xref: /linux/include/linux/kvm_host.h (revision 63eb28bb1402891b1ad2be02a530f29a9dd7f1cd)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39 
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42 
43 #include <linux/kvm_types.h>
44 
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47 
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51 
52 /*
53  * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54  * used in kvm, other bits are visible for userspace which are defined in
55  * include/linux/kvm_h.
56  */
57 #define KVM_MEMSLOT_INVALID	(1UL << 16)
58 
59 /*
60  * Bit 63 of the memslot generation number is an "update in-progress flag",
61  * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
62  * This flag effectively creates a unique generation number that is used to
63  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64  * i.e. may (or may not) have come from the previous memslots generation.
65  *
66  * This is necessary because the actual memslots update is not atomic with
67  * respect to the generation number update.  Updating the generation number
68  * first would allow a vCPU to cache a spte from the old memslots using the
69  * new generation number, and updating the generation number after switching
70  * to the new memslots would allow cache hits using the old generation number
71  * to reference the defunct memslots.
72  *
73  * This mechanism is used to prevent getting hits in KVM's caches while a
74  * memslot update is in-progress, and to prevent cache hits *after* updating
75  * the actual generation number against accesses that were inserted into the
76  * cache *before* the memslots were updated.
77  */
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
79 
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS	2
82 
83 #ifndef KVM_MAX_NR_ADDRESS_SPACES
84 #define KVM_MAX_NR_ADDRESS_SPACES	1
85 #endif
86 
87 /*
88  * For the normal pfn, the highest 12 bits should be zero,
89  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
90  * mask bit 63 to indicate the noslot pfn.
91  */
92 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
94 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
95 
96 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
99 #define KVM_PFN_ERR_SIGPENDING	(KVM_PFN_ERR_MASK + 3)
100 #define KVM_PFN_ERR_NEEDS_IO	(KVM_PFN_ERR_MASK + 4)
101 
102 /*
103  * error pfns indicate that the gfn is in slot but faild to
104  * translate it to pfn on host.
105  */
is_error_pfn(kvm_pfn_t pfn)106 static inline bool is_error_pfn(kvm_pfn_t pfn)
107 {
108 	return !!(pfn & KVM_PFN_ERR_MASK);
109 }
110 
111 /*
112  * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
113  * by a pending signal.  Note, the signal may or may not be fatal.
114  */
is_sigpending_pfn(kvm_pfn_t pfn)115 static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
116 {
117 	return pfn == KVM_PFN_ERR_SIGPENDING;
118 }
119 
120 /*
121  * error_noslot pfns indicate that the gfn can not be
122  * translated to pfn - it is not in slot or failed to
123  * translate it to pfn.
124  */
is_error_noslot_pfn(kvm_pfn_t pfn)125 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
126 {
127 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
128 }
129 
130 /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(kvm_pfn_t pfn)131 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
132 {
133 	return pfn == KVM_PFN_NOSLOT;
134 }
135 
136 /*
137  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
138  * provide own defines and kvm_is_error_hva
139  */
140 #ifndef KVM_HVA_ERR_BAD
141 
142 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
143 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
144 
kvm_is_error_hva(unsigned long addr)145 static inline bool kvm_is_error_hva(unsigned long addr)
146 {
147 	return addr >= PAGE_OFFSET;
148 }
149 
150 #endif
151 
kvm_is_error_gpa(gpa_t gpa)152 static inline bool kvm_is_error_gpa(gpa_t gpa)
153 {
154 	return gpa == INVALID_GPA;
155 }
156 
157 #define KVM_REQUEST_MASK           GENMASK(7,0)
158 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
159 #define KVM_REQUEST_WAIT           BIT(9)
160 #define KVM_REQUEST_NO_ACTION      BIT(10)
161 /*
162  * Architecture-independent vcpu->requests bit members
163  * Bits 3-7 are reserved for more arch-independent bits.
164  */
165 #define KVM_REQ_TLB_FLUSH		(0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
166 #define KVM_REQ_VM_DEAD			(1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
167 #define KVM_REQ_UNBLOCK			2
168 #define KVM_REQ_DIRTY_RING_SOFT_FULL	3
169 #define KVM_REQUEST_ARCH_BASE		8
170 
171 /*
172  * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
173  * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
174  * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
175  * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
176  * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
177  * guarantee the vCPU received an IPI and has actually exited guest mode.
178  */
179 #define KVM_REQ_OUTSIDE_GUEST_MODE	(KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
180 
181 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
182 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
183 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
184 })
185 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
186 
187 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
188 				 unsigned long *vcpu_bitmap);
189 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
190 
191 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
192 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
193 #define KVM_PIT_IRQ_SOURCE_ID			2
194 
195 extern struct mutex kvm_lock;
196 extern struct list_head vm_list;
197 
198 struct kvm_io_range {
199 	gpa_t addr;
200 	int len;
201 	struct kvm_io_device *dev;
202 };
203 
204 #define NR_IOBUS_DEVS 1000
205 
206 struct kvm_io_bus {
207 	int dev_count;
208 	int ioeventfd_count;
209 	struct kvm_io_range range[];
210 };
211 
212 enum kvm_bus {
213 	KVM_MMIO_BUS,
214 	KVM_PIO_BUS,
215 	KVM_VIRTIO_CCW_NOTIFY_BUS,
216 	KVM_FAST_MMIO_BUS,
217 	KVM_IOCSR_BUS,
218 	KVM_NR_BUSES
219 };
220 
221 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
222 		     int len, const void *val);
223 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
224 			    gpa_t addr, int len, const void *val, long cookie);
225 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
226 		    int len, void *val);
227 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
228 			    int len, struct kvm_io_device *dev);
229 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
230 			      struct kvm_io_device *dev);
231 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
232 					 gpa_t addr);
233 
234 #ifdef CONFIG_KVM_ASYNC_PF
235 struct kvm_async_pf {
236 	struct work_struct work;
237 	struct list_head link;
238 	struct list_head queue;
239 	struct kvm_vcpu *vcpu;
240 	gpa_t cr2_or_gpa;
241 	unsigned long addr;
242 	struct kvm_arch_async_pf arch;
243 	bool   wakeup_all;
244 	bool notpresent_injected;
245 };
246 
247 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
248 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
249 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
250 			unsigned long hva, struct kvm_arch_async_pf *arch);
251 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
252 #endif
253 
254 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
255 union kvm_mmu_notifier_arg {
256 	unsigned long attributes;
257 };
258 
259 enum kvm_gfn_range_filter {
260 	KVM_FILTER_SHARED		= BIT(0),
261 	KVM_FILTER_PRIVATE		= BIT(1),
262 };
263 
264 struct kvm_gfn_range {
265 	struct kvm_memory_slot *slot;
266 	gfn_t start;
267 	gfn_t end;
268 	union kvm_mmu_notifier_arg arg;
269 	enum kvm_gfn_range_filter attr_filter;
270 	bool may_block;
271 	bool lockless;
272 };
273 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
274 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
275 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
276 #endif
277 
278 enum {
279 	OUTSIDE_GUEST_MODE,
280 	IN_GUEST_MODE,
281 	EXITING_GUEST_MODE,
282 	READING_SHADOW_PAGE_TABLES,
283 };
284 
285 struct kvm_host_map {
286 	/*
287 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
288 	 * a 'struct page' for it. When using mem= kernel parameter some memory
289 	 * can be used as guest memory but they are not managed by host
290 	 * kernel).
291 	 */
292 	struct page *pinned_page;
293 	struct page *page;
294 	void *hva;
295 	kvm_pfn_t pfn;
296 	kvm_pfn_t gfn;
297 	bool writable;
298 };
299 
300 /*
301  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
302  * directly to check for that.
303  */
kvm_vcpu_mapped(struct kvm_host_map * map)304 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
305 {
306 	return !!map->hva;
307 }
308 
kvm_vcpu_can_poll(ktime_t cur,ktime_t stop)309 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
310 {
311 	return single_task_running() && !need_resched() && ktime_before(cur, stop);
312 }
313 
314 /*
315  * Sometimes a large or cross-page mmio needs to be broken up into separate
316  * exits for userspace servicing.
317  */
318 struct kvm_mmio_fragment {
319 	gpa_t gpa;
320 	void *data;
321 	unsigned len;
322 };
323 
324 struct kvm_vcpu {
325 	struct kvm *kvm;
326 #ifdef CONFIG_PREEMPT_NOTIFIERS
327 	struct preempt_notifier preempt_notifier;
328 #endif
329 	int cpu;
330 	int vcpu_id; /* id given by userspace at creation */
331 	int vcpu_idx; /* index into kvm->vcpu_array */
332 	int ____srcu_idx; /* Don't use this directly.  You've been warned. */
333 #ifdef CONFIG_PROVE_RCU
334 	int srcu_depth;
335 #endif
336 	int mode;
337 	u64 requests;
338 	unsigned long guest_debug;
339 
340 	struct mutex mutex;
341 	struct kvm_run *run;
342 
343 #ifndef __KVM_HAVE_ARCH_WQP
344 	struct rcuwait wait;
345 #endif
346 	struct pid *pid;
347 	rwlock_t pid_lock;
348 	int sigset_active;
349 	sigset_t sigset;
350 	unsigned int halt_poll_ns;
351 	bool valid_wakeup;
352 
353 #ifdef CONFIG_HAS_IOMEM
354 	int mmio_needed;
355 	int mmio_read_completed;
356 	int mmio_is_write;
357 	int mmio_cur_fragment;
358 	int mmio_nr_fragments;
359 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
360 #endif
361 
362 #ifdef CONFIG_KVM_ASYNC_PF
363 	struct {
364 		u32 queued;
365 		struct list_head queue;
366 		struct list_head done;
367 		spinlock_t lock;
368 	} async_pf;
369 #endif
370 
371 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
372 	/*
373 	 * Cpu relax intercept or pause loop exit optimization
374 	 * in_spin_loop: set when a vcpu does a pause loop exit
375 	 *  or cpu relax intercepted.
