1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the TCP module.
8 *
9 * Version: @(#)tcp.h 1.0.5 05/23/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 */
14 #ifndef _TCP_H
15 #define _TCP_H
16
17 #define FASTRETRANS_DEBUG 1
18
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 #include <linux/bits.h>
30
31 #include <net/inet_connection_sock.h>
32 #include <net/inet_timewait_sock.h>
33 #include <net/inet_hashtables.h>
34 #include <net/checksum.h>
35 #include <net/request_sock.h>
36 #include <net/sock_reuseport.h>
37 #include <net/sock.h>
38 #include <net/snmp.h>
39 #include <net/ip.h>
40 #include <net/tcp_states.h>
41 #include <net/tcp_ao.h>
42 #include <net/inet_ecn.h>
43 #include <net/dst.h>
44 #include <net/mptcp.h>
45 #include <net/xfrm.h>
46
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49 #include <linux/bpf-cgroup.h>
50 #include <linux/siphash.h>
51
52 extern struct inet_hashinfo tcp_hashinfo;
53
54 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
55 int tcp_orphan_count_sum(void);
56
57 DECLARE_PER_CPU(u32, tcp_tw_isn);
58
59 void tcp_time_wait(struct sock *sk, int state, int timeo);
60
61 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER)
62 #define MAX_TCP_OPTION_SPACE 40
63 #define TCP_MIN_SND_MSS 48
64 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
65
66 /*
67 * Never offer a window over 32767 without using window scaling. Some
68 * poor stacks do signed 16bit maths!
69 */
70 #define MAX_TCP_WINDOW 32767U
71
72 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
73 #define TCP_MIN_MSS 88U
74
75 /* The initial MTU to use for probing */
76 #define TCP_BASE_MSS 1024
77
78 /* probing interval, default to 10 minutes as per RFC4821 */
79 #define TCP_PROBE_INTERVAL 600
80
81 /* Specify interval when tcp mtu probing will stop */
82 #define TCP_PROBE_THRESHOLD 8
83
84 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
85 #define TCP_FASTRETRANS_THRESH 3
86
87 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
88 #define TCP_MAX_QUICKACKS 16U
89
90 /* Maximal number of window scale according to RFC1323 */
91 #define TCP_MAX_WSCALE 14U
92
93 /* urg_data states */
94 #define TCP_URG_VALID 0x0100
95 #define TCP_URG_NOTYET 0x0200
96 #define TCP_URG_READ 0x0400
97
98 #define TCP_RETR1 3 /*
99 * This is how many retries it does before it
100 * tries to figure out if the gateway is
101 * down. Minimal RFC value is 3; it corresponds
102 * to ~3sec-8min depending on RTO.
103 */
104
105 #define TCP_RETR2 15 /*
106 * This should take at least
107 * 90 minutes to time out.
108 * RFC1122 says that the limit is 100 sec.
109 * 15 is ~13-30min depending on RTO.
110 */
111
112 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
113 * when active opening a connection.
114 * RFC1122 says the minimum retry MUST
115 * be at least 180secs. Nevertheless
116 * this value is corresponding to
117 * 63secs of retransmission with the
118 * current initial RTO.
119 */
120
121 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
122 * when passive opening a connection.
123 * This is corresponding to 31secs of
124 * retransmission with the current
125 * initial RTO.
126 */
127
128 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
129 * state, about 60 seconds */
130 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
131 /* BSD style FIN_WAIT2 deadlock breaker.
132 * It used to be 3min, new value is 60sec,
133 * to combine FIN-WAIT-2 timeout with
134 * TIME-WAIT timer.
135 */
136 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
137
138 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
139 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
140
141 #if HZ >= 100
142 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
143 #define TCP_ATO_MIN ((unsigned)(HZ/25))
144 #else
145 #define TCP_DELACK_MIN 4U
146 #define TCP_ATO_MIN 4U
147 #endif
148 #define TCP_RTO_MAX_SEC 120
149 #define TCP_RTO_MAX ((unsigned)(TCP_RTO_MAX_SEC * HZ))
150 #define TCP_RTO_MIN ((unsigned)(HZ / 5))
151 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
152
153 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
154
155 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
156 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
157 * used as a fallback RTO for the
158 * initial data transmission if no
159 * valid RTT sample has been acquired,
160 * most likely due to retrans in 3WHS.
161 */
162
163 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
164 * for local resources.
165 */
166 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
167 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
168 #define TCP_KEEPALIVE_INTVL (75*HZ)
169
170 #define MAX_TCP_KEEPIDLE 32767
171 #define MAX_TCP_KEEPINTVL 32767
172 #define MAX_TCP_KEEPCNT 127
173 #define MAX_TCP_SYNCNT 127
174
175 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
176 * to avoid overflows. This assumes a clock smaller than 1 Mhz.
177 * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
178 */
179 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
180
181 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
182 * after this time. It should be equal
183 * (or greater than) TCP_TIMEWAIT_LEN
184 * to provide reliability equal to one
185 * provided by timewait state.
186 */
187 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
188 * timestamps. It must be less than
189 * minimal timewait lifetime.
190 */
191 /*
192 * TCP option
193 */
194
195 #define TCPOPT_NOP 1 /* Padding */
196 #define TCPOPT_EOL 0 /* End of options */
197 #define TCPOPT_MSS 2 /* Segment size negotiating */
198 #define TCPOPT_WINDOW 3 /* Window scaling */
199 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
200 #define TCPOPT_SACK 5 /* SACK Block */
201 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
202 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
203 #define TCPOPT_AO 29 /* Authentication Option (RFC5925) */
204 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */
205 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
206 #define TCPOPT_EXP 254 /* Experimental */
207 /* Magic number to be after the option value for sharing TCP
208 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
209 */
210 #define TCPOPT_FASTOPEN_MAGIC 0xF989
211 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9
212
213 /*
214 * TCP option lengths
215 */
216
217 #define TCPOLEN_MSS 4
218 #define TCPOLEN_WINDOW 3
219 #define TCPOLEN_SACK_PERM 2
220 #define TCPOLEN_TIMESTAMP 10
221 #define TCPOLEN_MD5SIG 18
222 #define TCPOLEN_FASTOPEN_BASE 2
223 #define TCPOLEN_EXP_FASTOPEN_BASE 4
224 #define TCPOLEN_EXP_SMC_BASE 6
225
226 /* But this is what stacks really send out. */
227 #define TCPOLEN_TSTAMP_ALIGNED 12
228 #define TCPOLEN_WSCALE_ALIGNED 4
229 #define TCPOLEN_SACKPERM_ALIGNED 4
230 #define TCPOLEN_SACK_BASE 2
231 #define TCPOLEN_SACK_BASE_ALIGNED 4
232 #define TCPOLEN_SACK_PERBLOCK 8
233 #define TCPOLEN_MD5SIG_ALIGNED 20
234 #define TCPOLEN_MSS_ALIGNED 4
235 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8
236
237 /* Flags in tp->nonagle */
238 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
239 #define TCP_NAGLE_CORK 2 /* Socket is corked */
240 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
241
242 /* TCP thin-stream limits */
243 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
244
245 /* TCP initial congestion window as per rfc6928 */
246 #define TCP_INIT_CWND 10
247
248 /* Bit Flags for sysctl_tcp_fastopen */
249 #define TFO_CLIENT_ENABLE 1
250 #define TFO_SERVER_ENABLE 2
251 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
252
253 /* Accept SYN data w/o any cookie option */
254 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
255
256 /* Force enable TFO on all listeners, i.e., not requiring the
257 * TCP_FASTOPEN socket option.
258 */
259 #define TFO_SERVER_WO_SOCKOPT1 0x400
260
261
262 /* sysctl variables for tcp */
263 extern int sysctl_tcp_max_orphans;
264 extern long sysctl_tcp_mem[3];
265
266 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
267 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */
268 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */
269
270 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
271
272 extern struct percpu_counter tcp_sockets_allocated;
273 extern unsigned long tcp_memory_pressure;
274
275 /* optimized version of sk_under_memory_pressure() for TCP sockets */
tcp_under_memory_pressure(const struct sock * sk)276 static inline bool tcp_under_memory_pressure(const struct sock *sk)
277 {
278 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
279 mem_cgroup_under_socket_pressure(sk->sk_memcg))
280 return true;
281
282 return READ_ONCE(tcp_memory_pressure);
283 }
284 /*
285 * The next routines deal with comparing 32 bit unsigned ints
286 * and worry about wraparound (automatic with unsigned arithmetic).
