tcp_ecn_mode_pending(const struct tcp_sock *tp) 432 { 433 return (tp->ecn_flags & TCP_ECN_MODE_PENDING) == TCP_ECN_MODE_PENDING; 434 } 435 436 static inline void tcp_ecn_mode_set(struct tcp_sock *tp, u8 mode) 437 { 438 tp->ecn_flags &= ~TCP_ECN_MODE_ANY; 439 tp->ecn_flags |= mode; 440 } 441 442 enum tcp_tw_status { 443 TCP_TW_SUCCESS = 0, 444 TCP_TW_RST = 1, 445 TCP_TW_ACK = 2, 446 TCP_TW_SYN = 3, 447 TCP_TW_ACK_OOW = 4 448 }; 449 450 451 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, 452 struct sk_buff *skb, 453 const struct tcphdr *th, 454 u32 *tw_isn, 455 enum skb_drop_reason *drop_reason); 456 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, 457 struct request_sock *req, bool fastopen, 458 bool *lost_race, enum skb_drop_reason *drop_reason); 459 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child, 460 struct sk_buff *skb); 461 void tcp_enter_loss(struct sock *sk); 462 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag); 463 void tcp_clear_retrans(struct tcp_sock *tp); 464 void tcp_update_metrics(struct sock *sk); 465 void tcp_init_metrics(struct sock *sk); 466 void tcp_metrics_init(void); 467 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst); 468 void __tcp_close(struct sock *sk, long timeout); 469 void tcp_close(struct sock *sk, long timeout); 470 void tcp_init_sock(struct sock *sk); 471 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb); 472 __poll_t tcp_poll(struct file *file, struct socket *sock, 473 struct poll_table_struct *wait); 474 int do_tcp_getsockopt(struct sock *sk, int level, 475 int optname, sockptr_t optval, sockptr_t optlen); 476 int tcp_getsockopt(struct sock *sk, int level, int optname, 477 char __user *optval, int __user *optlen); 478 bool tcp_bpf_bypass_getsockopt(int level, int optname); 479 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 480 sockptr_t optval, unsigned int optlen); 481 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 482 unsigned int optlen); 483 void tcp_reset_keepalive_timer(struct sock *sk, unsigned long timeout); 484 void tcp_set_keepalive(struct sock *sk, int val); 485 void tcp_syn_ack_timeout(const struct request_sock *req); 486 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 487 int flags, int *addr_len); 488 int tcp_set_rcvlowat(struct sock *sk, int val); 489 int tcp_set_window_clamp(struct sock *sk, int val); 490 void tcp_update_recv_tstamps(struct sk_buff *skb, 491 struct scm_timestamping_internal *tss); 492 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 493 struct scm_timestamping_internal *tss); 494 void tcp_data_ready(struct sock *sk); 495 #ifdef CONFIG_MMU 496 int tcp_mmap(struct file *file, struct socket *sock, 497 struct vm_area_struct *vma); 498 #endif 499 void tcp_parse_options(const struct net *net, const struct sk_buff *skb, 500 struct tcp_options_received *opt_rx, 501 int estab, struct tcp_fastopen_cookie *foc); 502 503 /* 504 * BPF SKB-less helpers 505 */ 506 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 507 struct tcphdr *th, u32 *cookie); 508 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, 509 struct tcphdr *th, u32 *cookie); 510 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss); 511 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 512 const struct tcp_request_sock_ops *af_ops, 513 struct sock *sk, struct tcphdr *th); 514 /* 515 * TCP v4 functions exported for the inet6 API 516 */ 517 518 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb); 519 void tcp_v4_mtu_reduced(struct sock *sk); 520 void tcp_req_err(struct sock *sk, u32 seq, bool abort); 521 void tcp_ld_RTO_revert(struct sock *sk, u32 seq); 522 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb); 523 struct sock *tcp_create_openreq_child(const struct sock *sk, 524 struct request_sock *req, 525 struct sk_buff *skb); 526 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst); 527 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 528 struct request_sock *req, 529 struct dst_entry *dst, 530 struct request_sock *req_unhash, 531 bool *own_req); 532 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb); 533 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); 534 int tcp_connect(struct sock *sk); 535 enum tcp_synack_type { 536 TCP_SYNACK_NORMAL, 537 TCP_SYNACK_FASTOPEN, 538 TCP_SYNACK_COOKIE, 539 }; 540 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 541 struct request_sock *req, 542 struct tcp_fastopen_cookie *foc, 543 enum tcp_synack_type synack_type, 544 struct sk_buff *syn_skb); 545 int tcp_disconnect(struct sock *sk, int flags); 546 547 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb); 548 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size); 549 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb); 550 551 /* From syncookies.c */ 552 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, 553 struct request_sock *req, 554 struct dst_entry *dst); 555 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th); 556 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb); 557 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, 558 struct sock *sk, struct sk_buff *skb, 559 struct tcp_options_received *tcp_opt, 560 int mss, u32 tsoff); 561 562 #if IS_ENABLED(CONFIG_BPF) 563 struct bpf_tcp_req_attrs { 564 u32 rcv_tsval; 565 u32 rcv_tsecr; 566 u16 mss; 567 u8 rcv_wscale; 568 u8 snd_wscale; 569 u8 ecn_ok; 570 u8 wscale_ok; 571 u8 sack_ok; 572 u8 tstamp_ok; 573 u8 usec_ts_ok; 574 u8 reserved[3]; 575 }; 576 #endif 577 578 #ifdef CONFIG_SYN_COOKIES 579 580 /* Syncookies use a monotonic timer which increments every 60 seconds. 581 * This counter is used both as a hash input and partially encoded into 582 * the cookie value. A cookie is only validated further if the delta 583 * between the current counter value and the encoded one is less than this, 584 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if 585 * the counter advances immediately after a cookie is generated). 586 */ 587 #define MAX_SYNCOOKIE_AGE 2 588 #define TCP_SYNCOOKIE_PERIOD (60 * HZ) 589 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD) 590 591 /* syncookies: remember time of last synqueue overflow 592 * But do not dirty this field too often (once per second is enough) 593 * It is racy as we do not hold a lock, but race is very minor. 594 */ 595 static inline void tcp_synq_overflow(const struct sock *sk) 596 { 597 unsigned int last_overflow; 598 unsigned int now = jiffies; 599 600 if (sk->sk_reuseport) { 601 struct sock_reuseport *reuse; 602 603 reuse = rcu_dereference(sk->sk_reuseport_cb); 604 if (likely(reuse)) { 605 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 606 if (!time_between32(now, last_overflow, 607 last_overflow + HZ)) 608 WRITE_ONCE(reuse->synq_overflow_ts, now); 609 return; 610 } 611 } 612 613 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 614 if (!time_between32(now, last_overflow, last_overflow + HZ)) 615 WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now); 616 } 617 618 /* syncookies: no recent synqueue overflow on this listening socket? */ 619 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) 620 { 621 unsigned int last_overflow; 622 unsigned int now = jiffies; 623 624 if (sk->sk_reuseport) { 625 struct sock_reuseport *reuse; 626 627 reuse = rcu_dereference(sk->sk_reuseport_cb); 628 if (likely(reuse)) { 629 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 630 return !time_between32(now, last_overflow - HZ, 631 last_overflow + 632 TCP_SYNCOOKIE_VALID); 633 } 634 } 635 636 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 637 638 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, 639 * then we're under synflood. However, we have to use 640 * 'last_overflow - HZ' as lower bound. That's because a concurrent 641 * tcp_synq_overflow() could update .ts_recent_stamp after we read 642 * jiffies but before we store .ts_recent_stamp into last_overflow, 643 * which could lead to rejecting a valid syncookie. 644 */ 645 return !time_between32(now, last_overflow - HZ, 646 last_overflow + TCP_SYNCOOKIE_VALID); 647 } 648 649 static inline u32 tcp_cookie_time(void) 650 { 651 u64 val = get_jiffies_64(); 652 653 do_div(val, TCP_SYNCOOKIE_PERIOD); 654 return val; 655 } 656 657 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */ 658 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val) 659 { 660 if (usec_ts) 661 return div_u64(val, NSEC_PER_USEC); 662 663 return div_u64(val, NSEC_PER_MSEC); 664 } 665 666 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, 667 u16 *mssp); 668 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss); 669 u64 cookie_init_timestamp(struct request_sock *req, u64 now); 670 bool cookie_timestamp_decode(const struct net *net, 671 struct tcp_options_received *opt); 672 673 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst) 674 { 675 return READ_ONCE(net->ipv4.sysctl_tcp_ecn) || 676 dst_feature(dst, RTAX_FEATURE_ECN); 677 } 678 679 #if IS_ENABLED(CONFIG_BPF) 680 static inline bool cookie_bpf_ok(struct sk_buff *skb) 681 { 682 return skb->sk; 683 } 684 685 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb); 686 #else 687 static inline bool cookie_bpf_ok(struct sk_buff *skb) 688 { 689 return false; 690 } 691 692 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk, 693 struct sk_buff *skb) 694 { 695 return NULL; 696 } 697 #endif 698 699 /* From net/ipv6/syncookies.c */ 700 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th); 701 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb); 702 703 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, 704 const struct tcphdr *th, u16 *mssp); 705 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss); 706 #endif 707 /* tcp_output.c */ 708 709 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb); 710 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb); 711 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 712 int nonagle); 713 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 714 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 715 void tcp_retransmit_timer(struct sock *sk); 716 void tcp_xmit_retransmit_queue(struct sock *); 717 void tcp_simple_retransmit(struct sock *); 718 void tcp_enter_recovery(struct sock *sk, bool ece_ack); 719 int tcp_trim_head(struct sock *, struct sk_buff *, u32); 720 enum tcp_queue { 721 TCP_FRAG_IN_WRITE_QUEUE, 722 TCP_FRAG_IN_RTX_QUEUE, 723 }; 724 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 725 struct sk_buff *skb, u32 len, 726 unsigned int mss_now, gfp_t gfp); 727 728 void tcp_send_probe0(struct sock *); 729 int tcp_write_wakeup(struct sock *, int mib); 730 void tcp_send_fin(struct sock *sk); 731 void tcp_send_active_reset(struct sock *sk, gfp_t priority, 732 enum sk_rst_reason reason); 733 int tcp_send_synack(struct sock *); 734 void tcp_push_one(struct sock *, unsigned int mss_now); 735 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags); 736 void tcp_send_ack(struct sock *sk); 737 void tcp_send_delayed_ack(struct sock *sk); 738 void tcp_send_loss_probe(struct sock *sk); 739 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto); 740 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 741 const struct sk_buff *next_skb); 742 743 /* tcp_input.c */ 744 void tcp_rearm_rto(struct sock *sk); 745 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req); 746 void tcp_done_with_error(struct sock *sk, int err); 747 void tcp_reset(struct sock *sk, struct sk_buff *skb); 748 void tcp_fin(struct sock *sk); 749 void tcp_check_space(struct sock *sk); 750 void tcp_sack_compress_send_ack(struct sock *sk); 751 752 static inline void tcp_cleanup_skb(struct sk_buff *skb) 753 { 754 skb_dst_drop(skb); 755 secpath_reset(skb); 756 } 757 758 static inline void tcp_add_receive_queue(struct sock *sk, struct sk_buff *skb) 759 { 760 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 761 DEBUG_NET_WARN_ON_ONCE(secpath_exists(skb)); 762 __skb_queue_tail(&sk->sk_receive_queue, skb); 763 } 764 765 /* tcp_timer.c */ 766 void tcp_init_xmit_timers(struct sock *); 767 static inline void tcp_clear_xmit_timers(struct sock *sk) 768 { 769 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1) 770 __sock_put(sk); 771 772 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1) 773 __sock_put(sk); 774 775 inet_csk_clear_xmit_timers(sk); 776 } 777 778 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu); 779 unsigned int tcp_current_mss(struct sock *sk); 780 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when); 781 782 /* Bound MSS / TSO packet size with the half of the window */ 783 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) 784 { 785 int cutoff; 786 787 /* When peer uses tiny windows, there is no use in packetizing 788 * to sub-MSS pieces for the sake of SWS or making sure there 789 * are enough packets in the pipe for fast recovery. 790 * 791 * On the other hand, for extremely large MSS devices, handling 792 * smaller than MSS windows in this way does make sense. 793 */ 794 if (tp->max_window > TCP_MSS_DEFAULT) 795 cutoff = (tp->max_window >> 1); 796 else 797 cutoff = tp->max_window; 798 799 if (cutoff && pktsize > cutoff) 800 return max_t(int, cutoff, 68U - tp->tcp_header_len); 801 else 802 return pktsize; 803 } 804 805 /* tcp.c */ 806 void tcp_get_info(struct sock *, struct tcp_info *); 807 808 /* Read 'sendfile()'-style from a TCP socket */ 809 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 810 sk_read_actor_t recv_actor); 811 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc, 812 sk_read_actor_t recv_actor, bool noack, 813 u32 *copied_seq); 814 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 815 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off); 816 void tcp_read_done(struct sock *sk, size_t len); 817 818 void tcp_initialize_rcv_mss(struct sock *sk); 819 820 int tcp_mtu_to_mss(struct sock *sk, int pmtu); 821 int tcp_mss_to_mtu(struct sock *sk, int mss); 822 void tcp_mtup_init(struct sock *sk); 823 824 static inline unsigned int tcp_rto_max(const struct sock *sk) 825 { 826 return READ_ONCE(inet_csk(sk)->icsk_rto_max); 827 } 828 829 static inline void tcp_bound_rto(struct sock *sk) 830 { 831 inet_csk(sk)->icsk_rto = min(inet_csk(sk)->icsk_rto, tcp_rto_max(sk)); 832 } 833 834 static inline u32 __tcp_set_rto(const struct tcp_sock *tp) 835 { 836 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us); 837 } 838 839 u32 tcp_delack_max(const struct sock *sk); 840 841 /* Compute the actual rto_min value */ 842 static inline u32 tcp_rto_min(const struct sock *sk) 843 { 844 const struct dst_entry *dst = __sk_dst_get(sk); 845 u32 rto_min = READ_ONCE(inet_csk(sk)->icsk_rto_min); 846 847 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 848 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 849 return rto_min; 850 } 851 852 static inline u32 tcp_rto_min_us(const struct sock *sk) 853 { 854 return jiffies_to_usecs(tcp_rto_min(sk)); 855 } 856 857 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst) 858 { 859 return dst_metric_locked(dst, RTAX_CC_ALGO); 860 } 861 862 /* Minimum RTT in usec. ~0 means not available. */ 863 static inline u32 tcp_min_rtt(const struct tcp_sock *tp) 864 { 865 return minmax_get(&tp->rtt_min); 866 } 867 868 /* Compute the actual receive window we are currently advertising. 869 * Rcv_nxt can be after the window if our peer push more data 870 * than the offered window. 871 */ 872 static inline u32 tcp_receive_window(const struct tcp_sock *tp) 873 { 874 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt; 875 876 if (win < 0) 877 win = 0; 878 return (u32) win; 879 } 880 881 /* Choose a new window, without checks for shrinking, and without 882 * scaling applied to the result. The caller does these things 883 * if necessary. This is a "raw" window selection. 884 */ 885 u32 __tcp_select_window(struct sock *sk); 886 887 void tcp_send_window_probe(struct sock *sk); 888 889 /* TCP uses 32bit jiffies to save some space. 890 * Note that this is different from tcp_time_stamp, which 891 * historically has been the same until linux-4.13. 892 */ 893 #define tcp_jiffies32 ((u32)jiffies) 894 895 /* 896 * Deliver a 32bit value for TCP timestamp option (RFC 7323) 897 * It is no longer tied to jiffies, but to 1 ms clock. 898 * Note: double check if you want to use tcp_jiffies32 instead of this. 899 */ 900 #define TCP_TS_HZ 1000 901 902 static inline u64 tcp_clock_ns(void) 903 { 904 return ktime_get_ns(); 905 } 906 907 static inline u64 tcp_clock_us(void) 908 { 909 return div_u64(tcp_clock_ns(), NSEC_PER_USEC); 910 } 911 912 static inline u64 tcp_clock_ms(void) 913 { 914 return div_u64(tcp_clock_ns(), NSEC_PER_MSEC); 915 } 916 917 /* TCP Timestamp included in TS option (RFC 1323) can either use ms 918 * or usec resolution. Each socket carries a flag to select one or other 919 * resolution, as the route attribute could change anytime. 920 * Each flow must stick to initial resolution. 921 */ 922 static inline u32 tcp_clock_ts(bool usec_ts) 923 { 924 return usec_ts ? tcp_clock_us() : tcp_clock_ms(); 925 } 926 927 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp) 928 { 929 return div_u64(tp->tcp_mstamp, USEC_PER_MSEC); 930 } 931 932 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp) 933 { 934 if (tp->tcp_usec_ts) 935 return tp->tcp_mstamp; 936 return tcp_time_stamp_ms(tp); 937 } 938 939 void tcp_mstamp_refresh(struct tcp_sock *tp); 940 941 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0) 942 { 943 return max_t(s64, t1 - t0, 0); 944 } 945 946 /* provide the departure time in us unit */ 947 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb) 948 { 949 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC); 950 } 951 952 /* Provide skb TSval in usec or ms unit */ 953 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb) 954 { 955 if (usec_ts) 956 return tcp_skb_timestamp_us(skb); 957 958 return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC); 959 } 960 961 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw) 962 { 963 return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset; 964 } 965 966 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq) 967 { 968 return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off; 969 } 970 971 #define tcp_flag_byte(th) (((u_int8_t *)th)[13]) 972 973 #define TCPHDR_FIN BIT(0) 974 #define TCPHDR_SYN BIT(1) 975 #define TCPHDR_RST BIT(2) 976 #define TCPHDR_PSH BIT(3) 977 #define TCPHDR_ACK BIT(4) 978 #define TCPHDR_URG BIT(5) 979 #define TCPHDR_ECE BIT(6) 980 #define TCPHDR_CWR BIT(7) 981 #define TCPHDR_AE BIT(8) 982 #define TCPHDR_FLAGS_MASK (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \ 983 TCPHDR_PSH | TCPHDR_ACK | TCPHDR_URG | \ 984 TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE) 985 #define tcp_flags_ntohs(th) (ntohs(*(__be16 *)&tcp_flag_word(th)) & \ 986 TCPHDR_FLAGS_MASK) 987 988 #define TCPHDR_ACE (TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE) 989 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR) 990 #define TCPHDR_SYNACK_ACCECN (TCPHDR_SYN | TCPHDR_ACK | TCPHDR_CWR) 991 992 #define TCP_ACCECN_CEP_ACE_MASK 0x7 993 #define TCP_ACCECN_ACE_MAX_DELTA 6 994 995 /* To avoid/detect middlebox interference, not all counters start at 0. 996 * See draft-ietf-tcpm-accurate-ecn for the latest values. 997 */ 998 #define TCP_ACCECN_CEP_INIT_OFFSET 5 999 #define TCP_ACCECN_E1B_INIT_OFFSET 1 1000 #define TCP_ACCECN_E0B_INIT_OFFSET 1 1001 #define TCP_ACCECN_CEB_INIT_OFFSET 0 1002 1003 /* State flags for sacked in struct tcp_skb_cb */ 1004 enum tcp_skb_cb_sacked_flags { 1005 TCPCB_SACKED_ACKED = (1 << 0), /* SKB ACK'd by a SACK block */ 1006 TCPCB_SACKED_RETRANS = (1 << 1), /* SKB retransmitted */ 1007 TCPCB_LOST = (1 << 2), /* SKB is lost */ 1008 TCPCB_TAGBITS = (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS | 1009 TCPCB_LOST), /* All tag bits */ 1010 TCPCB_REPAIRED = (1 << 4), /* SKB repaired (no skb_mstamp_ns) */ 1011 TCPCB_EVER_RETRANS = (1 << 7), /* Ever retransmitted frame */ 1012 TCPCB_RETRANS = (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS | 1013 TCPCB_REPAIRED), 1014 }; 1015 1016 /* This is what the send packet queuing engine uses to pass 1017 * TCP per-packet control information to the transmission code. 1018 * We also store the host-order sequence numbers in here too. 1019 * This is 44 bytes if IPV6 is enabled. 1020 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately. 