1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 #include <linux/entry-virt.h> 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/sched/stat.h> 14 #include <linux/bug.h> 15 #include <linux/minmax.h> 16 #include <linux/mm.h> 17 #include <linux/mmu_notifier.h> 18 #include <linux/preempt.h> 19 #include <linux/msi.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/rcupdate.h> 23 #include <linux/ratelimit.h> 24 #include <linux/err.h> 25 #include <linux/irqflags.h> 26 #include <linux/context_tracking.h> 27 #include <linux/irqbypass.h> 28 #include <linux/rcuwait.h> 29 #include <linux/refcount.h> 30 #include <linux/nospec.h> 31 #include <linux/notifier.h> 32 #include <linux/ftrace.h> 33 #include <linux/hashtable.h> 34 #include <linux/instrumentation.h> 35 #include <linux/interval_tree.h> 36 #include <linux/rbtree.h> 37 #include <linux/xarray.h> 38 #include <asm/signal.h> 39 40 #include <linux/kvm.h> 41 #include <linux/kvm_para.h> 42 43 #include <linux/kvm_types.h> 44 45 #include <asm/kvm_host.h> 46 #include <linux/kvm_dirty_ring.h> 47 48 #ifndef KVM_MAX_VCPU_IDS 49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 50 #endif 51 52 /* 53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally 54 * used in kvm, other bits are visible for userspace which are defined in 55 * include/uapi/linux/kvm.h. 56 */ 57 #define KVM_MEMSLOT_INVALID (1UL << 16) 58 #define KVM_MEMSLOT_GMEM_ONLY (1UL << 17) 59 60 /* 61 * Bit 63 of the memslot generation number is an "update in-progress flag", 62 * e.g. is temporarily set for the duration of kvm_swap_active_memslots(). 63 * This flag effectively creates a unique generation number that is used to 64 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 65 * i.e. may (or may not) have come from the previous memslots generation. 66 * 67 * This is necessary because the actual memslots update is not atomic with 68 * respect to the generation number update. Updating the generation number 69 * first would allow a vCPU to cache a spte from the old memslots using the 70 * new generation number, and updating the generation number after switching 71 * to the new memslots would allow cache hits using the old generation number 72 * to reference the defunct memslots. 73 * 74 * This mechanism is used to prevent getting hits in KVM's caches while a 75 * memslot update is in-progress, and to prevent cache hits *after* updating 76 * the actual generation number against accesses that were inserted into the 77 * cache *before* the memslots were updated. 78 */ 79 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 80 81 /* Two fragments for cross MMIO pages. */ 82 #define KVM_MAX_MMIO_FRAGMENTS 2 83 84 #ifndef KVM_MAX_NR_ADDRESS_SPACES 85 #define KVM_MAX_NR_ADDRESS_SPACES 1 86 #endif 87 88 /* 89 * For the normal pfn, the highest 12 bits should be zero, 90 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 91 * mask bit 63 to indicate the noslot pfn. 92 */ 93 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 94 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 95 #define KVM_PFN_NOSLOT (0x1ULL << 63) 96 97 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 98 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 99 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 100 #define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3) 101 #define KVM_PFN_ERR_NEEDS_IO (KVM_PFN_ERR_MASK + 4) 102 103 /* 104 * error pfns indicate that the gfn is in slot but faild to 105 * translate it to pfn on host. 106 */ 107 static inline bool is_error_pfn(kvm_pfn_t pfn) 108 { 109 return !!(pfn & KVM_PFN_ERR_MASK); 110 } 111 112 /* 113 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted 114 * by a pending signal. Note, the signal may or may not be fatal. 115 */ 116 static inline bool is_sigpending_pfn(kvm_pfn_t pfn) 117 { 118 return pfn == KVM_PFN_ERR_SIGPENDING; 119 } 120 121 /* 122 * error_noslot pfns indicate that the gfn can not be 123 * translated to pfn - it is not in slot or failed to 124 * translate it to pfn. 125 */ 126 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 127 { 128 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 129 } 130 131 /* noslot pfn indicates that the gfn is not in slot. */ 132 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 133 { 134 return pfn == KVM_PFN_NOSLOT; 135 } 136 137 /* 138 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 139 * provide own defines and kvm_is_error_hva 140 */ 141 #ifndef KVM_HVA_ERR_BAD 142 143 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 144 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 145 146 static inline bool kvm_is_error_hva(unsigned long addr) 147 { 148 return addr >= PAGE_OFFSET; 149 } 150 151 #endif 152 153 static inline bool kvm_is_error_gpa(gpa_t gpa) 154 { 155 return gpa == INVALID_GPA; 156 } 157 158 #define KVM_REQUEST_MASK GENMASK(7,0) 159 #define KVM_REQUEST_NO_WAKEUP BIT(8) 160 #define KVM_REQUEST_WAIT BIT(9) 161 #define KVM_REQUEST_NO_ACTION BIT(10) 162 /* 163 * Architecture-independent vcpu->requests bit members 164 * Bits 3-7 are reserved for more arch-independent bits. 165 */ 166 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 167 #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 168 #define KVM_REQ_UNBLOCK 2 169 #define KVM_REQ_DIRTY_RING_SOFT_FULL 3 170 #define KVM_REQUEST_ARCH_BASE 8 171 172 /* 173 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to 174 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick" 175 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing 176 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous 177 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no 178 * guarantee the vCPU received an IPI and has actually exited guest mode. 179 */ 180 #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 181 182 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 183 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 184 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 185 }) 186 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 187 188 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 189 unsigned long *vcpu_bitmap); 190 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 191 192 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 193 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 194 #define KVM_PIT_IRQ_SOURCE_ID 2 195 196 extern struct mutex kvm_lock; 197 extern struct list_head vm_list; 198 199 struct kvm_io_range { 200 gpa_t addr; 201 int len; 202 struct kvm_io_device *dev; 203 }; 204 205 #define NR_IOBUS_DEVS 1000 206 207 struct kvm_io_bus { 208 int dev_count; 209 int ioeventfd_count; 210 struct rcu_head rcu; 211 struct kvm_io_range range[]; 212 }; 213 214 enum kvm_bus { 215 KVM_MMIO_BUS, 216 KVM_PIO_BUS, 217 KVM_VIRTIO_CCW_NOTIFY_BUS, 218 KVM_FAST_MMIO_BUS, 219 KVM_IOCSR_BUS, 220 KVM_NR_BUSES 221 }; 222 223 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 224 int len, const void *val); 225 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 226 gpa_t addr, int len, const void *val, long cookie); 227 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 228 int len, void *val); 229 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 230 int len, struct kvm_io_device *dev); 231 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 232 struct kvm_io_device *dev); 233 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 234 gpa_t addr); 235 236 #ifdef CONFIG_KVM_ASYNC_PF 237 struct kvm_async_pf { 238 struct work_struct work; 239 struct list_head link; 240 struct list_head queue; 241 struct kvm_vcpu *vcpu; 242 gpa_t cr2_or_gpa; 243 unsigned long addr; 244 struct kvm_arch_async_pf arch; 245 bool wakeup_all; 246 bool notpresent_injected; 247 }; 248 249 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 250 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 251 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 252 unsigned long hva, struct kvm_arch_async_pf *arch); 253 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 254 #endif 255 256 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 257 union kvm_mmu_notifier_arg { 258 unsigned long attributes; 259 }; 260 261 enum kvm_gfn_range_filter { 262 KVM_FILTER_SHARED = BIT(0), 263 KVM_FILTER_PRIVATE = BIT(1), 264 }; 265 266 struct kvm_gfn_range { 267 struct kvm_memory_slot *slot; 268 gfn_t start; 269 gfn_t end; 270 union kvm_mmu_notifier_arg arg; 271 enum kvm_gfn_range_filter attr_filter; 272 bool may_block; 273 bool lockless; 274 }; 275 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 276 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 277 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 278 #endif 279 280 enum { 281 OUTSIDE_GUEST_MODE, 282 IN_GUEST_MODE, 283 EXITING_GUEST_MODE, 284 READING_SHADOW_PAGE_TABLES, 285 }; 286 287 struct kvm_host_map { 288 /* 289 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 290 * a 'struct page' for it. When using mem= kernel parameter some memory 291 * can be used as guest memory but they are not managed by host 292 * kernel). 293 */ 294 struct page *pinned_page; 295 struct page *page; 296 void *hva; 297 kvm_pfn_t pfn; 298 kvm_pfn_t gfn; 299 bool writable; 300 }; 301 302 /* 303 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 304 * directly to check for that. 305 */ 306 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 307 { 308 return !!map->hva; 309 } 310 311 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 312 { 313 return single_task_running() && !need_resched() && ktime_before(cur, stop); 314 } 315 316 /* 317 * Sometimes a large or cross-page mmio needs to be broken up into separate 318 * exits for userspace servicing. 319 */ 320 struct kvm_mmio_fragment { 321 gpa_t gpa; 322 void *data; 323 unsigned len; 324 }; 325 326 struct kvm_vcpu { 327 struct kvm *kvm; 328 #ifdef CONFIG_PREEMPT_NOTIFIERS 329 struct preempt_notifier preempt_notifier; 330 #endif 331 int cpu; 332 int vcpu_id; /* id given by userspace at creation */ 333 int vcpu_idx; /* index into kvm->vcpu_array */ 334 int ____srcu_idx; /* Don't use this directly. You've been warned. */ 335 #ifdef CONFIG_PROVE_RCU 336 int srcu_depth; 337 #endif 338 int mode; 339 u64 requests; 340 unsigned long guest_debug; 341 342 struct mutex mutex; 343 struct kvm_run *run; 344 345 #ifndef __KVM_HAVE_ARCH_WQP 346 struct rcuwait wait; 347 #endif 348 struct pid *pid; 349 rwlock_t pid_lock; 350 int sigset_active; 351 sigset_t sigset; 352 unsigned int halt_poll_ns; 353 bool valid_wakeup; 354 355 #ifdef CONFIG_HAS_IOMEM 356 int mmio_needed; 357 int mmio_read_completed; 358 int mmio_is_write; 359 int mmio_cur_fragment; 360 int mmio_nr_fragments; 361 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 362 #endif 363 364 #ifdef CONFIG_KVM_ASYNC_PF 365 struct { 366 u32 queued; 367 struct list_head queue; 368 struct list_head done; 369 spinlock_t lock; 370 } async_pf; 371 #endif 372 373 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 374 /* 375 * Cpu relax intercept or pause loop exit optimization 376 * in_spin_loop: set when a vcpu does a pause loop exit 377 * or cpu relax intercepted. 