xref: /linux/kernel/rcu/srcutree.c (revision 67da125e30ab17b5b8874eb32882e81cdec17ec8)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Sleepable Read-Copy Update mechanism for mutual exclusion.
4  *
5  * Copyright (C) IBM Corporation, 2006
6  * Copyright (C) Fujitsu, 2012
7  *
8  * Authors: Paul McKenney <paulmck@linux.ibm.com>
9  *	   Lai Jiangshan <laijs@cn.fujitsu.com>
10  *
11  * For detailed explanation of Read-Copy Update mechanism see -
12  *		Documentation/RCU/ *.txt
13  *
14  */
15 
16 #define pr_fmt(fmt) "rcu: " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mutex.h>
20 #include <linux/percpu.h>
21 #include <linux/preempt.h>
22 #include <linux/rcupdate_wait.h>
23 #include <linux/sched.h>
24 #include <linux/smp.h>
25 #include <linux/delay.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/srcu.h>
29 
30 #include "rcu.h"
31 #include "rcu_segcblist.h"
32 
33 /* Holdoff in nanoseconds for auto-expediting. */
34 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
35 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
36 module_param(exp_holdoff, ulong, 0444);
37 
38 /* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
39 static ulong counter_wrap_check = (ULONG_MAX >> 2);
40 module_param(counter_wrap_check, ulong, 0444);
41 
42 /*
43  * Control conversion to SRCU_SIZE_BIG:
44  *    0: Don't convert at all.
45  *    1: Convert at init_srcu_struct() time.
46  *    2: Convert when rcutorture invokes srcu_torture_stats_print().
47  *    3: Decide at boot time based on system shape (default).
48  * 0x1x: Convert when excessive contention encountered.
49  */
50 #define SRCU_SIZING_NONE	0
51 #define SRCU_SIZING_INIT	1
52 #define SRCU_SIZING_TORTURE	2
53 #define SRCU_SIZING_AUTO	3
54 #define SRCU_SIZING_CONTEND	0x10
55 #define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x)
56 #define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE))
57 #define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT))
58 #define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE))
59 #define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND)
60 static int convert_to_big = SRCU_SIZING_AUTO;
61 module_param(convert_to_big, int, 0444);
62 
63 /* Number of CPUs to trigger init_srcu_struct()-time transition to big. */
64 static int big_cpu_lim __read_mostly = 128;
65 module_param(big_cpu_lim, int, 0444);
66 
67 /* Contention events per jiffy to initiate transition to big. */
68 static int small_contention_lim __read_mostly = 100;
69 module_param(small_contention_lim, int, 0444);
70 
71 /* Early-boot callback-management, so early that no lock is required! */
72 static LIST_HEAD(srcu_boot_list);
73 static bool __read_mostly srcu_init_done;
74 
75 static void srcu_invoke_callbacks(struct work_struct *work);
76 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
77 static void process_srcu(struct work_struct *work);
78 static void srcu_delay_timer(struct timer_list *t);
79 
80 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
81 #define spin_lock_rcu_node(p)							\
82 do {										\
83 	spin_lock(&ACCESS_PRIVATE(p, lock));					\
84 	smp_mb__after_unlock_lock();						\
85 } while (0)
86 
87 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
88 
89 #define spin_lock_irq_rcu_node(p)						\
90 do {										\
91 	spin_lock_irq(&ACCESS_PRIVATE(p, lock));				\
92 	smp_mb__after_unlock_lock();						\
93 } while (0)
94 
95 #define spin_unlock_irq_rcu_node(p)						\
96 	spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
97 
98 #define spin_lock_irqsave_rcu_node(p, flags)					\
99 do {										\
100 	spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);			\
101 	smp_mb__after_unlock_lock();						\
102 } while (0)
103 
104 #define spin_trylock_irqsave_rcu_node(p, flags)					\
105 ({										\
106 	bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
107 										\
108 	if (___locked)								\
109 		smp_mb__after_unlock_lock();					\
110 	___locked;								\
111 })
112 
113 #define spin_unlock_irqrestore_rcu_node(p, flags)				\
114 	spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)			\
115 
116 /*
117  * Initialize SRCU per-CPU data.  Note that statically allocated
118  * srcu_struct structures might already have srcu_read_lock() and
119  * srcu_read_unlock() running against them.  So if the is_static
120  * parameter is set, don't initialize ->srcu_ctrs[].srcu_locks and
121  * ->srcu_ctrs[].srcu_unlocks.
