1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/segment.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10
11 /* constant macro */
12 #define NULL_SEGNO ((unsigned int)(~0))
13 #define NULL_SECNO ((unsigned int)(~0))
14
15 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
17
18 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 #define F2FS_MIN_META_SEGMENTS 8 /* SB + 2 (CP + SIT + NAT) + SSA */
20
21 #define INVALID_MTIME ULLONG_MAX /* no valid blocks in a segment/section */
22
23 /* L: Logical segment # in volume, R: Relative segment # in main area */
24 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno)
25 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno)
26
27 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA)
28 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
29 #define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA))
30
sanity_check_seg_type(struct f2fs_sb_info * sbi,unsigned short seg_type)31 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
32 unsigned short seg_type)
33 {
34 f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
35 }
36
37 #define MAIN_BLKADDR(sbi) \
38 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \
39 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
40 #define SEG0_BLKADDR(sbi) \
41 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \
42 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
43
44 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
45 #define MAIN_SECS(sbi) ((sbi)->total_sections)
46
47 #define TOTAL_SEGS(sbi) \
48 (SM_I(sbi) ? SM_I(sbi)->segment_count : \
49 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
50 #define TOTAL_BLKS(sbi) (SEGS_TO_BLKS(sbi, TOTAL_SEGS(sbi)))
51
52 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
53 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \
54 (sbi)->log_blocks_per_seg))
55
56 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
57 (SEGS_TO_BLKS(sbi, GET_R2L_SEGNO(FREE_I(sbi), segno))))
58
59 #define NEXT_FREE_BLKADDR(sbi, curseg) \
60 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
61
62 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
63 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
64 (BLKS_TO_SEGS(sbi, GET_SEGOFF_FROM_SEG0(sbi, blk_addr)))
65 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
66 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (BLKS_PER_SEG(sbi) - 1))
67
68 #define GET_SEGNO(sbi, blk_addr) \
69 ((!__is_valid_data_blkaddr(blk_addr)) ? \
70 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
71 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
72 #ifdef CONFIG_BLK_DEV_ZONED
73 #define CAP_BLKS_PER_SEC(sbi) \
74 (BLKS_PER_SEC(sbi) - (sbi)->unusable_blocks_per_sec)
75 #define CAP_SEGS_PER_SEC(sbi) \
76 (SEGS_PER_SEC(sbi) - \
77 BLKS_TO_SEGS(sbi, (sbi)->unusable_blocks_per_sec))
78 #else
79 #define CAP_BLKS_PER_SEC(sbi) BLKS_PER_SEC(sbi)
80 #define CAP_SEGS_PER_SEC(sbi) SEGS_PER_SEC(sbi)
81 #endif
82 #define GET_START_SEG_FROM_SEC(sbi, segno) \
83 (rounddown(segno, SEGS_PER_SEC(sbi)))
84 #define GET_SEC_FROM_SEG(sbi, segno) \
85 (((segno) == -1) ? -1 : (segno) / SEGS_PER_SEC(sbi))
86 #define GET_SEG_FROM_SEC(sbi, secno) \
87 ((secno) * SEGS_PER_SEC(sbi))
88 #define GET_ZONE_FROM_SEC(sbi, secno) \
89 (((secno) == -1) ? -1 : (secno) / (sbi)->secs_per_zone)
90 #define GET_ZONE_FROM_SEG(sbi, segno) \
91 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
92
93 #define SUMS_PER_BLOCK (F2FS_BLKSIZE / F2FS_SUM_BLKSIZE)
94 #define GET_SUM_BLOCK(sbi, segno) \
95 (SM_I(sbi)->ssa_blkaddr + (segno / SUMS_PER_BLOCK))
96 #define GET_SUM_BLKOFF(segno) (segno % SUMS_PER_BLOCK)
97 #define SUM_BLK_PAGE_ADDR(folio, segno) \
98 (folio_address(folio) + GET_SUM_BLKOFF(segno) * F2FS_SUM_BLKSIZE)
99
100 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
101 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
102
103 #define SIT_ENTRY_OFFSET(sit_i, segno) \
104 ((segno) % (sit_i)->sents_per_block)
105 #define SIT_BLOCK_OFFSET(segno) \
106 ((segno) / SIT_ENTRY_PER_BLOCK)
107 #define START_SEGNO(segno) \
108 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
109 #define SIT_BLK_CNT(sbi) \
110 DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
111 #define f2fs_bitmap_size(nr) \
112 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
113
114 #define SECTOR_FROM_BLOCK(blk_addr) \
115 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
116 #define SECTOR_TO_BLOCK(sectors) \
117 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
118
119 /*
120 * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
121 * LFS writes data sequentially with cleaning operations.
122 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
123 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
124 * fragmented segment which has similar aging degree.
