xref: /linux/sound/soc/stm/stm32_sai_sub.c (revision 177bf8620cf4ed290ee170a6c5966adc0924b336)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * STM32 ALSA SoC Digital Audio Interface (SAI) driver.
4  *
5  * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6  * Author(s): Olivier Moysan <olivier.moysan@st.com> for STMicroelectronics.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_platform.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/regmap.h>
17 
18 #include <sound/asoundef.h>
19 #include <sound/core.h>
20 #include <sound/dmaengine_pcm.h>
21 #include <sound/pcm_params.h>
22 
23 #include "stm32_sai.h"
24 
25 #define SAI_FREE_PROTOCOL	0x0
26 #define SAI_SPDIF_PROTOCOL	0x1
27 
28 #define SAI_SLOT_SIZE_AUTO	0x0
29 #define SAI_SLOT_SIZE_16	0x1
30 #define SAI_SLOT_SIZE_32	0x2
31 
32 #define SAI_DATASIZE_8		0x2
33 #define SAI_DATASIZE_10		0x3
34 #define SAI_DATASIZE_16		0x4
35 #define SAI_DATASIZE_20		0x5
36 #define SAI_DATASIZE_24		0x6
37 #define SAI_DATASIZE_32		0x7
38 
39 #define STM_SAI_DAI_NAME_SIZE	15
40 
41 #define STM_SAI_IS_PLAYBACK(ip)	((ip)->dir == SNDRV_PCM_STREAM_PLAYBACK)
42 #define STM_SAI_IS_CAPTURE(ip)	((ip)->dir == SNDRV_PCM_STREAM_CAPTURE)
43 
44 #define STM_SAI_A_ID		0x0
45 #define STM_SAI_B_ID		0x1
46 
47 #define STM_SAI_IS_SUB_A(x)	((x)->id == STM_SAI_A_ID)
48 
49 #define SAI_SYNC_NONE		0x0
50 #define SAI_SYNC_INTERNAL	0x1
51 #define SAI_SYNC_EXTERNAL	0x2
52 
53 #define STM_SAI_PROTOCOL_IS_SPDIF(ip)	((ip)->spdif)
54 #define STM_SAI_HAS_SPDIF(x)	((x)->pdata->conf.has_spdif_pdm)
55 #define STM_SAI_HAS_PDM(x)	((x)->pdata->conf.has_spdif_pdm)
56 #define STM_SAI_HAS_EXT_SYNC(x) (!STM_SAI_IS_F4((x)->pdata))
57 
58 #define SAI_IEC60958_BLOCK_FRAMES	192
59 #define SAI_IEC60958_STATUS_BYTES	24
60 
61 #define SAI_MCLK_NAME_LEN		32
62 #define SAI_RATE_11K			11025
63 #define SAI_MAX_SAMPLE_RATE_8K		192000
64 #define SAI_MAX_SAMPLE_RATE_11K		176400
65 #define SAI_CK_RATE_TOLERANCE		1000 /* ppm */
66 
67 /**
68  * struct stm32_sai_sub_data - private data of SAI sub block (block A or B)
69  * @pdev: device data pointer
70  * @regmap: SAI register map pointer
71  * @regmap_config: SAI sub block register map configuration pointer
72  * @dma_params: dma configuration data for rx or tx channel
73  * @cpu_dai_drv: DAI driver data pointer
74  * @cpu_dai: DAI runtime data pointer
75  * @substream: PCM substream data pointer
76  * @pdata: SAI block parent data pointer
77  * @np_sync_provider: synchronization provider node
78  * @sai_ck: kernel clock feeding the SAI clock generator
79  * @sai_mclk: master clock from SAI mclk provider
80  * @phys_addr: SAI registers physical base address
81  * @mclk_rate: SAI block master clock frequency (Hz). set at init
82  * @id: SAI sub block id corresponding to sub-block A or B
83  * @dir: SAI block direction (playback or capture). set at init
84  * @master: SAI block mode flag. (true=master, false=slave) set at init
85  * @spdif: SAI S/PDIF iec60958 mode flag. set at init
86  * @sai_ck_used: flag set while exclusivity on SAI kernel clock is active
87  * @fmt: SAI block format. relevant only for custom protocols. set at init
88  * @sync: SAI block synchronization mode. (none, internal or external)
89  * @synco: SAI block ext sync source (provider setting). (none, sub-block A/B)
90  * @synci: SAI block ext sync source (client setting). (SAI sync provider index)
91  * @fs_length: frame synchronization length. depends on protocol settings
92  * @slots: rx or tx slot number
93  * @slot_width: rx or tx slot width in bits
94  * @slot_mask: rx or tx active slots mask. set at init or at runtime
95  * @data_size: PCM data width. corresponds to PCM substream width.
96  * @spdif_frm_cnt: S/PDIF playback frame counter
97  * @iec958: iec958 data
98  * @ctrl_lock: control lock
99  * @irq_lock: prevent race condition with IRQ
100  * @set_sai_ck_rate: set SAI kernel clock rate
101  * @put_sai_ck_rate: put SAI kernel clock rate
102  */
103 struct stm32_sai_sub_data {
104 	struct platform_device *pdev;
105 	struct regmap *regmap;
106 	const struct regmap_config *regmap_config;
107 	struct snd_dmaengine_dai_dma_data dma_params;
108 	struct snd_soc_dai_driver cpu_dai_drv;
109 	struct snd_soc_dai *cpu_dai;
110 	struct snd_pcm_substream *substream;
111 	struct stm32_sai_data *pdata;
112 	struct device_node *np_sync_provider;
113 	struct clk *sai_ck;
114 	struct clk *sai_mclk;
115 	dma_addr_t phys_addr;
116 	unsigned int mclk_rate;
117 	unsigned int id;
118 	int dir;
119 	bool master;
120 	bool spdif;
121 	bool sai_ck_used;
122 	int fmt;
123 	int sync;
124 	int synco;
125 	int synci;
126 	int fs_length;
127 	int slots;
128 	int slot_width;
129 	int slot_mask;
130 	int data_size;
131 	unsigned int spdif_frm_cnt;
132 	struct snd_aes_iec958 iec958;
133 	struct mutex ctrl_lock; /* protect resources accessed by controls */
134 	spinlock_t irq_lock; /* used to prevent race condition with IRQ */
135 	int (*set_sai_ck_rate)(struct stm32_sai_sub_data *sai, unsigned int rate);
136 	void (*put_sai_ck_rate)(struct stm32_sai_sub_data *sai);
137 };
138 
139 enum stm32_sai_fifo_th {
140 	STM_SAI_FIFO_TH_EMPTY,
141 	STM_SAI_FIFO_TH_QUARTER,
142 	STM_SAI_FIFO_TH_HALF,
143 	STM_SAI_FIFO_TH_3_QUARTER,
144 	STM_SAI_FIFO_TH_FULL,
145 };
146 
stm32_sai_sub_readable_reg(struct device * dev,unsigned int reg)147 static bool stm32_sai_sub_readable_reg(struct device *dev, unsigned int reg)
148 {
149 	switch (reg) {
150 	case STM_SAI_CR1_REGX:
151 	case STM_SAI_CR2_REGX:
152 	case STM_SAI_FRCR_REGX:
153 	case STM_SAI_SLOTR_REGX:
154 	case STM_SAI_IMR_REGX:
155 	case STM_SAI_SR_REGX:
156 	case STM_SAI_CLRFR_REGX:
157 	case STM_SAI_DR_REGX:
158 	case STM_SAI_PDMCR_REGX:
159 	case STM_SAI_PDMLY_REGX:
160 		return true;
161 	default:
162 		return false;
163 	}
164 }
165 
stm32_sai_sub_volatile_reg(struct device * dev,unsigned int reg)166 static bool stm32_sai_sub_volatile_reg(struct device *dev, unsigned int reg)
167 {
168 	switch (reg) {
169 	case STM_SAI_DR_REGX:
170 	case STM_SAI_SR_REGX:
171 		return true;
172 	default:
173 		return false;
174 	}
175 }
176 
stm32_sai_sub_writeable_reg(struct device * dev,unsigned int reg)177 static bool stm32_sai_sub_writeable_reg(struct device *dev, unsigned int reg)
178 {
179 	switch (reg) {
180 	case STM_SAI_CR1_REGX:
181 	case STM_SAI_CR2_REGX:
182 	case STM_SAI_FRCR_REGX:
183 	case STM_SAI_SLOTR_REGX:
184 	case STM_SAI_IMR_REGX:
185 	case STM_SAI_CLRFR_REGX:
186 	case STM_SAI_DR_REGX:
187 	case STM_SAI_PDMCR_REGX:
188 	case STM_SAI_PDMLY_REGX:
189 		return true;
190 	default:
191 		return false;
192 	}
193 }
194 
stm32_sai_sub_reg_up(struct stm32_sai_sub_data * sai,unsigned int reg,unsigned int mask,unsigned int val)195 static int stm32_sai_sub_reg_up(struct stm32_sai_sub_data *sai,
196 				unsigned int reg, unsigned int mask,
197 				unsigned int val)
198 {
199 	int ret;
200 
201 	ret = clk_enable(sai->pdata->pclk);
202 	if (ret < 0)
203 		return ret;
204 
205 	ret = regmap_update_bits(sai->regmap, reg, mask, val);
206 
207 	clk_disable(sai->pdata->pclk);
208 
209 	return ret;
210 }
211 
stm32_sai_sub_reg_wr(struct stm32_sai_sub_data * sai,unsigned int reg,unsigned int mask,unsigned int val)212 static int stm32_sai_sub_reg_wr(struct stm32_sai_sub_data *sai,
213 				unsigned int reg, unsigned int mask,
214 				unsigned int val)
215 {
216 	int ret;
217 
218 	ret = clk_enable(sai->pdata->pclk);
219 	if (ret < 0)
220 		return ret;
221 