287 */
288
before(__u32 seq1,__u32 seq2)289 static inline bool before(__u32 seq1, __u32 seq2)
290 {
291 return (__s32)(seq1-seq2) < 0;
292 }
293 #define after(seq2, seq1) before(seq1, seq2)
294
295 /* is s2<=s1<=s3 ? */
between(__u32 seq1,__u32 seq2,__u32 seq3)296 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
297 {
298 return seq3 - seq2 >= seq1 - seq2;
299 }
300
tcp_wmem_free_skb(struct sock * sk,struct sk_buff * skb)301 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
302 {
303 sk_wmem_queued_add(sk, -skb->truesize);
304 if (!skb_zcopy_pure(skb))
305 sk_mem_uncharge(sk, skb->truesize);
306 else
307 sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
308 __kfree_skb(skb);
309 }
310
311 void sk_forced_mem_schedule(struct sock *sk, int size);
312
313 bool tcp_check_oom(const struct sock *sk, int shift);
314
315
316 extern struct proto tcp_prot;
317
318 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
319 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
320 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
321 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
322
323 void tcp_tsq_work_init(void);
324
325 int tcp_v4_err(struct sk_buff *skb, u32);
326
327 void tcp_shutdown(struct sock *sk, int how);
328
329 int tcp_v4_early_demux(struct sk_buff *skb);
330 int tcp_v4_rcv(struct sk_buff *skb);
331
332 void tcp_remove_empty_skb(struct sock *sk);
333 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
334 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
335 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
336 size_t size, struct ubuf_info *uarg);
337 void tcp_splice_eof(struct socket *sock);
338 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
339 int tcp_wmem_schedule(struct sock *sk, int copy);
340 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
341 int size_goal);
342 void tcp_release_cb(struct sock *sk);
343 void tcp_wfree(struct sk_buff *skb);
344 void tcp_write_timer_handler(struct sock *sk);
345 void tcp_delack_timer_handler(struct sock *sk);
346 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
347 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
348 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
349 void tcp_rcv_space_adjust(struct sock *sk);
350 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
351 void tcp_twsk_destructor(struct sock *sk);
352 void tcp_twsk_purge(struct list_head *net_exit_list);
353 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
354 struct pipe_inode_info *pipe, size_t len,
355 unsigned int flags);
356 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
357 bool force_schedule);
358
tcp_dec_quickack_mode(struct sock * sk)359 static inline void tcp_dec_quickack_mode(struct sock *sk)
360 {
361 struct inet_connection_sock *icsk = inet_csk(sk);
362
363 if (icsk->icsk_ack.quick) {
364 /* How many ACKs S/ACKing new data have we sent? */
365 const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
366
367 if (pkts >= icsk->icsk_ack.quick) {
368 icsk->icsk_ack.quick = 0;
369 /* Leaving quickack mode we deflate ATO. */
370 icsk->icsk_ack.ato = TCP_ATO_MIN;
371 } else
372 icsk->icsk_ack.quick -= pkts;
373 }
374 }
375
376 #define TCP_ECN_MODE_RFC3168 BIT(0)
377 #define TCP_ECN_QUEUE_CWR BIT(1)
378 #define TCP_ECN_DEMAND_CWR BIT(2)
379 #define TCP_ECN_SEEN BIT(3)
380 #define TCP_ECN_MODE_ACCECN BIT(4)
381
382 #define TCP_ECN_DISABLED 0
383 #define TCP_ECN_MODE_PENDING (TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN)
384 #define TCP_ECN_MODE_ANY (TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN)
385
tcp_ecn_mode_any(const struct tcp_sock * tp)386 static inline bool tcp_ecn_mode_any(const struct tcp_sock *tp)
387 {
388 return tp->ecn_flags & TCP_ECN_MODE_ANY;
389 }
390
tcp_ecn_mode_rfc3168(const struct tcp_sock * tp)391 static inline bool tcp_ecn_mode_rfc3168(const struct tcp_sock *tp)
392 {
393 return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_RFC3168;
394 }
395
tcp_ecn_mode_accecn(const struct tcp_sock * tp)396 static inline bool tcp_ecn_mode_accecn(const struct tcp_sock *tp)
397 {
398 return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_ACCECN;
399 }
400
tcp_ecn_disabled(const struct tcp_sock * tp)401 static inline bool tcp_ecn_disabled(const struct tcp_sock *tp)
402 {
403 return !tcp_ecn_mode_any(tp);
404 }
405
tcp_ecn_mode_pending(const struct tcp_sock * tp)406 static inline bool tcp_ecn_mode_pending(const struct tcp_sock *tp)
407 {
408 return (tp->ecn_flags & TCP_ECN_MODE_PENDING) == TCP_ECN_MODE_PENDING;
409 }
410
tcp_ecn_mode_set(struct tcp_sock * tp,u8 mode)411 static inline void tcp_ecn_mode_set(struct tcp_sock *tp, u8 mode)
412 {
413 tp->ecn_flags &= ~TCP_ECN_MODE_ANY;
414 tp->ecn_flags |= mode;
415 }
416
417 enum tcp_tw_status {
418 TCP_TW_SUCCESS = 0,
419 TCP_TW_RST = 1,
420 TCP_TW_ACK = 2,
421 TCP_TW_SYN = 3,
422 TCP_TW_ACK_OOW = 4
423 };
424
425
426 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
427 struct sk_buff *skb,
428 const struct tcphdr *th,
429 u32 *tw_isn,
430 enum skb_drop_reason *drop_reason);
431 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
432 struct request_sock *req, bool fastopen,
433 bool *lost_race, enum skb_drop_reason *drop_reason);
434 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
435 struct sk_buff *skb);
436 void tcp_enter_loss(struct sock *sk);
437 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
438 void tcp_clear_retrans(struct tcp_sock *tp);
439 void tcp_update_metrics(struct sock *sk);
440 void tcp_init_metrics(struct sock *sk);
441 void tcp_metrics_init(void);
442 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
443 void __tcp_close(struct sock *sk, long timeout);
444 void tcp_close(struct sock *sk, long timeout);
445 void tcp_init_sock(struct sock *sk);
446 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
447 __poll_t tcp_poll(struct file *file, struct socket *sock,
448 struct poll_table_struct *wait);
449 int do_tcp_getsockopt(struct sock *sk, int level,
450 int optname, sockptr_t optval, sockptr_t optlen);
451 int tcp_getsockopt(struct sock *sk, int level, int optname,
452 char __user *optval, int __user *optlen);
453 bool tcp_bpf_bypass_getsockopt(int level, int optname);
454 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
455 sockptr_t optval, unsigned int optlen);
456 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
457 unsigned int optlen);
458 void tcp_reset_keepalive_timer(struct sock *sk, unsigned long timeout);
459 void tcp_set_keepalive(struct sock *sk, int val);
460 void tcp_syn_ack_timeout(const struct request_sock *req);
461 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
462 int flags, int *addr_len);
463 int tcp_set_rcvlowat(struct sock *sk, int val);
464 int tcp_set_window_clamp(struct sock *sk, int val);
465 void tcp_update_recv_tstamps(struct sk_buff *skb,
466 struct scm_timestamping_internal *tss);
467 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
468 struct scm_timestamping_internal *tss);
469 void tcp_data_ready(struct sock *sk);
470 #ifdef CONFIG_MMU
471 int tcp_mmap(struct file *file, struct socket *sock,
472 struct vm_area_struct *vma);
473 #endif
474 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
475 struct tcp_options_received *opt_rx,
476 int estab, struct tcp_fastopen_cookie *foc);
477
478 /*
479 * BPF SKB-less helpers
480 */
481 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
482 struct tcphdr *th, u32 *cookie);
483 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
484 struct tcphdr *th, u32 *cookie);
485 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
486 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
487 const struct tcp_request_sock_ops *af_ops,
488 struct sock *sk, struct tcphdr *th);
489 /*
490 * TCP v4 functions exported for the inet6 API
491 */
492
493 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
494 void tcp_v4_mtu_reduced(struct sock *sk);
495 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
496 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
497 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
498 struct sock *tcp_create_openreq_child(const struct sock *sk,
499 struct request_sock *req,
500 struct sk_buff *skb);
501 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
502 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
503 struct request_sock *req,
504 struct dst_entry *dst,
505 struct request_sock *req_unhash,
506 bool *own_req);
507 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
508 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
509 int tcp_connect(struct sock *sk);
510 enum tcp_synack_type {
511 TCP_SYNACK_NORMAL,
512 TCP_SYNACK_FASTOPEN,
513 TCP_SYNACK_COOKIE,
514 };
515 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
516 struct request_sock *req,
517 struct tcp_fastopen_cookie *foc,
518 enum tcp_synack_type synack_type,
519 struct sk_buff *syn_skb);
520 int tcp_disconnect(struct sock *sk, int flags);
521
522 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
523 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
524 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
525
526 /* From syncookies.c */
527 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
528 struct request_sock *req,
529 struct dst_entry *dst);
530 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
531 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
532 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
533 struct sock *sk, struct sk_buff *skb,
534 struct tcp_options_received *tcp_opt,
535 int mss, u32 tsoff);
536
537 #if IS_ENABLED(CONFIG_BPF)
538 struct bpf_tcp_req_attrs {
539 u32 rcv_tsval;
540 u32 rcv_tsecr;
541 u16 mss;
542 u8 rcv_wscale;
543 u8 snd_wscale;
544 u8 ecn_ok;
545 u8 wscale_ok;
546 u8 sack_ok;
547 u8 tstamp_ok;
548 u8 usec_ts_ok;
549 u8 reserved[3];
550 };
551 #endif
552
553 #ifdef CONFIG_SYN_COOKIES
554
555 /* Syncookies use a monotonic timer which increments every 60 seconds.
556 * This counter is used both as a hash input and partially encoded into
557 * the cookie value. A cookie is only validated further if the delta
558 * between the current counter value and the encoded one is less than this,
559 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
560 * the counter advances immediately after a cookie is generated).
561 */
562 #define MAX_SYNCOOKIE_AGE 2
563 #define TCP_SYNCOOKIE_PERIOD (60 * HZ)
564 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
565
566 /* syncookies: remember time of last synqueue overflow
567 * But do not dirty this field too often (once per second is enough)
568 * It is racy as we do not hold a lock, but race is very minor.
569 */
tcp_synq_overflow(const struct sock * sk)570 static inline void tcp_synq_overflow(const struct sock *sk)
571 {
572 unsigned int last_overflow;
573 unsigned int now = jiffies;
574
575 if (sk->sk_reuseport) {
576 struct sock_reuseport *reuse;
577
578 reuse = rcu_dereference(sk->sk_reuseport_cb);
579 if (likely(reuse)) {
580 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
581 if (!time_between32(now, last_overflow,
582 last_overflow + HZ))
583 WRITE_ONCE(reuse->synq_overflow_ts, now);
584 return;
585 }
586 }
587
588 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
589 if (!time_between32(now, last_overflow, last_overflow + HZ))
590 WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
591 }
592
593 /* syncookies: no recent synqueue overflow on this listening socket? */
tcp_synq_no_recent_overflow(const struct sock * sk)594 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
595 {
596 unsigned int last_overflow;
597 unsigned int now = jiffies;
598
599 if (sk->sk_reuseport) {
600 struct sock_reuseport *reuse;
601
602 reuse = rcu_dereference(sk->sk_reuseport_cb);
603 if (likely(reuse)) {
604 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
605 return !time_between32(now, last_overflow - HZ,
606 last_overflow +
607 TCP_SYNCOOKIE_VALID);
608 }
609 }
610
611 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
612
613 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
614 * then we're under synflood. However, we have to use
615 * 'last_overflow - HZ' as lower bound. That's because a concurrent
616 * tcp_synq_overflow() could update .ts_recent_stamp after we read
617 * jiffies but before we store .ts_recent_stamp into last_overflow,
618 * which could lead to rejecting a valid syncookie.
619 */
620 return !time_between32(now, last_overflow - HZ,
621 last_overflow + TCP_SYNCOOKIE_VALID);
622 }
623
tcp_cookie_time(void)624 static inline u32 tcp_cookie_time(void)
625 {
626 u64 val = get_jiffies_64();
627
628 do_div(val, TCP_SYNCOOKIE_PERIOD);
629 return val;
630 }
631
632 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
tcp_ns_to_ts(bool usec_ts,u64 val)633 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val)
634 {
635 if (usec_ts)
636 return div_u64(val, NSEC_PER_USEC);
637
638 return div_u64(val, NSEC_PER_MSEC);
639 }
640
641 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
642 u16 *mssp);
643 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
644 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
645 bool cookie_timestamp_decode(const struct net *net,
646 struct tcp_options_received *opt);
647
cookie_ecn_ok(const struct net * net,const struct dst_entry * dst)648 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
649 {
650 return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
651 dst_feature(dst, RTAX_FEATURE_ECN);
652 }
653
654 #if IS_ENABLED(CONFIG_BPF)
cookie_bpf_ok(struct sk_buff * skb)655 static inline bool cookie_bpf_ok(struct sk_buff *skb)
656 {
657 return skb->sk;
658 }
659
660 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb);
661 #else
cookie_bpf_ok(struct sk_buff * skb)662 static inline bool cookie_bpf_ok(struct sk_buff *skb)
663 {
664 return false;
665 }
666
cookie_bpf_check(struct net * net,struct sock * sk,struct sk_buff * skb)667 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk,
668 struct sk_buff *skb)
669 {
670 return NULL;
671 }
672 #endif
673
674 /* From net/ipv6/syncookies.c */
675 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
676 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
677
678 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
679 const struct tcphdr *th, u16 *mssp);
680 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
681 #endif
682 /* tcp_output.c */
683
684 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
685 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
686 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
687 int nonagle);
688 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
689 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
690 void tcp_retransmit_timer(struct sock *sk);
691 void tcp_xmit_retransmit_queue(struct sock *);
692 void tcp_simple_retransmit(struct sock *);
693 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
694 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
695 enum tcp_queue {
696 TCP_FRAG_IN_WRITE_QUEUE,
697 TCP_FRAG_IN_RTX_QUEUE,
698 };
699 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
700 struct sk_buff *skb, u32 len,
701 unsigned int mss_now, gfp_t gfp);
702
703 void tcp_send_probe0(struct sock *);
704 int tcp_write_wakeup(struct sock *, int mib);
705 void tcp_send_fin(struct sock *sk);
706 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
707 enum sk_rst_reason reason);
708 int tcp_send_synack(struct sock *);
709 void tcp_push_one(struct sock *, unsigned int mss_now);
710 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags);
711 void tcp_send_ack(struct sock *sk);
712 void tcp_send_delayed_ack(struct sock *sk);
713 void tcp_send_loss_probe(struct sock *sk);
714 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
715 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
716 const struct sk_buff *next_skb);
717
718 /* tcp_input.c */
719 void tcp_rearm_rto(struct sock *sk);
720 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
721 void tcp_done_with_error(struct sock *sk, int err);
722 void tcp_reset(struct sock *sk, struct sk_buff *skb);
723 void tcp_fin(struct sock *sk);
724 void tcp_check_space(struct sock *sk);
725 void tcp_sack_compress_send_ack(struct sock *sk);
726
tcp_cleanup_skb(struct sk_buff * skb)727 static inline void tcp_cleanup_skb(struct sk_buff *skb)
728 {
729 skb_dst_drop(skb);
730 secpath_reset(skb);
731 }
732
tcp_add_receive_queue(struct sock * sk,struct sk_buff * skb)733 static inline void tcp_add_receive_queue(struct sock *sk, struct sk_buff *skb)
734 {
735 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
736 DEBUG_NET_WARN_ON_ONCE(secpath_exists(skb));
737 __skb_queue_tail(&sk->sk_receive_queue, skb);
738 }
739
740 /* tcp_timer.c */
741 void tcp_init_xmit_timers(struct sock *);
tcp_clear_xmit_timers(struct sock * sk)742 static inline void tcp_clear_xmit_timers(struct sock *sk)
743 {
744 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
745 __sock_put(sk);
746
747 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
748 __sock_put(sk);
749
750 inet_csk_clear_xmit_timers(sk);
751 }
752
753 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
754 unsigned int tcp_current_mss(struct sock *sk);
755 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
756
757 /* Bound MSS / TSO packet size with the half of the window */
tcp_bound_to_half_wnd(struct tcp_sock * tp,int pktsize)758 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
759 {
760 int cutoff;
761
762 /* When peer uses tiny windows, there is no use in packetizing
763 * to sub-MSS pieces for the sake of SWS or making sure there
764 * are enough packets in the pipe for fast recovery.