122  */
123 static void init_srcu_struct_data(struct srcu_struct *ssp)
124 {
125 	int cpu;
126 	struct srcu_data *sdp;
127 
128 	/*
129 	 * Initialize the per-CPU srcu_data array, which feeds into the
130 	 * leaves of the srcu_node tree.
131 	 */
132 	for_each_possible_cpu(cpu) {
133 		sdp = per_cpu_ptr(ssp->sda, cpu);
134 		spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
135 		rcu_segcblist_init(&sdp->srcu_cblist);
136 		sdp->srcu_cblist_invoking = false;
137 		sdp->srcu_gp_seq_needed = ssp->srcu_sup->srcu_gp_seq;
138 		sdp->srcu_gp_seq_needed_exp = ssp->srcu_sup->srcu_gp_seq;
139 		sdp->srcu_barrier_head.next = &sdp->srcu_barrier_head;
140 		sdp->mynode = NULL;
141 		sdp->cpu = cpu;
142 		INIT_WORK(&sdp->work, srcu_invoke_callbacks);
143 		timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
144 		sdp->ssp = ssp;
145 	}
146 }
147 
148 /* Invalid seq state, used during snp node initialization */
149 #define SRCU_SNP_INIT_SEQ		0x2
150 
151 /*
152  * Check whether sequence number corresponding to snp node,
153  * is invalid.
154  */
155 static inline bool srcu_invl_snp_seq(unsigned long s)
156 {
157 	return s == SRCU_SNP_INIT_SEQ;
158 }
159 
160 /*
161  * Allocated and initialize SRCU combining tree.  Returns @true if
162  * allocation succeeded and @false otherwise.
163  */
164 static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags)
165 {
166 	int cpu;
167 	int i;
168 	int level = 0;
169 	int levelspread[RCU_NUM_LVLS];
170 	struct srcu_data *sdp;
171 	struct srcu_node *snp;
172 	struct srcu_node *snp_first;
173 
174 	/* Initialize geometry if it has not already been initialized. */
175 	rcu_init_geometry();
176 	ssp->srcu_sup->node = kcalloc(rcu_num_nodes, sizeof(*ssp->srcu_sup->node), gfp_flags);
177 	if (!ssp->srcu_sup->node)
178 		return false;
179 
180 	/* Work out the overall tree geometry. */
181 	ssp->srcu_sup->level[0] = &ssp->srcu_sup->node[0];
182 	for (i = 1; i < rcu_num_lvls; i++)
183 		ssp->srcu_sup->level[i] = ssp->srcu_sup->level[i - 1] + num_rcu_lvl[i - 1];
184 	rcu_init_levelspread(levelspread, num_rcu_lvl);
185 
186 	/* Each pass through this loop initializes one srcu_node structure. */
187 	srcu_for_each_node_breadth_first(ssp, snp) {
188 		spin_lock_init(&ACCESS_PRIVATE(snp, lock));
189 		BUILD_BUG_ON(ARRAY_SIZE(snp->srcu_have_cbs) !=
190 			     ARRAY_SIZE(snp->srcu_data_have_cbs));
191 		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
192 			snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ;
193 			snp->srcu_data_have_cbs[i] = 0;
194 		}
195 		snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ;
196 		snp->grplo = -1;
197 		snp->grphi = -1;
198 		if (snp == &ssp->srcu_sup->node[0]) {
199 			/* Root node, special case. */
200 			snp->srcu_parent = NULL;
201 			continue;
202 		}
203 
204 		/* Non-root node. */
205 		if (snp == ssp->srcu_sup->level[level + 1])
206 			level++;
207 		snp->srcu_parent = ssp->srcu_sup->level[level - 1] +
208 				   (snp - ssp->srcu_sup->level[level]) /
209 				   levelspread[level - 1];
210 	}
211 
212 	/*
213 	 * Initialize the per-CPU srcu_data array, which feeds into the
214 	 * leaves of the srcu_node tree.