222 	ret = regmap_write_bits(sai->regmap, reg, mask, val);
223 
224 	clk_disable(sai->pdata->pclk);
225 
226 	return ret;
227 }
228 
stm32_sai_sub_reg_rd(struct stm32_sai_sub_data * sai,unsigned int reg,unsigned int * val)229 static int stm32_sai_sub_reg_rd(struct stm32_sai_sub_data *sai,
230 				unsigned int reg, unsigned int *val)
231 {
232 	int ret;
233 
234 	ret = clk_enable(sai->pdata->pclk);
235 	if (ret < 0)
236 		return ret;
237 
238 	ret = regmap_read(sai->regmap, reg, val);
239 
240 	clk_disable(sai->pdata->pclk);
241 
242 	return ret;
243 }
244 
245 static const struct regmap_config stm32_sai_sub_regmap_config_f4 = {
246 	.reg_bits = 32,
247 	.reg_stride = 4,
248 	.val_bits = 32,
249 	.max_register = STM_SAI_DR_REGX,
250 	.readable_reg = stm32_sai_sub_readable_reg,
251 	.volatile_reg = stm32_sai_sub_volatile_reg,
252 	.writeable_reg = stm32_sai_sub_writeable_reg,
253 	.fast_io = true,
254 	.cache_type = REGCACHE_FLAT,
255 };
256 
257 static const struct regmap_config stm32_sai_sub_regmap_config_h7 = {
258 	.reg_bits = 32,
259 	.reg_stride = 4,
260 	.val_bits = 32,
261 	.max_register = STM_SAI_PDMLY_REGX,
262 	.readable_reg = stm32_sai_sub_readable_reg,
263 	.volatile_reg = stm32_sai_sub_volatile_reg,
264 	.writeable_reg = stm32_sai_sub_writeable_reg,
265 	.fast_io = true,
266 	.cache_type = REGCACHE_FLAT,
267 };
268 
snd_pcm_iec958_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)269 static int snd_pcm_iec958_info(struct snd_kcontrol *kcontrol,
270 			       struct snd_ctl_elem_info *uinfo)
271 {
272 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
273 	uinfo->count = 1;
274 
275 	return 0;
276 }
277 
snd_pcm_iec958_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * uctl)278 static int snd_pcm_iec958_get(struct snd_kcontrol *kcontrol,
279 			      struct snd_ctl_elem_value *uctl)
280 {
281 	struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
282 
283 	mutex_lock(&sai->ctrl_lock);
284 	memcpy(uctl->value.iec958.status, sai->iec958.status, 4);
285 	mutex_unlock(&sai->ctrl_lock);
286 
287 	return 0;
288 }
289 
snd_pcm_iec958_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * uctl)290 static int snd_pcm_iec958_put(struct snd_kcontrol *kcontrol,
291 			      struct snd_ctl_elem_value *uctl)
292 {
293 	struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
294 
295 	mutex_lock(&sai->ctrl_lock);
296 	memcpy(sai->iec958.status, uctl->value.iec958.status, 4);
297 	mutex_unlock(&sai->ctrl_lock);
298 
299 	return 0;
300 }
301 
302 static const struct snd_kcontrol_new iec958_ctls = {
303 	.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
304 			SNDRV_CTL_ELEM_ACCESS_VOLATILE),
305 	.iface = SNDRV_CTL_ELEM_IFACE_PCM,
306 	.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
307 	.info = snd_pcm_iec958_info,
308 	.get = snd_pcm_iec958_get,
309 	.put = snd_pcm_iec958_put,
310 };
311 
312 struct stm32_sai_mclk_data {
313 	struct clk_hw hw;
314 	unsigned long freq;
315 	struct stm32_sai_sub_data *sai_data;
316 };
317 
318 #define to_mclk_data(_hw) container_of(_hw, struct stm32_sai_mclk_data, hw)
319 #define STM32_SAI_MAX_CLKS 1
320 
stm32_sai_get_clk_div(struct stm32_sai_sub_data * sai,unsigned long input_rate,unsigned long output_rate)321 static int stm32_sai_get_clk_div(struct stm32_sai_sub_data *sai,
322 				 unsigned long input_rate,
323 				 unsigned long output_rate)
324 {
325 	int version = sai->pdata->conf.version;
326 	int div;
327 
328 	div = DIV_ROUND_CLOSEST(input_rate, output_rate);
329 	if (div > SAI_XCR1_MCKDIV_MAX(version) || div <= 0) {
330 		dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
331 		return -EINVAL;
332 	}
333 	dev_dbg(&sai->pdev->dev, "SAI divider %d\n", div);
334 
335 	if (input_rate % div)
336 		dev_dbg(&sai->pdev->dev,
337 			"Rate not accurate. requested (%ld), actual (%ld)\n",
338 			output_rate, input_rate / div);
339 
340 	return div;
341 }
342 
stm32_sai_set_clk_div(struct stm32_sai_sub_data * sai,unsigned int div)343 static int stm32_sai_set_clk_div(struct stm32_sai_sub_data *sai,
344 				 unsigned int div)
345 {
346 	int version = sai->pdata->conf.version;
347 	int ret, cr1, mask;
348 
349 	if (div > SAI_XCR1_MCKDIV_MAX(version)) {
350 		dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
351 		return -EINVAL;
352 	}
353 
354 	mask = SAI_XCR1_MCKDIV_MASK(SAI_XCR1_MCKDIV_WIDTH(version));
355 	cr1 = SAI_XCR1_MCKDIV_SET(div);
356 	ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, mask, cr1);
357 	if (ret < 0)
358 		dev_err(&sai->pdev->dev, "Failed to update CR1 register\n");
359 
360 	return ret;
361 }
362 
stm32_sai_rate_accurate(unsigned int max_rate,unsigned int rate)363 static bool stm32_sai_rate_accurate(unsigned int max_rate, unsigned int rate)
364 {
365 	u64 delta, dividend;
366 	int ratio;
367 
368 	ratio = DIV_ROUND_CLOSEST(max_rate, rate);
369 	if (!ratio)
370 		return false;
371 
372 	dividend = mul_u32_u32(1000000, abs(max_rate - (ratio * rate)));
373 	delta = div_u64(dividend, max_rate);
374 
375 	if (delta <= SAI_CK_RATE_TOLERANCE)
376 		return true;
377 
378 	return false;
379 }
380 
stm32_sai_set_parent_clk(struct stm32_sai_sub_data * sai,unsigned int rate)381 static int stm32_sai_set_parent_clk(struct stm32_sai_sub_data *sai,
382 				    unsigned int rate)
383 {
384 	struct platform_device *pdev = sai->pdev;
385 	struct clk *parent_clk = sai->pdata->clk_x8k;
386 	int ret;
387 
388 	if (!(rate % SAI_RATE_11K))
389 		parent_clk = sai->pdata->clk_x11k;
390 
391 	ret = clk_set_parent(sai->sai_ck, parent_clk);
392 	if (ret)
393 		dev_err(&pdev->dev, " Error %d setting sai_ck parent clock. %s",
394 			ret, ret == -EBUSY ?
395 			"Active stream rates conflict\n" : "\n");
396 
397 	return ret;
398 }
399 
stm32_sai_put_parent_rate(struct stm32_sai_sub_data * sai)400 static void stm32_sai_put_parent_rate(struct stm32_sai_sub_data *sai)
401 {
402 	if (sai->sai_ck_used) {
403 		sai->sai_ck_used = false;
404 		clk_rate_exclusive_put(sai->sai_ck);
405 	}
406 }
407 
stm32_sai_set_parent_rate(struct stm32_sai_sub_data * sai,unsigned int rate)408 static int stm32_sai_set_parent_rate(struct stm32_sai_sub_data *sai,
409 				     unsigned int rate)
410 {
411 	struct platform_device *pdev = sai->pdev;
412 	unsigned int sai_ck_rate, sai_ck_max_rate, sai_ck_min_rate, sai_curr_rate, sai_new_rate;
413 	int div, ret;
414 
415 	/*
416 	 * Set minimum and maximum expected kernel clock frequency
417 	 * - mclk on or spdif:
418 	 *   f_sai_ck = MCKDIV * mclk-fs * fs
419 	 *   Here typical 256 ratio is assumed for mclk-fs
420 	 * - mclk off:
421 	 *   f_sai_ck = MCKDIV * FRL * fs
422 	 *   Where FRL=[8..256], MCKDIV=[1..n] (n depends on SAI version)
423 	 *   Set constraint MCKDIV * FRL <= 256, to ensure MCKDIV is in available range
424 	 *   f_sai_ck = sai_ck_max_rate * pow_of_two(FRL) / 256
425 	 */
426 	sai_ck_min_rate = rate * 256;
427 	if (!(rate % SAI_RATE_11K))
428 		sai_ck_max_rate = SAI_MAX_SAMPLE_RATE_11K * 256;
429 	else
430 		sai_ck_max_rate = SAI_MAX_SAMPLE_RATE_8K * 256;
431 
432 	if (!sai->sai_mclk && !STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
433 		sai_ck_min_rate = rate * sai->fs_length;
434 		sai_ck_max_rate /= DIV_ROUND_CLOSEST(256, roundup_pow_of_two(sai->fs_length));
435 	}
436 
437 	/*
438 	 * Request exclusivity, as the clock is shared by SAI sub-blocks and by
439 	 * some SAI instances. This allows to ensure that the rate cannot be
440 	 * changed while one or more SAIs are using the clock.
