1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4
5
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42
43 #include <linux/kvm_types.h>
44
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51
52 /*
53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54 * used in kvm, other bits are visible for userspace which are defined in
55 * include/linux/kvm_h.
56 */
57 #define KVM_MEMSLOT_INVALID (1UL << 16)
58
59 /*
60 * Bit 63 of the memslot generation number is an "update in-progress flag",
61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
62 * This flag effectively creates a unique generation number that is used to
63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64 * i.e. may (or may not) have come from the previous memslots generation.
65 *
66 * This is necessary because the actual memslots update is not atomic with
67 * respect to the generation number update. Updating the generation number
68 * first would allow a vCPU to cache a spte from the old memslots using the
69 * new generation number, and updating the generation number after switching
70 * to the new memslots would allow cache hits using the old generation number
71 * to reference the defunct memslots.
72 *
73 * This mechanism is used to prevent getting hits in KVM's caches while a
74 * memslot update is in-progress, and to prevent cache hits *after* updating
75 * the actual generation number against accesses that were inserted into the
76 * cache *before* the memslots were updated.
77 */
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
79
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS 2
82
83 #ifndef KVM_MAX_NR_ADDRESS_SPACES
84 #define KVM_MAX_NR_ADDRESS_SPACES 1
85 #endif
86
87 /*
88 * For the normal pfn, the highest 12 bits should be zero,
89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
90 * mask bit 63 to indicate the noslot pfn.
91 */
92 #define KVM_PFN_ERR_MASK (0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
94 #define KVM_PFN_NOSLOT (0x1ULL << 63)
95
96 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
99 #define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3)
100 #define KVM_PFN_ERR_NEEDS_IO (KVM_PFN_ERR_MASK + 4)
101
102 /*
103 * error pfns indicate that the gfn is in slot but faild to
104 * translate it to pfn on host.
105 */
is_error_pfn(kvm_pfn_t pfn)106 static inline bool is_error_pfn(kvm_pfn_t pfn)
107 {
108 return !!(pfn & KVM_PFN_ERR_MASK);
109 }
110
111 /*
112 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
113 * by a pending signal. Note, the signal may or may not be fatal.
114 */
is_sigpending_pfn(kvm_pfn_t pfn)115 static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
116 {
117 return pfn == KVM_PFN_ERR_SIGPENDING;
118 }
119
120 /*
121 * error_noslot pfns indicate that the gfn can not be
122 * translated to pfn - it is not in slot or failed to
123 * translate it to pfn.
124 */
is_error_noslot_pfn(kvm_pfn_t pfn)125 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
126 {
127 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
128 }
129
130 /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(kvm_pfn_t pfn)131 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
132 {
133 return pfn == KVM_PFN_NOSLOT;
134 }
135
136 /*
137 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
138 * provide own defines and kvm_is_error_hva
139 */
140 #ifndef KVM_HVA_ERR_BAD
141
142 #define KVM_HVA_ERR_BAD (PAGE_OFFSET)
143 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
144
kvm_is_error_hva(unsigned long addr)145 static inline bool kvm_is_error_hva(unsigned long addr)
146 {
147 return addr >= PAGE_OFFSET;
148 }
149
150 #endif
151
kvm_is_error_gpa(gpa_t gpa)152 static inline bool kvm_is_error_gpa(gpa_t gpa)
153 {
154 return gpa == INVALID_GPA;
155 }
156
157 #define KVM_REQUEST_MASK GENMASK(7,0)
158 #define KVM_REQUEST_NO_WAKEUP BIT(8)
159 #define KVM_REQUEST_WAIT BIT(9)
160 #define KVM_REQUEST_NO_ACTION BIT(10)
161 /*
162 * Architecture-independent vcpu->requests bit members
163 * Bits 3-7 are reserved for more arch-independent bits.
164 */
165 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
166 #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
167 #define KVM_REQ_UNBLOCK 2
168 #define KVM_REQ_DIRTY_RING_SOFT_FULL 3
169 #define KVM_REQUEST_ARCH_BASE 8
170
171 /*
172 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
173 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
174 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
175 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous
176 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
177 * guarantee the vCPU received an IPI and has actually exited guest mode.
178 */
179 #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
180
181 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
182 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
183 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
184 })
185 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
186
187 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
188 unsigned long *vcpu_bitmap);
189 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
190
191 #define KVM_USERSPACE_IRQ_SOURCE_ID 0
192 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
193 #define KVM_PIT_IRQ_SOURCE_ID 2
194
195 extern struct mutex kvm_lock;
196 extern struct list_head vm_list;
197
198 struct kvm_io_range {
199 gpa_t addr;
200 int len;
201 struct kvm_io_device *dev;
202 };
203
204 #define NR_IOBUS_DEVS 1000
205
206 struct kvm_io_bus {
207 int dev_count;
208 int ioeventfd_count;
209 struct kvm_io_range range[];
210 };
211
212 enum kvm_bus {
213 KVM_MMIO_BUS,
214 KVM_PIO_BUS,
215 KVM_VIRTIO_CCW_NOTIFY_BUS,
216 KVM_FAST_MMIO_BUS,
217 KVM_IOCSR_BUS,
218 KVM_NR_BUSES
219 };
220
221 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
222 int len, const void *val);
223 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
224 gpa_t addr, int len, const void *val, long cookie);
225 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
226 int len, void *val);
227 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
228 int len, struct kvm_io_device *dev);
229 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
230 struct kvm_io_device *dev);
231 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
232 gpa_t addr);
233
234 #ifdef CONFIG_KVM_ASYNC_PF
235 struct kvm_async_pf {
236 struct work_struct work;
237 struct list_head link;
238 struct list_head queue;
239 struct kvm_vcpu *vcpu;
240 gpa_t cr2_or_gpa;
241 unsigned long addr;
242 struct kvm_arch_async_pf arch;
243 bool wakeup_all;
244 bool notpresent_injected;
245 };
246
247 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
248 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
249 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
250 unsigned long hva, struct kvm_arch_async_pf *arch);
251 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
252 #endif
253
254 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
255 union kvm_mmu_notifier_arg {
256 unsigned long attributes;
257 };
258
259 enum kvm_gfn_range_filter {
260 KVM_FILTER_SHARED = BIT(0),
261 KVM_FILTER_PRIVATE = BIT(1),
262 };
263
264 struct kvm_gfn_range {
265 struct kvm_memory_slot *slot;
266 gfn_t start;
267 gfn_t end;
268 union kvm_mmu_notifier_arg arg;
269 enum kvm_gfn_range_filter attr_filter;
270 bool may_block;
271 bool lockless;
272 };
273 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
274 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
275 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
276 #endif
277
278 enum {
279 OUTSIDE_GUEST_MODE,
280 IN_GUEST_MODE,
281 EXITING_GUEST_MODE,
282 READING_SHADOW_PAGE_TABLES,
283 };
284
285 struct kvm_host_map {
286 /*
287 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
288 * a 'struct page' for it. When using mem= kernel parameter some memory
289 * can be used as guest memory but they are not managed by host
290 * kernel).
291 */
292 struct page *pinned_page;
293 struct page *page;
294 void *hva;
295 kvm_pfn_t pfn;
296 kvm_pfn_t gfn;
297 bool writable;
298 };
299
300 /*
301 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
302 * directly to check for that.
303 */
kvm_vcpu_mapped(struct kvm_host_map * map)304 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
305 {
306 return !!map->hva;
307 }
308
kvm_vcpu_can_poll(ktime_t cur,ktime_t stop)309 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
310 {
311 return single_task_running() && !need_resched() && ktime_before(cur, stop);
312 }
313
314 /*
315 * Sometimes a large or cross-page mmio needs to be broken up into separate
316 * exits for userspace servicing.
317 */
318 struct kvm_mmio_fragment {
319 gpa_t gpa;
320 void *data;
321 unsigned len;
322 };
323
324 struct kvm_vcpu {
325 struct kvm *kvm;
326 #ifdef CONFIG_PREEMPT_NOTIFIERS
327 struct preempt_notifier preempt_notifier;
328 #endif
329 int cpu;
330 int vcpu_id; /* id given by userspace at creation */
331 int vcpu_idx; /* index into kvm->vcpu_array */
332 int ____srcu_idx; /* Don't use this directly. You've been warned. */
333 #ifdef CONFIG_PROVE_RCU
334 int srcu_depth;
335 #endif
336 int mode;
337 u64 requests;
338 unsigned long guest_debug;
339
340 struct mutex mutex;
341 struct kvm_run *run;
342
343 #ifndef __KVM_HAVE_ARCH_WQP
344 struct rcuwait wait;
345 #endif
346 struct pid *pid;
347 rwlock_t pid_lock;
348 int sigset_active;
349 sigset_t sigset;
350 unsigned int halt_poll_ns;
351 bool valid_wakeup;
352
353 #ifdef CONFIG_HAS_IOMEM
354 int mmio_needed;
355 int mmio_read_completed;
356 int mmio_is_write;
357 int mmio_cur_fragment;
358 int mmio_nr_fragments;
359 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
360 #endif
361
362 #ifdef CONFIG_KVM_ASYNC_PF
363 struct {
364 u32 queued;
365 struct list_head queue;
366 struct list_head done;
367 spinlock_t lock;
368 } async_pf;
369 #endif
370
371 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
372 /*
373 * Cpu relax intercept or pause loop exit optimization
374 * in_spin_loop: set when a vcpu does a pause loop exit
375 * or cpu relax intercepted.
376 * dy_eligible: indicates whether vcpu is eligible for directed yield.