378 * dy_eligible: indicates whether vcpu is eligible for directed yield. 379 */ 380 struct { 381 bool in_spin_loop; 382 bool dy_eligible; 383 } spin_loop; 384 #endif 385 bool wants_to_run; 386 bool preempted; 387 bool ready; 388 bool scheduled_out; 389 struct kvm_vcpu_arch arch; 390 struct kvm_vcpu_stat stat; 391 char stats_id[KVM_STATS_NAME_SIZE]; 392 struct kvm_dirty_ring dirty_ring; 393 394 /* 395 * The most recently used memslot by this vCPU and the slots generation 396 * for which it is valid. 397 * No wraparound protection is needed since generations won't overflow in 398 * thousands of years, even assuming 1M memslot operations per second. 399 */ 400 struct kvm_memory_slot *last_used_slot; 401 u64 last_used_slot_gen; 402 }; 403 404 /* 405 * Start accounting time towards a guest. 406 * Must be called before entering guest context. 407 */ 408 static __always_inline void guest_timing_enter_irqoff(void) 409 { 410 /* 411 * This is running in ioctl context so its safe to assume that it's the 412 * stime pending cputime to flush. 413 */ 414 instrumentation_begin(); 415 vtime_account_guest_enter(); 416 instrumentation_end(); 417 } 418 419 /* 420 * Enter guest context and enter an RCU extended quiescent state. 421 * 422 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 423 * unsafe to use any code which may directly or indirectly use RCU, tracing 424 * (including IRQ flag tracing), or lockdep. All code in this period must be 425 * non-instrumentable. 426 */ 427 static __always_inline void guest_context_enter_irqoff(void) 428 { 429 /* 430 * KVM does not hold any references to rcu protected data when it 431 * switches CPU into a guest mode. In fact switching to a guest mode 432 * is very similar to exiting to userspace from rcu point of view. In 433 * addition CPU may stay in a guest mode for quite a long time (up to 434 * one time slice). Lets treat guest mode as quiescent state, just like 435 * we do with user-mode execution. 436 */ 437 if (!context_tracking_guest_enter()) { 438 instrumentation_begin(); 439 rcu_virt_note_context_switch(); 440 instrumentation_end(); 441 } 442 } 443 444 /* 445 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and 446 * guest_state_enter_irqoff(). 447 */ 448 static __always_inline void guest_enter_irqoff(void) 449 { 450 guest_timing_enter_irqoff(); 451 guest_context_enter_irqoff(); 452 } 453 454 /** 455 * guest_state_enter_irqoff - Fixup state when entering a guest 456 * 457 * Entry to a guest will enable interrupts, but the kernel state is interrupts 458 * disabled when this is invoked. Also tell RCU about it. 459 * 460 * 1) Trace interrupts on state 461 * 2) Invoke context tracking if enabled to adjust RCU state 462 * 3) Tell lockdep that interrupts are enabled 463 * 464 * Invoked from architecture specific code before entering a guest. 465 * Must be called with interrupts disabled and the caller must be 466 * non-instrumentable. 467 * The caller has to invoke guest_timing_enter_irqoff() before this. 468 * 469 * Note: this is analogous to exit_to_user_mode(). 470 */ 471 static __always_inline void guest_state_enter_irqoff(void) 472 { 473 instrumentation_begin(); 474 trace_hardirqs_on_prepare(); 475 lockdep_hardirqs_on_prepare(); 476 instrumentation_end(); 477 478 guest_context_enter_irqoff(); 479 lockdep_hardirqs_on(CALLER_ADDR0); 480 } 481 482 /* 483 * Exit guest context and exit an RCU extended quiescent state. 484 * 485 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 486 * unsafe to use any code which may directly or indirectly use RCU, tracing 487 * (including IRQ flag tracing), or lockdep. All code in this period must be 488 * non-instrumentable. 489 */ 490 static __always_inline void guest_context_exit_irqoff(void) 491 { 492 /* 493 * Guest mode is treated as a quiescent state, see 494 * guest_context_enter_irqoff() for more details. 495 */ 496 if (!context_tracking_guest_exit()) { 497 instrumentation_begin(); 498 rcu_virt_note_context_switch(); 499 instrumentation_end(); 500 } 501 } 502 503 /* 504 * Stop accounting time towards a guest. 505 * Must be called after exiting guest context. 506 */ 507 static __always_inline void guest_timing_exit_irqoff(void) 508 { 509 instrumentation_begin(); 510 /* Flush the guest cputime we spent on the guest */ 511 vtime_account_guest_exit(); 512 instrumentation_end(); 513 } 514 515 /* 516 * Deprecated. Architectures should move to guest_state_exit_irqoff() and 517 * guest_timing_exit_irqoff(). 518 */ 519 static __always_inline void guest_exit_irqoff(void) 520 { 521 guest_context_exit_irqoff(); 522 guest_timing_exit_irqoff(); 523 } 524 525 static inline void guest_exit(void) 526 { 527 unsigned long flags; 528 529 local_irq_save(flags); 530 guest_exit_irqoff(); 531 local_irq_restore(flags); 532 } 533 534 /** 535 * guest_state_exit_irqoff - Establish state when returning from guest mode 536 * 537 * Entry from a guest disables interrupts, but guest mode is traced as 538 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle. 539 * 540 * 1) Tell lockdep that interrupts are disabled 541 * 2) Invoke context tracking if enabled to reactivate RCU 542 * 3) Trace interrupts off state 543 * 544 * Invoked from architecture specific code after exiting a guest. 545 * Must be invoked with interrupts disabled and the caller must be 546 * non-instrumentable. 547 * The caller has to invoke guest_timing_exit_irqoff() after this. 548 * 549 * Note: this is analogous to enter_from_user_mode(). 550 */ 551 static __always_inline void guest_state_exit_irqoff(void) 552 { 553 lockdep_hardirqs_off(CALLER_ADDR0); 554 guest_context_exit_irqoff(); 555 556 instrumentation_begin(); 557 trace_hardirqs_off_finish(); 558 instrumentation_end(); 559 } 560 561 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 562 { 563 /* 564 * The memory barrier ensures a previous write to vcpu->requests cannot 565 * be reordered with the read of vcpu->mode. It pairs with the general 566 * memory barrier following the write of vcpu->mode in VCPU RUN. 567 */ 568 smp_mb__before_atomic(); 569 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 570 } 571 572 /* 573 * Some of the bitops functions do not support too long bitmaps. 574 * This number must be determined not to exceed such limits. 575 */ 576 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 577 578 /* 579 * Since at idle each memslot belongs to two memslot sets it has to contain 580 * two embedded nodes for each data structure that it forms a part of. 581 * 582 * Two memslot sets (one active and one inactive) are necessary so the VM 583 * continues to run on one memslot set while the other is being modified. 584 * 585 * These two memslot sets normally point to the same set of memslots. 586 * They can, however, be desynchronized when performing a memslot management 587 * operation by replacing the memslot to be modified by its copy. 588 * After the operation is complete, both memslot sets once again point to 589 * the same, common set of memslot data. 590 * 591 * The memslots themselves are independent of each other so they can be 592 * individually added or deleted. 593 */ 594 struct kvm_memory_slot { 595 struct hlist_node id_node[2]; 596 struct interval_tree_node hva_node[2]; 597 struct rb_node gfn_node[2]; 598 gfn_t base_gfn; 599 unsigned long npages; 600 unsigned long *dirty_bitmap; 601 struct kvm_arch_memory_slot arch; 602 unsigned long userspace_addr; 603 u32 flags; 604 short id; 605 u16 as_id; 606 607 #ifdef CONFIG_KVM_GUEST_MEMFD 608 struct { 609 /* 610 * Writes protected by kvm->slots_lock. Acquiring a 611 * reference via kvm_gmem_get_file() is protected by 612 * either kvm->slots_lock or kvm->srcu. 613 */ 614 struct file *file; 615 pgoff_t pgoff; 616 } gmem; 617 #endif 618 }; 619 620 static inline bool kvm_slot_has_gmem(const struct kvm_memory_slot *slot) 621 { 622 return slot && (slot->flags & KVM_MEM_GUEST_MEMFD); 623 } 624 625 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) 626 { 627 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 628 } 629 630 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 631 { 632 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 633 } 634 635 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 636 { 637 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 638 639 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 640 } 641 642 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS 643 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 644 #endif 645 646 struct kvm_s390_adapter_int { 647 u64 ind_addr; 648 u64 ind_gaddr; 649 u64 summary_addr; 650 u64 summary_gaddr; 651 u64 ind_offset; 652 u32 summary_offset; 653 u32 adapter_id; 654 }; 655 656 struct kvm_hv_sint { 657 u32 vcpu; 658 u32 sint; 659 }; 660 661 struct kvm_xen_evtchn { 662 u32 port; 663 u32 vcpu_id; 664 int vcpu_idx; 665 u32 priority; 666 }; 667 668 struct kvm_kernel_irq_routing_entry { 669 u32 gsi; 670 u32 type; 671 int (*set)(struct kvm_kernel_irq_routing_entry *e, 672 struct kvm *kvm, int irq_source_id, int level, 673 bool line_status); 674 union { 675 struct { 676 unsigned irqchip; 677 unsigned pin; 678 } irqchip; 679 struct { 680 u32 address_lo; 681 u32 address_hi; 682 u32 data; 683 u32 flags; 684 u32 devid; 685 } msi; 686 struct kvm_s390_adapter_int adapter; 687 struct kvm_hv_sint hv_sint; 688 struct kvm_xen_evtchn xen_evtchn; 689 }; 690 struct hlist_node link; 691 }; 692 693 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 694 struct kvm_irq_routing_table { 695 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 696 u32 nr_rt_entries; 697 /* 698 * Array indexed by gsi. Each entry contains list of irq chips 699 * the gsi is connected to. 700 */ 701 struct hlist_head map[] __counted_by(nr_rt_entries); 702 }; 703 #endif 704 705 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm); 706 707 #ifndef KVM_INTERNAL_MEM_SLOTS 708 #define KVM_INTERNAL_MEM_SLOTS 0 709 #endif 710 711 #define KVM_MEM_SLOTS_NUM SHRT_MAX 712 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS) 713 714 #if KVM_MAX_NR_ADDRESS_SPACES == 1 715 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm) 716 { 717 return KVM_MAX_NR_ADDRESS_SPACES; 718 } 719 720 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 721 { 722 return 0; 723 } 724 #endif 725 726 #ifndef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 727 static inline bool kvm_arch_has_private_mem(struct kvm *kvm) 728 { 729 return false; 730 } 731 #endif 732 733 #ifdef CONFIG_KVM_GUEST_MEMFD 734 bool kvm_arch_supports_gmem_init_shared(struct kvm *kvm); 735 736 static inline u64 kvm_gmem_get_supported_flags(struct kvm *kvm) 737 { 738 u64 flags = GUEST_MEMFD_FLAG_MMAP; 739 740 if (!kvm || kvm_arch_supports_gmem_init_shared(kvm)) 741 flags |= GUEST_MEMFD_FLAG_INIT_SHARED; 742 743 return flags; 744 } 745 #endif 746 747 #ifndef kvm_arch_has_readonly_mem 748 static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm) 749 { 750 return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM); 751 } 752 #endif 753 754 struct kvm_memslots { 755 u64 generation; 756 atomic_long_t last_used_slot; 757 struct rb_root_cached hva_tree; 758 struct rb_root gfn_tree; 759 /* 760 * The mapping table from slot id to memslot. 