441 	 */
442 	clk_rate_exclusive_get(sai->sai_ck);
443 	sai->sai_ck_used = true;
444 
445 	/*
446 	 * Check current kernel clock rate. If it gives the expected accuracy
447 	 * return immediately.
448 	 */
449 	sai_curr_rate = clk_get_rate(sai->sai_ck);
450 	dev_dbg(&pdev->dev, "kernel clock rate: min [%u], max [%u], current [%u]",
451 		sai_ck_min_rate, sai_ck_max_rate, sai_curr_rate);
452 	if (stm32_sai_rate_accurate(sai_ck_max_rate, sai_curr_rate) &&
453 	    sai_curr_rate >= sai_ck_min_rate)
454 		return 0;
455 
456 	/*
457 	 * Otherwise try to set the maximum rate and check the new actual rate.
458 	 * If the new rate does not give the expected accuracy, try to set
459 	 * lower rates for the kernel clock.
460 	 */
461 	sai_ck_rate = sai_ck_max_rate;
462 	div = 1;
463 	do {
464 		/* Check new rate accuracy. Return if ok */
465 		sai_new_rate = clk_round_rate(sai->sai_ck, sai_ck_rate);
466 		if (stm32_sai_rate_accurate(sai_ck_rate, sai_new_rate)) {
467 			ret = clk_set_rate(sai->sai_ck, sai_ck_rate);
468 			if (ret) {
469 				dev_err(&pdev->dev, "Error %d setting sai_ck rate. %s",
470 					ret, ret == -EBUSY ?
471 					"Active stream rates may be in conflict\n" : "\n");
472 				goto err;
473 			}
474 
475 			return 0;
476 		}
477 
478 		/* Try a lower frequency */
479 		div++;
480 		sai_ck_rate = sai_ck_max_rate / div;
481 	} while (sai_ck_rate >= sai_ck_min_rate);
482 
483 	/* No accurate rate found */
484 	dev_err(&pdev->dev, "Failed to find an accurate rate");
485 
486 err:
487 	stm32_sai_put_parent_rate(sai);
488 
489 	return -EINVAL;
490 }
491 
stm32_sai_mclk_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)492 static int stm32_sai_mclk_determine_rate(struct clk_hw *hw,
493 					 struct clk_rate_request *req)
494 {
495 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
496 	struct stm32_sai_sub_data *sai = mclk->sai_data;
497 	int div;
498 
499 	div = stm32_sai_get_clk_div(sai, req->best_parent_rate, req->rate);
500 	if (div <= 0)
501 		return -EINVAL;
502 
503 	mclk->freq = req->best_parent_rate / div;
504 
505 	req->rate = mclk->freq;
506 
507 	return 0;
508 }
509 
stm32_sai_mclk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)510 static unsigned long stm32_sai_mclk_recalc_rate(struct clk_hw *hw,
511 						unsigned long parent_rate)
512 {
513 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
514 
515 	return mclk->freq;
516 }
517 
stm32_sai_mclk_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)518 static int stm32_sai_mclk_set_rate(struct clk_hw *hw, unsigned long rate,
519 				   unsigned long parent_rate)
520 {
521 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
522 	struct stm32_sai_sub_data *sai = mclk->sai_data;
523 	int div, ret;
524 
525 	div = stm32_sai_get_clk_div(sai, parent_rate, rate);
526 	if (div < 0)
527 		return div;
528 
529 	ret = stm32_sai_set_clk_div(sai, div);
530 	if (ret)
531 		return ret;
532 
533 	mclk->freq = rate;
534 
535 	return 0;
536 }
537 
stm32_sai_mclk_enable(struct clk_hw * hw)538 static int stm32_sai_mclk_enable(struct clk_hw *hw)
539 {
540 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
541 	struct stm32_sai_sub_data *sai = mclk->sai_data;
542 
543 	dev_dbg(&sai->pdev->dev, "Enable master clock\n");
544 
545 	return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
546 				    SAI_XCR1_MCKEN, SAI_XCR1_MCKEN);
547 }
548 
stm32_sai_mclk_disable(struct clk_hw * hw)549 static void stm32_sai_mclk_disable(struct clk_hw *hw)
550 {
551 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
552 	struct stm32_sai_sub_data *sai = mclk->sai_data;
553 
554 	dev_dbg(&sai->pdev->dev, "Disable master clock\n");
555 
556 	stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, SAI_XCR1_MCKEN, 0);
557 }
558 
559 static const struct clk_ops mclk_ops = {
560 	.enable = stm32_sai_mclk_enable,
561 	.disable = stm32_sai_mclk_disable,
562 	.recalc_rate = stm32_sai_mclk_recalc_rate,
563 	.determine_rate = stm32_sai_mclk_determine_rate,
564 	.set_rate = stm32_sai_mclk_set_rate,
565 };
566 
stm32_sai_add_mclk_provider(struct stm32_sai_sub_data * sai)567 static int stm32_sai_add_mclk_provider(struct stm32_sai_sub_data *sai)
568 {
569 	struct clk_hw *hw;
570 	struct stm32_sai_mclk_data *mclk;
571 	struct device *dev = &sai->pdev->dev;
572 	const char *pname = __clk_get_name(sai->sai_ck);
573 	char *mclk_name, *p, *s = (char *)pname;
574 	int ret, i = 0;
575 
576 	mclk = devm_kzalloc(dev, sizeof(*mclk), GFP_KERNEL);
577 	if (!mclk)
578 		return -ENOMEM;
579 
580 	mclk_name = devm_kcalloc(dev, sizeof(char),
581 				 SAI_MCLK_NAME_LEN, GFP_KERNEL);
582 	if (!mclk_name)
583 		return -ENOMEM;
584 
585 	/*
586 	 * Forge mclk clock name from parent clock name and suffix.
587 	 * String after "_" char is stripped in parent name.
588 	 */
589 	p = mclk_name;
590 	while (*s && *s != '_' && (i < (SAI_MCLK_NAME_LEN - 7))) {
591 		*p++ = *s++;
592 		i++;
593 	}
594 	STM_SAI_IS_SUB_A(sai) ? strcat(p, "a_mclk") : strcat(p, "b_mclk");
595 
596 	mclk->hw.init = CLK_HW_INIT(mclk_name, pname, &mclk_ops, 0);
597 	mclk->sai_data = sai;
598 	hw = &mclk->hw;
599 
600 	dev_dbg(dev, "Register master clock %s\n", mclk_name);
601 	ret = devm_clk_hw_register(&sai->pdev->dev, hw);
602 	if (ret) {
603 		dev_err(dev, "mclk register returned %d\n", ret);
604 		return ret;
605 	}
606 	sai->sai_mclk = hw->clk;
607 
608 	/* register mclk provider */
609 	return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, hw);
610 }
611 
stm32_sai_isr(int irq,void * devid)612 static irqreturn_t stm32_sai_isr(int irq, void *devid)
613 {
614 	struct stm32_sai_sub_data *sai = (struct stm32_sai_sub_data *)devid;
615 	struct platform_device *pdev = sai->pdev;
616 	unsigned int sr, imr, flags;
617 	snd_pcm_state_t status = SNDRV_PCM_STATE_RUNNING;
618 
619 	stm32_sai_sub_reg_rd(sai, STM_SAI_IMR_REGX, &imr);
620 	stm32_sai_sub_reg_rd(sai, STM_SAI_SR_REGX, &sr);
621 
622 	flags = sr & imr;
623 	if (!flags)
624 		return IRQ_NONE;
625 
626 	stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX, SAI_XCLRFR_MASK,
627 			     SAI_XCLRFR_MASK);
628 
629 	if (!sai->substream) {
630 		dev_err(&pdev->dev, "Device stopped. Spurious IRQ 0x%x\n", sr);
631 		return IRQ_NONE;
632 	}
633 
634 	if (flags & SAI_XIMR_OVRUDRIE) {
635 		dev_err(&pdev->dev, "IRQ %s\n",
636 			STM_SAI_IS_PLAYBACK(sai) ? "underrun" : "overrun");
637 		status = SNDRV_PCM_STATE_XRUN;
638 	}
639 
640 	if (flags & SAI_XIMR_MUTEDETIE)
641 		dev_dbg(&pdev->dev, "IRQ mute detected\n");
642 
643 	if (flags & SAI_XIMR_WCKCFGIE) {
644 		dev_err(&pdev->dev, "IRQ wrong clock configuration\n");
645 		status = SNDRV_PCM_STATE_DISCONNECTED;
646 	}
647 
648 	if (flags & SAI_XIMR_CNRDYIE)
649 		dev_err(&pdev->dev, "IRQ Codec not ready\n");
650 
651 	if (flags & SAI_XIMR_AFSDETIE) {
652 		dev_err(&pdev->dev, "IRQ Anticipated frame synchro\n");
653 		status = SNDRV_PCM_STATE_XRUN;
654 	}
655 
656 	if (flags & SAI_XIMR_LFSDETIE) {
657 		dev_err(&pdev->dev, "IRQ Late frame synchro\n");
658 		status = SNDRV_PCM_STATE_XRUN;
659 	}
660 
661 	spin_lock(&sai->irq_lock);
662 	if (status != SNDRV_PCM_STATE_RUNNING && sai->substream)
663 		snd_pcm_stop_xrun(sai->substream);
664 	spin_unlock(&sai->irq_lock);
665 
666 	return IRQ_HANDLED;
667 }
668 
stm32_sai_set_sysclk(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,int dir)669 static int stm32_sai_set_sysclk(struct snd_soc_dai *cpu_dai,
670 				int clk_id, unsigned int freq, int dir)
671 {
672 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
673 	int ret;
674 
675 	if (dir == SND_SOC_CLOCK_OUT && sai->sai_mclk) {
676 		ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
677 					   SAI_XCR1_NODIV,
678 					 freq ? 0 : SAI_XCR1_NODIV);
679 		if (ret < 0)
680 			return ret;
681 
682 		/* Assume shutdown if requested frequency is 0Hz */
683 		if (!freq) {
684 			/* Release mclk rate only if rate was actually set */
685 			if (sai->mclk_rate) {
686 				clk_rate_exclusive_put(sai->sai_mclk);
687 				sai->mclk_rate = 0;
688 			}
689 
690 			if (sai->put_sai_ck_rate)
691 				sai->put_sai_ck_rate(sai);
692 
693 			return 0;
694 		}
695 
696 		/* If master clock is used, configure SAI kernel clock now */
697 		ret = sai->set_sai_ck_rate(sai, freq);
698 		if (ret)
699 			return ret;
700 
701 		ret = clk_set_rate_exclusive(sai->sai_mclk, freq);
702 		if (ret) {
703 			dev_err(cpu_dai->dev,
704 				ret == -EBUSY ?