377 */
378 struct {
379 bool in_spin_loop;
380 bool dy_eligible;
381 } spin_loop;
382 #endif
383 bool wants_to_run;
384 bool preempted;
385 bool ready;
386 bool scheduled_out;
387 struct kvm_vcpu_arch arch;
388 struct kvm_vcpu_stat stat;
389 char stats_id[KVM_STATS_NAME_SIZE];
390 struct kvm_dirty_ring dirty_ring;
391
392 /*
393 * The most recently used memslot by this vCPU and the slots generation
394 * for which it is valid.
395 * No wraparound protection is needed since generations won't overflow in
396 * thousands of years, even assuming 1M memslot operations per second.
397 */
398 struct kvm_memory_slot *last_used_slot;
399 u64 last_used_slot_gen;
400 };
401
402 /*
403 * Start accounting time towards a guest.
404 * Must be called before entering guest context.
405 */
guest_timing_enter_irqoff(void)406 static __always_inline void guest_timing_enter_irqoff(void)
407 {
408 /*
409 * This is running in ioctl context so its safe to assume that it's the
410 * stime pending cputime to flush.
411 */
412 instrumentation_begin();
413 vtime_account_guest_enter();
414 instrumentation_end();
415 }
416
417 /*
418 * Enter guest context and enter an RCU extended quiescent state.
419 *
420 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
421 * unsafe to use any code which may directly or indirectly use RCU, tracing
422 * (including IRQ flag tracing), or lockdep. All code in this period must be
423 * non-instrumentable.
424 */
guest_context_enter_irqoff(void)425 static __always_inline void guest_context_enter_irqoff(void)
426 {
427 /*
428 * KVM does not hold any references to rcu protected data when it
429 * switches CPU into a guest mode. In fact switching to a guest mode
430 * is very similar to exiting to userspace from rcu point of view. In
431 * addition CPU may stay in a guest mode for quite a long time (up to
432 * one time slice). Lets treat guest mode as quiescent state, just like
433 * we do with user-mode execution.
434 */
435 if (!context_tracking_guest_enter()) {
436 instrumentation_begin();
437 rcu_virt_note_context_switch();
438 instrumentation_end();
439 }
440 }
441
442 /*
443 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
444 * guest_state_enter_irqoff().
445 */
guest_enter_irqoff(void)446 static __always_inline void guest_enter_irqoff(void)
447 {
448 guest_timing_enter_irqoff();
449 guest_context_enter_irqoff();
450 }
451
452 /**
453 * guest_state_enter_irqoff - Fixup state when entering a guest
454 *
455 * Entry to a guest will enable interrupts, but the kernel state is interrupts
456 * disabled when this is invoked. Also tell RCU about it.
457 *
458 * 1) Trace interrupts on state
459 * 2) Invoke context tracking if enabled to adjust RCU state
460 * 3) Tell lockdep that interrupts are enabled
461 *
462 * Invoked from architecture specific code before entering a guest.
463 * Must be called with interrupts disabled and the caller must be
464 * non-instrumentable.
465 * The caller has to invoke guest_timing_enter_irqoff() before this.
466 *
467 * Note: this is analogous to exit_to_user_mode().
468 */
guest_state_enter_irqoff(void)469 static __always_inline void guest_state_enter_irqoff(void)
470 {
471 instrumentation_begin();
472 trace_hardirqs_on_prepare();
473 lockdep_hardirqs_on_prepare();
474 instrumentation_end();
475
476 guest_context_enter_irqoff();
477 lockdep_hardirqs_on(CALLER_ADDR0);
478 }
479
480 /*
481 * Exit guest context and exit an RCU extended quiescent state.
482 *
483 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
484 * unsafe to use any code which may directly or indirectly use RCU, tracing
485 * (including IRQ flag tracing), or lockdep. All code in this period must be
486 * non-instrumentable.
487 */
guest_context_exit_irqoff(void)488 static __always_inline void guest_context_exit_irqoff(void)
489 {
490 /*
491 * Guest mode is treated as a quiescent state, see
492 * guest_context_enter_irqoff() for more details.
493 */
494 if (!context_tracking_guest_exit()) {
495 instrumentation_begin();
496 rcu_virt_note_context_switch();
497 instrumentation_end();
498 }
499 }
500
501 /*
502 * Stop accounting time towards a guest.
503 * Must be called after exiting guest context.
504 */
guest_timing_exit_irqoff(void)505 static __always_inline void guest_timing_exit_irqoff(void)
506 {
507 instrumentation_begin();
508 /* Flush the guest cputime we spent on the guest */
509 vtime_account_guest_exit();
510 instrumentation_end();
511 }
512
513 /*
514 * Deprecated. Architectures should move to guest_state_exit_irqoff() and
515 * guest_timing_exit_irqoff().
516 */
guest_exit_irqoff(void)517 static __always_inline void guest_exit_irqoff(void)
518 {
519 guest_context_exit_irqoff();
520 guest_timing_exit_irqoff();
521 }
522
guest_exit(void)523 static inline void guest_exit(void)
524 {
525 unsigned long flags;
526
527 local_irq_save(flags);
528 guest_exit_irqoff();
529 local_irq_restore(flags);
530 }
531
532 /**
533 * guest_state_exit_irqoff - Establish state when returning from guest mode
534 *
535 * Entry from a guest disables interrupts, but guest mode is traced as
536 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
537 *
538 * 1) Tell lockdep that interrupts are disabled
539 * 2) Invoke context tracking if enabled to reactivate RCU
540 * 3) Trace interrupts off state
541 *
542 * Invoked from architecture specific code after exiting a guest.
543 * Must be invoked with interrupts disabled and the caller must be
544 * non-instrumentable.
545 * The caller has to invoke guest_timing_exit_irqoff() after this.
546 *
547 * Note: this is analogous to enter_from_user_mode().
548 */
guest_state_exit_irqoff(void)549 static __always_inline void guest_state_exit_irqoff(void)
550 {
551 lockdep_hardirqs_off(CALLER_ADDR0);
552 guest_context_exit_irqoff();
553
554 instrumentation_begin();
555 trace_hardirqs_off_finish();
556 instrumentation_end();
557 }
558
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)559 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
560 {
561 /*
562 * The memory barrier ensures a previous write to vcpu->requests cannot
563 * be reordered with the read of vcpu->mode. It pairs with the general
564 * memory barrier following the write of vcpu->mode in VCPU RUN.
565 */
566 smp_mb__before_atomic();
567 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
568 }
569
570 /*
571 * Some of the bitops functions do not support too long bitmaps.
572 * This number must be determined not to exceed such limits.
573 */
574 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
575
576 /*
577 * Since at idle each memslot belongs to two memslot sets it has to contain
578 * two embedded nodes for each data structure that it forms a part of.
579 *
580 * Two memslot sets (one active and one inactive) are necessary so the VM
581 * continues to run on one memslot set while the other is being modified.
582 *
583 * These two memslot sets normally point to the same set of memslots.
584 * They can, however, be desynchronized when performing a memslot management
585 * operation by replacing the memslot to be modified by its copy.
586 * After the operation is complete, both memslot sets once again point to
587 * the same, common set of memslot data.
588 *
589 * The memslots themselves are independent of each other so they can be
590 * individually added or deleted.
591 */
592 struct kvm_memory_slot {
593 struct hlist_node id_node[2];
594 struct interval_tree_node hva_node[2];
595 struct rb_node gfn_node[2];
596 gfn_t base_gfn;
597 unsigned long npages;
598 unsigned long *dirty_bitmap;
599 struct kvm_arch_memory_slot arch;
600 unsigned long userspace_addr;
601 u32 flags;
602 short id;
603 u16 as_id;
604
605 #ifdef CONFIG_KVM_PRIVATE_MEM
606 struct {
607 /*
608 * Writes protected by kvm->slots_lock. Acquiring a
609 * reference via kvm_gmem_get_file() is protected by
610 * either kvm->slots_lock or kvm->srcu.
611 */
612 struct file *file;
613 pgoff_t pgoff;
614 } gmem;
615 #endif
616 };
617
kvm_slot_can_be_private(const struct kvm_memory_slot * slot)618 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot)
619 {
620 return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
621 }
622
kvm_slot_dirty_track_enabled(const struct kvm_memory_slot * slot)623 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
624 {
625 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
626 }
627
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)628 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
629 {
630 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
631 }
632
kvm_second_dirty_bitmap(struct kvm_memory_slot * memslot)633 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
634 {
635 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
636
637 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
638 }
639
640 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
641 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
642 #endif
643
644 struct kvm_s390_adapter_int {
645 u64 ind_addr;
646 u64 summary_addr;
647 u64 ind_offset;
648 u32 summary_offset;
649 u32 adapter_id;
650 };
651
652 struct kvm_hv_sint {
653 u32 vcpu;
654 u32 sint;
655 };
656
657 struct kvm_xen_evtchn {
658 u32 port;
659 u32 vcpu_id;
660 int vcpu_idx;
661 u32 priority;
662 };
663
664 struct kvm_kernel_irq_routing_entry {
665 u32 gsi;
666 u32 type;
667 int (*set)(struct kvm_kernel_irq_routing_entry *e,
668 struct kvm *kvm, int irq_source_id, int level,
669 bool line_status);
670 union {
671 struct {
672 unsigned irqchip;
673 unsigned pin;
674 } irqchip;
675 struct {
676 u32 address_lo;
677 u32 address_hi;
678 u32 data;
679 u32 flags;
680 u32 devid;
681 } msi;
682 struct kvm_s390_adapter_int adapter;
683 struct kvm_hv_sint hv_sint;
684 struct kvm_xen_evtchn xen_evtchn;
685 };
686 struct hlist_node link;
687 };
688
689 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
690 struct kvm_irq_routing_table {
691 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
692 u32 nr_rt_entries;
693 /*
694 * Array indexed by gsi. Each entry contains list of irq chips
695 * the gsi is connected to.