1021 */ 1022 struct tcp_skb_cb { 1023 __u32 seq; /* Starting sequence number */ 1024 __u32 end_seq; /* SEQ + FIN + SYN + datalen */ 1025 union { 1026 /* Note : 1027 * tcp_gso_segs/size are used in write queue only, 1028 * cf tcp_skb_pcount()/tcp_skb_mss() 1029 */ 1030 struct { 1031 u16 tcp_gso_segs; 1032 u16 tcp_gso_size; 1033 }; 1034 }; 1035 __u16 tcp_flags; /* TCP header flags (tcp[12-13])*/ 1036 1037 __u8 sacked; /* State flags for SACK. */ 1038 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */ 1039 #define TSTAMP_ACK_SK 0x1 1040 #define TSTAMP_ACK_BPF 0x2 1041 __u8 txstamp_ack:2, /* Record TX timestamp for ack? */ 1042 eor:1, /* Is skb MSG_EOR marked? */ 1043 has_rxtstamp:1, /* SKB has a RX timestamp */ 1044 unused:4; 1045 __u32 ack_seq; /* Sequence number ACK'd */ 1046 union { 1047 struct { 1048 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1) 1049 /* There is space for up to 24 bytes */ 1050 __u32 is_app_limited:1, /* cwnd not fully used? */ 1051 delivered_ce:20, 1052 unused:11; 1053 /* pkts S/ACKed so far upon tx of skb, incl retrans: */ 1054 __u32 delivered; 1055 /* start of send pipeline phase */ 1056 u64 first_tx_mstamp; 1057 /* when we reached the "delivered" count */ 1058 u64 delivered_mstamp; 1059 } tx; /* only used for outgoing skbs */ 1060 union { 1061 struct inet_skb_parm h4; 1062 #if IS_ENABLED(CONFIG_IPV6) 1063 struct inet6_skb_parm h6; 1064 #endif 1065 } header; /* For incoming skbs */ 1066 }; 1067 }; 1068 1069 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0])) 1070 1071 extern const struct inet_connection_sock_af_ops ipv4_specific; 1072 1073 #if IS_ENABLED(CONFIG_IPV6) 1074 /* This is the variant of inet6_iif() that must be used by TCP, 1075 * as TCP moves IP6CB into a different location in skb->cb[] 1076 */ 1077 static inline int tcp_v6_iif(const struct sk_buff *skb) 1078 { 1079 return TCP_SKB_CB(skb)->header.h6.iif; 1080 } 1081 1082 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb) 1083 { 1084 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); 1085 1086 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif; 1087 } 1088 1089 /* TCP_SKB_CB reference means this can not be used from early demux */ 1090 static inline int tcp_v6_sdif(const struct sk_buff *skb) 1091 { 1092 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 1093 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags)) 1094 return TCP_SKB_CB(skb)->header.h6.iif; 1095 #endif 1096 return 0; 1097 } 1098 1099 extern const struct inet_connection_sock_af_ops ipv6_specific; 1100 1101 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb)); 1102 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb)); 1103 void tcp_v6_early_demux(struct sk_buff *skb); 1104 1105 #endif 1106 1107 /* TCP_SKB_CB reference means this can not be used from early demux */ 1108 static inline int tcp_v4_sdif(struct sk_buff *skb) 1109 { 1110 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 1111 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags)) 1112 return TCP_SKB_CB(skb)->header.h4.iif; 1113 #endif 1114 return 0; 1115 } 1116 1117 /* Due to TSO, an SKB can be composed of multiple actual 1118 * packets. To keep these tracked properly, we use this. 1119 */ 1120 static inline int tcp_skb_pcount(const struct sk_buff *skb) 1121 { 1122 return TCP_SKB_CB(skb)->tcp_gso_segs; 1123 } 1124 1125 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs) 1126 { 1127 TCP_SKB_CB(skb)->tcp_gso_segs = segs; 1128 } 1129 1130 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs) 1131 { 1132 TCP_SKB_CB(skb)->tcp_gso_segs += segs; 1133 } 1134 1135 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */ 1136 static inline int tcp_skb_mss(const struct sk_buff *skb) 1137 { 1138 return TCP_SKB_CB(skb)->tcp_gso_size; 1139 } 1140 1141 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb) 1142 { 1143 return likely(!TCP_SKB_CB(skb)->eor); 1144 } 1145 1146 static inline bool tcp_skb_can_collapse(const struct sk_buff *to, 1147 const struct sk_buff *from) 1148 { 1149 /* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */ 1150 return likely(tcp_skb_can_collapse_to(to) && 1151 mptcp_skb_can_collapse(to, from) && 1152 skb_pure_zcopy_same(to, from) && 1153 skb_frags_readable(to) == skb_frags_readable(from)); 1154 } 1155 1156 static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to, 1157 const struct sk_buff *from) 1158 { 1159 return likely(mptcp_skb_can_collapse(to, from) && 1160 !skb_cmp_decrypted(to, from)); 1161 } 1162 1163 /* Events passed to congestion control interface */ 1164 enum tcp_ca_event { 1165 CA_EVENT_TX_START, /* first transmit when no packets in flight */ 1166 CA_EVENT_CWND_RESTART, /* congestion window restart */ 1167 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */ 1168 CA_EVENT_LOSS, /* loss timeout */ 1169 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */ 1170 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */ 1171 }; 1172 1173 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */ 1174 enum tcp_ca_ack_event_flags { 1175 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */ 1176 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */ 1177 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */ 1178 }; 1179 1180 /* 1181 * Interface for adding new TCP congestion control handlers 1182 */ 1183 #define TCP_CA_NAME_MAX 16 1184 #define TCP_CA_MAX 128 1185 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX) 1186 1187 #define TCP_CA_UNSPEC 0 1188 1189 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */ 1190 #define TCP_CONG_NON_RESTRICTED BIT(0) 1191 /* Requires ECN/ECT set on all packets */ 1192 #define TCP_CONG_NEEDS_ECN BIT(1) 1193 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN) 1194 1195 union tcp_cc_info; 1196 1197 struct ack_sample { 1198 u32 pkts_acked; 1199 s32 rtt_us; 1200 u32 in_flight; 1201 }; 1202 1203 /* A rate sample measures the number of (original/retransmitted) data 1204 * packets delivered "delivered" over an interval of time "interval_us". 1205 * The tcp_rate.c code fills in the rate sample, and congestion 1206 * control modules that define a cong_control function to run at the end 1207 * of ACK processing can optionally chose to consult this sample when 1208 * setting cwnd and pacing rate. 1209 * A sample is invalid if "delivered" or "interval_us" is negative. 1210 */ 1211 struct rate_sample { 1212 u64 prior_mstamp; /* starting timestamp for interval */ 1213 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */ 1214 u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */ 1215 s32 delivered; /* number of packets delivered over interval */ 1216 s32 delivered_ce; /* number of packets delivered w/ CE marks*/ 1217 long interval_us; /* time for tp->delivered to incr "delivered" */ 1218 u32 snd_interval_us; /* snd interval for delivered packets */ 1219 u32 rcv_interval_us; /* rcv interval for delivered packets */ 1220 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 1221 int losses; /* number of packets marked lost upon ACK */ 1222 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */ 1223 u32 prior_in_flight; /* in flight before this ACK */ 1224 u32 last_end_seq; /* end_seq of most recently ACKed packet */ 1225 bool is_app_limited; /* is sample from packet with bubble in pipe? */ 1226 bool is_retrans; /* is sample from retransmission? */ 1227 bool is_ack_delayed; /* is this (likely) a delayed ACK? */ 1228 }; 1229 1230 struct tcp_congestion_ops { 1231 /* fast path fields are put first to fill one cache line */ 1232 1233 /* return slow start threshold (required) */ 1234 u32 (*ssthresh)(struct sock *sk); 1235 1236 /* do new cwnd calculation (required) */ 1237 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked); 1238 1239 /* call before changing ca_state (optional) */ 1240 void (*set_state)(struct sock *sk, u8 new_state); 1241 1242 /* call when cwnd event occurs (optional) */ 1243 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev); 1244 1245 /* call when ack arrives (optional) */ 1246 void (*in_ack_event)(struct sock *sk, u32 flags); 1247 1248 /* hook for packet ack accounting (optional) */ 1249 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample); 1250 1251 /* override sysctl_tcp_min_tso_segs */ 1252 u32 (*min_tso_segs)(struct sock *sk); 1253 1254 /* call when packets are delivered to update cwnd and pacing rate, 1255 * after all the ca_state processing. (optional) 1256 */ 1257 void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs); 1258 1259 1260 /* new value of cwnd after loss (required) */ 1261 u32 (*undo_cwnd)(struct sock *sk); 1262 /* returns the multiplier used in tcp_sndbuf_expand (optional) */ 1263 u32 (*sndbuf_expand)(struct sock *sk); 1264 1265 /* control/slow paths put last */ 1266 /* get info for inet_diag (optional) */ 1267 size_t (*get_info)(struct sock *sk, u32 ext, int *attr, 1268 union tcp_cc_info *info); 1269 1270 char name[TCP_CA_NAME_MAX]; 1271 struct module *owner; 1272 struct list_head list; 1273 u32 key; 1274 u32 flags; 1275 1276 /* initialize private data (optional) */ 1277 void (*init)(struct sock *sk); 1278 /* cleanup private data (optional) */ 1279 void (*release)(struct sock *sk); 1280 } ____cacheline_aligned_in_smp; 1281 1282 int tcp_register_congestion_control(struct tcp_congestion_ops *type); 1283 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type); 1284 int tcp_update_congestion_control(struct tcp_congestion_ops *type, 1285 struct tcp_congestion_ops *old_type); 1286 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca); 1287 1288 void tcp_assign_congestion_control(struct sock *sk); 1289 void tcp_init_congestion_control(struct sock *sk); 1290 void tcp_cleanup_congestion_control(struct sock *sk); 1291 int tcp_set_default_congestion_control(struct net *net, const char *name); 1292 void tcp_get_default_congestion_control(struct net *net, char *name); 1293 void tcp_get_available_congestion_control(char *buf, size_t len); 1294 void tcp_get_allowed_congestion_control(char *buf, size_t len); 1295 int tcp_set_allowed_congestion_control(char *allowed); 1296 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, 1297 bool cap_net_admin); 1298 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked); 1299 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked); 1300 1301 u32 tcp_reno_ssthresh(struct sock *sk); 1302 u32 tcp_reno_undo_cwnd(struct sock *sk); 1303 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked); 1304 