376 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
377 	 */
378 	struct {
379 		bool in_spin_loop;
380 		bool dy_eligible;
381 	} spin_loop;
382 #endif
383 	bool wants_to_run;
384 	bool preempted;
385 	bool ready;
386 	bool scheduled_out;
387 	struct kvm_vcpu_arch arch;
388 	struct kvm_vcpu_stat stat;
389 	char stats_id[KVM_STATS_NAME_SIZE];
390 	struct kvm_dirty_ring dirty_ring;
391 
392 	/*
393 	 * The most recently used memslot by this vCPU and the slots generation
394 	 * for which it is valid.
395 	 * No wraparound protection is needed since generations won't overflow in
396 	 * thousands of years, even assuming 1M memslot operations per second.
397 	 */
398 	struct kvm_memory_slot *last_used_slot;
399 	u64 last_used_slot_gen;
400 };
401 
402 /*
403  * Start accounting time towards a guest.
404  * Must be called before entering guest context.
405  */
guest_timing_enter_irqoff(void)406 static __always_inline void guest_timing_enter_irqoff(void)
407 {
408 	/*
409 	 * This is running in ioctl context so its safe to assume that it's the
410 	 * stime pending cputime to flush.
411 	 */
412 	instrumentation_begin();
413 	vtime_account_guest_enter();
414 	instrumentation_end();
415 }
416 
417 /*
418  * Enter guest context and enter an RCU extended quiescent state.
419  *
420  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
421  * unsafe to use any code which may directly or indirectly use RCU, tracing
422  * (including IRQ flag tracing), or lockdep. All code in this period must be
423  * non-instrumentable.
424  */
guest_context_enter_irqoff(void)425 static __always_inline void guest_context_enter_irqoff(void)
426 {
427 	/*
428 	 * KVM does not hold any references to rcu protected data when it
429 	 * switches CPU into a guest mode. In fact switching to a guest mode
430 	 * is very similar to exiting to userspace from rcu point of view. In
431 	 * addition CPU may stay in a guest mode for quite a long time (up to
432 	 * one time slice). Lets treat guest mode as quiescent state, just like
433 	 * we do with user-mode execution.
434 	 */
435 	if (!context_tracking_guest_enter()) {
436 		instrumentation_begin();
437 		rcu_virt_note_context_switch();
438 		instrumentation_end();
439 	}
440 }
441 
442 /*
443  * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
444  * guest_state_enter_irqoff().
445  */
guest_enter_irqoff(void)446 static __always_inline void guest_enter_irqoff(void)
447 {
448 	guest_timing_enter_irqoff();
449 	guest_context_enter_irqoff();
450 }
451 
452 /**
453  * guest_state_enter_irqoff - Fixup state when entering a guest
454  *
455  * Entry to a guest will enable interrupts, but the kernel state is interrupts
456  * disabled when this is invoked. Also tell RCU about it.
457  *
458  * 1) Trace interrupts on state
459  * 2) Invoke context tracking if enabled to adjust RCU state
460  * 3) Tell lockdep that interrupts are enabled
461  *
462  * Invoked from architecture specific code before entering a guest.
463  * Must be called with interrupts disabled and the caller must be
464  * non-instrumentable.
465  * The caller has to invoke guest_timing_enter_irqoff() before this.
466  *
467  * Note: this is analogous to exit_to_user_mode().
468  */
guest_state_enter_irqoff(void)469 static __always_inline void guest_state_enter_irqoff(void)
470 {
471 	instrumentation_begin();
472 	trace_hardirqs_on_prepare();
473 	lockdep_hardirqs_on_prepare();
474 	instrumentation_end();
475 
476 	guest_context_enter_irqoff();
477 	lockdep_hardirqs_on(CALLER_ADDR0);
478 }
479 
480 /*
481  * Exit guest context and exit an RCU extended quiescent state.
482  *
483  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
484  * unsafe to use any code which may directly or indirectly use RCU, tracing
485  * (including IRQ flag tracing), or lockdep. All code in this period must be
486  * non-instrumentable.
487  */
guest_context_exit_irqoff(void)488 static __always_inline void guest_context_exit_irqoff(void)
489 {
490 	/*
491 	 * Guest mode is treated as a quiescent state, see
492 	 * guest_context_enter_irqoff() for more details.
493 	 */
494 	if (!context_tracking_guest_exit()) {
495 		instrumentation_begin();
496 		rcu_virt_note_context_switch();
497 		instrumentation_end();
498 	}
499 }
500 
501 /*
502  * Stop accounting time towards a guest.
503  * Must be called after exiting guest context.
504  */
guest_timing_exit_irqoff(void)505 static __always_inline void guest_timing_exit_irqoff(void)
506 {
507 	instrumentation_begin();
508 	/* Flush the guest cputime we spent on the guest */
509 	vtime_account_guest_exit();
510 	instrumentation_end();
511 }
512 
513 /*
514  * Deprecated. Architectures should move to guest_state_exit_irqoff() and
515  * guest_timing_exit_irqoff().
516  */
guest_exit_irqoff(void)517 static __always_inline void guest_exit_irqoff(void)
518 {
519 	guest_context_exit_irqoff();
520 	guest_timing_exit_irqoff();
521 }
522 
guest_exit(void)523 static inline void guest_exit(void)
524 {
525 	unsigned long flags;
526 
527 	local_irq_save(flags);
528 	guest_exit_irqoff();
529 	local_irq_restore(flags);
530 }
531 
532 /**
533  * guest_state_exit_irqoff - Establish state when returning from guest mode
534  *
535  * Entry from a guest disables interrupts, but guest mode is traced as
536  * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
537  *
538  * 1) Tell lockdep that interrupts are disabled
539  * 2) Invoke context tracking if enabled to reactivate RCU
540  * 3) Trace interrupts off state
541  *
542  * Invoked from architecture specific code after exiting a guest.
543  * Must be invoked with interrupts disabled and the caller must be
544  * non-instrumentable.
545  * The caller has to invoke guest_timing_exit_irqoff() after this.
546  *
547  * Note: this is analogous to enter_from_user_mode().
548  */
guest_state_exit_irqoff(void)549 static __always_inline void guest_state_exit_irqoff(void)
550 {
551 	lockdep_hardirqs_off(CALLER_ADDR0);
552 	guest_context_exit_irqoff();
553 
554 	instrumentation_begin();
555 	trace_hardirqs_off_finish();
556 	instrumentation_end();
557 }
558 
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)559 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
560 {
561 	/*
562 	 * The memory barrier ensures a previous write to vcpu->requests cannot
563 	 * be reordered with the read of vcpu->mode.  It pairs with the general
564 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
565 	 */
566 	smp_mb__before_atomic();
567 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
568 }
569 
570 /*
571  * Some of the bitops functions do not support too long bitmaps.
572  * This number must be determined not to exceed such limits.
573  */
574 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
575 
576 /*
577  * Since at idle each memslot belongs to two memslot sets it has to contain
578  * two embedded nodes for each data structure that it forms a part of.
579  *
580  * Two memslot sets (one active and one inactive) are necessary so the VM
581  * continues to run on one memslot set while the other is being modified.
582  *
583  * These two memslot sets normally point to the same set of memslots.
584  * They can, however, be desynchronized when performing a memslot management
585  * operation by replacing the memslot to be modified by its copy.
586  * After the operation is complete, both memslot sets once again point to
587  * the same, common set of memslot data.
588  *
589  * The memslots themselves are independent of each other so they can be
590  * individually added or deleted.
591  */
592 struct kvm_memory_slot {
593 	struct hlist_node id_node[2];
594 	struct interval_tree_node hva_node[2];
595 	struct rb_node gfn_node[2];
596 	gfn_t base_gfn;
597 	unsigned long npages;
598 	unsigned long *dirty_bitmap;
599 	struct kvm_arch_memory_slot arch;
600 	unsigned long userspace_addr;
601 	u32 flags;
602 	short id;
603 	u16 as_id;
604 
605 #ifdef CONFIG_KVM_PRIVATE_MEM
606 	struct {
607 		/*
608 		 * Writes protected by kvm->slots_lock.  Acquiring a
609 		 * reference via kvm_gmem_get_file() is protected by
610 		 * either kvm->slots_lock or kvm->srcu.
611 		 */
612 		struct file *file;
613 		pgoff_t pgoff;
614 	} gmem;
615 #endif
616 };
617 
kvm_slot_can_be_private(const struct kvm_memory_slot * slot)618 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot)
619 {
620 	return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
621 }
622 
kvm_slot_dirty_track_enabled(const struct kvm_memory_slot * slot)623 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
624 {
625 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
626 }
627 
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)628 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
629 {
630 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
631 }
632 
kvm_second_dirty_bitmap(struct kvm_memory_slot * memslot)633 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
634 {
635 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
636 
637 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
638 }
639 
640 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
641 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
642 #endif
643 
644 struct kvm_s390_adapter_int {
645 	u64 ind_addr;
646 	u64 summary_addr;
647 	u64 ind_offset;
648 	u32 summary_offset;
649 	u32 adapter_id;
650 };
651 
652 struct kvm_hv_sint {
653 	u32 vcpu;
654 	u32 sint;
655 };
656 
657 struct kvm_xen_evtchn {
658 	u32 port;
659 	u32 vcpu_id;
660 	int vcpu_idx;
661 	u32 priority;
662 };
663 
664 struct kvm_kernel_irq_routing_entry {
665 	u32 gsi;
666 	u32 type;
667 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
668 		   struct kvm *kvm, int irq_source_id, int level,
669 		   bool line_status);
670 	union {
671 		struct {
672 			unsigned irqchip;
673 			unsigned pin;
674 		} irqchip;
675 		struct {
676 			u32 address_lo;
677 			u32 address_hi;
678 			u32 data;
679 			u32 flags;
680 			u32 devid;
681 		} msi;
682 		struct kvm_s390_adapter_int adapter;
683 		struct kvm_hv_sint hv_sint;
684 		struct kvm_xen_evtchn xen_evtchn;
685 	};
686 	struct hlist_node link;
687 };
688 
689 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
690 struct kvm_irq_routing_table {
691 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
692 	u32 nr_rt_entries;
693 	/*
694 	 * Array indexed by gsi. Each entry contains list of irq chips
695 	 * the gsi is connected to.