705 				"Active streams have incompatible rates" :
706 				"Could not set mclk rate\n");
707 			return ret;
708 		}
709 
710 		dev_dbg(cpu_dai->dev, "SAI MCLK frequency is %uHz\n", freq);
711 		sai->mclk_rate = freq;
712 	}
713 
714 	return 0;
715 }
716 
stm32_sai_set_dai_tdm_slot(struct snd_soc_dai * cpu_dai,u32 tx_mask,u32 rx_mask,int slots,int slot_width)717 static int stm32_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
718 				      u32 rx_mask, int slots, int slot_width)
719 {
720 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
721 	int slotr, slotr_mask, slot_size;
722 
723 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
724 		dev_warn(cpu_dai->dev, "Slot setting relevant only for TDM\n");
725 		return 0;
726 	}
727 
728 	dev_dbg(cpu_dai->dev, "Masks tx/rx:%#x/%#x, slots:%d, width:%d\n",
729 		tx_mask, rx_mask, slots, slot_width);
730 
731 	switch (slot_width) {
732 	case 16:
733 		slot_size = SAI_SLOT_SIZE_16;
734 		break;
735 	case 32:
736 		slot_size = SAI_SLOT_SIZE_32;
737 		break;
738 	default:
739 		slot_size = SAI_SLOT_SIZE_AUTO;
740 		break;
741 	}
742 
743 	slotr = SAI_XSLOTR_SLOTSZ_SET(slot_size) |
744 		SAI_XSLOTR_NBSLOT_SET(slots - 1);
745 	slotr_mask = SAI_XSLOTR_SLOTSZ_MASK | SAI_XSLOTR_NBSLOT_MASK;
746 
747 	/* tx/rx mask set in machine init, if slot number defined in DT */
748 	if (STM_SAI_IS_PLAYBACK(sai)) {
749 		sai->slot_mask = tx_mask;
750 		slotr |= SAI_XSLOTR_SLOTEN_SET(tx_mask);
751 	}
752 
753 	if (STM_SAI_IS_CAPTURE(sai)) {
754 		sai->slot_mask = rx_mask;
755 		slotr |= SAI_XSLOTR_SLOTEN_SET(rx_mask);
756 	}
757 
758 	slotr_mask |= SAI_XSLOTR_SLOTEN_MASK;
759 
760 	stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX, slotr_mask, slotr);
761 
762 	sai->slot_width = slot_width;
763 	sai->slots = slots;
764 
765 	return 0;
766 }
767 
stm32_sai_set_dai_fmt(struct snd_soc_dai * cpu_dai,unsigned int fmt)768 static int stm32_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
769 {
770 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
771 	int cr1, frcr = 0;
772 	int cr1_mask, frcr_mask = 0;
773 	int ret;
774 
775 	dev_dbg(cpu_dai->dev, "fmt %x\n", fmt);
776 
777 	/* Do not generate master by default */
778 	cr1 = SAI_XCR1_NODIV;
779 	cr1_mask = SAI_XCR1_NODIV;
780 
781 	cr1_mask |= SAI_XCR1_PRTCFG_MASK;
782 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
783 		cr1 |= SAI_XCR1_PRTCFG_SET(SAI_SPDIF_PROTOCOL);
784 		goto conf_update;
785 	}
786 
787 	cr1 |= SAI_XCR1_PRTCFG_SET(SAI_FREE_PROTOCOL);
788 
789 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
790 	/* SCK active high for all protocols */
791 	case SND_SOC_DAIFMT_I2S:
792 		cr1 |= SAI_XCR1_CKSTR;
793 		frcr |= SAI_XFRCR_FSOFF | SAI_XFRCR_FSDEF;
794 		break;
795 	/* Left justified */
796 	case SND_SOC_DAIFMT_MSB:
797 		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
798 		break;
799 	/* Right justified */
800 	case SND_SOC_DAIFMT_LSB:
801 		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
802 		break;
803 	case SND_SOC_DAIFMT_DSP_A:
804 		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF;
805 		break;
806 	case SND_SOC_DAIFMT_DSP_B:
807 		frcr |= SAI_XFRCR_FSPOL;
808 		break;
809 	default:
810 		dev_err(cpu_dai->dev, "Unsupported protocol %#x\n",
811 			fmt & SND_SOC_DAIFMT_FORMAT_MASK);
812 		return -EINVAL;
813 	}
814 
815 	cr1_mask |= SAI_XCR1_CKSTR;
816 	frcr_mask |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF |
817 		     SAI_XFRCR_FSDEF;
818 
819 	/* DAI clock strobing. Invert setting previously set */
820 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
821 	case SND_SOC_DAIFMT_NB_NF:
822 		break;
823 	case SND_SOC_DAIFMT_IB_NF:
824 		cr1 ^= SAI_XCR1_CKSTR;
825 		break;
826 	case SND_SOC_DAIFMT_NB_IF:
827 		frcr ^= SAI_XFRCR_FSPOL;
828 		break;
829 	case SND_SOC_DAIFMT_IB_IF:
830 		/* Invert fs & sck */
831 		cr1 ^= SAI_XCR1_CKSTR;
832 		frcr ^= SAI_XFRCR_FSPOL;
833 		break;
834 	default:
835 		dev_err(cpu_dai->dev, "Unsupported strobing %#x\n",
836 			fmt & SND_SOC_DAIFMT_INV_MASK);
837 		return -EINVAL;
838 	}
839 	cr1_mask |= SAI_XCR1_CKSTR;
840 	frcr_mask |= SAI_XFRCR_FSPOL;
841 
842 	stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
843 
844 	/* DAI clock master masks */
845 	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
846 	case SND_SOC_DAIFMT_BC_FC:
847 		/* codec is master */
848 		cr1 |= SAI_XCR1_SLAVE;
849 		sai->master = false;
850 		break;
851 	case SND_SOC_DAIFMT_BP_FP:
852 		sai->master = true;
853 		break;
854 	default:
855 		dev_err(cpu_dai->dev, "Unsupported mode %#x\n",
856 			fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK);
857 		return -EINVAL;
858 	}
859 
860 	/* Set slave mode if sub-block is synchronized with another SAI */
861 	if (sai->sync) {
862 		dev_dbg(cpu_dai->dev, "Synchronized SAI configured as slave\n");
863 		cr1 |= SAI_XCR1_SLAVE;
864 		sai->master = false;
865 	}
866 
867 	cr1_mask |= SAI_XCR1_SLAVE;
868 
869 conf_update:
870 	ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
871 	if (ret < 0) {
872 		dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
873 		return ret;
874 	}
875 
876 	sai->fmt = fmt;
877 
878 	return 0;
879 }
880 
stm32_sai_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)881 static int stm32_sai_startup(struct snd_pcm_substream *substream,
882 			     struct snd_soc_dai *cpu_dai)
883 {
884 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
885 	int imr, cr2, ret;
886 	unsigned long flags;
887 
888 	spin_lock_irqsave(&sai->irq_lock, flags);
889 	sai->substream = substream;
890 	spin_unlock_irqrestore(&sai->irq_lock, flags);
891 
892 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
893 		snd_pcm_hw_constraint_mask64(substream->runtime,
894 					     SNDRV_PCM_HW_PARAM_FORMAT,
895 					     SNDRV_PCM_FMTBIT_S32_LE);
896 		snd_pcm_hw_constraint_single(substream->runtime,
897 					     SNDRV_PCM_HW_PARAM_CHANNELS, 2);
898 	}
899 
900 	ret = clk_prepare_enable(sai->sai_ck);
901 	if (ret < 0) {
902 		dev_err(cpu_dai->dev, "Failed to enable clock: %d\n", ret);
903 		return ret;
904 	}
905 
906 	/* Enable ITs */
907 	stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX,
908 			     SAI_XCLRFR_MASK, SAI_XCLRFR_MASK);
909 
910 	imr = SAI_XIMR_OVRUDRIE;
911 	if (STM_SAI_IS_CAPTURE(sai)) {
912 		stm32_sai_sub_reg_rd(sai, STM_SAI_CR2_REGX, &cr2);
913 		if (cr2 & SAI_XCR2_MUTECNT_MASK)
914 			imr |= SAI_XIMR_MUTEDETIE;
915 	}
916 
917 	if (sai->master)
918 		imr |= SAI_XIMR_WCKCFGIE;
919 	else
920 		imr |= SAI_XIMR_AFSDETIE | SAI_XIMR_LFSDETIE;
921 
922 	stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
923 			     SAI_XIMR_MASK, imr);
924 
925 	return 0;
926 }
927 
stm32_sai_set_config(struct snd_soc_dai * cpu_dai,struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params)928 static int stm32_sai_set_config(struct snd_soc_dai *cpu_dai,
929 				struct snd_pcm_substream *substream,
930 				struct snd_pcm_hw_params *params)
931 {
932 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
933 	int cr1, cr1_mask, ret;
934 
935 	/*
936 	 * DMA bursts increment is set to 4 words.
