1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file is the ADC part of the STM32 DFSDM driver
4 *
5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
7 */
8
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/export.h>
12 #include <linux/iio/adc/stm32-dfsdm-adc.h>
13 #include <linux/iio/backend.h>
14 #include <linux/iio/buffer.h>
15 #include <linux/iio/hw-consumer.h>
16 #include <linux/iio/sysfs.h>
17 #include <linux/iio/timer/stm32-lptim-trigger.h>
18 #include <linux/iio/timer/stm32-timer-trigger.h>
19 #include <linux/iio/trigger.h>
20 #include <linux/iio/trigger_consumer.h>
21 #include <linux/iio/triggered_buffer.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_platform.h>
26 #include <linux/platform_device.h>
27 #include <linux/regmap.h>
28 #include <linux/slab.h>
29
30 #include "stm32-dfsdm.h"
31
32 #define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
33
34 /* Conversion timeout */
35 #define DFSDM_TIMEOUT_US 100000
36 #define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
37
38 /* Oversampling attribute default */
39 #define DFSDM_DEFAULT_OVERSAMPLING 100
40
41 /* Oversampling max values */
42 #define DFSDM_MAX_INT_OVERSAMPLING 256
43 #define DFSDM_MAX_FL_OVERSAMPLING 1024
44
45 /* Limit filter output resolution to 31 bits. (i.e. sample range is +/-2^30) */
46 #define DFSDM_DATA_MAX BIT(30)
47 /*
48 * Data are output as two's complement data in a 24 bit field.
49 * Data from filters are in the range +/-2^(n-1)
50 * 2^(n-1) maximum positive value cannot be coded in 2's complement n bits
51 * An extra bit is required to avoid wrap-around of the binary code for 2^(n-1)
52 * So, the resolution of samples from filter is actually limited to 23 bits
53 */
54 #define DFSDM_DATA_RES 24
55
56 /* Filter configuration */
57 #define DFSDM_CR1_CFG_MASK (DFSDM_CR1_RCH_MASK | DFSDM_CR1_RCONT_MASK | \
58 DFSDM_CR1_RSYNC_MASK | DFSDM_CR1_JSYNC_MASK | \
59 DFSDM_CR1_JSCAN_MASK)
60
61 enum sd_converter_type {
62 DFSDM_AUDIO,
63 DFSDM_IIO,
64 };
65
66 struct stm32_dfsdm_dev_data {
67 int type;
68 int (*init)(struct device *dev, struct iio_dev *indio_dev);
69 unsigned int num_channels;
70 const struct regmap_config *regmap_cfg;
71 };
72
73 struct stm32_dfsdm_adc {
74 struct stm32_dfsdm *dfsdm;
75 const struct stm32_dfsdm_dev_data *dev_data;
76 unsigned int fl_id;
77 unsigned int nconv;
78 unsigned long smask;
79
80 /* ADC specific */
81 unsigned int oversamp;
82 struct iio_hw_consumer *hwc;
83 struct iio_backend **backend;
84 struct completion completion;
85 u32 *buffer;
86
87 /* Audio specific */
88 unsigned int spi_freq; /* SPI bus clock frequency */
89 unsigned int sample_freq; /* Sample frequency after filter decimation */
90 int (*cb)(const void *data, size_t size, void *cb_priv);
91 void *cb_priv;
92
93 /* DMA */
94 u8 *rx_buf;
95 unsigned int bufi; /* Buffer current position */
96 unsigned int buf_sz; /* Buffer size */
97 struct dma_chan *dma_chan;
98 dma_addr_t dma_buf;
99 };
100
101 struct stm32_dfsdm_str2field {
102 const char *name;
103 unsigned int val;
104 };
105
106 /* DFSDM channel serial interface type */
107 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
108 { "SPI_R", 0 }, /* SPI with data on rising edge */
109 { "SPI_F", 1 }, /* SPI with data on falling edge */
110 { "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
111 { "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
112 { }
113 };
114
115 /* DFSDM channel clock source */
116 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
117 /* External SPI clock (CLKIN x) */
118 { "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
119 /* Internal SPI clock (CLKOUT) */
120 { "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
121 /* Internal SPI clock divided by 2 (falling edge) */
122 { "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
123 /* Internal SPI clock divided by 2 (falling edge) */
124 { "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
125 { }
126 };
127
stm32_dfsdm_str2val(const char * str,const struct stm32_dfsdm_str2field * list)128 static int stm32_dfsdm_str2val(const char *str,
129 const struct stm32_dfsdm_str2field *list)
130 {
131 const struct stm32_dfsdm_str2field *p = list;
132
133 for (p = list; p && p->name; p++)
134 if (!strcmp(p->name, str))
135 return p->val;
136
137 return -EINVAL;
138 }
139
140 /**
141 * struct stm32_dfsdm_trig_info - DFSDM trigger info
142 * @name: name of the trigger, corresponding to its source
143 * @jextsel: trigger signal selection
144 */
145 struct stm32_dfsdm_trig_info {
146 const char *name;
147 unsigned int jextsel;
148 };
149
150 /* hardware injected trigger enable, edge selection */
151 enum stm32_dfsdm_jexten {
152 STM32_DFSDM_JEXTEN_DISABLED,
153 STM32_DFSDM_JEXTEN_RISING_EDGE,
154 STM32_DFSDM_JEXTEN_FALLING_EDGE,
155 STM32_DFSDM_EXTEN_BOTH_EDGES,
156 };
157
158 static const struct stm32_dfsdm_trig_info stm32_dfsdm_trigs[] = {
159 { TIM1_TRGO, 0 },
160 { TIM1_TRGO2, 1 },
161 { TIM8_TRGO, 2 },
162 { TIM8_TRGO2, 3 },
163 { TIM3_TRGO, 4 },
164 { TIM4_TRGO, 5 },
165 { TIM16_OC1, 6 },
166 { TIM6_TRGO, 7 },
167 { TIM7_TRGO, 8 },
168 { LPTIM1_OUT, 26 },
169 { LPTIM2_OUT, 27 },
170 { LPTIM3_OUT, 28 },
171 { }
172 };
173
stm32_dfsdm_get_jextsel(struct iio_dev * indio_dev,struct iio_trigger * trig)174 static int stm32_dfsdm_get_jextsel(struct iio_dev *indio_dev,
175 struct iio_trigger *trig)
176 {
177 int i;
178
179 /* lookup triggers registered by stm32 timer trigger driver */
180 for (i = 0; stm32_dfsdm_trigs[i].name; i++) {
181 /**
182 * Checking both stm32 timer trigger type and trig name
183 * should be safe against arbitrary trigger names.
184 */
185 if ((is_stm32_timer_trigger(trig) ||
186 is_stm32_lptim_trigger(trig)) &&
187 !strcmp(stm32_dfsdm_trigs[i].name, trig->name)) {
188 return stm32_dfsdm_trigs[i].jextsel;
189 }
190 }
191
192 return -EINVAL;
193 }
194
stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter * fl,unsigned int fast,unsigned int oversamp)195 static int stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter *fl,
196 unsigned int fast, unsigned int oversamp)
197 {
198 unsigned int i, d, fosr, iosr;
199 u64 res, max;
200 int bits, shift;
201 unsigned int m = 1; /* multiplication factor */
202 unsigned int p = fl->ford; /* filter order (ford) */
203 struct stm32_dfsdm_filter_osr *flo = &fl->flo[fast];
204
205 pr_debug("Requested oversampling: %d\n", oversamp);
206 /*
207 * This function tries to compute filter oversampling and integrator
208 * oversampling, base on oversampling ratio requested by user.
209 *
210 * Decimation d depends on the filter order and the oversampling ratios.
211 * ford: filter order
212 * fosr: filter over sampling ratio
213 * iosr: integrator over sampling ratio
214 */
215 if (fl->ford == DFSDM_FASTSINC_ORDER) {
216 m = 2;
217 p = 2;
218 }
219
220 /*
221 * Look for filter and integrator oversampling ratios which allows
222 * to maximize data output resolution.