696 */
697 struct hlist_head map[] __counted_by(nr_rt_entries);
698 };
699 #endif
700
701 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
702
703 #ifndef KVM_INTERNAL_MEM_SLOTS
704 #define KVM_INTERNAL_MEM_SLOTS 0
705 #endif
706
707 #define KVM_MEM_SLOTS_NUM SHRT_MAX
708 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
709
710 #if KVM_MAX_NR_ADDRESS_SPACES == 1
kvm_arch_nr_memslot_as_ids(struct kvm * kvm)711 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
712 {
713 return KVM_MAX_NR_ADDRESS_SPACES;
714 }
715
kvm_arch_vcpu_memslots_id(struct kvm_vcpu * vcpu)716 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
717 {
718 return 0;
719 }
720 #endif
721
722 /*
723 * Arch code must define kvm_arch_has_private_mem if support for private memory
724 * is enabled.
725 */
726 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
kvm_arch_has_private_mem(struct kvm * kvm)727 static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
728 {
729 return false;
730 }
731 #endif
732
733 #ifndef kvm_arch_has_readonly_mem
kvm_arch_has_readonly_mem(struct kvm * kvm)734 static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm)
735 {
736 return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM);
737 }
738 #endif
739
740 struct kvm_memslots {
741 u64 generation;
742 atomic_long_t last_used_slot;
743 struct rb_root_cached hva_tree;
744 struct rb_root gfn_tree;
745 /*
746 * The mapping table from slot id to memslot.
747 *
748 * 7-bit bucket count matches the size of the old id to index array for
749 * 512 slots, while giving good performance with this slot count.
750 * Higher bucket counts bring only small performance improvements but
751 * always result in higher memory usage (even for lower memslot counts).
752 */
753 DECLARE_HASHTABLE(id_hash, 7);
754 int node_idx;
755 };
756
757 struct kvm {
758 #ifdef KVM_HAVE_MMU_RWLOCK
759 rwlock_t mmu_lock;
760 #else
761 spinlock_t mmu_lock;
762 #endif /* KVM_HAVE_MMU_RWLOCK */
763
764 struct mutex slots_lock;
765
766 /*
767 * Protects the arch-specific fields of struct kvm_memory_slots in
768 * use by the VM. To be used under the slots_lock (above) or in a
769 * kvm->srcu critical section where acquiring the slots_lock would
770 * lead to deadlock with the synchronize_srcu in
771 * kvm_swap_active_memslots().
772 */
773 struct mutex slots_arch_lock;
774 struct mm_struct *mm; /* userspace tied to this vm */
775 unsigned long nr_memslot_pages;
776 /* The two memslot sets - active and inactive (per address space) */
777 struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
778 /* The current active memslot set for each address space */
779 struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
780 struct xarray vcpu_array;
781 /*
782 * Protected by slots_lock, but can be read outside if an
783 * incorrect answer is acceptable.
784 */
785 atomic_t nr_memslots_dirty_logging;
786
787 /* Used to wait for completion of MMU notifiers. */
788 spinlock_t mn_invalidate_lock;
789 unsigned long mn_active_invalidate_count;
790 struct rcuwait mn_memslots_update_rcuwait;
791
792 /* For management / invalidation of gfn_to_pfn_caches */
793 spinlock_t gpc_lock;
794 struct list_head gpc_list;
795
796 /*
797 * created_vcpus is protected by kvm->lock, and is incremented
798 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
799 * incremented after storing the kvm_vcpu pointer in vcpus,
800 * and is accessed atomically.
801 */
802 atomic_t online_vcpus;
803 int max_vcpus;
804 int created_vcpus;
805 int last_boosted_vcpu;
806 struct list_head vm_list;
807 struct mutex lock;
808 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
809 #ifdef CONFIG_HAVE_KVM_IRQCHIP
810 struct {
811 spinlock_t lock;
812 struct list_head items;
813 /* resampler_list update side is protected by resampler_lock. */
814 struct list_head resampler_list;
815 struct mutex resampler_lock;
816 } irqfds;
817 #endif
818 struct list_head ioeventfds;
819 struct kvm_vm_stat stat;
820 struct kvm_arch arch;
821 refcount_t users_count;
822 #ifdef CONFIG_KVM_MMIO
823 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
824 spinlock_t ring_lock;
825 struct list_head coalesced_zones;
826 #endif
827
828 struct mutex irq_lock;
829 #ifdef CONFIG_HAVE_KVM_IRQCHIP
830 /*
831 * Update side is protected by irq_lock.
832 */
833 struct kvm_irq_routing_table __rcu *irq_routing;
834
835 struct hlist_head irq_ack_notifier_list;
836 #endif
837
838 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
839 struct mmu_notifier mmu_notifier;
840 unsigned long mmu_invalidate_seq;
841 long mmu_invalidate_in_progress;
842 gfn_t mmu_invalidate_range_start;
843 gfn_t mmu_invalidate_range_end;
844 #endif
845 struct list_head devices;
846 u64 manual_dirty_log_protect;
847 struct dentry *debugfs_dentry;
848 struct kvm_stat_data **debugfs_stat_data;
849 struct srcu_struct srcu;
850 struct srcu_struct irq_srcu;
851 pid_t userspace_pid;
852 bool override_halt_poll_ns;
853 unsigned int max_halt_poll_ns;
854 u32 dirty_ring_size;
855 bool dirty_ring_with_bitmap;
856 bool vm_bugged;
857 bool vm_dead;
858
859 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
860 struct notifier_block pm_notifier;
861 #endif
862 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
863 /* Protected by slots_locks (for writes) and RCU (for reads) */
864 struct xarray mem_attr_array;
865 #endif
866 char stats_id[KVM_STATS_NAME_SIZE];
867 };
868
869 #define kvm_err(fmt, ...) \
870 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
871 #define kvm_info(fmt, ...) \
872 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
873 #define kvm_debug(fmt, ...) \
874 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
875 #define kvm_debug_ratelimited(fmt, ...) \
876 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
877 ## __VA_ARGS__)
878 #define kvm_pr_unimpl(fmt, ...) \
879 pr_err_ratelimited("kvm [%i]: " fmt, \
880 task_tgid_nr(current), ## __VA_ARGS__)
881
882 /* The guest did something we don't support. */
883 #define vcpu_unimpl(vcpu, fmt, ...) \
884 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
885 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
886
887 #define vcpu_debug(vcpu, fmt, ...) \
888 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
889 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \
890 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
891 ## __VA_ARGS__)
892 #define vcpu_err(vcpu, fmt, ...) \
893 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
894
kvm_vm_dead(struct kvm * kvm)895 static inline void kvm_vm_dead(struct kvm *kvm)
896 {
897 kvm->vm_dead = true;
898 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
899 }
900
kvm_vm_bugged(struct kvm * kvm)901 static inline void kvm_vm_bugged(struct kvm *kvm)
902 {
903 kvm->vm_bugged = true;
904 kvm_vm_dead(kvm);
905 }
906
907
908 #define KVM_BUG(cond, kvm, fmt...) \
909 ({ \
910 bool __ret = !!(cond); \
911 \
912 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
913 kvm_vm_bugged(kvm); \
914 unlikely(__ret); \
915 })
916
917 #define KVM_BUG_ON(cond, kvm) \
918 ({ \
919 bool __ret = !!(cond); \
920 \
921 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
922 kvm_vm_bugged(kvm); \
923 unlikely(__ret); \
924 })
925
926 /*
927 * Note, "data corruption" refers to corruption of host kernel data structures,
928 * not guest data. Guest data corruption, suspected or confirmed, that is tied
929 * and contained to a single VM should *never* BUG() and potentially panic the
930 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
931 * is corrupted and that corruption can have a cascading effect to other parts
932 * of the hosts and/or to other VMs.
933 */
934 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \
935 ({ \
936 bool __ret = !!(cond); \
937 \
938 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \
939 BUG_ON(__ret); \
940 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
941 kvm_vm_bugged(kvm); \
942 unlikely(__ret); \
943 })
944
kvm_vcpu_srcu_read_lock(struct kvm_vcpu * vcpu)945 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
946 {
947 #ifdef CONFIG_PROVE_RCU
948 WARN_ONCE(vcpu->srcu_depth++,
949 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
950 #endif
951 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
952 }
953
kvm_vcpu_srcu_read_unlock(struct kvm_vcpu * vcpu)954 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
955 {
956 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
957
958 #ifdef CONFIG_PROVE_RCU
959 WARN_ONCE(--vcpu->srcu_depth,
960 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
961 #endif
962 }
963
kvm_dirty_log_manual_protect_and_init_set(struct kvm * kvm)964 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
965 {
966 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
967 }
968
kvm_get_bus(struct kvm * kvm,enum kvm_bus idx)969 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
970 {
971 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
972 lockdep_is_held(&kvm->slots_lock) ||
973 !refcount_read(&kvm->users_count));
974 }
975
kvm_get_vcpu(struct kvm * kvm,int i)976 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
977 {
978 int num_vcpus = atomic_read(&kvm->online_vcpus);
979
980 /*
981 * Explicitly verify the target vCPU is online, as the anti-speculation
982 * logic only limits the CPU's ability to speculate, e.g. given a "bad"
983 * index, clamping the index to 0 would return vCPU0, not NULL.