937 	 * SAI fifo threshold is set to half fifo, to keep enough space
938 	 * for DMA incoming bursts.
939 	 */
940 	stm32_sai_sub_reg_wr(sai, STM_SAI_CR2_REGX,
941 			     SAI_XCR2_FFLUSH | SAI_XCR2_FTH_MASK,
942 			     SAI_XCR2_FFLUSH |
943 			     SAI_XCR2_FTH_SET(STM_SAI_FIFO_TH_HALF));
944 
945 	/* DS bits in CR1 not set for SPDIF (size forced to 24 bits).*/
946 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
947 		sai->spdif_frm_cnt = 0;
948 		return 0;
949 	}
950 
951 	/* Mode, data format and channel config */
952 	cr1_mask = SAI_XCR1_DS_MASK;
953 	switch (params_format(params)) {
954 	case SNDRV_PCM_FORMAT_S8:
955 		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_8);
956 		break;
957 	case SNDRV_PCM_FORMAT_S16_LE:
958 		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_16);
959 		break;
960 	case SNDRV_PCM_FORMAT_S32_LE:
961 		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_32);
962 		break;
963 	default:
964 		dev_err(cpu_dai->dev, "Data format not supported\n");
965 		return -EINVAL;
966 	}
967 
968 	cr1_mask |= SAI_XCR1_MONO;
969 	if ((sai->slots == 2) && (params_channels(params) == 1))
970 		cr1 |= SAI_XCR1_MONO;
971 
972 	ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
973 	if (ret < 0) {
974 		dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
975 		return ret;
976 	}
977 
978 	return 0;
979 }
980 
stm32_sai_set_slots(struct snd_soc_dai * cpu_dai)981 static int stm32_sai_set_slots(struct snd_soc_dai *cpu_dai)
982 {
983 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
984 	int slotr, slot_sz;
985 
986 	stm32_sai_sub_reg_rd(sai, STM_SAI_SLOTR_REGX, &slotr);
987 
988 	/*
989 	 * If SLOTSZ is set to auto in SLOTR, align slot width on data size
990 	 * By default slot width = data size, if not forced from DT
991 	 */
992 	slot_sz = slotr & SAI_XSLOTR_SLOTSZ_MASK;
993 	if (slot_sz == SAI_XSLOTR_SLOTSZ_SET(SAI_SLOT_SIZE_AUTO))
994 		sai->slot_width = sai->data_size;
995 
996 	if (sai->slot_width < sai->data_size) {
997 		dev_err(cpu_dai->dev,
998 			"Data size %d larger than slot width\n",
999 			sai->data_size);
1000 		return -EINVAL;
1001 	}
1002 
1003 	/* Slot number is set to 2, if not specified in DT */
1004 	if (!sai->slots)
1005 		sai->slots = 2;
1006 
1007 	/* The number of slots in the audio frame is equal to NBSLOT[3:0] + 1*/
1008 	stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
1009 			     SAI_XSLOTR_NBSLOT_MASK,
1010 			     SAI_XSLOTR_NBSLOT_SET((sai->slots - 1)));
1011 
1012 	/* Set default slots mask if not already set from DT */
1013 	if (!(slotr & SAI_XSLOTR_SLOTEN_MASK)) {
1014 		sai->slot_mask = (1 << sai->slots) - 1;
1015 		stm32_sai_sub_reg_up(sai,
1016 				     STM_SAI_SLOTR_REGX, SAI_XSLOTR_SLOTEN_MASK,
1017 				     SAI_XSLOTR_SLOTEN_SET(sai->slot_mask));
1018 	}
1019 
1020 	dev_dbg(cpu_dai->dev, "Slots %d, slot width %d\n",
1021 		sai->slots, sai->slot_width);
1022 
1023 	return 0;
1024 }
1025 
stm32_sai_set_frame(struct snd_soc_dai * cpu_dai)1026 static void stm32_sai_set_frame(struct snd_soc_dai *cpu_dai)
1027 {
1028 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1029 	int fs_active, offset, format;
1030 	int frcr, frcr_mask;
1031 
1032 	format = sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
1033 	sai->fs_length = sai->slot_width * sai->slots;
1034 
1035 	fs_active = sai->fs_length / 2;
1036 	if ((format == SND_SOC_DAIFMT_DSP_A) ||
1037 	    (format == SND_SOC_DAIFMT_DSP_B))
1038 		fs_active = 1;
1039 
1040 	frcr = SAI_XFRCR_FRL_SET((sai->fs_length - 1));
1041 	frcr |= SAI_XFRCR_FSALL_SET((fs_active - 1));
1042 	frcr_mask = SAI_XFRCR_FRL_MASK | SAI_XFRCR_FSALL_MASK;
1043 
1044 	dev_dbg(cpu_dai->dev, "Frame length %d, frame active %d\n",
1045 		sai->fs_length, fs_active);
1046 
1047 	stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
1048 
1049 	if ((sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_LSB) {
1050 		offset = sai->slot_width - sai->data_size;
1051 
1052 		stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
1053 				     SAI_XSLOTR_FBOFF_MASK,
1054 				     SAI_XSLOTR_FBOFF_SET(offset));
1055 	}
1056 }
1057 
stm32_sai_init_iec958_status(struct stm32_sai_sub_data * sai)1058 static void stm32_sai_init_iec958_status(struct stm32_sai_sub_data *sai)
1059 {
1060 	unsigned char *cs = sai->iec958.status;
1061 
1062 	cs[0] = IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS_NONE;
1063 	cs[1] = IEC958_AES1_CON_GENERAL;
1064 	cs[2] = IEC958_AES2_CON_SOURCE_UNSPEC | IEC958_AES2_CON_CHANNEL_UNSPEC;
1065 	cs[3] = IEC958_AES3_CON_CLOCK_1000PPM | IEC958_AES3_CON_FS_NOTID;
1066 }
1067 
stm32_sai_set_iec958_status(struct stm32_sai_sub_data * sai,struct snd_pcm_runtime * runtime)1068 static void stm32_sai_set_iec958_status(struct stm32_sai_sub_data *sai,
1069 					struct snd_pcm_runtime *runtime)
1070 {
1071 	if (!runtime)
1072 		return;
1073 
1074 	/* Force the sample rate according to runtime rate */
1075 	mutex_lock(&sai->ctrl_lock);
1076 	switch (runtime->rate) {
1077 	case 22050:
1078 		sai->iec958.status[3] = IEC958_AES3_CON_FS_22050;
1079 		break;
1080 	case 44100:
1081 		sai->iec958.status[3] = IEC958_AES3_CON_FS_44100;
1082 		break;
1083 	case 88200:
1084 		sai->iec958.status[3] = IEC958_AES3_CON_FS_88200;
1085 		break;
1086 	case 176400:
1087 		sai->iec958.status[3] = IEC958_AES3_CON_FS_176400;
1088 		break;
1089 	case 24000:
1090 		sai->iec958.status[3] = IEC958_AES3_CON_FS_24000;
1091 		break;
1092 	case 48000:
1093 		sai->iec958.status[3] = IEC958_AES3_CON_FS_48000;
1094 		break;
1095 	case 96000:
1096 		sai->iec958.status[3] = IEC958_AES3_CON_FS_96000;
1097 		break;
1098 	case 192000:
1099 		sai->iec958.status[3] = IEC958_AES3_CON_FS_192000;
1100 		break;
1101 	case 32000:
1102 		sai->iec958.status[3] = IEC958_AES3_CON_FS_32000;
1103 		break;
1104 	default:
1105 		sai->iec958.status[3] = IEC958_AES3_CON_FS_NOTID;
1106 		break;
1107 	}
1108 	mutex_unlock(&sai->ctrl_lock);
1109 }
1110 
stm32_sai_configure_clock(struct snd_soc_dai * cpu_dai,struct snd_pcm_hw_params * params)1111 static int stm32_sai_configure_clock(struct snd_soc_dai *cpu_dai,
1112 				     struct snd_pcm_hw_params *params)
1113 {
1114 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1115 	int div = 0, cr1 = 0;
1116 	int sai_clk_rate, mclk_ratio, den;
1117 	unsigned int rate = params_rate(params);
1118 	int ret;
1119 
1120 	if (!sai->sai_mclk) {
1121 		ret = sai->set_sai_ck_rate(sai, rate);
1122 		if (ret)
1123 			return ret;
1124 	}
1125 	sai_clk_rate = clk_get_rate(sai->sai_ck);
1126 
1127 	if (STM_SAI_IS_F4(sai->pdata)) {
1128 		/* mclk on (NODIV=0)
1129 		 *   mclk_rate = 256 * fs
1130 		 *   MCKDIV = 0 if sai_ck < 3/2 * mclk_rate
1131 		 *   MCKDIV = sai_ck / (2 * mclk_rate) otherwise
1132 		 * mclk off (NODIV=1)
1133 		 *   MCKDIV ignored. sck = sai_ck
1134 		 */
1135 		if (!sai->mclk_rate)
1136 			return 0;
1137 
1138 		if (2 * sai_clk_rate >= 3 * sai->mclk_rate) {
1139 			div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1140 						    2 * sai->mclk_rate);
1141 			if (div < 0)
1142 				return div;
1143 		}
1144 	} else {
1145 		/*
1146 		 * TDM mode :
1147 		 *   mclk on
1148 		 *      MCKDIV = sai_ck / (ws x 256)	(NOMCK=0. OSR=0)
1149 		 *      MCKDIV = sai_ck / (ws x 512)	(NOMCK=0. OSR=1)
1150 		 *   mclk off
1151 		 *      MCKDIV = sai_ck / (frl x ws)	(NOMCK=1)
1152 		 * Note: NOMCK/NODIV correspond to same bit.