761 * 762 * 7-bit bucket count matches the size of the old id to index array for 763 * 512 slots, while giving good performance with this slot count. 764 * Higher bucket counts bring only small performance improvements but 765 * always result in higher memory usage (even for lower memslot counts). 766 */ 767 DECLARE_HASHTABLE(id_hash, 7); 768 int node_idx; 769 }; 770 771 struct kvm { 772 #ifdef KVM_HAVE_MMU_RWLOCK 773 rwlock_t mmu_lock; 774 #else 775 spinlock_t mmu_lock; 776 #endif /* KVM_HAVE_MMU_RWLOCK */ 777 778 struct mutex slots_lock; 779 780 /* 781 * Protects the arch-specific fields of struct kvm_memory_slots in 782 * use by the VM. To be used under the slots_lock (above) or in a 783 * kvm->srcu critical section where acquiring the slots_lock would 784 * lead to deadlock with the synchronize_srcu in 785 * kvm_swap_active_memslots(). 786 */ 787 struct mutex slots_arch_lock; 788 struct mm_struct *mm; /* userspace tied to this vm */ 789 unsigned long nr_memslot_pages; 790 /* The two memslot sets - active and inactive (per address space) */ 791 struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2]; 792 /* The current active memslot set for each address space */ 793 struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES]; 794 struct xarray vcpu_array; 795 /* 796 * Protected by slots_lock, but can be read outside if an 797 * incorrect answer is acceptable. 798 */ 799 atomic_t nr_memslots_dirty_logging; 800 801 /* Used to wait for completion of MMU notifiers. */ 802 spinlock_t mn_invalidate_lock; 803 unsigned long mn_active_invalidate_count; 804 struct rcuwait mn_memslots_update_rcuwait; 805 806 /* For management / invalidation of gfn_to_pfn_caches */ 807 spinlock_t gpc_lock; 808 struct list_head gpc_list; 809 810 /* 811 * created_vcpus is protected by kvm->lock, and is incremented 812 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 813 * incremented after storing the kvm_vcpu pointer in vcpus, 814 * and is accessed atomically. 815 */ 816 atomic_t online_vcpus; 817 int max_vcpus; 818 int created_vcpus; 819 int last_boosted_vcpu; 820 struct list_head vm_list; 821 struct mutex lock; 822 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 823 #ifdef CONFIG_HAVE_KVM_IRQCHIP 824 struct { 825 spinlock_t lock; 826 struct list_head items; 827 /* resampler_list update side is protected by resampler_lock. */ 828 struct list_head resampler_list; 829 struct mutex resampler_lock; 830 } irqfds; 831 #endif 832 struct list_head ioeventfds; 833 struct kvm_vm_stat stat; 834 struct kvm_arch arch; 835 refcount_t users_count; 836 #ifdef CONFIG_KVM_MMIO 837 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 838 spinlock_t ring_lock; 839 struct list_head coalesced_zones; 840 #endif 841 842 struct mutex irq_lock; 843 #ifdef CONFIG_HAVE_KVM_IRQCHIP 844 /* 845 * Update side is protected by irq_lock. 846 */ 847 struct kvm_irq_routing_table __rcu *irq_routing; 848 849 struct hlist_head irq_ack_notifier_list; 850 #endif 851 852 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 853 struct mmu_notifier mmu_notifier; 854 unsigned long mmu_invalidate_seq; 855 long mmu_invalidate_in_progress; 856 gfn_t mmu_invalidate_range_start; 857 gfn_t mmu_invalidate_range_end; 858 #endif 859 struct list_head devices; 860 u64 manual_dirty_log_protect; 861 struct dentry *debugfs_dentry; 862 struct kvm_stat_data **debugfs_stat_data; 863 struct srcu_struct srcu; 864 struct srcu_struct irq_srcu; 865 pid_t userspace_pid; 866 bool override_halt_poll_ns; 867 unsigned int max_halt_poll_ns; 868 u32 dirty_ring_size; 869 bool dirty_ring_with_bitmap; 870 bool vm_bugged; 871 bool vm_dead; 872 873 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 874 struct notifier_block pm_notifier; 875 #endif 876 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 877 /* Protected by slots_lock (for writes) and RCU (for reads) */ 878 struct xarray mem_attr_array; 879 #endif 880 char stats_id[KVM_STATS_NAME_SIZE]; 881 }; 882 883 #define kvm_err(fmt, ...) \ 884 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 885 #define kvm_info(fmt, ...) \ 886 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 887 #define kvm_debug(fmt, ...) \ 888 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 889 #define kvm_debug_ratelimited(fmt, ...) \ 890 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 891 ## __VA_ARGS__) 892 #define kvm_pr_unimpl(fmt, ...) \ 893 pr_err_ratelimited("kvm [%i]: " fmt, \ 894 task_tgid_nr(current), ## __VA_ARGS__) 895 896 /* The guest did something we don't support. */ 897 #define vcpu_unimpl(vcpu, fmt, ...) \ 898 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 899 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 900 901 #define vcpu_debug(vcpu, fmt, ...) \ 902 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 903 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 904 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 905 ## __VA_ARGS__) 906 #define vcpu_err(vcpu, fmt, ...) \ 907 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 908 909 static inline void kvm_vm_dead(struct kvm *kvm) 910 { 911 kvm->vm_dead = true; 912 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 913 } 914 915 static inline void kvm_vm_bugged(struct kvm *kvm) 916 { 917 kvm->vm_bugged = true; 918 kvm_vm_dead(kvm); 919 } 920 921 922 #define KVM_BUG(cond, kvm, fmt...) \ 923 ({ \ 924 bool __ret = !!(cond); \ 925 \ 926 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 927 kvm_vm_bugged(kvm); \ 928 unlikely(__ret); \ 929 }) 930 931 #define KVM_BUG_ON(cond, kvm) \ 932 ({ \ 933 bool __ret = !!(cond); \ 934 \ 935 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 936 kvm_vm_bugged(kvm); \ 937 unlikely(__ret); \ 938 }) 939 940 /* 941 * Note, "data corruption" refers to corruption of host kernel data structures, 942 * not guest data. Guest data corruption, suspected or confirmed, that is tied 943 * and contained to a single VM should *never* BUG() and potentially panic the 944 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure 945 * is corrupted and that corruption can have a cascading effect to other parts 946 * of the hosts and/or to other VMs. 947 */ 948 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \ 949 ({ \ 950 bool __ret = !!(cond); \ 951 \ 952 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \ 953 BUG_ON(__ret); \ 954 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 955 kvm_vm_bugged(kvm); \ 956 unlikely(__ret); \ 957 }) 958 959 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu) 960 { 961 #ifdef CONFIG_PROVE_RCU 962 WARN_ONCE(vcpu->srcu_depth++, 963 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1); 964 #endif 965 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 966 } 967 968 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu) 969 { 970 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx); 971 972 #ifdef CONFIG_PROVE_RCU 973 WARN_ONCE(--vcpu->srcu_depth, 974 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth); 975 #endif 976 } 977 978 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 979 { 980 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 981 } 982 983 /* 984 * Get a bus reference under the update-side lock. No long-term SRCU reader 985 * references are permitted, to avoid stale reads vs concurrent IO 986 * registrations. 987 */ 988 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 989 { 990 return rcu_dereference_protected(kvm->buses[idx], 991 lockdep_is_held(&kvm->slots_lock)); 992 } 993 994 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 995 { 996 int num_vcpus = atomic_read(&kvm->online_vcpus); 997 998 /* 999 * Explicitly verify the target vCPU is online, as the anti-speculation 1000 * logic only limits the CPU's ability to speculate, e.g. given a "bad" 1001 * index, clamping the index to 0 would return vCPU0, not NULL. 1002 */ 1003 if (i >= num_vcpus) 1004 return NULL; 1005 1006 i = array_index_nospec(i, num_vcpus); 1007 1008 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 1009 smp_rmb(); 1010 return xa_load(&kvm->vcpu_array, i); 1011 } 1012 1013 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 1014 if (atomic_read(&kvm->online_vcpus)) \ 1015 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ 1016 (atomic_read(&kvm->online_vcpus) - 1)) 1017 1018 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 1019 { 1020 struct kvm_vcpu *vcpu = NULL; 1021 unsigned long i; 1022 1023 if (id < 0) 1024 return NULL; 1025 if (id < KVM_MAX_VCPUS) 1026 vcpu = kvm_get_vcpu(kvm, id); 1027 if (vcpu && vcpu->vcpu_id == id) 1028 return vcpu; 1029 kvm_for_each_vcpu(i, vcpu, kvm) 1030 if (vcpu->vcpu_id == id) 1031 return vcpu; 1032 return NULL; 1033 } 1034 1035 void kvm_destroy_vcpus(struct kvm *kvm); 1036 1037 int kvm_trylock_all_vcpus(struct kvm *kvm); 1038 int kvm_lock_all_vcpus(struct kvm *kvm); 1039 void kvm_unlock_all_vcpus(struct kvm *kvm); 1040 1041 void vcpu_load(struct kvm_vcpu *vcpu); 1042 void vcpu_put(struct kvm_vcpu *vcpu); 1043 1044 #ifdef CONFIG_KVM_IOAPIC 1045 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 1046 #else 1047 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 1048 { 1049 } 1050 #endif 1051 1052 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1053 int kvm_irqfd_init(void); 1054 void kvm_irqfd_exit(void); 1055 #else 1056 static inline int kvm_irqfd_init(void) 1057 { 1058 return 0; 1059 } 1060 1061 static inline void kvm_irqfd_exit(void) 1062 { 1063 } 1064 #endif 1065 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module); 1066 void kvm_exit(void); 1067 1068 void kvm_get_kvm(struct