765 *
766 * On the other hand, for extremely large MSS devices, handling
767 * smaller than MSS windows in this way does make sense.
768 */
769 if (tp->max_window > TCP_MSS_DEFAULT)
770 cutoff = (tp->max_window >> 1);
771 else
772 cutoff = tp->max_window;
773
774 if (cutoff && pktsize > cutoff)
775 return max_t(int, cutoff, 68U - tp->tcp_header_len);
776 else
777 return pktsize;
778 }
779
780 /* tcp.c */
781 void tcp_get_info(struct sock *, struct tcp_info *);
782
783 /* Read 'sendfile()'-style from a TCP socket */
784 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
785 sk_read_actor_t recv_actor);
786 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
787 sk_read_actor_t recv_actor, bool noack,
788 u32 *copied_seq);
789 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
790 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
791 void tcp_read_done(struct sock *sk, size_t len);
792
793 void tcp_initialize_rcv_mss(struct sock *sk);
794
795 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
796 int tcp_mss_to_mtu(struct sock *sk, int mss);
797 void tcp_mtup_init(struct sock *sk);
798
tcp_rto_max(const struct sock * sk)799 static inline unsigned int tcp_rto_max(const struct sock *sk)
800 {
801 return READ_ONCE(inet_csk(sk)->icsk_rto_max);
802 }
803
tcp_bound_rto(struct sock * sk)804 static inline void tcp_bound_rto(struct sock *sk)
805 {
806 inet_csk(sk)->icsk_rto = min(inet_csk(sk)->icsk_rto, tcp_rto_max(sk));
807 }
808
__tcp_set_rto(const struct tcp_sock * tp)809 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
810 {
811 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
812 }
813
__tcp_fast_path_on(struct tcp_sock * tp,u32 snd_wnd)814 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
815 {
816 /* mptcp hooks are only on the slow path */
817 if (sk_is_mptcp((struct sock *)tp))
818 return;
819
820 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
821 ntohl(TCP_FLAG_ACK) |
822 snd_wnd);
823 }
824
tcp_fast_path_on(struct tcp_sock * tp)825 static inline void tcp_fast_path_on(struct tcp_sock *tp)
826 {
827 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
828 }
829
tcp_fast_path_check(struct sock * sk)830 static inline void tcp_fast_path_check(struct sock *sk)
831 {
832 struct tcp_sock *tp = tcp_sk(sk);
833
834 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
835 tp->rcv_wnd &&
836 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
837 !tp->urg_data)
838 tcp_fast_path_on(tp);
839 }
840
841 u32 tcp_delack_max(const struct sock *sk);
842
843 /* Compute the actual rto_min value */
tcp_rto_min(const struct sock * sk)844 static inline u32 tcp_rto_min(const struct sock *sk)
845 {
846 const struct dst_entry *dst = __sk_dst_get(sk);
847 u32 rto_min = READ_ONCE(inet_csk(sk)->icsk_rto_min);
848
849 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
850 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
851 return rto_min;
852 }
853
tcp_rto_min_us(const struct sock * sk)854 static inline u32 tcp_rto_min_us(const struct sock *sk)
855 {
856 return jiffies_to_usecs(tcp_rto_min(sk));
857 }
858
tcp_ca_dst_locked(const struct dst_entry * dst)859 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
860 {
861 return dst_metric_locked(dst, RTAX_CC_ALGO);
862 }
863
864 /* Minimum RTT in usec. ~0 means not available. */
tcp_min_rtt(const struct tcp_sock * tp)865 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
866 {
867 return minmax_get(&tp->rtt_min);
868 }
869
870 /* Compute the actual receive window we are currently advertising.
871 * Rcv_nxt can be after the window if our peer push more data
872 * than the offered window.
873 */
tcp_receive_window(const struct tcp_sock * tp)874 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
875 {
876 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
877
878 if (win < 0)
879 win = 0;
880 return (u32) win;
881 }
882
883 /* Choose a new window, without checks for shrinking, and without
884 * scaling applied to the result. The caller does these things
885 * if necessary. This is a "raw" window selection.
886 */
887 u32 __tcp_select_window(struct sock *sk);
888
889 void tcp_send_window_probe(struct sock *sk);
890
891 /* TCP uses 32bit jiffies to save some space.
892 * Note that this is different from tcp_time_stamp, which
893 * historically has been the same until linux-4.13.
894 */
895 #define tcp_jiffies32 ((u32)jiffies)
896
897 /*
898 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
899 * It is no longer tied to jiffies, but to 1 ms clock.
900 * Note: double check if you want to use tcp_jiffies32 instead of this.
901 */
902 #define TCP_TS_HZ 1000
903
tcp_clock_ns(void)904 static inline u64 tcp_clock_ns(void)
905 {
906 return ktime_get_ns();
907 }
908
tcp_clock_us(void)909 static inline u64 tcp_clock_us(void)
910 {
911 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
912 }
913
tcp_clock_ms(void)914 static inline u64 tcp_clock_ms(void)
915 {
916 return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
917 }
918
919 /* TCP Timestamp included in TS option (RFC 1323) can either use ms
920 * or usec resolution. Each socket carries a flag to select one or other
921 * resolution, as the route attribute could change anytime.
922 * Each flow must stick to initial resolution.
923 */
tcp_clock_ts(bool usec_ts)924 static inline u32 tcp_clock_ts(bool usec_ts)
925 {
926 return usec_ts ? tcp_clock_us() : tcp_clock_ms();
927 }
928
tcp_time_stamp_ms(const struct tcp_sock * tp)929 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
930 {
931 return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
932 }
933
tcp_time_stamp_ts(const struct tcp_sock * tp)934 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
935 {
936 if (tp->tcp_usec_ts)
937 return tp->tcp_mstamp;
938 return tcp_time_stamp_ms(tp);
939 }
940
941 void tcp_mstamp_refresh(struct tcp_sock *tp);
942
tcp_stamp_us_delta(u64 t1,u64 t0)943 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
944 {
945 return max_t(s64, t1 - t0, 0);
946 }
947
948 /* provide the departure time in us unit */
tcp_skb_timestamp_us(const struct sk_buff * skb)949 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
950 {
951 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
952 }
953
954 /* Provide skb TSval in usec or ms unit */
tcp_skb_timestamp_ts(bool usec_ts,const struct sk_buff * skb)955 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
956 {
957 if (usec_ts)
958 return tcp_skb_timestamp_us(skb);
959
960 return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
961 }
962
tcp_tw_tsval(const struct tcp_timewait_sock * tcptw)963 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
964 {
965 return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
966 }
967
tcp_rsk_tsval(const struct tcp_request_sock * treq)968 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
969 {
970 return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
971 }
972
973 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
974
975 #define TCPHDR_FIN BIT(0)
976 #define TCPHDR_SYN BIT(1)
977 #define TCPHDR_RST BIT(2)
978 #define TCPHDR_PSH BIT(3)
979 #define TCPHDR_ACK BIT(4)
980 #define TCPHDR_URG BIT(5)
981 #define TCPHDR_ECE BIT(6)
982 #define TCPHDR_CWR BIT(7)
983 #define TCPHDR_AE BIT(8)
984 #define TCPHDR_FLAGS_MASK (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \
985 TCPHDR_PSH | TCPHDR_ACK | TCPHDR_URG | \
986 TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE)
987 #define tcp_flags_ntohs(th) (ntohs(*(__be16 *)&tcp_flag_word(th)) & \
988 TCPHDR_FLAGS_MASK)
989
990 #define TCPHDR_ACE (TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE)
991 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
992
993 /* State flags for sacked in struct tcp_skb_cb */
994 enum tcp_skb_cb_sacked_flags {
995 TCPCB_SACKED_ACKED = (1 << 0), /* SKB ACK'd by a SACK block */
996 TCPCB_SACKED_RETRANS = (1 << 1), /* SKB retransmitted */
997 TCPCB_LOST = (1 << 2), /* SKB is lost */
998 TCPCB_TAGBITS = (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS |
999 TCPCB_LOST), /* All tag bits */
1000 TCPCB_REPAIRED = (1 << 4), /* SKB repaired (no skb_mstamp_ns) */
1001 TCPCB_EVER_RETRANS = (1 << 7), /* Ever retransmitted frame */
1002 TCPCB_RETRANS = (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS |
1003 TCPCB_REPAIRED),
1004 };
1005
1006 /* This is what the send packet queuing engine uses to pass
1007 * TCP per-packet control information to the transmission code.
1008 * We also store the host-order sequence numbers in here too.
1009 * This is 44 bytes if IPV6 is enabled.
1010 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
1011 */
1012 struct tcp_skb_cb {
1013 __u32 seq; /* Starting sequence number */
1014 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
1015 union {
1016 /* Note :
1017 * tcp_gso_segs/size are used in write queue only,
1018 * cf tcp_skb_pcount()/tcp_skb_mss()
1019 */
1020 struct {
1021 u16 tcp_gso_segs;
1022 u16 tcp_gso_size;
1023 };
1024 };
1025 __u16 tcp_flags; /* TCP header flags (tcp[12-13])*/
1026
1027 __u8 sacked; /* State flags for SACK. */
1028 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
1029 #define TSTAMP_ACK_SK 0x1
1030 #define TSTAMP_ACK_BPF 0x2
1031 __u8 txstamp_ack:2, /* Record TX timestamp for ack? */
1032 eor:1, /* Is skb MSG_EOR marked? */
1033 has_rxtstamp:1, /* SKB has a RX timestamp */
1034 unused:4;
1035 __u32 ack_seq; /* Sequence number ACK'd */
1036 union {
1037 struct {
1038 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
1039 /* There is space for up to 24 bytes */
1040 __u32 is_app_limited:1, /* cwnd not fully used? */
1041 delivered_ce:20,
1042 unused:11;
1043 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
1044 __u32 delivered;
1045 /* start of send pipeline phase */
1046 u64 first_tx_mstamp;
1047 /* when we reached the "delivered" count */
1048 u64 delivered_mstamp;
1049 } tx; /* only used for outgoing skbs */
1050 union {
1051 struct inet_skb_parm h4;
1052 #if IS_ENABLED(CONFIG_IPV6)
1053 struct inet6_skb_parm h6;
1054 #endif
1055 } header; /* For incoming skbs */
1056 };
1057 };
1058
1059 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
1060
1061 extern const struct inet_connection_sock_af_ops ipv4_specific;
1062
1063 #if IS_ENABLED(CONFIG_IPV6)
1064 /* This is the variant of inet6_iif() that must be used by TCP,
1065 * as TCP moves IP6CB into a different location in skb->cb[]
1066 */
tcp_v6_iif(const struct sk_buff * skb)1067 static inline int tcp_v6_iif(const struct sk_buff *skb)
1068 {
1069 return TCP_SKB_CB(skb)->header.h6.iif;
1070 }
1071
tcp_v6_iif_l3_slave(const struct sk_buff * skb)1072 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
1073 {
1074 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
1075
1076 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
1077 }
1078
1079 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v6_sdif(const struct sk_buff * skb)1080 static inline int tcp_v6_sdif(const struct sk_buff *skb)
1081 {
1082 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1083 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
1084 return TCP_SKB_CB(skb)->header.h6.iif;
1085 #endif
1086 return 0;
1087 }
1088
1089 extern const struct inet_connection_sock_af_ops ipv6_specific;
1090
1091 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
1092 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
1093 void tcp_v6_early_demux(struct sk_buff *skb);
1094
1095 #endif
1096
1097 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v4_sdif(struct sk_buff * skb)1098 static inline int tcp_v4_sdif(struct sk_buff *skb)
1099 {
1100 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1101 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
1102 return TCP_SKB_CB(skb)->header.h4.iif;
1103 #endif
1104 return 0;
1105 }
1106
1107 /* Due to TSO, an SKB can be composed of multiple actual
1108 * packets. To keep these tracked properly, we use this.
