1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * BPF JIT compiler for ARM64 4 * 5 * Copyright (C) 2014-2016 Zi Shen Lim <zlim.lnx@gmail.com> 6 */ 7 8 #define pr_fmt(fmt) "bpf_jit: " fmt 9 10 #include <linux/arm-smccc.h> 11 #include <linux/bitfield.h> 12 #include <linux/bpf.h> 13 #include <linux/cfi.h> 14 #include <linux/filter.h> 15 #include <linux/memory.h> 16 #include <linux/printk.h> 17 #include <linux/slab.h> 18 19 #include <asm/asm-extable.h> 20 #include <asm/byteorder.h> 21 #include <asm/cacheflush.h> 22 #include <asm/cpufeature.h> 23 #include <asm/debug-monitors.h> 24 #include <asm/insn.h> 25 #include <asm/text-patching.h> 26 #include <asm/set_memory.h> 27 28 #include "bpf_jit.h" 29 30 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0) 31 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1) 32 #define TCCNT_PTR (MAX_BPF_JIT_REG + 2) 33 #define TMP_REG_3 (MAX_BPF_JIT_REG + 3) 34 #define PRIVATE_SP (MAX_BPF_JIT_REG + 4) 35 #define ARENA_VM_START (MAX_BPF_JIT_REG + 5) 36 37 #define check_imm(bits, imm) do { \ 38 if ((((imm) > 0) && ((imm) >> (bits))) || \ 39 (((imm) < 0) && (~(imm) >> (bits)))) { \ 40 pr_info("[%2d] imm=%d(0x%x) out of range\n", \ 41 i, imm, imm); \ 42 return -EINVAL; \ 43 } \ 44 } while (0) 45 #define check_imm19(imm) check_imm(19, imm) 46 #define check_imm26(imm) check_imm(26, imm) 47 48 /* Map BPF registers to A64 registers */ 49 static const int bpf2a64[] = { 50 /* return value from in-kernel function, and exit value from eBPF */ 51 [BPF_REG_0] = A64_R(7), 52 /* arguments from eBPF program to in-kernel function */ 53 [BPF_REG_1] = A64_R(0), 54 [BPF_REG_2] = A64_R(1), 55 [BPF_REG_3] = A64_R(2), 56 [BPF_REG_4] = A64_R(3), 57 [BPF_REG_5] = A64_R(4), 58 /* callee saved registers that in-kernel function will preserve */ 59 [BPF_REG_6] = A64_R(19), 60 [BPF_REG_7] = A64_R(20), 61 [BPF_REG_8] = A64_R(21), 62 [BPF_REG_9] = A64_R(22), 63 /* read-only frame pointer to access stack */ 64 [BPF_REG_FP] = A64_R(25), 65 /* temporary registers for BPF JIT */ 66 [TMP_REG_1] = A64_R(10), 67 [TMP_REG_2] = A64_R(11), 68 [TMP_REG_3] = A64_R(12), 69 /* tail_call_cnt_ptr */ 70 [TCCNT_PTR] = A64_R(26), 71 /* temporary register for blinding constants */ 72 [BPF_REG_AX] = A64_R(9), 73 /* callee saved register for private stack pointer */ 74 [PRIVATE_SP] = A64_R(27), 75 /* callee saved register for kern_vm_start address */ 76 [ARENA_VM_START] = A64_R(28), 77 }; 78 79 struct jit_ctx { 80 const struct bpf_prog *prog; 81 int idx; 82 int epilogue_offset; 83 int *offset; 84 int exentry_idx; 85 int nr_used_callee_reg; 86 u8 used_callee_reg[8]; /* r6~r9, fp, arena_vm_start */ 87 __le32 *image; 88 __le32 *ro_image; 89 u32 stack_size; 90 u64 user_vm_start; 91 u64 arena_vm_start; 92 bool fp_used; 93 bool priv_sp_used; 94 bool write; 95 }; 96 97 struct bpf_plt { 98 u32 insn_ldr; /* load target */ 99 u32 insn_br; /* branch to target */ 100 u64 target; /* target value */ 101 }; 102 103 #define PLT_TARGET_SIZE sizeof_field(struct bpf_plt, target) 104 #define PLT_TARGET_OFFSET offsetof(struct bpf_plt, target) 105 106 /* Memory size/value to protect private stack overflow/underflow */ 107 #define PRIV_STACK_GUARD_SZ 16 108 #define PRIV_STACK_GUARD_VAL 0xEB9F12345678eb9fULL 109 110 static inline void emit(const u32 insn, struct jit_ctx *ctx) 111 { 112 if (ctx->image != NULL && ctx->write) 113 ctx->image[ctx->idx] = cpu_to_le32(insn); 114 115 ctx->idx++; 116 } 117 118 static inline void emit_u32_data(const u32 data, struct jit_ctx *ctx) 119 { 120 if (ctx->image != NULL && ctx->write) 121 ctx->image[ctx->idx] = (__force __le32)data; 122 123 ctx->idx++; 124 } 125 126 static inline void emit_a64_mov_i(const int is64, const int reg, 127 const s32 val, struct jit_ctx *ctx) 128 { 129 u16 hi = val >> 16; 130 u16 lo = val & 0xffff; 131 132 if (hi & 0x8000) { 133 if (hi == 0xffff) { 134 emit(A64_MOVN(is64, reg, (u16)~lo, 0), ctx); 135 } else { 136 emit(A64_MOVN(is64, reg, (u16)~hi, 16), ctx); 137 if (lo != 0xffff) 138 emit(A64_MOVK(is64, reg, lo, 0), ctx); 139 } 140 } else { 141 emit(A64_MOVZ(is64, reg, lo, 0), ctx); 142 if (hi) 143 emit(A64_MOVK(is64, reg, hi, 16), ctx); 144 } 145 } 146 147 static int i64_i16_blocks(const u64 val, bool inverse) 148 { 149 return (((val >> 0) & 0xffff) != (inverse ? 0xffff : 0x0000)) + 150 (((val >> 16) & 0xffff) != (inverse ? 0xffff : 0x0000)) + 151 (((val >> 32) & 0xffff) != (inverse ? 0xffff : 0x0000)) + 152 (((val >> 48) & 0xffff) != (inverse ? 0xffff : 0x0000)); 153 } 154 155 static inline void emit_a64_mov_i64(const int reg, const u64 val, 156 struct jit_ctx *ctx) 157 { 158 u64 nrm_tmp = val, rev_tmp = ~val; 159 bool inverse; 160 int shift; 161 162 if (!(nrm_tmp >> 32)) 163 return emit_a64_mov_i(0, reg, (u32)val, ctx); 164 165 inverse = i64_i16_blocks(nrm_tmp, true) < i64_i16_blocks(nrm_tmp, false); 166 shift = max(round_down((inverse ? (fls64(rev_tmp) - 1) : 167 (fls64(nrm_tmp) - 1)), 16), 0); 168 if (inverse) 169 emit(A64_MOVN(1, reg, (rev_tmp >> shift) & 0xffff, shift), ctx); 170 else 171 emit(A64_MOVZ(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx); 172 shift -= 16; 173 while (shift >= 0) { 174 if (((nrm_tmp >> shift) & 0xffff) != (inverse ? 0xffff : 0x0000)) 175 emit(A64_MOVK(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx); 176 shift -= 16; 177 } 178 } 179 180 static inline void emit_bti(u32 insn, struct jit_ctx *ctx) 181 { 182 if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL)) 183 emit(insn, ctx); 184 } 185 186 static inline void emit_kcfi(u32 hash, struct jit_ctx *ctx) 187 { 188 if (IS_ENABLED(CONFIG_CFI)) 189 emit_u32_data(hash, ctx); 190 } 191 192 /* 193 * Kernel addresses in the vmalloc space use at most 48 bits, and the 194 * remaining bits are guaranteed to be 0x1. So we can compose the address 195 * with a fixed length movn/movk/movk sequence. 196 */ 197 static inline void emit_addr_mov_i64(const int reg, const u64 val, 198 struct jit_ctx *ctx) 199 { 200 u64 tmp = val; 201 int shift = 0; 202 203 emit(A64_MOVN(1, reg, ~tmp & 0xffff, shift), ctx); 204 while (shift < 32) { 205 tmp >>= 16; 206 shift += 16; 207 emit(A64_MOVK(1, reg, tmp & 0xffff, shift), ctx); 208 } 209 } 210 211 static bool should_emit_indirect_call(long target, const struct jit_ctx *ctx) 212 { 213 long offset; 214 215 /* when ctx->ro_image is not allocated or the target is unknown, 216 * emit indirect call 217 */ 218 if (!ctx->ro_image || !target) 219 return true; 220 221 offset = target - (long)&ctx->ro_image[ctx->idx]; 222 return offset < -SZ_128M || offset >= SZ_128M; 223 } 224 225 static void emit_direct_call(u64 target, struct jit_ctx *ctx) 226 { 227 u32 insn; 228 unsigned long pc; 229 230 pc = (unsigned long)&ctx->ro_image[ctx->idx]; 231 insn = aarch64_insn_gen_branch_imm(pc, target, AARCH64_INSN_BRANCH_LINK); 232 emit(insn, ctx); 233 } 234 235 static void emit_indirect_call(u64 target, struct jit_ctx *ctx) 236 { 237 u8 tmp; 238 239 tmp = bpf2a64[TMP_REG_1]; 240 emit_addr_mov_i64(tmp, target, ctx); 241 emit(A64_BLR(tmp), ctx); 242 } 243 244 static void emit_call(u64 target, struct jit_ctx *ctx) 245 { 246 if (should_emit_indirect_call((long)target, ctx)) 247 emit_indirect_call(target, ctx); 248 else 249 emit_direct_call(target, ctx); 250 } 251 252 static inline int bpf2a64_offset(int bpf_insn, int off, 253 const struct jit_ctx *ctx) 254 { 255 /* BPF JMP offset is relative to the next instruction */ 256 bpf_insn++; 257 /* 258 * Whereas arm64 branch instructions encode the offset 259 * from the branch itself, so we must subtract 1 from the 260 * instruction offset. 261 */ 262 return ctx->offset[bpf_insn + off] - (ctx->offset[bpf_insn] - 1); 263 } 264 265 static void jit_fill_hole(void *area, unsigned int size) 266 { 267 __le32 *ptr; 268 /* We are guaranteed to have aligned memory. */ 269 for (ptr = area; size >= sizeof(u32); size -= sizeof(u32)) 270 *ptr++ = cpu_to_le32(AARCH64_BREAK_FAULT); 271 } 272 273 int bpf_arch_text_invalidate(void *dst, size_t len) 274 { 275 if (!aarch64_insn_set(dst, AARCH64_BREAK_FAULT, len)) 276 return -EINVAL; 277 278 return 0; 279 } 280 281 static inline int epilogue_offset(const struct jit_ctx *ctx) 282 { 283 int to = ctx->epilogue_offset; 284 int from = ctx->idx; 285 286 return to - from; 287 } 288 289 static bool is_addsub_imm(u32 imm) 290 { 291 /* Either imm12 or shifted imm12. */ 292 return !(imm & ~0xfff) || !(imm & ~0xfff000); 293 } 294 295 static inline void emit_a64_add_i(const bool is64, const int dst, const int src, 296 const int tmp, const s32 imm, struct jit_ctx *ctx) 297 { 298 if (is_addsub_imm(imm)) { 299 emit(A64_ADD_I(is64, dst, src, imm), ctx); 300 } else if (is_addsub_imm(-(u32)imm)) { 301 emit(A64_SUB_I(is64, dst, src, -imm), ctx); 302 } else { 303 emit_a64_mov_i(is64, tmp, imm, ctx); 304 emit(A64_ADD(is64, dst, src, tmp), ctx); 305 } 306 } 307 308 /* 309 * There are 3 types of AArch64 LDR/STR (immediate) instruction: 310 * Post-index, Pre-index, Unsigned offset. 311 * 312 * For BPF ldr/str, the "unsigned offset" type is sufficient. 313 * 314 * "Unsigned offset" type LDR(immediate) format: 315 * 316 * 3 2 1 0 317 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 318 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 319 * |x x|1 1 1 0 0 1 0 1| imm12 | Rn | Rt | 320 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 321 * scale 322 * 323 * "Unsigned offset" type STR(immediate) format: 324 * 3 2 1 0 325 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 326 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 327 * |x x|1 1 1 0 0 1 0 0| imm12 | Rn | Rt | 328 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 329 * scale 330 * 331 * The offset is calculated from imm12 and scale in the following way: 332 * 333 * offset = (u64)imm12 << scale 334 */ 335 static bool is_lsi_offset(int offset, int scale) 336 { 337 if (offset < 0) 338 return false; 339 340 if (offset > (0xFFF << scale)) 341 return false; 342 343 if (offset & ((1 << scale) - 1)) 344 return false; 345 346 return true; 347 } 348 349 /* generated main prog prologue: 350 * bti c // if CONFIG_ARM64_BTI_KERNEL 351 * mov x9, lr 352 * nop // POKE_OFFSET 353 * paciasp // if CONFIG_ARM64_PTR_AUTH_KERNEL 354 * stp x29, lr, [sp, #-16]! 355 * mov x29, sp 356 * stp xzr, x26, [sp, #-16]! 357 * mov x26, sp 358 * // PROLOGUE_OFFSET 359 * // save callee-saved registers 360 */ 361 static void prepare_bpf_tail_call_cnt(struct jit_ctx *ctx) 362 { 363 const bool is_main_prog = !bpf_is_subprog(ctx->prog); 364 const u8 ptr = bpf2a64[TCCNT_PTR]; 365 366 if (is_main_prog) { 367 /* Initialize tail_call_cnt. */ 368 emit(A64_PUSH(A64_ZR, ptr, A64_SP), ctx); 369 emit(A64_MOV(1, ptr, A64_SP), ctx); 370 } else 371 emit(A64_PUSH(ptr, ptr, A64_SP), ctx); 372 } 373 374 static void find_used_callee_regs(struct jit_ctx *ctx) 375 { 376 int i; 377 const struct bpf_prog *prog = ctx->prog; 378 const struct bpf_insn *insn = &prog->insnsi[0]; 379 int reg_used = 0; 380 381 for (i = 0; i < prog->len; i++, insn++) { 382 if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6) 383 reg_used |= 1; 384 385 if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7) 386 reg_used |= 2; 387 388 if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8) 389 reg_used |= 4; 390 391 if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9) 392 reg_used |= 8; 393 394 if (insn->dst_reg == BPF_REG_FP || insn->src_reg == BPF_REG_FP) { 395 ctx->fp_used = true; 396 reg_used |= 16; 397 } 398 } 399 400 i = 0; 401 if (reg_used & 1) 402 ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_6]; 403 404 if (reg_used & 2) 405 ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_7]; 406 407 if (reg_used & 4) 408 ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_8]; 409 410 if (reg_used & 8) 411 ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_9]; 412 413 if (reg_used & 16) { 414 ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_FP]; 415 if (ctx->priv_sp_used) 416 ctx->used_callee_reg[i++] = bpf2a64[PRIVATE_SP]; 417 } 418 419 if (ctx->arena_vm_start) 420 ctx->used_callee_reg[i++] = bpf2a64[ARENA_VM_START]; 421 422 ctx->nr_used_callee_reg = i; 423 } 424 425 /* Save callee-saved registers */ 426 static void push_callee_regs(struct jit_ctx *ctx) 427 { 428 int reg1, reg2, i; 429 430 /* 431 * Program acting as exception boundary should save all ARM64 432 * Callee-saved registers as the exception callback needs to recover 433 * all ARM64 Callee-saved registers in its epilogue. 