125 */
126 enum {
127 LFS = 0,
128 SSR,
129 AT_SSR,
130 };
131
132 /*
133 * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
134 * GC_CB is based on cost-benefit algorithm.
135 * GC_GREEDY is based on greedy algorithm.
136 * GC_AT is based on age-threshold algorithm.
137 */
138 enum {
139 GC_CB = 0,
140 GC_GREEDY,
141 GC_AT,
142 ALLOC_NEXT,
143 FLUSH_DEVICE,
144 MAX_GC_POLICY,
145 };
146
147 /*
148 * BG_GC means the background cleaning job.
149 * FG_GC means the on-demand cleaning job.
150 */
151 enum {
152 BG_GC = 0,
153 FG_GC,
154 };
155
156 /* for a function parameter to select a victim segment */
157 struct victim_sel_policy {
158 int alloc_mode; /* LFS or SSR */
159 int gc_mode; /* GC_CB or GC_GREEDY */
160 unsigned long *dirty_bitmap; /* dirty segment/section bitmap */
161 unsigned int max_search; /*
162 * maximum # of segments/sections
163 * to search
164 */
165 unsigned int offset; /* last scanned bitmap offset */
166 unsigned int ofs_unit; /* bitmap search unit */
167 unsigned int min_cost; /* minimum cost */
168 unsigned long long oldest_age; /* oldest age of segments having the same min cost */
169 unsigned int min_segno; /* segment # having min. cost */
170 unsigned long long age; /* mtime of GCed section*/
171 unsigned long long age_threshold;/* age threshold */
172 bool one_time_gc; /* one time GC */
173 };
174
175 struct seg_entry {
176 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
177 unsigned int valid_blocks:10; /* # of valid blocks */
178 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
179 unsigned int padding:6; /* padding */
180 unsigned char *cur_valid_map; /* validity bitmap of blocks */
181 #ifdef CONFIG_F2FS_CHECK_FS
182 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */
183 #endif
184 /*
185 * # of valid blocks and the validity bitmap stored in the last
186 * checkpoint pack. This information is used by the SSR mode.
187 */
188 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
189 unsigned char *discard_map;
190 unsigned long long mtime; /* modification time of the segment */
191 };
192
193 struct sec_entry {
194 unsigned int valid_blocks; /* # of valid blocks in a section */
195 unsigned int ckpt_valid_blocks; /* # of valid blocks last cp in a section */
196 };
197
198 #define MAX_SKIP_GC_COUNT 16
199
200 struct revoke_entry {
201 struct list_head list;
202 block_t old_addr; /* for revoking when fail to commit */
203 pgoff_t index;
204 };
205
206 struct sit_info {
207 block_t sit_base_addr; /* start block address of SIT area */
208 block_t sit_blocks; /* # of blocks used by SIT area */
209 block_t written_valid_blocks; /* # of valid blocks in main area */
210 char *bitmap; /* all bitmaps pointer */
211 char *sit_bitmap; /* SIT bitmap pointer */
212 #ifdef CONFIG_F2FS_CHECK_FS
213 char *sit_bitmap_mir; /* SIT bitmap mirror */
214
215 /* bitmap of segments to be ignored by GC in case of errors */
216 unsigned long *invalid_segmap;
217 #endif
218 unsigned int bitmap_size; /* SIT bitmap size */
219
220 unsigned long *tmp_map; /* bitmap for temporal use */
221 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
222 unsigned int dirty_sentries; /* # of dirty sentries */
223 unsigned int sents_per_block; /* # of SIT entries per block */
224 struct rw_semaphore sentry_lock; /* to protect SIT cache */
225 struct seg_entry *sentries; /* SIT segment-level cache */
226 struct sec_entry *sec_entries; /* SIT section-level cache */
227
228 /* for cost-benefit algorithm in cleaning procedure */
229 unsigned long long elapsed_time; /* elapsed time after mount */
230 unsigned long long mounted_time; /* mount time */
231 unsigned long long min_mtime; /* min. modification time */
232 unsigned long long max_mtime; /* max. modification time */
233 unsigned long long dirty_min_mtime; /* rerange candidates in GC_AT */
234 unsigned long long dirty_max_mtime; /* rerange candidates in GC_AT */
235
236 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
237 };
238
239 struct free_segmap_info {
240 unsigned int start_segno; /* start segment number logically */
241 unsigned int free_segments; /* # of free segments */
242 unsigned int free_sections; /* # of free sections */
243 spinlock_t segmap_lock; /* free segmap lock */
244 unsigned long *free_segmap; /* free segment bitmap */
245 unsigned long *free_secmap; /* free section bitmap */
246 };
247
248 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
249 enum dirty_type {
250 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
251 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
252 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
253 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
254 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
255 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
256 DIRTY, /* to count # of dirty segments */