1109 */
tcp_skb_pcount(const struct sk_buff * skb)1110 static inline int tcp_skb_pcount(const struct sk_buff *skb)
1111 {
1112 return TCP_SKB_CB(skb)->tcp_gso_segs;
1113 }
1114
tcp_skb_pcount_set(struct sk_buff * skb,int segs)1115 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1116 {
1117 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1118 }
1119
tcp_skb_pcount_add(struct sk_buff * skb,int segs)1120 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1121 {
1122 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1123 }
1124
1125 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
tcp_skb_mss(const struct sk_buff * skb)1126 static inline int tcp_skb_mss(const struct sk_buff *skb)
1127 {
1128 return TCP_SKB_CB(skb)->tcp_gso_size;
1129 }
1130
tcp_skb_can_collapse_to(const struct sk_buff * skb)1131 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1132 {
1133 return likely(!TCP_SKB_CB(skb)->eor);
1134 }
1135
tcp_skb_can_collapse(const struct sk_buff * to,const struct sk_buff * from)1136 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1137 const struct sk_buff *from)
1138 {
1139 /* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */
1140 return likely(tcp_skb_can_collapse_to(to) &&
1141 mptcp_skb_can_collapse(to, from) &&
1142 skb_pure_zcopy_same(to, from) &&
1143 skb_frags_readable(to) == skb_frags_readable(from));
1144 }
1145
tcp_skb_can_collapse_rx(const struct sk_buff * to,const struct sk_buff * from)1146 static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to,
1147 const struct sk_buff *from)
1148 {
1149 return likely(mptcp_skb_can_collapse(to, from) &&
1150 !skb_cmp_decrypted(to, from));
1151 }
1152
1153 /* Events passed to congestion control interface */
1154 enum tcp_ca_event {
1155 CA_EVENT_TX_START, /* first transmit when no packets in flight */
1156 CA_EVENT_CWND_RESTART, /* congestion window restart */
1157 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
1158 CA_EVENT_LOSS, /* loss timeout */
1159 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
1160 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
1161 };
1162
1163 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1164 enum tcp_ca_ack_event_flags {
1165 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
1166 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
1167 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
1168 };
1169
1170 /*
1171 * Interface for adding new TCP congestion control handlers
1172 */
1173 #define TCP_CA_NAME_MAX 16
1174 #define TCP_CA_MAX 128
1175 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
1176
1177 #define TCP_CA_UNSPEC 0
1178
1179 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1180 #define TCP_CONG_NON_RESTRICTED BIT(0)
1181 /* Requires ECN/ECT set on all packets */
1182 #define TCP_CONG_NEEDS_ECN BIT(1)
1183 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1184
1185 union tcp_cc_info;
1186
1187 struct ack_sample {
1188 u32 pkts_acked;
1189 s32 rtt_us;
1190 u32 in_flight;
1191 };
1192
1193 /* A rate sample measures the number of (original/retransmitted) data
1194 * packets delivered "delivered" over an interval of time "interval_us".
1195 * The tcp_rate.c code fills in the rate sample, and congestion
1196 * control modules that define a cong_control function to run at the end
1197 * of ACK processing can optionally chose to consult this sample when
1198 * setting cwnd and pacing rate.
1199 * A sample is invalid if "delivered" or "interval_us" is negative.
1200 */
1201 struct rate_sample {
1202 u64 prior_mstamp; /* starting timestamp for interval */
1203 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
1204 u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1205 s32 delivered; /* number of packets delivered over interval */
1206 s32 delivered_ce; /* number of packets delivered w/ CE marks*/
1207 long interval_us; /* time for tp->delivered to incr "delivered" */
1208 u32 snd_interval_us; /* snd interval for delivered packets */
1209 u32 rcv_interval_us; /* rcv interval for delivered packets */
1210 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
1211 int losses; /* number of packets marked lost upon ACK */
1212 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
1213 u32 prior_in_flight; /* in flight before this ACK */
1214 u32 last_end_seq; /* end_seq of most recently ACKed packet */
1215 bool is_app_limited; /* is sample from packet with bubble in pipe? */
1216 bool is_retrans; /* is sample from retransmission? */
1217 bool is_ack_delayed; /* is this (likely) a delayed ACK? */
1218 };
1219
1220 struct tcp_congestion_ops {
1221 /* fast path fields are put first to fill one cache line */
1222
1223 /* return slow start threshold (required) */
1224 u32 (*ssthresh)(struct sock *sk);
1225
1226 /* do new cwnd calculation (required) */
1227 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1228
1229 /* call before changing ca_state (optional) */
1230 void (*set_state)(struct sock *sk, u8 new_state);
1231
1232 /* call when cwnd event occurs (optional) */
1233 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1234
1235 /* call when ack arrives (optional) */
1236 void (*in_ack_event)(struct sock *sk, u32 flags);
1237
1238 /* hook for packet ack accounting (optional) */
1239 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1240
1241 /* override sysctl_tcp_min_tso_segs */
1242 u32 (*min_tso_segs)(struct sock *sk);
1243
1244 /* call when packets are delivered to update cwnd and pacing rate,
1245 * after all the ca_state processing. (optional)
1246 */
1247 void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs);
1248
1249
1250 /* new value of cwnd after loss (required) */
1251 u32 (*undo_cwnd)(struct sock *sk);
1252 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1253 u32 (*sndbuf_expand)(struct sock *sk);
1254
1255 /* control/slow paths put last */
1256 /* get info for inet_diag (optional) */
1257 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1258 union tcp_cc_info *info);
1259
1260 char name[TCP_CA_NAME_MAX];
1261 struct module *owner;
1262 struct list_head list;
1263 u32 key;
1264 u32 flags;
1265
1266 /* initialize private data (optional) */
1267 void (*init)(struct sock *sk);
1268 /* cleanup private data (optional) */
1269 void (*release)(struct sock *sk);
1270 } ____cacheline_aligned_in_smp;
1271
1272 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1273 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1274 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1275 struct tcp_congestion_ops *old_type);
1276 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1277
1278 void tcp_assign_congestion_control(struct sock *sk);
1279 void tcp_init_congestion_control(struct sock *sk);
1280 void tcp_cleanup_congestion_control(struct sock *sk);
1281 int tcp_set_default_congestion_control(struct net *net, const char *name);
1282 void tcp_get_default_congestion_control(struct net *net, char *name);
1283 void tcp_get_available_congestion_control(char *buf, size_t len);
1284 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1285 int tcp_set_allowed_congestion_control(char *allowed);
1286 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1287 bool cap_net_admin);
1288 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1289 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1290
1291 u32 tcp_reno_ssthresh(struct sock *sk);
1292 u32 tcp_reno_undo_cwnd(struct sock *sk);
1293 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1294 extern struct tcp_congestion_ops tcp_reno;
1295
1296 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1297 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1298 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1299 #ifdef CONFIG_INET
1300 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1301 #else
tcp_ca_get_name_by_key(u32 key,char * buffer)1302 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1303 {
1304 return NULL;
1305 }
1306 #endif
1307
tcp_ca_needs_ecn(const struct sock * sk)1308 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1309 {
1310 const struct inet_connection_sock *icsk = inet_csk(sk);
1311
1312 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1313 }
1314
tcp_ca_event(struct sock * sk,const enum tcp_ca_event event)1315 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1316 {
1317 const struct inet_connection_sock *icsk = inet_csk(sk);
1318
1319 if (icsk->icsk_ca_ops->cwnd_event)
1320 icsk->icsk_ca_ops->cwnd_event(sk, event);
1321 }
1322
1323 /* From tcp_cong.c */
1324 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1325
1326 /* From tcp_rate.c */
1327 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1328 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1329 struct rate_sample *rs);
1330 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1331 bool is_sack_reneg, struct rate_sample *rs);
1332 void tcp_rate_check_app_limited(struct sock *sk);
1333
tcp_skb_sent_after(u64 t1,u64 t2,u32 seq1,u32 seq2)1334 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1335 {
1336 return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1337 }
1338
1339 /* These functions determine how the current flow behaves in respect of SACK
1340 * handling. SACK is negotiated with the peer, and therefore it can vary
1341 * between different flows.
1342 *
1343 * tcp_is_sack - SACK enabled
1344 * tcp_is_reno - No SACK
1345 */
tcp_is_sack(const struct tcp_sock * tp)1346 static inline int tcp_is_sack(const struct tcp_sock *tp)
1347 {
1348 return likely(tp->rx_opt.sack_ok);
1349 }
1350
tcp_is_reno(const struct tcp_sock * tp)1351 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1352 {
1353 return !tcp_is_sack(tp);
1354 }
1355
tcp_left_out(const struct tcp_sock * tp)1356 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1357 {
1358 return tp->sacked_out + tp->lost_out;
1359 }
1360
1361 /* This determines how many packets are "in the network" to the best
1362 * of our knowledge. In many cases it is conservative, but where
1363 * detailed information is available from the receiver (via SACK
1364 * blocks etc.) we can make more aggressive calculations.
1365 *
1366 * Use this for decisions involving congestion control, use just
1367 * tp->packets_out to determine if the send queue is empty or not.
1368 *
1369 * Read this equation as:
1370 *
1371 * "Packets sent once on transmission queue" MINUS
1372 * "Packets left network, but not honestly ACKed yet" PLUS
1373 * "Packets fast retransmitted"
1374 */
tcp_packets_in_flight(const struct tcp_sock * tp)1375 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1376 {
1377 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1378 }
1379
1380 #define TCP_INFINITE_SSTHRESH 0x7fffffff
1381
tcp_snd_cwnd(const struct tcp_sock * tp)1382 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1383 {
1384 return tp->snd_cwnd;
1385 }
1386
tcp_snd_cwnd_set(struct tcp_sock * tp,u32 val)1387 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1388 {
1389 WARN_ON_ONCE((int)val <= 0);
1390 tp->snd_cwnd = val;
1391 }
1392
tcp_in_slow_start(const struct tcp_sock * tp)1393 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1394 {
1395 return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1396 }
1397
tcp_in_initial_slowstart(const struct tcp_sock * tp)1398 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1399 {
1400 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1401 }
1402
tcp_in_cwnd_reduction(const struct sock * sk)1403 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1404 {
1405 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1406 (1 << inet_csk(sk)->icsk_ca_state);
1407 }
1408
1409 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1410 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1411 * ssthresh.