434 */ 435 if (ctx->prog->aux->exception_boundary) { 436 emit(A64_PUSH(A64_R(19), A64_R(20), A64_SP), ctx); 437 emit(A64_PUSH(A64_R(21), A64_R(22), A64_SP), ctx); 438 emit(A64_PUSH(A64_R(23), A64_R(24), A64_SP), ctx); 439 emit(A64_PUSH(A64_R(25), A64_R(26), A64_SP), ctx); 440 emit(A64_PUSH(A64_R(27), A64_R(28), A64_SP), ctx); 441 ctx->fp_used = true; 442 } else { 443 find_used_callee_regs(ctx); 444 for (i = 0; i + 1 < ctx->nr_used_callee_reg; i += 2) { 445 reg1 = ctx->used_callee_reg[i]; 446 reg2 = ctx->used_callee_reg[i + 1]; 447 emit(A64_PUSH(reg1, reg2, A64_SP), ctx); 448 } 449 if (i < ctx->nr_used_callee_reg) { 450 reg1 = ctx->used_callee_reg[i]; 451 /* keep SP 16-byte aligned */ 452 emit(A64_PUSH(reg1, A64_ZR, A64_SP), ctx); 453 } 454 } 455 } 456 457 /* Restore callee-saved registers */ 458 static void pop_callee_regs(struct jit_ctx *ctx) 459 { 460 struct bpf_prog_aux *aux = ctx->prog->aux; 461 int reg1, reg2, i; 462 463 /* 464 * Program acting as exception boundary pushes R23 and R24 in addition 465 * to BPF callee-saved registers. Exception callback uses the boundary 466 * program's stack frame, so recover these extra registers in the above 467 * two cases. 468 */ 469 if (aux->exception_boundary || aux->exception_cb) { 470 emit(A64_POP(A64_R(27), A64_R(28), A64_SP), ctx); 471 emit(A64_POP(A64_R(25), A64_R(26), A64_SP), ctx); 472 emit(A64_POP(A64_R(23), A64_R(24), A64_SP), ctx); 473 emit(A64_POP(A64_R(21), A64_R(22), A64_SP), ctx); 474 emit(A64_POP(A64_R(19), A64_R(20), A64_SP), ctx); 475 } else { 476 i = ctx->nr_used_callee_reg - 1; 477 if (ctx->nr_used_callee_reg % 2 != 0) { 478 reg1 = ctx->used_callee_reg[i]; 479 emit(A64_POP(reg1, A64_ZR, A64_SP), ctx); 480 i--; 481 } 482 while (i > 0) { 483 reg1 = ctx->used_callee_reg[i - 1]; 484 reg2 = ctx->used_callee_reg[i]; 485 emit(A64_POP(reg1, reg2, A64_SP), ctx); 486 i -= 2; 487 } 488 } 489 } 490 491 static void emit_percpu_ptr(const u8 dst_reg, void __percpu *ptr, 492 struct jit_ctx *ctx) 493 { 494 const u8 tmp = bpf2a64[TMP_REG_1]; 495 496 emit_a64_mov_i64(dst_reg, (__force const u64)ptr, ctx); 497 if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN)) 498 emit(A64_MRS_TPIDR_EL2(tmp), ctx); 499 else 500 emit(A64_MRS_TPIDR_EL1(tmp), ctx); 501 emit(A64_ADD(1, dst_reg, dst_reg, tmp), ctx); 502 } 503 504 #define BTI_INSNS (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) ? 1 : 0) 505 #define PAC_INSNS (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) ? 1 : 0) 506 507 /* Offset of nop instruction in bpf prog entry to be poked */ 508 #define POKE_OFFSET (BTI_INSNS + 1) 509 510 /* Tail call offset to jump into */ 511 #define PROLOGUE_OFFSET (BTI_INSNS + 2 + PAC_INSNS + 4) 512 513 static int build_prologue(struct jit_ctx *ctx, bool ebpf_from_cbpf) 514 { 515 const struct bpf_prog *prog = ctx->prog; 516 const bool is_main_prog = !bpf_is_subprog(prog); 517 const u8 fp = bpf2a64[BPF_REG_FP]; 518 const u8 arena_vm_base = bpf2a64[ARENA_VM_START]; 519 const u8 priv_sp = bpf2a64[PRIVATE_SP]; 520 void __percpu *priv_stack_ptr; 521 int cur_offset; 522 523 /* 524 * BPF prog stack layout 525 * 526 * high 527 * original A64_SP => 0:+-----+ BPF prologue 528 * |FP/LR| 529 * current A64_FP => -16:+-----+ 530 * | ... | callee saved registers 531 * BPF fp register => -64:+-----+ <= (BPF_FP) 532 * | | 533 * | ... | BPF prog stack 534 * | | 535 * +-----+ <= (BPF_FP - prog->aux->stack_depth) 536 * |RSVD | padding 537 * current A64_SP => +-----+ <= (BPF_FP - ctx->stack_size) 538 * | | 539 * | ... | Function call stack 540 * | | 541 * +-----+ 542 * low 543 * 544 */ 545 546 emit_kcfi(is_main_prog ? cfi_bpf_hash : cfi_bpf_subprog_hash, ctx); 547 const int idx0 = ctx->idx; 548 549 /* bpf function may be invoked by 3 instruction types: 550 * 1. bl, attached via freplace to bpf prog via short jump 551 * 2. br, attached via freplace to bpf prog via long jump 552 * 3. blr, working as a function pointer, used by emit_call. 553 * So BTI_JC should used here to support both br and blr. 554 */ 555 emit_bti(A64_BTI_JC, ctx); 556 557 emit(A64_MOV(1, A64_R(9), A64_LR), ctx); 558 emit(A64_NOP, ctx); 559 560 if (!prog->aux->exception_cb) { 561 /* Sign lr */ 562 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL)) 563 emit(A64_PACIASP, ctx); 564 565 /* Save FP and LR registers to stay align with ARM64 AAPCS */ 566 emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx); 567 emit(A64_MOV(1, A64_FP, A64_SP), ctx); 568 569 prepare_bpf_tail_call_cnt(ctx); 570 571 if (!ebpf_from_cbpf && is_main_prog) { 572 cur_offset = ctx->idx - idx0; 573 if (cur_offset != PROLOGUE_OFFSET) { 574 pr_err_once("PROLOGUE_OFFSET = %d, expected %d!\n", 575 cur_offset, PROLOGUE_OFFSET); 576 return -1; 577 } 578 /* BTI landing pad for the tail call, done with a BR */ 579 emit_bti(A64_BTI_J, ctx); 580 } 581 push_callee_regs(ctx); 582 } else { 583 /* 584 * Exception callback receives FP of Main Program as third 585 * parameter 586 */ 587 emit(A64_MOV(1, A64_FP, A64_R(2)), ctx); 588 /* 589 * Main Program already pushed the frame record and the 590 * callee-saved registers. The exception callback will not push 591 * anything and re-use the main program's stack. 592 * 593 * 12 registers are on the stack 594 */ 595 emit(A64_SUB_I(1, A64_SP, A64_FP, 96), ctx); 596 } 597 598 /* Stack must be multiples of 16B */ 599 ctx->stack_size = round_up(prog->aux->stack_depth, 16); 600 601 if (ctx->fp_used) { 602 if (ctx->priv_sp_used) { 603 /* Set up private stack pointer */ 604 priv_stack_ptr = prog->aux->priv_stack_ptr + PRIV_STACK_GUARD_SZ; 605 emit_percpu_ptr(priv_sp, priv_stack_ptr, ctx); 606 emit(A64_ADD_I(1, fp, priv_sp, ctx->stack_size), ctx); 607 } else { 608 /* Set up BPF prog stack base register */ 609 emit(A64_MOV(1, fp, A64_SP), ctx); 610 } 611 } 612 613 /* Set up function call stack */ 614 if (ctx->stack_size && !ctx->priv_sp_used) 615 emit(A64_SUB_I(1, A64_SP, A64_SP, ctx->stack_size), ctx); 616 617 if (ctx->arena_vm_start) 618 emit_a64_mov_i64(arena_vm_base, ctx->arena_vm_start, ctx); 619 620 return 0; 621 } 622 623 static int emit_bpf_tail_call(struct jit_ctx *ctx) 624 { 625 /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */ 626 const u8 r2 = bpf2a64[BPF_REG_2]; 627 const u8 r3 = bpf2a64[BPF_REG_3]; 628 629 const u8 tmp = bpf2a64[TMP_REG_1]; 630 const u8 prg = bpf2a64[TMP_REG_2]; 631 const u8 tcc = bpf2a64[TMP_REG_3]; 632 const u8 ptr = bpf2a64[TCCNT_PTR]; 633 size_t off; 634 __le32 *branch1 = NULL; 635 __le32 *branch2 = NULL; 636 __le32 *branch3 = NULL; 637 638 /* if (index >= array->map.max_entries) 639 * goto out; 640 */ 641 off = offsetof(struct bpf_array, map.max_entries); 642 emit_a64_mov_i64(tmp, off, ctx); 643 emit(A64_LDR32(tmp, r2, tmp), ctx); 644 emit(A64_MOV(0, r3, r3), ctx); 645 emit(A64_CMP(0, r3, tmp), ctx); 646 branch1 = ctx->image + ctx->idx; 647 emit(A64_NOP, ctx); 648 649 /* 650 * if ((*tail_call_cnt_ptr) >= MAX_TAIL_CALL_CNT) 651 * goto out; 652 */ 653 emit_a64_mov_i64(tmp, MAX_TAIL_CALL_CNT, ctx); 654 emit(A64_LDR64I(tcc, ptr, 0), ctx); 655 emit(A64_CMP(1, tcc, tmp), ctx); 656 branch2 = ctx->image + ctx->idx; 657 emit(A64_NOP, ctx); 658 659 /* (*tail_call_cnt_ptr)++; */ 660 emit(A64_ADD_I(1, tcc, tcc, 1), ctx); 661 662 /* prog = array->ptrs[index]; 663 * if (prog == NULL) 664 * goto out; 665 */ 666 off = offsetof(struct bpf_array, ptrs); 667 emit_a64_mov_i64(tmp, off, ctx); 668 emit(A64_ADD(1, tmp, r2, tmp), ctx); 669 emit(A64_LSL(1, prg, r3, 3), ctx); 670 emit(A64_LDR64(prg, tmp, prg), ctx); 671 branch3 = ctx->image + ctx->idx; 672 emit(A64_NOP, ctx); 673 674 /* Update tail_call_cnt if the slot is populated. */ 675 emit(A64_STR64I(tcc, ptr, 0), ctx); 676 677 /* restore SP */ 678 if (ctx->stack_size && !ctx->priv_sp_used) 679 emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx); 680 681 pop_callee_regs(ctx); 682 683 /* goto *(prog->bpf_func + prologue_offset); */ 684 off = offsetof(struct bpf_prog, bpf_func); 685 emit_a64_mov_i64(tmp, off, ctx); 686 emit(A64_LDR64(tmp, prg, tmp), ctx); 687 emit(A64_ADD_I(1, tmp, tmp, sizeof(u32) * PROLOGUE_OFFSET), ctx); 688 emit(A64_BR(tmp), ctx); 689 690 if (ctx->image) { 691 off = &ctx->image[ctx->idx] - branch1; 692 *branch1 = cpu_to_le32(A64_B_(A64_COND_CS, off)); 693 694 off = &ctx->image[ctx->idx] - branch2; 695 *branch2 = cpu_to_le32(A64_B_(A64_COND_CS, off)); 696 697 off = &ctx->image[ctx->idx] - branch3; 698 *branch3 = cpu_to_le32(A64_CBZ(1, prg, off)); 699 } 700 701 return 0; 702 } 703 704 static int emit_atomic_ld_st(const struct bpf_insn *insn, struct jit_ctx *ctx) 705 { 706 const s32 imm = insn->imm; 707 const s16 off = insn->off; 708 const u8 code = insn->code; 709 const bool arena = BPF_MODE(code) == BPF_PROBE_ATOMIC; 710 const u8 arena_vm_base = bpf2a64[ARENA_VM_START]; 711 const u8 dst = bpf2a64[insn->dst_reg]; 712 const u8 src = bpf2a64[insn->src_reg]; 713 const u8 tmp = bpf2a64[TMP_REG_1]; 714 u8 reg; 715 716 switch (imm) { 717 case BPF_LOAD_ACQ: 718 reg = src; 719 break; 720 case BPF_STORE_REL: 721 reg = dst; 722 break; 723 default: 724 pr_err_once("unknown atomic load/store op code %02x\n", imm); 725 return -EINVAL; 726 } 727 728 if (off) { 729 emit_a64_add_i(1, tmp, reg, tmp, off, ctx); 730 reg = tmp; 731 } 732 if (arena) { 733 emit(A64_ADD(1, tmp, reg, arena_vm_base), ctx); 734 reg = tmp; 735 } 736 737 switch (imm) { 738 case BPF_LOAD_ACQ: 739 switch (BPF_SIZE(code)) { 740 case BPF_B: 741 emit(A64_LDARB(dst, reg), ctx); 742 break; 743 case BPF_H: 744 emit(A64_LDARH(dst, reg), ctx); 745 break; 746 case BPF_W: 747 emit(A64_LDAR32(dst, reg), ctx); 748 break; 749 case BPF_DW: 750 emit(A64_LDAR64(dst, reg), ctx); 751 break; 752 } 753 break; 754 case BPF_STORE_REL: 755 switch (BPF_SIZE(code)) { 756 case BPF_B: 757 emit(A64_STLRB(src, reg), ctx); 758 break; 759 case BPF_H: 760 emit(A64_STLRH(src, reg), ctx); 761 break; 762 case BPF_W: 763 emit(A64_STLR32(src, reg), ctx); 764 break; 765 case BPF_DW: 766 emit(A64_STLR64(src, reg), ctx); 767 break; 768 } 769 break; 770 default: 771 pr_err_once("unexpected atomic load/store op code %02x\n", 772 imm); 773 return -EINVAL; 774 } 775 776 return 0; 777 } 778 779 static int emit_lse_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx) 780 { 781 const u8 code = insn->code; 782 const u8 arena_vm_base = bpf2a64[ARENA_VM_START]; 783 const u8 dst = bpf2a64[insn->dst_reg]; 784 const u8 src = bpf2a64[insn->src_reg]; 785 const u8 tmp = bpf2a64[TMP_REG_1]; 786 const u8 tmp2 = bpf2a64[TMP_REG_2]; 787 const bool isdw = BPF_SIZE(code) == BPF_DW; 788 const bool arena = BPF_MODE(code) == BPF_PROBE_ATOMIC; 789 const s16 off = insn->off; 790 u8 reg = dst; 791 792 if (off) { 793 emit_a64_add_i(1, tmp, reg, tmp, off, ctx); 794 reg = tmp; 795 } 796 if (arena) { 797 emit(A64_ADD(1, tmp, reg, arena_vm_base), ctx); 798 reg = tmp; 799 } 800 801 switch (insn->imm) { 802 /* lock *(u32/u64 *)(dst_reg + off) <op>= src_reg */ 803 case BPF_ADD: 804 emit(A64_STADD(isdw, reg, src), ctx); 805 break; 806 case BPF_AND: 807 emit(A64_MVN(isdw, tmp2, src), ctx); 808 emit(A64_STCLR(isdw, reg, tmp2), ctx); 809 break; 810 case BPF_OR: 811 emit(A64_STSET(isdw, reg, src), ctx); 812 break; 813 case BPF_XOR: 814 emit(A64_STEOR(isdw, reg, src), ctx); 815 break; 816 /* src_reg = atomic_fetch_<op>(dst_reg + off, src_reg) */ 817 case BPF_ADD | BPF_FETCH: 818 emit(A64_LDADDAL(isdw, src, reg, src), ctx); 819 break; 820 case BPF_AND | BPF_FETCH: 821 emit(A64_MVN(isdw, tmp2, src), ctx); 822 emit(A64_LDCLRAL(isdw, src, reg, tmp2), ctx); 823 break; 824 case BPF_OR | BPF_FETCH: 825 emit(A64_LDSETAL(isdw, src, reg, src), ctx); 826 break; 827 case BPF_XOR | BPF_FETCH: 828 emit(A64_LDEORAL(isdw, src, reg, src), ctx); 829 break; 830 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */ 831 case BPF_XCHG: 832 emit(A64_SWPAL(isdw, src, reg, src), ctx); 833 