257 PRE, /* to count # of entirely obsolete segments */
258 NR_DIRTY_TYPE
259 };
260
261 struct dirty_seglist_info {
262 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
263 unsigned long *dirty_secmap;
264 struct mutex seglist_lock; /* lock for segment bitmaps */
265 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
266 unsigned long *victim_secmap; /* background GC victims */
267 unsigned long *pinned_secmap; /* pinned victims from foreground GC */
268 unsigned int pinned_secmap_cnt; /* count of victims which has pinned data */
269 bool enable_pin_section; /* enable pinning section */
270 };
271
272 /* for active log information */
273 struct curseg_info {
274 struct mutex curseg_mutex; /* lock for consistency */
275 struct f2fs_summary_block *sum_blk; /* cached summary block */
276 struct rw_semaphore journal_rwsem; /* protect journal area */
277 struct f2fs_journal *journal; /* cached journal info */
278 unsigned char alloc_type; /* current allocation type */
279 unsigned short seg_type; /* segment type like CURSEG_XXX_TYPE */
280 unsigned int segno; /* current segment number */
281 unsigned short next_blkoff; /* next block offset to write */
282 unsigned int zone; /* current zone number */
283 unsigned int next_segno; /* preallocated segment */
284 int fragment_remained_chunk; /* remained block size in a chunk for block fragmentation mode */
285 bool inited; /* indicate inmem log is inited */
286 };
287
288 struct sit_entry_set {
289 struct list_head set_list; /* link with all sit sets */
290 unsigned int start_segno; /* start segno of sits in set */
291 unsigned int entry_cnt; /* the # of sit entries in set */
292 };
293
294 /*
295 * inline functions
296 */
CURSEG_I(struct f2fs_sb_info * sbi,int type)297 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
298 {
299 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
300 }
301
is_curseg(struct f2fs_sb_info * sbi,unsigned int segno)302 static inline bool is_curseg(struct f2fs_sb_info *sbi, unsigned int segno)
303 {
304 int i;
305
306 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
307 if (segno == CURSEG_I(sbi, i)->segno)
308 return true;
309 }
310 return false;
311 }
312
is_cursec(struct f2fs_sb_info * sbi,unsigned int secno)313 static inline bool is_cursec(struct f2fs_sb_info *sbi, unsigned int secno)
314 {
315 int i;
316
317 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
318 if (secno == GET_SEC_FROM_SEG(sbi, CURSEG_I(sbi, i)->segno))
319 return true;
320 }
321 return false;
322 }
323
get_seg_entry(struct f2fs_sb_info * sbi,unsigned int segno)324 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
325 unsigned int segno)
326 {
327 struct sit_info *sit_i = SIT_I(sbi);
328 return &sit_i->sentries[segno];
329 }
330
get_sec_entry(struct f2fs_sb_info * sbi,unsigned int segno)331 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
332 unsigned int segno)
333 {
334 struct sit_info *sit_i = SIT_I(sbi);
335 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
336 }
337
get_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)338 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
339 unsigned int segno, bool use_section)
340 {
341 /*
342 * In order to get # of valid blocks in a section instantly from many
343 * segments, f2fs manages two counting structures separately.
344 */
345 if (use_section && __is_large_section(sbi))
346 return get_sec_entry(sbi, segno)->valid_blocks;
347 else
348 return get_seg_entry(sbi, segno)->valid_blocks;
349 }
350
get_ckpt_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)351 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
352 unsigned int segno, bool use_section)
353 {
354 if (use_section && __is_large_section(sbi))
355 return get_sec_entry(sbi, segno)->ckpt_valid_blocks;
356 else
357 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
358 }
359
set_ckpt_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno)360 static inline void set_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
361 unsigned int segno)
362 {
363 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
364 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
365 unsigned int blocks = 0;
366 int i;
367
368 for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) {
369 struct seg_entry *se = get_seg_entry(sbi, start_segno);
370
371 blocks += se->ckpt_valid_blocks;
372 }
373 get_sec_entry(sbi, segno)->ckpt_valid_blocks = blocks;
374 }
375
376 #ifdef CONFIG_F2FS_CHECK_FS
sanity_check_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno)377 static inline void sanity_check_valid_blocks(struct f2fs_sb_info *sbi,
378 unsigned int segno)
379 {
380 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
381 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
382 unsigned int blocks = 0;
383 int i;
384
385 for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) {