696 	 */
697 	struct hlist_head map[] __counted_by(nr_rt_entries);
698 };
699 #endif
700 
701 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
702 
703 #ifndef KVM_INTERNAL_MEM_SLOTS
704 #define KVM_INTERNAL_MEM_SLOTS 0
705 #endif
706 
707 #define KVM_MEM_SLOTS_NUM SHRT_MAX
708 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
709 
710 #if KVM_MAX_NR_ADDRESS_SPACES == 1
kvm_arch_nr_memslot_as_ids(struct kvm * kvm)711 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
712 {
713 	return KVM_MAX_NR_ADDRESS_SPACES;
714 }
715 
kvm_arch_vcpu_memslots_id(struct kvm_vcpu * vcpu)716 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
717 {
718 	return 0;
719 }
720 #endif
721 
722 /*
723  * Arch code must define kvm_arch_has_private_mem if support for private memory
724  * is enabled.
725  */
726 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
kvm_arch_has_private_mem(struct kvm * kvm)727 static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
728 {
729 	return false;
730 }
731 #endif
732 
733 #ifndef kvm_arch_has_readonly_mem
kvm_arch_has_readonly_mem(struct kvm * kvm)734 static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm)
735 {
736 	return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM);
737 }
738 #endif
739 
740 struct kvm_memslots {
741 	u64 generation;
742 	atomic_long_t last_used_slot;
743 	struct rb_root_cached hva_tree;
744 	struct rb_root gfn_tree;
745 	/*
746 	 * The mapping table from slot id to memslot.
747 	 *
748 	 * 7-bit bucket count matches the size of the old id to index array for
749 	 * 512 slots, while giving good performance with this slot count.
750 	 * Higher bucket counts bring only small performance improvements but
751 	 * always result in higher memory usage (even for lower memslot counts).
752 	 */
753 	DECLARE_HASHTABLE(id_hash, 7);
754 	int node_idx;
755 };
756 
757 struct kvm {
758 #ifdef KVM_HAVE_MMU_RWLOCK
759 	rwlock_t mmu_lock;
760 #else
761 	spinlock_t mmu_lock;
762 #endif /* KVM_HAVE_MMU_RWLOCK */
763 
764 	struct mutex slots_lock;
765 
766 	/*
767 	 * Protects the arch-specific fields of struct kvm_memory_slots in
768 	 * use by the VM. To be used under the slots_lock (above) or in a
769 	 * kvm->srcu critical section where acquiring the slots_lock would
770 	 * lead to deadlock with the synchronize_srcu in
771 	 * kvm_swap_active_memslots().
772 	 */
773 	struct mutex slots_arch_lock;
774 	struct mm_struct *mm; /* userspace tied to this vm */
775 	unsigned long nr_memslot_pages;
776 	/* The two memslot sets - active and inactive (per address space) */
777 	struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
778 	/* The current active memslot set for each address space */
779 	struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
780 	struct xarray vcpu_array;
781 	/*
782 	 * Protected by slots_lock, but can be read outside if an
783 	 * incorrect answer is acceptable.
784 	 */
785 	atomic_t nr_memslots_dirty_logging;
786 
787 	/* Used to wait for completion of MMU notifiers.  */
788 	spinlock_t mn_invalidate_lock;
789 	unsigned long mn_active_invalidate_count;
790 	struct rcuwait mn_memslots_update_rcuwait;
791 
792 	/* For management / invalidation of gfn_to_pfn_caches */
793 	spinlock_t gpc_lock;
794 	struct list_head gpc_list;
795 
796 	/*
797 	 * created_vcpus is protected by kvm->lock, and is incremented
798 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
799 	 * incremented after storing the kvm_vcpu pointer in vcpus,
800 	 * and is accessed atomically.
801 	 */
802 	atomic_t online_vcpus;
803 	int max_vcpus;
804 	int created_vcpus;
805 	int last_boosted_vcpu;
806 	struct list_head vm_list;
807 	struct mutex lock;
808 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
809 #ifdef CONFIG_HAVE_KVM_IRQCHIP
810 	struct {
811 		spinlock_t        lock;
812 		struct list_head  items;
813 		/* resampler_list update side is protected by resampler_lock. */
814 		struct list_head  resampler_list;
815 		struct mutex      resampler_lock;
816 	} irqfds;
817 #endif
818 	struct list_head ioeventfds;
819 	struct kvm_vm_stat stat;
820 	struct kvm_arch arch;
821 	refcount_t users_count;
822 #ifdef CONFIG_KVM_MMIO
823 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
824 	spinlock_t ring_lock;
825 	struct list_head coalesced_zones;
826 #endif
827 
828 	struct mutex irq_lock;
829 #ifdef CONFIG_HAVE_KVM_IRQCHIP
830 	/*
831 	 * Update side is protected by irq_lock.
832 	 */
833 	struct kvm_irq_routing_table __rcu *irq_routing;
834 
835 	struct hlist_head irq_ack_notifier_list;
836 #endif
837 
838 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
839 	struct mmu_notifier mmu_notifier;
840 	unsigned long mmu_invalidate_seq;
841 	long mmu_invalidate_in_progress;
842 	gfn_t mmu_invalidate_range_start;
843 	gfn_t mmu_invalidate_range_end;
844 #endif
845 	struct list_head devices;
846 	u64 manual_dirty_log_protect;
847 	struct dentry *debugfs_dentry;
848 	struct kvm_stat_data **debugfs_stat_data;
849 	struct srcu_struct srcu;
850 	struct srcu_struct irq_srcu;
851 	pid_t userspace_pid;
852 	bool override_halt_poll_ns;
853 	unsigned int max_halt_poll_ns;
854 	u32 dirty_ring_size;
855 	bool dirty_ring_with_bitmap;
856 	bool vm_bugged;
857 	bool vm_dead;
858 
859 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
860 	struct notifier_block pm_notifier;
861 #endif
862 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
863 	/* Protected by slots_locks (for writes) and RCU (for reads) */
864 	struct xarray mem_attr_array;
865 #endif
866 	char stats_id[KVM_STATS_NAME_SIZE];
867 };
868 
869 #define kvm_err(fmt, ...) \
870 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
871 #define kvm_info(fmt, ...) \
872 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
873 #define kvm_debug(fmt, ...) \
874 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
875 #define kvm_debug_ratelimited(fmt, ...) \
876 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
877 			     ## __VA_ARGS__)
878 #define kvm_pr_unimpl(fmt, ...) \
879 	pr_err_ratelimited("kvm [%i]: " fmt, \
880 			   task_tgid_nr(current), ## __VA_ARGS__)
881 
882 /* The guest did something we don't support. */
883 #define vcpu_unimpl(vcpu, fmt, ...)					\
884 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
885 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
886 
887 #define vcpu_debug(vcpu, fmt, ...)					\
888 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
889 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
890 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
891 			      ## __VA_ARGS__)
892 #define vcpu_err(vcpu, fmt, ...)					\
893 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
894 
kvm_vm_dead(struct kvm * kvm)895 static inline void kvm_vm_dead(struct kvm *kvm)
896 {
897 	kvm->vm_dead = true;
898 	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
899 }
900 
kvm_vm_bugged(struct kvm * kvm)901 static inline void kvm_vm_bugged(struct kvm *kvm)
902 {
903 	kvm->vm_bugged = true;
904 	kvm_vm_dead(kvm);
905 }
906 
907 
908 #define KVM_BUG(cond, kvm, fmt...)				\
909 ({								\
910 	bool __ret = !!(cond);					\
911 								\
912 	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
913 		kvm_vm_bugged(kvm);				\
914 	unlikely(__ret);					\
915 })
916 
917 #define KVM_BUG_ON(cond, kvm)					\
918 ({								\
919 	bool __ret = !!(cond);					\
920 								\
921 	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
922 		kvm_vm_bugged(kvm);				\
923 	unlikely(__ret);					\
924 })
925 
926 /*
927  * Note, "data corruption" refers to corruption of host kernel data structures,
928  * not guest data.  Guest data corruption, suspected or confirmed, that is tied
929  * and contained to a single VM should *never* BUG() and potentially panic the
930  * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
931  * is corrupted and that corruption can have a cascading effect to other parts
932  * of the hosts and/or to other VMs.
933  */
934 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm)			\
935 ({								\
936 	bool __ret = !!(cond);					\
937 								\
938 	if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION))		\
939 		BUG_ON(__ret);					\
940 	else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))	\
941 		kvm_vm_bugged(kvm);				\
942 	unlikely(__ret);					\
943 })
944 
kvm_vcpu_srcu_read_lock(struct kvm_vcpu * vcpu)945 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
946 {
947 #ifdef CONFIG_PROVE_RCU
948 	WARN_ONCE(vcpu->srcu_depth++,
949 		  "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
950 #endif
951 	vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
952 }
953 
kvm_vcpu_srcu_read_unlock(struct kvm_vcpu * vcpu)954 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
955 {
956 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
957 
958 #ifdef CONFIG_PROVE_RCU
959 	WARN_ONCE(--vcpu->srcu_depth,
960 		  "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
961 #endif
962 }
963 
kvm_dirty_log_manual_protect_and_init_set(struct kvm * kvm)964 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
965 {
966 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
967 }
968 
kvm_get_bus(struct kvm * kvm,enum kvm_bus idx)969 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
970 {
971 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
972 				      lockdep_is_held(&kvm->slots_lock) ||
973 				      !refcount_read(&kvm->users_count));
974 }
975 
kvm_get_vcpu(struct kvm * kvm,int i)976 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
977 {
978 	int num_vcpus = atomic_read(&kvm->online_vcpus);
979 
980 	/*
981 	 * Explicitly verify the target vCPU is online, as the anti-speculation
982 	 * logic only limits the CPU's ability to speculate, e.g. given a "bad"
983 	 * index, clamping the index to 0 would return vCPU0, not NULL.