1153 		 */
1154 		if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1155 			div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1156 						    rate * 128);
1157 			if (div < 0)
1158 				return div;
1159 		} else {
1160 			if (sai->mclk_rate) {
1161 				mclk_ratio = sai->mclk_rate / rate;
1162 				if (mclk_ratio == 512) {
1163 					cr1 = SAI_XCR1_OSR;
1164 				} else if (mclk_ratio != 256) {
1165 					dev_err(cpu_dai->dev,
1166 						"Wrong mclk ratio %d\n",
1167 						mclk_ratio);
1168 					return -EINVAL;
1169 				}
1170 
1171 				stm32_sai_sub_reg_up(sai,
1172 						     STM_SAI_CR1_REGX,
1173 						     SAI_XCR1_OSR, cr1);
1174 
1175 				div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1176 							    sai->mclk_rate);
1177 				if (div < 0)
1178 					return div;
1179 			} else {
1180 				/* mclk-fs not set, master clock not active */
1181 				den = sai->fs_length * params_rate(params);
1182 				div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1183 							    den);
1184 				if (div < 0)
1185 					return div;
1186 			}
1187 		}
1188 	}
1189 
1190 	return stm32_sai_set_clk_div(sai, div);
1191 }
1192 
stm32_sai_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * cpu_dai)1193 static int stm32_sai_hw_params(struct snd_pcm_substream *substream,
1194 			       struct snd_pcm_hw_params *params,
1195 			       struct snd_soc_dai *cpu_dai)
1196 {
1197 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1198 	int ret;
1199 
1200 	sai->data_size = params_width(params);
1201 
1202 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1203 		/* Rate not already set in runtime structure */
1204 		substream->runtime->rate = params_rate(params);
1205 		stm32_sai_set_iec958_status(sai, substream->runtime);
1206 	} else {
1207 		ret = stm32_sai_set_slots(cpu_dai);
1208 		if (ret < 0)
1209 			return ret;
1210 		stm32_sai_set_frame(cpu_dai);
1211 	}
1212 
1213 	ret = stm32_sai_set_config(cpu_dai, substream, params);
1214 	if (ret)
1215 		return ret;
1216 
1217 	if (sai->master)
1218 		ret = stm32_sai_configure_clock(cpu_dai, params);
1219 
1220 	return ret;
1221 }
1222 
stm32_sai_trigger(struct snd_pcm_substream * substream,int cmd,struct snd_soc_dai * cpu_dai)1223 static int stm32_sai_trigger(struct snd_pcm_substream *substream, int cmd,
1224 			     struct snd_soc_dai *cpu_dai)
1225 {
1226 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1227 	int ret;
1228 
1229 	switch (cmd) {
1230 	case SNDRV_PCM_TRIGGER_START:
1231 	case SNDRV_PCM_TRIGGER_RESUME:
1232 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1233 		dev_dbg(cpu_dai->dev, "Enable DMA and SAI\n");
1234 
1235 		stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1236 				     SAI_XCR1_DMAEN, SAI_XCR1_DMAEN);
1237 
1238 		/* Enable SAI */
1239 		ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1240 					   SAI_XCR1_SAIEN, SAI_XCR1_SAIEN);
1241 		if (ret < 0)
1242 			dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1243 		break;
1244 	case SNDRV_PCM_TRIGGER_SUSPEND:
1245 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1246 	case SNDRV_PCM_TRIGGER_STOP:
1247 		dev_dbg(cpu_dai->dev, "Disable DMA and SAI\n");
1248 
1249 		stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
1250 				     SAI_XIMR_MASK, 0);
1251 
1252 		stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1253 				     SAI_XCR1_SAIEN,
1254 				     (unsigned int)~SAI_XCR1_SAIEN);
1255 
1256 		ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1257 					   SAI_XCR1_DMAEN,
1258 					   (unsigned int)~SAI_XCR1_DMAEN);
1259 		if (ret < 0)
1260 			dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1261 
1262 		if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1263 			sai->spdif_frm_cnt = 0;
1264 		break;
1265 	default:
1266 		return -EINVAL;
1267 	}
1268 
1269 	return ret;
1270 }
1271 
stm32_sai_shutdown(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)1272 static void stm32_sai_shutdown(struct snd_pcm_substream *substream,
1273 			       struct snd_soc_dai *cpu_dai)
1274 {
1275 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1276 	unsigned long flags;
1277 
1278 	stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX, SAI_XIMR_MASK, 0);
1279 
1280 	clk_disable_unprepare(sai->sai_ck);
1281 
1282 	/*
1283 	 * Release kernel clock if following conditions are fulfilled
1284 	 * - Master clock is not used. Kernel clock won't be released trough sysclk
1285 	 * - Put handler is defined. Involve that clock is managed exclusively
1286 	 */
1287 	if (!sai->sai_mclk && sai->put_sai_ck_rate)
1288 		sai->put_sai_ck_rate(sai);
1289 
1290 	spin_lock_irqsave(&sai->irq_lock, flags);
1291 	sai->substream = NULL;
1292 	spin_unlock_irqrestore(&sai->irq_lock, flags);
1293 }
1294 
stm32_sai_pcm_new(struct snd_soc_pcm_runtime * rtd,struct snd_soc_dai * cpu_dai)1295 static int stm32_sai_pcm_new(struct snd_soc_pcm_runtime *rtd,
1296 			     struct snd_soc_dai *cpu_dai)
1297 {
1298 	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1299 	struct snd_kcontrol_new knew = iec958_ctls;
1300 
1301 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1302 		dev_dbg(&sai->pdev->dev, "%s: register iec controls", __func__);
1303 		knew.device = rtd->pcm->device;
1304 		return snd_ctl_add(rtd->pcm->card, snd_ctl_new1(&knew, sai));
1305 	}
1306 
1307 	return 0;
1308 }
1309 
stm32_sai_dai_probe(struct snd_soc_dai * cpu_dai)1310 static int stm32_sai_dai_probe(struct snd_soc_dai *cpu_dai)
1311 {
1312 	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1313 	int cr1 = 0, cr1_mask, ret;
1314 
1315 	sai->cpu_dai = cpu_dai;
1316 
1317 	sai->dma_params.addr = (dma_addr_t)(sai->phys_addr + STM_SAI_DR_REGX);
1318 	/*
1319 	 * DMA supports 4, 8 or 16 burst sizes. Burst size 4 is the best choice,
1320 	 * as it allows bytes, half-word and words transfers. (See DMA fifos
1321 	 * constraints).