386 struct seg_entry *se = get_seg_entry(sbi, start_segno);
387
388 blocks += se->ckpt_valid_blocks;
389 }
390
391 if (blocks != get_sec_entry(sbi, segno)->ckpt_valid_blocks) {
392 f2fs_err(sbi,
393 "Inconsistent ckpt valid blocks: "
394 "seg entry(%d) vs sec entry(%d) at secno %d",
395 blocks, get_sec_entry(sbi, segno)->ckpt_valid_blocks, secno);
396 f2fs_bug_on(sbi, 1);
397 }
398 }
399 #else
sanity_check_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno)400 static inline void sanity_check_valid_blocks(struct f2fs_sb_info *sbi,
401 unsigned int segno)
402 {
403 }
404 #endif
seg_info_from_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)405 static inline void seg_info_from_raw_sit(struct seg_entry *se,
406 struct f2fs_sit_entry *rs)
407 {
408 se->valid_blocks = GET_SIT_VBLOCKS(rs);
409 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
410 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
411 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
412 #ifdef CONFIG_F2FS_CHECK_FS
413 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
414 #endif
415 se->type = GET_SIT_TYPE(rs);
416 se->mtime = le64_to_cpu(rs->mtime);
417 }
418
__seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)419 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
420 struct f2fs_sit_entry *rs)
421 {
422 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
423 se->valid_blocks;
424 rs->vblocks = cpu_to_le16(raw_vblocks);
425 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
426 rs->mtime = cpu_to_le64(se->mtime);
427 }
428
seg_info_to_sit_folio(struct f2fs_sb_info * sbi,struct folio * folio,unsigned int start)429 static inline void seg_info_to_sit_folio(struct f2fs_sb_info *sbi,
430 struct folio *folio, unsigned int start)
431 {
432 struct f2fs_sit_block *raw_sit;
433 struct seg_entry *se;
434 struct f2fs_sit_entry *rs;
435 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
436 (unsigned long)MAIN_SEGS(sbi));
437 int i;
438
439 raw_sit = folio_address(folio);
440 memset(raw_sit, 0, PAGE_SIZE);
441 for (i = 0; i < end - start; i++) {
442 rs = &raw_sit->entries[i];
443 se = get_seg_entry(sbi, start + i);
444 __seg_info_to_raw_sit(se, rs);
445 }
446 }
447
seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)448 static inline void seg_info_to_raw_sit(struct seg_entry *se,
449 struct f2fs_sit_entry *rs)
450 {
451 __seg_info_to_raw_sit(se, rs);
452
453 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
454 se->ckpt_valid_blocks = se->valid_blocks;
455 }
456
find_next_inuse(struct free_segmap_info * free_i,unsigned int max,unsigned int segno)457 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
458 unsigned int max, unsigned int segno)
459 {
460 unsigned int ret;
461 spin_lock(&free_i->segmap_lock);
462 ret = find_next_bit(free_i->free_segmap, max, segno);
463 spin_unlock(&free_i->segmap_lock);
464 return ret;
465 }
466
__set_free(struct f2fs_sb_info * sbi,unsigned int segno)467 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
468 {
469 struct free_segmap_info *free_i = FREE_I(sbi);
470 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
471 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
472 unsigned int next;
473
474 spin_lock(&free_i->segmap_lock);
475 clear_bit(segno, free_i->free_segmap);
476 free_i->free_segments++;
477
478 next = find_next_bit(free_i->free_segmap,
479 start_segno + SEGS_PER_SEC(sbi), start_segno);
480 if (next >= start_segno + f2fs_usable_segs_in_sec(sbi)) {
481 clear_bit(secno, free_i->free_secmap);
482 free_i->free_sections++;
483 }
484 spin_unlock(&free_i->segmap_lock);
485 }
486
__set_inuse(struct f2fs_sb_info * sbi,unsigned int segno)487 static inline void __set_inuse(struct f2fs_sb_info *sbi,
488 unsigned int segno)
489 {
490 struct free_segmap_info *free_i = FREE_I(sbi);
491 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
492
493 set_bit(segno, free_i->free_segmap);
494 free_i->free_segments--;
495 if (!test_and_set_bit(secno, free_i->free_secmap))
496 free_i->free_sections--;
497 }
498
__set_test_and_free(struct f2fs_sb_info * sbi,unsigned int segno,bool inmem)499 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
500 unsigned int segno, bool inmem)
501 {
502 struct free_segmap_info *free_i = FREE_I(sbi);
503 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
504 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
505 unsigned int next;
506 bool ret;
507
508 spin_lock(&free_i->segmap_lock);
509 ret = test_and_clear_bit(segno, free_i->free_segmap);
510 if (!ret)
511 goto unlock_out;
512
513 free_i->free_segments++;
514
515 if (!inmem && is_cursec(sbi, secno))
516 goto unlock_out;
517
518 /* check large section */
519 next = find_next_bit(free_i->free_segmap,
520 start_segno + SEGS_PER_SEC(sbi), start_segno);
521 if (next < start_segno + f2fs_usable_segs_in_sec(sbi))
522 goto unlock_out;