kvm *kvm); 1069 bool kvm_get_kvm_safe(struct kvm *kvm); 1070 void kvm_put_kvm(struct kvm *kvm); 1071 bool file_is_kvm(struct file *file); 1072 void kvm_put_kvm_no_destroy(struct kvm *kvm); 1073 1074 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 1075 { 1076 as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES); 1077 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 1078 lockdep_is_held(&kvm->slots_lock) || 1079 !refcount_read(&kvm->users_count)); 1080 } 1081 1082 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 1083 { 1084 return __kvm_memslots(kvm, 0); 1085 } 1086 1087 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 1088 { 1089 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 1090 1091 return __kvm_memslots(vcpu->kvm, as_id); 1092 } 1093 1094 static inline bool kvm_memslots_empty(struct kvm_memslots *slots) 1095 { 1096 return RB_EMPTY_ROOT(&slots->gfn_tree); 1097 } 1098 1099 bool kvm_are_all_memslots_empty(struct kvm *kvm); 1100 1101 #define kvm_for_each_memslot(memslot, bkt, slots) \ 1102 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ 1103 if (WARN_ON_ONCE(!memslot->npages)) { \ 1104 } else 1105 1106 static inline 1107 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 1108 { 1109 struct kvm_memory_slot *slot; 1110 int idx = slots->node_idx; 1111 1112 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { 1113 if (slot->id == id) 1114 return slot; 1115 } 1116 1117 return NULL; 1118 } 1119 1120 /* Iterator used for walking memslots that overlap a gfn range. */ 1121 struct kvm_memslot_iter { 1122 struct kvm_memslots *slots; 1123 struct rb_node *node; 1124 struct kvm_memory_slot *slot; 1125 }; 1126 1127 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) 1128 { 1129 iter->node = rb_next(iter->node); 1130 if (!iter->node) 1131 return; 1132 1133 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); 1134 } 1135 1136 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, 1137 struct kvm_memslots *slots, 1138 gfn_t start) 1139 { 1140 int idx = slots->node_idx; 1141 struct rb_node *tmp; 1142 struct kvm_memory_slot *slot; 1143 1144 iter->slots = slots; 1145 1146 /* 1147 * Find the so called "upper bound" of a key - the first node that has 1148 * its key strictly greater than the searched one (the start gfn in our case). 1149 */ 1150 iter->node = NULL; 1151 for (tmp = slots->gfn_tree.rb_node; tmp; ) { 1152 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); 1153 if (start < slot->base_gfn) { 1154 iter->node = tmp; 1155 tmp = tmp->rb_left; 1156 } else { 1157 tmp = tmp->rb_right; 1158 } 1159 } 1160 1161 /* 1162 * Find the slot with the lowest gfn that can possibly intersect with 1163 * the range, so we'll ideally have slot start <= range start 1164 */ 1165 if (iter->node) { 1166 /* 1167 * A NULL previous node means that the very first slot 1168 * already has a higher start gfn. 1169 * In this case slot start > range start. 1170 */ 1171 tmp = rb_prev(iter->node); 1172 if (tmp) 1173 iter->node = tmp; 1174 } else { 1175 /* a NULL node below means no slots */ 1176 iter->node = rb_last(&slots->gfn_tree); 1177 } 1178 1179 if (iter->node) { 1180 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); 1181 1182 /* 1183 * It is possible in the slot start < range start case that the 1184 * found slot ends before or at range start (slot end <= range start) 1185 * and so it does not overlap the requested range. 1186 * 1187 * In such non-overlapping case the next slot (if it exists) will 1188 * already have slot start > range start, otherwise the logic above 1189 * would have found it instead of the current slot. 1190 */ 1191 if (iter->slot->base_gfn + iter->slot->npages <= start) 1192 kvm_memslot_iter_next(iter); 1193 } 1194 } 1195 1196 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) 1197 { 1198 if (!iter->node) 1199 return false; 1200 1201 /* 1202 * If this slot starts beyond or at the end of the range so does 1203 * every next one 1204 */ 1205 return iter->slot->base_gfn < end; 1206 } 1207 1208 /* Iterate over each memslot at least partially intersecting [start, end) range */ 1209 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ 1210 for (kvm_memslot_iter_start(iter, slots, start); \ 1211 kvm_memslot_iter_is_valid(iter, end); \ 1212 kvm_memslot_iter_next(iter)) 1213 1214 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 1215 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 1216 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 1217 1218 /* 1219 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 1220 * - create a new memory slot 1221 * - delete an existing memory slot 1222 * - modify an existing memory slot 1223 * -- move it in the guest physical memory space 1224 * -- just change its flags 1225 * 1226 * Since flags can be changed by some of these operations, the following 1227 * differentiation is the best we can do for kvm_set_memory_region(): 1228 */ 1229 enum kvm_mr_change { 1230 KVM_MR_CREATE, 1231 KVM_MR_DELETE, 1232 KVM_MR_MOVE, 1233 KVM_MR_FLAGS_ONLY, 1234 }; 1235 1236 int kvm_set_internal_memslot(struct kvm *kvm, 1237 const struct kvm_userspace_memory_region2 *mem); 1238 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 1239 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 1240 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1241 const struct kvm_memory_slot *old, 1242 struct kvm_memory_slot *new, 1243 enum kvm_mr_change change); 1244 void kvm_arch_commit_memory_region(struct kvm *kvm, 1245 struct kvm_memory_slot *old, 1246 const struct kvm_memory_slot *new, 1247 enum kvm_mr_change change); 1248 /* flush all memory translations */ 1249 void kvm_arch_flush_shadow_all(struct kvm *kvm); 1250 /* flush memory translations pointing to 'slot' */ 1251 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1252 struct kvm_memory_slot *slot); 1253 1254 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn, 1255 struct page **pages, int nr_pages); 1256 1257 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write); 1258 static inline struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1259 { 1260 return __gfn_to_page(kvm, gfn, true); 1261 } 1262 1263 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 1264 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 1265 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 1266 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 1267 bool *writable); 1268 1269 static inline void kvm_release_page_unused(struct page *page) 1270 { 1271 if (!page) 1272 return; 1273 1274 put_page(page); 1275 } 1276 1277 void kvm_release_page_clean(struct page *page); 1278 void kvm_release_page_dirty(struct page *page); 1279 1280 static inline void kvm_release_faultin_page(struct kvm *kvm, struct page *page, 1281 bool unused, bool dirty) 1282 { 1283 lockdep_assert_once(lockdep_is_held(&kvm->mmu_lock) || unused); 1284 1285 if (!page) 1286 return; 1287 1288 /* 1289 * If the page that KVM got from the *primary MMU* is writable, and KVM 1290 * installed or reused a SPTE, mark the page/folio dirty. Note, this 1291 * may mark a folio dirty even if KVM created a read-only SPTE, e.g. if 1292 * the GFN is write-protected. Folios can't be safely marked dirty 1293 * outside of mmu_lock as doing so could race with writeback on the 1294 * folio. As a result, KVM can't mark folios dirty in the fast page 1295 * fault handler, and so KVM must (somewhat) speculatively mark the 1296 * folio dirty if KVM could locklessly make the SPTE writable. 1297 */ 1298 if (unused) 1299 kvm_release_page_unused(page); 1300 else if (dirty) 1301 kvm_release_page_dirty(page); 1302 else 1303 kvm_release_page_clean(page); 1304 } 1305 1306 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn, 1307 unsigned int foll, bool *writable, 1308 struct page **refcounted_page); 1309 1310 static inline kvm_pfn_t kvm_faultin_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, 1311 bool write, bool *writable, 1312 struct page **refcounted_page) 1313 { 1314 return __kvm_faultin_pfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, 1315 write ? FOLL_WRITE : 0, writable, refcounted_page); 1316 } 1317 1318 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1319 int len); 1320 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 1321 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1322 void *data, unsigned long len); 1323 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1324 void *data, unsigned int offset, 1325 unsigned long len); 1326 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1327 int offset, int len); 1328 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1329 unsigned long len); 1330 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1331 void *data, unsigned long len); 1332 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1333 void *data, unsigned int offset, 1334 unsigned long len); 1335 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1336 gpa_t gpa, unsigned long len); 1337 1338 #define __kvm_get_guest(kvm, gfn, offset, v) \ 1339 ({ \ 1340 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1341 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1342 int __ret = -EFAULT; \ 1343 \ 1344 if (!kvm_is_error_hva(__addr)) \ 1345 __ret = get_user(v, __uaddr); \ 1346 __ret; \ 1347 }) 1348 1349 #define kvm_get_guest(kvm, gpa, v) \ 1350 ({ \ 1351 gpa_t __gpa = gpa; \ 1352 struct kvm *__kvm = kvm; \ 1353 \ 1354 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1355 offset_in_page(__gpa), v); \ 1356 }) 1357 1358 #define __kvm_put_guest(kvm, gfn, offset, v) \ 1359 ({ \ 1360 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1361 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1362 int __ret = -EFAULT; \ 1363 \ 1364 if (!kvm_is_error_hva(__addr)) \ 1365 __ret = put_user(v, __uaddr); \ 1366 if (!