984 */
985 if (i >= num_vcpus)
986 return NULL;
987
988 i = array_index_nospec(i, num_vcpus);
989
990 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
991 smp_rmb();
992 return xa_load(&kvm->vcpu_array, i);
993 }
994
995 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
996 if (atomic_read(&kvm->online_vcpus)) \
997 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
998 (atomic_read(&kvm->online_vcpus) - 1))
999
kvm_get_vcpu_by_id(struct kvm * kvm,int id)1000 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
1001 {
1002 struct kvm_vcpu *vcpu = NULL;
1003 unsigned long i;
1004
1005 if (id < 0)
1006 return NULL;
1007 if (id < KVM_MAX_VCPUS)
1008 vcpu = kvm_get_vcpu(kvm, id);
1009 if (vcpu && vcpu->vcpu_id == id)
1010 return vcpu;
1011 kvm_for_each_vcpu(i, vcpu, kvm)
1012 if (vcpu->vcpu_id == id)
1013 return vcpu;
1014 return NULL;
1015 }
1016
1017 void kvm_destroy_vcpus(struct kvm *kvm);
1018
1019 int kvm_trylock_all_vcpus(struct kvm *kvm);
1020 int kvm_lock_all_vcpus(struct kvm *kvm);
1021 void kvm_unlock_all_vcpus(struct kvm *kvm);
1022
1023 void vcpu_load(struct kvm_vcpu *vcpu);
1024 void vcpu_put(struct kvm_vcpu *vcpu);
1025
1026 #ifdef CONFIG_KVM_IOAPIC
1027 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
1028 #else
kvm_arch_post_irq_ack_notifier_list_update(struct kvm * kvm)1029 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
1030 {
1031 }
1032 #endif
1033
1034 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1035 int kvm_irqfd_init(void);
1036 void kvm_irqfd_exit(void);
1037 #else
kvm_irqfd_init(void)1038 static inline int kvm_irqfd_init(void)
1039 {
1040 return 0;
1041 }
1042
kvm_irqfd_exit(void)1043 static inline void kvm_irqfd_exit(void)
1044 {
1045 }
1046 #endif
1047 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1048 void kvm_exit(void);
1049
1050 void kvm_get_kvm(struct kvm *kvm);
1051 bool kvm_get_kvm_safe(struct kvm *kvm);
1052 void kvm_put_kvm(struct kvm *kvm);
1053 bool file_is_kvm(struct file *file);
1054 void kvm_put_kvm_no_destroy(struct kvm *kvm);
1055
__kvm_memslots(struct kvm * kvm,int as_id)1056 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1057 {
1058 as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1059 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1060 lockdep_is_held(&kvm->slots_lock) ||
1061 !refcount_read(&kvm->users_count));
1062 }
1063
kvm_memslots(struct kvm * kvm)1064 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1065 {
1066 return __kvm_memslots(kvm, 0);
1067 }
1068
kvm_vcpu_memslots(struct kvm_vcpu * vcpu)1069 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1070 {
1071 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1072
1073 return __kvm_memslots(vcpu->kvm, as_id);
1074 }
1075
kvm_memslots_empty(struct kvm_memslots * slots)1076 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1077 {
1078 return RB_EMPTY_ROOT(&slots->gfn_tree);
1079 }
1080
1081 bool kvm_are_all_memslots_empty(struct kvm *kvm);
1082
1083 #define kvm_for_each_memslot(memslot, bkt, slots) \
1084 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1085 if (WARN_ON_ONCE(!memslot->npages)) { \
1086 } else
1087
1088 static inline
id_to_memslot(struct kvm_memslots * slots,int id)1089 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1090 {
1091 struct kvm_memory_slot *slot;
1092 int idx = slots->node_idx;
1093
1094 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1095 if (slot->id == id)
1096 return slot;
1097 }
1098
1099 return NULL;
1100 }
1101
1102 /* Iterator used for walking memslots that overlap a gfn range. */
1103 struct kvm_memslot_iter {
1104 struct kvm_memslots *slots;
1105 struct rb_node *node;
1106 struct kvm_memory_slot *slot;
1107 };
1108
kvm_memslot_iter_next(struct kvm_memslot_iter * iter)1109 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1110 {
1111 iter->node = rb_next(iter->node);
1112 if (!iter->node)
1113 return;
1114
1115 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1116 }
1117
kvm_memslot_iter_start(struct kvm_memslot_iter * iter,struct kvm_memslots * slots,gfn_t start)1118 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1119 struct kvm_memslots *slots,
1120 gfn_t start)
1121 {
1122 int idx = slots->node_idx;
1123 struct rb_node *tmp;
1124 struct kvm_memory_slot *slot;
1125
1126 iter->slots = slots;
1127
1128 /*
1129 * Find the so called "upper bound" of a key - the first node that has
1130 * its key strictly greater than the searched one (the start gfn in our case).
1131 */
1132 iter->node = NULL;
1133 for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1134 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1135 if (start < slot->base_gfn) {
1136 iter->node = tmp;
1137 tmp = tmp->rb_left;
1138 } else {
1139 tmp = tmp->rb_right;
1140 }
1141 }
1142
1143 /*
1144 * Find the slot with the lowest gfn that can possibly intersect with
1145 * the range, so we'll ideally have slot start <= range start
1146 */
1147 if (iter->node) {
1148 /*
1149 * A NULL previous node means that the very first slot
1150 * already has a higher start gfn.
1151 * In this case slot start > range start.
1152 */
1153 tmp = rb_prev(iter->node);
1154 if (tmp)
1155 iter->node = tmp;
1156 } else {
1157 /* a NULL node below means no slots */
1158 iter->node = rb_last(&slots->gfn_tree);
1159 }
1160
1161 if (iter->node) {
1162 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1163
1164 /*
1165 * It is possible in the slot start < range start case that the
1166 * found slot ends before or at range start (slot end <= range start)
1167 * and so it does not overlap the requested range.
1168 *
1169 * In such non-overlapping case the next slot (if it exists) will
1170 * already have slot start > range start, otherwise the logic above
1171 * would have found it instead of the current slot.
1172 */
1173 if (iter->slot->base_gfn + iter->slot->npages <= start)
1174 kvm_memslot_iter_next(iter);
1175 }
1176 }
1177
kvm_memslot_iter_is_valid(struct kvm_memslot_iter * iter,gfn_t end)1178 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1179 {
1180 if (!iter->node)
1181 return false;
1182
1183 /*
1184 * If this slot starts beyond or at the end of the range so does
1185 * every next one
1186 */
1187 return iter->slot->base_gfn < end;
1188 }
1189
1190 /* Iterate over each memslot at least partially intersecting [start, end) range */
1191 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \
1192 for (kvm_memslot_iter_start(iter, slots, start); \
1193 kvm_memslot_iter_is_valid(iter, end); \
1194 kvm_memslot_iter_next(iter))
1195
1196 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1197 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1198 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1199
1200 /*
1201 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1202 * - create a new memory slot
1203 * - delete an existing memory slot
1204 * - modify an existing memory slot
1205 * -- move it in the guest physical memory space
1206 * -- just change its flags
1207 *
1208 * Since flags can be changed by some of these operations, the following
1209 * differentiation is the best we can do for kvm_set_memory_region():
1210 */
1211 enum kvm_mr_change {
1212 KVM_MR_CREATE,
1213 KVM_MR_DELETE,
1214 KVM_MR_MOVE,
1215 KVM_MR_FLAGS_ONLY,
1216 };
1217
1218 int kvm_set_internal_memslot(struct kvm *kvm,
1219 const struct kvm_userspace_memory_region2 *mem);
1220 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1221 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1222 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1223 const struct kvm_memory_slot *old,
1224 struct kvm_memory_slot *new,
1225 enum kvm_mr_change change);
1226 void kvm_arch_commit_memory_region(struct kvm *kvm,
1227 struct kvm_memory_slot *old,
1228 const struct kvm_memory_slot *new,
1229 enum kvm_mr_change change);
1230 /* flush all memory translations */
1231 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1232 /* flush memory translations pointing to 'slot' */
1233 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1234 struct kvm_memory_slot *slot);
1235
1236 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
1237 struct page **pages, int nr_pages);
1238
1239 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write);
gfn_to_page(struct kvm * kvm,gfn_t gfn)1240 static inline struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1241 {
1242 return __gfn_to_page(kvm, gfn, true);
1243 }
1244
1245 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1246 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1247 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1248 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1249 bool *writable);
1250
kvm_release_page_unused(struct page * page)1251 static inline void kvm_release_page_unused(struct page *page)
1252 {
1253 if (!page)
1254 return;
1255
1256 put_page(page);
1257 }
1258
1259 void kvm_release_page_clean(struct page *page);
1260 void kvm_release_page_dirty(struct page *page);
1261
kvm_release_faultin_page(struct kvm * kvm,struct page * page,bool unused,bool dirty)1262 static inline void kvm_release_faultin_page(struct kvm *kvm, struct page *page,
1263 bool unused, bool dirty)
1264 {
1265 lockdep_assert_once(lockdep_is_held(&kvm->mmu_lock) || unused);
1266
1267 if (!page)
1268 return;
1269
1270 /*
1271 * If the page that KVM got from the *primary MMU* is writable, and KVM
1272 * installed or reused a SPTE, mark the page/folio dirty. Note, this
1273 * may mark a folio dirty even if KVM created a read-only SPTE, e.g. if
1274 * the GFN is write-protected. Folios can't be safely marked dirty
1275 * outside of mmu_lock as doing so could race with writeback on the
1276 * folio. As a result, KVM can't mark folios dirty in the fast page
1277 * fault handler, and so KVM must (somewhat) speculatively mark the
1278 * folio dirty if KVM could locklessly make the SPTE writable.