523
524 ret = test_and_clear_bit(secno, free_i->free_secmap);
525 if (!ret)
526 goto unlock_out;
527
528 free_i->free_sections++;
529
530 if (GET_SEC_FROM_SEG(sbi, sbi->next_victim_seg[BG_GC]) == secno)
531 sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
532 if (GET_SEC_FROM_SEG(sbi, sbi->next_victim_seg[FG_GC]) == secno)
533 sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
534
535 unlock_out:
536 spin_unlock(&free_i->segmap_lock);
537 }
538
__set_test_and_inuse(struct f2fs_sb_info * sbi,unsigned int segno)539 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
540 unsigned int segno)
541 {
542 struct free_segmap_info *free_i = FREE_I(sbi);
543 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
544
545 spin_lock(&free_i->segmap_lock);
546 if (!test_and_set_bit(segno, free_i->free_segmap)) {
547 free_i->free_segments--;
548 if (!test_and_set_bit(secno, free_i->free_secmap))
549 free_i->free_sections--;
550 }
551 spin_unlock(&free_i->segmap_lock);
552 }
553
get_sit_bitmap(struct f2fs_sb_info * sbi,void * dst_addr)554 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
555 void *dst_addr)
556 {
557 struct sit_info *sit_i = SIT_I(sbi);
558
559 #ifdef CONFIG_F2FS_CHECK_FS
560 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
561 sit_i->bitmap_size))
562 f2fs_bug_on(sbi, 1);
563 #endif
564 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
565 }
566
written_block_count(struct f2fs_sb_info * sbi)567 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
568 {
569 return SIT_I(sbi)->written_valid_blocks;
570 }
571
free_segments(struct f2fs_sb_info * sbi)572 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
573 {
574 return FREE_I(sbi)->free_segments;
575 }
576
reserved_segments(struct f2fs_sb_info * sbi)577 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
578 {
579 return SM_I(sbi)->reserved_segments;
580 }
581
free_sections(struct f2fs_sb_info * sbi)582 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
583 {
584 return FREE_I(sbi)->free_sections;
585 }
586
prefree_segments(struct f2fs_sb_info * sbi)587 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
588 {
589 return DIRTY_I(sbi)->nr_dirty[PRE];
590 }
591
dirty_segments(struct f2fs_sb_info * sbi)592 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
593 {
594 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
595 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
596 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
597 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
598 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
599 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
600 }
601
overprovision_segments(struct f2fs_sb_info * sbi)602 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
603 {
604 return SM_I(sbi)->ovp_segments;
605 }
606
reserved_sections(struct f2fs_sb_info * sbi)607 static inline int reserved_sections(struct f2fs_sb_info *sbi)
608 {
609 return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
610 }
611
get_left_section_blocks(struct f2fs_sb_info * sbi,enum log_type type,unsigned int segno)612 static inline unsigned int get_left_section_blocks(struct f2fs_sb_info *sbi,
613 enum log_type type, unsigned int segno)
614 {
615 if (f2fs_lfs_mode(sbi)) {
616 unsigned int used_blocks = __is_large_section(sbi) ? SEGS_TO_BLKS(sbi,
617 (segno - GET_START_SEG_FROM_SEC(sbi, segno))) : 0;
618 return CAP_BLKS_PER_SEC(sbi) - used_blocks -
619 CURSEG_I(sbi, type)->next_blkoff;
620 }
621 return CAP_BLKS_PER_SEC(sbi) - get_ckpt_valid_blocks(sbi, segno, true);
622 }
623
has_curseg_enough_space(struct f2fs_sb_info * sbi,unsigned int node_blocks,unsigned int data_blocks,unsigned int dent_blocks)624 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
625 unsigned int node_blocks, unsigned int data_blocks,
626 unsigned int dent_blocks)
627 {
628 unsigned int segno, left_blocks, blocks;
629 int i;
630
631 /* check current data/node sections in the worst case. */
632 for (i = CURSEG_HOT_DATA; i < NR_PERSISTENT_LOG; i++) {
633 segno = CURSEG_I(sbi, i)->segno;
634
635 if (unlikely(segno == NULL_SEGNO))
636 return false;
637
638 left_blocks = get_left_section_blocks(sbi, i, segno);
639
640 blocks = i <= CURSEG_COLD_DATA ? data_blocks : node_blocks;
641 if (blocks > left_blocks)
642 return false;
643 }
644
645 /* check current data section for dentry blocks. */
646 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
647
648 if (unlikely(segno == NULL_SEGNO))
649 return false;
650
651 left_blocks = get_left_section_blocks(sbi, CURSEG_HOT_DATA, segno);
652
653 if (dent_blocks > left_blocks)
654 return false;
655 return true;
656 }
657
658 /*
659 * calculate needed sections for dirty node/dentry and call
660 * has_curseg_enough_space, please note that, it needs to account
661 * dirty data as well in lfs mode when checkpoint is disabled.