1412 */
tcp_current_ssthresh(const struct sock * sk)1413 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1414 {
1415 const struct tcp_sock *tp = tcp_sk(sk);
1416
1417 if (tcp_in_cwnd_reduction(sk))
1418 return tp->snd_ssthresh;
1419 else
1420 return max(tp->snd_ssthresh,
1421 ((tcp_snd_cwnd(tp) >> 1) +
1422 (tcp_snd_cwnd(tp) >> 2)));
1423 }
1424
1425 /* Use define here intentionally to get WARN_ON location shown at the caller */
1426 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1427
1428 void tcp_enter_cwr(struct sock *sk);
1429 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1430
1431 /* The maximum number of MSS of available cwnd for which TSO defers
1432 * sending if not using sysctl_tcp_tso_win_divisor.
1433 */
tcp_max_tso_deferred_mss(const struct tcp_sock * tp)1434 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1435 {
1436 return 3;
1437 }
1438
1439 /* Returns end sequence number of the receiver's advertised window */
tcp_wnd_end(const struct tcp_sock * tp)1440 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1441 {
1442 return tp->snd_una + tp->snd_wnd;
1443 }
1444
1445 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1446 * flexible approach. The RFC suggests cwnd should not be raised unless
1447 * it was fully used previously. And that's exactly what we do in
1448 * congestion avoidance mode. But in slow start we allow cwnd to grow
1449 * as long as the application has used half the cwnd.
1450 * Example :
1451 * cwnd is 10 (IW10), but application sends 9 frames.
1452 * We allow cwnd to reach 18 when all frames are ACKed.
1453 * This check is safe because it's as aggressive as slow start which already
1454 * risks 100% overshoot. The advantage is that we discourage application to
1455 * either send more filler packets or data to artificially blow up the cwnd
1456 * usage, and allow application-limited process to probe bw more aggressively.
1457 */
tcp_is_cwnd_limited(const struct sock * sk)1458 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1459 {
1460 const struct tcp_sock *tp = tcp_sk(sk);
1461
1462 if (tp->is_cwnd_limited)
1463 return true;
1464
1465 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1466 if (tcp_in_slow_start(tp))
1467 return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1468
1469 return false;
1470 }
1471
1472 /* BBR congestion control needs pacing.
1473 * Same remark for SO_MAX_PACING_RATE.
1474 * sch_fq packet scheduler is efficiently handling pacing,
1475 * but is not always installed/used.
1476 * Return true if TCP stack should pace packets itself.
1477 */
tcp_needs_internal_pacing(const struct sock * sk)1478 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1479 {
1480 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1481 }
1482
1483 /* Estimates in how many jiffies next packet for this flow can be sent.
1484 * Scheduling a retransmit timer too early would be silly.
1485 */
tcp_pacing_delay(const struct sock * sk)1486 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1487 {
1488 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1489
1490 return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1491 }
1492
tcp_reset_xmit_timer(struct sock * sk,const int what,unsigned long when,bool pace_delay)1493 static inline void tcp_reset_xmit_timer(struct sock *sk,
1494 const int what,
1495 unsigned long when,
1496 bool pace_delay)
1497 {
1498 if (pace_delay)
1499 when += tcp_pacing_delay(sk);
1500 inet_csk_reset_xmit_timer(sk, what, when,
1501 tcp_rto_max(sk));
1502 }
1503
1504 /* Something is really bad, we could not queue an additional packet,
1505 * because qdisc is full or receiver sent a 0 window, or we are paced.
1506 * We do not want to add fuel to the fire, or abort too early,
1507 * so make sure the timer we arm now is at least 200ms in the future,
1508 * regardless of current icsk_rto value (as it could be ~2ms)
1509 */
tcp_probe0_base(const struct sock * sk)1510 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1511 {
1512 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1513 }
1514
1515 /* Variant of inet_csk_rto_backoff() used for zero window probes */
tcp_probe0_when(const struct sock * sk,unsigned long max_when)1516 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1517 unsigned long max_when)
1518 {
1519 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1520 inet_csk(sk)->icsk_backoff);
1521 u64 when = (u64)tcp_probe0_base(sk) << backoff;
1522
1523 return (unsigned long)min_t(u64, when, max_when);
1524 }
1525
tcp_check_probe_timer(struct sock * sk)1526 static inline void tcp_check_probe_timer(struct sock *sk)
1527 {
1528 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1529 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1530 tcp_probe0_base(sk), true);
1531 }
1532
tcp_init_wl(struct tcp_sock * tp,u32 seq)1533 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1534 {
1535 tp->snd_wl1 = seq;
1536 }
1537
tcp_update_wl(struct tcp_sock * tp,u32 seq)1538 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1539 {
1540 tp->snd_wl1 = seq;
1541 }
1542
1543 /*
1544 * Calculate(/check) TCP checksum
1545 */
tcp_v4_check(int len,__be32 saddr,__be32 daddr,__wsum base)1546 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1547 __be32 daddr, __wsum base)
1548 {
1549 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1550 }
1551
tcp_checksum_complete(struct sk_buff * skb)1552 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1553 {
1554 return !skb_csum_unnecessary(skb) &&
1555 __skb_checksum_complete(skb);
1556 }
1557
1558 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1559 enum skb_drop_reason *reason);
1560
1561
1562 int tcp_filter(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason *reason);
1563 void tcp_set_state(struct sock *sk, int state);
1564 void tcp_done(struct sock *sk);
1565 int tcp_abort(struct sock *sk, int err);
1566
tcp_sack_reset(struct tcp_options_received * rx_opt)1567 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1568 {
1569 rx_opt->dsack = 0;
1570 rx_opt->num_sacks = 0;
1571 }
1572
1573 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1574
tcp_slow_start_after_idle_check(struct sock * sk)1575 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1576 {
1577 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1578 struct tcp_sock *tp = tcp_sk(sk);
1579 s32 delta;
1580
1581 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1582 tp->packets_out || ca_ops->cong_control)
1583 return;
1584 delta = tcp_jiffies32 - tp->lsndtime;
1585 if (delta > inet_csk(sk)->icsk_rto)
1586 tcp_cwnd_restart(sk, delta);
1587 }
1588
1589 /* Determine a window scaling and initial window to offer. */
1590 void tcp_select_initial_window(const struct sock *sk, int __space,
1591 __u32 mss, __u32 *rcv_wnd,
1592 __u32 *window_clamp, int wscale_ok,
1593 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1594
__tcp_win_from_space(u8 scaling_ratio,int space)1595 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1596 {
1597 s64 scaled_space = (s64)space * scaling_ratio;
1598
1599 return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1600 }
1601
tcp_win_from_space(const struct sock * sk,int space)1602 static inline int tcp_win_from_space(const struct sock *sk, int space)
1603 {
1604 return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1605 }
1606
1607 /* inverse of __tcp_win_from_space() */
__tcp_space_from_win(u8 scaling_ratio,int win)1608 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1609 {
1610 u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1611
1612 do_div(val, scaling_ratio);
1613 return val;
1614 }
1615
tcp_space_from_win(const struct sock * sk,int win)1616 static inline int tcp_space_from_win(const struct sock *sk, int win)
1617 {
1618 return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1619 }
1620
1621 /* Assume a 50% default for skb->len/skb->truesize ratio.
1622 * This may be adjusted later in tcp_measure_rcv_mss().
1623 */
1624 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1))
1625
tcp_scaling_ratio_init(struct sock * sk)1626 static inline void tcp_scaling_ratio_init(struct sock *sk)
1627 {
1628 tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1629 }
1630
1631 /* Note: caller must be prepared to deal with negative returns */
tcp_space(const struct sock * sk)1632 static inline int tcp_space(const struct sock *sk)
1633 {
1634 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1635 READ_ONCE(sk->sk_backlog.len) -
1636 atomic_read(&sk->sk_rmem_alloc));
1637 }
1638
tcp_full_space(const struct sock * sk)1639 static inline int tcp_full_space(const struct sock *sk)
1640 {
1641 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1642 }
1643
__tcp_adjust_rcv_ssthresh(struct sock * sk,u32 new_ssthresh)1644 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1645 {
1646 int unused_mem = sk_unused_reserved_mem(sk);
1647 struct tcp_sock *tp = tcp_sk(sk);
1648
1649 tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1650 if (unused_mem)
1651 tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1652 tcp_win_from_space(sk, unused_mem));
1653 }
1654
tcp_adjust_rcv_ssthresh(struct sock * sk)1655 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1656 {
1657 __tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1658 }
1659
1660 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1661 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1662
1663
1664 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1665 * If 87.5 % (7/8) of the space has been consumed, we want to override
1666 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1667 * len/truesize ratio.
1668 */
tcp_rmem_pressure(const struct sock * sk)1669 static inline bool tcp_rmem_pressure(const struct sock *sk)
1670 {
1671 int rcvbuf, threshold;
1672
1673 if (tcp_under_memory_pressure(sk))
1674 return true;
1675
1676 rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1677 threshold = rcvbuf - (rcvbuf >> 3);
1678
1679 return atomic_read(&sk->sk_rmem_alloc) > threshold;
1680 }
1681
tcp_epollin_ready(const struct sock * sk,int target)1682 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1683 {
1684 const struct tcp_sock *tp = tcp_sk(sk);
1685 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1686
1687 if (avail <= 0)
1688 return false;
1689
1690 return (avail >= target) || tcp_rmem_pressure(sk) ||
1691 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1692 }
1693
1694 extern void tcp_openreq_init_rwin(struct request_sock *req,
1695 const struct sock *sk_listener,
1696 const struct dst_entry *dst);
1697
1698 void tcp_enter_memory_pressure(struct sock *sk);
1699 void tcp_leave_memory_pressure(struct sock *sk);
1700
keepalive_intvl_when(const struct tcp_sock * tp)1701 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1702 {
1703 struct net *net = sock_net((struct sock *)tp);
1704 int val;
1705
1706 /* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1707 * and do_tcp_setsockopt().
1708 */
1709 val = READ_ONCE(tp->keepalive_intvl);
1710
1711 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1712 }
1713
keepalive_time_when(const struct tcp_sock * tp)1714 static inline int keepalive_time_when(const struct tcp_sock *tp)
1715 {
1716 struct net *net = sock_net((struct sock *)tp);
1717 int val;
1718
1719 /* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1720 val = READ_ONCE(tp->keepalive_time);
1721
1722 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1723 }
1724
keepalive_probes(const struct tcp_sock * tp)1725 static inline int keepalive_probes(const struct tcp_sock *tp)
1726 {
1727 struct net *net = sock_net((struct sock *)tp);
1728 int val;
1729
1730 /* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1731 * and do_tcp_setsockopt().
1732 */
1733 val = READ_ONCE(tp->keepalive_probes);
1734
1735 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1736 }
1737
keepalive_time_elapsed(const struct tcp_sock * tp)1738 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1739 {
1740 const struct inet_connection_sock *icsk = &tp->inet_conn;
1741
1742 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1743 tcp_jiffies32 - tp->rcv_tstamp);
1744 }
1745
tcp_fin_time(const struct sock * sk)1746 static inline int tcp_fin_time(const struct sock *sk)
1747 {
1748 int fin_timeout = tcp_sk(sk)->linger2 ? :
1749 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1750 const int rto = inet_csk(sk)->icsk_rto;
1751
1752 if (fin_timeout < (rto << 2) - (rto >> 1))
1753 fin_timeout = (rto << 2) - (rto >> 1);
1754
1755 return fin_timeout;
1756 }
1757
tcp_paws_check(const struct tcp_options_received * rx_opt,int paws_win)1758 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1759 int paws_win)
1760 {
1761 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1762 return true;
1763 if (unlikely(!time_before32(ktime_get_seconds(),
1764 rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1765 return true;
1766 /*
1767 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1768 * then following tcp messages have valid values. Ignore 0 value,
1769 * or else 'negative' tsval might forbid us to accept their packets.