984 	 */
985 	if (i >= num_vcpus)
986 		return NULL;
987 
988 	i = array_index_nospec(i, num_vcpus);
989 
990 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
991 	smp_rmb();
992 	return xa_load(&kvm->vcpu_array, i);
993 }
994 
995 #define kvm_for_each_vcpu(idx, vcpup, kvm)				\
996 	if (atomic_read(&kvm->online_vcpus))				\
997 		xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0,	\
998 				  (atomic_read(&kvm->online_vcpus) - 1))
999 
kvm_get_vcpu_by_id(struct kvm * kvm,int id)1000 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
1001 {
1002 	struct kvm_vcpu *vcpu = NULL;
1003 	unsigned long i;
1004 
1005 	if (id < 0)
1006 		return NULL;
1007 	if (id < KVM_MAX_VCPUS)
1008 		vcpu = kvm_get_vcpu(kvm, id);
1009 	if (vcpu && vcpu->vcpu_id == id)
1010 		return vcpu;
1011 	kvm_for_each_vcpu(i, vcpu, kvm)
1012 		if (vcpu->vcpu_id == id)
1013 			return vcpu;
1014 	return NULL;
1015 }
1016 
1017 void kvm_destroy_vcpus(struct kvm *kvm);
1018 
1019 int kvm_trylock_all_vcpus(struct kvm *kvm);
1020 int kvm_lock_all_vcpus(struct kvm *kvm);
1021 void kvm_unlock_all_vcpus(struct kvm *kvm);
1022 
1023 void vcpu_load(struct kvm_vcpu *vcpu);
1024 void vcpu_put(struct kvm_vcpu *vcpu);
1025 
1026 #ifdef CONFIG_KVM_IOAPIC
1027 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
1028 #else
kvm_arch_post_irq_ack_notifier_list_update(struct kvm * kvm)1029 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
1030 {
1031 }
1032 #endif
1033 
1034 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1035 int kvm_irqfd_init(void);
1036 void kvm_irqfd_exit(void);
1037 #else
kvm_irqfd_init(void)1038 static inline int kvm_irqfd_init(void)
1039 {
1040 	return 0;
1041 }
1042 
kvm_irqfd_exit(void)1043 static inline void kvm_irqfd_exit(void)
1044 {
1045 }
1046 #endif
1047 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1048 void kvm_exit(void);
1049 
1050 void kvm_get_kvm(struct kvm *kvm);
1051 bool kvm_get_kvm_safe(struct kvm *kvm);
1052 void kvm_put_kvm(struct kvm *kvm);
1053 bool file_is_kvm(struct file *file);
1054 void kvm_put_kvm_no_destroy(struct kvm *kvm);
1055 
__kvm_memslots(struct kvm * kvm,int as_id)1056 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1057 {
1058 	as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1059 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1060 			lockdep_is_held(&kvm->slots_lock) ||
1061 			!refcount_read(&kvm->users_count));
1062 }
1063 
kvm_memslots(struct kvm * kvm)1064 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1065 {
1066 	return __kvm_memslots(kvm, 0);
1067 }
1068 
kvm_vcpu_memslots(struct kvm_vcpu * vcpu)1069 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1070 {
1071 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1072 
1073 	return __kvm_memslots(vcpu->kvm, as_id);
1074 }
1075 
kvm_memslots_empty(struct kvm_memslots * slots)1076 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1077 {
1078 	return RB_EMPTY_ROOT(&slots->gfn_tree);
1079 }
1080 
1081 bool kvm_are_all_memslots_empty(struct kvm *kvm);
1082 
1083 #define kvm_for_each_memslot(memslot, bkt, slots)			      \
1084 	hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1085 		if (WARN_ON_ONCE(!memslot->npages)) {			      \
1086 		} else
1087 
1088 static inline
id_to_memslot(struct kvm_memslots * slots,int id)1089 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1090 {
1091 	struct kvm_memory_slot *slot;
1092 	int idx = slots->node_idx;
1093 
1094 	hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1095 		if (slot->id == id)
1096 			return slot;
1097 	}
1098 
1099 	return NULL;
1100 }
1101 
1102 /* Iterator used for walking memslots that overlap a gfn range. */
1103 struct kvm_memslot_iter {
1104 	struct kvm_memslots *slots;
1105 	struct rb_node *node;
1106 	struct kvm_memory_slot *slot;
1107 };
1108 
kvm_memslot_iter_next(struct kvm_memslot_iter * iter)1109 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1110 {
1111 	iter->node = rb_next(iter->node);
1112 	if (!iter->node)
1113 		return;
1114 
1115 	iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1116 }
1117 
kvm_memslot_iter_start(struct kvm_memslot_iter * iter,struct kvm_memslots * slots,gfn_t start)1118 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1119 					  struct kvm_memslots *slots,
1120 					  gfn_t start)
1121 {
1122 	int idx = slots->node_idx;
1123 	struct rb_node *tmp;
1124 	struct kvm_memory_slot *slot;
1125 
1126 	iter->slots = slots;
1127 
1128 	/*
1129 	 * Find the so called "upper bound" of a key - the first node that has
1130 	 * its key strictly greater than the searched one (the start gfn in our case).
1131 	 */
1132 	iter->node = NULL;
1133 	for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1134 		slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1135 		if (start < slot->base_gfn) {
1136 			iter->node = tmp;
1137 			tmp = tmp->rb_left;
1138 		} else {
1139 			tmp = tmp->rb_right;
1140 		}
1141 	}
1142 
1143 	/*
1144 	 * Find the slot with the lowest gfn that can possibly intersect with
1145 	 * the range, so we'll ideally have slot start <= range start
1146 	 */
1147 	if (iter->node) {
1148 		/*
1149 		 * A NULL previous node means that the very first slot
1150 		 * already has a higher start gfn.
1151 		 * In this case slot start > range start.
1152 		 */
1153 		tmp = rb_prev(iter->node);
1154 		if (tmp)
1155 			iter->node = tmp;
1156 	} else {
1157 		/* a NULL node below means no slots */
1158 		iter->node = rb_last(&slots->gfn_tree);
1159 	}
1160 
1161 	if (iter->node) {
1162 		iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1163 
1164 		/*
1165 		 * It is possible in the slot start < range start case that the
1166 		 * found slot ends before or at range start (slot end <= range start)
1167 		 * and so it does not overlap the requested range.
1168 		 *
1169 		 * In such non-overlapping case the next slot (if it exists) will
1170 		 * already have slot start > range start, otherwise the logic above
1171 		 * would have found it instead of the current slot.
1172 		 */
1173 		if (iter->slot->base_gfn + iter->slot->npages <= start)
1174 			kvm_memslot_iter_next(iter);
1175 	}
1176 }
1177 
kvm_memslot_iter_is_valid(struct kvm_memslot_iter * iter,gfn_t end)1178 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1179 {
1180 	if (!iter->node)
1181 		return false;
1182 
1183 	/*
1184 	 * If this slot starts beyond or at the end of the range so does
1185 	 * every next one
1186 	 */
1187 	return iter->slot->base_gfn < end;
1188 }
1189 
1190 /* Iterate over each memslot at least partially intersecting [start, end) range */
1191 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)	\
1192 	for (kvm_memslot_iter_start(iter, slots, start);		\
1193 	     kvm_memslot_iter_is_valid(iter, end);			\
1194 	     kvm_memslot_iter_next(iter))
1195 
1196 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1197 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1198 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1199 
1200 /*
1201  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1202  * - create a new memory slot
1203  * - delete an existing memory slot
1204  * - modify an existing memory slot
1205  *   -- move it in the guest physical memory space
1206  *   -- just change its flags
1207  *
1208  * Since flags can be changed by some of these operations, the following
1209  * differentiation is the best we can do for kvm_set_memory_region():
1210  */
1211 enum kvm_mr_change {
1212 	KVM_MR_CREATE,
1213 	KVM_MR_DELETE,
1214 	KVM_MR_MOVE,
1215 	KVM_MR_FLAGS_ONLY,
1216 };
1217 
1218 int kvm_set_internal_memslot(struct kvm *kvm,
1219 			     const struct kvm_userspace_memory_region2 *mem);
1220 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1221 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1222 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1223 				const struct kvm_memory_slot *old,
1224 				struct kvm_memory_slot *new,
1225 				enum kvm_mr_change change);
1226 void kvm_arch_commit_memory_region(struct kvm *kvm,
1227 				struct kvm_memory_slot *old,
1228 				const struct kvm_memory_slot *new,
1229 				enum kvm_mr_change change);
1230 /* flush all memory translations */
1231 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1232 /* flush memory translations pointing to 'slot' */
1233 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1234 				   struct kvm_memory_slot *slot);
1235 
1236 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
1237 		       struct page **pages, int nr_pages);
1238 
1239 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write);
gfn_to_page(struct kvm * kvm,gfn_t gfn)1240 static inline struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1241 {
1242 	return __gfn_to_page(kvm, gfn, true);
1243 }
1244 
1245 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1246 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1247 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1248 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1249 				      bool *writable);
1250 
kvm_release_page_unused(struct page * page)1251 static inline void kvm_release_page_unused(struct page *page)
1252 {
1253 	if (!page)
1254 		return;
1255 
1256 	put_page(page);
1257 }
1258 
1259 void kvm_release_page_clean(struct page *page);
1260 void kvm_release_page_dirty(struct page *page);
1261 
kvm_release_faultin_page(struct kvm * kvm,struct page * page,bool unused,bool dirty)1262 static inline void kvm_release_faultin_page(struct kvm *kvm, struct page *page,
1263 					    bool unused, bool dirty)
1264 {
1265 	lockdep_assert_once(lockdep_is_held(&kvm->mmu_lock) || unused);
1266 
1267 	if (!page)
1268 		return;
1269 
1270 	/*
1271 	 * If the page that KVM got from the *primary MMU* is writable, and KVM
1272 	 * installed or reused a SPTE, mark the page/folio dirty.  Note, this
1273 	 * may mark a folio dirty even if KVM created a read-only SPTE, e.g. if
1274 	 * the GFN is write-protected.  Folios can't be safely marked dirty
1275 	 * outside of mmu_lock as doing so could race with writeback on the
1276 	 * folio.  As a result, KVM can't mark folios dirty in the fast page
1277 	 * fault handler, and so KVM must (somewhat) speculatively mark the
1278 	 * folio dirty if KVM could locklessly make the SPTE writable.