extern struct tcp_congestion_ops tcp_reno; 1305 1306 struct tcp_congestion_ops *tcp_ca_find(const char *name); 1307 struct tcp_congestion_ops *tcp_ca_find_key(u32 key); 1308 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca); 1309 #ifdef CONFIG_INET 1310 char *tcp_ca_get_name_by_key(u32 key, char *buffer); 1311 #else 1312 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer) 1313 { 1314 return NULL; 1315 } 1316 #endif 1317 1318 static inline bool tcp_ca_needs_ecn(const struct sock *sk) 1319 { 1320 const struct inet_connection_sock *icsk = inet_csk(sk); 1321 1322 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN; 1323 } 1324 1325 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event) 1326 { 1327 const struct inet_connection_sock *icsk = inet_csk(sk); 1328 1329 if (icsk->icsk_ca_ops->cwnd_event) 1330 icsk->icsk_ca_ops->cwnd_event(sk, event); 1331 } 1332 1333 /* From tcp_cong.c */ 1334 void tcp_set_ca_state(struct sock *sk, const u8 ca_state); 1335 1336 /* From tcp_rate.c */ 1337 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb); 1338 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, 1339 struct rate_sample *rs); 1340 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, 1341 bool is_sack_reneg, struct rate_sample *rs); 1342 void tcp_rate_check_app_limited(struct sock *sk); 1343 1344 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2) 1345 { 1346 return t1 > t2 || (t1 == t2 && after(seq1, seq2)); 1347 } 1348 1349 /* These functions determine how the current flow behaves in respect of SACK 1350 * handling. SACK is negotiated with the peer, and therefore it can vary 1351 * between different flows. 1352 * 1353 * tcp_is_sack - SACK enabled 1354 * tcp_is_reno - No SACK 1355 */ 1356 static inline int tcp_is_sack(const struct tcp_sock *tp) 1357 { 1358 return likely(tp->rx_opt.sack_ok); 1359 } 1360 1361 static inline bool tcp_is_reno(const struct tcp_sock *tp) 1362 { 1363 return !tcp_is_sack(tp); 1364 } 1365 1366 static inline unsigned int tcp_left_out(const struct tcp_sock *tp) 1367 { 1368 return tp->sacked_out + tp->lost_out; 1369 } 1370 1371 /* This determines how many packets are "in the network" to the best 1372 * of our knowledge. In many cases it is conservative, but where 1373 * detailed information is available from the receiver (via SACK 1374 * blocks etc.) we can make more aggressive calculations. 1375 * 1376 * Use this for decisions involving congestion control, use just 1377 * tp->packets_out to determine if the send queue is empty or not. 1378 * 1379 * Read this equation as: 1380 * 1381 * "Packets sent once on transmission queue" MINUS 1382 * "Packets left network, but not honestly ACKed yet" PLUS 1383 * "Packets fast retransmitted" 1384 */ 1385 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp) 1386 { 1387 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out; 1388 } 1389 1390 #define TCP_INFINITE_SSTHRESH 0x7fffffff 1391 1392 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp) 1393 { 1394 return tp->snd_cwnd; 1395 } 1396 1397 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val) 1398 { 1399 WARN_ON_ONCE((int)val <= 0); 1400 tp->snd_cwnd = val; 1401 } 1402 1403 static inline bool tcp_in_slow_start(const struct tcp_sock *tp) 1404 { 1405 return tcp_snd_cwnd(tp) < tp->snd_ssthresh; 1406 } 1407 1408 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp) 1409 { 1410 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH; 1411 } 1412 1413 static inline bool tcp_in_cwnd_reduction(const struct sock *sk) 1414 { 1415 return (TCPF_CA_CWR | TCPF_CA_Recovery) & 1416 (1 << inet_csk(sk)->icsk_ca_state); 1417 } 1418 1419 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd. 1420 * The exception is cwnd reduction phase, when cwnd is decreasing towards 1421 * ssthresh. 1422 */ 1423 static inline __u32 tcp_current_ssthresh(const struct sock *sk) 1424 { 1425 const struct tcp_sock *tp = tcp_sk(sk); 1426 1427 if (tcp_in_cwnd_reduction(sk)) 1428 return tp->snd_ssthresh; 1429 else 1430 return max(tp->snd_ssthresh, 1431 ((tcp_snd_cwnd(tp) >> 1) + 1432 (tcp_snd_cwnd(tp) >> 2))); 1433 } 1434 1435 /* Use define here intentionally to get WARN_ON location shown at the caller */ 1436 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out) 1437 1438 void tcp_enter_cwr(struct sock *sk); 1439 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst); 1440 1441 /* The maximum number of MSS of available cwnd for which TSO defers 1442 * sending if not using sysctl_tcp_tso_win_divisor. 1443 */ 1444 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp) 1445 { 1446 return 3; 1447 } 1448 1449 /* Returns end sequence number of the receiver's advertised window */ 1450 static inline u32 tcp_wnd_end(const struct tcp_sock *tp) 1451 { 1452 return tp->snd_una + tp->snd_wnd; 1453 } 1454 1455 /* We follow the spirit of RFC2861 to validate cwnd but implement a more 1456 * flexible approach. The RFC suggests cwnd should not be raised unless 1457 * it was fully used previously. And that's exactly what we do in 1458 * congestion avoidance mode. But in slow start we allow cwnd to grow 1459 * as long as the application has used half the cwnd. 1460 * Example : 1461 * cwnd is 10 (IW10), but application sends 9 frames. 1462 * We allow cwnd to reach 18 when all frames are ACKed. 1463 * This check is safe because it's as aggressive as slow start which already 1464 * risks 100% overshoot. The advantage is that we discourage application to 1465 * either send more filler packets or data to artificially blow up the cwnd 1466 * usage, and allow application-limited process to probe bw more aggressively. 1467 */ 1468 static inline bool tcp_is_cwnd_limited(const struct sock *sk) 1469 { 1470 const struct tcp_sock *tp = tcp_sk(sk); 1471 1472 if (tp->is_cwnd_limited) 1473 return true; 1474 1475 /* If in slow start, ensure cwnd grows to twice what was ACKed. */ 1476 if (tcp_in_slow_start(tp)) 1477 return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out; 1478 1479 return false; 1480 } 1481 1482 /* BBR congestion control needs pacing. 1483 * Same remark for SO_MAX_PACING_RATE. 1484 * sch_fq packet scheduler is efficiently handling pacing, 1485 * but is not always installed/used. 1486 * Return true if TCP stack should pace packets itself. 1487 */ 1488 static inline bool tcp_needs_internal_pacing(const struct sock *sk) 1489 { 1490 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 1491 } 1492 1493 /* Estimates in how many jiffies next packet for this flow can be sent. 1494 * Scheduling a retransmit timer too early would be silly. 1495 */ 1496 static inline unsigned long tcp_pacing_delay(const struct sock *sk) 1497 { 1498 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache; 1499 1500 return delay > 0 ? nsecs_to_jiffies(delay) : 0; 1501 } 1502 1503 static inline void tcp_reset_xmit_timer(struct sock *sk, 1504 const int what, 1505 unsigned long when, 1506 bool pace_delay) 1507 { 1508 if (pace_delay) 1509 when += tcp_pacing_delay(sk); 1510 inet_csk_reset_xmit_timer(sk, what, when, 1511 tcp_rto_max(sk)); 1512 } 1513 1514 /* Something is really bad, we could not queue an additional packet, 1515 * because qdisc is full or receiver sent a 0 window, or we are paced. 1516 * We do not want to add fuel to the fire, or abort too early, 1517 * so make sure the timer we arm now is at least 200ms in the future, 1518 * regardless of current icsk_rto value (as it could be ~2ms) 1519 */ 1520 static inline unsigned long tcp_probe0_base(const struct sock *sk) 1521 { 1522 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN); 1523 } 1524 1525 /* Variant of inet_csk_rto_backoff() used for zero window probes */ 1526 static inline unsigned long tcp_probe0_when(const struct sock *sk, 1527 unsigned long max_when) 1528 { 1529 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1, 1530 inet_csk(sk)->icsk_backoff); 1531 u64 when = (u64)tcp_probe0_base(sk) << backoff; 1532 1533 return (unsigned long)min_t(u64, when, max_when); 1534 } 1535 1536 static inline void tcp_check_probe_timer(struct sock *sk) 1537 { 1538 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending) 1539 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 1540 tcp_probe0_base(sk), true); 1541 } 1542 1543 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq) 1544 { 1545 tp->snd_wl1 = seq; 1546 } 1547 1548 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq) 1549 { 1550 tp->snd_wl1 = seq; 1551 } 1552 1553 /* 1554 * Calculate(/check) TCP checksum 1555 */ 1556 static inline __sum16 tcp_v4_check(int len, __be32 saddr, 1557 __be32 daddr, __wsum base) 1558 { 1559 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base); 1560 } 1561 1562 static inline bool tcp_checksum_complete(struct sk_buff *skb) 1563 { 1564 return !skb_csum_unnecessary(skb) && 1565 __skb_checksum_complete(skb); 1566 } 1567 1568 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb, 1569 enum skb_drop_reason *reason); 1570 1571 1572 int tcp_filter(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason *reason); 1573 void tcp_set_state(struct sock *sk, int state); 1574 void tcp_done(struct sock *sk); 1575 int tcp_abort(struct sock *sk, int err); 1576 1577 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt) 1578 { 1579 rx_opt->dsack = 0; 1580 rx_opt->num_sacks = 0; 1581 } 1582 1583 void tcp_cwnd_restart(struct sock *sk, s32 delta); 1584 1585 static inline void tcp_slow_start_after_idle_check(struct sock *sk) 1586 { 1587 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1588 struct tcp_sock *tp = tcp_sk(sk); 1589 s32 delta; 1590 1591 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) || 1592 tp->packets_out || ca_ops->cong_control) 1593 return; 1594 delta = tcp_jiffies32 - tp->lsndtime; 1595 if (delta > inet_csk(sk)->icsk_rto) 1596 tcp_cwnd_restart(sk, delta); 1597 } 1598 1599 /* Determine a window scaling and initial window to offer. */ 1600 void tcp_select_initial_window(const struct sock *sk, int __space, 1601 __u32 mss, __u32 *rcv_wnd, 1602 __u32 *window_clamp, int wscale_ok, 1603 __u8 *rcv_wscale, __u32 init_rcv_wnd); 1604 1605 static inline int __tcp_win_from_space(u8 scaling_ratio, int space) 1606 { 1607 s64 scaled_space = (s64)space * scaling_ratio; 1608 1609 return scaled_space >> TCP_RMEM_TO_WIN_SCALE; 1610 } 1611 1612 static inline int tcp_win_from_space(const struct sock *sk, int space) 1613 { 1614 return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space); 1615 } 1616 1617 /* inverse of __tcp_win_from_space() */ 1618 static inline int __tcp_space_from_win(u8 scaling_ratio, int win) 1619 { 1620 u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE; 1621 1622 do_div(val, scaling_ratio); 1623 return val; 1624 } 1625 1626 static inline int tcp_space_from_win(const struct sock *sk, int win) 1627 { 1628 return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win); 1629 } 1630 1631 /* Assume a 50% default for skb->len/skb->truesize ratio. 