223 */
224 for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
225 for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
226 if (fast)
227 d = fosr * iosr;
228 else if (fl->ford == DFSDM_FASTSINC_ORDER)
229 d = fosr * (iosr + 3) + 2;
230 else
231 d = fosr * (iosr - 1 + p) + p;
232
233 if (d > oversamp)
234 break;
235 else if (d != oversamp)
236 continue;
237 /*
238 * Check resolution (limited to signed 32 bits)
239 * res <= 2^31
240 * Sincx filters:
241 * res = m * fosr^p x iosr (with m=1, p=ford)
242 * FastSinc filter
243 * res = m * fosr^p x iosr (with m=2, p=2)
244 */
245 res = fosr;
246 for (i = p - 1; i > 0; i--) {
247 res = res * (u64)fosr;
248 if (res > DFSDM_DATA_MAX)
249 break;
250 }
251 if (res > DFSDM_DATA_MAX)
252 continue;
253
254 res = res * (u64)m * (u64)iosr;
255 if (res > DFSDM_DATA_MAX)
256 continue;
257
258 if (res >= flo->res) {
259 flo->res = res;
260 flo->fosr = fosr;
261 flo->iosr = iosr;
262
263 bits = fls(flo->res);
264 /* 8 LBSs in data register contain chan info */
265 max = flo->res << 8;
266
267 /* if resolution is not a power of two */
268 if (flo->res > BIT(bits - 1))
269 bits++;
270 else
271 max--;
272
273 shift = DFSDM_DATA_RES - bits;
274 /*
275 * Compute right/left shift
276 * Right shift is performed by hardware
277 * when transferring samples to data register.
278 * Left shift is done by software on buffer
279 */
280 if (shift > 0) {
281 /* Resolution is lower than 24 bits */
282 flo->rshift = 0;
283 flo->lshift = shift;
284 } else {
285 /*
286 * If resolution is 24 bits or more,
287 * max positive value may be ambiguous
288 * (equal to max negative value as sign
289 * bit is dropped).
290 * Reduce resolution to 23 bits (rshift)
291 * to keep the sign on bit 23 and treat
292 * saturation before rescaling on 24
293 * bits (lshift).
294 */
295 flo->rshift = 1 - shift;
296 flo->lshift = 1;
297 max >>= flo->rshift;
298 }
299 flo->max = (s32)max;
300 flo->bits = bits;
301
302 pr_debug("fast %d, fosr %d, iosr %d, res 0x%llx/%d bits, rshift %d, lshift %d\n",
303 fast, flo->fosr, flo->iosr,
304 flo->res, bits, flo->rshift,
305 flo->lshift);
306 }
307 }
308 }
309
310 if (!flo->res)
311 return -EINVAL;
312
313 return 0;
314 }
315
stm32_dfsdm_compute_all_osrs(struct iio_dev * indio_dev,unsigned int oversamp)316 static int stm32_dfsdm_compute_all_osrs(struct iio_dev *indio_dev,
317 unsigned int oversamp)
318 {
319 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
320 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
321 int ret0, ret1;
322
323 memset(&fl->flo[0], 0, sizeof(fl->flo[0]));
324 memset(&fl->flo[1], 0, sizeof(fl->flo[1]));
325
326 ret0 = stm32_dfsdm_compute_osrs(fl, 0, oversamp);
327 ret1 = stm32_dfsdm_compute_osrs(fl, 1, oversamp);
328 if (ret0 < 0 && ret1 < 0) {
329 dev_err(&indio_dev->dev,
330 "Filter parameters not found: errors %d/%d\n",
331 ret0, ret1);
332 return -EINVAL;
333 }
334
335 return 0;
336 }
337
stm32_dfsdm_start_channel(struct iio_dev * indio_dev)338 static int stm32_dfsdm_start_channel(struct iio_dev *indio_dev)
339 {
340 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
341 struct regmap *regmap = adc->dfsdm->regmap;
342 const struct iio_chan_spec *chan;
343 unsigned int bit;
344 int ret;
345
346 for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
347 chan = indio_dev->channels + bit;
348 ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
349 DFSDM_CHCFGR1_CHEN_MASK,
350 DFSDM_CHCFGR1_CHEN(1));
351 if (ret < 0)
352 return ret;
353 }
354
355 return 0;
356 }
357
stm32_dfsdm_stop_channel(struct iio_dev * indio_dev)358 static void stm32_dfsdm_stop_channel(struct iio_dev *indio_dev)
359 {
360 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
361 struct regmap *regmap = adc->dfsdm->regmap;
362 const struct iio_chan_spec *chan;
363 unsigned int bit;
364
365 for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
366 chan = indio_dev->channels + bit;
367 regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
368 DFSDM_CHCFGR1_CHEN_MASK,
369 DFSDM_CHCFGR1_CHEN(0));
370 }
371 }
372
stm32_dfsdm_chan_configure(struct stm32_dfsdm * dfsdm,struct stm32_dfsdm_channel * ch)373 static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
374 struct stm32_dfsdm_channel *ch)
375 {
376 unsigned int id = ch->id;
377 struct regmap *regmap = dfsdm->regmap;
378 int ret;
379
380 ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
381 DFSDM_CHCFGR1_SITP_MASK,
382 DFSDM_CHCFGR1_SITP(ch->type));
383 if (ret < 0)
384 return ret;
385 ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
386 DFSDM_CHCFGR1_SPICKSEL_MASK,
387 DFSDM_CHCFGR1_SPICKSEL(ch->src));
388 if (ret < 0)
389 return ret;
390 return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
391 DFSDM_CHCFGR1_CHINSEL_MASK,
392 DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
393 }
394
stm32_dfsdm_start_filter(struct stm32_dfsdm_adc * adc,unsigned int fl_id,struct iio_trigger * trig)395 static int stm32_dfsdm_start_filter(struct stm32_dfsdm_adc *adc,
396 unsigned int fl_id,
397 struct iio_trigger *trig)
398 {
399 struct stm32_dfsdm *dfsdm = adc->dfsdm;
400 int ret;
401
402 /* Enable filter */
403 ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
404 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
405 if (ret < 0)
406 return ret;
407
408 /* Nothing more to do for injected (scan mode/triggered) conversions */
409 if (adc->nconv > 1 || trig)
410 return 0;
411
412 /* Software start (single or continuous) regular conversion */
413 return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
414 DFSDM_CR1_RSWSTART_MASK,
415 DFSDM_CR1_RSWSTART(1));
416 }
417
stm32_dfsdm_stop_filter(struct stm32_dfsdm * dfsdm,unsigned int fl_id)418 static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
419 unsigned int fl_id)
420 {
421 /* Disable conversion */
422 regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
423 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
424 }
425
stm32_dfsdm_filter_set_trig(struct iio_dev * indio_dev,unsigned int fl_id,struct iio_trigger * trig)426 static int stm32_dfsdm_filter_set_trig(struct iio_dev *indio_dev,
427 unsigned int fl_id,
428 struct iio_trigger *trig)
429 {
430 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
431 struct regmap *regmap = adc->dfsdm->regmap;
432 u32 jextsel = 0, jexten = STM32_DFSDM_JEXTEN_DISABLED;
433 int ret;
434
435 if (trig) {
436 ret = stm32_dfsdm_get_jextsel(indio_dev, trig);
437 if (ret < 0)
438 return ret;
439
440 /* set trigger source and polarity (default to rising edge) */
441 jextsel = ret;
442 jexten = STM32_DFSDM_JEXTEN_RISING_EDGE;
443 }
444
445 ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
446 DFSDM_CR1_JEXTSEL_MASK | DFSDM_CR1_JEXTEN_MASK,
447 DFSDM_CR1_JEXTSEL(jextsel) |
448 DFSDM_CR1_JEXTEN(jexten));
449 if (ret < 0)
450 return ret;
451
452 return 0;
453 }
454
stm32_dfsdm_channels_configure(struct iio_dev * indio_dev,unsigned int fl_id,struct iio_trigger * trig)455 static int stm32_dfsdm_channels_configure(struct iio_dev *indio_dev,
456 unsigned int fl_id,
457 struct iio_trigger *trig)
458 {
459 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
460 struct regmap *regmap = adc->dfsdm->regmap;
461 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
462 struct stm32_dfsdm_filter_osr *flo = &fl->flo[0];
463 const struct iio_chan_spec *chan;
464 unsigned int bit;
465 int ret;
466
467 fl->fast = 0;
468
469 /*
470 * In continuous mode, use fast mode configuration,
471 * if it provides a better resolution.