break; 834 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */ 835 case BPF_CMPXCHG: 836 emit(A64_CASAL(isdw, src, reg, bpf2a64[BPF_REG_0]), ctx); 837 break; 838 default: 839 pr_err_once("unknown atomic op code %02x\n", insn->imm); 840 return -EINVAL; 841 } 842 843 return 0; 844 } 845 846 static int emit_ll_sc_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx) 847 { 848 const u8 code = insn->code; 849 const u8 dst = bpf2a64[insn->dst_reg]; 850 const u8 src = bpf2a64[insn->src_reg]; 851 const u8 tmp = bpf2a64[TMP_REG_1]; 852 const u8 tmp2 = bpf2a64[TMP_REG_2]; 853 const u8 tmp3 = bpf2a64[TMP_REG_3]; 854 const int i = insn - ctx->prog->insnsi; 855 const s32 imm = insn->imm; 856 const s16 off = insn->off; 857 const bool isdw = BPF_SIZE(code) == BPF_DW; 858 u8 reg = dst; 859 s32 jmp_offset; 860 861 if (BPF_MODE(code) == BPF_PROBE_ATOMIC) { 862 /* ll_sc based atomics don't support unsafe pointers yet. */ 863 pr_err_once("unknown atomic opcode %02x\n", code); 864 return -EINVAL; 865 } 866 867 if (off) { 868 emit_a64_add_i(1, tmp, reg, tmp, off, ctx); 869 reg = tmp; 870 } 871 872 if (imm == BPF_ADD || imm == BPF_AND || 873 imm == BPF_OR || imm == BPF_XOR) { 874 /* lock *(u32/u64 *)(dst_reg + off) <op>= src_reg */ 875 emit(A64_LDXR(isdw, tmp2, reg), ctx); 876 if (imm == BPF_ADD) 877 emit(A64_ADD(isdw, tmp2, tmp2, src), ctx); 878 else if (imm == BPF_AND) 879 emit(A64_AND(isdw, tmp2, tmp2, src), ctx); 880 else if (imm == BPF_OR) 881 emit(A64_ORR(isdw, tmp2, tmp2, src), ctx); 882 else 883 emit(A64_EOR(isdw, tmp2, tmp2, src), ctx); 884 emit(A64_STXR(isdw, tmp2, reg, tmp3), ctx); 885 jmp_offset = -3; 886 check_imm19(jmp_offset); 887 emit(A64_CBNZ(0, tmp3, jmp_offset), ctx); 888 } else if (imm == (BPF_ADD | BPF_FETCH) || 889 imm == (BPF_AND | BPF_FETCH) || 890 imm == (BPF_OR | BPF_FETCH) || 891 imm == (BPF_XOR | BPF_FETCH)) { 892 /* src_reg = atomic_fetch_<op>(dst_reg + off, src_reg) */ 893 const u8 ax = bpf2a64[BPF_REG_AX]; 894 895 emit(A64_MOV(isdw, ax, src), ctx); 896 emit(A64_LDXR(isdw, src, reg), ctx); 897 if (imm == (BPF_ADD | BPF_FETCH)) 898 emit(A64_ADD(isdw, tmp2, src, ax), ctx); 899 else if (imm == (BPF_AND | BPF_FETCH)) 900 emit(A64_AND(isdw, tmp2, src, ax), ctx); 901 else if (imm == (BPF_OR | BPF_FETCH)) 902 emit(A64_ORR(isdw, tmp2, src, ax), ctx); 903 else 904 emit(A64_EOR(isdw, tmp2, src, ax), ctx); 905 emit(A64_STLXR(isdw, tmp2, reg, tmp3), ctx); 906 jmp_offset = -3; 907 check_imm19(jmp_offset); 908 emit(A64_CBNZ(0, tmp3, jmp_offset), ctx); 909 emit(A64_DMB_ISH, ctx); 910 } else if (imm == BPF_XCHG) { 911 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */ 912 emit(A64_MOV(isdw, tmp2, src), ctx); 913 emit(A64_LDXR(isdw, src, reg), ctx); 914 emit(A64_STLXR(isdw, tmp2, reg, tmp3), ctx); 915 jmp_offset = -2; 916 check_imm19(jmp_offset); 917 emit(A64_CBNZ(0, tmp3, jmp_offset), ctx); 918 emit(A64_DMB_ISH, ctx); 919 } else if (imm == BPF_CMPXCHG) { 920 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */ 921 const u8 r0 = bpf2a64[BPF_REG_0]; 922 923 emit(A64_MOV(isdw, tmp2, r0), ctx); 924 emit(A64_LDXR(isdw, r0, reg), ctx); 925 emit(A64_EOR(isdw, tmp3, r0, tmp2), ctx); 926 jmp_offset = 4; 927 check_imm19(jmp_offset); 928 emit(A64_CBNZ(isdw, tmp3, jmp_offset), ctx); 929 emit(A64_STLXR(isdw, src, reg, tmp3), ctx); 930 jmp_offset = -4; 931 check_imm19(jmp_offset); 932 emit(A64_CBNZ(0, tmp3, jmp_offset), ctx); 933 emit(A64_DMB_ISH, ctx); 934 } else { 935 pr_err_once("unknown atomic op code %02x\n", imm); 936 return -EINVAL; 937 } 938 939 return 0; 940 } 941 942 void dummy_tramp(void); 943 944 asm ( 945 " .pushsection .text, \"ax\", @progbits\n" 946 " .global dummy_tramp\n" 947 " .type dummy_tramp, %function\n" 948 "dummy_tramp:" 949 #if IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) 950 " bti j\n" /* dummy_tramp is called via "br x10" */ 951 #endif 952 " mov x10, x30\n" 953 " mov x30, x9\n" 954 " ret x10\n" 955 " .size dummy_tramp, .-dummy_tramp\n" 956 " .popsection\n" 957 ); 958 959 /* build a plt initialized like this: 960 * 961 * plt: 962 * ldr tmp, target 963 * br tmp 964 * target: 965 * .quad dummy_tramp 966 * 967 * when a long jump trampoline is attached, target is filled with the 968 * trampoline address, and when the trampoline is removed, target is 969 * restored to dummy_tramp address. 970 */ 971 static void build_plt(struct jit_ctx *ctx) 972 { 973 const u8 tmp = bpf2a64[TMP_REG_1]; 974 struct bpf_plt *plt = NULL; 975 976 /* make sure target is 64-bit aligned */ 977 if ((ctx->idx + PLT_TARGET_OFFSET / AARCH64_INSN_SIZE) % 2) 978 emit(A64_NOP, ctx); 979 980 plt = (struct bpf_plt *)(ctx->image + ctx->idx); 981 /* plt is called via bl, no BTI needed here */ 982 emit(A64_LDR64LIT(tmp, 2 * AARCH64_INSN_SIZE), ctx); 983 emit(A64_BR(tmp), ctx); 984 985 if (ctx->image) 986 plt->target = (u64)&dummy_tramp; 987 } 988 989 /* Clobbers BPF registers 1-4, aka x0-x3 */ 990 static void __maybe_unused build_bhb_mitigation(struct jit_ctx *ctx) 991 { 992 const u8 r1 = bpf2a64[BPF_REG_1]; /* aka x0 */ 993 u8 k = get_spectre_bhb_loop_value(); 994 995 if (!IS_ENABLED(CONFIG_MITIGATE_SPECTRE_BRANCH_HISTORY) || 996 cpu_mitigations_off() || __nospectre_bhb || 997 arm64_get_spectre_v2_state() == SPECTRE_VULNERABLE) 998 return; 999 1000 if (ns_capable_noaudit(&init_user_ns, CAP_SYS_ADMIN)) 1001 return; 1002 1003 if (supports_clearbhb(SCOPE_SYSTEM)) { 1004 emit(aarch64_insn_gen_hint(AARCH64_INSN_HINT_CLEARBHB), ctx); 1005 return; 1006 } 1007 1008 if (k) { 1009 emit_a64_mov_i64(r1, k, ctx); 1010 emit(A64_B(1), ctx); 1011 emit(A64_SUBS_I(true, r1, r1, 1), ctx); 1012 emit(A64_B_(A64_COND_NE, -2), ctx); 1013 emit(aarch64_insn_gen_dsb(AARCH64_INSN_MB_ISH), ctx); 1014 emit(aarch64_insn_get_isb_value(), ctx); 1015 } 1016 1017 if (is_spectre_bhb_fw_mitigated()) { 1018 emit(A64_ORR_I(false, r1, AARCH64_INSN_REG_ZR, 1019 ARM_SMCCC_ARCH_WORKAROUND_3), ctx); 1020 switch (arm_smccc_1_1_get_conduit()) { 1021 case SMCCC_CONDUIT_HVC: 1022 emit(aarch64_insn_get_hvc_value(), ctx); 1023 break; 1024 case SMCCC_CONDUIT_SMC: 1025 emit(aarch64_insn_get_smc_value(), ctx); 1026 break; 1027 default: 1028 pr_err_once("Firmware mitigation enabled with unknown conduit\n"); 1029 } 1030 } 1031 } 1032 1033 static void build_epilogue(struct jit_ctx *ctx, bool was_classic) 1034 { 1035 const u8 r0 = bpf2a64[BPF_REG_0]; 1036 const u8 ptr = bpf2a64[TCCNT_PTR]; 1037 1038 /* We're done with BPF stack */ 1039 if (ctx->stack_size && !ctx->priv_sp_used) 1040 emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx); 1041 1042 pop_callee_regs(ctx); 1043 1044 emit(A64_POP(A64_ZR, ptr, A64_SP), ctx); 1045 1046 if (was_classic) 1047 build_bhb_mitigation(ctx); 1048 1049 /* Restore FP/LR registers */ 1050 emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx); 1051 1052 /* Move the return value from bpf:r0 (aka x7) to x0 */ 1053 emit(A64_MOV(1, A64_R(0), r0), ctx); 1054 1055 /* Authenticate lr */ 1056 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL)) 1057 emit(A64_AUTIASP, ctx); 1058 1059 emit(A64_RET(A64_LR), ctx); 1060 } 1061 1062 /* 1063 * Metadata encoding for exception handling in JITed code. 1064 * 1065 * Format of `fixup` field in `struct exception_table_entry`: 1066 * 1067 * Bit layout of `fixup` (32-bit): 1068 * 1069 * +-----------+--------+-----------+-----------+----------+ 1070 * | 31-27 | 26-22 | 21 | 20-16 | 15-0 | 1071 * | | | | | | 1072 * | FIXUP_REG | Unused | ARENA_ACC | ARENA_REG | OFFSET | 1073 * +-----------+--------+-----------+-----------+----------+ 1074 * 1075 * - OFFSET (16 bits): Offset used to compute address for Load/Store instruction. 1076 * - ARENA_REG (5 bits): Register that is used to calculate the address for load/store when 1077 * accessing the arena region. 1078 * - ARENA_ACCESS (1 bit): This bit is set when the faulting instruction accessed the arena region. 1079 * - FIXUP_REG (5 bits): Destination register for the load instruction (cleared on fault) or set to 1080 * DONT_CLEAR if it is a store instruction. 1081 */ 1082 1083 #define BPF_FIXUP_OFFSET_MASK GENMASK(15, 0) 1084 #define BPF_FIXUP_ARENA_REG_MASK GENMASK(20, 16) 1085 #define BPF_ARENA_ACCESS BIT(21) 1086 #define BPF_FIXUP_REG_MASK GENMASK(31, 27) 1087 #define DONT_CLEAR 5 /* Unused ARM64 register from BPF's POV */ 1088 1089 bool ex_handler_bpf(const struct exception_table_entry *ex, 1090 struct pt_regs *regs) 1091 { 1092 int dst_reg = FIELD_GET(BPF_FIXUP_REG_MASK, ex->fixup); 1093 s16 off = FIELD_GET(BPF_FIXUP_OFFSET_MASK, ex->fixup); 1094 int arena_reg = FIELD_GET(BPF_FIXUP_ARENA_REG_MASK, ex->fixup); 1095 bool is_arena = !!(ex->fixup & BPF_ARENA_ACCESS); 1096 bool is_write = (dst_reg == DONT_CLEAR); 1097 unsigned long addr; 1098 1099 if (is_arena) { 1100 addr = regs->regs[arena_reg] + off; 1101 bpf_prog_report_arena_violation(is_write, addr, regs->pc); 1102 } 1103 1104 if (dst_reg != DONT_CLEAR) 1105 regs->regs[dst_reg] = 0; 1106 /* Skip the faulting instruction */ 1107 regs->pc += AARCH64_INSN_SIZE; 1108 1109 return true; 1110 } 1111 1112 /* For accesses to BTF pointers, add an entry to the exception table */ 1113 static int add_exception_handler(const struct bpf_insn *insn, 1114 struct jit_ctx *ctx, 1115 int dst_reg) 1116 { 1117 off_t ins_offset; 1118 s16 off = insn->off; 1119 bool is_arena; 1120 int arena_reg; 1121 unsigned long pc; 1122 struct exception_table_entry *ex; 1123 1124 if (!ctx->image) 1125 /* First pass */ 1126 return 0; 1127 1128 if (BPF_MODE(insn->code) != BPF_PROBE_MEM && 1129 BPF_MODE(insn->code) != BPF_PROBE_MEMSX && 1130 BPF_MODE(insn->code) != BPF_PROBE_MEM32 && 1131 BPF_MODE(insn->code) != BPF_PROBE_MEM32SX && 1132 BPF_MODE(insn->code) != BPF_PROBE_ATOMIC) 1133 return 0; 1134 1135 is_arena = (BPF_MODE(insn->code) == BPF_PROBE_MEM32) || 1136 (BPF_MODE(insn->code) == BPF_PROBE_MEM32SX) || 1137 (BPF_MODE(insn->code) == BPF_PROBE_ATOMIC); 1138 1139 if (!ctx->prog->aux->extable || 1140 WARN_ON_ONCE(ctx->exentry_idx >= ctx->prog->aux->num_exentries)) 1141 return -EINVAL; 1142 1143 ex = &ctx->prog->aux->extable[ctx->exentry_idx]; 1144 pc = (unsigned long)&ctx->ro_image[ctx->idx - 1]; 1145 1146 /* 1147 * This is the relative offset of the instruction that may fault from 1148 * the exception table itself. This will be written to the exception 1149 * table and if this instruction faults, the destination register will 1150 * be set to '0' and the execution will jump to the next instruction. 1151 */ 1152 ins_offset = pc - (long)&ex->insn; 1153 if (WARN_ON_ONCE(ins_offset >= 0 || ins_offset < INT_MIN)) 1154 return -ERANGE; 1155 1156 /* 1157 * The offsets above have been calculated using the RO buffer but we 1158 * need to use the R/W buffer for writes. 1159 * switch ex to rw buffer for writing. 1160 */ 1161 ex = (void *)ctx->image + ((void *)ex - (void *)ctx->ro_image); 1162 1163 ex->insn = ins_offset; 1164 1165 if (BPF_CLASS(insn->code) != BPF_LDX) 1166 dst_reg = DONT_CLEAR; 1167 1168 ex->fixup = FIELD_PREP(BPF_FIXUP_REG_MASK, dst_reg); 1169 1170 if (is_arena) { 1171 ex->fixup |= BPF_ARENA_ACCESS; 1172 /* 1173 * insn->src_reg/dst_reg holds the address in the arena region with upper 32-bits 1174 * being zero because of a preceding addr_space_cast(r<n>, 0x0, 0x1) instruction. 1175 * This address is adjusted with the addition of arena_vm_start (see the 1176 * implementation of BPF_PROBE_MEM32 and BPF_PROBE_ATOMIC) before being used for the 1177 * memory access. Pass the reg holding the unmodified 32-bit address to 1178 * ex_handler_bpf. 1179 */ 1180 if (BPF_CLASS(insn->code) == BPF_LDX) 1181 arena_reg = bpf2a64[insn->src_reg]; 1182 else 1183 arena_reg = bpf2a64[insn->dst_reg]; 1184 1185 ex->fixup |= FIELD_PREP(BPF_FIXUP_OFFSET_MASK, off) | 1186 FIELD_PREP(BPF_FIXUP_ARENA_REG_MASK, arena_reg); 1187 } 1188 1189 ex->type = EX_TYPE_BPF; 1190 1191 ctx->exentry_idx++; 1192 return 0; 1193 } 1194 1195 /* JITs an eBPF instruction. 1196 * Returns: 1197 * 0 - successfully JITed an 8-byte eBPF instruction. 1198 * >0 - successfully JITed a 16-byte eBPF instruction. 