__ret) \ 1367 mark_page_dirty(kvm, gfn); \ 1368 __ret; \ 1369 }) 1370 1371 #define kvm_put_guest(kvm, gpa, v) \ 1372 ({ \ 1373 gpa_t __gpa = gpa; \ 1374 struct kvm *__kvm = kvm; \ 1375 \ 1376 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1377 offset_in_page(__gpa), v); \ 1378 }) 1379 1380 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 1381 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 1382 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1383 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 1384 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); 1385 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 1386 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 1387 1388 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map, 1389 bool writable); 1390 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map); 1391 1392 static inline int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, 1393 struct kvm_host_map *map) 1394 { 1395 return __kvm_vcpu_map(vcpu, gpa, map, true); 1396 } 1397 1398 static inline int kvm_vcpu_map_readonly(struct kvm_vcpu *vcpu, gpa_t gpa, 1399 struct kvm_host_map *map) 1400 { 1401 return __kvm_vcpu_map(vcpu, gpa, map, false); 1402 } 1403 1404 static inline void kvm_vcpu_map_mark_dirty(struct kvm_vcpu *vcpu, 1405 struct kvm_host_map *map) 1406 { 1407 if (kvm_vcpu_mapped(map)) 1408 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 1409 } 1410 1411 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 1412 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 1413 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 1414 int len); 1415 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1416 unsigned long len); 1417 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1418 unsigned long len); 1419 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 1420 int offset, int len); 1421 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1422 unsigned long len); 1423 1424 /** 1425 * kvm_gpc_init - initialize gfn_to_pfn_cache. 1426 * 1427 * @gpc: struct gfn_to_pfn_cache object. 1428 * @kvm: pointer to kvm instance. 1429 * 1430 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the 1431 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by 1432 * the caller before init). 1433 */ 1434 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm); 1435 1436 /** 1437 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest 1438 * physical address. 1439 * 1440 * @gpc: struct gfn_to_pfn_cache object. 1441 * @gpa: guest physical address to map. 1442 * @len: sanity check; the range being access must fit a single page. 1443 * 1444 * @return: 0 for success. 1445 * -EINVAL for a mapping which would cross a page boundary. 1446 * -EFAULT for an untranslatable guest physical address. 1447 * 1448 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for 1449 * invalidations to be processed. Callers are required to use kvm_gpc_check() 1450 * to ensure that the cache is valid before accessing the target page. 1451 */ 1452 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len); 1453 1454 /** 1455 * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA. 1456 * 1457 * @gpc: struct gfn_to_pfn_cache object. 1458 * @hva: userspace virtual address to map. 1459 * @len: sanity check; the range being access must fit a single page. 1460 * 1461 * @return: 0 for success. 1462 * -EINVAL for a mapping which would cross a page boundary. 1463 * -EFAULT for an untranslatable guest physical address. 1464 * 1465 * The semantics of this function are the same as those of kvm_gpc_activate(). It 1466 * merely bypasses a layer of address translation. 1467 */ 1468 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len); 1469 1470 /** 1471 * kvm_gpc_check - check validity of a gfn_to_pfn_cache. 1472 * 1473 * @gpc: struct gfn_to_pfn_cache object. 1474 * @len: sanity check; the range being access must fit a single page. 1475 * 1476 * @return: %true if the cache is still valid and the address matches. 1477 * %false if the cache is not valid. 1478 * 1479 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock 1480 * while calling this function, and then continue to hold the lock until the 1481 * access is complete. 1482 * 1483 * Callers in IN_GUEST_MODE may do so without locking, although they should 1484 * still hold a read lock on kvm->scru for the memslot checks. 1485 */ 1486 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len); 1487 1488 /** 1489 * kvm_gpc_refresh - update a previously initialized cache. 1490 * 1491 * @gpc: struct gfn_to_pfn_cache object. 1492 * @len: sanity check; the range being access must fit a single page. 1493 * 1494 * @return: 0 for success. 1495 * -EINVAL for a mapping which would cross a page boundary. 1496 * -EFAULT for an untranslatable guest physical address. 1497 * 1498 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful 1499 * return from this function does not mean the page can be immediately 1500 * accessed because it may have raced with an invalidation. Callers must 1501 * still lock and check the cache status, as this function does not return 1502 * with the lock still held to permit access. 1503 */ 1504 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len); 1505 1506 /** 1507 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache. 1508 * 1509 * @gpc: struct gfn_to_pfn_cache object. 1510 * 1511 * This removes a cache from the VM's list to be processed on MMU notifier 1512 * invocation. 1513 */ 1514 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc); 1515 1516 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc) 1517 { 1518 return gpc->active && !kvm_is_error_gpa(gpc->gpa); 1519 } 1520 1521 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc) 1522 { 1523 return gpc->active && kvm_is_error_gpa(gpc->gpa); 1524 } 1525 1526 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 1527 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 1528 1529 void kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1530 bool kvm_vcpu_block(struct kvm_vcpu *vcpu); 1531 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 1532 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 1533 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 1534 1535 #ifndef CONFIG_S390 1536 void __kvm_vcpu_kick(struct kvm_vcpu *vcpu, bool wait); 1537 1538 static inline void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 1539 { 1540 __kvm_vcpu_kick(vcpu, false); 1541 } 1542 #endif 1543 1544 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 1545 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode); 1546 1547 void kvm_flush_remote_tlbs(struct kvm *kvm); 1548 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1549 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 1550 const struct kvm_memory_slot *memslot); 1551 1552 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 1553 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 1554 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min); 1555 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 1556 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 1557 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 1558 #endif 1559 1560 void kvm_mmu_invalidate_begin(struct kvm *kvm); 1561 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end); 1562 void kvm_mmu_invalidate_end(struct kvm *kvm); 1563 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 1564 1565 long kvm_arch_dev_ioctl(struct file *filp, 1566 unsigned int ioctl, unsigned long arg); 1567 long kvm_arch_vcpu_ioctl(struct file *filp, 1568 unsigned int ioctl, unsigned long arg); 1569 long kvm_arch_vcpu_unlocked_ioctl(struct file *filp, 1570 unsigned int ioctl, unsigned long arg); 1571 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1572 1573 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1574 1575 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1576 struct kvm_memory_slot *slot, 1577 gfn_t gfn_offset, 1578 unsigned long mask); 1579 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1580 1581 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1582 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1583 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1584 int *is_dirty, struct kvm_memory_slot **memslot); 1585 #endif 1586 1587 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1588 bool line_status); 1589 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1590 struct kvm_enable_cap *cap); 1591 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); 1592 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 1593 unsigned long arg); 1594 1595 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1596 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1597 1598 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1599 struct kvm_translation *tr); 1600 1601 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1602 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1603 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1604 struct kvm_sregs *sregs); 1605 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1606 struct kvm_sregs *sregs); 1607 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1608 struct kvm_mp_state *mp_state); 1609 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1610 struct kvm_mp_state *mp_state); 1611 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1612 struct kvm_guest_debug *dbg); 1613 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1614 1615 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1616 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1617 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1618 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1619 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1620 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1621 1622 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1623 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1624 #endif 1625 1626 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1627 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1628 #else 1629 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {} 1630 #endif 1631 1632 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 1633 /* 1634 * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under 1635 * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of 1636 * kvm_usage_count, i.e. at the beginning of the generic hardware enabling 1637 * sequence, and at the end of the generic hardware disabling sequence. 1638 */ 1639 void kvm_arch_enable_virtualization(void); 1640 void kvm_arch_disable_virtualization(void); 1641 /* 1642 * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to 1643 * do the actual twiddling of hardware bits. The hooks are called on all 1644 * online CPUs when KVM enables/disabled virtualization, and on a single CPU 1645 * when that CPU is onlined/offlined (including for Resume/Suspend). 1646 */ 1647 int kvm_arch_enable_virtualization_cpu(void); 1648 void kvm_arch_disable_virtualization_cpu(void); 1649 #endif 1650 bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu); 1651 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1652 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1653 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1654 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1655 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1656 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu); 1657 void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1658 void kvm_arch_create_vm_debugfs(struct kvm *kvm); 1659 1660 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 1661 /* 1662 * All architectures that want to use vzalloc currently also 1663 * need their own kvm_arch_alloc_vm implementation. 