662 */
__get_secs_required(struct f2fs_sb_info * sbi,unsigned int * lower_p,unsigned int * upper_p,bool * curseg_p)663 static inline void __get_secs_required(struct f2fs_sb_info *sbi,
664 unsigned int *lower_p, unsigned int *upper_p, bool *curseg_p)
665 {
666 unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
667 get_pages(sbi, F2FS_DIRTY_DENTS) +
668 get_pages(sbi, F2FS_DIRTY_IMETA);
669 unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
670 unsigned int total_data_blocks = 0;
671 unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi);
672 unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi);
673 unsigned int data_secs = 0;
674 unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi);
675 unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi);
676 unsigned int data_blocks = 0;
677
678 if (f2fs_lfs_mode(sbi)) {
679 total_data_blocks = get_pages(sbi, F2FS_DIRTY_DATA);
680 data_secs = total_data_blocks / CAP_BLKS_PER_SEC(sbi);
681 data_blocks = total_data_blocks % CAP_BLKS_PER_SEC(sbi);
682 }
683
684 if (lower_p)
685 *lower_p = node_secs + dent_secs + data_secs;
686 if (upper_p)
687 *upper_p = node_secs + dent_secs + data_secs +
688 (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0) +
689 (data_blocks ? 1 : 0);
690 if (curseg_p)
691 *curseg_p = has_curseg_enough_space(sbi,
692 node_blocks, data_blocks, dent_blocks);
693 }
694
has_not_enough_free_secs(struct f2fs_sb_info * sbi,int freed,int needed)695 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
696 int freed, int needed)
697 {
698 unsigned int free_secs, lower_secs, upper_secs;
699 bool curseg_space;
700
701 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
702 return false;
703
704 __get_secs_required(sbi, &lower_secs, &upper_secs, &curseg_space);
705
706 free_secs = free_sections(sbi) + freed;
707 lower_secs += needed + reserved_sections(sbi);
708 upper_secs += needed + reserved_sections(sbi);
709
710 if (free_secs > upper_secs)
711 return false;
712 if (free_secs <= lower_secs)
713 return true;
714 return !curseg_space;
715 }
716
has_enough_free_secs(struct f2fs_sb_info * sbi,int freed,int needed)717 static inline bool has_enough_free_secs(struct f2fs_sb_info *sbi,
718 int freed, int needed)
719 {
720 return !has_not_enough_free_secs(sbi, freed, needed);
721 }
722
has_enough_free_blks(struct f2fs_sb_info * sbi)723 static inline bool has_enough_free_blks(struct f2fs_sb_info *sbi)
724 {
725 unsigned int total_free_blocks = 0;
726 unsigned int avail_user_block_count;
727
728 spin_lock(&sbi->stat_lock);
729
730 avail_user_block_count = get_available_block_count(sbi, NULL, true);
731 total_free_blocks = avail_user_block_count - (unsigned int)valid_user_blocks(sbi);
732
733 spin_unlock(&sbi->stat_lock);
734
735 return total_free_blocks > 0;
736 }
737
f2fs_is_checkpoint_ready(struct f2fs_sb_info * sbi)738 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
739 {
740 if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
741 return true;
742 if (likely(has_enough_free_secs(sbi, 0, 0)))
743 return true;
744 if (!f2fs_lfs_mode(sbi) &&
745 likely(has_enough_free_blks(sbi)))
746 return true;
747 return false;
748 }
749
excess_prefree_segs(struct f2fs_sb_info * sbi)750 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
751 {
752 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
753 }
754
utilization(struct f2fs_sb_info * sbi)755 static inline int utilization(struct f2fs_sb_info *sbi)
756 {
757 return div_u64((u64)valid_user_blocks(sbi) * 100,
758 sbi->user_block_count);
759 }
760
761 /*
762 * Sometimes f2fs may be better to drop out-of-place update policy.
763 * And, users can control the policy through sysfs entries.
764 * There are five policies with triggering conditions as follows.
765 * F2FS_IPU_FORCE - all the time,
766 * F2FS_IPU_SSR - if SSR mode is activated,
767 * F2FS_IPU_UTIL - if FS utilization is over threashold,
768 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
769 * threashold,
770 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
771 * storages. IPU will be triggered only if the # of dirty
772 * pages over min_fsync_blocks. (=default option)
773 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
774 * F2FS_IPU_NOCACHE - disable IPU bio cache.
775 * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
776 * FI_OPU_WRITE flag.