1199 * <0 - failed to JIT. 1200 */ 1201 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx, 1202 bool extra_pass) 1203 { 1204 const u8 code = insn->code; 1205 u8 dst = bpf2a64[insn->dst_reg]; 1206 u8 src = bpf2a64[insn->src_reg]; 1207 const u8 tmp = bpf2a64[TMP_REG_1]; 1208 const u8 tmp2 = bpf2a64[TMP_REG_2]; 1209 const u8 tmp3 = bpf2a64[TMP_REG_3]; 1210 const u8 fp = bpf2a64[BPF_REG_FP]; 1211 const u8 arena_vm_base = bpf2a64[ARENA_VM_START]; 1212 const u8 priv_sp = bpf2a64[PRIVATE_SP]; 1213 const s16 off = insn->off; 1214 const s32 imm = insn->imm; 1215 const int i = insn - ctx->prog->insnsi; 1216 const bool is64 = BPF_CLASS(code) == BPF_ALU64 || 1217 BPF_CLASS(code) == BPF_JMP; 1218 u8 jmp_cond; 1219 s32 jmp_offset; 1220 u32 a64_insn; 1221 u8 src_adj; 1222 u8 dst_adj; 1223 int off_adj; 1224 int ret; 1225 bool sign_extend; 1226 1227 switch (code) { 1228 /* dst = src */ 1229 case BPF_ALU | BPF_MOV | BPF_X: 1230 case BPF_ALU64 | BPF_MOV | BPF_X: 1231 if (insn_is_cast_user(insn)) { 1232 emit(A64_MOV(0, tmp, src), ctx); // 32-bit mov clears the upper 32 bits 1233 emit_a64_mov_i(0, dst, ctx->user_vm_start >> 32, ctx); 1234 emit(A64_LSL(1, dst, dst, 32), ctx); 1235 emit(A64_CBZ(1, tmp, 2), ctx); 1236 emit(A64_ORR(1, tmp, dst, tmp), ctx); 1237 emit(A64_MOV(1, dst, tmp), ctx); 1238 break; 1239 } else if (insn_is_mov_percpu_addr(insn)) { 1240 if (dst != src) 1241 emit(A64_MOV(1, dst, src), ctx); 1242 if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN)) 1243 emit(A64_MRS_TPIDR_EL2(tmp), ctx); 1244 else 1245 emit(A64_MRS_TPIDR_EL1(tmp), ctx); 1246 emit(A64_ADD(1, dst, dst, tmp), ctx); 1247 break; 1248 } 1249 switch (insn->off) { 1250 case 0: 1251 emit(A64_MOV(is64, dst, src), ctx); 1252 break; 1253 case 8: 1254 emit(A64_SXTB(is64, dst, src), ctx); 1255 break; 1256 case 16: 1257 emit(A64_SXTH(is64, dst, src), ctx); 1258 break; 1259 case 32: 1260 emit(A64_SXTW(is64, dst, src), ctx); 1261 break; 1262 } 1263 break; 1264 /* dst = dst OP src */ 1265 case BPF_ALU | BPF_ADD | BPF_X: 1266 case BPF_ALU64 | BPF_ADD | BPF_X: 1267 emit(A64_ADD(is64, dst, dst, src), ctx); 1268 break; 1269 case BPF_ALU | BPF_SUB | BPF_X: 1270 case BPF_ALU64 | BPF_SUB | BPF_X: 1271 emit(A64_SUB(is64, dst, dst, src), ctx); 1272 break; 1273 case BPF_ALU | BPF_AND | BPF_X: 1274 case BPF_ALU64 | BPF_AND | BPF_X: 1275 emit(A64_AND(is64, dst, dst, src), ctx); 1276 break; 1277 case BPF_ALU | BPF_OR | BPF_X: 1278 case BPF_ALU64 | BPF_OR | BPF_X: 1279 emit(A64_ORR(is64, dst, dst, src), ctx); 1280 break; 1281 case BPF_ALU | BPF_XOR | BPF_X: 1282 case BPF_ALU64 | BPF_XOR | BPF_X: 1283 emit(A64_EOR(is64, dst, dst, src), ctx); 1284 break; 1285 case BPF_ALU | BPF_MUL | BPF_X: 1286 case BPF_ALU64 | BPF_MUL | BPF_X: 1287 emit(A64_MUL(is64, dst, dst, src), ctx); 1288 break; 1289 case BPF_ALU | BPF_DIV | BPF_X: 1290 case BPF_ALU64 | BPF_DIV | BPF_X: 1291 if (!off) 1292 emit(A64_UDIV(is64, dst, dst, src), ctx); 1293 else 1294 emit(A64_SDIV(is64, dst, dst, src), ctx); 1295 break; 1296 case BPF_ALU | BPF_MOD | BPF_X: 1297 case BPF_ALU64 | BPF_MOD | BPF_X: 1298 if (!off) 1299 emit(A64_UDIV(is64, tmp, dst, src), ctx); 1300 else 1301 emit(A64_SDIV(is64, tmp, dst, src), ctx); 1302 emit(A64_MSUB(is64, dst, dst, tmp, src), ctx); 1303 break; 1304 case BPF_ALU | BPF_LSH | BPF_X: 1305 case BPF_ALU64 | BPF_LSH | BPF_X: 1306 emit(A64_LSLV(is64, dst, dst, src), ctx); 1307 break; 1308 case BPF_ALU | BPF_RSH | BPF_X: 1309 case BPF_ALU64 | BPF_RSH | BPF_X: 1310 emit(A64_LSRV(is64, dst, dst, src), ctx); 1311 break; 1312 case BPF_ALU | BPF_ARSH | BPF_X: 1313 case BPF_ALU64 | BPF_ARSH | BPF_X: 1314 emit(A64_ASRV(is64, dst, dst, src), ctx); 1315 break; 1316 /* dst = -dst */ 1317 case BPF_ALU | BPF_NEG: 1318 case BPF_ALU64 | BPF_NEG: 1319 emit(A64_NEG(is64, dst, dst), ctx); 1320 break; 1321 /* dst = BSWAP##imm(dst) */ 1322 case BPF_ALU | BPF_END | BPF_FROM_LE: 1323 case BPF_ALU | BPF_END | BPF_FROM_BE: 1324 case BPF_ALU64 | BPF_END | BPF_FROM_LE: 1325 #ifdef CONFIG_CPU_BIG_ENDIAN 1326 if (BPF_CLASS(code) == BPF_ALU && BPF_SRC(code) == BPF_FROM_BE) 1327 goto emit_bswap_uxt; 1328 #else /* !CONFIG_CPU_BIG_ENDIAN */ 1329 if (BPF_CLASS(code) == BPF_ALU && BPF_SRC(code) == BPF_FROM_LE) 1330 goto emit_bswap_uxt; 1331 #endif 1332 switch (imm) { 1333 case 16: 1334 emit(A64_REV16(is64, dst, dst), ctx); 1335 /* zero-extend 16 bits into 64 bits */ 1336 emit(A64_UXTH(is64, dst, dst), ctx); 1337 break; 1338 case 32: 1339 emit(A64_REV32(0, dst, dst), ctx); 1340 /* upper 32 bits already cleared */ 1341 break; 1342 case 64: 1343 emit(A64_REV64(dst, dst), ctx); 1344 break; 1345 } 1346 break; 1347 emit_bswap_uxt: 1348 switch (imm) { 1349 case 16: 1350 /* zero-extend 16 bits into 64 bits */ 1351 emit(A64_UXTH(is64, dst, dst), ctx); 1352 break; 1353 case 32: 1354 /* zero-extend 32 bits into 64 bits */ 1355 emit(A64_UXTW(is64, dst, dst), ctx); 1356 break; 1357 case 64: 1358 /* nop */ 1359 break; 1360 } 1361 break; 1362 /* dst = imm */ 1363 case BPF_ALU | BPF_MOV | BPF_K: 1364 case BPF_ALU64 | BPF_MOV | BPF_K: 1365 emit_a64_mov_i(is64, dst, imm, ctx); 1366 break; 1367 /* dst = dst OP imm */ 1368 case BPF_ALU | BPF_ADD | BPF_K: 1369 case BPF_ALU64 | BPF_ADD | BPF_K: 1370 emit_a64_add_i(is64, dst, dst, tmp, imm, ctx); 1371 break; 1372 case BPF_ALU | BPF_SUB | BPF_K: 1373 case BPF_ALU64 | BPF_SUB | BPF_K: 1374 if (is_addsub_imm(imm)) { 1375 emit(A64_SUB_I(is64, dst, dst, imm), ctx); 1376 } else if (is_addsub_imm(-(u32)imm)) { 1377 emit(A64_ADD_I(is64, dst, dst, -imm), ctx); 1378 } else { 1379 emit_a64_mov_i(is64, tmp, imm, ctx); 1380 emit(A64_SUB(is64, dst, dst, tmp), ctx); 1381 } 1382 break; 1383 case BPF_ALU | BPF_AND | BPF_K: 1384 case BPF_ALU64 | BPF_AND | BPF_K: 1385 a64_insn = A64_AND_I(is64, dst, dst, imm); 1386 if (a64_insn != AARCH64_BREAK_FAULT) { 1387 emit(a64_insn, ctx); 1388 } else { 1389 emit_a64_mov_i(is64, tmp, imm, ctx); 1390 emit(A64_AND(is64, dst, dst, tmp), ctx); 1391 } 1392 break; 1393 case BPF_ALU | BPF_OR | BPF_K: 1394 case BPF_ALU64 | BPF_OR | BPF_K: 1395 a64_insn = A64_ORR_I(is64, dst, dst, imm); 1396 if (a64_insn != AARCH64_BREAK_FAULT) { 1397 emit(a64_insn, ctx); 1398 } else { 1399 emit_a64_mov_i(is64, tmp, imm, ctx); 1400 emit(A64_ORR(is64, dst, dst, tmp), ctx); 1401 } 1402 break; 1403 case BPF_ALU | BPF_XOR | BPF_K: 1404 case BPF_ALU64 | BPF_XOR | BPF_K: 1405 a64_insn = A64_EOR_I(is64, dst, dst, imm); 1406 if (a64_insn != AARCH64_BREAK_FAULT) { 1407 emit(a64_insn, ctx); 1408 } else { 1409 emit_a64_mov_i(is64, tmp, imm, ctx); 1410 emit(A64_EOR(is64, dst, dst, tmp), ctx); 1411 } 1412 break; 1413 case BPF_ALU | BPF_MUL | BPF_K: 1414 case BPF_ALU64 | BPF_MUL | BPF_K: 1415 emit_a64_mov_i(is64, tmp, imm, ctx); 1416 emit(A64_MUL(is64, dst, dst, tmp), ctx); 1417 break; 1418 case BPF_ALU | BPF_DIV | BPF_K: 1419 case BPF_ALU64 | BPF_DIV | BPF_K: 1420 emit_a64_mov_i(is64, tmp, imm, ctx); 1421 if (!off) 1422 emit(A64_UDIV(is64, dst, dst, tmp), ctx); 1423 else 1424 emit(A64_SDIV(is64, dst, dst, tmp), ctx); 1425 break; 1426 case BPF_ALU | BPF_MOD | BPF_K: 1427 case BPF_ALU64 | BPF_MOD | BPF_K: 1428 emit_a64_mov_i(is64, tmp2, imm, ctx); 1429 if (!off) 1430 emit(A64_UDIV(is64, tmp, dst, tmp2), ctx); 1431 else 1432 emit(A64_SDIV(is64, tmp, dst, tmp2), ctx); 1433 emit(A64_MSUB(is64, dst, dst, tmp, tmp2), ctx); 1434 break; 1435 case BPF_ALU | BPF_LSH | BPF_K: 1436 case BPF_ALU64 | BPF_LSH | BPF_K: 1437 emit(A64_LSL(is64, dst, dst, imm), ctx); 1438 break; 1439 case BPF_ALU | BPF_RSH | BPF_K: 1440 case BPF_ALU64 | BPF_RSH | BPF_K: 1441 emit(A64_LSR(is64, dst, dst, imm), ctx); 1442 break; 1443 case BPF_ALU | BPF_ARSH | BPF_K: 1444 case BPF_ALU64 | BPF_ARSH | BPF_K: 1445 emit(A64_ASR(is64, dst, dst, imm), ctx); 1446 break; 1447 1448 /* JUMP reg */ 1449 case BPF_JMP | BPF_JA | BPF_X: 1450 emit(A64_BR(dst), ctx); 1451 break; 1452 /* JUMP off */ 1453 case BPF_JMP | BPF_JA: 1454 case BPF_JMP32 | BPF_JA: 1455 if (BPF_CLASS(code) == BPF_JMP) 1456 jmp_offset = bpf2a64_offset(i, off, ctx); 1457 else 1458 jmp_offset = bpf2a64_offset(i, imm, ctx); 1459 check_imm26(jmp_offset); 1460 emit(A64_B(jmp_offset), ctx); 1461 break; 1462 /* IF (dst COND src) JUMP off */ 1463 case BPF_JMP | BPF_JEQ | BPF_X: 1464 case BPF_JMP | BPF_JGT | BPF_X: 1465 case BPF_JMP | BPF_JLT | BPF_X: 1466 case BPF_JMP | BPF_JGE | BPF_X: 1467 case BPF_JMP | BPF_JLE | BPF_X: 1468 case BPF_JMP | BPF_JNE | BPF_X: 1469 case BPF_JMP | BPF_JSGT | BPF_X: 1470 case BPF_JMP | BPF_JSLT | BPF_X: 1471 case BPF_JMP | BPF_JSGE | BPF_X: 1472 case BPF_JMP | BPF_JSLE | BPF_X: 1473 case BPF_JMP32 | BPF_JEQ | BPF_X: 1474 case BPF_JMP32 | BPF_JGT | BPF_X: 1475 case BPF_JMP32 | BPF_JLT | BPF_X: 1476 case BPF_JMP32 | BPF_JGE | BPF_X: 1477 case BPF_JMP32 | BPF_JLE | BPF_X: 1478 case BPF_JMP32 | BPF_JNE | BPF_X: 1479 case BPF_JMP32 | BPF_JSGT | BPF_X: 1480 case BPF_JMP32 | BPF_JSLT | BPF_X: 1481 case BPF_JMP32 | BPF_JSGE | BPF_X: 1482 case BPF_JMP32 | BPF_JSLE | BPF_X: 1483 emit(A64_CMP(is64, dst, src), ctx); 1484 emit_cond_jmp: 1485 jmp_offset = bpf2a64_offset(i, off, ctx); 1486 check_imm19(jmp_offset); 1487 switch (BPF_OP(code)) { 1488 case BPF_JEQ: 1489 jmp_cond = A64_COND_EQ; 1490 break; 1491 case BPF_JGT: 1492 jmp_cond = A64_COND_HI; 1493 break; 1494 case BPF_JLT: 1495 jmp_cond = A64_COND_CC; 1496 break; 1497 case BPF_JGE: 1498 jmp_cond = A64_COND_CS; 1499 break; 1500 case BPF_JLE: 1501 jmp_cond = A64_COND_LS; 1502 break; 1503 case BPF_JSET: 1504 case BPF_JNE: 1505 jmp_cond = A64_COND_NE; 1506 break; 1507 case BPF_JSGT: 1508 jmp_cond = A64_COND_GT; 1509 break; 1510 case BPF_JSLT: 1511 jmp_cond = A64_COND_LT; 1512 break; 1513 case BPF_JSGE: 1514 jmp_cond = A64_COND_GE; 1515 break; 1516 case BPF_JSLE: 1517 jmp_cond = A64_COND_LE; 1518 break; 1519 default: 1520 return -EFAULT; 1521 } 1522 emit(A64_B_(jmp_cond, jmp_offset), ctx); 1523 break; 1524 case BPF_JMP | BPF_JSET | BPF_X: 1525 case BPF_JMP32 | BPF_JSET | BPF_X: 1526 emit(A64_TST(is64, dst, src), ctx); 1527 goto emit_cond_jmp; 1528 /* IF (dst COND imm) JUMP off */ 1529 case BPF_JMP | BPF_JEQ | BPF_K: 1530 case BPF_JMP | BPF_JGT | BPF_K: 1531 case BPF_JMP | BPF_JLT | BPF_K: 1532 case BPF_JMP | BPF_JGE | BPF_K: 1533 case BPF_JMP | BPF_JLE | BPF_K: 1534 case BPF_JMP | BPF_JNE | BPF_K: 1535 case BPF_JMP | BPF_JSGT | BPF_K: 1536 case BPF_JMP | BPF_JSLT | BPF_K: 1537 case BPF_JMP | BPF_JSGE | BPF_K: 1538 case BPF_JMP | BPF_JSLE | BPF_K: 1539 case BPF_JMP32 | BPF_JEQ | BPF_K: 1540 case BPF_JMP32 | BPF_JGT | BPF_K: 1541 case BPF_JMP32 | BPF_JLT | BPF_K: 1542 case BPF_JMP32 | BPF_JGE | BPF_K: 1543 case BPF_JMP32 | BPF_JLE | BPF_K: 1544 case BPF_JMP32 | BPF_JNE | BPF_K: 1545 case BPF_JMP32 | BPF_JSGT | BPF_K: 1546 case BPF_JMP32 | BPF_JSLT | BPF_K: 1547 case BPF_JMP32 | BPF_JSGE | BPF_K: 1548 case BPF_JMP32 | BPF_JSLE | BPF_K: 1549 if (is_addsub_imm(imm)) { 1550 emit(A64_CMP_I(is64, dst, imm), ctx); 1551 } else if (is_addsub_imm(-(u32)imm)) { 1552 emit(A64_CMN_I(is64, dst, -imm), ctx); 1553 } else { 1554 emit_a64_mov_i(is64, tmp, imm, ctx); 1555 emit(A64_CMP(is64, dst, tmp), ctx); 1556 } 1557 goto emit_cond_jmp; 1558 case BPF_JMP | BPF_JSET | BPF_K: 1559 case BPF_JMP32 | BPF_JSET | BPF_K: 1560 a64_insn = A64_TST_I(is64, dst, imm); 1561 if (a64_insn != AARCH64_BREAK_FAULT) { 1562 emit(a64_insn, ctx); 1563 } else { 1564 emit_a64_mov_i(is64, tmp, imm, ctx); 1565 emit(A64_TST(is64, dst, tmp), ctx); 1566 } 1567 goto emit_cond_jmp; 1568 /* function call */ 1569 case BPF_JMP | BPF_CALL: 1570 { 1571 const u8 r0 = bpf2a64[BPF_REG_0]; 1572 bool func_addr_fixed; 1573 u64 func_addr; 1574 u32 cpu_offset; 1575 1576 /* Implement helper call to bpf_get_smp_processor_id() inline */ 1577 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_get_smp_processor_id) { 1578 cpu_offset = offsetof(struct thread_info, cpu); 1579 1580 emit(A64_MRS_SP_EL0(tmp), ctx); 1581 if (is_lsi_offset(cpu_offset, 2)) { 1582 emit(A64_LDR32I(r0, tmp, cpu_offset), ctx); 1583 } else { 1584 emit_a64_mov_i(1, tmp2, cpu_offset, ctx); 1585 emit(A64_LDR32(r0, tmp, tmp2), ctx); 1586 } 1587 break; 1588 } 1589 1590 /* Implement helper call to bpf_get_current_task/_btf() inline */ 1591 if (insn->src_reg == 0 && (insn->imm == BPF_FUNC_get_current_task || 1592 insn->imm == BPF_FUNC_get_current_task_btf)) { 1593 emit(A64_MRS_SP_EL0(r0), ctx); 1594 break; 1595 } 1596 1597 ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass, 1598 &func_addr, &func_addr_fixed); 1599 if (ret < 0) 1600 return ret; 1601 emit_call(func_addr, ctx); 1602 /* 1603 * Call to arch_bpf_timed_may_goto() is emitted by the 1604 * verifier and called with custom calling convention with 1605 * first argument and return value in BPF_REG_AX (x9). 