1279 	 */
1280 	if (unused)
1281 		kvm_release_page_unused(page);
1282 	else if (dirty)
1283 		kvm_release_page_dirty(page);
1284 	else
1285 		kvm_release_page_clean(page);
1286 }
1287 
1288 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
1289 			    unsigned int foll, bool *writable,
1290 			    struct page **refcounted_page);
1291 
kvm_faultin_pfn(struct kvm_vcpu * vcpu,gfn_t gfn,bool write,bool * writable,struct page ** refcounted_page)1292 static inline kvm_pfn_t kvm_faultin_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
1293 					bool write, bool *writable,
1294 					struct page **refcounted_page)
1295 {
1296 	return __kvm_faultin_pfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn,
1297 				 write ? FOLL_WRITE : 0, writable, refcounted_page);
1298 }
1299 
1300 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1301 			int len);
1302 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1303 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1304 			   void *data, unsigned long len);
1305 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1306 				 void *data, unsigned int offset,
1307 				 unsigned long len);
1308 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1309 			 int offset, int len);
1310 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1311 		    unsigned long len);
1312 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1313 			   void *data, unsigned long len);
1314 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1315 				  void *data, unsigned int offset,
1316 				  unsigned long len);
1317 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1318 			      gpa_t gpa, unsigned long len);
1319 
1320 #define __kvm_get_guest(kvm, gfn, offset, v)				\
1321 ({									\
1322 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1323 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1324 	int __ret = -EFAULT;						\
1325 									\
1326 	if (!kvm_is_error_hva(__addr))					\
1327 		__ret = get_user(v, __uaddr);				\
1328 	__ret;								\
1329 })
1330 
1331 #define kvm_get_guest(kvm, gpa, v)					\
1332 ({									\
1333 	gpa_t __gpa = gpa;						\
1334 	struct kvm *__kvm = kvm;					\
1335 									\
1336 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1337 			offset_in_page(__gpa), v);			\
1338 })
1339 
1340 #define __kvm_put_guest(kvm, gfn, offset, v)				\
1341 ({									\
1342 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1343 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1344 	int __ret = -EFAULT;						\
1345 									\
1346 	if (!kvm_is_error_hva(__addr))					\
1347 		__ret = put_user(v, __uaddr);				\
1348 	if (!__ret)							\
1349 		mark_page_dirty(kvm, gfn);				\
1350 	__ret;								\
1351 })
1352 
1353 #define kvm_put_guest(kvm, gpa, v)					\
1354 ({									\
1355 	gpa_t __gpa = gpa;						\
1356 	struct kvm *__kvm = kvm;					\
1357 									\
1358 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1359 			offset_in_page(__gpa), v);			\
1360 })
1361 
1362 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1363 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1364 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1365 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1366 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1367 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1368 
1369 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map,
1370 		   bool writable);
1371 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map);
1372 
kvm_vcpu_map(struct kvm_vcpu * vcpu,gpa_t gpa,struct kvm_host_map * map)1373 static inline int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa,
1374 			       struct kvm_host_map *map)
1375 {
1376 	return __kvm_vcpu_map(vcpu, gpa, map, true);
1377 }
1378 
kvm_vcpu_map_readonly(struct kvm_vcpu * vcpu,gpa_t gpa,struct kvm_host_map * map)1379 static inline int kvm_vcpu_map_readonly(struct kvm_vcpu *vcpu, gpa_t gpa,
1380 					struct kvm_host_map *map)
1381 {
1382 	return __kvm_vcpu_map(vcpu, gpa, map, false);
1383 }
1384 
1385 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1386 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1387 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1388 			     int len);
1389 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1390 			       unsigned long len);
1391 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1392 			unsigned long len);
1393 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1394 			      int offset, int len);
1395 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1396 			 unsigned long len);
1397 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1398 
1399 /**
1400  * kvm_gpc_init - initialize gfn_to_pfn_cache.
1401  *
1402  * @gpc:	   struct gfn_to_pfn_cache object.
1403  * @kvm:	   pointer to kvm instance.
1404  *
1405  * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1406  * immutable attributes.  Note, the cache must be zero-allocated (or zeroed by
1407  * the caller before init).
1408  */
1409 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);
1410 
1411 /**
1412  * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1413  *                    physical address.
1414  *
1415  * @gpc:	   struct gfn_to_pfn_cache object.
1416  * @gpa:	   guest physical address to map.
1417  * @len:	   sanity check; the range being access must fit a single page.
1418  *
1419  * @return:	   0 for success.
1420  *		   -EINVAL for a mapping which would cross a page boundary.
1421  *		   -EFAULT for an untranslatable guest physical address.
1422  *
1423  * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1424  * invalidations to be processed.  Callers are required to use kvm_gpc_check()
1425  * to ensure that the cache is valid before accessing the target page.
1426  */
1427 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1428 
1429 /**
1430  * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
1431  *
1432  * @gpc:          struct gfn_to_pfn_cache object.
1433  * @hva:          userspace virtual address to map.
1434  * @len:          sanity check; the range being access must fit a single page.
1435  *
1436  * @return:       0 for success.
1437  *                -EINVAL for a mapping which would cross a page boundary.
1438  *                -EFAULT for an untranslatable guest physical address.
1439  *
1440  * The semantics of this function are the same as those of kvm_gpc_activate(). It
1441  * merely bypasses a layer of address translation.
1442  */
1443 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);
1444 
1445 /**
1446  * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1447  *
1448  * @gpc:	   struct gfn_to_pfn_cache object.
1449  * @len:	   sanity check; the range being access must fit a single page.
1450  *
1451  * @return:	   %true if the cache is still valid and the address matches.
1452  *		   %false if the cache is not valid.
1453  *
1454  * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1455  * while calling this function, and then continue to hold the lock until the
1456  * access is complete.
1457  *
1458  * Callers in IN_GUEST_MODE may do so without locking, although they should
1459  * still hold a read lock on kvm->scru for the memslot checks.
1460  */
1461 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1462 
1463 /**
1464  * kvm_gpc_refresh - update a previously initialized cache.
1465  *
1466  * @gpc:	   struct gfn_to_pfn_cache object.
1467  * @len:	   sanity check; the range being access must fit a single page.
1468  *
1469  * @return:	   0 for success.
1470  *		   -EINVAL for a mapping which would cross a page boundary.
1471  *		   -EFAULT for an untranslatable guest physical address.
1472  *
1473  * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1474  * return from this function does not mean the page can be immediately
1475  * accessed because it may have raced with an invalidation. Callers must
1476  * still lock and check the cache status, as this function does not return
1477  * with the lock still held to permit access.
1478  */
1479 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1480 
1481 /**
1482  * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1483  *
1484  * @gpc:	   struct gfn_to_pfn_cache object.
1485  *
1486  * This removes a cache from the VM's list to be processed on MMU notifier
1487  * invocation.
1488  */
1489 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1490 
kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache * gpc)1491 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
1492 {
1493 	return gpc->active && !kvm_is_error_gpa(gpc->gpa);
1494 }
1495 
kvm_gpc_is_hva_active(struct gfn_to_pfn_cache * gpc)1496 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
1497 {
1498 	return gpc->active && kvm_is_error_gpa(gpc->gpa);
1499 }
1500 
1501 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1502 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1503 
1504 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1505 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1506 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1507 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1508 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1509 
1510 #ifndef CONFIG_S390
1511 void __kvm_vcpu_kick(struct kvm_vcpu *vcpu, bool wait);
1512 
kvm_vcpu_kick(struct kvm_vcpu * vcpu)1513 static inline void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1514 {
1515 	__kvm_vcpu_kick(vcpu, false);
1516 }
1517 #endif
1518 
1519 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1520 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1521 
1522 void kvm_flush_remote_tlbs(struct kvm *kvm);
1523 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1524 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1525 				   const struct kvm_memory_slot *memslot);
1526 
1527 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1528 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1529 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1530 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1531 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1532 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1533 #endif
1534 
1535 void kvm_mmu_invalidate_begin(struct kvm *kvm);
1536 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1537 void kvm_mmu_invalidate_end(struct kvm *kvm);
1538 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1539 
1540 long kvm_arch_dev_ioctl(struct file *filp,
1541 			unsigned int ioctl, unsigned long arg);
1542 long kvm_arch_vcpu_ioctl(struct file *filp,
1543 			 unsigned int ioctl, unsigned long arg);
1544 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1545 
1546 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1547 
1548 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1549 					struct kvm_memory_slot *slot,
1550 					gfn_t gfn_offset,
1551 					unsigned long mask);
1552 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1553 
1554 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1555 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1556 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1557 		      int *is_dirty, struct kvm_memory_slot **memslot);
1558 #endif
1559 
1560 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1561 			bool line_status);
1562 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1563 			    struct kvm_enable_cap *cap);
1564 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1565 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1566 			      unsigned long arg);
1567 
1568 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1569 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1570 
1571 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1572 				    struct kvm_translation *tr);
1573 
1574 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1575 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1576 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1577 				  struct kvm_sregs *sregs);
1578 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1579 				  struct kvm_sregs *sregs);
1580 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1581 				    struct kvm_mp_state *mp_state);
1582 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1583 				    struct kvm_mp_state *mp_state);
1584 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1585 					struct kvm_guest_debug *dbg);
1586 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1587 
1588 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1589 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1590 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1591 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1592 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1593 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1594 
1595 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1596 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1597 #endif
1598 
1599 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1600 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1601 #else
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)1602 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1603 #endif
1604 
1605 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1606 /*
1607  * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under
1608  * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of
1609  * kvm_usage_count, i.e. at the beginning of the generic hardware enabling
1610  * sequence, and at the end of the generic hardware disabling sequence.