1632 * This may be adjusted later in tcp_measure_rcv_mss(). 1633 */ 1634 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1)) 1635 1636 static inline void tcp_scaling_ratio_init(struct sock *sk) 1637 { 1638 tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 1639 } 1640 1641 /* Note: caller must be prepared to deal with negative returns */ 1642 static inline int tcp_space(const struct sock *sk) 1643 { 1644 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - 1645 READ_ONCE(sk->sk_backlog.len) - 1646 atomic_read(&sk->sk_rmem_alloc)); 1647 } 1648 1649 static inline int tcp_full_space(const struct sock *sk) 1650 { 1651 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf)); 1652 } 1653 1654 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh) 1655 { 1656 int unused_mem = sk_unused_reserved_mem(sk); 1657 struct tcp_sock *tp = tcp_sk(sk); 1658 1659 tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh); 1660 if (unused_mem) 1661 tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh, 1662 tcp_win_from_space(sk, unused_mem)); 1663 } 1664 1665 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk) 1666 { 1667 __tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss); 1668 } 1669 1670 void tcp_cleanup_rbuf(struct sock *sk, int copied); 1671 void __tcp_cleanup_rbuf(struct sock *sk, int copied); 1672 1673 1674 /* We provision sk_rcvbuf around 200% of sk_rcvlowat. 1675 * If 87.5 % (7/8) of the space has been consumed, we want to override 1676 * SO_RCVLOWAT constraint, since we are receiving skbs with too small 1677 * len/truesize ratio. 1678 */ 1679 static inline bool tcp_rmem_pressure(const struct sock *sk) 1680 { 1681 int rcvbuf, threshold; 1682 1683 if (tcp_under_memory_pressure(sk)) 1684 return true; 1685 1686 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1687 threshold = rcvbuf - (rcvbuf >> 3); 1688 1689 return atomic_read(&sk->sk_rmem_alloc) > threshold; 1690 } 1691 1692 static inline bool tcp_epollin_ready(const struct sock *sk, int target) 1693 { 1694 const struct tcp_sock *tp = tcp_sk(sk); 1695 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); 1696 1697 if (avail <= 0) 1698 return false; 1699 1700 return (avail >= target) || tcp_rmem_pressure(sk) || 1701 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss); 1702 } 1703 1704 extern void tcp_openreq_init_rwin(struct request_sock *req, 1705 const struct sock *sk_listener, 1706 const struct dst_entry *dst); 1707 1708 void tcp_enter_memory_pressure(struct sock *sk); 1709 void tcp_leave_memory_pressure(struct sock *sk); 1710 1711 static inline int keepalive_intvl_when(const struct tcp_sock *tp) 1712 { 1713 struct net *net = sock_net((struct sock *)tp); 1714 int val; 1715 1716 /* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl() 1717 * and do_tcp_setsockopt(). 1718 */ 1719 val = READ_ONCE(tp->keepalive_intvl); 1720 1721 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl); 1722 } 1723 1724 static inline int keepalive_time_when(const struct tcp_sock *tp) 1725 { 1726 struct net *net = sock_net((struct sock *)tp); 1727 int val; 1728 1729 /* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */ 1730 val = READ_ONCE(tp->keepalive_time); 1731 1732 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time); 1733 } 1734 1735 static inline int keepalive_probes(const struct tcp_sock *tp) 1736 { 1737 struct net *net = sock_net((struct sock *)tp); 1738 int val; 1739 1740 /* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt() 1741 * and do_tcp_setsockopt(). 1742 */ 1743 val = READ_ONCE(tp->keepalive_probes); 1744 1745 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes); 1746 } 1747 1748 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp) 1749 { 1750 const struct inet_connection_sock *icsk = &tp->inet_conn; 1751 1752 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime, 1753 tcp_jiffies32 - tp->rcv_tstamp); 1754 } 1755 1756 static inline int tcp_fin_time(const struct sock *sk) 1757 { 1758 int fin_timeout = tcp_sk(sk)->linger2 ? : 1759 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout); 1760 const int rto = inet_csk(sk)->icsk_rto; 1761 1762 if (fin_timeout < (rto << 2) - (rto >> 1)) 1763 fin_timeout = (rto << 2) - (rto >> 1); 1764 1765 return fin_timeout; 1766 } 1767 1768 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt, 1769 int paws_win) 1770 { 1771 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win) 1772 return true; 1773 if (unlikely(!time_before32(ktime_get_seconds(), 1774 rx_opt->ts_recent_stamp + TCP_PAWS_WRAP))) 1775 return true; 1776 /* 1777 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0, 1778 * then following tcp messages have valid values. Ignore 0 value, 1779 * or else 'negative' tsval might forbid us to accept their packets. 1780 */ 1781 if (!rx_opt->ts_recent) 1782 return true; 1783 return false; 1784 } 1785 1786 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt, 1787 int rst) 1788 { 1789 if (tcp_paws_check(rx_opt, 0)) 1790 return false; 1791 1792 /* RST segments are not recommended to carry timestamp, 1793 and, if they do, it is recommended to ignore PAWS because 1794 "their cleanup function should take precedence over timestamps." 1795 Certainly, it is mistake. It is necessary to understand the reasons 1796 of this constraint to relax it: if peer reboots, clock may go 1797 out-of-sync and half-open connections will not be reset. 1798 Actually, the problem would be not existing if all 1799 the implementations followed draft about maintaining clock 1800 via reboots. Linux-2.2 DOES NOT! 1801 1802 However, we can relax time bounds for RST segments to MSL. 1803 */ 1804 if (rst && !time_before32(ktime_get_seconds(), 1805 rx_opt->ts_recent_stamp + TCP_PAWS_MSL)) 1806 return false; 1807 return true; 1808 } 1809 1810 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd) 1811 { 1812 u32 ace; 1813 1814 /* mptcp hooks are only on the slow path */ 1815 if (sk_is_mptcp((struct sock *)tp)) 1816 return; 1817 1818 ace = tcp_ecn_mode_accecn(tp) ? 1819 ((tp->delivered_ce + TCP_ACCECN_CEP_INIT_OFFSET) & 1820 TCP_ACCECN_CEP_ACE_MASK) : 0; 1821 1822 tp->pred_flags = htonl((tp->tcp_header_len << 26) | 1823 (ace << 22) | 1824 ntohl(TCP_FLAG_ACK) | 1825 snd_wnd); 1826 } 1827 1828 static inline void tcp_fast_path_on(struct tcp_sock *tp) 1829 { 1830 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale); 1831 } 1832 1833 static inline void tcp_fast_path_check(struct sock *sk) 1834 { 1835 struct tcp_sock *tp = tcp_sk(sk); 1836 1837 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) && 1838 tp->rcv_wnd && 1839 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && 1840 !tp->urg_data) 1841 tcp_fast_path_on(tp); 1842 } 1843 1844 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 1845 int mib_idx, u32 *last_oow_ack_time); 1846 1847 static inline void tcp_mib_init(struct net *net) 1848 { 1849 /* See RFC 2012 */ 1850 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1); 1851 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ); 1852 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ); 1853 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1); 1854 } 1855 1856 /* from STCP */ 1857 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp) 1858 { 1859 tp->retransmit_skb_hint = NULL; 1860 } 1861 1862 #define tcp_md5_addr tcp_ao_addr 1863 1864 /* - key database */ 1865 struct tcp_md5sig_key { 1866 struct hlist_node node; 1867 u8 keylen; 1868 u8 family; /* AF_INET or AF_INET6 */ 1869 u8 prefixlen; 1870 u8 flags; 1871 union tcp_md5_addr addr; 1872 int l3index; /* set if key added with L3 scope */ 1873 u8 key[TCP_MD5SIG_MAXKEYLEN]; 1874 struct rcu_head rcu; 1875 }; 1876 1877 /* - sock block */ 1878 struct tcp_md5sig_info { 1879 struct hlist_head head; 1880 struct rcu_head rcu; 1881 }; 1882 1883 /* - pseudo header */ 1884 struct tcp4_pseudohdr { 1885 __be32 saddr; 1886 __be32 daddr; 1887 __u8 pad; 1888 __u8 protocol; 1889 __be16 len; 1890 }; 1891 1892 struct tcp6_pseudohdr { 1893 struct in6_addr saddr; 1894 struct in6_addr daddr; 1895 __be32 len; 1896 __be32 protocol; /* including padding */ 1897 }; 1898 1899 union tcp_md5sum_block { 1900 struct tcp4_pseudohdr ip4; 1901 #if IS_ENABLED(CONFIG_IPV6) 1902 struct tcp6_pseudohdr ip6; 1903 #endif 1904 }; 1905 1906 /* 1907 * struct tcp_sigpool - per-CPU pool of ahash_requests 1908 * @scratch: per-CPU temporary area, that can be used between 1909 * tcp_sigpool_start() and tcp_sigpool_end() to perform 1910 * crypto request 1911 * @req: pre-allocated ahash request 1912 */ 1913 struct tcp_sigpool { 1914 void *scratch; 1915 struct ahash_request *req; 1916 }; 1917 1918 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size); 1919 void tcp_sigpool_get(unsigned int id); 1920 void tcp_sigpool_release(unsigned int id); 1921 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp, 1922 const struct sk_buff *skb, 1923 unsigned int header_len); 1924 1925 /** 1926 * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash 1927 * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash() 1928 * @c: returned tcp_sigpool for usage (uninitialized on failure) 1929 * 1930 * Returns: 0 on success, error otherwise. 