1606 */ 1607 if (func_addr != (u64)arch_bpf_timed_may_goto) 1608 emit(A64_MOV(1, r0, A64_R(0)), ctx); 1609 break; 1610 } 1611 /* tail call */ 1612 case BPF_JMP | BPF_TAIL_CALL: 1613 if (emit_bpf_tail_call(ctx)) 1614 return -EFAULT; 1615 break; 1616 /* function return */ 1617 case BPF_JMP | BPF_EXIT: 1618 /* Optimization: when last instruction is EXIT, 1619 simply fallthrough to epilogue. */ 1620 if (i == ctx->prog->len - 1) 1621 break; 1622 jmp_offset = epilogue_offset(ctx); 1623 check_imm26(jmp_offset); 1624 emit(A64_B(jmp_offset), ctx); 1625 break; 1626 1627 /* dst = imm64 */ 1628 case BPF_LD | BPF_IMM | BPF_DW: 1629 { 1630 const struct bpf_insn insn1 = insn[1]; 1631 u64 imm64; 1632 1633 imm64 = (u64)insn1.imm << 32 | (u32)imm; 1634 if (bpf_pseudo_func(insn)) 1635 emit_addr_mov_i64(dst, imm64, ctx); 1636 else 1637 emit_a64_mov_i64(dst, imm64, ctx); 1638 1639 return 1; 1640 } 1641 1642 /* LDX: dst = (u64)*(unsigned size *)(src + off) */ 1643 case BPF_LDX | BPF_MEM | BPF_W: 1644 case BPF_LDX | BPF_MEM | BPF_H: 1645 case BPF_LDX | BPF_MEM | BPF_B: 1646 case BPF_LDX | BPF_MEM | BPF_DW: 1647 case BPF_LDX | BPF_PROBE_MEM | BPF_DW: 1648 case BPF_LDX | BPF_PROBE_MEM | BPF_W: 1649 case BPF_LDX | BPF_PROBE_MEM | BPF_H: 1650 case BPF_LDX | BPF_PROBE_MEM | BPF_B: 1651 /* LDXS: dst_reg = (s64)*(signed size *)(src_reg + off) */ 1652 case BPF_LDX | BPF_MEMSX | BPF_B: 1653 case BPF_LDX | BPF_MEMSX | BPF_H: 1654 case BPF_LDX | BPF_MEMSX | BPF_W: 1655 case BPF_LDX | BPF_PROBE_MEMSX | BPF_B: 1656 case BPF_LDX | BPF_PROBE_MEMSX | BPF_H: 1657 case BPF_LDX | BPF_PROBE_MEMSX | BPF_W: 1658 case BPF_LDX | BPF_PROBE_MEM32 | BPF_B: 1659 case BPF_LDX | BPF_PROBE_MEM32 | BPF_H: 1660 case BPF_LDX | BPF_PROBE_MEM32 | BPF_W: 1661 case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW: 1662 case BPF_LDX | BPF_PROBE_MEM32SX | BPF_B: 1663 case BPF_LDX | BPF_PROBE_MEM32SX | BPF_H: 1664 case BPF_LDX | BPF_PROBE_MEM32SX | BPF_W: 1665 if (BPF_MODE(insn->code) == BPF_PROBE_MEM32 || 1666 BPF_MODE(insn->code) == BPF_PROBE_MEM32SX) { 1667 emit(A64_ADD(1, tmp2, src, arena_vm_base), ctx); 1668 src = tmp2; 1669 } 1670 if (src == fp) { 1671 src_adj = ctx->priv_sp_used ? priv_sp : A64_SP; 1672 off_adj = off + ctx->stack_size; 1673 } else { 1674 src_adj = src; 1675 off_adj = off; 1676 } 1677 sign_extend = (BPF_MODE(insn->code) == BPF_MEMSX || 1678 BPF_MODE(insn->code) == BPF_PROBE_MEMSX || 1679 BPF_MODE(insn->code) == BPF_PROBE_MEM32SX); 1680 switch (BPF_SIZE(code)) { 1681 case BPF_W: 1682 if (is_lsi_offset(off_adj, 2)) { 1683 if (sign_extend) 1684 emit(A64_LDRSWI(dst, src_adj, off_adj), ctx); 1685 else 1686 emit(A64_LDR32I(dst, src_adj, off_adj), ctx); 1687 } else { 1688 emit_a64_mov_i(1, tmp, off, ctx); 1689 if (sign_extend) 1690 emit(A64_LDRSW(dst, src, tmp), ctx); 1691 else 1692 emit(A64_LDR32(dst, src, tmp), ctx); 1693 } 1694 break; 1695 case BPF_H: 1696 if (is_lsi_offset(off_adj, 1)) { 1697 if (sign_extend) 1698 emit(A64_LDRSHI(dst, src_adj, off_adj), ctx); 1699 else 1700 emit(A64_LDRHI(dst, src_adj, off_adj), ctx); 1701 } else { 1702 emit_a64_mov_i(1, tmp, off, ctx); 1703 if (sign_extend) 1704 emit(A64_LDRSH(dst, src, tmp), ctx); 1705 else 1706 emit(A64_LDRH(dst, src, tmp), ctx); 1707 } 1708 break; 1709 case BPF_B: 1710 if (is_lsi_offset(off_adj, 0)) { 1711 if (sign_extend) 1712 emit(A64_LDRSBI(dst, src_adj, off_adj), ctx); 1713 else 1714 emit(A64_LDRBI(dst, src_adj, off_adj), ctx); 1715 } else { 1716 emit_a64_mov_i(1, tmp, off, ctx); 1717 if (sign_extend) 1718 emit(A64_LDRSB(dst, src, tmp), ctx); 1719 else 1720 emit(A64_LDRB(dst, src, tmp), ctx); 1721 } 1722 break; 1723 case BPF_DW: 1724 if (is_lsi_offset(off_adj, 3)) { 1725 emit(A64_LDR64I(dst, src_adj, off_adj), ctx); 1726 } else { 1727 emit_a64_mov_i(1, tmp, off, ctx); 1728 emit(A64_LDR64(dst, src, tmp), ctx); 1729 } 1730 break; 1731 } 1732 1733 ret = add_exception_handler(insn, ctx, dst); 1734 if (ret) 1735 return ret; 1736 break; 1737 1738 /* speculation barrier against v1 and v4 */ 1739 case BPF_ST | BPF_NOSPEC: 1740 if (alternative_has_cap_likely(ARM64_HAS_SB)) { 1741 emit(A64_SB, ctx); 1742 } else { 1743 emit(A64_DSB_NSH, ctx); 1744 emit(A64_ISB, ctx); 1745 } 1746 break; 1747 1748 /* ST: *(size *)(dst + off) = imm */ 1749 case BPF_ST | BPF_MEM | BPF_W: 1750 case BPF_ST | BPF_MEM | BPF_H: 1751 case BPF_ST | BPF_MEM | BPF_B: 1752 case BPF_ST | BPF_MEM | BPF_DW: 1753 case BPF_ST | BPF_PROBE_MEM32 | BPF_B: 1754 case BPF_ST | BPF_PROBE_MEM32 | BPF_H: 1755 case BPF_ST | BPF_PROBE_MEM32 | BPF_W: 1756 case BPF_ST | BPF_PROBE_MEM32 | BPF_DW: 1757 if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) { 1758 emit(A64_ADD(1, tmp3, dst, arena_vm_base), ctx); 1759 dst = tmp3; 1760 } 1761 if (dst == fp) { 1762 dst_adj = ctx->priv_sp_used ? priv_sp : A64_SP; 1763 off_adj = off + ctx->stack_size; 1764 } else { 1765 dst_adj = dst; 1766 off_adj = off; 1767 } 1768 /* Load imm to a register then store it */ 1769 emit_a64_mov_i(1, tmp, imm, ctx); 1770 switch (BPF_SIZE(code)) { 1771 case BPF_W: 1772 if (is_lsi_offset(off_adj, 2)) { 1773 emit(A64_STR32I(tmp, dst_adj, off_adj), ctx); 1774 } else { 1775 emit_a64_mov_i(1, tmp2, off, ctx); 1776 emit(A64_STR32(tmp, dst, tmp2), ctx); 1777 } 1778 break; 1779 case BPF_H: 1780 if (is_lsi_offset(off_adj, 1)) { 1781 emit(A64_STRHI(tmp, dst_adj, off_adj), ctx); 1782 } else { 1783 emit_a64_mov_i(1, tmp2, off, ctx); 1784 emit(A64_STRH(tmp, dst, tmp2), ctx); 1785 } 1786 break; 1787 case BPF_B: 1788 if (is_lsi_offset(off_adj, 0)) { 1789 emit(A64_STRBI(tmp, dst_adj, off_adj), ctx); 1790 } else { 1791 emit_a64_mov_i(1, tmp2, off, ctx); 1792 emit(A64_STRB(tmp, dst, tmp2), ctx); 1793 } 1794 break; 1795 case BPF_DW: 1796 if (is_lsi_offset(off_adj, 3)) { 1797 emit(A64_STR64I(tmp, dst_adj, off_adj), ctx); 1798 } else { 1799 emit_a64_mov_i(1, tmp2, off, ctx); 1800 emit(A64_STR64(tmp, dst, tmp2), ctx); 1801 } 1802 break; 1803 } 1804 1805 ret = add_exception_handler(insn, ctx, dst); 1806 if (ret) 1807 return ret; 1808 break; 1809 1810 /* STX: *(size *)(dst + off) = src */ 1811 case BPF_STX | BPF_MEM | BPF_W: 1812 case BPF_STX | BPF_MEM | BPF_H: 1813 case BPF_STX | BPF_MEM | BPF_B: 1814 case BPF_STX | BPF_MEM | BPF_DW: 1815 case BPF_STX | BPF_PROBE_MEM32 | BPF_B: 1816 case BPF_STX | BPF_PROBE_MEM32 | BPF_H: 1817 case BPF_STX | BPF_PROBE_MEM32 | BPF_W: 1818 case BPF_STX | BPF_PROBE_MEM32 | BPF_DW: 1819 if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) { 1820 emit(A64_ADD(1, tmp2, dst, arena_vm_base), ctx); 1821 dst = tmp2; 1822 } 1823 if (dst == fp) { 1824 dst_adj = ctx->priv_sp_used ? priv_sp : A64_SP; 1825 off_adj = off + ctx->stack_size; 1826 } else { 1827 dst_adj = dst; 1828 off_adj = off; 1829 } 1830 switch (BPF_SIZE(code)) { 1831 case BPF_W: 1832 if (is_lsi_offset(off_adj, 2)) { 1833 emit(A64_STR32I(src, dst_adj, off_adj), ctx); 1834 } else { 1835 emit_a64_mov_i(1, tmp, off, ctx); 1836 emit(A64_STR32(src, dst, tmp), ctx); 1837 } 1838 break; 1839 case BPF_H: 1840 if (is_lsi_offset(off_adj, 1)) { 1841 emit(A64_STRHI(src, dst_adj, off_adj), ctx); 1842 } else { 1843 emit_a64_mov_i(1, tmp, off, ctx); 1844 emit(A64_STRH(src, dst, tmp), ctx); 1845 } 1846 break; 1847 case BPF_B: 1848 if (is_lsi_offset(off_adj, 0)) { 1849 emit(A64_STRBI(src, dst_adj, off_adj), ctx); 1850 } else { 1851 emit_a64_mov_i(1, tmp, off, ctx); 1852 emit(A64_STRB(src, dst, tmp), ctx); 1853 } 1854 break; 1855 case BPF_DW: 1856 if (is_lsi_offset(off_adj, 3)) { 1857 emit(A64_STR64I(src, dst_adj, off_adj), ctx); 1858 } else { 1859 emit_a64_mov_i(1, tmp, off, ctx); 1860 emit(A64_STR64(src, dst, tmp), ctx); 1861 } 1862 break; 1863 } 1864 1865 ret = add_exception_handler(insn, ctx, dst); 1866 if (ret) 1867 return ret; 1868 break; 1869 1870 case BPF_STX | BPF_ATOMIC | BPF_B: 1871 case BPF_STX | BPF_ATOMIC | BPF_H: 1872 case BPF_STX | BPF_ATOMIC | BPF_W: 1873 case BPF_STX | BPF_ATOMIC | BPF_DW: 1874 case BPF_STX | BPF_PROBE_ATOMIC | BPF_B: 1875 case BPF_STX | BPF_PROBE_ATOMIC | BPF_H: 1876 case BPF_STX | BPF_PROBE_ATOMIC | BPF_W: 1877 case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW: 1878 if (bpf_atomic_is_load_store(insn)) 1879 ret = emit_atomic_ld_st(insn, ctx); 1880 else if (cpus_have_cap(ARM64_HAS_LSE_ATOMICS)) 1881 ret = emit_lse_atomic(insn, ctx); 1882 else 1883 ret = emit_ll_sc_atomic(insn, ctx); 1884 if (ret) 1885 return ret; 1886 1887 if (BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) { 1888 ret = add_exception_handler(insn, ctx, dst); 1889 if (ret) 1890 return ret; 1891 } 1892 break; 1893 1894 default: 1895 pr_err_once("unknown opcode %02x\n", code); 1896 return -EINVAL; 1897 } 1898 1899 return 0; 1900 } 1901 1902 static int build_body(struct jit_ctx *ctx, bool extra_pass) 1903 { 1904 const struct bpf_prog *prog = ctx->prog; 1905 int i; 1906 1907 /* 1908 * - offset[0] offset of the end of prologue, 1909 * start of the 1st instruction. 1910 * - offset[1] - offset of the end of 1st instruction, 1911 * start of the 2nd instruction 1912 * [....] 1913 * - offset[3] - offset of the end of 3rd instruction, 1914 * start of 4th instruction 1915 */ 1916 for (i = 0; i < prog->len; i++) { 1917 const struct bpf_insn *insn = &prog->insnsi[i]; 1918 int ret; 1919 1920 ctx->offset[i] = ctx->idx; 1921 ret = build_insn(insn, ctx, extra_pass); 1922 if (ret > 0) { 1923 i++; 1924 ctx->offset[i] = ctx->idx; 1925 continue; 1926 } 1927 if (ret) 1928 return ret; 1929 } 1930 /* 1931 * offset is allocated with prog->len + 1 so fill in 1932 * the last element with the offset after the last 1933 * instruction (end of program) 1934 */ 1935 ctx->offset[i] = ctx->idx; 1936 1937 return 0; 1938 } 1939 1940 static int validate_code(struct jit_ctx *ctx) 1941 { 1942 int i; 1943 1944 for (i = 0; i < ctx->idx; i++) { 1945 u32 a64_insn = le32_to_cpu(ctx->image[i]); 1946 1947 if (a64_insn == AARCH64_BREAK_FAULT) 1948 return -1; 1949 } 1950 return 0; 1951 } 1952 1953 static int validate_ctx(struct jit_ctx *ctx) 1954 { 1955 if (validate_code(ctx)) 1956 return -1; 1957 1958 if (WARN_ON_ONCE(ctx->exentry_idx != ctx->prog->aux->num_exentries)) 1959 return -1; 1960 1961 return 0; 1962 } 1963 1964 static inline void bpf_flush_icache(void *start, void *end) 1965 { 1966 flush_icache_range((unsigned long)start, (unsigned long)end); 1967 } 1968 1969 static void priv_stack_init_guard(void __percpu *priv_stack_ptr, int alloc_size) 1970 { 1971 int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3; 1972 u64 *stack_ptr; 1973 1974 for_each_possible_cpu(cpu) { 1975 stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu); 1976 stack_ptr[0] = PRIV_STACK_GUARD_VAL; 1977 stack_ptr[1] = PRIV_STACK_GUARD_VAL; 1978 stack_ptr[underflow_idx] = PRIV_STACK_GUARD_VAL; 1979 stack_ptr[underflow_idx + 1] = PRIV_STACK_GUARD_VAL; 1980 } 1981 } 1982 1983 static void priv_stack_check_guard(void __percpu *priv_stack_ptr, int alloc_size, 1984 struct bpf_prog *prog) 1985 { 1986 int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3; 1987 u64 *stack_ptr; 1988 1989 for_each_possible_cpu(cpu) { 1990 stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu); 1991 if (stack_ptr[0] != PRIV_STACK_GUARD_VAL || 1992 stack_ptr[1] != PRIV_STACK_GUARD_VAL || 1993 stack_ptr[underflow_idx] != PRIV_STACK_GUARD_VAL || 1994 stack_ptr[underflow_idx + 1] != PRIV_STACK_GUARD_VAL) { 1995 pr_err("BPF private stack overflow/underflow detected for prog %sx\n", 1996 bpf_jit_get_prog_name(prog)); 1997 break; 1998 } 1999 } 2000 } 2001 2002 struct arm64_jit_data { 2003 struct bpf_binary_header *header; 2004 u8 *ro_image; 2005 struct bpf_binary_header *ro_header; 2006 struct jit_ctx ctx; 2007 }; 2008 2009 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) 2010 { 2011 int image_size, prog_size, extable_size, extable_align, extable_offset; 2012 struct bpf_prog *tmp, *orig_prog = prog; 2013 struct bpf_binary_header *header; 2014 struct bpf_binary_header *ro_header = NULL; 2015 struct arm64_jit_data *jit_data; 2016 void __percpu *priv_stack_ptr = NULL; 2017 bool was_classic = bpf_prog_was_classic(prog); 2018 int priv_stack_alloc_sz; 2019 bool tmp_blinded = false; 2020 bool extra_pass = false; 2021 struct jit_ctx ctx; 2022 u8 *image_ptr; 2023 u8 *ro_image_ptr; 2024 int body_idx; 2025 int exentry_idx; 2026 2027 if (!prog->jit_requested) 2028 return orig_prog; 2029 2030 tmp = bpf_jit_blind_constants(prog); 2031 /* If blinding was requested and we failed during blinding, 2032 * we must fall back to the interpreter. 