1611  */
1612 void kvm_arch_enable_virtualization(void);
1613 void kvm_arch_disable_virtualization(void);
1614 /*
1615  * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to
1616  * do the actual twiddling of hardware bits.  The hooks are called on all
1617  * online CPUs when KVM enables/disabled virtualization, and on a single CPU
1618  * when that CPU is onlined/offlined (including for Resume/Suspend).
1619  */
1620 int kvm_arch_enable_virtualization_cpu(void);
1621 void kvm_arch_disable_virtualization_cpu(void);
1622 #endif
1623 bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu);
1624 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1625 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1626 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1627 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1628 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1629 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
1630 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1631 void kvm_arch_create_vm_debugfs(struct kvm *kvm);
1632 
1633 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1634 /*
1635  * All architectures that want to use vzalloc currently also
1636  * need their own kvm_arch_alloc_vm implementation.
1637  */
kvm_arch_alloc_vm(void)1638 static inline struct kvm *kvm_arch_alloc_vm(void)
1639 {
1640 	return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1641 }
1642 #endif
1643 
__kvm_arch_free_vm(struct kvm * kvm)1644 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1645 {
1646 	kvfree(kvm);
1647 }
1648 
1649 #ifndef __KVM_HAVE_ARCH_VM_FREE
kvm_arch_free_vm(struct kvm * kvm)1650 static inline void kvm_arch_free_vm(struct kvm *kvm)
1651 {
1652 	__kvm_arch_free_vm(kvm);
1653 }
1654 #endif
1655 
1656 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
kvm_arch_flush_remote_tlbs(struct kvm * kvm)1657 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1658 {
1659 	return -ENOTSUPP;
1660 }
1661 #else
1662 int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1663 #endif
1664 
1665 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)1666 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1667 						    gfn_t gfn, u64 nr_pages)
1668 {
1669 	return -EOPNOTSUPP;
1670 }
1671 #else
1672 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1673 #endif
1674 
1675 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1676 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1677 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1678 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1679 #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)1680 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1681 {
1682 }
1683 
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)1684 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1685 {
1686 }
1687 
kvm_arch_has_noncoherent_dma(struct kvm * kvm)1688 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1689 {
1690 	return false;
1691 }
1692 #endif
1693 
kvm_arch_vcpu_get_wait(struct kvm_vcpu * vcpu)1694 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1695 {
1696 #ifdef __KVM_HAVE_ARCH_WQP
1697 	return vcpu->arch.waitp;
1698 #else
1699 	return &vcpu->wait;
1700 #endif
1701 }
1702 
1703 /*
1704  * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1705  * true if the vCPU was blocking and was awakened, false otherwise.
1706  */
__kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)1707 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1708 {
1709 	return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1710 }
1711 
kvm_vcpu_is_blocking(struct kvm_vcpu * vcpu)1712 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1713 {
1714 	return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1715 }
1716 
1717 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1718 /*
1719  * returns true if the virtual interrupt controller is initialized and
1720  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1721  * controller is dynamically instantiated and this is not always true.
1722  */
1723 bool kvm_arch_intc_initialized(struct kvm *kvm);
1724 #else
kvm_arch_intc_initialized(struct kvm * kvm)1725 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1726 {
1727 	return true;
1728 }
1729 #endif
1730 
1731 #ifdef CONFIG_GUEST_PERF_EVENTS
1732 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1733 
1734 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1735 void kvm_unregister_perf_callbacks(void);
1736 #else
kvm_register_perf_callbacks(void * ign)1737 static inline void kvm_register_perf_callbacks(void *ign) {}
kvm_unregister_perf_callbacks(void)1738 static inline void kvm_unregister_perf_callbacks(void) {}
1739 #endif /* CONFIG_GUEST_PERF_EVENTS */
1740 
1741 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1742 void kvm_arch_destroy_vm(struct kvm *kvm);
1743 
1744 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1745 
1746 struct kvm_irq_ack_notifier {
1747 	struct hlist_node link;
1748 	unsigned gsi;
1749 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1750 };
1751 
1752 int kvm_irq_map_gsi(struct kvm *kvm,
1753 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1754 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1755 
1756 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1757 		bool line_status);
1758 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1759 		int irq_source_id, int level, bool line_status);
1760 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1761 			       struct kvm *kvm, int irq_source_id,
1762 			       int level, bool line_status);
1763 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1764 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1765 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1766 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1767 				   struct kvm_irq_ack_notifier *kian);
1768 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1769 				   struct kvm_irq_ack_notifier *kian);
1770 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1771 
1772 /*
1773  * Returns a pointer to the memslot if it contains gfn.
1774  * Otherwise returns NULL.
1775  */
1776 static inline struct kvm_memory_slot *
try_get_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1777 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1778 {
1779 	if (!slot)
1780 		return NULL;
1781 
1782 	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1783 		return slot;
1784 	else
1785 		return NULL;
1786 }
1787 
1788 /*
1789  * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1790  *
1791  * With "approx" set returns the memslot also when the address falls
1792  * in a hole. In that case one of the memslots bordering the hole is
1793  * returned.
1794  */
1795 static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn,bool approx)1796 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1797 {
1798 	struct kvm_memory_slot *slot;
1799 	struct rb_node *node;
1800 	int idx = slots->node_idx;
1801 
1802 	slot = NULL;
1803 	for (node = slots->gfn_tree.rb_node; node; ) {
1804 		slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1805 		if (gfn >= slot->base_gfn) {
1806 			if (gfn < slot->base_gfn + slot->npages)
1807 				return slot;
1808 			node = node->rb_right;
1809 		} else
1810 			node = node->rb_left;
1811 	}
1812 
1813 	return approx ? slot : NULL;
1814 }
1815 
1816 static inline struct kvm_memory_slot *
____gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn,bool approx)1817 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1818 {
1819 	struct kvm_memory_slot *slot;
1820 
1821 	slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1822 	slot = try_get_memslot(slot, gfn);
1823 	if (slot)
1824 		return slot;
1825 
1826 	slot = search_memslots(slots, gfn, approx);
1827 	if (slot) {
1828 		atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1829 		return slot;
1830 	}
1831 
1832 	return NULL;
1833 }
1834 
1835 /*
1836  * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1837  * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1838  * because that would bloat other code too much.
1839  */
1840 static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1841 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1842 {
1843 	return ____gfn_to_memslot(slots, gfn, false);
1844 }
1845 
1846 static inline unsigned long
__gfn_to_hva_memslot(const struct kvm_memory_slot * slot,gfn_t gfn)1847 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1848 {
1849 	/*
1850 	 * The index was checked originally in search_memslots.  To avoid
1851 	 * that a malicious guest builds a Spectre gadget out of e.g. page
1852 	 * table walks, do not let the processor speculate loads outside
1853 	 * the guest's registered memslots.
1854 	 */
1855 	unsigned long offset = gfn - slot->base_gfn;
1856 	offset = array_index_nospec(offset, slot->npages);
1857 	return slot->userspace_addr + offset * PAGE_SIZE;
1858 }
1859 
memslot_id(struct kvm * kvm,gfn_t gfn)1860 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1861 {
1862 	return gfn_to_memslot(kvm, gfn)->id;
1863 }
1864 
1865 static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)1866 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1867 {
1868 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1869 
1870 	return slot->base_gfn + gfn_offset;
1871 }
1872 
gfn_to_gpa(gfn_t gfn)1873 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1874 {
1875 	return (gpa_t)gfn << PAGE_SHIFT;
1876 }
1877 
gpa_to_gfn(gpa_t gpa)1878 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1879 {
1880 	return (gfn_t)(gpa >> PAGE_SHIFT);
1881 }
1882 
pfn_to_hpa(kvm_pfn_t pfn)1883 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1884 {
1885 	return (hpa_t)pfn << PAGE_SHIFT;
1886 }
1887 
kvm_is_gpa_in_memslot(struct kvm * kvm,gpa_t gpa)1888 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
1889 {
1890 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1891 
1892 	return !kvm_is_error_hva(hva);
1893 }
1894 
kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache * gpc)1895 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
1896 {
1897 	lockdep_assert_held(&gpc->lock);
1898 
1899 	if (!gpc->memslot)
1900 		return;
1901 
1902 	mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa));
1903 }
1904 
1905 enum kvm_stat_kind {
1906 	KVM_STAT_VM,
1907 	KVM_STAT_VCPU,
1908 };
1909 
1910 struct kvm_stat_data {
1911 	struct kvm *kvm;
1912 	const struct _kvm_stats_desc *desc;
1913 	enum kvm_stat_kind kind;
1914 };
1915 
1916 struct _kvm_stats_desc {
1917 	struct kvm_stats_desc desc;
1918 	char name[KVM_STATS_NAME_SIZE];
1919 };
1920 
1921 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
1922 	.flags = type | unit | base |					       \
1923 		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1924 		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1925 		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1926 	.exponent = exp,						       \
1927 	.size = sz,							       \
1928 	.bucket_size = bsz
1929 
1930 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1931 	{								       \
1932 		{							       \
1933 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1934 			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1935 		},							       \
1936 		.name = #stat,						       \
1937 	}
1938 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1939 	{								       \
1940 		{							       \
1941 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1942 			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1943 		},							       \
1944 		.name = #stat,						       \
1945 	}
1946 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1947 	{								       \
1948 		{							       \
1949 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1950 			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1951 		},							       \
1952 		.name = #stat,						       \
1953 	}
1954 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1955 	{								       \
1956 		{							       \
1957 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1958 			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1959 		},							       \
1960 		.name = #stat,						       \
1961 	}
1962 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1963 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
1964 	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1965 
1966 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
1967 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
1968 		unit, base, exponent, 1, 0)
1969 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
1970 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
1971 		unit, base, exponent, 1, 0)
1972 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
1973 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
1974 		unit, base, exponent, 1, 0)
1975 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1976 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
1977 		unit, base, exponent, sz, bsz)
1978 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
1979 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
1980 		unit, base, exponent, sz, 0)
1981 
1982 /* Cumulative counter, read/write */
1983 #define STATS_DESC_COUNTER(SCOPE, name)					       \
1984 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1985 		KVM_STATS_BASE_POW10, 0)
1986 /* Instantaneous counter, read only */
1987 #define STATS_DESC_ICOUNTER(SCOPE, name)				       \
1988 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1989 		KVM_STATS_BASE_POW10, 0)
1990 /* Peak counter, read/write */
1991 #define STATS_DESC_PCOUNTER(SCOPE, name)				       \
1992 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1993 		KVM_STATS_BASE_POW10, 0)
1994 
1995 /* Instantaneous boolean value, read only */
1996 #define STATS_DESC_IBOOLEAN(SCOPE, name)				       \
1997 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1998 		KVM_STATS_BASE_POW10, 0)
1999 /* Peak (sticky) boolean value, read/write */
2000 #define STATS_DESC_PBOOLEAN(SCOPE, name)				       \
2001 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
2002 		KVM_STATS_BASE_POW10, 0)
2003 
2004 /* Cumulative time in nanosecond */
2005 #define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
2006 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
2007 		KVM_STATS_BASE_POW10, -9)
2008 /* Linear histogram for time in nanosecond */
2009 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
2010 	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
2011 		KVM_STATS_BASE_POW10, -9, sz, bsz)
2012 /* Logarithmic histogram for time in nanosecond */
2013 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
2014 	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
2015 		KVM_STATS_BASE_POW10, -9, sz)
2016 
2017 #define KVM_GENERIC_VM_STATS()						       \
2018 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
2019 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
2020 
2021 #define KVM_GENERIC_VCPU_STATS()					       \
2022 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
2023 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
2024 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
2025 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
2026 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
2027 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
2028 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
2029 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
2030 			HALT_POLL_HIST_COUNT),				       \
2031 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
2032 			HALT_POLL_HIST_COUNT),				       \
2033 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
2034 			HALT_POLL_HIST_COUNT),				       \
2035 	STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
2036 
2037 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
2038 		       const struct _kvm_stats_desc *desc,
2039 		       void *stats, size_t size_stats,
2040 		       char __user *user_buffer, size_t size, loff_t *offset);
2041 
2042 /**
2043  * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
2044  * statistics data.