1279 */
1280 if (unused)
1281 kvm_release_page_unused(page);
1282 else if (dirty)
1283 kvm_release_page_dirty(page);
1284 else
1285 kvm_release_page_clean(page);
1286 }
1287
1288 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
1289 unsigned int foll, bool *writable,
1290 struct page **refcounted_page);
1291
kvm_faultin_pfn(struct kvm_vcpu * vcpu,gfn_t gfn,bool write,bool * writable,struct page ** refcounted_page)1292 static inline kvm_pfn_t kvm_faultin_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
1293 bool write, bool *writable,
1294 struct page **refcounted_page)
1295 {
1296 return __kvm_faultin_pfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn,
1297 write ? FOLL_WRITE : 0, writable, refcounted_page);
1298 }
1299
1300 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1301 int len);
1302 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1303 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1304 void *data, unsigned long len);
1305 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1306 void *data, unsigned int offset,
1307 unsigned long len);
1308 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1309 int offset, int len);
1310 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1311 unsigned long len);
1312 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1313 void *data, unsigned long len);
1314 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1315 void *data, unsigned int offset,
1316 unsigned long len);
1317 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1318 gpa_t gpa, unsigned long len);
1319
1320 #define __kvm_get_guest(kvm, gfn, offset, v) \
1321 ({ \
1322 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1323 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1324 int __ret = -EFAULT; \
1325 \
1326 if (!kvm_is_error_hva(__addr)) \
1327 __ret = get_user(v, __uaddr); \
1328 __ret; \
1329 })
1330
1331 #define kvm_get_guest(kvm, gpa, v) \
1332 ({ \
1333 gpa_t __gpa = gpa; \
1334 struct kvm *__kvm = kvm; \
1335 \
1336 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
1337 offset_in_page(__gpa), v); \
1338 })
1339
1340 #define __kvm_put_guest(kvm, gfn, offset, v) \
1341 ({ \
1342 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1343 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1344 int __ret = -EFAULT; \
1345 \
1346 if (!kvm_is_error_hva(__addr)) \
1347 __ret = put_user(v, __uaddr); \
1348 if (!__ret) \
1349 mark_page_dirty(kvm, gfn); \
1350 __ret; \
1351 })
1352
1353 #define kvm_put_guest(kvm, gpa, v) \
1354 ({ \
1355 gpa_t __gpa = gpa; \
1356 struct kvm *__kvm = kvm; \
1357 \
1358 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
1359 offset_in_page(__gpa), v); \
1360 })
1361
1362 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1363 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1364 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1365 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1366 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1367 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1368
1369 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map,
1370 bool writable);
1371 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map);
1372
kvm_vcpu_map(struct kvm_vcpu * vcpu,gpa_t gpa,struct kvm_host_map * map)1373 static inline int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa,
1374 struct kvm_host_map *map)
1375 {
1376 return __kvm_vcpu_map(vcpu, gpa, map, true);
1377 }
1378
kvm_vcpu_map_readonly(struct kvm_vcpu * vcpu,gpa_t gpa,struct kvm_host_map * map)1379 static inline int kvm_vcpu_map_readonly(struct kvm_vcpu *vcpu, gpa_t gpa,
1380 struct kvm_host_map *map)
1381 {
1382 return __kvm_vcpu_map(vcpu, gpa, map, false);
1383 }
1384
1385 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1386 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1387 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1388 int len);
1389 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1390 unsigned long len);
1391 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1392 unsigned long len);
1393 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1394 int offset, int len);
1395 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1396 unsigned long len);
1397 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1398
1399 /**
1400 * kvm_gpc_init - initialize gfn_to_pfn_cache.
1401 *
1402 * @gpc: struct gfn_to_pfn_cache object.
1403 * @kvm: pointer to kvm instance.
1404 *
1405 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1406 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by
1407 * the caller before init).
1408 */
1409 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);
1410
1411 /**
1412 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1413 * physical address.
1414 *
1415 * @gpc: struct gfn_to_pfn_cache object.
1416 * @gpa: guest physical address to map.
1417 * @len: sanity check; the range being access must fit a single page.
1418 *
1419 * @return: 0 for success.
1420 * -EINVAL for a mapping which would cross a page boundary.
1421 * -EFAULT for an untranslatable guest physical address.
1422 *
1423 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1424 * invalidations to be processed. Callers are required to use kvm_gpc_check()
1425 * to ensure that the cache is valid before accessing the target page.
1426 */
1427 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1428
1429 /**
1430 * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
1431 *
1432 * @gpc: struct gfn_to_pfn_cache object.
1433 * @hva: userspace virtual address to map.
1434 * @len: sanity check; the range being access must fit a single page.
1435 *
1436 * @return: 0 for success.
1437 * -EINVAL for a mapping which would cross a page boundary.
1438 * -EFAULT for an untranslatable guest physical address.
1439 *
1440 * The semantics of this function are the same as those of kvm_gpc_activate(). It
1441 * merely bypasses a layer of address translation.
1442 */
1443 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);
1444
1445 /**
1446 * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1447 *
1448 * @gpc: struct gfn_to_pfn_cache object.
1449 * @len: sanity check; the range being access must fit a single page.
1450 *
1451 * @return: %true if the cache is still valid and the address matches.
1452 * %false if the cache is not valid.
1453 *
1454 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1455 * while calling this function, and then continue to hold the lock until the
1456 * access is complete.
1457 *
1458 * Callers in IN_GUEST_MODE may do so without locking, although they should
1459 * still hold a read lock on kvm->scru for the memslot checks.
1460 */
1461 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1462
1463 /**
1464 * kvm_gpc_refresh - update a previously initialized cache.
1465 *
1466 * @gpc: struct gfn_to_pfn_cache object.
1467 * @len: sanity check; the range being access must fit a single page.
1468 *
1469 * @return: 0 for success.
1470 * -EINVAL for a mapping which would cross a page boundary.
1471 * -EFAULT for an untranslatable guest physical address.
1472 *
1473 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1474 * return from this function does not mean the page can be immediately
1475 * accessed because it may have raced with an invalidation. Callers must
1476 * still lock and check the cache status, as this function does not return
1477 * with the lock still held to permit access.
1478 */
1479 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1480
1481 /**
1482 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1483 *
1484 * @gpc: struct gfn_to_pfn_cache object.
1485 *
1486 * This removes a cache from the VM's list to be processed on MMU notifier
1487 * invocation.
1488 */
1489 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1490
kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache * gpc)1491 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
1492 {
1493 return gpc->active && !kvm_is_error_gpa(gpc->gpa);
1494 }
1495
kvm_gpc_is_hva_active(struct gfn_to_pfn_cache * gpc)1496 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
1497 {
1498 return gpc->active && kvm_is_error_gpa(gpc->gpa);
1499 }
1500
1501 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1502 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1503
1504 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1505 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1506 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1507 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1508 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1509
1510 #ifndef CONFIG_S390
1511 void __kvm_vcpu_kick(struct kvm_vcpu *vcpu, bool wait);
1512
kvm_vcpu_kick(struct kvm_vcpu * vcpu)1513 static inline void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1514 {
1515 __kvm_vcpu_kick(vcpu, false);
1516 }
1517 #endif
1518
1519 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1520 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1521
1522 void kvm_flush_remote_tlbs(struct kvm *kvm);
1523 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1524 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1525 const struct kvm_memory_slot *memslot);
1526
1527 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1528 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1529 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1530 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1531 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1532 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1533 #endif
1534
1535 void kvm_mmu_invalidate_begin(struct kvm *kvm);
1536 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1537 void kvm_mmu_invalidate_end(struct kvm *kvm);
1538 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1539
1540 long kvm_arch_dev_ioctl(struct file *filp,
1541 unsigned int ioctl, unsigned long arg);
1542 long kvm_arch_vcpu_ioctl(struct file *filp,
1543 unsigned int ioctl, unsigned long arg);
1544 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1545
1546 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1547
1548 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1549 struct kvm_memory_slot *slot,
1550 gfn_t gfn_offset,
1551 unsigned long mask);
1552 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1553
1554 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1555 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1556 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1557 int *is_dirty, struct kvm_memory_slot **memslot);
1558 #endif
1559
1560 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1561 bool line_status);
1562 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1563 struct kvm_enable_cap *cap);
1564 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1565 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1566 unsigned long arg);
1567
1568 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1569 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1570
1571 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1572 struct kvm_translation *tr);
1573
1574 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1575 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1576 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1577 struct kvm_sregs *sregs);
1578 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1579 struct kvm_sregs *sregs);
1580 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1581 struct kvm_mp_state *mp_state);
1582 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1583 struct kvm_mp_state *mp_state);
1584 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1585 struct kvm_guest_debug *dbg);
1586 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1587
1588 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1589 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1590 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1591 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1592 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1593 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1594
1595 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1596 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1597 #endif
1598
1599 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1600 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1601 #else
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)1602 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1603 #endif
1604
1605 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1606 /*
1607 * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under
1608 * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of
1609 * kvm_usage_count, i.e. at the beginning of the generic hardware enabling
1610 * sequence, and at the end of the generic hardware disabling sequence.
1611 */
1612 void kvm_arch_enable_virtualization(void);
1613 void kvm_arch_disable_virtualization(void);
1614 /*
1615 * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to
1616 * do the actual twiddling of hardware bits. The hooks are called on all
1617 * online CPUs when KVM enables/disabled virtualization, and on a single CPU
1618 * when that CPU is onlined/offlined (including for Resume/Suspend).