1931 */ 1932 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c); 1933 /** 1934 * tcp_sigpool_end - enable bh and stop using tcp_sigpool 1935 * @c: tcp_sigpool context that was returned by tcp_sigpool_start() 1936 */ 1937 void tcp_sigpool_end(struct tcp_sigpool *c); 1938 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len); 1939 /* - functions */ 1940 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1941 const struct sock *sk, const struct sk_buff *skb); 1942 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1943 int family, u8 prefixlen, int l3index, u8 flags, 1944 const u8 *newkey, u8 newkeylen); 1945 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr, 1946 int family, u8 prefixlen, int l3index, 1947 struct tcp_md5sig_key *key); 1948 1949 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, 1950 int family, u8 prefixlen, int l3index, u8 flags); 1951 void tcp_clear_md5_list(struct sock *sk); 1952 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1953 const struct sock *addr_sk); 1954 1955 #ifdef CONFIG_TCP_MD5SIG 1956 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1957 const union tcp_md5_addr *addr, 1958 int family, bool any_l3index); 1959 static inline struct tcp_md5sig_key * 1960 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1961 const union tcp_md5_addr *addr, int family) 1962 { 1963 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1964 return NULL; 1965 return __tcp_md5_do_lookup(sk, l3index, addr, family, false); 1966 } 1967 1968 static inline struct tcp_md5sig_key * 1969 tcp_md5_do_lookup_any_l3index(const struct sock *sk, 1970 const union tcp_md5_addr *addr, int family) 1971 { 1972 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1973 return NULL; 1974 return __tcp_md5_do_lookup(sk, 0, addr, family, true); 1975 } 1976 1977 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key) 1978 void tcp_md5_destruct_sock(struct sock *sk); 1979 #else 1980 static inline struct tcp_md5sig_key * 1981 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1982 const union tcp_md5_addr *addr, int family) 1983 { 1984 return NULL; 1985 } 1986 1987 static inline struct tcp_md5sig_key * 1988 tcp_md5_do_lookup_any_l3index(const struct sock *sk, 1989 const union tcp_md5_addr *addr, int family) 1990 { 1991 return NULL; 1992 } 1993 1994 #define tcp_twsk_md5_key(twsk) NULL 1995 static inline void tcp_md5_destruct_sock(struct sock *sk) 1996 { 1997 } 1998 #endif 1999 2000 int tcp_md5_alloc_sigpool(void); 2001 void tcp_md5_release_sigpool(void); 2002 void tcp_md5_add_sigpool(void); 2003 extern int tcp_md5_sigpool_id; 2004 2005 int tcp_md5_hash_key(struct tcp_sigpool *hp, 2006 const struct tcp_md5sig_key *key); 2007 2008 /* From tcp_fastopen.c */ 2009 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss, 2010 struct tcp_fastopen_cookie *cookie); 2011 void tcp_fastopen_cache_set(struct sock *sk, u16 mss, 2012 struct tcp_fastopen_cookie *cookie, bool syn_lost, 2013 u16 try_exp); 2014 struct tcp_fastopen_request { 2015 /* Fast Open cookie. Size 0 means a cookie request */ 2016 struct tcp_fastopen_cookie cookie; 2017 struct msghdr *data; /* data in MSG_FASTOPEN */ 2018 size_t size; 2019 int copied; /* queued in tcp_connect() */ 2020 struct ubuf_info *uarg; 2021 }; 2022 void tcp_free_fastopen_req(struct tcp_sock *tp); 2023 void tcp_fastopen_destroy_cipher(struct sock *sk); 2024 void tcp_fastopen_ctx_destroy(struct net *net); 2025 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 2026 void *primary_key, void *backup_key); 2027 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, 2028 u64 *key); 2029 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb); 2030 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 2031 struct request_sock *req, 2032 struct tcp_fastopen_cookie *foc, 2033 const struct dst_entry *dst); 2034 void tcp_fastopen_init_key_once(struct net *net); 2035 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 2036 struct tcp_fastopen_cookie *cookie); 2037 bool tcp_fastopen_defer_connect(struct sock *sk, int *err); 2038 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t) 2039 #define TCP_FASTOPEN_KEY_MAX 2 2040 #define TCP_FASTOPEN_KEY_BUF_LENGTH \ 2041 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX) 2042 2043 /* Fastopen key context */ 2044 struct tcp_fastopen_context { 2045 siphash_key_t key[TCP_FASTOPEN_KEY_MAX]; 2046 int num; 2047 struct rcu_head rcu; 2048 }; 2049 2050 void tcp_fastopen_active_disable(struct sock *sk); 2051 bool tcp_fastopen_active_should_disable(struct sock *sk); 2052 void tcp_fastopen_active_disable_ofo_check(struct sock *sk); 2053 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired); 2054 2055 /* Caller needs to wrap with rcu_read_(un)lock() */ 2056 static inline 2057 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk) 2058 { 2059 struct tcp_fastopen_context *ctx; 2060 2061 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); 2062 if (!ctx) 2063 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); 2064 return ctx; 2065 } 2066 2067 static inline 2068 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc, 2069 const struct tcp_fastopen_cookie *orig) 2070 { 2071 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE && 2072 orig->len == foc->len && 2073 !memcmp(orig->val, foc->val, foc->len)) 2074 return true; 2075 return false; 2076 } 2077 2078 static inline 2079 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx) 2080 { 2081 return ctx->num; 2082 } 2083 2084 /* Latencies incurred by various limits for a sender. They are 2085 * chronograph-like stats that are mutually exclusive. 2086 */ 2087 enum tcp_chrono { 2088 TCP_CHRONO_UNSPEC, 2089 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */ 2090 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */ 2091 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */ 2092 __TCP_CHRONO_MAX, 2093 }; 2094 2095 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type); 2096 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type); 2097 2098 /* This helper is needed, because skb->tcp_tsorted_anchor uses 2099 * the same memory storage than skb->destructor/_skb_refdst 2100 */ 2101 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb) 2102 { 2103 skb->destructor = NULL; 2104 skb->_skb_refdst = 0UL; 2105 } 2106 2107 #define tcp_skb_tsorted_save(skb) { \ 2108 unsigned long _save = skb->_skb_refdst; \ 2109 skb->_skb_refdst = 0UL; 2110 2111 #define tcp_skb_tsorted_restore(skb) \ 2112 skb->_skb_refdst = _save; \ 2113 } 2114 2115 void tcp_write_queue_purge(struct sock *sk); 2116 2117 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk) 2118 { 2119 return skb_rb_first(&sk->tcp_rtx_queue); 2120 } 2121 2122 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) 2123 { 2124 return skb_rb_last(&sk->tcp_rtx_queue); 2125 } 2126 2127 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk) 2128 { 2129 return skb_peek_tail(&sk->sk_write_queue); 2130 } 2131 2132 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \ 2133 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp) 2134 2135 static inline struct sk_buff *tcp_send_head(const struct sock *sk) 2136 { 2137 return skb_peek(&sk->sk_write_queue); 2138 } 2139 2140 static inline bool tcp_skb_is_last(const struct sock *sk, 2141 const struct sk_buff *skb) 2142 { 2143 return skb_queue_is_last(&sk->sk_write_queue, skb); 2144 } 2145 2146 /** 2147 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue 2148 * @sk: socket 2149 * 2150 * Since the write queue can have a temporary empty skb in it, 2151 * we must not use "return skb_queue_empty(&sk->sk_write_queue)" 2152 */ 2153 static inline bool tcp_write_queue_empty(const struct sock *sk) 2154 { 2155 const struct tcp_sock *tp = tcp_sk(sk); 2156 2157 return tp->write_seq == tp->snd_nxt; 2158 } 2159 2160 static inline bool tcp_rtx_queue_empty(const struct sock *sk) 2161 { 2162 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue); 2163 } 2164 2165 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk) 2166 { 2167 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk); 2168 } 2169 2170 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb) 2171 { 2172 __skb_queue_tail(&sk->sk_write_queue, skb); 2173 2174 /* Queue it, remembering where we must start sending. */ 2175 if (sk->sk_write_queue.next == skb) 2176 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 2177 } 2178 2179 /* Insert new before skb on the write queue of sk. */ 2180 static inline void tcp_insert_write_queue_before(struct sk_buff *new, 2181 struct sk_buff *skb, 2182 struct sock *sk) 2183 { 2184 __skb_queue_before(&sk->sk_write_queue, skb, new); 2185 } 2186 2187 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk) 2188 { 2189 tcp_skb_tsorted_anchor_cleanup(skb); 2190 __skb_unlink(skb, &sk->sk_write_queue); 2191 } 2192 2193 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb); 2194 2195 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk) 2196 { 2197 tcp_skb_tsorted_anchor_cleanup(skb); 2198 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue); 2199 } 2200 2201 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk) 2202 { 2203 list_del(&skb->tcp_tsorted_anchor); 2204 tcp_rtx_queue_unlink(skb, sk); 2205 tcp_wmem_free_skb(sk, skb); 2206 } 2207 2208 static inline void tcp_write_collapse_fence(struct sock *sk) 2209 { 2210 struct sk_buff *skb = tcp_write_queue_tail(sk); 2211 2212 if (skb) 2213 TCP_SKB_CB(skb)->eor = 1; 2214 } 2215 2216 static inline void tcp_push_pending_frames(struct sock *sk) 2217 { 2218 if (tcp_send_head(sk)) { 2219 struct tcp_sock *tp = tcp_sk(sk); 2220 2221 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle); 2222 } 2223 } 2224 2225 /* Start sequence of the skb just after the highest skb with SACKed 2226 * bit, valid only if sacked_out > 0 or when the caller has ensured 2227 * validity by itself. 2228 */ 2229 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp) 2230 { 2231 if (!tp->sacked_out) 2232 return tp->snd_una; 2233 2234 if (tp->highest_sack == NULL) 2235 return tp->snd_nxt; 2236 2237 return TCP_SKB_CB(tp->highest_sack)->seq; 2238 } 2239 2240 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb) 2241 { 2242 tcp_sk(sk)->highest_sack = skb_rb_next(skb); 2243 } 2244 2245 static inline struct sk_buff *tcp_highest_sack(struct sock *sk) 2246 { 2247 return tcp_sk(sk)->highest_sack; 2248 } 2249 2250 static inline void tcp_highest_sack_reset(struct sock *sk) 2251 { 2252 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk); 2253 } 2254 2255 /* Called when old skb is about to be deleted and replaced by new skb */ 2256 static inline void tcp_highest_sack_replace(struct sock *sk, 2257 struct sk_buff *old, 2258 struct sk_buff *new) 2259 { 2260 if (old == tcp_highest_sack(sk)) 2261 tcp_sk(sk)->highest_sack = new; 2262 } 2263 2264 /* This helper checks if socket has IP_TRANSPARENT set */ 2265 static inline bool inet_sk_transparent(const struct sock *sk) 2266 { 2267 switch (sk->sk_state) { 2268 case TCP_TIME_WAIT: 2269 return inet_twsk(sk)->tw_transparent; 2270 case TCP_NEW_SYN_RECV: 2271 return inet_rsk(inet_reqsk(sk))->no_srccheck; 2272 } 2273 return inet_test_bit(TRANSPARENT, sk); 2274 } 2275 2276 /* Determines whether this is a thin stream (which may suffer from 2277 * increased latency). Used to trigger latency-reducing mechanisms. 