1322 	 */
1323 	sai->dma_params.maxburst = 4;
1324 	if (sai->pdata->conf.fifo_size < 8 || sai->pdata->conf.no_dma_burst)
1325 		sai->dma_params.maxburst = 1;
1326 	/* Buswidth will be set by framework at runtime */
1327 	sai->dma_params.addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1328 
1329 	if (STM_SAI_IS_PLAYBACK(sai))
1330 		snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params, NULL);
1331 	else
1332 		snd_soc_dai_init_dma_data(cpu_dai, NULL, &sai->dma_params);
1333 
1334 	/* Next settings are not relevant for spdif mode */
1335 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1336 		return 0;
1337 
1338 	cr1_mask = SAI_XCR1_RX_TX;
1339 	if (STM_SAI_IS_CAPTURE(sai))
1340 		cr1 |= SAI_XCR1_RX_TX;
1341 
1342 	/* Configure synchronization */
1343 	if (sai->sync == SAI_SYNC_EXTERNAL) {
1344 		/* Configure synchro client and provider */
1345 		ret = sai->pdata->set_sync(sai->pdata, sai->np_sync_provider,
1346 					   sai->synco, sai->synci);
1347 		if (ret)
1348 			return ret;
1349 	}
1350 
1351 	cr1_mask |= SAI_XCR1_SYNCEN_MASK;
1352 	cr1 |= SAI_XCR1_SYNCEN_SET(sai->sync);
1353 
1354 	return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
1355 }
1356 
1357 static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops = {
1358 	.probe		= stm32_sai_dai_probe,
1359 	.set_sysclk	= stm32_sai_set_sysclk,
1360 	.set_fmt	= stm32_sai_set_dai_fmt,
1361 	.set_tdm_slot	= stm32_sai_set_dai_tdm_slot,
1362 	.startup	= stm32_sai_startup,
1363 	.hw_params	= stm32_sai_hw_params,
1364 	.trigger	= stm32_sai_trigger,
1365 	.shutdown	= stm32_sai_shutdown,
1366 	.pcm_new	= stm32_sai_pcm_new,
1367 };
1368 
1369 static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops2 = {
1370 	.probe		= stm32_sai_dai_probe,
1371 	.set_sysclk	= stm32_sai_set_sysclk,
1372 	.set_fmt	= stm32_sai_set_dai_fmt,
1373 	.set_tdm_slot	= stm32_sai_set_dai_tdm_slot,
1374 	.startup	= stm32_sai_startup,
1375 	.hw_params	= stm32_sai_hw_params,
1376 	.trigger	= stm32_sai_trigger,
1377 	.shutdown	= stm32_sai_shutdown,
1378 };
1379 
stm32_sai_pcm_process_spdif(struct snd_pcm_substream * substream,int channel,unsigned long hwoff,unsigned long bytes)1380 static int stm32_sai_pcm_process_spdif(struct snd_pcm_substream *substream,
1381 				       int channel, unsigned long hwoff,
1382 				       unsigned long bytes)
1383 {
1384 	struct snd_pcm_runtime *runtime = substream->runtime;
1385 	struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
1386 	struct snd_soc_dai *cpu_dai = snd_soc_rtd_to_cpu(rtd, 0);
1387 	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1388 	int *ptr = (int *)(runtime->dma_area + hwoff +
1389 			   channel * (runtime->dma_bytes / runtime->channels));
1390 	ssize_t cnt = bytes_to_samples(runtime, bytes);
1391 	unsigned int frm_cnt = sai->spdif_frm_cnt;
1392 	unsigned int byte;
1393 	unsigned int mask;
1394 
1395 	do {
1396 		*ptr = ((*ptr >> 8) & 0x00ffffff);
1397 
1398 		/* Set channel status bit */
1399 		byte = frm_cnt >> 3;
1400 		mask = 1 << (frm_cnt - (byte << 3));
1401 		if (sai->iec958.status[byte] & mask)
1402 			*ptr |= 0x04000000;
1403 		ptr++;
1404 
1405 		if (!(cnt % 2))
1406 			frm_cnt++;
1407 
1408 		if (frm_cnt == SAI_IEC60958_BLOCK_FRAMES)
1409 			frm_cnt = 0;
1410 	} while (--cnt);
1411 	sai->spdif_frm_cnt = frm_cnt;
1412 
1413 	return 0;
1414 }
1415 
1416 /* No support of mmap in S/PDIF mode */
1417 static const struct snd_pcm_hardware stm32_sai_pcm_hw_spdif = {
1418 	.info = SNDRV_PCM_INFO_INTERLEAVED,
1419 	.buffer_bytes_max = 8 * PAGE_SIZE,
1420 	.period_bytes_min = 1024,
1421 	.period_bytes_max = PAGE_SIZE,
1422 	.periods_min = 2,
1423 	.periods_max = 8,
1424 };
1425 
1426 static const struct snd_pcm_hardware stm32_sai_pcm_hw = {
1427 	.info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP,
1428 	.buffer_bytes_max = 8 * PAGE_SIZE,
1429 	.period_bytes_min = 1024, /* 5ms at 48kHz */
1430 	.period_bytes_max = PAGE_SIZE,
1431 	.periods_min = 2,
1432 	.periods_max = 8,
1433 };
1434 
1435 static struct snd_soc_dai_driver stm32_sai_playback_dai = {
1436 		.id = 1, /* avoid call to fmt_single_name() */
1437 		.playback = {
1438 			.channels_min = 1,
1439 			.channels_max = 16,
1440 			.rate_min = 8000,
1441 			.rate_max = 192000,
1442 			.rates = SNDRV_PCM_RATE_CONTINUOUS,
1443 			/* DMA does not support 24 bits transfers */
1444 			.formats =
1445 				SNDRV_PCM_FMTBIT_S8 |
1446 				SNDRV_PCM_FMTBIT_S16_LE |
1447 				SNDRV_PCM_FMTBIT_S32_LE,
1448 		},
1449 		.ops = &stm32_sai_pcm_dai_ops,
1450 };
1451 
1452 static struct snd_soc_dai_driver stm32_sai_capture_dai = {
1453 		.id = 1, /* avoid call to fmt_single_name() */
1454 		.capture = {
1455 			.channels_min = 1,
1456 			.channels_max = 16,
1457 			.rate_min = 8000,
1458 			.rate_max = 192000,
1459 			.rates = SNDRV_PCM_RATE_CONTINUOUS,
1460 			/* DMA does not support 24 bits transfers */
1461 			.formats =
1462 				SNDRV_PCM_FMTBIT_S8 |
1463 				SNDRV_PCM_FMTBIT_S16_LE |
1464 				SNDRV_PCM_FMTBIT_S32_LE,
1465 		},
1466 		.ops = &stm32_sai_pcm_dai_ops2,
1467 };
1468 
1469 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config = {
1470 	.pcm_hardware = &stm32_sai_pcm_hw,
1471 	.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1472 };
1473 
1474 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config_spdif = {
1475 	.pcm_hardware = &stm32_sai_pcm_hw_spdif,
1476 	.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1477 	.process = stm32_sai_pcm_process_spdif,
1478 };
1479 
1480 static const struct snd_soc_component_driver stm32_component = {
1481 	.name = "stm32-sai",
1482 	.legacy_dai_naming = 1,
1483 };
1484 
1485 static const struct of_device_id stm32_sai_sub_ids[] = {
1486 	{ .compatible = "st,stm32-sai-sub-a",
1487 	  .data = (void *)STM_SAI_A_ID},
1488 	{ .compatible = "st,stm32-sai-sub-b",
1489 	  .data = (void *)STM_SAI_B_ID},
1490 	{}
1491 };
1492 MODULE_DEVICE_TABLE(of, stm32_sai_sub_ids);
1493 
stm32_sai_sub_parse_of(struct platform_device * pdev,struct stm32_sai_sub_data * sai)1494 static int stm32_sai_sub_parse_of(struct platform_device *pdev,
1495 				  struct stm32_sai_sub_data *sai)
1496 {
1497 	struct device_node *np = pdev->dev.of_node;
1498 	struct resource *res;
1499 	void __iomem *base;
1500 	struct of_phandle_args args;
1501 	int ret;
1502 
1503 	if (!np)
1504 		return -ENODEV;
1505 
1506 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1507 	if (IS_ERR(base))
1508 		return PTR_ERR(base);
1509 
1510 	sai->phys_addr = res->start;
1511 
1512 	sai->regmap_config = &stm32_sai_sub_regmap_config_f4;
1513 	/* Note: PDM registers not available for sub-block B */
1514 	if (STM_SAI_HAS_PDM(sai) && STM_SAI_IS_SUB_A(sai))
1515 		sai->regmap_config = &stm32_sai_sub_regmap_config_h7;
1516 
1517 	/*
1518 	 * Do not manage peripheral clock through regmap framework as this
1519 	 * can lead to circular locking issue with sai master clock provider.
1520 	 * Manage peripheral clock directly in driver instead.