472 */
473 if (adc->nconv == 1 && !trig && iio_buffer_enabled(indio_dev)) {
474 if (fl->flo[1].res >= fl->flo[0].res) {
475 fl->fast = 1;
476 flo = &fl->flo[1];
477 }
478 }
479
480 if (!flo->res)
481 return -EINVAL;
482
483 dev_dbg(&indio_dev->dev, "Samples actual resolution: %d bits",
484 min(flo->bits, (u32)DFSDM_DATA_RES - 1));
485
486 for_each_set_bit(bit, &adc->smask,
487 sizeof(adc->smask) * BITS_PER_BYTE) {
488 chan = indio_dev->channels + bit;
489
490 ret = regmap_update_bits(regmap,
491 DFSDM_CHCFGR2(chan->channel),
492 DFSDM_CHCFGR2_DTRBS_MASK,
493 DFSDM_CHCFGR2_DTRBS(flo->rshift));
494 if (ret)
495 return ret;
496 }
497
498 return 0;
499 }
500
stm32_dfsdm_filter_configure(struct iio_dev * indio_dev,unsigned int fl_id,struct iio_trigger * trig)501 static int stm32_dfsdm_filter_configure(struct iio_dev *indio_dev,
502 unsigned int fl_id,
503 struct iio_trigger *trig)
504 {
505 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
506 struct regmap *regmap = adc->dfsdm->regmap;
507 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
508 struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
509 u32 cr1;
510 const struct iio_chan_spec *chan;
511 unsigned int bit, jchg = 0;
512 int ret;
513
514 /* Average integrator oversampling */
515 ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
516 DFSDM_FCR_IOSR(flo->iosr - 1));
517 if (ret)
518 return ret;
519
520 /* Filter order and Oversampling */
521 ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
522 DFSDM_FCR_FOSR(flo->fosr - 1));
523 if (ret)
524 return ret;
525
526 ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
527 DFSDM_FCR_FORD(fl->ford));
528 if (ret)
529 return ret;
530
531 ret = stm32_dfsdm_filter_set_trig(indio_dev, fl_id, trig);
532 if (ret)
533 return ret;
534
535 ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
536 DFSDM_CR1_FAST_MASK,
537 DFSDM_CR1_FAST(fl->fast));
538 if (ret)
539 return ret;
540
541 /*
542 * DFSDM modes configuration W.R.T audio/iio type modes
543 * ----------------------------------------------------------------
544 * Modes | regular | regular | injected | injected |
545 * | | continuous | | + scan |
546 * --------------|---------|--------------|----------|------------|
547 * single conv | x | | | |
548 * (1 chan) | | | | |
549 * --------------|---------|--------------|----------|------------|
550 * 1 Audio chan | | sample freq | | |
551 * | | or sync_mode | | |
552 * --------------|---------|--------------|----------|------------|
553 * 1 IIO chan | | sample freq | trigger | |
554 * | | or sync_mode | | |
555 * --------------|---------|--------------|----------|------------|
556 * 2+ IIO chans | | | | trigger or |
557 * | | | | sync_mode |
558 * ----------------------------------------------------------------
559 */
560 if (adc->nconv == 1 && !trig) {
561 bit = __ffs(adc->smask);
562 chan = indio_dev->channels + bit;
563
564 /* Use regular conversion for single channel without trigger */
565 cr1 = DFSDM_CR1_RCH(chan->channel);
566
567 /* Continuous conversions triggered by SPI clk in buffer mode */
568 if (iio_buffer_enabled(indio_dev))
569 cr1 |= DFSDM_CR1_RCONT(1);
570
571 cr1 |= DFSDM_CR1_RSYNC(fl->sync_mode);
572 } else {
573 /* Use injected conversion for multiple channels */
574 for_each_set_bit(bit, &adc->smask,
575 sizeof(adc->smask) * BITS_PER_BYTE) {
576 chan = indio_dev->channels + bit;
577 jchg |= BIT(chan->channel);
578 }
579 ret = regmap_write(regmap, DFSDM_JCHGR(fl_id), jchg);
580 if (ret < 0)
581 return ret;
582
583 /* Use scan mode for multiple channels */
584 cr1 = DFSDM_CR1_JSCAN((adc->nconv > 1) ? 1 : 0);
585
586 /*
587 * Continuous conversions not supported in injected mode,
588 * either use:
589 * - conversions in sync with filter 0
590 * - triggered conversions
591 */
592 if (!fl->sync_mode && !trig)
593 return -EINVAL;
594 cr1 |= DFSDM_CR1_JSYNC(fl->sync_mode);
595 }
596
597 return regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_CFG_MASK,
598 cr1);
599 }
600
stm32_dfsdm_channel_parse_of(struct stm32_dfsdm * dfsdm,struct iio_dev * indio_dev,struct iio_chan_spec * ch)601 static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
602 struct iio_dev *indio_dev,
603 struct iio_chan_spec *ch)
604 {
605 struct stm32_dfsdm_channel *df_ch;
606 const char *of_str;
607 int chan_idx = ch->scan_index;
608 int ret, val;
609
610 ret = of_property_read_u32_index(indio_dev->dev.of_node,
611 "st,adc-channels", chan_idx,
612 &ch->channel);
613 if (ret < 0) {
614 dev_err(&indio_dev->dev,
615 " Error parsing 'st,adc-channels' for idx %d\n",
616 chan_idx);
617 return ret;
618 }
619 if (ch->channel >= dfsdm->num_chs) {
620 dev_err(&indio_dev->dev,
621 " Error bad channel number %d (max = %d)\n",
622 ch->channel, dfsdm->num_chs);
623 return -EINVAL;
624 }
625
626 ret = of_property_read_string_index(indio_dev->dev.of_node,
627 "st,adc-channel-names", chan_idx,
628 &ch->datasheet_name);
629 if (ret < 0) {
630 dev_err(&indio_dev->dev,
631 " Error parsing 'st,adc-channel-names' for idx %d\n",
632 chan_idx);
633 return ret;
634 }
635
636 df_ch = &dfsdm->ch_list[ch->channel];
637 df_ch->id = ch->channel;
638
639 ret = of_property_read_string_index(indio_dev->dev.of_node,
640 "st,adc-channel-types", chan_idx,
641 &of_str);
642 if (!ret) {
643 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
644 if (val < 0)
645 return val;
646 } else {
647 val = 0;
648 }
649 df_ch->type = val;
650
651 ret = of_property_read_string_index(indio_dev->dev.of_node,
652 "st,adc-channel-clk-src", chan_idx,
653 &of_str);
654 if (!ret) {
655 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
656 if (val < 0)
657 return val;
658 } else {
659 val = 0;
660 }
661 df_ch->src = val;
662
663 ret = of_property_read_u32_index(indio_dev->dev.of_node,
664 "st,adc-alt-channel", chan_idx,
665 &df_ch->alt_si);
666 if (ret < 0)
667 df_ch->alt_si = 0;
668
669 return 0;
670 }
671
stm32_dfsdm_generic_channel_parse_of(struct stm32_dfsdm * dfsdm,struct iio_dev * indio_dev,struct iio_chan_spec * ch,struct fwnode_handle * node)672 static int stm32_dfsdm_generic_channel_parse_of(struct stm32_dfsdm *dfsdm,
673 struct iio_dev *indio_dev,
674 struct iio_chan_spec *ch,
675 struct fwnode_handle *node)
676 {
677 struct stm32_dfsdm_channel *df_ch;
678 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
679 struct iio_backend *backend;
680 const char *of_str;
681 int ret, val;
682
683 ret = fwnode_property_read_u32(node, "reg", &ch->channel);
684 if (ret < 0) {
685 dev_err(&indio_dev->dev, "Missing channel index %d\n", ret);
686 return ret;
687 }
688
689 if (ch->channel >= dfsdm->num_chs) {
690 dev_err(&indio_dev->dev, " Error bad channel number %d (max = %d)\n",
691 ch->channel, dfsdm->num_chs);
692 return -EINVAL;
693 }
694
695 if (fwnode_property_present(node, "label")) {
696 /* label is optional */
697 ret = fwnode_property_read_string(node, "label", &ch->datasheet_name);
698 if (ret < 0) {
699 dev_err(&indio_dev->dev,
700 " Error parsing 'label' for idx %d\n", ch->channel);
701 return ret;
702 }
703 }
704
705 df_ch = &dfsdm->ch_list[ch->channel];
706 df_ch->id = ch->channel;
707
708 ret = fwnode_property_read_string(node, "st,adc-channel-type", &of_str);
709 if (!ret) {
710 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
711 if (val < 0)
712 return val;
713 } else {
714 val = 0;
715 }
716 df_ch->type = val;
717
718 ret = fwnode_property_read_string(node, "st,adc-channel-clk-src", &of_str);