1770 */
1771 if (!rx_opt->ts_recent)
1772 return true;
1773 return false;
1774 }
1775
tcp_paws_reject(const struct tcp_options_received * rx_opt,int rst)1776 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1777 int rst)
1778 {
1779 if (tcp_paws_check(rx_opt, 0))
1780 return false;
1781
1782 /* RST segments are not recommended to carry timestamp,
1783 and, if they do, it is recommended to ignore PAWS because
1784 "their cleanup function should take precedence over timestamps."
1785 Certainly, it is mistake. It is necessary to understand the reasons
1786 of this constraint to relax it: if peer reboots, clock may go
1787 out-of-sync and half-open connections will not be reset.
1788 Actually, the problem would be not existing if all
1789 the implementations followed draft about maintaining clock
1790 via reboots. Linux-2.2 DOES NOT!
1791
1792 However, we can relax time bounds for RST segments to MSL.
1793 */
1794 if (rst && !time_before32(ktime_get_seconds(),
1795 rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1796 return false;
1797 return true;
1798 }
1799
1800 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1801 int mib_idx, u32 *last_oow_ack_time);
1802
tcp_mib_init(struct net * net)1803 static inline void tcp_mib_init(struct net *net)
1804 {
1805 /* See RFC 2012 */
1806 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1807 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1808 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1809 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1810 }
1811
1812 /* from STCP */
tcp_clear_all_retrans_hints(struct tcp_sock * tp)1813 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1814 {
1815 tp->retransmit_skb_hint = NULL;
1816 }
1817
1818 #define tcp_md5_addr tcp_ao_addr
1819
1820 /* - key database */
1821 struct tcp_md5sig_key {
1822 struct hlist_node node;
1823 u8 keylen;
1824 u8 family; /* AF_INET or AF_INET6 */
1825 u8 prefixlen;
1826 u8 flags;
1827 union tcp_md5_addr addr;
1828 int l3index; /* set if key added with L3 scope */
1829 u8 key[TCP_MD5SIG_MAXKEYLEN];
1830 struct rcu_head rcu;
1831 };
1832
1833 /* - sock block */
1834 struct tcp_md5sig_info {
1835 struct hlist_head head;
1836 struct rcu_head rcu;
1837 };
1838
1839 /* - pseudo header */
1840 struct tcp4_pseudohdr {
1841 __be32 saddr;
1842 __be32 daddr;
1843 __u8 pad;
1844 __u8 protocol;
1845 __be16 len;
1846 };
1847
1848 struct tcp6_pseudohdr {
1849 struct in6_addr saddr;
1850 struct in6_addr daddr;
1851 __be32 len;
1852 __be32 protocol; /* including padding */
1853 };
1854
1855 union tcp_md5sum_block {
1856 struct tcp4_pseudohdr ip4;
1857 #if IS_ENABLED(CONFIG_IPV6)
1858 struct tcp6_pseudohdr ip6;
1859 #endif
1860 };
1861
1862 /*
1863 * struct tcp_sigpool - per-CPU pool of ahash_requests
1864 * @scratch: per-CPU temporary area, that can be used between
1865 * tcp_sigpool_start() and tcp_sigpool_end() to perform
1866 * crypto request
1867 * @req: pre-allocated ahash request
1868 */
1869 struct tcp_sigpool {
1870 void *scratch;
1871 struct ahash_request *req;
1872 };
1873
1874 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1875 void tcp_sigpool_get(unsigned int id);
1876 void tcp_sigpool_release(unsigned int id);
1877 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1878 const struct sk_buff *skb,
1879 unsigned int header_len);
1880
1881 /**
1882 * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1883 * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1884 * @c: returned tcp_sigpool for usage (uninitialized on failure)
1885 *
1886 * Returns: 0 on success, error otherwise.
1887 */
1888 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1889 /**
1890 * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1891 * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1892 */
1893 void tcp_sigpool_end(struct tcp_sigpool *c);
1894 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1895 /* - functions */
1896 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1897 const struct sock *sk, const struct sk_buff *skb);
1898 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1899 int family, u8 prefixlen, int l3index, u8 flags,
1900 const u8 *newkey, u8 newkeylen);
1901 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1902 int family, u8 prefixlen, int l3index,
1903 struct tcp_md5sig_key *key);
1904
1905 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1906 int family, u8 prefixlen, int l3index, u8 flags);
1907 void tcp_clear_md5_list(struct sock *sk);
1908 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1909 const struct sock *addr_sk);
1910
1911 #ifdef CONFIG_TCP_MD5SIG
1912 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1913 const union tcp_md5_addr *addr,
1914 int family, bool any_l3index);
1915 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1916 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1917 const union tcp_md5_addr *addr, int family)
1918 {
1919 if (!static_branch_unlikely(&tcp_md5_needed.key))
1920 return NULL;
1921 return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1922 }
1923
1924 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup_any_l3index(const struct sock * sk,const union tcp_md5_addr * addr,int family)1925 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1926 const union tcp_md5_addr *addr, int family)
1927 {
1928 if (!static_branch_unlikely(&tcp_md5_needed.key))
1929 return NULL;
1930 return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1931 }
1932
1933 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1934 #else
1935 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1936 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1937 const union tcp_md5_addr *addr, int family)
1938 {
1939 return NULL;
1940 }
1941
1942 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup_any_l3index(const struct sock * sk,const union tcp_md5_addr * addr,int family)1943 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1944 const union tcp_md5_addr *addr, int family)
1945 {
1946 return NULL;
1947 }
1948
1949 #define tcp_twsk_md5_key(twsk) NULL
1950 #endif
1951
1952 int tcp_md5_alloc_sigpool(void);
1953 void tcp_md5_release_sigpool(void);
1954 void tcp_md5_add_sigpool(void);
1955 extern int tcp_md5_sigpool_id;
1956
1957 int tcp_md5_hash_key(struct tcp_sigpool *hp,
1958 const struct tcp_md5sig_key *key);
1959
1960 /* From tcp_fastopen.c */
1961 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1962 struct tcp_fastopen_cookie *cookie);
1963 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1964 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1965 u16 try_exp);
1966 struct tcp_fastopen_request {
1967 /* Fast Open cookie. Size 0 means a cookie request */
1968 struct tcp_fastopen_cookie cookie;
1969 struct msghdr *data; /* data in MSG_FASTOPEN */
1970 size_t size;
1971 int copied; /* queued in tcp_connect() */
1972 struct ubuf_info *uarg;
1973 };
1974 void tcp_free_fastopen_req(struct tcp_sock *tp);
1975 void tcp_fastopen_destroy_cipher(struct sock *sk);
1976 void tcp_fastopen_ctx_destroy(struct net *net);
1977 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1978 void *primary_key, void *backup_key);
1979 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1980 u64 *key);
1981 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1982 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1983 struct request_sock *req,
1984 struct tcp_fastopen_cookie *foc,
1985 const struct dst_entry *dst);
1986 void tcp_fastopen_init_key_once(struct net *net);
1987 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1988 struct tcp_fastopen_cookie *cookie);
1989 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1990 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1991 #define TCP_FASTOPEN_KEY_MAX 2
1992 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1993 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1994
1995 /* Fastopen key context */
1996 struct tcp_fastopen_context {
1997 siphash_key_t key[TCP_FASTOPEN_KEY_MAX];
1998 int num;
1999 struct rcu_head rcu;
2000 };
2001
2002 void tcp_fastopen_active_disable(struct sock *sk);
2003 bool tcp_fastopen_active_should_disable(struct sock *sk);
2004 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
2005 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
2006
2007 /* Caller needs to wrap with rcu_read_(un)lock() */
2008 static inline
tcp_fastopen_get_ctx(const struct sock * sk)2009 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
2010 {
2011 struct tcp_fastopen_context *ctx;
2012
2013 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
2014 if (!ctx)
2015 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
2016 return ctx;
2017 }
2018
2019 static inline
tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie * foc,const struct tcp_fastopen_cookie * orig)2020 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
2021 const struct tcp_fastopen_cookie *orig)
2022 {
2023 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
2024 orig->len == foc->len &&
2025 !memcmp(orig->val, foc->val, foc->len))
2026 return true;
2027 return false;
2028 }
2029
2030 static inline
tcp_fastopen_context_len(const struct tcp_fastopen_context * ctx)2031 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
2032 {
2033 return ctx->num;
2034 }
2035
2036 /* Latencies incurred by various limits for a sender. They are
2037 * chronograph-like stats that are mutually exclusive.
2038 */
2039 enum tcp_chrono {
2040 TCP_CHRONO_UNSPEC,
2041 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
2042 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
2043 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
2044 __TCP_CHRONO_MAX,
2045 };
2046
2047 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
2048 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
2049
2050 /* This helper is needed, because skb->tcp_tsorted_anchor uses
2051 * the same memory storage than skb->destructor/_skb_refdst
2052 */
tcp_skb_tsorted_anchor_cleanup(struct sk_buff * skb)2053 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
2054 {
2055 skb->destructor = NULL;
2056 skb->_skb_refdst = 0UL;
2057 }
2058
2059 #define tcp_skb_tsorted_save(skb) { \
2060 unsigned long _save = skb->_skb_refdst; \
2061 skb->_skb_refdst = 0UL;
2062
2063 #define tcp_skb_tsorted_restore(skb) \
2064 skb->_skb_refdst = _save; \
2065 }
2066
2067 void tcp_write_queue_purge(struct sock *sk);
2068
tcp_rtx_queue_head(const struct sock * sk)2069 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
2070 {
2071 return skb_rb_first(&sk->tcp_rtx_queue);
2072 }
2073
tcp_rtx_queue_tail(const struct sock * sk)2074 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
2075 {
2076 return skb_rb_last(&sk->tcp_rtx_queue);
2077 }
2078
tcp_write_queue_tail(const struct sock * sk)2079 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
2080 {
2081 return skb_peek_tail(&sk->sk_write_queue);
2082 }
2083
2084 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
2085 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
2086
tcp_send_head(const struct sock * sk)2087 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
2088 {
2089 return skb_peek(&sk->sk_write_queue);
2090 }
2091
tcp_skb_is_last(const struct sock * sk,const struct sk_buff * skb)2092 static inline bool tcp_skb_is_last(const struct sock *sk,
2093 const struct sk_buff *skb)
2094 {
2095 return skb_queue_is_last(&sk->sk_write_queue, skb);
2096 }
2097
2098 /**
2099 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
2100 * @sk: socket
2101 *
2102 * Since the write queue can have a temporary empty skb in it,
2103 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2104 */
tcp_write_queue_empty(const struct sock * sk)2105 static inline bool tcp_write_queue_empty(const struct sock *sk)
2106 {
2107 const struct tcp_sock *tp = tcp_sk(sk);
2108
2109 return tp->write_seq == tp->snd_nxt;
2110 }
2111
tcp_rtx_queue_empty(const struct sock * sk)2112 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2113 {
2114 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2115 }
2116
tcp_rtx_and_write_queues_empty(const struct sock * sk)2117 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2118 {
2119 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2120 }
2121
tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)2122 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2123 {
2124 __skb_queue_tail(&sk->sk_write_queue, skb);
2125
2126 /* Queue it, remembering where we must start sending. */
2127 if (sk->sk_write_queue.next == skb)
2128 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2129 }
2130
2131 /* Insert new before skb on the write queue of sk. */
tcp_insert_write_queue_before(struct sk_buff * new,struct sk_buff * skb,struct sock * sk)2132 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2133 struct sk_buff *skb,
2134 struct sock *sk)
2135 {
2136 __skb_queue_before(&sk->sk_write_queue, skb, new);
2137 }
2138
tcp_unlink_write_queue(struct sk_buff * skb,struct sock * sk)2139 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2140 {
2141 tcp_skb_tsorted_anchor_cleanup(skb);
2142 __skb_unlink(skb, &sk->sk_write_queue);
2143 }
2144
2145 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2146
tcp_rtx_queue_unlink(struct sk_buff * skb,struct sock * sk)2147 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2148 {
2149 tcp_skb_tsorted_anchor_cleanup(skb);
2150 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2151 }
2152
tcp_rtx_queue_unlink_and_free(struct sk_buff * skb,struct sock * sk)2153 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2154 {
2155 list_del(&skb->tcp_tsorted_anchor);
2156 tcp_rtx_queue_unlink(skb, sk);
2157 tcp_wmem_free_skb(sk, skb);
2158 }
2159
tcp_write_collapse_fence(struct sock * sk)2160 static inline void tcp_write_collapse_fence(struct sock *sk)
2161 {
2162 struct sk_buff *skb = tcp_write_queue_tail(sk);
2163
2164 if (skb)
2165 TCP_SKB_CB(skb)->eor = 1;
2166 }
2167
tcp_push_pending_frames(struct sock * sk)2168 static inline void tcp_push_pending_frames(struct sock *sk)
2169 {
2170 if (tcp_send_head(sk)) {
2171 struct tcp_sock *tp = tcp_sk(sk);
2172
2173 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2174 }
2175 }
2176
2177 /* Start sequence of the skb just after the highest skb with SACKed
2178 * bit, valid only if sacked_out > 0 or when the caller has ensured
2179 * validity by itself.