2045  *
2046  * @data: start address of the stats data
2047  * @size: the number of bucket of the stats data
2048  * @value: the new value used to update the linear histogram's bucket
2049  * @bucket_size: the size (width) of a bucket
2050  */
kvm_stats_linear_hist_update(u64 * data,size_t size,u64 value,size_t bucket_size)2051 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
2052 						u64 value, size_t bucket_size)
2053 {
2054 	size_t index = div64_u64(value, bucket_size);
2055 
2056 	index = min(index, size - 1);
2057 	++data[index];
2058 }
2059 
2060 /**
2061  * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
2062  * statistics data.
2063  *
2064  * @data: start address of the stats data
2065  * @size: the number of bucket of the stats data
2066  * @value: the new value used to update the logarithmic histogram's bucket
2067  */
kvm_stats_log_hist_update(u64 * data,size_t size,u64 value)2068 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
2069 {
2070 	size_t index = fls64(value);
2071 
2072 	index = min(index, size - 1);
2073 	++data[index];
2074 }
2075 
2076 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
2077 	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
2078 #define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
2079 	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
2080 
2081 
2082 extern const struct kvm_stats_header kvm_vm_stats_header;
2083 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
2084 extern const struct kvm_stats_header kvm_vcpu_stats_header;
2085 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
2086 
2087 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
mmu_invalidate_retry(struct kvm * kvm,unsigned long mmu_seq)2088 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
2089 {
2090 	if (unlikely(kvm->mmu_invalidate_in_progress))
2091 		return 1;
2092 	/*
2093 	 * Ensure the read of mmu_invalidate_in_progress happens before
2094 	 * the read of mmu_invalidate_seq.  This interacts with the
2095 	 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
2096 	 * that the caller either sees the old (non-zero) value of
2097 	 * mmu_invalidate_in_progress or the new (incremented) value of
2098 	 * mmu_invalidate_seq.
2099 	 *
2100 	 * PowerPC Book3s HV KVM calls this under a per-page lock rather
2101 	 * than under kvm->mmu_lock, for scalability, so can't rely on
2102 	 * kvm->mmu_lock to keep things ordered.
2103 	 */
2104 	smp_rmb();
2105 	if (kvm->mmu_invalidate_seq != mmu_seq)
2106 		return 1;
2107 	return 0;
2108 }
2109 
mmu_invalidate_retry_gfn(struct kvm * kvm,unsigned long mmu_seq,gfn_t gfn)2110 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2111 					   unsigned long mmu_seq,
2112 					   gfn_t gfn)
2113 {
2114 	lockdep_assert_held(&kvm->mmu_lock);
2115 	/*
2116 	 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2117 	 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2118 	 * that might be being invalidated. Note that it may include some false
2119 	 * positives, due to shortcuts when handing concurrent invalidations.
2120 	 */
2121 	if (unlikely(kvm->mmu_invalidate_in_progress)) {
2122 		/*
2123 		 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2124 		 * but before updating the range is a KVM bug.
2125 		 */
2126 		if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2127 				 kvm->mmu_invalidate_range_end == INVALID_GPA))
2128 			return 1;
2129 
2130 		if (gfn >= kvm->mmu_invalidate_range_start &&
2131 		    gfn < kvm->mmu_invalidate_range_end)
2132 			return 1;
2133 	}
2134 
2135 	if (kvm->mmu_invalidate_seq != mmu_seq)
2136 		return 1;
2137 	return 0;
2138 }
2139 
2140 /*
2141  * This lockless version of the range-based retry check *must* be paired with a
2142  * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2143  * use only as a pre-check to avoid contending mmu_lock.  This version *will*
2144  * get false negatives and false positives.
2145  */
mmu_invalidate_retry_gfn_unsafe(struct kvm * kvm,unsigned long mmu_seq,gfn_t gfn)2146 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2147 						   unsigned long mmu_seq,
2148 						   gfn_t gfn)
2149 {
2150 	/*
2151 	 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2152 	 * are always read from memory, e.g. so that checking for retry in a
2153 	 * loop won't result in an infinite retry loop.  Don't force loads for
2154 	 * start+end, as the key to avoiding infinite retry loops is observing
2155 	 * the 1=>0 transition of in-progress, i.e. getting false negatives
2156 	 * due to stale start+end values is acceptable.
2157 	 */
2158 	if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2159 	    gfn >= kvm->mmu_invalidate_range_start &&
2160 	    gfn < kvm->mmu_invalidate_range_end)
2161 		return true;
2162 
2163 	return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2164 }
2165 #endif
2166 
2167 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2168 
2169 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2170 
2171 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2172 int kvm_set_irq_routing(struct kvm *kvm,
2173 			const struct kvm_irq_routing_entry *entries,
2174 			unsigned nr,
2175 			unsigned flags);
2176 int kvm_init_irq_routing(struct kvm *kvm);
2177 int kvm_set_routing_entry(struct kvm *kvm,
2178 			  struct kvm_kernel_irq_routing_entry *e,
2179 			  const struct kvm_irq_routing_entry *ue);
2180 void kvm_free_irq_routing(struct kvm *kvm);
2181 
2182 #else
2183 
kvm_free_irq_routing(struct kvm * kvm)2184 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2185 
kvm_init_irq_routing(struct kvm * kvm)2186 static inline int kvm_init_irq_routing(struct kvm *kvm)
2187 {
2188 	return 0;
2189 }
2190 
2191 #endif
2192 
2193 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2194 
2195 void kvm_eventfd_init(struct kvm *kvm);
2196 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2197 
2198 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2199 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2200 void kvm_irqfd_release(struct kvm *kvm);
2201 bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2202 				unsigned int irqchip,
2203 				unsigned int pin);
2204 void kvm_irq_routing_update(struct kvm *);
2205 #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)2206 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2207 {
2208 	return -EINVAL;
2209 }
2210 
kvm_irqfd_release(struct kvm * kvm)2211 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2212 
kvm_notify_irqfd_resampler(struct kvm * kvm,unsigned int irqchip,unsigned int pin)2213 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2214 					      unsigned int irqchip,
2215 					      unsigned int pin)
2216 {
2217 	return false;
2218 }
2219 #endif /* CONFIG_HAVE_KVM_IRQCHIP */
2220 
2221 void kvm_arch_irq_routing_update(struct kvm *kvm);
2222 
__kvm_make_request(int req,struct kvm_vcpu * vcpu)2223 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2224 {
2225 	/*
2226 	 * Ensure the rest of the request is published to kvm_check_request's
2227 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
2228 	 */
2229 	smp_wmb();
2230 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2231 }
2232 
kvm_make_request(int req,struct kvm_vcpu * vcpu)2233 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2234 {
2235 	/*
2236 	 * Request that don't require vCPU action should never be logged in
2237 	 * vcpu->requests.  The vCPU won't clear the request, so it will stay
2238 	 * logged indefinitely and prevent the vCPU from entering the guest.
2239 	 */
2240 	BUILD_BUG_ON(!__builtin_constant_p(req) ||
2241 		     (req & KVM_REQUEST_NO_ACTION));
2242 
2243 	__kvm_make_request(req, vcpu);
2244 }
2245 
2246 #ifndef CONFIG_S390
kvm_make_request_and_kick(int req,struct kvm_vcpu * vcpu)2247 static inline void kvm_make_request_and_kick(int req, struct kvm_vcpu *vcpu)
2248 {
2249 	kvm_make_request(req, vcpu);
2250 	__kvm_vcpu_kick(vcpu, req & KVM_REQUEST_WAIT);
2251 }
2252 #endif
2253 
kvm_request_pending(struct kvm_vcpu * vcpu)2254 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2255 {
2256 	return READ_ONCE(vcpu->requests);
2257 }
2258 
kvm_test_request(int req,struct kvm_vcpu * vcpu)2259 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2260 {
2261 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2262 }
2263 
kvm_clear_request(int req,struct kvm_vcpu * vcpu)2264 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2265 {
2266 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2267 }
2268 
kvm_check_request(int req,struct kvm_vcpu * vcpu)2269 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2270 {
2271 	if (kvm_test_request(req, vcpu)) {
2272 		kvm_clear_request(req, vcpu);
2273 
2274 		/*
2275 		 * Ensure the rest of the request is visible to kvm_check_request's
2276 		 * caller.  Paired with the smp_wmb in kvm_make_request.