215 	 */
216 	level = rcu_num_lvls - 1;
217 	snp_first = ssp->srcu_sup->level[level];
218 	for_each_possible_cpu(cpu) {
219 		sdp = per_cpu_ptr(ssp->sda, cpu);
220 		sdp->mynode = &snp_first[cpu / levelspread[level]];
221 		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
222 			if (snp->grplo < 0)
223 				snp->grplo = cpu;
224 			snp->grphi = cpu;
225 		}
226 		sdp->grpmask = 1UL << (cpu - sdp->mynode->grplo);
227 	}
228 	smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_WAIT_BARRIER);
229 	return true;
230 }
231 
232 /*
233  * Initialize non-compile-time initialized fields, including the
234  * associated srcu_node and srcu_data structures.  The is_static parameter
235  * tells us that ->sda has already been wired up to srcu_data.
236  */
237 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
238 {
239 	if (!is_static)
240 		ssp->srcu_sup = kzalloc(sizeof(*ssp->srcu_sup), GFP_KERNEL);
241 	if (!ssp->srcu_sup)
242 		return -ENOMEM;
243 	if (!is_static)
244 		spin_lock_init(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
245 	ssp->srcu_sup->srcu_size_state = SRCU_SIZE_SMALL;
246 	ssp->srcu_sup->node = NULL;
247 	mutex_init(&ssp->srcu_sup->srcu_cb_mutex);
248 	mutex_init(&ssp->srcu_sup->srcu_gp_mutex);
249 	ssp->srcu_sup->srcu_gp_seq = SRCU_GP_SEQ_INITIAL_VAL;
250 	ssp->srcu_sup->srcu_barrier_seq = 0;
251 	mutex_init(&ssp->srcu_sup->srcu_barrier_mutex);
252 	atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 0);
253 	INIT_DELAYED_WORK(&ssp->srcu_sup->work, process_srcu);
254 	ssp->srcu_sup->sda_is_static = is_static;
255 	if (!is_static) {
256 		ssp->sda = alloc_percpu(struct srcu_data);
257 		ssp->srcu_ctrp = &ssp->sda->srcu_ctrs[0];
258 	}
259 	if (!ssp->sda)
260 		goto err_free_sup;
261 	init_srcu_struct_data(ssp);
262 	ssp->srcu_sup->srcu_gp_seq_needed_exp = SRCU_GP_SEQ_INITIAL_VAL;
263 	ssp->srcu_sup->srcu_last_gp_end = ktime_get_mono_fast_ns();
264 	if (READ_ONCE(ssp->srcu_sup->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) {
265 		if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC))
266 			goto err_free_sda;
267 		WRITE_ONCE(ssp->srcu_sup->srcu_size_state, SRCU_SIZE_BIG);
268 	}
269 	ssp->srcu_sup->srcu_ssp = ssp;
270 	smp_store_release(&ssp->srcu_sup->srcu_gp_seq_needed,
271 			SRCU_GP_SEQ_INITIAL_VAL); /* Init done. */
272 	return 0;
273 
274 err_free_sda:
275 	if (!is_static) {
276 		free_percpu(ssp->sda);
277 		ssp->sda = NULL;
278 	}
279 err_free_sup:
280 	if (!is_static) {
281 		kfree(ssp->srcu_sup);
282 		ssp->srcu_sup = NULL;
283 	}
284 	return -ENOMEM;
285 }
286 
287 #ifdef CONFIG_DEBUG_LOCK_ALLOC
288 
289 int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
290 		       struct lock_class_key *key)
291 {
292 	/* Don't re-initialize a lock while it is held. */
293 	debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
294 	lockdep_init_map(&ssp->dep_map, name, key, 0);
295 	return init_srcu_struct_fields(ssp, false);
296 }
297 EXPORT_SYMBOL_GPL(__init_srcu_struct);
298 
299 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
300 
301 /**
302  * init_srcu_struct - initialize a sleep-RCU structure
303  * @ssp: structure to initialize.