777 * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
778 */
779 #define DEF_MIN_IPU_UTIL 70
780 #define DEF_MIN_FSYNC_BLOCKS 8
781 #define DEF_MIN_HOT_BLOCKS 16
782
783 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */
784
785 #define F2FS_IPU_DISABLE 0
786
787 /* Modification on enum should be synchronized with ipu_mode_names array */
788 enum {
789 F2FS_IPU_FORCE,
790 F2FS_IPU_SSR,
791 F2FS_IPU_UTIL,
792 F2FS_IPU_SSR_UTIL,
793 F2FS_IPU_FSYNC,
794 F2FS_IPU_ASYNC,
795 F2FS_IPU_NOCACHE,
796 F2FS_IPU_HONOR_OPU_WRITE,
797 F2FS_IPU_MAX,
798 };
799
IS_F2FS_IPU_DISABLE(struct f2fs_sb_info * sbi)800 static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi)
801 {
802 return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE;
803 }
804
805 #define F2FS_IPU_POLICY(name) \
806 static inline bool IS_##name(struct f2fs_sb_info *sbi) \
807 { \
808 return SM_I(sbi)->ipu_policy & BIT(name); \
809 }
810
811 F2FS_IPU_POLICY(F2FS_IPU_FORCE);
812 F2FS_IPU_POLICY(F2FS_IPU_SSR);
813 F2FS_IPU_POLICY(F2FS_IPU_UTIL);
814 F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL);
815 F2FS_IPU_POLICY(F2FS_IPU_FSYNC);
816 F2FS_IPU_POLICY(F2FS_IPU_ASYNC);
817 F2FS_IPU_POLICY(F2FS_IPU_NOCACHE);
818 F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE);
819
curseg_segno(struct f2fs_sb_info * sbi,int type)820 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
821 int type)
822 {
823 struct curseg_info *curseg = CURSEG_I(sbi, type);
824 return curseg->segno;
825 }
826
curseg_alloc_type(struct f2fs_sb_info * sbi,int type)827 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
828 int type)
829 {
830 struct curseg_info *curseg = CURSEG_I(sbi, type);
831 return curseg->alloc_type;
832 }
833
valid_main_segno(struct f2fs_sb_info * sbi,unsigned int segno)834 static inline bool valid_main_segno(struct f2fs_sb_info *sbi,
835 unsigned int segno)
836 {
837 return segno <= (MAIN_SEGS(sbi) - 1);
838 }
839
verify_fio_blkaddr(struct f2fs_io_info * fio)840 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
841 {
842 struct f2fs_sb_info *sbi = fio->sbi;
843
844 if (__is_valid_data_blkaddr(fio->old_blkaddr))
845 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
846 META_GENERIC : DATA_GENERIC);
847 verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
848 META_GENERIC : DATA_GENERIC_ENHANCE);
849 }
850
851 /*
852 * Summary block is always treated as an invalid block
853 */
check_block_count(struct f2fs_sb_info * sbi,int segno,struct f2fs_sit_entry * raw_sit)854 static inline int check_block_count(struct f2fs_sb_info *sbi,
855 int segno, struct f2fs_sit_entry *raw_sit)
856 {
857 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
858 int valid_blocks = 0;
859 int cur_pos = 0, next_pos;
860 unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
861
862 /* check bitmap with valid block count */
863 do {
864 if (is_valid) {
865 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
866 usable_blks_per_seg,
867 cur_pos);
868 valid_blocks += next_pos - cur_pos;
869 } else
870 next_pos = find_next_bit_le(&raw_sit->valid_map,
871 usable_blks_per_seg,
872 cur_pos);
873 cur_pos = next_pos;
874 is_valid = !is_valid;
875 } while (cur_pos < usable_blks_per_seg);
876
877 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
878 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
879 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
880 set_sbi_flag(sbi, SBI_NEED_FSCK);
881 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
882 return -EFSCORRUPTED;
883 }
884
885 if (usable_blks_per_seg < BLKS_PER_SEG(sbi))
886 f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
887 BLKS_PER_SEG(sbi),
888 usable_blks_per_seg) != BLKS_PER_SEG(sbi));
889
890 /* check segment usage, and check boundary of a given segment number */
891 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
892 || !valid_main_segno(sbi, segno))) {
893 f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
894 GET_SIT_VBLOCKS(raw_sit), segno);
895 set_sbi_flag(sbi, SBI_NEED_FSCK);
896 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
897 return -EFSCORRUPTED;
898 }
899 return 0;
900 }
901
current_sit_addr(struct f2fs_sb_info * sbi,unsigned int start)902 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
903 unsigned int start)
904 {
905 struct sit_info *sit_i = SIT_I(sbi);
906 unsigned int offset = SIT_BLOCK_OFFSET(start);
907 block_t blk_addr = sit_i->sit_base_addr + offset;
908
909 f2fs_bug_on(sbi, !valid_main_segno(sbi, start));
910
911 #ifdef CONFIG_F2FS_CHECK_FS
912 if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