2033 */ 2034 if (IS_ERR(tmp)) 2035 return orig_prog; 2036 if (tmp != prog) { 2037 tmp_blinded = true; 2038 prog = tmp; 2039 } 2040 2041 jit_data = prog->aux->jit_data; 2042 if (!jit_data) { 2043 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL); 2044 if (!jit_data) { 2045 prog = orig_prog; 2046 goto out; 2047 } 2048 prog->aux->jit_data = jit_data; 2049 } 2050 priv_stack_ptr = prog->aux->priv_stack_ptr; 2051 if (!priv_stack_ptr && prog->aux->jits_use_priv_stack) { 2052 /* Allocate actual private stack size with verifier-calculated 2053 * stack size plus two memory guards to protect overflow and 2054 * underflow. 2055 */ 2056 priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 16) + 2057 2 * PRIV_STACK_GUARD_SZ; 2058 priv_stack_ptr = __alloc_percpu_gfp(priv_stack_alloc_sz, 16, GFP_KERNEL); 2059 if (!priv_stack_ptr) { 2060 prog = orig_prog; 2061 goto out_priv_stack; 2062 } 2063 2064 priv_stack_init_guard(priv_stack_ptr, priv_stack_alloc_sz); 2065 prog->aux->priv_stack_ptr = priv_stack_ptr; 2066 } 2067 if (jit_data->ctx.offset) { 2068 ctx = jit_data->ctx; 2069 ro_image_ptr = jit_data->ro_image; 2070 ro_header = jit_data->ro_header; 2071 header = jit_data->header; 2072 image_ptr = (void *)header + ((void *)ro_image_ptr 2073 - (void *)ro_header); 2074 extra_pass = true; 2075 prog_size = sizeof(u32) * ctx.idx; 2076 goto skip_init_ctx; 2077 } 2078 memset(&ctx, 0, sizeof(ctx)); 2079 ctx.prog = prog; 2080 2081 ctx.offset = kvcalloc(prog->len + 1, sizeof(int), GFP_KERNEL); 2082 if (ctx.offset == NULL) { 2083 prog = orig_prog; 2084 goto out_off; 2085 } 2086 2087 ctx.user_vm_start = bpf_arena_get_user_vm_start(prog->aux->arena); 2088 ctx.arena_vm_start = bpf_arena_get_kern_vm_start(prog->aux->arena); 2089 2090 if (priv_stack_ptr) 2091 ctx.priv_sp_used = true; 2092 2093 /* Pass 1: Estimate the maximum image size. 2094 * 2095 * BPF line info needs ctx->offset[i] to be the offset of 2096 * instruction[i] in jited image, so build prologue first. 2097 */ 2098 if (build_prologue(&ctx, was_classic)) { 2099 prog = orig_prog; 2100 goto out_off; 2101 } 2102 2103 if (build_body(&ctx, extra_pass)) { 2104 prog = orig_prog; 2105 goto out_off; 2106 } 2107 2108 ctx.epilogue_offset = ctx.idx; 2109 build_epilogue(&ctx, was_classic); 2110 build_plt(&ctx); 2111 2112 extable_align = __alignof__(struct exception_table_entry); 2113 extable_size = prog->aux->num_exentries * 2114 sizeof(struct exception_table_entry); 2115 2116 /* Now we know the maximum image size. */ 2117 prog_size = sizeof(u32) * ctx.idx; 2118 /* also allocate space for plt target */ 2119 extable_offset = round_up(prog_size + PLT_TARGET_SIZE, extable_align); 2120 image_size = extable_offset + extable_size; 2121 ro_header = bpf_jit_binary_pack_alloc(image_size, &ro_image_ptr, 2122 sizeof(u32), &header, &image_ptr, 2123 jit_fill_hole); 2124 if (!ro_header) { 2125 prog = orig_prog; 2126 goto out_off; 2127 } 2128 2129 /* Pass 2: Determine jited position and result for each instruction */ 2130 2131 /* 2132 * Use the image(RW) for writing the JITed instructions. But also save 2133 * the ro_image(RX) for calculating the offsets in the image. The RW 2134 * image will be later copied to the RX image from where the program 2135 * will run. The bpf_jit_binary_pack_finalize() will do this copy in the 2136 * final step. 2137 */ 2138 ctx.image = (__le32 *)image_ptr; 2139 ctx.ro_image = (__le32 *)ro_image_ptr; 2140 if (extable_size) 2141 prog->aux->extable = (void *)ro_image_ptr + extable_offset; 2142 skip_init_ctx: 2143 ctx.idx = 0; 2144 ctx.exentry_idx = 0; 2145 ctx.write = true; 2146 2147 build_prologue(&ctx, was_classic); 2148 2149 /* Record exentry_idx and body_idx before first build_body */ 2150 exentry_idx = ctx.exentry_idx; 2151 body_idx = ctx.idx; 2152 /* Dont write body instructions to memory for now */ 2153 ctx.write = false; 2154 2155 if (build_body(&ctx, extra_pass)) { 2156 prog = orig_prog; 2157 goto out_free_hdr; 2158 } 2159 2160 ctx.epilogue_offset = ctx.idx; 2161 ctx.exentry_idx = exentry_idx; 2162 ctx.idx = body_idx; 2163 ctx.write = true; 2164 2165 /* Pass 3: Adjust jump offset and write final image */ 2166 if (build_body(&ctx, extra_pass) || 2167 WARN_ON_ONCE(ctx.idx != ctx.epilogue_offset)) { 2168 prog = orig_prog; 2169 goto out_free_hdr; 2170 } 2171 2172 build_epilogue(&ctx, was_classic); 2173 build_plt(&ctx); 2174 2175 /* Extra pass to validate JITed code. */ 2176 if (validate_ctx(&ctx)) { 2177 prog = orig_prog; 2178 goto out_free_hdr; 2179 } 2180 2181 /* update the real prog size */ 2182 prog_size = sizeof(u32) * ctx.idx; 2183 2184 /* And we're done. */ 2185 if (bpf_jit_enable > 1) 2186 bpf_jit_dump(prog->len, prog_size, 2, ctx.image); 2187 2188 if (!prog->is_func || extra_pass) { 2189 /* The jited image may shrink since the jited result for 2190 * BPF_CALL to subprog may be changed from indirect call 2191 * to direct call. 2192 */ 2193 if (extra_pass && ctx.idx > jit_data->ctx.idx) { 2194 pr_err_once("multi-func JIT bug %d > %d\n", 2195 ctx.idx, jit_data->ctx.idx); 2196 prog->bpf_func = NULL; 2197 prog->jited = 0; 2198 prog->jited_len = 0; 2199 goto out_free_hdr; 2200 } 2201 if (WARN_ON(bpf_jit_binary_pack_finalize(ro_header, header))) { 2202 /* ro_header has been freed */ 2203 ro_header = NULL; 2204 prog = orig_prog; 2205 goto out_off; 2206 } 2207 /* 2208 * The instructions have now been copied to the ROX region from 2209 * where they will execute. Now the data cache has to be cleaned to 2210 * the PoU and the I-cache has to be invalidated for the VAs. 2211 */ 2212 bpf_flush_icache(ro_header, ctx.ro_image + ctx.idx); 2213 } else { 2214 jit_data->ctx = ctx; 2215 jit_data->ro_image = ro_image_ptr; 2216 jit_data->header = header; 2217 jit_data->ro_header = ro_header; 2218 } 2219 2220 prog->bpf_func = (void *)ctx.ro_image + cfi_get_offset(); 2221 prog->jited = 1; 2222 prog->jited_len = prog_size - cfi_get_offset(); 2223 2224 if (!prog->is_func || extra_pass) { 2225 int i; 2226 2227 /* offset[prog->len] is the size of program */ 2228 for (i = 0; i <= prog->len; i++) 2229 ctx.offset[i] *= AARCH64_INSN_SIZE; 2230 bpf_prog_fill_jited_linfo(prog, ctx.offset + 1); 2231 /* 2232 * The bpf_prog_update_insn_ptrs function expects offsets to 2233 * point to the first byte of the jitted instruction (unlike 2234 * the bpf_prog_fill_jited_linfo above, which, for historical 2235 * reasons, expects to point to the next instruction) 2236 */ 2237 bpf_prog_update_insn_ptrs(prog, ctx.offset, ctx.ro_image); 2238 out_off: 2239 if (!ro_header && priv_stack_ptr) { 2240 free_percpu(priv_stack_ptr); 2241 prog->aux->priv_stack_ptr = NULL; 2242 } 2243 kvfree(ctx.offset); 2244 out_priv_stack: 2245 kfree(jit_data); 2246 prog->aux->jit_data = NULL; 2247 } 2248 out: 2249 if (tmp_blinded) 2250 bpf_jit_prog_release_other(prog, prog == orig_prog ? 2251 tmp : orig_prog); 2252 return prog; 2253 2254 out_free_hdr: 2255 if (header) { 2256 bpf_arch_text_copy(&ro_header->size, &header->size, 2257 sizeof(header->size)); 2258 bpf_jit_binary_pack_free(ro_header, header); 2259 } 2260 goto out_off; 2261 } 2262 2263 bool bpf_jit_supports_private_stack(void) 2264 { 2265 return true; 2266 } 2267 2268 bool bpf_jit_supports_kfunc_call(void) 2269 { 2270 return true; 2271 } 2272 2273 void *bpf_arch_text_copy(void *dst, void *src, size_t len) 2274 { 2275 if (!aarch64_insn_copy(dst, src, len)) 2276 return ERR_PTR(-EINVAL); 2277 return dst; 2278 } 2279 2280 u64 bpf_jit_alloc_exec_limit(void) 2281 { 2282 return VMALLOC_END - VMALLOC_START; 2283 } 2284 2285 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */ 2286 bool bpf_jit_supports_subprog_tailcalls(void) 2287 { 2288 return true; 2289 } 2290 2291 static void invoke_bpf_prog(struct jit_ctx *ctx, struct bpf_tramp_link *l, 2292 int bargs_off, int retval_off, int run_ctx_off, 2293 bool save_ret) 2294 { 2295 __le32 *branch; 2296 u64 enter_prog; 2297 u64 exit_prog; 2298 struct bpf_prog *p = l->link.prog; 2299 int cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie); 2300 2301 enter_prog = (u64)bpf_trampoline_enter(p); 2302 exit_prog = (u64)bpf_trampoline_exit(p); 2303 2304 if (l->cookie == 0) { 2305 /* if cookie is zero, one instruction is enough to store it */ 2306 emit(A64_STR64I(A64_ZR, A64_SP, run_ctx_off + cookie_off), ctx); 2307 } else { 2308 emit_a64_mov_i64(A64_R(10), l->cookie, ctx); 2309 emit(A64_STR64I(A64_R(10), A64_SP, run_ctx_off + cookie_off), 2310 ctx); 2311 } 2312 2313 /* save p to callee saved register x19 to avoid loading p with mov_i64 2314 * each time. 2315 */ 2316 emit_addr_mov_i64(A64_R(19), (const u64)p, ctx); 2317 2318 /* arg1: prog */ 2319 emit(A64_MOV(1, A64_R(0), A64_R(19)), ctx); 2320 /* arg2: &run_ctx */ 2321 emit(A64_ADD_I(1, A64_R(1), A64_SP, run_ctx_off), ctx); 2322 2323 emit_call(enter_prog, ctx); 2324 2325 /* save return value to callee saved register x20 */ 2326 emit(A64_MOV(1, A64_R(20), A64_R(0)), ctx); 2327 2328 /* if (__bpf_prog_enter(prog) == 0) 2329 * goto skip_exec_of_prog; 2330 */ 2331 branch = ctx->image + ctx->idx; 2332 emit(A64_NOP, ctx); 2333 2334 emit(A64_ADD_I(1, A64_R(0), A64_SP, bargs_off), ctx); 2335 if (!p->jited) 2336 emit_addr_mov_i64(A64_R(1), (const u64)p->insnsi, ctx); 2337 2338 emit_call((const u64)p->bpf_func, ctx); 2339 2340 if (save_ret) 2341 emit(A64_STR64I(A64_R(0), A64_SP, retval_off), ctx); 2342 2343 if (ctx->image) { 2344 int offset = &ctx->image[ctx->idx] - branch; 2345 *branch = cpu_to_le32(A64_CBZ(1, A64_R(0), offset)); 2346 } 2347 2348 /* arg1: prog */ 2349 emit(A64_MOV(1, A64_R(0), A64_R(19)), ctx); 2350 /* arg2: start time */ 2351 emit(A64_MOV(1, A64_R(1), A64_R(20)), ctx); 2352 /* arg3: &run_ctx */ 2353 emit(A64_ADD_I(1, A64_R(2), A64_SP, run_ctx_off), ctx); 2354 2355 emit_call(exit_prog, ctx); 2356 } 2357 2358 static void invoke_bpf_mod_ret(struct jit_ctx *ctx, struct bpf_tramp_links *tl, 2359 int bargs_off, int retval_off, int run_ctx_off, 2360 __le32 **branches) 2361 { 2362 int i; 2363 2364 /* The first fmod_ret program will receive a garbage return value. 2365 * Set this to 0 to avoid confusing the program. 2366 */ 2367 emit(A64_STR64I(A64_ZR, A64_SP, retval_off), ctx); 2368 for (i = 0; i < tl->nr_links; i++) { 2369 invoke_bpf_prog(ctx, tl->links[i], bargs_off, retval_off, 2370 run_ctx_off, true); 2371 /* if (*(u64 *)(sp + retval_off) != 0) 2372 * goto do_fexit; 2373 */ 2374 emit(A64_LDR64I(A64_R(10), A64_SP, retval_off), ctx); 2375 /* Save the location of branch, and generate a nop. 2376 * This nop will be replaced with a cbnz later. 