1619 */
1620 int kvm_arch_enable_virtualization_cpu(void);
1621 void kvm_arch_disable_virtualization_cpu(void);
1622 #endif
1623 bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu);
1624 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1625 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1626 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1627 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1628 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1629 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
1630 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1631 void kvm_arch_create_vm_debugfs(struct kvm *kvm);
1632
1633 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1634 /*
1635 * All architectures that want to use vzalloc currently also
1636 * need their own kvm_arch_alloc_vm implementation.
1637 */
kvm_arch_alloc_vm(void)1638 static inline struct kvm *kvm_arch_alloc_vm(void)
1639 {
1640 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1641 }
1642 #endif
1643
__kvm_arch_free_vm(struct kvm * kvm)1644 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1645 {
1646 kvfree(kvm);
1647 }
1648
1649 #ifndef __KVM_HAVE_ARCH_VM_FREE
kvm_arch_free_vm(struct kvm * kvm)1650 static inline void kvm_arch_free_vm(struct kvm *kvm)
1651 {
1652 __kvm_arch_free_vm(kvm);
1653 }
1654 #endif
1655
1656 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
kvm_arch_flush_remote_tlbs(struct kvm * kvm)1657 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1658 {
1659 return -ENOTSUPP;
1660 }
1661 #else
1662 int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1663 #endif
1664
1665 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)1666 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1667 gfn_t gfn, u64 nr_pages)
1668 {
1669 return -EOPNOTSUPP;
1670 }
1671 #else
1672 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1673 #endif
1674
1675 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1676 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1677 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1678 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1679 #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)1680 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1681 {
1682 }
1683
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)1684 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1685 {
1686 }
1687
kvm_arch_has_noncoherent_dma(struct kvm * kvm)1688 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1689 {
1690 return false;
1691 }
1692 #endif
1693
kvm_arch_vcpu_get_wait(struct kvm_vcpu * vcpu)1694 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1695 {
1696 #ifdef __KVM_HAVE_ARCH_WQP
1697 return vcpu->arch.waitp;
1698 #else
1699 return &vcpu->wait;
1700 #endif
1701 }
1702
1703 /*
1704 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns
1705 * true if the vCPU was blocking and was awakened, false otherwise.
1706 */
__kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)1707 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1708 {
1709 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1710 }
1711
kvm_vcpu_is_blocking(struct kvm_vcpu * vcpu)1712 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1713 {
1714 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1715 }
1716
1717 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1718 /*
1719 * returns true if the virtual interrupt controller is initialized and
1720 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1721 * controller is dynamically instantiated and this is not always true.
1722 */
1723 bool kvm_arch_intc_initialized(struct kvm *kvm);
1724 #else
kvm_arch_intc_initialized(struct kvm * kvm)1725 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1726 {
1727 return true;
1728 }
1729 #endif
1730
1731 #ifdef CONFIG_GUEST_PERF_EVENTS
1732 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1733
1734 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1735 void kvm_unregister_perf_callbacks(void);
1736 #else
kvm_register_perf_callbacks(void * ign)1737 static inline void kvm_register_perf_callbacks(void *ign) {}
kvm_unregister_perf_callbacks(void)1738 static inline void kvm_unregister_perf_callbacks(void) {}
1739 #endif /* CONFIG_GUEST_PERF_EVENTS */
1740
1741 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1742 void kvm_arch_destroy_vm(struct kvm *kvm);
1743
1744 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1745
1746 struct kvm_irq_ack_notifier {
1747 struct hlist_node link;
1748 unsigned gsi;
1749 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1750 };
1751
1752 int kvm_irq_map_gsi(struct kvm *kvm,
1753 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1754 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1755
1756 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1757 bool line_status);
1758 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1759 int irq_source_id, int level, bool line_status);
1760 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1761 struct kvm *kvm, int irq_source_id,
1762 int level, bool line_status);
1763 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1764 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1765 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1766 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1767 struct kvm_irq_ack_notifier *kian);
1768 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1769 struct kvm_irq_ack_notifier *kian);
1770 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1771
1772 /*
1773 * Returns a pointer to the memslot if it contains gfn.
1774 * Otherwise returns NULL.
1775 */
1776 static inline struct kvm_memory_slot *
try_get_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1777 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1778 {
1779 if (!slot)
1780 return NULL;
1781
1782 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1783 return slot;
1784 else
1785 return NULL;
1786 }
1787
1788 /*
1789 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1790 *
1791 * With "approx" set returns the memslot also when the address falls
1792 * in a hole. In that case one of the memslots bordering the hole is
1793 * returned.
1794 */
1795 static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn,bool approx)1796 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1797 {
1798 struct kvm_memory_slot *slot;
1799 struct rb_node *node;
1800 int idx = slots->node_idx;
1801
1802 slot = NULL;
1803 for (node = slots->gfn_tree.rb_node; node; ) {
1804 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1805 if (gfn >= slot->base_gfn) {
1806 if (gfn < slot->base_gfn + slot->npages)
1807 return slot;
1808 node = node->rb_right;
1809 } else
1810 node = node->rb_left;
1811 }
1812
1813 return approx ? slot : NULL;
1814 }
1815
1816 static inline struct kvm_memory_slot *
____gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn,bool approx)1817 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1818 {
1819 struct kvm_memory_slot *slot;
1820
1821 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1822 slot = try_get_memslot(slot, gfn);
1823 if (slot)
1824 return slot;
1825
1826 slot = search_memslots(slots, gfn, approx);
1827 if (slot) {
1828 atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1829 return slot;
1830 }
1831
1832 return NULL;
1833 }
1834
1835 /*
1836 * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1837 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline
1838 * because that would bloat other code too much.
1839 */
1840 static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1841 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1842 {
1843 return ____gfn_to_memslot(slots, gfn, false);
1844 }
1845
1846 static inline unsigned long
__gfn_to_hva_memslot(const struct kvm_memory_slot * slot,gfn_t gfn)1847 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1848 {
1849 /*
1850 * The index was checked originally in search_memslots. To avoid
1851 * that a malicious guest builds a Spectre gadget out of e.g. page
1852 * table walks, do not let the processor speculate loads outside
1853 * the guest's registered memslots.
1854 */
1855 unsigned long offset = gfn - slot->base_gfn;
1856 offset = array_index_nospec(offset, slot->npages);
1857 return slot->userspace_addr + offset * PAGE_SIZE;
1858 }
1859
memslot_id(struct kvm * kvm,gfn_t gfn)1860 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1861 {
1862 return gfn_to_memslot(kvm, gfn)->id;
1863 }
1864
1865 static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)1866 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1867 {
1868 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1869
1870 return slot->base_gfn + gfn_offset;
1871 }
1872
gfn_to_gpa(gfn_t gfn)1873 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1874 {
1875 return (gpa_t)gfn << PAGE_SHIFT;
1876 }
1877
gpa_to_gfn(gpa_t gpa)1878 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1879 {
1880 return (gfn_t)(gpa >> PAGE_SHIFT);
1881 }
1882
pfn_to_hpa(kvm_pfn_t pfn)1883 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1884 {
1885 return (hpa_t)pfn << PAGE_SHIFT;
1886 }
1887
kvm_is_gpa_in_memslot(struct kvm * kvm,gpa_t gpa)1888 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
1889 {
1890 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1891
1892 return !kvm_is_error_hva(hva);
1893 }
1894
kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache * gpc)1895 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
1896 {
1897 lockdep_assert_held(&gpc->lock);
1898
1899 if (!gpc->memslot)
1900 return;
1901
1902 mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa));
1903 }
1904
1905 enum kvm_stat_kind {
1906 KVM_STAT_VM,
1907 KVM_STAT_VCPU,
1908 };
1909
1910 struct kvm_stat_data {
1911 struct kvm *kvm;
1912 const struct _kvm_stats_desc *desc;
1913 enum kvm_stat_kind kind;
1914 };
1915
1916 struct _kvm_stats_desc {
1917 struct kvm_stats_desc desc;
1918 char name[KVM_STATS_NAME_SIZE];
1919 };
1920
1921 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \
1922 .flags = type | unit | base | \
1923 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \
1924 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \
1925 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \
1926 .exponent = exp, \
1927 .size = sz, \
1928 .bucket_size = bsz
1929
1930 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1931 { \
1932 { \
1933 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1934 .offset = offsetof(struct kvm_vm_stat, generic.stat) \
1935 }, \
1936 .name = #stat, \
1937 }
1938 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1939 { \
1940 { \
1941 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1942 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1943 }, \
1944 .name = #stat, \
1945 }
1946 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1947 { \
1948 { \
1949 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1950 .offset = offsetof(struct kvm_vm_stat, stat) \
1951 }, \
1952 .name = #stat, \
1953 }
1954 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1955 { \
1956 { \
1957 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1958 .offset = offsetof(struct kvm_vcpu_stat, stat) \
1959 }, \
1960 .name = #stat, \
1961 }
1962 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1963 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \
1964 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1965
1966 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \
1967 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \
1968 unit, base, exponent, 1, 0)
1969 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \
1970 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \
1971 unit, base, exponent, 1, 0)
1972 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \
1973 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \
1974 unit, base, exponent, 1, 0)
1975 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \
1976 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \
1977 unit, base, exponent, sz, bsz)
1978 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \
1979 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \
1980 unit, base, exponent, sz, 0)
1981
1982 /* Cumulative counter, read/write */
1983 #define STATS_DESC_COUNTER(SCOPE, name) \
1984 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \
1985 KVM_STATS_BASE_POW10, 0)
1986 /* Instantaneous counter, read only */
1987 #define STATS_DESC_ICOUNTER(SCOPE, name) \
1988 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \
1989 KVM_STATS_BASE_POW10, 0)
1990 /* Peak counter, read/write */
1991 #define STATS_DESC_PCOUNTER(SCOPE, name) \
1992 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \
1993 KVM_STATS_BASE_POW10, 0)
1994
1995 /* Instantaneous boolean value, read only */
1996 #define STATS_DESC_IBOOLEAN(SCOPE, name) \
1997 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1998 KVM_STATS_BASE_POW10, 0)
1999 /* Peak (sticky) boolean value, read/write */
2000 #define STATS_DESC_PBOOLEAN(SCOPE, name) \
2001 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
2002 KVM_STATS_BASE_POW10, 0)
2003
2004 /* Cumulative time in nanosecond */
2005 #define STATS_DESC_TIME_NSEC(SCOPE, name) \
2006 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
2007 KVM_STATS_BASE_POW10, -9)
2008 /* Linear histogram for time in nanosecond */
2009 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \
2010 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
2011 KVM_STATS_BASE_POW10, -9, sz, bsz)
2012 /* Logarithmic histogram for time in nanosecond */
2013 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \
2014 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
2015 KVM_STATS_BASE_POW10, -9, sz)
2016
2017 #define KVM_GENERIC_VM_STATS() \
2018 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \
2019 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
2020
2021 #define KVM_GENERIC_VCPU_STATS() \
2022 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \
2023 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \
2024 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \
2025 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \
2026 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \
2027 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \
2028 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \
2029 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \
2030 HALT_POLL_HIST_COUNT), \
2031 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \
2032 HALT_POLL_HIST_COUNT), \
2033 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \
2034 HALT_POLL_HIST_COUNT), \
2035 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
2036
2037 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
2038 const struct _kvm_stats_desc *desc,
2039 void *stats, size_t size_stats,
2040 char __user *user_buffer, size_t size, loff_t *offset);
2041
2042 /**
2043 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
2044 * statistics data.