2278 */ 2279 static inline bool tcp_stream_is_thin(struct tcp_sock *tp) 2280 { 2281 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp); 2282 } 2283 2284 /* /proc */ 2285 enum tcp_seq_states { 2286 TCP_SEQ_STATE_LISTENING, 2287 TCP_SEQ_STATE_ESTABLISHED, 2288 }; 2289 2290 void *tcp_seq_start(struct seq_file *seq, loff_t *pos); 2291 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2292 void tcp_seq_stop(struct seq_file *seq, void *v); 2293 2294 struct tcp_seq_afinfo { 2295 sa_family_t family; 2296 }; 2297 2298 struct tcp_iter_state { 2299 struct seq_net_private p; 2300 enum tcp_seq_states state; 2301 struct sock *syn_wait_sk; 2302 int bucket, offset, sbucket, num; 2303 loff_t last_pos; 2304 }; 2305 2306 extern struct request_sock_ops tcp_request_sock_ops; 2307 extern struct request_sock_ops tcp6_request_sock_ops; 2308 2309 void tcp_v4_destroy_sock(struct sock *sk); 2310 2311 struct sk_buff *tcp_gso_segment(struct sk_buff *skb, 2312 netdev_features_t features); 2313 struct tcphdr *tcp_gro_pull_header(struct sk_buff *skb); 2314 struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th); 2315 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb, 2316 struct tcphdr *th); 2317 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff)); 2318 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb)); 2319 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff)); 2320 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb)); 2321 #ifdef CONFIG_INET 2322 void tcp_gro_complete(struct sk_buff *skb); 2323 #else 2324 static inline void tcp_gro_complete(struct sk_buff *skb) { } 2325 #endif 2326 2327 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr); 2328 2329 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp) 2330 { 2331 struct net *net = sock_net((struct sock *)tp); 2332 u32 val; 2333 2334 val = READ_ONCE(tp->notsent_lowat); 2335 2336 return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat); 2337 } 2338 2339 bool tcp_stream_memory_free(const struct sock *sk, int wake); 2340 2341 #ifdef CONFIG_PROC_FS 2342 int tcp4_proc_init(void); 2343 void tcp4_proc_exit(void); 2344 #endif 2345 2346 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req); 2347 int tcp_conn_request(struct request_sock_ops *rsk_ops, 2348 const struct tcp_request_sock_ops *af_ops, 2349 struct sock *sk, struct sk_buff *skb); 2350 2351 /* TCP af-specific functions */ 2352 struct tcp_sock_af_ops { 2353 #ifdef CONFIG_TCP_MD5SIG 2354 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk, 2355 const struct sock *addr_sk); 2356 int (*calc_md5_hash)(char *location, 2357 const struct tcp_md5sig_key *md5, 2358 const struct sock *sk, 2359 const struct sk_buff *skb); 2360 int (*md5_parse)(struct sock *sk, 2361 int optname, 2362 sockptr_t optval, 2363 int optlen); 2364 #endif 2365 #ifdef CONFIG_TCP_AO 2366 int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen); 2367 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk, 2368 struct sock *addr_sk, 2369 int sndid, int rcvid); 2370 int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key, 2371 const struct sock *sk, 2372 __be32 sisn, __be32 disn, bool send); 2373 int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao, 2374 const struct sock *sk, const struct sk_buff *skb, 2375 const u8 *tkey, int hash_offset, u32 sne); 2376 #endif 2377 }; 2378 2379 struct tcp_request_sock_ops { 2380 u16 mss_clamp; 2381 #ifdef CONFIG_TCP_MD5SIG 2382 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk, 2383 const struct sock *addr_sk); 2384 int (*calc_md5_hash) (char *location, 2385 const struct tcp_md5sig_key *md5, 2386 const struct sock *sk, 2387 const struct sk_buff *skb); 2388 #endif 2389 #ifdef CONFIG_TCP_AO 2390 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk, 2391 struct request_sock *req, 2392 int sndid, int rcvid); 2393 int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk); 2394 int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt, 2395 struct request_sock *req, const struct sk_buff *skb, 2396 int hash_offset, u32 sne); 2397 #endif 2398 #ifdef CONFIG_SYN_COOKIES 2399 __u32 (*cookie_init_seq)(const struct sk_buff *skb, 2400 __u16 *mss); 2401 #endif 2402 struct dst_entry *(*route_req)(const struct sock *sk, 2403 struct sk_buff *skb, 2404 struct flowi *fl, 2405 struct request_sock *req, 2406 u32 tw_isn); 2407 u32 (*init_seq)(const struct sk_buff *skb); 2408 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb); 2409 int (*send_synack)(const struct sock *sk, struct dst_entry *dst, 2410 struct flowi *fl, struct request_sock *req, 2411 struct tcp_fastopen_cookie *foc, 2412 enum tcp_synack_type synack_type, 2413 struct sk_buff *syn_skb); 2414 }; 2415 2416 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops; 2417 #if IS_ENABLED(CONFIG_IPV6) 2418 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops; 2419 #endif 2420 2421 #ifdef CONFIG_SYN_COOKIES 2422 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2423 const struct sock *sk, struct sk_buff *skb, 2424 __u16 *mss) 2425 { 2426 tcp_synq_overflow(sk); 2427 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); 2428 return ops->cookie_init_seq(skb, mss); 2429 } 2430 #else 2431 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2432 const struct sock *sk, struct sk_buff *skb, 2433 __u16 *mss) 2434 { 2435 return 0; 2436 } 2437 #endif 2438 2439 struct tcp_key { 2440 union { 2441 struct { 2442 struct tcp_ao_key *ao_key; 2443 char *traffic_key; 2444 u32 sne; 2445 u8 rcv_next; 2446 }; 2447 struct tcp_md5sig_key *md5_key; 2448 }; 2449 enum { 2450 TCP_KEY_NONE = 0, 2451 TCP_KEY_MD5, 2452 TCP_KEY_AO, 2453 } type; 2454 }; 2455 2456 static inline void tcp_get_current_key(const struct sock *sk, 2457 struct tcp_key *out) 2458 { 2459 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG) 2460 const struct tcp_sock *tp = tcp_sk(sk); 2461 #endif 2462 2463 #ifdef CONFIG_TCP_AO 2464 if (static_branch_unlikely(&tcp_ao_needed.key)) { 2465 struct tcp_ao_info *ao; 2466 2467 ao = rcu_dereference_protected(tp->ao_info, 2468 lockdep_sock_is_held(sk)); 2469 if (ao) { 2470 out->ao_key = READ_ONCE(ao->current_key); 2471 out->type = TCP_KEY_AO; 2472 return; 2473 } 2474 } 2475 #endif 2476 #ifdef CONFIG_TCP_MD5SIG 2477 if (static_branch_unlikely(&tcp_md5_needed.key) && 2478 rcu_access_pointer(tp->md5sig_info)) { 2479 out->md5_key = tp->af_specific->md5_lookup(sk, sk); 2480 if (out->md5_key) { 2481 out->type = TCP_KEY_MD5; 2482 return; 2483 } 2484 } 2485 #endif 2486 out->type = TCP_KEY_NONE; 2487 } 2488 2489 static inline bool tcp_key_is_md5(const struct tcp_key *key) 2490 { 2491 if (static_branch_tcp_md5()) 2492 return key->type == TCP_KEY_MD5; 2493 return false; 2494 } 2495 2496 static inline bool tcp_key_is_ao(const struct tcp_key *key) 2497 { 2498 if (static_branch_tcp_ao()) 2499 return key->type == TCP_KEY_AO; 2500 return false; 2501 } 2502 2503 int tcpv4_offload_init(void); 2504 2505 void tcp_v4_init(void); 2506 void tcp_init(void); 2507 2508 /* tcp_recovery.c */ 2509 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb); 2510 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced); 2511 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, 2512 u32 reo_wnd); 2513 extern bool tcp_rack_mark_lost(struct sock *sk); 2514 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, 2515 u64 xmit_time); 2516 extern void tcp_rack_reo_timeout(struct sock *sk); 2517 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs); 2518 2519 /* tcp_plb.c */ 2520 2521 /* 2522 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state 2523 * expects cong_ratio which represents fraction of traffic that experienced 2524 * congestion over a single RTT. In order to avoid floating point operations, 2525 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in. 2526 */ 2527 #define TCP_PLB_SCALE 8 2528 2529 /* State for PLB (Protective Load Balancing) for a single TCP connection. */ 2530 struct tcp_plb_state { 2531 u8 consec_cong_rounds:5, /* consecutive congested rounds */ 2532 unused:3; 2533 u32 pause_until; /* jiffies32 when PLB can resume rerouting */ 2534 }; 2535 2536 static inline void tcp_plb_init(const struct sock *sk, 2537 struct tcp_plb_state *plb) 2538 { 2539 plb->consec_cong_rounds = 0; 2540 plb->pause_until = 0; 2541 } 2542 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb, 2543 const int cong_ratio); 2544 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb); 2545 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb); 2546 2547 static inline void tcp_warn_once(const struct sock *sk, bool cond, const char *str) 2548 { 2549 WARN_ONCE(cond, 2550 "%scwn:%u out:%u sacked:%u lost:%u retrans:%u tlp_high_seq:%u sk_state:%u ca_state:%u advmss:%u mss_cache:%u pmtu:%u\n", 2551 str, 2552 tcp_snd_cwnd(tcp_sk(sk)), 2553 tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out, 2554 tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out, 2555 tcp_sk(sk)->tlp_high_seq, sk->sk_state, 2556 inet_csk(sk)->icsk_ca_state, 2557 tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache, 2558 inet_csk(sk)->icsk_pmtu_cookie); 2559 } 2560 2561 /* At how many usecs into the future should the RTO fire? */ 2562 static inline s64 tcp_rto_delta_us(const struct sock *sk) 2563 { 2564 const struct sk_buff *skb = tcp_rtx_queue_head(sk); 2565 u32 rto = inet_csk(sk)->icsk_rto; 2566 2567 if (likely(skb)) { 2568 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto); 2569 2570 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp; 2571 } else { 2572 tcp_warn_once(sk, 1, "rtx queue empty: "); 2573 return jiffies_to_usecs(rto); 2574 } 2575 2576 } 2577 2578 /* 2579 * Save and compile IPv4 options, return a pointer to it 2580 */ 2581 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net, 2582 struct sk_buff *skb) 2583 { 2584 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; 2585 struct ip_options_rcu *dopt = NULL; 2586 2587 if (opt->optlen) { 2588 int opt_size = sizeof(*dopt) + opt->optlen; 2589 2590 dopt = kmalloc(opt_size, GFP_ATOMIC); 2591 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) { 2592 kfree(dopt); 2593 dopt = NULL; 2594 } 2595 } 2596 return dopt; 2597 } 2598 2599 /* locally generated TCP pure ACKs have skb->truesize == 2 2600 * (check tcp_send_ack() in net/ipv4/tcp_output.c ) 2601 * This is much faster than dissecting the packet to find out. 2602 * (Think of GRE encapsulations, IPv4, IPv6, ...) 