719 if (!ret) {
720 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
721 if (val < 0)
722 return val;
723 } else {
724 val = 0;
725 }
726 df_ch->src = val;
727
728 ret = fwnode_property_read_u32(node, "st,adc-alt-channel", &df_ch->alt_si);
729 if (ret != -EINVAL)
730 df_ch->alt_si = 0;
731
732 if (adc->dev_data->type == DFSDM_IIO) {
733 backend = devm_iio_backend_fwnode_get(&indio_dev->dev, NULL, node);
734 if (IS_ERR(backend))
735 return dev_err_probe(&indio_dev->dev, PTR_ERR(backend),
736 "Failed to get backend\n");
737 adc->backend[ch->scan_index] = backend;
738 }
739
740 return 0;
741 }
742
dfsdm_adc_audio_get_spiclk(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,char * buf)743 static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
744 uintptr_t priv,
745 const struct iio_chan_spec *chan,
746 char *buf)
747 {
748 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
749
750 return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
751 }
752
dfsdm_adc_set_samp_freq(struct iio_dev * indio_dev,unsigned int sample_freq,unsigned int spi_freq)753 static int dfsdm_adc_set_samp_freq(struct iio_dev *indio_dev,
754 unsigned int sample_freq,
755 unsigned int spi_freq)
756 {
757 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
758 unsigned int oversamp;
759 int ret;
760
761 oversamp = DIV_ROUND_CLOSEST(spi_freq, sample_freq);
762 if (spi_freq % sample_freq)
763 dev_dbg(&indio_dev->dev,
764 "Rate not accurate. requested (%u), actual (%u)\n",
765 sample_freq, spi_freq / oversamp);
766
767 ret = stm32_dfsdm_compute_all_osrs(indio_dev, oversamp);
768 if (ret < 0)
769 return ret;
770
771 adc->sample_freq = spi_freq / oversamp;
772 adc->oversamp = oversamp;
773
774 return 0;
775 }
776
dfsdm_adc_audio_set_spiclk(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,const char * buf,size_t len)777 static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
778 uintptr_t priv,
779 const struct iio_chan_spec *chan,
780 const char *buf, size_t len)
781 {
782 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
783 struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
784 unsigned int sample_freq = adc->sample_freq;
785 unsigned int spi_freq;
786 int ret;
787
788 dev_err(&indio_dev->dev, "enter %s\n", __func__);
789 /* If DFSDM is master on SPI, SPI freq can not be updated */
790 if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
791 return -EPERM;
792
793 ret = kstrtoint(buf, 0, &spi_freq);
794 if (ret)
795 return ret;
796
797 if (!spi_freq)
798 return -EINVAL;
799
800 if (sample_freq) {
801 ret = dfsdm_adc_set_samp_freq(indio_dev, sample_freq, spi_freq);
802 if (ret < 0)
803 return ret;
804 }
805 adc->spi_freq = spi_freq;
806
807 return len;
808 }
809
stm32_dfsdm_start_conv(struct iio_dev * indio_dev,struct iio_trigger * trig)810 static int stm32_dfsdm_start_conv(struct iio_dev *indio_dev,
811 struct iio_trigger *trig)
812 {
813 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
814 struct regmap *regmap = adc->dfsdm->regmap;
815 int ret;
816
817 ret = stm32_dfsdm_channels_configure(indio_dev, adc->fl_id, trig);
818 if (ret < 0)
819 return ret;
820
821 ret = stm32_dfsdm_start_channel(indio_dev);
822 if (ret < 0)
823 return ret;
824
825 ret = stm32_dfsdm_filter_configure(indio_dev, adc->fl_id, trig);
826 if (ret < 0)
827 goto stop_channels;
828
829 ret = stm32_dfsdm_start_filter(adc, adc->fl_id, trig);
830 if (ret < 0)
831 goto filter_unconfigure;
832
833 return 0;
834
835 filter_unconfigure:
836 regmap_clear_bits(regmap, DFSDM_CR1(adc->fl_id), DFSDM_CR1_CFG_MASK);
837 stop_channels:
838 stm32_dfsdm_stop_channel(indio_dev);
839
840 return ret;
841 }
842
stm32_dfsdm_stop_conv(struct iio_dev * indio_dev)843 static void stm32_dfsdm_stop_conv(struct iio_dev *indio_dev)
844 {
845 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
846 struct regmap *regmap = adc->dfsdm->regmap;
847
848 stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
849
850 regmap_clear_bits(regmap, DFSDM_CR1(adc->fl_id), DFSDM_CR1_CFG_MASK);
851
852 stm32_dfsdm_stop_channel(indio_dev);
853 }
854
stm32_dfsdm_set_watermark(struct iio_dev * indio_dev,unsigned int val)855 static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
856 unsigned int val)
857 {
858 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
859 unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
860 unsigned int rx_buf_sz = DFSDM_DMA_BUFFER_SIZE;
861
862 /*
863 * DMA cyclic transfers are used, buffer is split into two periods.
864 * There should be :
865 * - always one buffer (period) DMA is working on
866 * - one buffer (period) driver pushed to ASoC side.
867 */
868 watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
869 adc->buf_sz = min(rx_buf_sz, watermark * 2 * adc->nconv);
870
871 return 0;
872 }
873
stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc * adc)874 static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
875 {
876 struct dma_tx_state state;
877 enum dma_status status;
878
879 status = dmaengine_tx_status(adc->dma_chan,
880 adc->dma_chan->cookie,
881 &state);
882 if (status == DMA_IN_PROGRESS) {
883 /* Residue is size in bytes from end of buffer */
884 unsigned int i = adc->buf_sz - state.residue;
885 unsigned int size;
886
887 /* Return available bytes */
888 if (i >= adc->bufi)
889 size = i - adc->bufi;
890 else
891 size = adc->buf_sz + i - adc->bufi;
892
893 return size;
894 }
895
896 return 0;
897 }
898
stm32_dfsdm_process_data(struct stm32_dfsdm_adc * adc,s32 * buffer)899 static inline void stm32_dfsdm_process_data(struct stm32_dfsdm_adc *adc,
900 s32 *buffer)
901 {
902 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
903 struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
904 unsigned int i = adc->nconv;
905 s32 *ptr = buffer;
906
907 while (i--) {
908 /* Mask 8 LSB that contains the channel ID */
909 *ptr &= 0xFFFFFF00;
910 /* Convert 2^(n-1) sample to 2^(n-1)-1 to avoid wrap-around */
911 if (*ptr > flo->max)
912 *ptr -= 1;
913 /*
914 * Samples from filter are retrieved with 23 bits resolution
915 * or less. Shift left to align MSB on 24 bits.
916 */
917 *ptr <<= flo->lshift;
918
919 ptr++;
920 }
921 }
922
stm32_dfsdm_dma_buffer_done(void * data)923 static void stm32_dfsdm_dma_buffer_done(void *data)
924 {
925 struct iio_dev *indio_dev = data;
926 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
927 int available = stm32_dfsdm_adc_dma_residue(adc);
928 size_t old_pos;
929
930 /*
931 * FIXME: In Kernel interface does not support cyclic DMA buffer,and
932 * offers only an interface to push data samples per samples.
933 * For this reason IIO buffer interface is not used and interface is
934 * bypassed using a private callback registered by ASoC.
935 * This should be a temporary solution waiting a cyclic DMA engine
936 * support in IIO.
937 */
938
939 dev_dbg(&indio_dev->dev, "pos = %d, available = %d\n",
940 adc->bufi, available);
941 old_pos = adc->bufi;
942
943 while (available >= indio_dev->scan_bytes) {
944 s32 *buffer = (s32 *)&adc->rx_buf[adc->bufi];
945
946 stm32_dfsdm_process_data(adc, buffer);
947
948 available -= indio_dev->scan_bytes;
949 adc->bufi += indio_dev->scan_bytes;
950 if (adc->bufi >= adc->buf_sz) {
951 if (adc->cb)
952 adc->cb(&adc->rx_buf[old_pos],
953 adc->buf_sz - old_pos, adc->cb_priv);
954 adc->bufi = 0;
955 old_pos = 0;
956 }
957 /*
958 * In DMA mode the trigger services of IIO are not used
959 * (e.g. no call to iio_trigger_poll).