2277 		 */
2278 		smp_mb__after_atomic();
2279 		return true;
2280 	} else {
2281 		return false;
2282 	}
2283 }
2284 
2285 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2286 extern bool enable_virt_at_load;
2287 extern bool kvm_rebooting;
2288 #endif
2289 
2290 extern unsigned int halt_poll_ns;
2291 extern unsigned int halt_poll_ns_grow;
2292 extern unsigned int halt_poll_ns_grow_start;
2293 extern unsigned int halt_poll_ns_shrink;
2294 
2295 struct kvm_device {
2296 	const struct kvm_device_ops *ops;
2297 	struct kvm *kvm;
2298 	void *private;
2299 	struct list_head vm_node;
2300 };
2301 
2302 /* create, destroy, and name are mandatory */
2303 struct kvm_device_ops {
2304 	const char *name;
2305 
2306 	/*
2307 	 * create is called holding kvm->lock and any operations not suitable
2308 	 * to do while holding the lock should be deferred to init (see
2309 	 * below).
2310 	 */
2311 	int (*create)(struct kvm_device *dev, u32 type);
2312 
2313 	/*
2314 	 * init is called after create if create is successful and is called
2315 	 * outside of holding kvm->lock.
2316 	 */
2317 	void (*init)(struct kvm_device *dev);
2318 
2319 	/*
2320 	 * Destroy is responsible for freeing dev.
2321 	 *
2322 	 * Destroy may be called before or after destructors are called
2323 	 * on emulated I/O regions, depending on whether a reference is
2324 	 * held by a vcpu or other kvm component that gets destroyed
2325 	 * after the emulated I/O.
2326 	 */
2327 	void (*destroy)(struct kvm_device *dev);
2328 
2329 	/*
2330 	 * Release is an alternative method to free the device. It is
2331 	 * called when the device file descriptor is closed. Once
2332 	 * release is called, the destroy method will not be called
2333 	 * anymore as the device is removed from the device list of
2334 	 * the VM. kvm->lock is held.
2335 	 */
2336 	void (*release)(struct kvm_device *dev);
2337 
2338 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2339 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2340 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2341 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2342 		      unsigned long arg);
2343 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2344 };
2345 
2346 struct kvm_device *kvm_device_from_filp(struct file *filp);
2347 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2348 void kvm_unregister_device_ops(u32 type);
2349 
2350 extern struct kvm_device_ops kvm_mpic_ops;
2351 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2352 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2353 
2354 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2355 
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2356 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2357 {
2358 	vcpu->spin_loop.in_spin_loop = val;
2359 }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2360 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2361 {
2362 	vcpu->spin_loop.dy_eligible = val;
2363 }
2364 
2365 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2366 
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2367 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2368 {
2369 }
2370 
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2371 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2372 {
2373 }
2374 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2375 
kvm_is_visible_memslot(struct kvm_memory_slot * memslot)2376 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2377 {
2378 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2379 		!(memslot->flags & KVM_MEMSLOT_INVALID));
2380 }
2381 
2382 struct kvm_vcpu *kvm_get_running_vcpu(void);
2383 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2384 
2385 #if IS_ENABLED(CONFIG_HAVE_KVM_IRQ_BYPASS)
2386 struct kvm_kernel_irqfd;
2387 
2388 bool kvm_arch_has_irq_bypass(void);
2389 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2390 			   struct irq_bypass_producer *);
2391 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2392 			   struct irq_bypass_producer *);
2393 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2394 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2395 void kvm_arch_update_irqfd_routing(struct kvm_kernel_irqfd *irqfd,
2396 				   struct kvm_kernel_irq_routing_entry *old,
2397 				   struct kvm_kernel_irq_routing_entry *new);
2398 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2399 
2400 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2401 /* If we wakeup during the poll time, was it a sucessful poll? */
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2402 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2403 {
2404 	return vcpu->valid_wakeup;
2405 }
2406 
2407 #else
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2408 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2409 {
2410 	return true;
2411 }
2412 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2413 
2414 #ifdef CONFIG_HAVE_KVM_NO_POLL
2415 /* Callback that tells if we must not poll */
2416 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2417 #else
kvm_arch_no_poll(struct kvm_vcpu * vcpu)2418 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2419 {
2420 	return false;
2421 }
2422 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2423 
2424 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2425 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2426 			       unsigned int ioctl, unsigned long arg);
2427 #else
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2428 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2429 					     unsigned int ioctl,
2430 					     unsigned long arg)
2431 {
2432 	return -ENOIOCTLCMD;
2433 }
2434 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2435 
2436 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2437 
2438 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2439 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2440 #else
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)2441 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2442 {
2443 	return 0;
2444 }
2445 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2446 
2447 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
kvm_handle_signal_exit(struct kvm_vcpu * vcpu)2448 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2449 {
2450 	vcpu->run->exit_reason = KVM_EXIT_INTR;
2451 	vcpu->stat.signal_exits++;
2452 }
2453 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2454 
2455 /*
2456  * If more than one page is being (un)accounted, @virt must be the address of
2457  * the first page of a block of pages what were allocated together (i.e
2458  * accounted together).
2459  *
2460  * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2461  * is thread-safe.
2462  */
kvm_account_pgtable_pages(void * virt,int nr)2463 static inline void kvm_account_pgtable_pages(void *virt, int nr)
2464 {
2465 	mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2466 }
2467 
2468 /*
2469  * This defines how many reserved entries we want to keep before we
2470  * kick the vcpu to the userspace to avoid dirty ring full.  This
2471  * value can be tuned to higher if e.g. PML is enabled on the host.
2472  */
2473 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2474 
2475 /* Max number of entries allowed for each kvm dirty ring */
2476 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2477 
kvm_prepare_memory_fault_exit(struct kvm_vcpu * vcpu,gpa_t gpa,gpa_t size,bool is_write,bool is_exec,bool is_private)2478 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2479 						 gpa_t gpa, gpa_t size,
2480 						 bool is_write, bool is_exec,
2481 						 bool is_private)
2482 {
2483 	vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2484 	vcpu->run->memory_fault.gpa = gpa;
2485 	vcpu->run->memory_fault.size = size;
2486 
2487 	/* RWX flags are not (yet) defined or communicated to userspace. */
2488 	vcpu->run->memory_fault.flags = 0;
2489 	if (is_private)
2490 		vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2491 }
2492 
2493 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
kvm_get_memory_attributes(struct kvm * kvm,gfn_t gfn)2494 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2495 {
2496 	return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2497 }
2498 
2499 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2500 				     unsigned long mask, unsigned long attrs);
2501 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2502 					struct kvm_gfn_range *range);
2503 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2504 					 struct kvm_gfn_range *range);
2505 
kvm_mem_is_private(struct kvm * kvm,gfn_t gfn)2506 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2507 {
2508 	return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) &&
2509 	       kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2510 }
2511 #else
kvm_mem_is_private(struct kvm * kvm,gfn_t gfn)2512 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2513 {
2514 	return false;
2515 }
2516 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2517 
2518 #ifdef CONFIG_KVM_PRIVATE_MEM
2519 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2520 		     gfn_t gfn, kvm_pfn_t *pfn, struct page **page,
2521 		     int *max_order);
2522 #else
kvm_gmem_get_pfn(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn,kvm_pfn_t * pfn,struct page ** page,int * max_order)2523 static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2524 				   struct kvm_memory_slot *slot, gfn_t gfn,
2525 				   kvm_pfn_t *pfn, struct page **page,
2526 				   int *max_order)
2527 {
2528 	KVM_BUG_ON(1, kvm);
2529 	return -EIO;
2530 }
2531 #endif /* CONFIG_KVM_PRIVATE_MEM */
2532 
2533 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
2534 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order);
2535 #endif
2536 
2537 #ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM
2538 /**
2539  * kvm_gmem_populate() - Populate/prepare a GPA range with guest data
2540  *
2541  * @kvm: KVM instance
2542  * @gfn: starting GFN to be populated
2543  * @src: userspace-provided buffer containing data to copy into GFN range
2544  *       (passed to @post_populate, and incremented on each iteration
2545  *       if not NULL)
2546  * @npages: number of pages to copy from userspace-buffer
2547  * @post_populate: callback to issue for each gmem page that backs the GPA
2548  *                 range
2549  * @opaque: opaque data to pass to @post_populate callback
2550  *
2551  * This is primarily intended for cases where a gmem-backed GPA range needs
2552  * to be initialized with userspace-provided data prior to being mapped into
2553  * the guest as a private page. This should be called with the slots->lock
2554  * held so that caller-enforced invariants regarding the expected memory
2555  * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES.
2556  *
2557  * Returns the number of pages that were populated.
2558  */
2559 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2560 				    void __user *src, int order, void *opaque);
2561 
2562 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages,
2563 		       kvm_gmem_populate_cb post_populate, void *opaque);
2564 #endif
2565 
2566 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
2567 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
2568 #endif
2569 
2570 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
2571 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
2572 				    struct kvm_pre_fault_memory *range);
2573 #endif
2574 
2575 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2576 int kvm_enable_virtualization(void);
2577 void kvm_disable_virtualization(void);
2578 #else
kvm_enable_virtualization(void)2579 static inline int kvm_enable_virtualization(void) { return 0; }
kvm_disable_virtualization(void)2580 static inline void kvm_disable_virtualization(void) { }
2581 #endif
2582 
2583 #endif
2584