2045 *
2046 * @data: start address of the stats data
2047 * @size: the number of bucket of the stats data
2048 * @value: the new value used to update the linear histogram's bucket
2049 * @bucket_size: the size (width) of a bucket
2050 */
kvm_stats_linear_hist_update(u64 * data,size_t size,u64 value,size_t bucket_size)2051 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
2052 u64 value, size_t bucket_size)
2053 {
2054 size_t index = div64_u64(value, bucket_size);
2055
2056 index = min(index, size - 1);
2057 ++data[index];
2058 }
2059
2060 /**
2061 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
2062 * statistics data.
2063 *
2064 * @data: start address of the stats data
2065 * @size: the number of bucket of the stats data
2066 * @value: the new value used to update the logarithmic histogram's bucket
2067 */
kvm_stats_log_hist_update(u64 * data,size_t size,u64 value)2068 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
2069 {
2070 size_t index = fls64(value);
2071
2072 index = min(index, size - 1);
2073 ++data[index];
2074 }
2075
2076 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \
2077 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
2078 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \
2079 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
2080
2081
2082 extern const struct kvm_stats_header kvm_vm_stats_header;
2083 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
2084 extern const struct kvm_stats_header kvm_vcpu_stats_header;
2085 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
2086
2087 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
mmu_invalidate_retry(struct kvm * kvm,unsigned long mmu_seq)2088 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
2089 {
2090 if (unlikely(kvm->mmu_invalidate_in_progress))
2091 return 1;
2092 /*
2093 * Ensure the read of mmu_invalidate_in_progress happens before
2094 * the read of mmu_invalidate_seq. This interacts with the
2095 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
2096 * that the caller either sees the old (non-zero) value of
2097 * mmu_invalidate_in_progress or the new (incremented) value of
2098 * mmu_invalidate_seq.
2099 *
2100 * PowerPC Book3s HV KVM calls this under a per-page lock rather
2101 * than under kvm->mmu_lock, for scalability, so can't rely on
2102 * kvm->mmu_lock to keep things ordered.
2103 */
2104 smp_rmb();
2105 if (kvm->mmu_invalidate_seq != mmu_seq)
2106 return 1;
2107 return 0;
2108 }
2109
mmu_invalidate_retry_gfn(struct kvm * kvm,unsigned long mmu_seq,gfn_t gfn)2110 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2111 unsigned long mmu_seq,
2112 gfn_t gfn)
2113 {
2114 lockdep_assert_held(&kvm->mmu_lock);
2115 /*
2116 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2117 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2118 * that might be being invalidated. Note that it may include some false
2119 * positives, due to shortcuts when handing concurrent invalidations.
2120 */
2121 if (unlikely(kvm->mmu_invalidate_in_progress)) {
2122 /*
2123 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2124 * but before updating the range is a KVM bug.
2125 */
2126 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2127 kvm->mmu_invalidate_range_end == INVALID_GPA))
2128 return 1;
2129
2130 if (gfn >= kvm->mmu_invalidate_range_start &&
2131 gfn < kvm->mmu_invalidate_range_end)
2132 return 1;
2133 }
2134
2135 if (kvm->mmu_invalidate_seq != mmu_seq)
2136 return 1;
2137 return 0;
2138 }
2139
2140 /*
2141 * This lockless version of the range-based retry check *must* be paired with a
2142 * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2143 * use only as a pre-check to avoid contending mmu_lock. This version *will*
2144 * get false negatives and false positives.
2145 */
mmu_invalidate_retry_gfn_unsafe(struct kvm * kvm,unsigned long mmu_seq,gfn_t gfn)2146 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2147 unsigned long mmu_seq,
2148 gfn_t gfn)
2149 {
2150 /*
2151 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2152 * are always read from memory, e.g. so that checking for retry in a
2153 * loop won't result in an infinite retry loop. Don't force loads for
2154 * start+end, as the key to avoiding infinite retry loops is observing
2155 * the 1=>0 transition of in-progress, i.e. getting false negatives
2156 * due to stale start+end values is acceptable.
2157 */
2158 if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2159 gfn >= kvm->mmu_invalidate_range_start &&
2160 gfn < kvm->mmu_invalidate_range_end)
2161 return true;
2162
2163 return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2164 }
2165 #endif
2166
2167 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2168
2169 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2170
2171 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2172 int kvm_set_irq_routing(struct kvm *kvm,
2173 const struct kvm_irq_routing_entry *entries,
2174 unsigned nr,
2175 unsigned flags);
2176 int kvm_init_irq_routing(struct kvm *kvm);
2177 int kvm_set_routing_entry(struct kvm *kvm,
2178 struct kvm_kernel_irq_routing_entry *e,
2179 const struct kvm_irq_routing_entry *ue);
2180 void kvm_free_irq_routing(struct kvm *kvm);
2181
2182 #else
2183
kvm_free_irq_routing(struct kvm * kvm)2184 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2185
kvm_init_irq_routing(struct kvm * kvm)2186 static inline int kvm_init_irq_routing(struct kvm *kvm)
2187 {
2188 return 0;
2189 }
2190
2191 #endif
2192
2193 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2194
2195 void kvm_eventfd_init(struct kvm *kvm);
2196 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2197
2198 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2199 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2200 void kvm_irqfd_release(struct kvm *kvm);
2201 bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2202 unsigned int irqchip,
2203 unsigned int pin);
2204 void kvm_irq_routing_update(struct kvm *);
2205 #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)2206 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2207 {
2208 return -EINVAL;
2209 }
2210
kvm_irqfd_release(struct kvm * kvm)2211 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2212
kvm_notify_irqfd_resampler(struct kvm * kvm,unsigned int irqchip,unsigned int pin)2213 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2214 unsigned int irqchip,
2215 unsigned int pin)
2216 {
2217 return false;
2218 }
2219 #endif /* CONFIG_HAVE_KVM_IRQCHIP */
2220
2221 void kvm_arch_irq_routing_update(struct kvm *kvm);
2222
__kvm_make_request(int req,struct kvm_vcpu * vcpu)2223 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2224 {
2225 /*
2226 * Ensure the rest of the request is published to kvm_check_request's
2227 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
2228 */
2229 smp_wmb();
2230 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2231 }
2232
kvm_make_request(int req,struct kvm_vcpu * vcpu)2233 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2234 {
2235 /*
2236 * Request that don't require vCPU action should never be logged in
2237 * vcpu->requests. The vCPU won't clear the request, so it will stay
2238 * logged indefinitely and prevent the vCPU from entering the guest.
2239 */
2240 BUILD_BUG_ON(!__builtin_constant_p(req) ||
2241 (req & KVM_REQUEST_NO_ACTION));
2242
2243 __kvm_make_request(req, vcpu);
2244 }
2245
2246 #ifndef CONFIG_S390
kvm_make_request_and_kick(int req,struct kvm_vcpu * vcpu)2247 static inline void kvm_make_request_and_kick(int req, struct kvm_vcpu *vcpu)
2248 {
2249 kvm_make_request(req, vcpu);
2250 __kvm_vcpu_kick(vcpu, req & KVM_REQUEST_WAIT);
2251 }
2252 #endif
2253
kvm_request_pending(struct kvm_vcpu * vcpu)2254 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2255 {
2256 return READ_ONCE(vcpu->requests);
2257 }
2258
kvm_test_request(int req,struct kvm_vcpu * vcpu)2259 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2260 {
2261 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2262 }
2263
kvm_clear_request(int req,struct kvm_vcpu * vcpu)2264 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2265 {
2266 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2267 }
2268
kvm_check_request(int req,struct kvm_vcpu * vcpu)2269 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2270 {
2271 if (kvm_test_request(req, vcpu)) {
2272 kvm_clear_request(req, vcpu);
2273
2274 /*
2275 * Ensure the rest of the request is visible to kvm_check_request's
2276 * caller. Paired with the smp_wmb in kvm_make_request.