2377 */ 2378 branches[i] = ctx->image + ctx->idx; 2379 emit(A64_NOP, ctx); 2380 } 2381 } 2382 2383 struct arg_aux { 2384 /* how many args are passed through registers, the rest of the args are 2385 * passed through stack 2386 */ 2387 int args_in_regs; 2388 /* how many registers are used to pass arguments */ 2389 int regs_for_args; 2390 /* how much stack is used for additional args passed to bpf program 2391 * that did not fit in original function registers 2392 */ 2393 int bstack_for_args; 2394 /* home much stack is used for additional args passed to the 2395 * original function when called from trampoline (this one needs 2396 * arguments to be properly aligned) 2397 */ 2398 int ostack_for_args; 2399 }; 2400 2401 static int calc_arg_aux(const struct btf_func_model *m, 2402 struct arg_aux *a) 2403 { 2404 int stack_slots, nregs, slots, i; 2405 2406 /* verifier ensures m->nr_args <= MAX_BPF_FUNC_ARGS */ 2407 for (i = 0, nregs = 0; i < m->nr_args; i++) { 2408 slots = (m->arg_size[i] + 7) / 8; 2409 if (nregs + slots <= 8) /* passed through register ? */ 2410 nregs += slots; 2411 else 2412 break; 2413 } 2414 2415 a->args_in_regs = i; 2416 a->regs_for_args = nregs; 2417 a->ostack_for_args = 0; 2418 a->bstack_for_args = 0; 2419 2420 /* the rest arguments are passed through stack */ 2421 for (; i < m->nr_args; i++) { 2422 stack_slots = (m->arg_size[i] + 7) / 8; 2423 a->bstack_for_args += stack_slots * 8; 2424 a->ostack_for_args = a->ostack_for_args + stack_slots * 8; 2425 } 2426 2427 return 0; 2428 } 2429 2430 static void clear_garbage(struct jit_ctx *ctx, int reg, int effective_bytes) 2431 { 2432 if (effective_bytes) { 2433 int garbage_bits = 64 - 8 * effective_bytes; 2434 #ifdef CONFIG_CPU_BIG_ENDIAN 2435 /* garbage bits are at the right end */ 2436 emit(A64_LSR(1, reg, reg, garbage_bits), ctx); 2437 emit(A64_LSL(1, reg, reg, garbage_bits), ctx); 2438 #else 2439 /* garbage bits are at the left end */ 2440 emit(A64_LSL(1, reg, reg, garbage_bits), ctx); 2441 emit(A64_LSR(1, reg, reg, garbage_bits), ctx); 2442 #endif 2443 } 2444 } 2445 2446 static void save_args(struct jit_ctx *ctx, int bargs_off, int oargs_off, 2447 const struct btf_func_model *m, 2448 const struct arg_aux *a, 2449 bool for_call_origin) 2450 { 2451 int i; 2452 int reg; 2453 int doff; 2454 int soff; 2455 int slots; 2456 u8 tmp = bpf2a64[TMP_REG_1]; 2457 2458 /* store arguments to the stack for the bpf program, or restore 2459 * arguments from stack for the original function 2460 */ 2461 for (reg = 0; reg < a->regs_for_args; reg++) { 2462 emit(for_call_origin ? 2463 A64_LDR64I(reg, A64_SP, bargs_off) : 2464 A64_STR64I(reg, A64_SP, bargs_off), 2465 ctx); 2466 bargs_off += 8; 2467 } 2468 2469 soff = 32; /* on stack arguments start from FP + 32 */ 2470 doff = (for_call_origin ? oargs_off : bargs_off); 2471 2472 /* save on stack arguments */ 2473 for (i = a->args_in_regs; i < m->nr_args; i++) { 2474 slots = (m->arg_size[i] + 7) / 8; 2475 /* verifier ensures arg_size <= 16, so slots equals 1 or 2 */ 2476 while (slots-- > 0) { 2477 emit(A64_LDR64I(tmp, A64_FP, soff), ctx); 2478 /* if there is unused space in the last slot, clear 2479 * the garbage contained in the space. 2480 */ 2481 if (slots == 0 && !for_call_origin) 2482 clear_garbage(ctx, tmp, m->arg_size[i] % 8); 2483 emit(A64_STR64I(tmp, A64_SP, doff), ctx); 2484 soff += 8; 2485 doff += 8; 2486 } 2487 } 2488 } 2489 2490 static void restore_args(struct jit_ctx *ctx, int bargs_off, int nregs) 2491 { 2492 int reg; 2493 2494 for (reg = 0; reg < nregs; reg++) { 2495 emit(A64_LDR64I(reg, A64_SP, bargs_off), ctx); 2496 bargs_off += 8; 2497 } 2498 } 2499 2500 static bool is_struct_ops_tramp(const struct bpf_tramp_links *fentry_links) 2501 { 2502 return fentry_links->nr_links == 1 && 2503 fentry_links->links[0]->link.type == BPF_LINK_TYPE_STRUCT_OPS; 2504 } 2505 2506 static void store_func_meta(struct jit_ctx *ctx, u64 func_meta, int func_meta_off) 2507 { 2508 emit_a64_mov_i64(A64_R(10), func_meta, ctx); 2509 emit(A64_STR64I(A64_R(10), A64_SP, func_meta_off), ctx); 2510 } 2511 2512 /* Based on the x86's implementation of arch_prepare_bpf_trampoline(). 2513 * 2514 * bpf prog and function entry before bpf trampoline hooked: 2515 * mov x9, lr 2516 * nop 2517 * 2518 * bpf prog and function entry after bpf trampoline hooked: 2519 * mov x9, lr 2520 * bl <bpf_trampoline or plt> 2521 * 2522 */ 2523 static int prepare_trampoline(struct jit_ctx *ctx, struct bpf_tramp_image *im, 2524 struct bpf_tramp_links *tlinks, void *func_addr, 2525 const struct btf_func_model *m, 2526 const struct arg_aux *a, 2527 u32 flags) 2528 { 2529 int i; 2530 int stack_size; 2531 int retaddr_off; 2532 int regs_off; 2533 int retval_off; 2534 int bargs_off; 2535 int func_meta_off; 2536 int ip_off; 2537 int run_ctx_off; 2538 int oargs_off; 2539 int nfuncargs; 2540 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY]; 2541 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT]; 2542 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN]; 2543 bool save_ret; 2544 __le32 **branches = NULL; 2545 bool is_struct_ops = is_struct_ops_tramp(fentry); 2546 int cookie_off, cookie_cnt, cookie_bargs_off; 2547 int fsession_cnt = bpf_fsession_cnt(tlinks); 2548 u64 func_meta; 2549 2550 /* trampoline stack layout: 2551 * [ parent ip ] 2552 * [ FP ] 2553 * SP + retaddr_off [ self ip ] 2554 * [ FP ] 2555 * 2556 * [ padding ] align SP to multiples of 16 2557 * 2558 * [ x20 ] callee saved reg x20 2559 * SP + regs_off [ x19 ] callee saved reg x19 2560 * 2561 * SP + retval_off [ return value ] BPF_TRAMP_F_CALL_ORIG or 2562 * BPF_TRAMP_F_RET_FENTRY_RET 2563 * [ arg reg N ] 2564 * [ ... ] 2565 * SP + bargs_off [ arg reg 1 ] for bpf 2566 * 2567 * SP + func_meta_off [ regs count, etc ] 2568 * 2569 * SP + ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag 2570 * 2571 * [ stack cookie N ] 2572 * [ ... ] 2573 * SP + cookie_off [ stack cookie 1 ] 2574 * 2575 * SP + run_ctx_off [ bpf_tramp_run_ctx ] 2576 * 2577 * [ stack arg N ] 2578 * [ ... ] 2579 * SP + oargs_off [ stack arg 1 ] for original func 2580 */ 2581 2582 stack_size = 0; 2583 oargs_off = stack_size; 2584 if (flags & BPF_TRAMP_F_CALL_ORIG) 2585 stack_size += a->ostack_for_args; 2586 2587 run_ctx_off = stack_size; 2588 /* room for bpf_tramp_run_ctx */ 2589 stack_size += round_up(sizeof(struct bpf_tramp_run_ctx), 8); 2590 2591 cookie_off = stack_size; 2592 /* room for session cookies */ 2593 cookie_cnt = bpf_fsession_cookie_cnt(tlinks); 2594 stack_size += cookie_cnt * 8; 2595 2596 ip_off = stack_size; 2597 /* room for IP address argument */ 2598 if (flags & BPF_TRAMP_F_IP_ARG) 2599 stack_size += 8; 2600 2601 func_meta_off = stack_size; 2602 /* room for function metadata, such as regs count */ 2603 stack_size += 8; 2604 2605 bargs_off = stack_size; 2606 /* room for args */ 2607 nfuncargs = a->regs_for_args + a->bstack_for_args / 8; 2608 stack_size += 8 * nfuncargs; 2609 2610 /* room for return value */ 2611 retval_off = stack_size; 2612 save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET); 2613 if (save_ret) 2614 stack_size += 8; 2615 2616 /* room for callee saved registers, currently x19 and x20 are used */ 2617 regs_off = stack_size; 2618 stack_size += 16; 2619 2620 /* round up to multiples of 16 to avoid SPAlignmentFault */ 2621 stack_size = round_up(stack_size, 16); 2622 2623 /* return address locates above FP */ 2624 retaddr_off = stack_size + 8; 2625 2626 if (flags & BPF_TRAMP_F_INDIRECT) { 2627 /* 2628 * Indirect call for bpf_struct_ops 2629 */ 2630 emit_kcfi(cfi_get_func_hash(func_addr), ctx); 2631 } 2632 /* bpf trampoline may be invoked by 3 instruction types: 2633 * 1. bl, attached to bpf prog or kernel function via short jump 2634 * 2. br, attached to bpf prog or kernel function via long jump 2635 * 3. blr, working as a function pointer, used by struct_ops. 2636 * So BTI_JC should used here to support both br and blr. 2637 */ 2638 emit_bti(A64_BTI_JC, ctx); 2639 2640 /* x9 is not set for struct_ops */ 2641 if (!is_struct_ops) { 2642 /* frame for parent function */ 2643 emit(A64_PUSH(A64_FP, A64_R(9), A64_SP), ctx); 2644 emit(A64_MOV(1, A64_FP, A64_SP), ctx); 2645 } 2646 2647 /* frame for patched function for tracing, or caller for struct_ops */ 2648 emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx); 2649 emit(A64_MOV(1, A64_FP, A64_SP), ctx); 2650 2651 /* allocate stack space */ 2652 emit(A64_SUB_I(1, A64_SP, A64_SP, stack_size), ctx); 2653 2654 if (flags & BPF_TRAMP_F_IP_ARG) { 2655 /* save ip address of the traced function */ 2656 emit_addr_mov_i64(A64_R(10), (const u64)func_addr, ctx); 2657 emit(A64_STR64I(A64_R(10), A64_SP, ip_off), ctx); 2658 } 2659 2660 /* save function metadata */ 2661 func_meta = nfuncargs; 2662 store_func_meta(ctx, func_meta, func_meta_off); 2663 2664 /* save args for bpf */ 2665 save_args(ctx, bargs_off, oargs_off, m, a, false); 2666 2667 /* save callee saved registers */ 2668 emit(A64_STR64I(A64_R(19), A64_SP, regs_off), ctx); 2669 emit(A64_STR64I(A64_R(20), A64_SP, regs_off + 8), ctx); 2670 2671 if (flags & BPF_TRAMP_F_CALL_ORIG) { 2672 /* for the first pass, assume the worst case */ 2673 if (!ctx->image) 2674 ctx->idx += 4; 2675 else 2676 emit_a64_mov_i64(A64_R(0), (const u64)im, ctx); 2677 emit_call((const u64)__bpf_tramp_enter, ctx); 2678 } 2679 2680 if (fsession_cnt) { 2681 /* clear all the session cookies' value */ 2682 emit(A64_MOVZ(1, A64_R(10), 0, 0), ctx); 2683 for (int i = 0; i < cookie_cnt; i++) 2684 emit(A64_STR64I(A64_R(10), A64_SP, cookie_off + 8 * i), ctx); 2685 /* clear the return value to make sure fentry always gets 0 */ 2686 emit(A64_STR64I(A64_R(10), A64_SP, retval_off), ctx); 2687 } 2688 2689 cookie_bargs_off = (bargs_off - cookie_off) / 8; 2690 for (i = 0; i < fentry->nr_links; i++) { 2691 if (bpf_prog_calls_session_cookie(fentry->links[i])) { 2692 u64 meta = func_meta | (cookie_bargs_off << BPF_TRAMP_COOKIE_INDEX_SHIFT); 2693 2694 store_func_meta(ctx, meta, func_meta_off); 2695 cookie_bargs_off--; 2696 } 2697 invoke_bpf_prog(ctx, fentry->links[i], bargs_off, 2698 retval_off, run_ctx_off, 2699 flags & BPF_TRAMP_F_RET_FENTRY_RET); 2700 } 2701 2702 if (fmod_ret->nr_links) { 2703 branches = kcalloc(fmod_ret->nr_links, sizeof(__le32 *), 2704 GFP_KERNEL); 2705 if (!branches) 2706 return -ENOMEM; 2707 2708 invoke_bpf_mod_ret(ctx, fmod_ret, bargs_off, retval_off, 2709 run_ctx_off, branches); 2710 } 2711 2712 if (flags & BPF_TRAMP_F_CALL_ORIG) { 2713 /* save args for original func */ 2714 save_args(ctx, bargs_off, oargs_off, m, a, true); 2715 /* call original func */ 2716 emit(A64_LDR64I(A64_R(10), A64_SP, retaddr_off), ctx); 2717 emit(A64_ADR(A64_LR, AARCH64_INSN_SIZE * 2), ctx); 2718 emit(A64_RET(A64_R(10)), ctx); 2719 /* store return value */ 2720 emit(A64_STR64I(A64_R(0), A64_SP, retval_off), ctx); 2721 /* reserve a nop for bpf_tramp_image_put */ 2722 im->ip_after_call = ctx->ro_image + ctx->idx; 2723 emit(A64_NOP, ctx); 2724 } 2725 2726 /* update the branches saved in invoke_bpf_mod_ret with cbnz */ 2727 for (i = 0; i < fmod_ret->nr_links && ctx->image != NULL; i++) { 2728 int offset = &ctx->image[ctx->idx] - branches[i]; 2729 *branches[i] = cpu_to_le32(A64_CBNZ(1, A64_R(10), offset)); 2730 } 2731 2732 /* set the "is_return" flag for fsession */ 2733 func_meta |= (1ULL << BPF_TRAMP_IS_RETURN_SHIFT); 2734 if (fsession_cnt) 2735 store_func_meta(ctx, func_meta, func_meta_off); 2736 2737 cookie_bargs_off = (bargs_off - cookie_off) / 8; 2738 for (i = 0; i < fexit->nr_links; i++) { 2739 if (bpf_prog_calls_session_cookie(fexit->links[i])) { 2740 u64 meta = func_meta | (cookie_bargs_off << BPF_TRAMP_COOKIE_INDEX_SHIFT); 2741 2742 store_func_meta(ctx, meta, func_meta_off); 2743 cookie_bargs_off--; 2744 } 2745 invoke_bpf_prog(ctx, fexit->links[i], bargs_off, retval_off, 2746 run_ctx_off, false); 2747 } 2748 2749 if (flags & BPF_TRAMP_F_CALL_ORIG) { 2750 im->ip_epilogue = ctx->ro_image + ctx->idx; 2751 /* for the first pass, assume the worst case */ 2752 if (!ctx->image) 2753 ctx->idx += 4; 2754 else 2755 emit_a64_mov_i64(A64_R(0), (const u64)im, ctx); 2756 emit_call((const u64)__bpf_tramp_exit, ctx); 2757 } 2758 2759 if (flags & BPF_TRAMP_F_RESTORE_REGS) 2760 restore_args(ctx, bargs_off, a->regs_for_args); 2761 2762 /* restore callee saved register x19 and x20 */ 2763 emit(A64_LDR64I(A64_R(19), A64_SP, regs_off), ctx); 2764 emit(A64_LDR64I(A64_R(20), A64_SP, regs_off + 8), ctx); 2765 2766 if (save_ret) 2767 emit(A64_LDR64I(A64_R(0), A64_SP, retval_off), ctx); 2768 2769 /* reset SP */ 2770 emit(A64_MOV(1, A64_SP, A64_FP), ctx); 2771 2772 if (is_struct_ops) { 2773 emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx); 2774 emit(A64_RET(A64_LR), ctx); 2775 } else { 2776 /* pop frames */ 2777 emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx); 2778 emit(A64_POP(A64_FP, A64_R(9), A64_SP), ctx); 2779 2780 if (flags & BPF_TRAMP_F_SKIP_FRAME) { 2781 /* skip patched function, return to parent */ 2782 emit(A64_MOV(1, A64_LR, A64_R(9)), ctx); 2783 emit(A64_RET(A64_R(9)), ctx); 2784 } else { 2785 /* return to patched function */ 2786 emit(A64_MOV(1, A64_R(10), A64_LR), ctx); 2787 emit(A64_MOV(1, A64_LR, A64_R(9)), ctx); 2788 emit(A64_RET(A64_R(10)), ctx); 2789 } 2790 } 2791 2792 kfree(branches); 2793 2794 return ctx->idx; 2795 } 2796 2797 bool bpf_jit_supports_fsession(void) 2798 { 2799 return true; 2800 } 2801 2802 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, 2803 struct bpf_tramp_links *tlinks, void *func_addr) 2804 { 2805 struct jit_ctx ctx = { 2806 .image = NULL, 2807 .idx = 0, 2808 }; 2809 struct bpf_tramp_image im; 2810 struct arg_aux aaux; 2811 int ret; 2812 2813 ret = calc_arg_aux(m, &aaux); 2814 if (ret < 0) 2815 return ret; 2816 2817 ret = prepare_trampoline(&ctx, &im, tlinks, func_addr, m, &aaux, flags); 2818 if (ret < 0) 2819 return ret; 2820 2821 return ret < 0 ? ret : ret * AARCH64_INSN_SIZE; 2822 } 2823 2824 void *arch_alloc_bpf_trampoline(unsigned int size) 2825 { 2826 return bpf_prog_pack_alloc(size, jit_fill_hole); 2827 } 2828 2829 void arch_free_bpf_trampoline(void *image, unsigned int size) 2830 { 2831 bpf_prog_pack_free(image, size); 2832 } 2833 2834 int arch_protect_bpf_trampoline(void *image, unsigned int size) 2835 { 2836 return 0; 2837 } 2838 2839 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *ro_image, 2840 void *ro_image_end, const struct btf_func_model *m, 2841 u32 flags, struct bpf_tramp_links *tlinks, 2842 void *func_addr) 2843 { 2844 u32 size = ro_image_end - ro_image; 2845 struct arg_aux aaux; 2846 void *image, *tmp; 2847 int ret; 2848 2849 /* image doesn't need to be in module memory range, so we can 2850 * use kvmalloc. 