960 * Calling irq handler associated to the hardware trigger is not
961 * relevant as the conversions have already been done. Data
962 * transfers are performed directly in DMA callback instead.
963 * This implementation avoids to call trigger irq handler that
964 * may sleep, in an atomic context (DMA irq handler context).
965 */
966 if (adc->dev_data->type == DFSDM_IIO)
967 iio_push_to_buffers(indio_dev, buffer);
968 }
969 if (adc->cb)
970 adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
971 adc->cb_priv);
972 }
973
stm32_dfsdm_adc_dma_start(struct iio_dev * indio_dev)974 static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
975 {
976 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
977 /*
978 * The DFSDM supports half-word transfers. However, for 16 bits record,
979 * 4 bytes buswidth is kept, to avoid losing samples LSBs when left
980 * shift is required.
981 */
982 struct dma_slave_config config = {
983 .src_addr = (dma_addr_t)adc->dfsdm->phys_base,
984 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
985 };
986 struct dma_async_tx_descriptor *desc;
987 dma_cookie_t cookie;
988 int ret;
989
990 if (!adc->dma_chan)
991 return -EINVAL;
992
993 dev_dbg(&indio_dev->dev, "size=%d watermark=%d\n",
994 adc->buf_sz, adc->buf_sz / 2);
995
996 if (adc->nconv == 1 && !indio_dev->trig)
997 config.src_addr += DFSDM_RDATAR(adc->fl_id);
998 else
999 config.src_addr += DFSDM_JDATAR(adc->fl_id);
1000 ret = dmaengine_slave_config(adc->dma_chan, &config);
1001 if (ret)
1002 return ret;
1003
1004 /* Prepare a DMA cyclic transaction */
1005 desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1006 adc->dma_buf,
1007 adc->buf_sz, adc->buf_sz / 2,
1008 DMA_DEV_TO_MEM,
1009 DMA_PREP_INTERRUPT);
1010 if (!desc)
1011 return -EBUSY;
1012
1013 desc->callback = stm32_dfsdm_dma_buffer_done;
1014 desc->callback_param = indio_dev;
1015
1016 cookie = dmaengine_submit(desc);
1017 ret = dma_submit_error(cookie);
1018 if (ret)
1019 goto err_stop_dma;
1020
1021 /* Issue pending DMA requests */
1022 dma_async_issue_pending(adc->dma_chan);
1023
1024 if (adc->nconv == 1 && !indio_dev->trig) {
1025 /* Enable regular DMA transfer*/
1026 ret = regmap_set_bits(adc->dfsdm->regmap,
1027 DFSDM_CR1(adc->fl_id),
1028 DFSDM_CR1_RDMAEN_MASK);
1029 } else {
1030 /* Enable injected DMA transfer*/
1031 ret = regmap_set_bits(adc->dfsdm->regmap,
1032 DFSDM_CR1(adc->fl_id),
1033 DFSDM_CR1_JDMAEN_MASK);
1034 }
1035
1036 if (ret < 0)
1037 goto err_stop_dma;
1038
1039 return 0;
1040
1041 err_stop_dma:
1042 dmaengine_terminate_all(adc->dma_chan);
1043
1044 return ret;
1045 }
1046
stm32_dfsdm_adc_dma_stop(struct iio_dev * indio_dev)1047 static void stm32_dfsdm_adc_dma_stop(struct iio_dev *indio_dev)
1048 {
1049 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1050
1051 if (!adc->dma_chan)
1052 return;
1053
1054 regmap_clear_bits(adc->dfsdm->regmap, DFSDM_CR1(adc->fl_id),
1055 DFSDM_CR1_RDMAEN_MASK | DFSDM_CR1_JDMAEN_MASK);
1056 dmaengine_terminate_all(adc->dma_chan);
1057 }
1058
stm32_dfsdm_update_scan_mode(struct iio_dev * indio_dev,const unsigned long * scan_mask)1059 static int stm32_dfsdm_update_scan_mode(struct iio_dev *indio_dev,
1060 const unsigned long *scan_mask)
1061 {
1062 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1063
1064 adc->nconv = bitmap_weight(scan_mask, iio_get_masklength(indio_dev));
1065 adc->smask = *scan_mask;
1066
1067 dev_dbg(&indio_dev->dev, "nconv=%d mask=%lx\n", adc->nconv, *scan_mask);
1068
1069 return 0;
1070 }
1071
stm32_dfsdm_postenable(struct iio_dev * indio_dev)1072 static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
1073 {
1074 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1075 int i = 0;
1076 int ret;
1077
1078 /* Reset adc buffer index */
1079 adc->bufi = 0;
1080
1081 if (adc->hwc) {
1082 ret = iio_hw_consumer_enable(adc->hwc);
1083 if (ret < 0)
1084 return ret;
1085 }
1086
1087 if (adc->backend) {
1088 while (adc->backend[i]) {
1089 ret = iio_backend_enable(adc->backend[i]);
1090 if (ret < 0)
1091 return ret;
1092 i++;
1093 }
1094 }
1095
1096 ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1097 if (ret < 0)
1098 goto err_stop_hwc;
1099
1100 ret = stm32_dfsdm_adc_dma_start(indio_dev);
1101 if (ret) {
1102 dev_err(&indio_dev->dev, "Can't start DMA\n");
1103 goto stop_dfsdm;
1104 }
1105
1106 ret = stm32_dfsdm_start_conv(indio_dev, indio_dev->trig);
1107 if (ret) {
1108 dev_err(&indio_dev->dev, "Can't start conversion\n");
1109 goto err_stop_dma;
1110 }
1111
1112 return 0;
1113
1114 err_stop_dma:
1115 stm32_dfsdm_adc_dma_stop(indio_dev);
1116 stop_dfsdm:
1117 stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1118 err_stop_hwc:
1119 if (adc->hwc)
1120 iio_hw_consumer_disable(adc->hwc);
1121
1122 return ret;
1123 }
1124
stm32_dfsdm_predisable(struct iio_dev * indio_dev)1125 static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
1126 {
1127 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1128 int i = 0;
1129
1130 stm32_dfsdm_stop_conv(indio_dev);
1131
1132 stm32_dfsdm_adc_dma_stop(indio_dev);
1133
1134 stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1135
1136 if (adc->backend) {
1137 while (adc->backend[i]) {
1138 iio_backend_disable(adc->backend[i]);
1139 i++;
1140 }
1141 }
1142
1143 if (adc->hwc)
1144 iio_hw_consumer_disable(adc->hwc);
1145
1146 return 0;
1147 }
1148
1149 static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
1150 .postenable = &stm32_dfsdm_postenable,
1151 .predisable = &stm32_dfsdm_predisable,
1152 };
1153
1154 /**
1155 * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
1156 * DMA transfer period is achieved.
1157 *
1158 * @iio_dev: Handle to IIO device.
1159 * @cb: Pointer to callback function:
1160 * - data: pointer to data buffer
1161 * - size: size in byte of the data buffer
1162 * - private: pointer to consumer private structure.
1163 * @private: Pointer to consumer private structure.
1164 */
stm32_dfsdm_get_buff_cb(struct iio_dev * iio_dev,int (* cb)(const void * data,size_t size,void * private),void * private)1165 int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
1166 int (*cb)(const void *data, size_t size,
1167 void *private),
1168 void *private)
1169 {
1170 struct stm32_dfsdm_adc *adc;
1171
1172 if (!iio_dev)
1173 return -EINVAL;
1174 adc = iio_priv(iio_dev);
1175
1176 adc->cb = cb;
1177 adc->cb_priv = private;
1178
1179 return 0;
1180 }
1181 EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
1182
1183 /**
1184 * stm32_dfsdm_release_buff_cb - unregister buffer callback
1185 *
1186 * @iio_dev: Handle to IIO device.