913 f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
914 f2fs_bug_on(sbi, 1);
915 #endif
916
917 /* calculate sit block address */
918 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
919 blk_addr += sit_i->sit_blocks;
920
921 return blk_addr;
922 }
923
next_sit_addr(struct f2fs_sb_info * sbi,pgoff_t block_addr)924 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
925 pgoff_t block_addr)
926 {
927 struct sit_info *sit_i = SIT_I(sbi);
928 block_addr -= sit_i->sit_base_addr;
929 if (block_addr < sit_i->sit_blocks)
930 block_addr += sit_i->sit_blocks;
931 else
932 block_addr -= sit_i->sit_blocks;
933
934 return block_addr + sit_i->sit_base_addr;
935 }
936
set_to_next_sit(struct sit_info * sit_i,unsigned int start)937 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
938 {
939 unsigned int block_off = SIT_BLOCK_OFFSET(start);
940
941 f2fs_change_bit(block_off, sit_i->sit_bitmap);
942 #ifdef CONFIG_F2FS_CHECK_FS
943 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
944 #endif
945 }
946
get_mtime(struct f2fs_sb_info * sbi,bool base_time)947 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
948 bool base_time)
949 {
950 struct sit_info *sit_i = SIT_I(sbi);
951 time64_t diff, now = ktime_get_boottime_seconds();
952
953 if (now >= sit_i->mounted_time)
954 return sit_i->elapsed_time + now - sit_i->mounted_time;
955
956 /* system time is set to the past */
957 if (!base_time) {
958 diff = sit_i->mounted_time - now;
959 if (sit_i->elapsed_time >= diff)
960 return sit_i->elapsed_time - diff;
961 return 0;
962 }
963 return sit_i->elapsed_time;
964 }
965
set_summary(struct f2fs_summary * sum,nid_t nid,unsigned int ofs_in_node,unsigned char version)966 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
967 unsigned int ofs_in_node, unsigned char version)
968 {
969 sum->nid = cpu_to_le32(nid);
970 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
971 sum->version = version;
972 }
973
start_sum_block(struct f2fs_sb_info * sbi)974 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
975 {
976 return __start_cp_addr(sbi) +
977 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
978 }
979
sum_blk_addr(struct f2fs_sb_info * sbi,int base,int type)980 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
981 {
982 return __start_cp_addr(sbi) +
983 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
984 - (base + 1) + type;
985 }
986
sec_usage_check(struct f2fs_sb_info * sbi,unsigned int secno)987 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
988 {
989 if (is_cursec(sbi, secno) || (sbi->cur_victim_sec == secno))
990 return true;
991 return false;
992 }
993
994 /*
995 * It is very important to gather dirty pages and write at once, so that we can
996 * submit a big bio without interfering other data writes.
997 * By default, 512 pages for directory data,
998 * 512 pages (2MB) * 8 for nodes, and
999 * 256 pages * 8 for meta are set.
1000 */
nr_pages_to_skip(struct f2fs_sb_info * sbi,int type)1001 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
1002 {
1003 if (sbi->sb->s_bdi->wb.dirty_exceeded)
1004 return 0;
1005
1006 if (type == DATA)
1007 return BLKS_PER_SEG(sbi);
1008 else if (type == NODE)
1009 return SEGS_TO_BLKS(sbi, 8);
1010 else if (type == META)
1011 return 8 * BIO_MAX_VECS;
1012 else
1013 return 0;
1014 }
1015
1016 /*
1017 * When writing pages, it'd better align nr_to_write for segment size.
1018 */
nr_pages_to_write(struct f2fs_sb_info * sbi,int type,struct writeback_control * wbc)1019 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
1020 struct writeback_control *wbc)
1021 {
1022 long nr_to_write, desired;
1023
1024 if (wbc->sync_mode != WB_SYNC_NONE)
1025 return 0;
1026
1027 nr_to_write = wbc->nr_to_write;
1028 desired = BIO_MAX_VECS;
1029 if (type == NODE)
1030 desired <<= 1;
1031
1032 wbc->nr_to_write = desired;
1033 return desired - nr_to_write;
1034 }
1035
wake_up_discard_thread(struct f2fs_sb_info * sbi,bool force)1036 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
1037 {
1038 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1039 bool wakeup = false;
1040 int i;
1041
1042 if (force)
1043 goto wake_up;
1044
1045 mutex_lock(&dcc->cmd_lock);
1046 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1047 if (i + 1 < dcc->discard_granularity)
1048 break;
1049 if (!list_empty(&dcc->pend_list[i])) {
1050 wakeup = true;
1051 break;
1052 }
1053 }
1054 mutex_unlock(&dcc->cmd_lock);
1055 if (!wakeup || !is_idle(sbi, DISCARD_TIME))
1056 return;
1057 wake_up:
1058 dcc->discard_wake = true;
1059 wake_up_interruptible_all(&dcc->discard_wait_queue);
1060 }
1061