304  *
305  * Must invoke this on a given srcu_struct before passing that srcu_struct
306  * to any other function.  Each srcu_struct represents a separate domain
307  * of SRCU protection.
308  */
309 int init_srcu_struct(struct srcu_struct *ssp)
310 {
311 	return init_srcu_struct_fields(ssp, false);
312 }
313 EXPORT_SYMBOL_GPL(init_srcu_struct);
314 
315 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
316 
317 /*
318  * Initiate a transition to SRCU_SIZE_BIG with lock held.
319  */
320 static void __srcu_transition_to_big(struct srcu_struct *ssp)
321 {
322 	lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
323 	smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_ALLOC);
324 }
325 
326 /*
327  * Initiate an idempotent transition to SRCU_SIZE_BIG.
328  */
329 static void srcu_transition_to_big(struct srcu_struct *ssp)
330 {
331 	unsigned long flags;
332 
333 	/* Double-checked locking on ->srcu_size-state. */
334 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL)
335 		return;
336 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
337 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) {
338 		spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
339 		return;
340 	}
341 	__srcu_transition_to_big(ssp);
342 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
343 }
344 
345 /*
346  * Check to see if the just-encountered contention event justifies
347  * a transition to SRCU_SIZE_BIG.
348  */
349 static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp)
350 {
351 	unsigned long j;
352 
353 	if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_sup->srcu_size_state)
354 		return;
355 	j = jiffies;
356 	if (ssp->srcu_sup->srcu_size_jiffies != j) {
357 		ssp->srcu_sup->srcu_size_jiffies = j;
358 		ssp->srcu_sup->srcu_n_lock_retries = 0;
359 	}
360 	if (++ssp->srcu_sup->srcu_n_lock_retries <= small_contention_lim)
361 		return;
362 	__srcu_transition_to_big(ssp);
363 }
364 
365 /*
366  * Acquire the specified srcu_data structure's ->lock, but check for
367  * excessive contention, which results in initiation of a transition
368  * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
369  * parameter permits this.
370  */
371 static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags)
372 {
373 	struct srcu_struct *ssp = sdp->ssp;
374 
375 	if (spin_trylock_irqsave_rcu_node(sdp, *flags))
376 		return;
377 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
378 	spin_lock_irqsave_check_contention(ssp);
379 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, *flags);
380 	spin_lock_irqsave_rcu_node(sdp, *flags);
381 }
382 
383 /*
384  * Acquire the specified srcu_struct structure's ->lock, but check for
385  * excessive contention, which results in initiation of a transition
386  * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
387  * parameter permits this.
388  */
389 static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags)
390 {
391 	if (spin_trylock_irqsave_rcu_node(ssp->srcu_sup, *flags))
392 		return;
393 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
394 	spin_lock_irqsave_check_contention(ssp);
395 }
396 
397 /*
398  * First-use initialization of statically allocated srcu_struct
399  * structure.  Wiring up the combining tree is more than can be
400  * done with compile-time initialization, so this check is added
401  * to each update-side SRCU primitive.  Use ssp->lock, which -is-
402  * compile-time initialized, to resolve races involving multiple
403  * CPUs trying to garner first-use privileges.