2180 */
tcp_highest_sack_seq(struct tcp_sock * tp)2181 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2182 {
2183 if (!tp->sacked_out)
2184 return tp->snd_una;
2185
2186 if (tp->highest_sack == NULL)
2187 return tp->snd_nxt;
2188
2189 return TCP_SKB_CB(tp->highest_sack)->seq;
2190 }
2191
tcp_advance_highest_sack(struct sock * sk,struct sk_buff * skb)2192 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2193 {
2194 tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2195 }
2196
tcp_highest_sack(struct sock * sk)2197 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2198 {
2199 return tcp_sk(sk)->highest_sack;
2200 }
2201
tcp_highest_sack_reset(struct sock * sk)2202 static inline void tcp_highest_sack_reset(struct sock *sk)
2203 {
2204 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2205 }
2206
2207 /* Called when old skb is about to be deleted and replaced by new skb */
tcp_highest_sack_replace(struct sock * sk,struct sk_buff * old,struct sk_buff * new)2208 static inline void tcp_highest_sack_replace(struct sock *sk,
2209 struct sk_buff *old,
2210 struct sk_buff *new)
2211 {
2212 if (old == tcp_highest_sack(sk))
2213 tcp_sk(sk)->highest_sack = new;
2214 }
2215
2216 /* This helper checks if socket has IP_TRANSPARENT set */
inet_sk_transparent(const struct sock * sk)2217 static inline bool inet_sk_transparent(const struct sock *sk)
2218 {
2219 switch (sk->sk_state) {
2220 case TCP_TIME_WAIT:
2221 return inet_twsk(sk)->tw_transparent;
2222 case TCP_NEW_SYN_RECV:
2223 return inet_rsk(inet_reqsk(sk))->no_srccheck;
2224 }
2225 return inet_test_bit(TRANSPARENT, sk);
2226 }
2227
2228 /* Determines whether this is a thin stream (which may suffer from
2229 * increased latency). Used to trigger latency-reducing mechanisms.
2230 */
tcp_stream_is_thin(struct tcp_sock * tp)2231 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2232 {
2233 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2234 }
2235
2236 /* /proc */
2237 enum tcp_seq_states {
2238 TCP_SEQ_STATE_LISTENING,
2239 TCP_SEQ_STATE_ESTABLISHED,
2240 };
2241
2242 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2243 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2244 void tcp_seq_stop(struct seq_file *seq, void *v);
2245
2246 struct tcp_seq_afinfo {
2247 sa_family_t family;
2248 };
2249
2250 struct tcp_iter_state {
2251 struct seq_net_private p;
2252 enum tcp_seq_states state;
2253 struct sock *syn_wait_sk;
2254 int bucket, offset, sbucket, num;
2255 loff_t last_pos;
2256 };
2257
2258 extern struct request_sock_ops tcp_request_sock_ops;
2259 extern struct request_sock_ops tcp6_request_sock_ops;
2260
2261 void tcp_v4_destroy_sock(struct sock *sk);
2262
2263 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2264 netdev_features_t features);
2265 struct tcphdr *tcp_gro_pull_header(struct sk_buff *skb);
2266 struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th);
2267 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb,
2268 struct tcphdr *th);
2269 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2270 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2271 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2272 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2273 #ifdef CONFIG_INET
2274 void tcp_gro_complete(struct sk_buff *skb);
2275 #else
tcp_gro_complete(struct sk_buff * skb)2276 static inline void tcp_gro_complete(struct sk_buff *skb) { }
2277 #endif
2278
2279 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2280
tcp_notsent_lowat(const struct tcp_sock * tp)2281 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2282 {
2283 struct net *net = sock_net((struct sock *)tp);
2284 u32 val;
2285
2286 val = READ_ONCE(tp->notsent_lowat);
2287
2288 return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2289 }
2290
2291 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2292
2293 #ifdef CONFIG_PROC_FS
2294 int tcp4_proc_init(void);
2295 void tcp4_proc_exit(void);
2296 #endif
2297
2298 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2299 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2300 const struct tcp_request_sock_ops *af_ops,
2301 struct sock *sk, struct sk_buff *skb);
2302
2303 /* TCP af-specific functions */
2304 struct tcp_sock_af_ops {
2305 #ifdef CONFIG_TCP_MD5SIG
2306 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
2307 const struct sock *addr_sk);
2308 int (*calc_md5_hash)(char *location,
2309 const struct tcp_md5sig_key *md5,
2310 const struct sock *sk,
2311 const struct sk_buff *skb);
2312 int (*md5_parse)(struct sock *sk,
2313 int optname,
2314 sockptr_t optval,
2315 int optlen);
2316 #endif
2317 #ifdef CONFIG_TCP_AO
2318 int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2319 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2320 struct sock *addr_sk,
2321 int sndid, int rcvid);
2322 int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2323 const struct sock *sk,
2324 __be32 sisn, __be32 disn, bool send);
2325 int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2326 const struct sock *sk, const struct sk_buff *skb,
2327 const u8 *tkey, int hash_offset, u32 sne);
2328 #endif
2329 };
2330
2331 struct tcp_request_sock_ops {
2332 u16 mss_clamp;
2333 #ifdef CONFIG_TCP_MD5SIG
2334 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2335 const struct sock *addr_sk);
2336 int (*calc_md5_hash) (char *location,
2337 const struct tcp_md5sig_key *md5,
2338 const struct sock *sk,
2339 const struct sk_buff *skb);
2340 #endif
2341 #ifdef CONFIG_TCP_AO
2342 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2343 struct request_sock *req,
2344 int sndid, int rcvid);
2345 int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2346 int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2347 struct request_sock *req, const struct sk_buff *skb,
2348 int hash_offset, u32 sne);
2349 #endif
2350 #ifdef CONFIG_SYN_COOKIES
2351 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
2352 __u16 *mss);
2353 #endif
2354 struct dst_entry *(*route_req)(const struct sock *sk,
2355 struct sk_buff *skb,
2356 struct flowi *fl,
2357 struct request_sock *req,
2358 u32 tw_isn);
2359 u32 (*init_seq)(const struct sk_buff *skb);
2360 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2361 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2362 struct flowi *fl, struct request_sock *req,
2363 struct tcp_fastopen_cookie *foc,
2364 enum tcp_synack_type synack_type,
2365 struct sk_buff *syn_skb);
2366 };
2367
2368 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2369 #if IS_ENABLED(CONFIG_IPV6)
2370 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2371 #endif
2372
2373 #ifdef CONFIG_SYN_COOKIES
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2374 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2375 const struct sock *sk, struct sk_buff *skb,
2376 __u16 *mss)
2377 {
2378 tcp_synq_overflow(sk);
2379 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2380 return ops->cookie_init_seq(skb, mss);
2381 }
2382 #else
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2383 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2384 const struct sock *sk, struct sk_buff *skb,
2385 __u16 *mss)
2386 {
2387 return 0;
2388 }
2389 #endif
2390
2391 struct tcp_key {
2392 union {
2393 struct {
2394 struct tcp_ao_key *ao_key;
2395 char *traffic_key;
2396 u32 sne;
2397 u8 rcv_next;
2398 };
2399 struct tcp_md5sig_key *md5_key;
2400 };
2401 enum {
2402 TCP_KEY_NONE = 0,
2403 TCP_KEY_MD5,
2404 TCP_KEY_AO,
2405 } type;
2406 };
2407
tcp_get_current_key(const struct sock * sk,struct tcp_key * out)2408 static inline void tcp_get_current_key(const struct sock *sk,
2409 struct tcp_key *out)
2410 {
2411 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2412 const struct tcp_sock *tp = tcp_sk(sk);
2413 #endif
2414
2415 #ifdef CONFIG_TCP_AO
2416 if (static_branch_unlikely(&tcp_ao_needed.key)) {
2417 struct tcp_ao_info *ao;
2418
2419 ao = rcu_dereference_protected(tp->ao_info,
2420 lockdep_sock_is_held(sk));
2421 if (ao) {
2422 out->ao_key = READ_ONCE(ao->current_key);
2423 out->type = TCP_KEY_AO;
2424 return;
2425 }
2426 }
2427 #endif
2428 #ifdef CONFIG_TCP_MD5SIG
2429 if (static_branch_unlikely(&tcp_md5_needed.key) &&
2430 rcu_access_pointer(tp->md5sig_info)) {
2431 out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2432 if (out->md5_key) {
2433 out->type = TCP_KEY_MD5;
2434 return;
2435 }
2436 }
2437 #endif
2438 out->type = TCP_KEY_NONE;
2439 }
2440
tcp_key_is_md5(const struct tcp_key * key)2441 static inline bool tcp_key_is_md5(const struct tcp_key *key)
2442 {
2443 if (static_branch_tcp_md5())
2444 return key->type == TCP_KEY_MD5;
2445 return false;
2446 }
2447
tcp_key_is_ao(const struct tcp_key * key)2448 static inline bool tcp_key_is_ao(const struct tcp_key *key)
2449 {
2450 if (static_branch_tcp_ao())
2451 return key->type == TCP_KEY_AO;
2452 return false;
2453 }
2454
2455 int tcpv4_offload_init(void);
2456
2457 void tcp_v4_init(void);
2458 void tcp_init(void);
2459
2460 /* tcp_recovery.c */
2461 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2462 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2463 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2464 u32 reo_wnd);
2465 extern bool tcp_rack_mark_lost(struct sock *sk);
2466 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2467 u64 xmit_time);
2468 extern void tcp_rack_reo_timeout(struct sock *sk);
2469 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2470
2471 /* tcp_plb.c */
2472
2473 /*
2474 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2475 * expects cong_ratio which represents fraction of traffic that experienced
2476 * congestion over a single RTT. In order to avoid floating point operations,
2477 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2478 */
2479 #define TCP_PLB_SCALE 8
2480
2481 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2482 struct tcp_plb_state {
2483 u8 consec_cong_rounds:5, /* consecutive congested rounds */
2484 unused:3;
2485 u32 pause_until; /* jiffies32 when PLB can resume rerouting */
2486 };
2487
tcp_plb_init(const struct sock * sk,struct tcp_plb_state * plb)2488 static inline void tcp_plb_init(const struct sock *sk,
2489 struct tcp_plb_state *plb)
2490 {
2491 plb->consec_cong_rounds = 0;
2492 plb->pause_until = 0;
2493 }
2494 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2495 const int cong_ratio);
2496 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2497 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2498
tcp_warn_once(const struct sock * sk,bool cond,const char * str)2499 static inline void tcp_warn_once(const struct sock *sk, bool cond, const char *str)
2500 {
2501 WARN_ONCE(cond,
2502 "%scwn:%u out:%u sacked:%u lost:%u retrans:%u tlp_high_seq:%u sk_state:%u ca_state:%u advmss:%u mss_cache:%u pmtu:%u\n",
2503 str,
2504 tcp_snd_cwnd(tcp_sk(sk)),
2505 tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out,
2506 tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out,
2507 tcp_sk(sk)->tlp_high_seq, sk->sk_state,
2508 inet_csk(sk)->icsk_ca_state,
2509 tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache,
2510 inet_csk(sk)->icsk_pmtu_cookie);
2511 }
2512
2513 /* At how many usecs into the future should the RTO fire? */
tcp_rto_delta_us(const struct sock * sk)2514 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2515 {
2516 const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2517 u32 rto = inet_csk(sk)->icsk_rto;
2518
2519 if (likely(skb)) {
2520 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2521
2522 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2523 } else {
2524 tcp_warn_once(sk, 1, "rtx queue empty: ");
2525 return jiffies_to_usecs(rto);
2526 }
2527
2528 }
2529
2530 /*
2531 * Save and compile IPv4 options, return a pointer to it
2532 */
tcp_v4_save_options(struct net * net,struct sk_buff * skb)2533 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2534 struct sk_buff *skb)
2535 {
2536 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2537 struct ip_options_rcu *dopt = NULL;
2538
2539 if (opt->optlen) {
2540 int opt_size = sizeof(*dopt) + opt->optlen;
2541
2542 dopt = kmalloc(opt_size, GFP_ATOMIC);
2543 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2544 kfree(dopt);
2545 dopt = NULL;
2546 }
2547 }
2548 return dopt;
2549 }
2550
2551 /* locally generated TCP pure ACKs have skb->truesize == 2
2552 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2553 * This is much faster than dissecting the packet to find out.