2277 */
2278 smp_mb__after_atomic();
2279 return true;
2280 } else {
2281 return false;
2282 }
2283 }
2284
2285 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2286 extern bool enable_virt_at_load;
2287 extern bool kvm_rebooting;
2288 #endif
2289
2290 extern unsigned int halt_poll_ns;
2291 extern unsigned int halt_poll_ns_grow;
2292 extern unsigned int halt_poll_ns_grow_start;
2293 extern unsigned int halt_poll_ns_shrink;
2294
2295 struct kvm_device {
2296 const struct kvm_device_ops *ops;
2297 struct kvm *kvm;
2298 void *private;
2299 struct list_head vm_node;
2300 };
2301
2302 /* create, destroy, and name are mandatory */
2303 struct kvm_device_ops {
2304 const char *name;
2305
2306 /*
2307 * create is called holding kvm->lock and any operations not suitable
2308 * to do while holding the lock should be deferred to init (see
2309 * below).
2310 */
2311 int (*create)(struct kvm_device *dev, u32 type);
2312
2313 /*
2314 * init is called after create if create is successful and is called
2315 * outside of holding kvm->lock.
2316 */
2317 void (*init)(struct kvm_device *dev);
2318
2319 /*
2320 * Destroy is responsible for freeing dev.
2321 *
2322 * Destroy may be called before or after destructors are called
2323 * on emulated I/O regions, depending on whether a reference is
2324 * held by a vcpu or other kvm component that gets destroyed
2325 * after the emulated I/O.
2326 */
2327 void (*destroy)(struct kvm_device *dev);
2328
2329 /*
2330 * Release is an alternative method to free the device. It is
2331 * called when the device file descriptor is closed. Once
2332 * release is called, the destroy method will not be called
2333 * anymore as the device is removed from the device list of
2334 * the VM. kvm->lock is held.
2335 */
2336 void (*release)(struct kvm_device *dev);
2337
2338 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2339 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2340 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2341 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2342 unsigned long arg);
2343 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2344 };
2345
2346 struct kvm_device *kvm_device_from_filp(struct file *filp);
2347 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2348 void kvm_unregister_device_ops(u32 type);
2349
2350 extern struct kvm_device_ops kvm_mpic_ops;
2351 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2352 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2353
2354 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2355
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2356 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2357 {
2358 vcpu->spin_loop.in_spin_loop = val;
2359 }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2360 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2361 {
2362 vcpu->spin_loop.dy_eligible = val;
2363 }
2364
2365 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2366
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2367 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2368 {
2369 }
2370
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2371 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2372 {
2373 }
2374 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2375
kvm_is_visible_memslot(struct kvm_memory_slot * memslot)2376 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2377 {
2378 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2379 !(memslot->flags & KVM_MEMSLOT_INVALID));
2380 }
2381
2382 struct kvm_vcpu *kvm_get_running_vcpu(void);
2383 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2384
2385 #if IS_ENABLED(CONFIG_HAVE_KVM_IRQ_BYPASS)
2386 struct kvm_kernel_irqfd;
2387
2388 bool kvm_arch_has_irq_bypass(void);
2389 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2390 struct irq_bypass_producer *);
2391 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2392 struct irq_bypass_producer *);
2393 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2394 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2395 void kvm_arch_update_irqfd_routing(struct kvm_kernel_irqfd *irqfd,
2396 struct kvm_kernel_irq_routing_entry *old,
2397 struct kvm_kernel_irq_routing_entry *new);
2398 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2399
2400 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2401 /* If we wakeup during the poll time, was it a sucessful poll? */
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2402 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2403 {
2404 return vcpu->valid_wakeup;
2405 }
2406
2407 #else
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2408 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2409 {
2410 return true;
2411 }
2412 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2413
2414 #ifdef CONFIG_HAVE_KVM_NO_POLL
2415 /* Callback that tells if we must not poll */
2416 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2417 #else
kvm_arch_no_poll(struct kvm_vcpu * vcpu)2418 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2419 {
2420 return false;
2421 }
2422 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2423
2424 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2425 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2426 unsigned int ioctl, unsigned long arg);
2427 #else
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2428 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2429 unsigned int ioctl,
2430 unsigned long arg)
2431 {
2432 return -ENOIOCTLCMD;
2433 }
2434 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2435
2436 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2437
2438 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2439 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2440 #else
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)2441 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2442 {
2443 return 0;
2444 }
2445 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2446
2447 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
kvm_handle_signal_exit(struct kvm_vcpu * vcpu)2448 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2449 {
2450 vcpu->run->exit_reason = KVM_EXIT_INTR;
2451 vcpu->stat.signal_exits++;
2452 }
2453 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2454
2455 /*
2456 * If more than one page is being (un)accounted, @virt must be the address of
2457 * the first page of a block of pages what were allocated together (i.e
2458 * accounted together).
2459 *
2460 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2461 * is thread-safe.
2462 */
kvm_account_pgtable_pages(void * virt,int nr)2463 static inline void kvm_account_pgtable_pages(void *virt, int nr)
2464 {
2465 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2466 }
2467
2468 /*
2469 * This defines how many reserved entries we want to keep before we
2470 * kick the vcpu to the userspace to avoid dirty ring full. This
2471 * value can be tuned to higher if e.g. PML is enabled on the host.
2472 */
2473 #define KVM_DIRTY_RING_RSVD_ENTRIES 64
2474
2475 /* Max number of entries allowed for each kvm dirty ring */
2476 #define KVM_DIRTY_RING_MAX_ENTRIES 65536
2477
kvm_prepare_memory_fault_exit(struct kvm_vcpu * vcpu,gpa_t gpa,gpa_t size,bool is_write,bool is_exec,bool is_private)2478 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2479 gpa_t gpa, gpa_t size,
2480 bool is_write, bool is_exec,
2481 bool is_private)
2482 {
2483 vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2484 vcpu->run->memory_fault.gpa = gpa;
2485 vcpu->run->memory_fault.size = size;
2486
2487 /* RWX flags are not (yet) defined or communicated to userspace. */
2488 vcpu->run->memory_fault.flags = 0;
2489 if (is_private)
2490 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2491 }
2492
2493 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
kvm_get_memory_attributes(struct kvm * kvm,gfn_t gfn)2494 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2495 {
2496 return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2497 }
2498
2499 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2500 unsigned long mask, unsigned long attrs);
2501 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2502 struct kvm_gfn_range *range);
2503 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2504 struct kvm_gfn_range *range);
2505
kvm_mem_is_private(struct kvm * kvm,gfn_t gfn)2506 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2507 {
2508 return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) &&
2509 kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2510 }
2511 #else
kvm_mem_is_private(struct kvm * kvm,gfn_t gfn)2512 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2513 {
2514 return false;
2515 }
2516 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2517
2518 #ifdef CONFIG_KVM_PRIVATE_MEM
2519 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2520 gfn_t gfn, kvm_pfn_t *pfn, struct page **page,
2521 int *max_order);
2522 #else
kvm_gmem_get_pfn(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn,kvm_pfn_t * pfn,struct page ** page,int * max_order)2523 static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2524 struct kvm_memory_slot *slot, gfn_t gfn,
2525 kvm_pfn_t *pfn, struct page **page,
2526 int *max_order)
2527 {
2528 KVM_BUG_ON(1, kvm);
2529 return -EIO;
2530 }
2531 #endif /* CONFIG_KVM_PRIVATE_MEM */
2532
2533 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
2534 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order);
2535 #endif
2536
2537 #ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM
2538 /**
2539 * kvm_gmem_populate() - Populate/prepare a GPA range with guest data
2540 *
2541 * @kvm: KVM instance
2542 * @gfn: starting GFN to be populated
2543 * @src: userspace-provided buffer containing data to copy into GFN range
2544 * (passed to @post_populate, and incremented on each iteration
2545 * if not NULL)
2546 * @npages: number of pages to copy from userspace-buffer
2547 * @post_populate: callback to issue for each gmem page that backs the GPA
2548 * range
2549 * @opaque: opaque data to pass to @post_populate callback
2550 *
2551 * This is primarily intended for cases where a gmem-backed GPA range needs
2552 * to be initialized with userspace-provided data prior to being mapped into
2553 * the guest as a private page. This should be called with the slots->lock
2554 * held so that caller-enforced invariants regarding the expected memory
2555 * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES.
2556 *
2557 * Returns the number of pages that were populated.
2558 */
2559 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2560 void __user *src, int order, void *opaque);
2561
2562 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages,
2563 kvm_gmem_populate_cb post_populate, void *opaque);
2564 #endif
2565
2566 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
2567 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
2568 #endif
2569
2570 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
2571 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
2572 struct kvm_pre_fault_memory *range);
2573 #endif
2574
2575 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2576 int kvm_enable_virtualization(void);
2577 void kvm_disable_virtualization(void);
2578 #else
kvm_enable_virtualization(void)2579 static inline int kvm_enable_virtualization(void) { return 0; }
kvm_disable_virtualization(void)2580 static inline void kvm_disable_virtualization(void) { }
2581 #endif
2582
2583 #endif
2584