404  */
405 static void check_init_srcu_struct(struct srcu_struct *ssp)
406 {
407 	unsigned long flags;
408 
409 	/* The smp_load_acquire() pairs with the smp_store_release(). */
410 	if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed))) /*^^^*/
411 		return; /* Already initialized. */
412 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
413 	if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq_needed)) {
414 		spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
415 		return;
416 	}
417 	init_srcu_struct_fields(ssp, true);
418 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
419 }
420 
421 /*
422  * Is the current or any upcoming grace period to be expedited?
423  */
424 static bool srcu_gp_is_expedited(struct srcu_struct *ssp)
425 {
426 	struct srcu_usage *sup = ssp->srcu_sup;
427 
428 	return ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp));
429 }
430 
431 /*
432  * Computes approximate total of the readers' ->srcu_ctrs[].srcu_locks
433  * values for the rank of per-CPU counters specified by idx, and returns
434  * true if the caller did the proper barrier (gp), and if the count of
435  * the locks matches that of the unlocks passed in.
436  */
437 static bool srcu_readers_lock_idx(struct srcu_struct *ssp, int idx, bool gp, unsigned long unlocks)
438 {
439 	int cpu;
440 	unsigned long mask = 0;
441 	unsigned long sum = 0;
442 
443 	for_each_possible_cpu(cpu) {
444 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
445 
446 		sum += atomic_long_read(&sdp->srcu_ctrs[idx].srcu_locks);
447 		if (IS_ENABLED(CONFIG_PROVE_RCU))
448 			mask = mask | READ_ONCE(sdp->srcu_reader_flavor);
449 	}
450 	WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask - 1)),
451 		  "Mixed reader flavors for srcu_struct at %ps.\n", ssp);
452 	if (mask & SRCU_READ_FLAVOR_SLOWGP && !gp)
453 		return false;
454 	return sum == unlocks;
455 }
456 
457 /*
458  * Returns approximate total of the readers' ->srcu_ctrs[].srcu_unlocks
459  * values for the rank of per-CPU counters specified by idx.
460  */
461 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx, unsigned long *rdm)
462 {
463 	int cpu;
464 	unsigned long mask = 0;
465 	unsigned long sum = 0;
466 
467 	for_each_possible_cpu(cpu) {
468 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
469 
470 		sum += atomic_long_read(&sdp->srcu_ctrs[idx].srcu_unlocks);
471 		mask = mask | READ_ONCE(sdp->srcu_reader_flavor);
472 	}
473 	WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask - 1)),
474 		  "Mixed reader flavors for srcu_struct at %ps.\n", ssp);
475 	*rdm = mask;
476 	return sum;
477 }
478 
479 /*
480  * Return true if the number of pre-existing readers is determined to
481  * be zero.
482  */
483 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
484 {
485 	bool did_gp;
486 	unsigned long rdm;
487 	unsigned long unlocks;
488 
489 	unlocks = srcu_readers_unlock_idx(ssp, idx, &rdm);
490 	did_gp = !!(rdm & SRCU_READ_FLAVOR_SLOWGP);
491 
492 	/*
493 	 * Make sure that a lock is always counted if the corresponding
494 	 * unlock is counted. Needs to be a smp_mb() as the read side may
495 	 * contain a read from a variable that is written to before the
496 	 * synchronize_srcu() in the write side. In this case smp_mb()s
497 	 * A and B (or X and Y) act like the store buffering pattern.
498 	 *
499 	 * This smp_mb() also pairs with smp_mb() C (or, in the case of X,
500 	 * Z) to prevent accesses after the synchronize_srcu() from being
501 	 * executed before the grace period ends.
502 	 */
503 	if (!did_gp)
504 		smp_mb(); /* A */
505 	else if (srcu_gp_is_expedited(ssp))
506 		synchronize_rcu_expedited(); /* X */
507 	else
508 		synchronize_rcu(); /* X */
509 
510 	/*
511 	 * If the locks are the same as the unlocks, then there must have
512 	 * been no readers on this index at some point in this function.