1187 */
stm32_dfsdm_release_buff_cb(struct iio_dev * iio_dev)1188 int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
1189 {
1190 struct stm32_dfsdm_adc *adc;
1191
1192 if (!iio_dev)
1193 return -EINVAL;
1194 adc = iio_priv(iio_dev);
1195
1196 adc->cb = NULL;
1197 adc->cb_priv = NULL;
1198
1199 return 0;
1200 }
1201 EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
1202
stm32_dfsdm_single_conv(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int * res)1203 static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
1204 const struct iio_chan_spec *chan, int *res)
1205 {
1206 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1207 long time_left;
1208 int ret;
1209
1210 reinit_completion(&adc->completion);
1211
1212 adc->buffer = res;
1213
1214 ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1215 if (ret < 0)
1216 return ret;
1217
1218 ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1219 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
1220 if (ret < 0)
1221 goto stop_dfsdm;
1222
1223 adc->nconv = 1;
1224 adc->smask = BIT(chan->scan_index);
1225 ret = stm32_dfsdm_start_conv(indio_dev, NULL);
1226 if (ret < 0) {
1227 regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1228 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1229 goto stop_dfsdm;
1230 }
1231
1232 time_left = wait_for_completion_interruptible_timeout(&adc->completion,
1233 DFSDM_TIMEOUT);
1234
1235 /* Mask IRQ for regular conversion achievement*/
1236 regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1237 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1238
1239 if (time_left == 0)
1240 ret = -ETIMEDOUT;
1241 else if (time_left < 0)
1242 ret = time_left;
1243 else
1244 ret = IIO_VAL_INT;
1245
1246 stm32_dfsdm_stop_conv(indio_dev);
1247
1248 stm32_dfsdm_process_data(adc, res);
1249
1250 stop_dfsdm:
1251 stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1252
1253 return ret;
1254 }
1255
stm32_dfsdm_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)1256 static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
1257 struct iio_chan_spec const *chan,
1258 int val, int val2, long mask)
1259 {
1260 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1261 struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
1262 unsigned int spi_freq;
1263 int ret = -EINVAL;
1264
1265 switch (ch->src) {
1266 case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
1267 spi_freq = adc->dfsdm->spi_master_freq;
1268 break;
1269 case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
1270 case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
1271 spi_freq = adc->dfsdm->spi_master_freq / 2;
1272 break;
1273 default:
1274 spi_freq = adc->spi_freq;
1275 }
1276
1277 switch (mask) {
1278 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1279 if (!iio_device_claim_direct(indio_dev))
1280 return -EBUSY;
1281
1282 ret = stm32_dfsdm_compute_all_osrs(indio_dev, val);
1283 if (!ret) {
1284 dev_dbg(&indio_dev->dev,
1285 "Sampling rate changed from (%u) to (%u)\n",
1286 adc->sample_freq, spi_freq / val);
1287 adc->oversamp = val;
1288 adc->sample_freq = spi_freq / val;
1289 }
1290 iio_device_release_direct(indio_dev);
1291 return ret;
1292
1293 case IIO_CHAN_INFO_SAMP_FREQ:
1294 if (!val)
1295 return -EINVAL;
1296
1297 if (!iio_device_claim_direct(indio_dev))
1298 return -EBUSY;
1299
1300 ret = dfsdm_adc_set_samp_freq(indio_dev, val, spi_freq);
1301 iio_device_release_direct(indio_dev);
1302 return ret;
1303 }
1304
1305 return -EINVAL;
1306 }
1307
__stm32_dfsdm_read_info_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val)1308 static int __stm32_dfsdm_read_info_raw(struct iio_dev *indio_dev,
1309 struct iio_chan_spec const *chan,
1310 int *val)
1311 {
1312 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1313 int ret = 0;
1314
1315 if (adc->hwc)
1316 ret = iio_hw_consumer_enable(adc->hwc);
1317 if (adc->backend)
1318 ret = iio_backend_enable(adc->backend[chan->scan_index]);
1319 if (ret < 0) {
1320 dev_err(&indio_dev->dev,
1321 "%s: IIO enable failed (channel %d)\n",
1322 __func__, chan->channel);
1323 return ret;
1324 }
1325 ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
1326 if (adc->hwc)
1327 iio_hw_consumer_disable(adc->hwc);
1328 if (adc->backend)
1329 iio_backend_disable(adc->backend[chan->scan_index]);
1330 if (ret < 0) {
1331 dev_err(&indio_dev->dev,
1332 "%s: Conversion failed (channel %d)\n",
1333 __func__, chan->channel);
1334 return ret;
1335 }
1336
1337 return 0;
1338 }
1339
stm32_dfsdm_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)1340 static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
1341 struct iio_chan_spec const *chan, int *val,
1342 int *val2, long mask)
1343 {
1344 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1345
1346 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
1347 struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
1348 u32 max = flo->max << (flo->lshift - chan->scan_type.shift);
1349 int idx = chan->scan_index;
1350 int ret;
1351
1352 if (flo->lshift < chan->scan_type.shift)
1353 max = flo->max >> (chan->scan_type.shift - flo->lshift);
1354
1355 switch (mask) {
1356 case IIO_CHAN_INFO_RAW:
1357 if (!iio_device_claim_direct(indio_dev))
1358 return -EBUSY;
1359
1360 ret = __stm32_dfsdm_read_info_raw(indio_dev, chan, val);
1361 iio_device_release_direct(indio_dev);
1362 if (ret)
1363 return ret;
1364 return IIO_VAL_INT;
1365
1366 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1367 *val = adc->oversamp;
1368
1369 return IIO_VAL_INT;
1370
1371 case IIO_CHAN_INFO_SAMP_FREQ:
1372 *val = adc->sample_freq;
1373
1374 return IIO_VAL_INT;
1375
1376 case IIO_CHAN_INFO_SCALE:
1377 /*
1378 * Scale is expressed in mV.
1379 * When fast mode is disabled, actual resolution may be lower
1380 * than 2^n, where n = realbits - 1.
1381 * This leads to underestimating the input voltage.
1382 * To compensate this deviation, the voltage reference can be
1383 * corrected with a factor = realbits resolution / actual max
1384 */
1385 if (adc->backend) {
1386 ret = iio_backend_read_scale(adc->backend[idx], chan, val, NULL);
1387 if (ret < 0)
1388 return ret;
1389
1390 *val = div_u64((u64)*val * (u64)BIT(DFSDM_DATA_RES - 1), max);
1391 *val2 = chan->scan_type.realbits;
1392 if (chan->differential)
1393 *val *= 2;
1394 }
1395 return IIO_VAL_FRACTIONAL_LOG2;
1396
1397 case IIO_CHAN_INFO_OFFSET:
1398 /*
1399 * DFSDM output data are in the range [-2^n, 2^n],
1400 * with n = realbits - 1.
1401 * - Differential modulator:
1402 * Offset correspond to SD modulator offset.
1403 * - Single ended modulator:
1404 * Input is in [0V, Vref] range,
1405 * where 0V corresponds to -2^n, and Vref to 2^n.
1406 * Add 2^n to offset. (i.e. middle of input range)
1407 * offset = offset(sd) * vref / res(sd) * max / vref.