2603 */ 2604 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb) 2605 { 2606 return skb->truesize == 2; 2607 } 2608 2609 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb) 2610 { 2611 skb->truesize = 2; 2612 } 2613 2614 static inline int tcp_inq(struct sock *sk) 2615 { 2616 struct tcp_sock *tp = tcp_sk(sk); 2617 int answ; 2618 2619 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 2620 answ = 0; 2621 } else if (sock_flag(sk, SOCK_URGINLINE) || 2622 !tp->urg_data || 2623 before(tp->urg_seq, tp->copied_seq) || 2624 !before(tp->urg_seq, tp->rcv_nxt)) { 2625 2626 answ = tp->rcv_nxt - tp->copied_seq; 2627 2628 /* Subtract 1, if FIN was received */ 2629 if (answ && sock_flag(sk, SOCK_DONE)) 2630 answ--; 2631 } else { 2632 answ = tp->urg_seq - tp->copied_seq; 2633 } 2634 2635 return answ; 2636 } 2637 2638 int tcp_peek_len(struct socket *sock); 2639 2640 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb) 2641 { 2642 u16 segs_in; 2643 2644 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2645 2646 /* We update these fields while other threads might 2647 * read them from tcp_get_info() 2648 */ 2649 WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in); 2650 if (skb->len > tcp_hdrlen(skb)) 2651 WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in); 2652 } 2653 2654 /* 2655 * TCP listen path runs lockless. 2656 * We forced "struct sock" to be const qualified to make sure 2657 * we don't modify one of its field by mistake. 2658 * Here, we increment sk_drops which is an atomic_t, so we can safely 2659 * make sock writable again. 2660 */ 2661 static inline void tcp_listendrop(const struct sock *sk) 2662 { 2663 sk_drops_inc((struct sock *)sk); 2664 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS); 2665 } 2666 2667 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer); 2668 2669 /* 2670 * Interface for adding Upper Level Protocols over TCP 2671 */ 2672 2673 #define TCP_ULP_NAME_MAX 16 2674 #define TCP_ULP_MAX 128 2675 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX) 2676 2677 struct tcp_ulp_ops { 2678 struct list_head list; 2679 2680 /* initialize ulp */ 2681 int (*init)(struct sock *sk); 2682 /* update ulp */ 2683 void (*update)(struct sock *sk, struct proto *p, 2684 void (*write_space)(struct sock *sk)); 2685 /* cleanup ulp */ 2686 void (*release)(struct sock *sk); 2687 /* diagnostic */ 2688 int (*get_info)(struct sock *sk, struct sk_buff *skb, bool net_admin); 2689 size_t (*get_info_size)(const struct sock *sk, bool net_admin); 2690 /* clone ulp */ 2691 void (*clone)(const struct request_sock *req, struct sock *newsk, 2692 const gfp_t priority); 2693 2694 char name[TCP_ULP_NAME_MAX]; 2695 struct module *owner; 2696 }; 2697 int tcp_register_ulp(struct tcp_ulp_ops *type); 2698 void tcp_unregister_ulp(struct tcp_ulp_ops *type); 2699 int tcp_set_ulp(struct sock *sk, const char *name); 2700 void tcp_get_available_ulp(char *buf, size_t len); 2701 void tcp_cleanup_ulp(struct sock *sk); 2702 void tcp_update_ulp(struct sock *sk, struct proto *p, 2703 void (*write_space)(struct sock *sk)); 2704 2705 #define MODULE_ALIAS_TCP_ULP(name) \ 2706 MODULE_INFO(alias, name); \ 2707 MODULE_INFO(alias, "tcp-ulp-" name) 2708 2709 #ifdef CONFIG_NET_SOCK_MSG 2710 struct sk_msg; 2711 struct sk_psock; 2712 2713 #ifdef CONFIG_BPF_SYSCALL 2714 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore); 2715 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk); 2716 #ifdef CONFIG_BPF_STREAM_PARSER 2717 struct strparser; 2718 int tcp_bpf_strp_read_sock(struct strparser *strp, read_descriptor_t *desc, 2719 sk_read_actor_t recv_actor); 2720 #endif /* CONFIG_BPF_STREAM_PARSER */ 2721 #endif /* CONFIG_BPF_SYSCALL */ 2722 2723 #ifdef CONFIG_INET 2724 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb); 2725 #else 2726 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb) 2727 { 2728 } 2729 #endif 2730 2731 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress, 2732 struct sk_msg *msg, u32 bytes, int flags); 2733 #endif /* CONFIG_NET_SOCK_MSG */ 2734 2735 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG) 2736 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk) 2737 { 2738 } 2739 #endif 2740 2741 #ifdef CONFIG_CGROUP_BPF 2742 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2743 struct sk_buff *skb, 2744 unsigned int end_offset) 2745 { 2746 skops->skb = skb; 2747 skops->skb_data_end = skb->data + end_offset; 2748 } 2749 #else 2750 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2751 struct sk_buff *skb, 2752 unsigned int end_offset) 2753 { 2754 } 2755 #endif 2756 2757 /* Call BPF_SOCK_OPS program that returns an int. If the return value 2758 * is < 0, then the BPF op failed (for example if the loaded BPF 2759 * program does not support the chosen operation or there is no BPF 2760 * program loaded). 2761 */ 2762 #ifdef CONFIG_BPF 2763 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2764 { 2765 struct bpf_sock_ops_kern sock_ops; 2766 int ret; 2767 2768 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 2769 if (sk_fullsock(sk)) { 2770 sock_ops.is_fullsock = 1; 2771 sock_ops.is_locked_tcp_sock = 1; 2772 sock_owned_by_me(sk); 2773 } 2774 2775 sock_ops.sk = sk; 2776 sock_ops.op = op; 2777 if (nargs > 0) 2778 memcpy(sock_ops.args, args, nargs * sizeof(*args)); 2779 2780 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 2781 if (ret == 0) 2782 ret = sock_ops.reply; 2783 else 2784 ret = -1; 2785 return ret; 2786 } 2787 2788 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2789 { 2790 u32 args[2] = {arg1, arg2}; 2791 2792 return tcp_call_bpf(sk, op, 2, args); 2793 } 2794 2795 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2796 u32 arg3) 2797 { 2798 u32 args[3] = {arg1, arg2, arg3}; 2799 2800 return tcp_call_bpf(sk, op, 3, args); 2801 } 2802 2803 #else 2804 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2805 { 2806 return -EPERM; 2807 } 2808 2809 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2810 { 2811 return -EPERM; 2812 } 2813 2814 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2815 u32 arg3) 2816 { 2817 return -EPERM; 2818 } 2819 2820 #endif 2821 2822 static inline u32 tcp_timeout_init(struct sock *sk) 2823 { 2824 int timeout; 2825 2826 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL); 2827 2828 if (timeout <= 0) 2829 timeout = TCP_TIMEOUT_INIT; 2830 return min_t(int, timeout, TCP_RTO_MAX); 2831 } 2832 2833 static inline u32 tcp_rwnd_init_bpf(struct sock *sk) 2834 { 2835 int rwnd; 2836 2837 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL); 2838 2839 if (rwnd < 0) 2840 rwnd = 0; 2841 return rwnd; 2842 } 2843 2844 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk) 2845 { 2846 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1); 2847 } 2848 2849 static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt) 2850 { 2851 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG)) 2852 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt); 2853 } 2854 2855 #if IS_ENABLED(CONFIG_SMC) 2856 extern struct static_key_false tcp_have_smc; 2857 #endif 2858 2859 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2860 void clean_acked_data_enable(struct tcp_sock *tp, 2861 void (*cad)(struct sock *sk, u32 ack_seq)); 2862 void clean_acked_data_disable(struct tcp_sock *tp); 2863 void clean_acked_data_flush(void); 2864 #endif 2865 2866 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2867 static inline void tcp_add_tx_delay(struct sk_buff *skb, 2868 const struct tcp_sock *tp) 2869 { 2870 if (static_branch_unlikely(&tcp_tx_delay_enabled)) 2871 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC; 2872 } 2873 2874 /* Compute Earliest Departure Time for some control packets 2875 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets. 2876 */ 2877 static inline u64 tcp_transmit_time(const struct sock *sk) 2878 { 2879 if (static_branch_unlikely(&tcp_tx_delay_enabled)) { 2880 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ? 2881 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay; 2882 2883 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC; 2884 } 2885 return 0; 2886 } 2887 2888 static inline int tcp_parse_auth_options(const struct tcphdr *th, 2889 const u8 **md5_hash, const struct tcp_ao_hdr **aoh) 2890 { 2891 const u8 *md5_tmp, *ao_tmp; 2892 int ret; 2893 2894 ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp); 2895 if (ret) 2896 return ret; 2897 2898 if (md5_hash) 2899 *md5_hash = md5_tmp; 2900 2901 if (aoh) { 2902 if (!ao_tmp) 2903 *aoh = NULL; 2904 else 2905 *aoh = (struct tcp_ao_hdr *)(ao_tmp - 2); 2906 } 2907 2908 return 0; 2909 } 2910 2911 static inline bool tcp_ao_required(struct sock *sk, const void *saddr, 2912 int family, int l3index, bool stat_inc) 2913 { 2914 #ifdef CONFIG_TCP_AO 2915 struct tcp_ao_info *ao_info; 2916 struct tcp_ao_key *ao_key; 2917 2918 if (!static_branch_unlikely(&tcp_ao_needed.key)) 2919 return false; 2920 2921 ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info, 2922 lockdep_sock_is_held(sk)); 2923 if (!ao_info) 2924 return false; 2925 2926 ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1); 2927 if (ao_info->ao_required || ao_key) { 2928 if (stat_inc) { 2929 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED); 2930 atomic64_inc(&ao_info->counters.ao_required); 2931 } 2932 return true; 2933 } 2934 #endif 2935 return false; 2936 } 2937 2938 enum skb_drop_reason tcp_inbound_hash(struct sock *sk, 2939 const struct request_sock *req, const struct sk_buff *skb, 2940 const void *saddr, const void *daddr, 2941 int family, int dif, int sdif); 2942 2943 #endif /* _TCP_H */ 2944