513 	 * But there might be more readers, as a task might have read
514 	 * the current ->srcu_ctrp but not yet have incremented its CPU's
515 	 * ->srcu_ctrs[idx].srcu_locks counter.  In fact, it is possible
516 	 * that most of the tasks have been preempted between fetching
517 	 * ->srcu_ctrp and incrementing ->srcu_ctrs[idx].srcu_locks.  And
518 	 * there could be almost (ULONG_MAX / sizeof(struct task_struct))
519 	 * tasks in a system whose address space was fully populated
520 	 * with memory.  Call this quantity Nt.
521 	 *
522 	 * So suppose that the updater is preempted at this
523 	 * point in the code for a long time.  That now-preempted
524 	 * updater has already flipped ->srcu_ctrp (possibly during
525 	 * the preceding grace period), done an smp_mb() (again,
526 	 * possibly during the preceding grace period), and summed up
527 	 * the ->srcu_ctrs[idx].srcu_unlocks counters.  How many times
528 	 * can a given one of the aforementioned Nt tasks increment the
529 	 * old ->srcu_ctrp value's ->srcu_ctrs[idx].srcu_locks counter,
530 	 * in the absence of nesting?
531 	 *
532 	 * It can clearly do so once, given that it has already fetched
533 	 * the old value of ->srcu_ctrp and is just about to use that
534 	 * value to index its increment of ->srcu_ctrs[idx].srcu_locks.
535 	 * But as soon as it leaves that SRCU read-side critical section,
536 	 * it will increment ->srcu_ctrs[idx].srcu_unlocks, which must
537 	 * follow the updater's above read from that same value.  Thus,
538 	   as soon the reading task does an smp_mb() and a later fetch from
539 	 * ->srcu_ctrp, that task will be guaranteed to get the new index.
540 	 * Except that the increment of ->srcu_ctrs[idx].srcu_unlocks
541 	 * in __srcu_read_unlock() is after the smp_mb(), and the fetch
542 	 * from ->srcu_ctrp in __srcu_read_lock() is before the smp_mb().
543 	 * Thus, that task might not see the new value of ->srcu_ctrp until
544 	 * the -second- __srcu_read_lock(), which in turn means that this
545 	 * task might well increment ->srcu_ctrs[idx].srcu_locks for the
546 	 * old value of ->srcu_ctrp twice, not just once.
547 	 *
548 	 * However, it is important to note that a given smp_mb() takes
549 	 * effect not just for the task executing it, but also for any
550 	 * later task running on that same CPU.
551 	 *
552 	 * That is, there can be almost Nt + Nc further increments
553 	 * of ->srcu_ctrs[idx].srcu_locks for the old index, where Nc
554 	 * is the number of CPUs.  But this is OK because the size of
555 	 * the task_struct structure limits the value of Nt and current
556 	 * systems limit Nc to a few thousand.
557 	 *
558 	 * OK, but what about nesting?  This does impose a limit on
559 	 * nesting of half of the size of the task_struct structure
560 	 * (measured in bytes), which should be sufficient.  A late 2022
561 	 * TREE01 rcutorture run reported this size to be no less than
562 	 * 9408 bytes, allowing up to 4704 levels of nesting, which is
563 	 * comfortably beyond excessive.  Especially on 64-bit systems,
564 	 * which are unlikely to be configured with an address space fully
565 	 * populated with memory, at least not anytime soon.
566 	 */
567 	return srcu_readers_lock_idx(ssp, idx, did_gp, unlocks);
568 }
569 
570 /**
571  * srcu_readers_active - returns true if there are readers. and false
572  *                       otherwise
573  * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
574  *
575  * Note that this is not an atomic primitive, and can therefore suffer
576  * severe errors when invoked on an active srcu_struct.  That said, it
577  * can be useful as an error check at cleanup time.