1408 */
1409 if (adc->backend) {
1410 ret = iio_backend_read_offset(adc->backend[idx], chan, val, NULL);
1411 if (ret < 0)
1412 return ret;
1413
1414 *val = div_u64((u64)max * *val, BIT(*val2 - 1));
1415 if (!chan->differential)
1416 *val += max;
1417 }
1418 return IIO_VAL_INT;
1419 }
1420
1421 return -EINVAL;
1422 }
1423
stm32_dfsdm_validate_trigger(struct iio_dev * indio_dev,struct iio_trigger * trig)1424 static int stm32_dfsdm_validate_trigger(struct iio_dev *indio_dev,
1425 struct iio_trigger *trig)
1426 {
1427 return stm32_dfsdm_get_jextsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1428 }
1429
1430 static const struct iio_info stm32_dfsdm_info_audio = {
1431 .hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1432 .read_raw = stm32_dfsdm_read_raw,
1433 .write_raw = stm32_dfsdm_write_raw,
1434 .update_scan_mode = stm32_dfsdm_update_scan_mode,
1435 };
1436
1437 static const struct iio_info stm32_dfsdm_info_adc = {
1438 .hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1439 .read_raw = stm32_dfsdm_read_raw,
1440 .write_raw = stm32_dfsdm_write_raw,
1441 .update_scan_mode = stm32_dfsdm_update_scan_mode,
1442 .validate_trigger = stm32_dfsdm_validate_trigger,
1443 };
1444
stm32_dfsdm_irq(int irq,void * arg)1445 static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
1446 {
1447 struct iio_dev *indio_dev = arg;
1448 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1449 struct regmap *regmap = adc->dfsdm->regmap;
1450 unsigned int status, int_en;
1451
1452 regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
1453 regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
1454
1455 if (status & DFSDM_ISR_REOCF_MASK) {
1456 /* Read the data register clean the IRQ status */
1457 regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
1458 complete(&adc->completion);
1459 }
1460
1461 if (status & DFSDM_ISR_ROVRF_MASK) {
1462 if (int_en & DFSDM_CR2_ROVRIE_MASK)
1463 dev_warn(&indio_dev->dev, "Overrun detected\n");
1464 regmap_set_bits(regmap, DFSDM_ICR(adc->fl_id),
1465 DFSDM_ICR_CLRROVRF_MASK);
1466 }
1467
1468 return IRQ_HANDLED;
1469 }
1470
1471 /*
1472 * Define external info for SPI Frequency and audio sampling rate that can be
1473 * configured by ASoC driver through consumer.h API
1474 */
1475 static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
1476 /* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
1477 {
1478 .name = "spi_clk_freq",
1479 .shared = IIO_SHARED_BY_TYPE,
1480 .read = dfsdm_adc_audio_get_spiclk,
1481 .write = dfsdm_adc_audio_set_spiclk,
1482 },
1483 { }
1484 };
1485
stm32_dfsdm_dma_release(struct iio_dev * indio_dev)1486 static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
1487 {
1488 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1489
1490 if (adc->dma_chan) {
1491 dma_free_coherent(adc->dma_chan->device->dev,
1492 DFSDM_DMA_BUFFER_SIZE,
1493 adc->rx_buf, adc->dma_buf);
1494 dma_release_channel(adc->dma_chan);
1495 }
1496 }
1497
stm32_dfsdm_dma_request(struct device * dev,struct iio_dev * indio_dev)1498 static int stm32_dfsdm_dma_request(struct device *dev,
1499 struct iio_dev *indio_dev)
1500 {
1501 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1502
1503 adc->dma_chan = dma_request_chan(dev, "rx");
1504 if (IS_ERR(adc->dma_chan)) {
1505 int ret = PTR_ERR(adc->dma_chan);
1506
1507 adc->dma_chan = NULL;
1508 return ret;
1509 }
1510
1511 adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1512 DFSDM_DMA_BUFFER_SIZE,
1513 &adc->dma_buf, GFP_KERNEL);
1514 if (!adc->rx_buf) {
1515 dma_release_channel(adc->dma_chan);
1516 return -ENOMEM;
1517 }
1518
1519 indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1520 indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
1521
1522 return 0;
1523 }
1524
stm32_dfsdm_adc_chan_init_one(struct iio_dev * indio_dev,struct iio_chan_spec * ch,struct fwnode_handle * child)1525 static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev, struct iio_chan_spec *ch,
1526 struct fwnode_handle *child)
1527 {
1528 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1529 int ret;
1530
1531 if (child)
1532 ret = stm32_dfsdm_generic_channel_parse_of(adc->dfsdm, indio_dev, ch, child);
1533 else /* Legacy binding */
1534 ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
1535 if (ret < 0)
1536 return dev_err_probe(&indio_dev->dev, ret, "Failed to parse channel\n");
1537
1538 ch->type = IIO_VOLTAGE;
1539 ch->indexed = 1;
1540
1541 /*
1542 * IIO_CHAN_INFO_RAW: used to compute regular conversion
1543 * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
1544 */
1545 if (child) {
1546 ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
1547 BIT(IIO_CHAN_INFO_SCALE) |
1548 BIT(IIO_CHAN_INFO_OFFSET);
1549 } else {
1550 /* Legacy. Scaling not supported */
1551 ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1552 }
1553
1554 ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |
1555 BIT(IIO_CHAN_INFO_SAMP_FREQ);
1556
1557 if (adc->dev_data->type == DFSDM_AUDIO) {
1558 ch->ext_info = dfsdm_adc_audio_ext_info;
1559 ch->scan_index = 0;
1560 } else {
1561 ch->scan_type.shift = 8;
1562 }
1563 ch->scan_type.sign = 's';
1564 ch->scan_type.realbits = 24;
1565 ch->scan_type.storagebits = 32;
1566
1567 return stm32_dfsdm_chan_configure(adc->dfsdm,
1568 &adc->dfsdm->ch_list[ch->channel]);
1569 }
1570
stm32_dfsdm_chan_init(struct iio_dev * indio_dev,struct iio_chan_spec * channels)1571 static int stm32_dfsdm_chan_init(struct iio_dev *indio_dev, struct iio_chan_spec *channels)
1572 {
1573 int num_ch = indio_dev->num_channels;
1574 int chan_idx = 0;
1575 int ret;
1576
1577 for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1578 channels[chan_idx].scan_index = chan_idx;
1579 ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &channels[chan_idx], NULL);
1580 if (ret < 0)
1581 return dev_err_probe(&indio_dev->dev, ret, "Channels init failed\n");
1582 }
1583
1584 return 0;
1585 }
1586
stm32_dfsdm_generic_chan_init(struct iio_dev * indio_dev,struct iio_chan_spec * channels)1587 static int stm32_dfsdm_generic_chan_init(struct iio_dev *indio_dev, struct iio_chan_spec *channels)
1588 {
1589 int chan_idx = 0, ret;
1590
1591 device_for_each_child_node_scoped(&indio_dev->dev, child) {
1592 /* Skip DAI node in DFSDM audio nodes */
1593 if (fwnode_property_present(child, "compatible"))
1594 continue;
1595
1596 channels[chan_idx].scan_index = chan_idx;
1597 ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &channels[chan_idx], child);
1598 if (ret < 0)
1599 return dev_err_probe(&indio_dev->dev, ret, "Channels init failed\n");
1600
1601 chan_idx++;
1602 }
1603
1604 return chan_idx;
1605 }
1606
stm32_dfsdm_audio_init(struct device * dev,struct iio_dev * indio_dev)1607 static int stm32_dfsdm_audio_init(struct device *dev, struct iio_dev *indio_dev)
1608 {
1609 struct iio_chan_spec *ch;
1610 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1611 struct stm32_dfsdm_channel *d_ch;
1612 bool legacy = false;
1613 int num_ch, ret;
1614
1615 /* If st,adc-channels is defined legacy binding is used. Else assume generic binding. */
1616 num_ch = of_property_count_u32_elems(indio_dev->dev.of_node, "st,adc-channels");
1617 if (num_ch == 1)
1618 legacy = true;
1619
1620 ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
1621 if (!ch)
1622 return -ENOMEM;
1623
1624 indio_dev->num_channels = 1;
1625 indio_dev->channels = ch;
1626
1627 if (legacy)
1628 ret = stm32_dfsdm_chan_init(indio_dev, ch);
1629 else
1630 ret = stm32_dfsdm_generic_chan_init(indio_dev, ch);
1631
1632 if (ret < 0) {
1633 dev_err(&indio_dev->dev, "Channels init failed\n");
1634 return ret;
1635 }
1636 ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1637
1638 d_ch = &adc->dfsdm->ch_list[ch->channel];
1639 if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1640 adc->spi_freq = adc->dfsdm->spi_master_freq;
1641
1642 return stm32_dfsdm_dma_request(dev, indio_dev);
1643 }
1644