1664 */ 1665 static inline struct kvm *kvm_arch_alloc_vm(void) 1666 { 1667 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT); 1668 } 1669 #endif 1670 1671 static inline void __kvm_arch_free_vm(struct kvm *kvm) 1672 { 1673 kvfree(kvm); 1674 } 1675 1676 #ifndef __KVM_HAVE_ARCH_VM_FREE 1677 static inline void kvm_arch_free_vm(struct kvm *kvm) 1678 { 1679 __kvm_arch_free_vm(kvm); 1680 } 1681 #endif 1682 1683 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1684 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1685 { 1686 return -ENOTSUPP; 1687 } 1688 #else 1689 int kvm_arch_flush_remote_tlbs(struct kvm *kvm); 1690 #endif 1691 1692 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1693 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, 1694 gfn_t gfn, u64 nr_pages) 1695 { 1696 return -EOPNOTSUPP; 1697 } 1698 #else 1699 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1700 #endif 1701 1702 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1703 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1704 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1705 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1706 #else 1707 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1708 { 1709 } 1710 1711 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1712 { 1713 } 1714 1715 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1716 { 1717 return false; 1718 } 1719 #endif 1720 1721 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1722 { 1723 #ifdef __KVM_HAVE_ARCH_WQP 1724 return vcpu->arch.waitp; 1725 #else 1726 return &vcpu->wait; 1727 #endif 1728 } 1729 1730 /* 1731 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns 1732 * true if the vCPU was blocking and was awakened, false otherwise. 1733 */ 1734 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 1735 { 1736 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 1737 } 1738 1739 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) 1740 { 1741 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); 1742 } 1743 1744 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1745 /* 1746 * returns true if the virtual interrupt controller is initialized and 1747 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1748 * controller is dynamically instantiated and this is not always true. 1749 */ 1750 bool kvm_arch_intc_initialized(struct kvm *kvm); 1751 #else 1752 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1753 { 1754 return true; 1755 } 1756 #endif 1757 1758 #ifdef CONFIG_GUEST_PERF_EVENTS 1759 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); 1760 1761 void __kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void), 1762 void (*mediated_pmi_handler)(void)); 1763 1764 static inline void kvm_register_perf_callbacks(void) 1765 { 1766 __kvm_register_perf_callbacks(NULL, NULL); 1767 } 1768 1769 void kvm_unregister_perf_callbacks(void); 1770 #else 1771 static inline void kvm_register_perf_callbacks(void) {} 1772 static inline void kvm_unregister_perf_callbacks(void) {} 1773 #endif /* CONFIG_GUEST_PERF_EVENTS */ 1774 1775 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1776 void kvm_arch_destroy_vm(struct kvm *kvm); 1777 1778 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1779 1780 struct kvm_irq_ack_notifier { 1781 struct hlist_node link; 1782 unsigned gsi; 1783 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1784 }; 1785 1786 int kvm_irq_map_gsi(struct kvm *kvm, 1787 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1788 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1789 1790 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1791 bool line_status); 1792 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1793 int irq_source_id, int level, bool line_status); 1794 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1795 struct kvm *kvm, int irq_source_id, 1796 int level, bool line_status); 1797 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1798 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1799 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1800 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1801 struct kvm_irq_ack_notifier *kian); 1802 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1803 struct kvm_irq_ack_notifier *kian); 1804 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1805 1806 /* 1807 * Returns a pointer to the memslot if it contains gfn. 1808 * Otherwise returns NULL. 1809 */ 1810 static inline struct kvm_memory_slot * 1811 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1812 { 1813 if (!slot) 1814 return NULL; 1815 1816 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1817 return slot; 1818 else 1819 return NULL; 1820 } 1821 1822 /* 1823 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. 1824 * 1825 * With "approx" set returns the memslot also when the address falls 1826 * in a hole. In that case one of the memslots bordering the hole is 1827 * returned. 1828 */ 1829 static inline struct kvm_memory_slot * 1830 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1831 { 1832 struct kvm_memory_slot *slot; 1833 struct rb_node *node; 1834 int idx = slots->node_idx; 1835 1836 slot = NULL; 1837 for (node = slots->gfn_tree.rb_node; node; ) { 1838 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); 1839 if (gfn >= slot->base_gfn) { 1840 if (gfn < slot->base_gfn + slot->npages) 1841 return slot; 1842 node = node->rb_right; 1843 } else 1844 node = node->rb_left; 1845 } 1846 1847 return approx ? slot : NULL; 1848 } 1849 1850 static inline struct kvm_memory_slot * 1851 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1852 { 1853 struct kvm_memory_slot *slot; 1854 1855 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); 1856 slot = try_get_memslot(slot, gfn); 1857 if (slot) 1858 return slot; 1859 1860 slot = search_memslots(slots, gfn, approx); 1861 if (slot) { 1862 atomic_long_set(&slots->last_used_slot, (unsigned long)slot); 1863 return slot; 1864 } 1865 1866 return NULL; 1867 } 1868 1869 /* 1870 * __gfn_to_memslot() and its descendants are here to allow arch code to inline 1871 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline 1872 * because that would bloat other code too much. 1873 */ 1874 static inline struct kvm_memory_slot * 1875 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1876 { 1877 return ____gfn_to_memslot(slots, gfn, false); 1878 } 1879 1880 static inline unsigned long 1881 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1882 { 1883 /* 1884 * The index was checked originally in search_memslots. To avoid 1885 * that a malicious guest builds a Spectre gadget out of e.g. page 1886 * table walks, do not let the processor speculate loads outside 1887 * the guest's registered memslots. 1888 */ 1889 unsigned long offset = gfn - slot->base_gfn; 1890 offset = array_index_nospec(offset, slot->npages); 1891 return slot->userspace_addr + offset * PAGE_SIZE; 1892 } 1893 1894 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1895 { 1896 return gfn_to_memslot(kvm, gfn)->id; 1897 } 1898 1899 static inline gfn_t 1900 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1901 { 1902 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1903 1904 return slot->base_gfn + gfn_offset; 1905 } 1906 1907 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1908 { 1909 return (gpa_t)gfn << PAGE_SHIFT; 1910 } 1911 1912 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1913 { 1914 return (gfn_t)(gpa >> PAGE_SHIFT); 1915 } 1916 1917 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1918 { 1919 return (hpa_t)pfn << PAGE_SHIFT; 1920 } 1921 1922 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa) 1923 { 1924 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1925 1926 return !kvm_is_error_hva(hva); 1927 } 1928 1929 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc) 1930 { 1931 lockdep_assert_held(&gpc->lock); 1932 1933 if (!gpc->memslot) 1934 return; 1935 1936 mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa)); 1937 } 1938 1939 enum kvm_stat_kind { 1940 KVM_STAT_VM, 1941 KVM_STAT_VCPU, 1942 }; 1943 1944 struct kvm_stat_data { 1945 struct kvm *kvm; 1946 const struct _kvm_stats_desc *desc; 1947 enum kvm_stat_kind kind; 1948 }; 1949 1950 struct _kvm_stats_desc { 1951 struct kvm_stats_desc desc; 1952 char name[KVM_STATS_NAME_SIZE]; 1953 }; 1954 1955 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1956 .flags = type | unit | base | \ 1957 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1958 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1959 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1960 .exponent = exp, \ 1961 .size = sz, \ 1962 .bucket_size = bsz 1963 1964 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1965 { \ 1966 { \ 1967 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1968 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1969 }, \ 1970 .name = #stat, \ 1971 } 1972 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1973 { \ 1974 { \ 1975 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1976 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1977 }, \ 1978 .name = #stat, \ 1979 } 1980 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1981 { \ 1982 { \ 1983 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1984 .offset = offsetof(struct kvm_vm_stat, stat) \ 1985 }, \ 1986 .name = #stat, \ 1987 } 1988 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1989 { \ 1990 { \ 1991 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1992 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1993 }, \ 1994 .name = #stat, \ 1995 } 1996 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1997 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1998 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1999 2000 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 2001 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 2002 unit, base, exponent, 1, 0) 2003 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 2004 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 2005 unit, base, exponent, 1, 0) 2006 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 2007 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 2008 unit, base, exponent, 1, 0) 2009 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 2010 