2851 */ 2852 image = kvmalloc(size, GFP_KERNEL); 2853 if (!image) 2854 return -ENOMEM; 2855 2856 struct jit_ctx ctx = { 2857 .image = image, 2858 .ro_image = ro_image, 2859 .idx = 0, 2860 .write = true, 2861 }; 2862 2863 2864 jit_fill_hole(image, (unsigned int)(ro_image_end - ro_image)); 2865 ret = calc_arg_aux(m, &aaux); 2866 if (ret) 2867 goto out; 2868 ret = prepare_trampoline(&ctx, im, tlinks, func_addr, m, &aaux, flags); 2869 2870 if (ret > 0 && validate_code(&ctx) < 0) { 2871 ret = -EINVAL; 2872 goto out; 2873 } 2874 2875 if (ret > 0) 2876 ret *= AARCH64_INSN_SIZE; 2877 2878 tmp = bpf_arch_text_copy(ro_image, image, size); 2879 if (IS_ERR(tmp)) { 2880 ret = PTR_ERR(tmp); 2881 goto out; 2882 } 2883 2884 out: 2885 kvfree(image); 2886 return ret; 2887 } 2888 2889 static bool is_long_jump(void *ip, void *target) 2890 { 2891 long offset; 2892 2893 /* NULL target means this is a NOP */ 2894 if (!target) 2895 return false; 2896 2897 offset = (long)target - (long)ip; 2898 return offset < -SZ_128M || offset >= SZ_128M; 2899 } 2900 2901 static int gen_branch_or_nop(enum aarch64_insn_branch_type type, void *ip, 2902 void *addr, void *plt, u32 *insn) 2903 { 2904 void *target; 2905 2906 if (!addr) { 2907 *insn = aarch64_insn_gen_nop(); 2908 return 0; 2909 } 2910 2911 if (is_long_jump(ip, addr)) 2912 target = plt; 2913 else 2914 target = addr; 2915 2916 *insn = aarch64_insn_gen_branch_imm((unsigned long)ip, 2917 (unsigned long)target, 2918 type); 2919 2920 return *insn != AARCH64_BREAK_FAULT ? 0 : -EFAULT; 2921 } 2922 2923 /* Replace the branch instruction from @ip to @old_addr in a bpf prog or a bpf 2924 * trampoline with the branch instruction from @ip to @new_addr. If @old_addr 2925 * or @new_addr is NULL, the old or new instruction is NOP. 2926 * 2927 * When @ip is the bpf prog entry, a bpf trampoline is being attached or 2928 * detached. Since bpf trampoline and bpf prog are allocated separately with 2929 * vmalloc, the address distance may exceed 128MB, the maximum branch range. 2930 * So long jump should be handled. 2931 * 2932 * When a bpf prog is constructed, a plt pointing to empty trampoline 2933 * dummy_tramp is placed at the end: 2934 * 2935 * bpf_prog: 2936 * mov x9, lr 2937 * nop // patchsite 2938 * ... 2939 * ret 2940 * 2941 * plt: 2942 * ldr x10, target 2943 * br x10 2944 * target: 2945 * .quad dummy_tramp // plt target 2946 * 2947 * This is also the state when no trampoline is attached. 2948 * 2949 * When a short-jump bpf trampoline is attached, the patchsite is patched 2950 * to a bl instruction to the trampoline directly: 2951 * 2952 * bpf_prog: 2953 * mov x9, lr 2954 * bl <short-jump bpf trampoline address> // patchsite 2955 * ... 2956 * ret 2957 * 2958 * plt: 2959 * ldr x10, target 2960 * br x10 2961 * target: 2962 * .quad dummy_tramp // plt target 2963 * 2964 * When a long-jump bpf trampoline is attached, the plt target is filled with 2965 * the trampoline address and the patchsite is patched to a bl instruction to 2966 * the plt: 2967 * 2968 * bpf_prog: 2969 * mov x9, lr 2970 * bl plt // patchsite 2971 * ... 2972 * ret 2973 * 2974 * plt: 2975 * ldr x10, target 2976 * br x10 2977 * target: 2978 * .quad <long-jump bpf trampoline address> // plt target 2979 * 2980 * The dummy_tramp is used to prevent another CPU from jumping to unknown 2981 * locations during the patching process, making the patching process easier. 2982 */ 2983 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type old_t, 2984 enum bpf_text_poke_type new_t, void *old_addr, 2985 void *new_addr) 2986 { 2987 int ret; 2988 u32 old_insn; 2989 u32 new_insn; 2990 u32 replaced; 2991 struct bpf_plt *plt = NULL; 2992 unsigned long size = 0UL; 2993 unsigned long offset = ~0UL; 2994 enum aarch64_insn_branch_type branch_type; 2995 char namebuf[KSYM_NAME_LEN]; 2996 void *image = NULL; 2997 u64 plt_target = 0ULL; 2998 bool poking_bpf_entry; 2999 3000 if (!__bpf_address_lookup((unsigned long)ip, &size, &offset, namebuf)) 3001 /* Only poking bpf text is supported. Since kernel function 3002 * entry is set up by ftrace, we reply on ftrace to poke kernel 3003 * functions. 3004 */ 3005 return -ENOTSUPP; 3006 3007 image = ip - offset; 3008 /* zero offset means we're poking bpf prog entry */ 3009 poking_bpf_entry = (offset == 0UL); 3010 3011 /* bpf prog entry, find plt and the real patchsite */ 3012 if (poking_bpf_entry) { 3013 /* plt locates at the end of bpf prog */ 3014 plt = image + size - PLT_TARGET_OFFSET; 3015 3016 /* skip to the nop instruction in bpf prog entry: 3017 * bti c // if BTI enabled 3018 * mov x9, x30 3019 * nop 3020 */ 3021 ip = image + POKE_OFFSET * AARCH64_INSN_SIZE; 3022 } 3023 3024 /* long jump is only possible at bpf prog entry */ 3025 if (WARN_ON((is_long_jump(ip, new_addr) || is_long_jump(ip, old_addr)) && 3026 !poking_bpf_entry)) 3027 return -EINVAL; 3028 3029 branch_type = old_t == BPF_MOD_CALL ? AARCH64_INSN_BRANCH_LINK : 3030 AARCH64_INSN_BRANCH_NOLINK; 3031 if (gen_branch_or_nop(branch_type, ip, old_addr, plt, &old_insn) < 0) 3032 return -EFAULT; 3033 3034 branch_type = new_t == BPF_MOD_CALL ? AARCH64_INSN_BRANCH_LINK : 3035 AARCH64_INSN_BRANCH_NOLINK; 3036 if (gen_branch_or_nop(branch_type, ip, new_addr, plt, &new_insn) < 0) 3037 return -EFAULT; 3038 3039 if (is_long_jump(ip, new_addr)) 3040 plt_target = (u64)new_addr; 3041 else if (is_long_jump(ip, old_addr)) 3042 /* if the old target is a long jump and the new target is not, 3043 * restore the plt target to dummy_tramp, so there is always a 3044 * legal and harmless address stored in plt target, and we'll 3045 * never jump from plt to an unknown place. 3046 */ 3047 plt_target = (u64)&dummy_tramp; 3048 3049 if (plt_target) { 3050 /* non-zero plt_target indicates we're patching a bpf prog, 3051 * which is read only. 3052 */ 3053 if (set_memory_rw(PAGE_MASK & ((uintptr_t)&plt->target), 1)) 3054 return -EFAULT; 3055 WRITE_ONCE(plt->target, plt_target); 3056 set_memory_ro(PAGE_MASK & ((uintptr_t)&plt->target), 1); 3057 /* since plt target points to either the new trampoline 3058 * or dummy_tramp, even if another CPU reads the old plt 3059 * target value before fetching the bl instruction to plt, 3060 * it will be brought back by dummy_tramp, so no barrier is 3061 * required here. 3062 */ 3063 } 3064 3065 /* if the old target and the new target are both long jumps, no 3066 * patching is required 3067 */ 3068 if (old_insn == new_insn) 3069 return 0; 3070 3071 mutex_lock(&text_mutex); 3072 if (aarch64_insn_read(ip, &replaced)) { 3073 ret = -EFAULT; 3074 goto out; 3075 } 3076 3077 if (replaced != old_insn) { 3078 ret = -EFAULT; 3079 goto out; 3080 } 3081 3082 /* We call aarch64_insn_patch_text_nosync() to replace instruction 3083 * atomically, so no other CPUs will fetch a half-new and half-old 3084 * instruction. But there is chance that another CPU executes the 3085 * old instruction after the patching operation finishes (e.g., 3086 * pipeline not flushed, or icache not synchronized yet). 3087 * 3088 * 1. when a new trampoline is attached, it is not a problem for 3089 * different CPUs to jump to different trampolines temporarily. 3090 * 3091 * 2. when an old trampoline is freed, we should wait for all other 3092 * CPUs to exit the trampoline and make sure the trampoline is no 3093 * longer reachable, since bpf_tramp_image_put() function already 3094 * uses percpu_ref and task-based rcu to do the sync, no need to call 3095 * the sync version here, see bpf_tramp_image_put() for details. 3096 */ 3097 ret = aarch64_insn_patch_text_nosync(ip, new_insn); 3098 out: 3099 mutex_unlock(&text_mutex); 3100 3101 return ret; 3102 } 3103 3104 bool bpf_jit_supports_ptr_xchg(void) 3105 { 3106 return true; 3107 } 3108 3109 bool bpf_jit_supports_exceptions(void) 3110 { 3111 /* We unwind through both kernel frames starting from within bpf_throw 3112 * call and BPF frames. Therefore we require FP unwinder to be enabled 3113 * to walk kernel frames and reach BPF frames in the stack trace. 3114 * ARM64 kernel is always compiled with CONFIG_FRAME_POINTER=y 3115 */ 3116 return true; 3117 } 3118 3119 bool bpf_jit_supports_arena(void) 3120 { 3121 return true; 3122 } 3123 3124 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena) 3125 { 3126 if (!in_arena) 3127 return true; 3128 switch (insn->code) { 3129 case BPF_STX | BPF_ATOMIC | BPF_W: 3130 case BPF_STX | BPF_ATOMIC | BPF_DW: 3131 if (!bpf_atomic_is_load_store(insn) && 3132 !cpus_have_cap(ARM64_HAS_LSE_ATOMICS)) 3133 return false; 3134 } 3135 return true; 3136 } 3137 3138 bool bpf_jit_supports_percpu_insn(void) 3139 { 3140 return true; 3141 } 3142 3143 bool bpf_jit_bypass_spec_v4(void) 3144 { 3145 /* In case of arm64, we rely on the firmware mitigation of Speculative 3146 * Store Bypass as controlled via the ssbd kernel parameter. Whenever 3147 * the mitigation is enabled, it works for all of the kernel code with 3148 * no need to provide any additional instructions. Therefore, skip 3149 * inserting nospec insns against Spectre v4. 3150 */ 3151 return true; 3152 } 3153 3154 bool bpf_jit_supports_timed_may_goto(void) 3155 { 3156 return true; 3157 } 3158 3159 bool bpf_jit_inlines_helper_call(s32 imm) 3160 { 3161 switch (imm) { 3162 case BPF_FUNC_get_smp_processor_id: 3163 case BPF_FUNC_get_current_task: 3164 case BPF_FUNC_get_current_task_btf: 3165 return true; 3166 default: 3167 return false; 3168 } 3169 } 3170 3171 void bpf_jit_free(struct bpf_prog *prog) 3172 { 3173 if (prog->jited) { 3174 struct arm64_jit_data *jit_data = prog->aux->jit_data; 3175 struct bpf_binary_header *hdr; 3176 void __percpu *priv_stack_ptr; 3177 int priv_stack_alloc_sz; 3178 3179 /* 3180 * If we fail the final pass of JIT (from jit_subprogs), 3181 * the program may not be finalized yet. Call finalize here 3182 * before freeing it. 3183 */ 3184 if (jit_data) { 3185 bpf_jit_binary_pack_finalize(jit_data->ro_header, jit_data->header); 3186 kfree(jit_data); 3187 } 3188 prog->bpf_func = (void *)prog->bpf_func - cfi_get_offset(); 3189 hdr = bpf_jit_binary_pack_hdr(prog); 3190 bpf_jit_binary_pack_free(hdr, NULL); 3191 priv_stack_ptr = prog->aux->priv_stack_ptr; 3192 if (priv_stack_ptr) { 3193 priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 16) + 3194 2 * PRIV_STACK_GUARD_SZ; 3195 priv_stack_check_guard(priv_stack_ptr, priv_stack_alloc_sz, prog); 3196 free_percpu(prog->aux->priv_stack_ptr); 3197 } 3198 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog)); 3199 } 3200 3201 bpf_prog_unlock_free(prog); 3202 } 3203