stm32_dfsdm_adc_init(struct device * dev,struct iio_dev * indio_dev)1645 static int stm32_dfsdm_adc_init(struct device *dev, struct iio_dev *indio_dev)
1646 {
1647 struct iio_chan_spec *ch;
1648 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1649 int num_ch, ret;
1650 bool legacy = false;
1651
1652 adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1653 ret = stm32_dfsdm_compute_all_osrs(indio_dev, adc->oversamp);
1654 if (ret < 0)
1655 return ret;
1656
1657 num_ch = device_get_child_node_count(&indio_dev->dev);
1658 if (!num_ch) {
1659 /* No channels nodes found. Assume legacy binding */
1660 num_ch = of_property_count_u32_elems(indio_dev->dev.of_node, "st,adc-channels");
1661 if (num_ch < 0) {
1662 dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1663 return num_ch;
1664 }
1665
1666 legacy = true;
1667 }
1668
1669 if (num_ch > adc->dfsdm->num_chs) {
1670 dev_err(&indio_dev->dev, "Number of channel [%d] exceeds [%d]\n",
1671 num_ch, adc->dfsdm->num_chs);
1672 return -EINVAL;
1673 }
1674 indio_dev->num_channels = num_ch;
1675
1676 if (legacy) {
1677 /* Bind to SD modulator IIO device. */
1678 adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1679 if (IS_ERR(adc->hwc))
1680 return dev_err_probe(&indio_dev->dev, -EPROBE_DEFER,
1681 "waiting for SD modulator\n");
1682 } else {
1683 /* Generic binding. SD modulator IIO device not used. Use SD modulator backend. */
1684 adc->hwc = NULL;
1685
1686 adc->backend = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*adc->backend),
1687 GFP_KERNEL);
1688 if (!adc->backend)
1689 return -ENOMEM;
1690 }
1691
1692 ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch), GFP_KERNEL);
1693 if (!ch)
1694 return -ENOMEM;
1695 indio_dev->channels = ch;
1696
1697 if (legacy)
1698 ret = stm32_dfsdm_chan_init(indio_dev, ch);
1699 else
1700 ret = stm32_dfsdm_generic_chan_init(indio_dev, ch);
1701 if (ret < 0)
1702 return ret;
1703
1704 init_completion(&adc->completion);
1705
1706 /* Optionally request DMA */
1707 ret = stm32_dfsdm_dma_request(dev, indio_dev);
1708 if (ret) {
1709 if (ret != -ENODEV)
1710 return dev_err_probe(dev, ret,
1711 "DMA channel request failed with\n");
1712
1713 dev_dbg(dev, "No DMA support\n");
1714 return 0;
1715 }
1716
1717 ret = iio_triggered_buffer_setup(indio_dev,
1718 &iio_pollfunc_store_time, NULL,
1719 &stm32_dfsdm_buffer_setup_ops);
1720 if (ret) {
1721 stm32_dfsdm_dma_release(indio_dev);
1722 dev_err(&indio_dev->dev, "buffer setup failed\n");
1723 return ret;
1724 }
1725
1726 /* lptimer/timer hardware triggers */
1727 indio_dev->modes |= INDIO_HARDWARE_TRIGGERED;
1728
1729 return 0;
1730 }
1731
1732 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1733 .type = DFSDM_IIO,
1734 .init = stm32_dfsdm_adc_init,
1735 };
1736
1737 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1738 .type = DFSDM_AUDIO,
1739 .init = stm32_dfsdm_audio_init,
1740 };
1741
1742 static const struct of_device_id stm32_dfsdm_adc_match[] = {
1743 {
1744 .compatible = "st,stm32-dfsdm-adc",
1745 .data = &stm32h7_dfsdm_adc_data,
1746 },
1747 {
1748 .compatible = "st,stm32-dfsdm-dmic",
1749 .data = &stm32h7_dfsdm_audio_data,
1750 },
1751 { }
1752 };
1753 MODULE_DEVICE_TABLE(of, stm32_dfsdm_adc_match);
1754
stm32_dfsdm_adc_probe(struct platform_device * pdev)1755 static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1756 {
1757 struct device *dev = &pdev->dev;
1758 struct stm32_dfsdm_adc *adc;
1759 struct device_node *np = dev->of_node;
1760 const struct stm32_dfsdm_dev_data *dev_data;
1761 struct iio_dev *iio;
1762 char *name;
1763 int ret, irq, val;
1764
1765 dev_data = of_device_get_match_data(dev);
1766 iio = devm_iio_device_alloc(dev, sizeof(*adc));
1767 if (!iio) {
1768 dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1769 return -ENOMEM;
1770 }
1771
1772 adc = iio_priv(iio);
1773 adc->dfsdm = dev_get_drvdata(dev->parent);
1774
1775 iio->dev.of_node = np;
1776 iio->modes = INDIO_DIRECT_MODE;
1777
1778 platform_set_drvdata(pdev, iio);
1779
1780 ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1781 if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
1782 dev_err(dev, "Missing or bad reg property\n");
1783 return -EINVAL;
1784 }
1785
1786 name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1787 if (!name)
1788 return -ENOMEM;
1789 if (dev_data->type == DFSDM_AUDIO) {
1790 iio->info = &stm32_dfsdm_info_audio;
1791 snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1792 } else {
1793 iio->info = &stm32_dfsdm_info_adc;
1794 snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1795 }
1796 iio->name = name;
1797
1798 /*
1799 * In a first step IRQs generated for channels are not treated.
1800 * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1801 */
1802 irq = platform_get_irq(pdev, 0);
1803 if (irq < 0)
1804 return irq;
1805
1806 ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1807 0, pdev->name, iio);
1808 if (ret < 0) {
1809 dev_err(dev, "Failed to request IRQ\n");
1810 return ret;
1811 }
1812
1813 ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1814 if (ret < 0) {
1815 dev_err(dev, "Failed to set filter order\n");
1816 return ret;
1817 }
1818
1819 adc->dfsdm->fl_list[adc->fl_id].ford = val;
1820
1821 ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1822 if (!ret)
1823 adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1824
1825 adc->dev_data = dev_data;
1826 ret = dev_data->init(dev, iio);
1827 if (ret < 0)
1828 return ret;
1829
1830 ret = iio_device_register(iio);
1831 if (ret < 0)
1832 goto err_cleanup;
1833
1834 if (dev_data->type == DFSDM_AUDIO) {
1835 ret = of_platform_populate(np, NULL, NULL, dev);
1836 if (ret < 0) {
1837 dev_err(dev, "Failed to find an audio DAI\n");
1838 goto err_unregister;
1839 }
1840 }
1841
1842 return 0;
1843
1844 err_unregister:
1845 iio_device_unregister(iio);
1846 err_cleanup:
1847 stm32_dfsdm_dma_release(iio);
1848
1849 return ret;
1850 }
1851
stm32_dfsdm_adc_remove(struct platform_device * pdev)1852 static void stm32_dfsdm_adc_remove(struct platform_device *pdev)
1853 {
1854 struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1855 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1856
1857 if (adc->dev_data->type == DFSDM_AUDIO)
1858 of_platform_depopulate(&pdev->dev);
1859 iio_device_unregister(indio_dev);
1860 stm32_dfsdm_dma_release(indio_dev);
1861 }
1862
stm32_dfsdm_adc_suspend(struct device * dev)1863 static int stm32_dfsdm_adc_suspend(struct device *dev)
1864 {
1865 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1866
1867 if (iio_buffer_enabled(indio_dev))
1868 stm32_dfsdm_predisable(indio_dev);
1869
1870 return 0;
1871 }
1872
stm32_dfsdm_adc_resume(struct device * dev)1873 static int stm32_dfsdm_adc_resume(struct device *dev)
1874 {
1875 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1876 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1877 const struct iio_chan_spec *chan;
1878 struct stm32_dfsdm_channel *ch;
1879 int i, ret;
1880
1881 /* restore channels configuration */
1882 for (i = 0; i < indio_dev->num_channels; i++) {
1883 chan = indio_dev->channels + i;
1884 ch = &adc->dfsdm->ch_list[chan->channel];
1885 ret = stm32_dfsdm_chan_configure(adc->dfsdm, ch);
1886 if (ret)
1887 return ret;
1888 }
1889
1890 if (iio_buffer_enabled(indio_dev))
1891 stm32_dfsdm_postenable(indio_dev);
1892
1893 return 0;
1894 }
1895
1896 static DEFINE_SIMPLE_DEV_PM_OPS(stm32_dfsdm_adc_pm_ops,
1897 stm32_dfsdm_adc_suspend,
1898 stm32_dfsdm_adc_resume);
1899
1900 static struct platform_driver stm32_dfsdm_adc_driver = {
1901 .driver = {
1902 .name = "stm32-dfsdm-adc",
1903 .of_match_table = stm32_dfsdm_adc_match,
1904 .pm = pm_sleep_ptr(&stm32_dfsdm_adc_pm_ops),
1905 },
1906 .probe = stm32_dfsdm_adc_probe,
1907 .remove = stm32_dfsdm_adc_remove,
1908 };
1909 module_platform_driver(stm32_dfsdm_adc_driver);
1910
1911 MODULE_DESCRIPTION("STM32 sigma delta ADC");
1912 MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1913 MODULE_LICENSE("GPL v2");
1914 MODULE_IMPORT_NS("IIO_BACKEND");
1915