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 2011 unit, base, exponent, sz, bsz) 2012 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 2013 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 2014 unit, base, exponent, sz, 0) 2015 2016 /* Cumulative counter, read/write */ 2017 #define STATS_DESC_COUNTER(SCOPE, name) \ 2018 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 2019 KVM_STATS_BASE_POW10, 0) 2020 /* Instantaneous counter, read only */ 2021 #define STATS_DESC_ICOUNTER(SCOPE, name) \ 2022 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 2023 KVM_STATS_BASE_POW10, 0) 2024 /* Peak counter, read/write */ 2025 #define STATS_DESC_PCOUNTER(SCOPE, name) \ 2026 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 2027 KVM_STATS_BASE_POW10, 0) 2028 2029 /* Instantaneous boolean value, read only */ 2030 #define STATS_DESC_IBOOLEAN(SCOPE, name) \ 2031 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 2032 KVM_STATS_BASE_POW10, 0) 2033 /* Peak (sticky) boolean value, read/write */ 2034 #define STATS_DESC_PBOOLEAN(SCOPE, name) \ 2035 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 2036 KVM_STATS_BASE_POW10, 0) 2037 2038 /* Cumulative time in nanosecond */ 2039 #define STATS_DESC_TIME_NSEC(SCOPE, name) \ 2040 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2041 KVM_STATS_BASE_POW10, -9) 2042 /* Linear histogram for time in nanosecond */ 2043 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 2044 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2045 KVM_STATS_BASE_POW10, -9, sz, bsz) 2046 /* Logarithmic histogram for time in nanosecond */ 2047 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 2048 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2049 KVM_STATS_BASE_POW10, -9, sz) 2050 2051 #define KVM_GENERIC_VM_STATS() \ 2052 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 2053 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 2054 2055 #define KVM_GENERIC_VCPU_STATS() \ 2056 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 2057 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 2058 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 2059 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 2060 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 2061 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 2062 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 2063 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 2064 HALT_POLL_HIST_COUNT), \ 2065 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 2066 HALT_POLL_HIST_COUNT), \ 2067 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 2068 HALT_POLL_HIST_COUNT), \ 2069 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking) 2070 2071 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 2072 const struct _kvm_stats_desc *desc, 2073 void *stats, size_t size_stats, 2074 char __user *user_buffer, size_t size, loff_t *offset); 2075 2076 /** 2077 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 2078 * statistics data. 2079 * 2080 * @data: start address of the stats data 2081 * @size: the number of bucket of the stats data 2082 * @value: the new value used to update the linear histogram's bucket 2083 * @bucket_size: the size (width) of a bucket 2084 */ 2085 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 2086 u64 value, size_t bucket_size) 2087 { 2088 size_t index = div64_u64(value, bucket_size); 2089 2090 index = min(index, size - 1); 2091 ++data[index]; 2092 } 2093 2094 /** 2095 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 2096 * statistics data. 2097 * 2098 * @data: start address of the stats data 2099 * @size: the number of bucket of the stats data 2100 * @value: the new value used to update the logarithmic histogram's bucket 2101 */ 2102 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 2103 { 2104 size_t index = fls64(value); 2105 2106 index = min(index, size - 1); 2107 ++data[index]; 2108 } 2109 2110 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 2111 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 2112 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 2113 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 2114 2115 2116 extern const struct kvm_stats_header kvm_vm_stats_header; 2117 extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 2118 extern const struct kvm_stats_header kvm_vcpu_stats_header; 2119 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 2120 2121 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 2122 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq) 2123 { 2124 if (unlikely(kvm->mmu_invalidate_in_progress)) 2125 return 1; 2126 /* 2127 * Ensure the read of mmu_invalidate_in_progress happens before 2128 * the read of mmu_invalidate_seq. This interacts with the 2129 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure 2130 * that the caller either sees the old (non-zero) value of 2131 * mmu_invalidate_in_progress or the new (incremented) value of 2132 * mmu_invalidate_seq. 2133 * 2134 * PowerPC Book3s HV KVM calls this under a per-page lock rather 2135 * than under kvm->mmu_lock, for scalability, so can't rely on 2136 * kvm->mmu_lock to keep things ordered. 2137 */ 2138 smp_rmb(); 2139 if (kvm->mmu_invalidate_seq != mmu_seq) 2140 return 1; 2141 return 0; 2142 } 2143 2144 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm, 2145 unsigned long mmu_seq, 2146 gfn_t gfn) 2147 { 2148 lockdep_assert_held(&kvm->mmu_lock); 2149 /* 2150 * If mmu_invalidate_in_progress is non-zero, then the range maintained 2151 * by kvm_mmu_notifier_invalidate_range_start contains all addresses 2152 * that might be being invalidated. Note that it may include some false 2153 * positives, due to shortcuts when handing concurrent invalidations. 2154 */ 2155 if (unlikely(kvm->mmu_invalidate_in_progress)) { 2156 /* 2157 * Dropping mmu_lock after bumping mmu_invalidate_in_progress 2158 * but before updating the range is a KVM bug. 2159 */ 2160 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA || 2161 kvm->mmu_invalidate_range_end == INVALID_GPA)) 2162 return 1; 2163 2164 if (gfn >= kvm->mmu_invalidate_range_start && 2165 gfn < kvm->mmu_invalidate_range_end) 2166 return 1; 2167 } 2168 2169 if (kvm->mmu_invalidate_seq != mmu_seq) 2170 return 1; 2171 return 0; 2172 } 2173 2174 /* 2175 * This lockless version of the range-based retry check *must* be paired with a 2176 * call to the locked version after acquiring mmu_lock, i.e. this is safe to 2177 * use only as a pre-check to avoid contending mmu_lock. This version *will* 2178 * get false negatives and false positives. 2179 */ 2180 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm, 2181 unsigned long mmu_seq, 2182 gfn_t gfn) 2183 { 2184 /* 2185 * Use READ_ONCE() to ensure the in-progress flag and sequence counter 2186 * are always read from memory, e.g. so that checking for retry in a 2187 * loop won't result in an infinite retry loop. Don't force loads for 2188 * start+end, as the key to avoiding infinite retry loops is observing 2189 * the 1=>0 transition of in-progress, i.e. getting false negatives 2190 * due to stale start+end values is acceptable. 2191 */ 2192 if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) && 2193 gfn >= kvm->mmu_invalidate_range_start && 2194 gfn < kvm->mmu_invalidate_range_end) 2195 return true; 2196 2197 return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq; 2198 } 2199 #endif 2200 2201 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2202 2203 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 2204 2205 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 2206 int kvm_set_irq_routing(struct kvm *kvm, 2207 const struct kvm_irq_routing_entry *entries, 2208 unsigned nr, 2209 unsigned flags); 2210 int kvm_init_irq_routing(struct kvm *kvm); 2211 int kvm_set_routing_entry(struct kvm *kvm, 2212 struct kvm_kernel_irq_routing_entry *e, 2213 const struct kvm_irq_routing_entry *ue); 2214 void kvm_free_irq_routing(struct kvm *kvm); 2215 2216 #else 2217 2218 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 2219 2220 static inline int kvm_init_irq_routing(struct kvm *kvm) 2221 { 2222 return 0; 2223 } 2224 2225 #endif 2226 2227 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 2228 2229 void kvm_eventfd_init(struct kvm *kvm); 2230 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 2231 2232 #ifdef CONFIG_HAVE_KVM_IRQCHIP 2233 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 2234 void kvm_irqfd_release(struct kvm *kvm); 2235 bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2236 unsigned int irqchip, 2237 unsigned int pin); 2238 void kvm_irq_routing_update(struct kvm *); 2239 #else 2240 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 2241 { 2242 return -EINVAL; 2243 } 2244 2245 static inline void kvm_irqfd_release(struct kvm *kvm) {} 2246 2247 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2248 unsigned int irqchip, 2249 unsigned int pin) 2250 { 2251 return false; 2252 } 2253 #endif /* CONFIG_HAVE_KVM_IRQCHIP */ 2254 2255 void kvm_arch_irq_routing_update(struct kvm *kvm); 2256 2257 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu) 2258 { 2259 /* 2260 * Ensure the rest of the request is published to kvm_check_request's 2261 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 2262 */ 2263 smp_wmb(); 2264 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2265 } 2266 2267 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 2268 { 2269 /* 2270 * Request that don't require vCPU action should never be logged in 2271 * vcpu->requests. The vCPU won't clear the request, so it will stay 2272 * logged indefinitely and prevent the vCPU from entering the guest. 2273 */ 2274 BUILD_BUG_ON(!__builtin_constant_p(req) || 2275 (req & KVM_REQUEST_NO_ACTION)); 2276 2277 __kvm_make_request(req, vcpu); 2278 } 2279 2280 #ifndef CONFIG_S390 2281 static inline void kvm_make_request_and_kick(int req, struct kvm_vcpu *vcpu) 2282 { 2283 kvm_make_request(req, vcpu); 2284 __kvm_vcpu_kick(vcpu, req & KVM_REQUEST_WAIT); 2285 } 2286 #endif 2287 2288 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 2289 { 2290 return READ_ONCE(vcpu->requests); 2291 } 2292 2293 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 2294 { 2295 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2296 } 2297 2298 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 2299 { 2300 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2301 } 2302 2303 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 2304 { 2305 if (kvm_test_request(req, vcpu)) { 2306 kvm_clear_request(req, vcpu); 2307 2308 /* 2309 * Ensure the rest of the request is visible to kvm_check_request's 2310 * caller. Paired with the smp_wmb in kvm_make_request. 