2554 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2555 */
skb_is_tcp_pure_ack(const struct sk_buff * skb)2556 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2557 {
2558 return skb->truesize == 2;
2559 }
2560
skb_set_tcp_pure_ack(struct sk_buff * skb)2561 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2562 {
2563 skb->truesize = 2;
2564 }
2565
tcp_inq(struct sock * sk)2566 static inline int tcp_inq(struct sock *sk)
2567 {
2568 struct tcp_sock *tp = tcp_sk(sk);
2569 int answ;
2570
2571 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2572 answ = 0;
2573 } else if (sock_flag(sk, SOCK_URGINLINE) ||
2574 !tp->urg_data ||
2575 before(tp->urg_seq, tp->copied_seq) ||
2576 !before(tp->urg_seq, tp->rcv_nxt)) {
2577
2578 answ = tp->rcv_nxt - tp->copied_seq;
2579
2580 /* Subtract 1, if FIN was received */
2581 if (answ && sock_flag(sk, SOCK_DONE))
2582 answ--;
2583 } else {
2584 answ = tp->urg_seq - tp->copied_seq;
2585 }
2586
2587 return answ;
2588 }
2589
2590 int tcp_peek_len(struct socket *sock);
2591
tcp_segs_in(struct tcp_sock * tp,const struct sk_buff * skb)2592 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2593 {
2594 u16 segs_in;
2595
2596 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2597
2598 /* We update these fields while other threads might
2599 * read them from tcp_get_info()
2600 */
2601 WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2602 if (skb->len > tcp_hdrlen(skb))
2603 WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2604 }
2605
2606 /*
2607 * TCP listen path runs lockless.
2608 * We forced "struct sock" to be const qualified to make sure
2609 * we don't modify one of its field by mistake.
2610 * Here, we increment sk_drops which is an atomic_t, so we can safely
2611 * make sock writable again.
2612 */
tcp_listendrop(const struct sock * sk)2613 static inline void tcp_listendrop(const struct sock *sk)
2614 {
2615 atomic_inc(&((struct sock *)sk)->sk_drops);
2616 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2617 }
2618
2619 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2620
2621 /*
2622 * Interface for adding Upper Level Protocols over TCP
2623 */
2624
2625 #define TCP_ULP_NAME_MAX 16
2626 #define TCP_ULP_MAX 128
2627 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2628
2629 struct tcp_ulp_ops {
2630 struct list_head list;
2631
2632 /* initialize ulp */
2633 int (*init)(struct sock *sk);
2634 /* update ulp */
2635 void (*update)(struct sock *sk, struct proto *p,
2636 void (*write_space)(struct sock *sk));
2637 /* cleanup ulp */
2638 void (*release)(struct sock *sk);
2639 /* diagnostic */
2640 int (*get_info)(struct sock *sk, struct sk_buff *skb, bool net_admin);
2641 size_t (*get_info_size)(const struct sock *sk, bool net_admin);
2642 /* clone ulp */
2643 void (*clone)(const struct request_sock *req, struct sock *newsk,
2644 const gfp_t priority);
2645
2646 char name[TCP_ULP_NAME_MAX];
2647 struct module *owner;
2648 };
2649 int tcp_register_ulp(struct tcp_ulp_ops *type);
2650 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2651 int tcp_set_ulp(struct sock *sk, const char *name);
2652 void tcp_get_available_ulp(char *buf, size_t len);
2653 void tcp_cleanup_ulp(struct sock *sk);
2654 void tcp_update_ulp(struct sock *sk, struct proto *p,
2655 void (*write_space)(struct sock *sk));
2656
2657 #define MODULE_ALIAS_TCP_ULP(name) \
2658 __MODULE_INFO(alias, alias_userspace, name); \
2659 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2660
2661 #ifdef CONFIG_NET_SOCK_MSG
2662 struct sk_msg;
2663 struct sk_psock;
2664
2665 #ifdef CONFIG_BPF_SYSCALL
2666 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2667 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2668 #ifdef CONFIG_BPF_STREAM_PARSER
2669 struct strparser;
2670 int tcp_bpf_strp_read_sock(struct strparser *strp, read_descriptor_t *desc,
2671 sk_read_actor_t recv_actor);
2672 #endif /* CONFIG_BPF_STREAM_PARSER */
2673 #endif /* CONFIG_BPF_SYSCALL */
2674
2675 #ifdef CONFIG_INET
2676 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2677 #else
tcp_eat_skb(struct sock * sk,struct sk_buff * skb)2678 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2679 {
2680 }
2681 #endif
2682
2683 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2684 struct sk_msg *msg, u32 bytes, int flags);
2685 #endif /* CONFIG_NET_SOCK_MSG */
2686
2687 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
tcp_bpf_clone(const struct sock * sk,struct sock * newsk)2688 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2689 {
2690 }
2691 #endif
2692
2693 #ifdef CONFIG_CGROUP_BPF
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2694 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2695 struct sk_buff *skb,
2696 unsigned int end_offset)
2697 {
2698 skops->skb = skb;
2699 skops->skb_data_end = skb->data + end_offset;
2700 }
2701 #else
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2702 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2703 struct sk_buff *skb,
2704 unsigned int end_offset)
2705 {
2706 }
2707 #endif
2708
2709 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2710 * is < 0, then the BPF op failed (for example if the loaded BPF
2711 * program does not support the chosen operation or there is no BPF
2712 * program loaded).
2713 */
2714 #ifdef CONFIG_BPF
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2715 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2716 {
2717 struct bpf_sock_ops_kern sock_ops;
2718 int ret;
2719
2720 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2721 if (sk_fullsock(sk)) {
2722 sock_ops.is_fullsock = 1;
2723 sock_ops.is_locked_tcp_sock = 1;
2724 sock_owned_by_me(sk);
2725 }
2726
2727 sock_ops.sk = sk;
2728 sock_ops.op = op;
2729 if (nargs > 0)
2730 memcpy(sock_ops.args, args, nargs * sizeof(*args));
2731
2732 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2733 if (ret == 0)
2734 ret = sock_ops.reply;
2735 else
2736 ret = -1;
2737 return ret;
2738 }
2739
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2740 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2741 {
2742 u32 args[2] = {arg1, arg2};
2743
2744 return tcp_call_bpf(sk, op, 2, args);
2745 }
2746
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2747 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2748 u32 arg3)
2749 {
2750 u32 args[3] = {arg1, arg2, arg3};
2751
2752 return tcp_call_bpf(sk, op, 3, args);
2753 }
2754
2755 #else
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2756 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2757 {
2758 return -EPERM;
2759 }
2760
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2761 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2762 {
2763 return -EPERM;
2764 }
2765
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2766 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2767 u32 arg3)
2768 {
2769 return -EPERM;
2770 }
2771
2772 #endif
2773
tcp_timeout_init(struct sock * sk)2774 static inline u32 tcp_timeout_init(struct sock *sk)
2775 {
2776 int timeout;
2777
2778 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2779
2780 if (timeout <= 0)
2781 timeout = TCP_TIMEOUT_INIT;
2782 return min_t(int, timeout, TCP_RTO_MAX);
2783 }
2784
tcp_rwnd_init_bpf(struct sock * sk)2785 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2786 {
2787 int rwnd;
2788
2789 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2790
2791 if (rwnd < 0)
2792 rwnd = 0;
2793 return rwnd;
2794 }
2795
tcp_bpf_ca_needs_ecn(struct sock * sk)2796 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2797 {
2798 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2799 }
2800
tcp_bpf_rtt(struct sock * sk,long mrtt,u32 srtt)2801 static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt)
2802 {
2803 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2804 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt);
2805 }
2806
2807 #if IS_ENABLED(CONFIG_SMC)
2808 extern struct static_key_false tcp_have_smc;
2809 #endif
2810
2811 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2812 void clean_acked_data_enable(struct tcp_sock *tp,
2813 void (*cad)(struct sock *sk, u32 ack_seq));
2814 void clean_acked_data_disable(struct tcp_sock *tp);
2815 void clean_acked_data_flush(void);
2816 #endif
2817
2818 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
tcp_add_tx_delay(struct sk_buff * skb,const struct tcp_sock * tp)2819 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2820 const struct tcp_sock *tp)
2821 {
2822 if (static_branch_unlikely(&tcp_tx_delay_enabled))
2823 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2824 }
2825
2826 /* Compute Earliest Departure Time for some control packets
2827 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2828 */
tcp_transmit_time(const struct sock * sk)2829 static inline u64 tcp_transmit_time(const struct sock *sk)
2830 {
2831 if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2832 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2833 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2834
2835 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2836 }
2837 return 0;
2838 }
2839
tcp_parse_auth_options(const struct tcphdr * th,const u8 ** md5_hash,const struct tcp_ao_hdr ** aoh)2840 static inline int tcp_parse_auth_options(const struct tcphdr *th,
2841 const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2842 {
2843 const u8 *md5_tmp, *ao_tmp;
2844 int ret;
2845
2846 ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2847 if (ret)
2848 return ret;
2849
2850 if (md5_hash)
2851 *md5_hash = md5_tmp;
2852
2853 if (aoh) {
2854 if (!ao_tmp)
2855 *aoh = NULL;
2856 else
2857 *aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2858 }
2859
2860 return 0;
2861 }
2862
tcp_ao_required(struct sock * sk,const void * saddr,int family,int l3index,bool stat_inc)2863 static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2864 int family, int l3index, bool stat_inc)
2865 {
2866 #ifdef CONFIG_TCP_AO
2867 struct tcp_ao_info *ao_info;
2868 struct tcp_ao_key *ao_key;
2869
2870 if (!static_branch_unlikely(&tcp_ao_needed.key))
2871 return false;
2872
2873 ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2874 lockdep_sock_is_held(sk));
2875 if (!ao_info)
2876 return false;
2877
2878 ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2879 if (ao_info->ao_required || ao_key) {
2880 if (stat_inc) {
2881 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2882 atomic64_inc(&ao_info->counters.ao_required);
2883 }
2884 return true;
2885 }
2886 #endif
2887 return false;
2888 }
2889
2890 enum skb_drop_reason tcp_inbound_hash(struct sock *sk,
2891 const struct request_sock *req, const struct sk_buff *skb,
2892 const void *saddr, const void *daddr,
2893 int family, int dif, int sdif);
2894
2895 #endif /* _TCP_H */
2896