1521 	 */
1522 	sai->regmap = devm_regmap_init_mmio(&pdev->dev, base,
1523 					    sai->regmap_config);
1524 	if (IS_ERR(sai->regmap))
1525 		return dev_err_probe(&pdev->dev, PTR_ERR(sai->regmap),
1526 				     "Regmap init error\n");
1527 
1528 	/* Get direction property */
1529 	if (of_property_match_string(np, "dma-names", "tx") >= 0) {
1530 		sai->dir = SNDRV_PCM_STREAM_PLAYBACK;
1531 	} else if (of_property_match_string(np, "dma-names", "rx") >= 0) {
1532 		sai->dir = SNDRV_PCM_STREAM_CAPTURE;
1533 	} else {
1534 		dev_err(&pdev->dev, "Unsupported direction\n");
1535 		return -EINVAL;
1536 	}
1537 
1538 	/* Get spdif iec60958 property */
1539 	sai->spdif = false;
1540 	if (of_property_present(np, "st,iec60958")) {
1541 		if (!STM_SAI_HAS_SPDIF(sai) ||
1542 		    sai->dir == SNDRV_PCM_STREAM_CAPTURE) {
1543 			dev_err(&pdev->dev, "S/PDIF IEC60958 not supported\n");
1544 			return -EINVAL;
1545 		}
1546 		stm32_sai_init_iec958_status(sai);
1547 		sai->spdif = true;
1548 		sai->master = true;
1549 	}
1550 
1551 	/* Get synchronization property */
1552 	args.np = NULL;
1553 	ret = of_parse_phandle_with_fixed_args(np, "st,sync", 1, 0, &args);
1554 	if (ret < 0  && ret != -ENOENT) {
1555 		dev_err(&pdev->dev, "Failed to get st,sync property\n");
1556 		return ret;
1557 	}
1558 
1559 	sai->sync = SAI_SYNC_NONE;
1560 	if (args.np) {
1561 		if (args.np == np) {
1562 			dev_err(&pdev->dev, "%pOFn sync own reference\n", np);
1563 			of_node_put(args.np);
1564 			return -EINVAL;
1565 		}
1566 
1567 		sai->np_sync_provider  = of_get_parent(args.np);
1568 		if (!sai->np_sync_provider) {
1569 			dev_err(&pdev->dev, "%pOFn parent node not found\n",
1570 				np);
1571 			of_node_put(args.np);
1572 			return -ENODEV;
1573 		}
1574 
1575 		sai->sync = SAI_SYNC_INTERNAL;
1576 		if (sai->np_sync_provider != sai->pdata->pdev->dev.of_node) {
1577 			if (!STM_SAI_HAS_EXT_SYNC(sai)) {
1578 				dev_err(&pdev->dev,
1579 					"External synchro not supported\n");
1580 				of_node_put(args.np);
1581 				return -EINVAL;
1582 			}
1583 			sai->sync = SAI_SYNC_EXTERNAL;
1584 
1585 			sai->synci = args.args[0];
1586 			if (sai->synci < 1 ||
1587 			    (sai->synci > (SAI_GCR_SYNCIN_MAX + 1))) {
1588 				dev_err(&pdev->dev, "Wrong SAI index\n");
1589 				of_node_put(args.np);
1590 				return -EINVAL;
1591 			}
1592 
1593 			if (of_property_match_string(args.np, "compatible",
1594 						     "st,stm32-sai-sub-a") >= 0)
1595 				sai->synco = STM_SAI_SYNC_OUT_A;
1596 
1597 			if (of_property_match_string(args.np, "compatible",
1598 						     "st,stm32-sai-sub-b") >= 0)
1599 				sai->synco = STM_SAI_SYNC_OUT_B;
1600 
1601 			if (!sai->synco) {
1602 				dev_err(&pdev->dev, "Unknown SAI sub-block\n");
1603 				of_node_put(args.np);
1604 				return -EINVAL;
1605 			}
1606 		}
1607 
1608 		dev_dbg(&pdev->dev, "%s synchronized with %s\n",
1609 			pdev->name, args.np->full_name);
1610 	}
1611 
1612 	of_node_put(args.np);
1613 	sai->sai_ck = devm_clk_get(&pdev->dev, "sai_ck");
1614 	if (IS_ERR(sai->sai_ck))
1615 		return dev_err_probe(&pdev->dev, PTR_ERR(sai->sai_ck),
1616 				     "Missing kernel clock sai_ck\n");
1617 
1618 	ret = clk_prepare(sai->pdata->pclk);
1619 	if (ret < 0)
1620 		return ret;
1621 
1622 	if (STM_SAI_IS_F4(sai->pdata))
1623 		return 0;
1624 
1625 	/* Register mclk provider if requested */
1626 	if (of_property_present(np, "#clock-cells")) {
1627 		ret = stm32_sai_add_mclk_provider(sai);
1628 		if (ret < 0)
1629 			return ret;
1630 	} else {
1631 		sai->sai_mclk = devm_clk_get_optional(&pdev->dev, "MCLK");
1632 		if (IS_ERR(sai->sai_mclk))
1633 			return PTR_ERR(sai->sai_mclk);
1634 	}
1635 
1636 	return 0;
1637 }
1638 
stm32_sai_sub_probe(struct platform_device * pdev)1639 static int stm32_sai_sub_probe(struct platform_device *pdev)
1640 {
1641 	struct stm32_sai_sub_data *sai;
1642 	const struct snd_dmaengine_pcm_config *conf = &stm32_sai_pcm_config;
1643 	int ret;
1644 
1645 	sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
1646 	if (!sai)
1647 		return -ENOMEM;
1648 
1649 	sai->id = (uintptr_t)device_get_match_data(&pdev->dev);
1650 
1651 	sai->pdev = pdev;
1652 	mutex_init(&sai->ctrl_lock);
1653 	spin_lock_init(&sai->irq_lock);
1654 	platform_set_drvdata(pdev, sai);
1655 
1656 	sai->pdata = dev_get_drvdata(pdev->dev.parent);
1657 	if (!sai->pdata) {
1658 		dev_err(&pdev->dev, "Parent device data not available\n");
1659 		return -EINVAL;
1660 	}
1661 
1662 	if (sai->pdata->conf.get_sai_ck_parent) {
1663 		sai->set_sai_ck_rate = stm32_sai_set_parent_clk;
1664 	} else {
1665 		sai->set_sai_ck_rate = stm32_sai_set_parent_rate;
1666 		sai->put_sai_ck_rate = stm32_sai_put_parent_rate;
1667 	}
1668 
1669 	ret = stm32_sai_sub_parse_of(pdev, sai);
1670 	if (ret)
1671 		return ret;
1672 
1673 	if (STM_SAI_IS_PLAYBACK(sai))
1674 		sai->cpu_dai_drv = stm32_sai_playback_dai;
1675 	else
1676 		sai->cpu_dai_drv = stm32_sai_capture_dai;
1677 	sai->cpu_dai_drv.name = dev_name(&pdev->dev);
1678 
1679 	ret = devm_request_irq(&pdev->dev, sai->pdata->irq, stm32_sai_isr,
1680 			       IRQF_SHARED, dev_name(&pdev->dev), sai);
1681 	if (ret) {
1682 		dev_err(&pdev->dev, "IRQ request returned %d\n", ret);
1683 		return ret;
1684 	}
1685 
1686 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1687 		conf = &stm32_sai_pcm_config_spdif;
1688 
1689 	ret = snd_dmaengine_pcm_register(&pdev->dev, conf, 0);
1690 	if (ret)
1691 		return dev_err_probe(&pdev->dev, ret, "Could not register pcm dma\n");
1692 
1693 	ret = snd_soc_register_component(&pdev->dev, &stm32_component,
1694 					 &sai->cpu_dai_drv, 1);
1695 	if (ret) {
1696 		snd_dmaengine_pcm_unregister(&pdev->dev);
1697 		return ret;
1698 	}
1699 
1700 	pm_runtime_enable(&pdev->dev);
1701 
1702 	return 0;
1703 }
1704 
stm32_sai_sub_remove(struct platform_device * pdev)1705 static void stm32_sai_sub_remove(struct platform_device *pdev)
1706 {
1707 	struct stm32_sai_sub_data *sai = dev_get_drvdata(&pdev->dev);
1708 
1709 	clk_unprepare(sai->pdata->pclk);
1710 	snd_dmaengine_pcm_unregister(&pdev->dev);
1711 	snd_soc_unregister_component(&pdev->dev);
1712 	pm_runtime_disable(&pdev->dev);
1713 }
1714 
stm32_sai_sub_suspend(struct device * dev)1715 static int stm32_sai_sub_suspend(struct device *dev)
1716 {
1717 	struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1718 	int ret;
1719 
1720 	ret = clk_enable(sai->pdata->pclk);
1721 	if (ret < 0)
1722 		return ret;
1723 
1724 	regcache_cache_only(sai->regmap, true);
1725 	regcache_mark_dirty(sai->regmap);
1726 
1727 	clk_disable(sai->pdata->pclk);
1728 
1729 	return 0;
1730 }
1731 
stm32_sai_sub_resume(struct device * dev)1732 static int stm32_sai_sub_resume(struct device *dev)
1733 {
1734 	struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1735 	int ret;
1736 
1737 	ret = clk_enable(sai->pdata->pclk);
1738 	if (ret < 0)
1739 		return ret;
1740 
1741 	regcache_cache_only(sai->regmap, false);
1742 	ret = regcache_sync(sai->regmap);
1743 
1744 	clk_disable(sai->pdata->pclk);
1745 
1746 	return ret;
1747 }
1748 
1749 static const struct dev_pm_ops stm32_sai_sub_pm_ops = {
1750 	SYSTEM_SLEEP_PM_OPS(stm32_sai_sub_suspend, stm32_sai_sub_resume)
1751 };
1752 
1753 static struct platform_driver stm32_sai_sub_driver = {
1754 	.driver = {
1755 		.name = "st,stm32-sai-sub",
1756 		.of_match_table = stm32_sai_sub_ids,
1757 		.pm = pm_ptr(&stm32_sai_sub_pm_ops),
1758 	},
1759 	.probe = stm32_sai_sub_probe,
1760 	.remove = stm32_sai_sub_remove,
1761 };
1762 
1763 module_platform_driver(stm32_sai_sub_driver);
1764 
1765 MODULE_DESCRIPTION("STM32 Soc SAI sub-block Interface");
1766 MODULE_AUTHOR("Olivier Moysan <olivier.moysan@st.com>");
1767 MODULE_ALIAS("platform:st,stm32-sai-sub");
1768 MODULE_LICENSE("GPL v2");
1769