2311 */ 2312 smp_mb__after_atomic(); 2313 return true; 2314 } else { 2315 return false; 2316 } 2317 } 2318 2319 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 2320 extern bool enable_virt_at_load; 2321 extern bool kvm_rebooting; 2322 #endif 2323 2324 extern unsigned int halt_poll_ns; 2325 extern unsigned int halt_poll_ns_grow; 2326 extern unsigned int halt_poll_ns_grow_start; 2327 extern unsigned int halt_poll_ns_shrink; 2328 2329 struct kvm_device { 2330 const struct kvm_device_ops *ops; 2331 struct kvm *kvm; 2332 void *private; 2333 struct list_head vm_node; 2334 }; 2335 2336 /* create, destroy, and name are mandatory */ 2337 struct kvm_device_ops { 2338 const char *name; 2339 2340 /* 2341 * create is called holding kvm->lock and any operations not suitable 2342 * to do while holding the lock should be deferred to init (see 2343 * below). 2344 */ 2345 int (*create)(struct kvm_device *dev, u32 type); 2346 2347 /* 2348 * init is called after create if create is successful and is called 2349 * outside of holding kvm->lock. 2350 */ 2351 void (*init)(struct kvm_device *dev); 2352 2353 /* 2354 * Destroy is responsible for freeing dev. 2355 * 2356 * Destroy may be called before or after destructors are called 2357 * on emulated I/O regions, depending on whether a reference is 2358 * held by a vcpu or other kvm component that gets destroyed 2359 * after the emulated I/O. 2360 */ 2361 void (*destroy)(struct kvm_device *dev); 2362 2363 /* 2364 * Release is an alternative method to free the device. It is 2365 * called when the device file descriptor is closed. Once 2366 * release is called, the destroy method will not be called 2367 * anymore as the device is removed from the device list of 2368 * the VM. kvm->lock is held. 2369 */ 2370 void (*release)(struct kvm_device *dev); 2371 2372 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2373 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2374 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2375 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 2376 unsigned long arg); 2377 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 2378 }; 2379 2380 struct kvm_device *kvm_device_from_filp(struct file *filp); 2381 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 2382 void kvm_unregister_device_ops(u32 type); 2383 2384 extern struct kvm_device_ops kvm_mpic_ops; 2385 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 2386 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 2387 2388 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2389 2390 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2391 { 2392 vcpu->spin_loop.in_spin_loop = val; 2393 } 2394 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2395 { 2396 vcpu->spin_loop.dy_eligible = val; 2397 } 2398 2399 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2400 2401 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2402 { 2403 } 2404 2405 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2406 { 2407 } 2408 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2409 2410 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 2411 { 2412 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 2413 !(memslot->flags & KVM_MEMSLOT_INVALID)); 2414 } 2415 2416 struct kvm_vcpu *kvm_get_running_vcpu(void); 2417 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 2418 2419 #if IS_ENABLED(CONFIG_HAVE_KVM_IRQ_BYPASS) 2420 struct kvm_kernel_irqfd; 2421 2422 bool kvm_arch_has_irq_bypass(void); 2423 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 2424 struct irq_bypass_producer *); 2425 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 2426 struct irq_bypass_producer *); 2427 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 2428 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 2429 void kvm_arch_update_irqfd_routing(struct kvm_kernel_irqfd *irqfd, 2430 struct kvm_kernel_irq_routing_entry *old, 2431 struct kvm_kernel_irq_routing_entry *new); 2432 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 2433 2434 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 2435 /* If we wakeup during the poll time, was it a sucessful poll? */ 2436 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2437 { 2438 return vcpu->valid_wakeup; 2439 } 2440 2441 #else 2442 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2443 { 2444 return true; 2445 } 2446 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 2447 2448 #ifdef CONFIG_HAVE_KVM_NO_POLL 2449 /* Callback that tells if we must not poll */ 2450 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 2451 #else 2452 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 2453 { 2454 return false; 2455 } 2456 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 2457 2458 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm); 2459 2460 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 2461 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 2462 #else 2463 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 2464 { 2465 return 0; 2466 } 2467 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 2468 2469 #ifdef CONFIG_VIRT_XFER_TO_GUEST_WORK 2470 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 2471 { 2472 vcpu->run->exit_reason = KVM_EXIT_INTR; 2473 vcpu->stat.signal_exits++; 2474 } 2475 2476 static inline int kvm_xfer_to_guest_mode_handle_work(struct kvm_vcpu *vcpu) 2477 { 2478 int r = xfer_to_guest_mode_handle_work(); 2479 2480 if (r) { 2481 WARN_ON_ONCE(r != -EINTR); 2482 kvm_handle_signal_exit(vcpu); 2483 } 2484 return r; 2485 } 2486 #endif /* CONFIG_VIRT_XFER_TO_GUEST_WORK */ 2487 2488 /* 2489 * If more than one page is being (un)accounted, @virt must be the address of 2490 * the first page of a block of pages what were allocated together (i.e 2491 * accounted together). 2492 * 2493 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state() 2494 * is thread-safe. 2495 */ 2496 static inline void kvm_account_pgtable_pages(void *virt, int nr) 2497 { 2498 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr); 2499 } 2500 2501 /* 2502 * This defines how many reserved entries we want to keep before we 2503 * kick the vcpu to the userspace to avoid dirty ring full. This 2504 * value can be tuned to higher if e.g. PML is enabled on the host. 2505 */ 2506 #define KVM_DIRTY_RING_RSVD_ENTRIES 64 2507 2508 /* Max number of entries allowed for each kvm dirty ring */ 2509 #define KVM_DIRTY_RING_MAX_ENTRIES 65536 2510 2511 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu, 2512 gpa_t gpa, gpa_t size, 2513 bool is_write, bool is_exec, 2514 bool is_private) 2515 { 2516 vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT; 2517 vcpu->run->memory_fault.gpa = gpa; 2518 vcpu->run->memory_fault.size = size; 2519 2520 /* RWX flags are not (yet) defined or communicated to userspace. */ 2521 vcpu->run->memory_fault.flags = 0; 2522 if (is_private) 2523 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE; 2524 } 2525 2526 static inline bool kvm_memslot_is_gmem_only(const struct kvm_memory_slot *slot) 2527 { 2528 if (!IS_ENABLED(CONFIG_KVM_GUEST_MEMFD)) 2529 return false; 2530 2531 return slot->flags & KVM_MEMSLOT_GMEM_ONLY; 2532 } 2533 2534 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2535 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn) 2536 { 2537 return xa_to_value(xa_load(&kvm->mem_attr_array, gfn)); 2538 } 2539 2540 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2541 unsigned long mask, unsigned long attrs); 2542 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 2543 struct kvm_gfn_range *range); 2544 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 2545 struct kvm_gfn_range *range); 2546 2547 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2548 { 2549 return kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE; 2550 } 2551 #else 2552 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2553 { 2554 return false; 2555 } 2556 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2557 2558 #ifdef CONFIG_KVM_GUEST_MEMFD 2559 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot, 2560 gfn_t gfn, kvm_pfn_t *pfn, struct page **page, 2561 int *max_order); 2562 #else 2563 static inline int kvm_gmem_get_pfn(struct kvm *kvm, 2564 struct kvm_memory_slot *slot, gfn_t gfn, 2565 kvm_pfn_t *pfn, struct page **page, 2566 int *max_order) 2567 { 2568 KVM_BUG_ON(1, kvm); 2569 return -EIO; 2570 } 2571 #endif /* CONFIG_KVM_GUEST_MEMFD */ 2572 2573 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE 2574 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order); 2575 #endif 2576 2577 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_POPULATE 2578 /** 2579 * kvm_gmem_populate() - Populate/prepare a GPA range with guest data 2580 * 2581 * @kvm: KVM instance 2582 * @gfn: starting GFN to be populated 2583 * @src: userspace-provided buffer containing data to copy into GFN range 2584 * (passed to @post_populate, and incremented on each iteration 2585 * if not NULL). Must be page-aligned. 2586 * @npages: number of pages to copy from userspace-buffer 2587 * @post_populate: callback to issue for each gmem page that backs the GPA 2588 * range 2589 * @opaque: opaque data to pass to @post_populate callback 2590 * 2591 * This is primarily intended for cases where a gmem-backed GPA range needs 2592 * to be initialized with userspace-provided data prior to being mapped into 2593 * the guest as a private page. This should be called with the slots->lock 2594 * held so that caller-enforced invariants regarding the expected memory 2595 * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES. 2596 * 2597 * Returns the number of pages that were populated. 2598 */ 2599 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, 2600 struct page *page, void *opaque); 2601 2602 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages, 2603 kvm_gmem_populate_cb post_populate, void *opaque); 2604 #endif 2605 2606 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE 2607 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end); 2608 #endif 2609 2610 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 2611 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 2612 struct kvm_pre_fault_memory *range); 2613 #endif 2614 2615 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 2616 int kvm_enable_virtualization(void); 2617 void kvm_disable_virtualization(void); 2618 #else 2619 static inline int kvm_enable_virtualization(void) { return 0; } 2620 static inline void kvm_disable_virtualization(void) { } 2621 #endif 2622 2623 #endif 2624