578  */
579 static bool srcu_readers_active(struct srcu_struct *ssp)
580 {
581 	int cpu;
582 	unsigned long sum = 0;
583 
584 	for_each_possible_cpu(cpu) {
585 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
586 
587 		sum += atomic_long_read(&sdp->srcu_ctrs[0].srcu_locks);
588 		sum += atomic_long_read(&sdp->srcu_ctrs[1].srcu_locks);
589 		sum -= atomic_long_read(&sdp->srcu_ctrs[0].srcu_unlocks);
590 		sum -= atomic_long_read(&sdp->srcu_ctrs[1].srcu_unlocks);
591 	}
592 	return sum;
593 }
594 
595 /*
596  * We use an adaptive strategy for synchronize_srcu() and especially for
597  * synchronize_srcu_expedited().  We spin for a fixed time period
598  * (defined below, boot time configurable) to allow SRCU readers to exit
599  * their read-side critical sections.  If there are still some readers
600  * after one jiffy, we repeatedly block for one jiffy time periods.
601  * The blocking time is increased as the grace-period age increases,
602  * with max blocking time capped at 10 jiffies.
603  */
604 #define SRCU_DEFAULT_RETRY_CHECK_DELAY		5
605 
606 static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY;
607 module_param(srcu_retry_check_delay, ulong, 0444);
608 
609 #define SRCU_INTERVAL		1		// Base delay if no expedited GPs pending.
610 #define SRCU_MAX_INTERVAL	10		// Maximum incremental delay from slow readers.
611 
612 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO	3UL	// Lowmark on default per-GP-phase
613 							// no-delay instances.
614 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI	1000UL	// Highmark on default per-GP-phase
615 							// no-delay instances.
616 
617 #define SRCU_UL_CLAMP_LO(val, low)	((val) > (low) ? (val) : (low))
618 #define SRCU_UL_CLAMP_HI(val, high)	((val) < (high) ? (val) : (high))
619 #define SRCU_UL_CLAMP(val, low, high)	SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high))
620 // per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto
621 // one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay()
622 // called from process_srcu().
623 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED	\
624 	(2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY)
625 
626 // Maximum per-GP-phase consecutive no-delay instances.
627 #define SRCU_DEFAULT_MAX_NODELAY_PHASE	\
628 	SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED,	\
629 		      SRCU_DEFAULT_MAX_NODELAY_PHASE_LO,	\
630 		      SRCU_DEFAULT_MAX_NODELAY_PHASE_HI)
631 
632 static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE;
633 module_param(srcu_max_nodelay_phase, ulong, 0444);
634 
635 // Maximum consecutive no-delay instances.
636 #define SRCU_DEFAULT_MAX_NODELAY	(SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ?	\
637 					 SRCU_DEFAULT_MAX_NODELAY_PHASE : 100)
638 
639 static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY;
640 module_param(srcu_max_nodelay, ulong, 0444);
641 
642 /*
643  * Return grace-period delay, zero if there are expedited grace
644  * periods pending, SRCU_INTERVAL otherwise.
645  */
646 static unsigned long srcu_get_delay(struct srcu_struct *ssp)
647 {
648 	unsigned long gpstart;
649 	unsigned long j;
650 	unsigned long jbase = SRCU_INTERVAL;
651 	struct srcu_usage *sup = ssp->srcu_sup;
652 
653 	lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
654 	if (srcu_gp_is_expedited(ssp))
655 		jbase = 0;
656 	if (rcu_seq_state(READ_ONCE(sup->srcu_gp_seq))) {
657 		j = jiffies - 1;
658 		gpstart = READ_ONCE(sup->srcu_gp_start);
659 		if (time_after(j, gpstart))
660 			jbase += j - gpstart;
661 		if (!jbase) {
662 			ASSERT_EXCLUSIVE_WRITER(sup->srcu_n_exp_nodelay);
663 			WRITE_ONCE(sup->srcu_n_exp_nodelay, READ_ONCE(sup->srcu_n_exp_nodelay) + 1);
664 			if (READ_ONCE(sup->srcu_n_exp_nodelay) > srcu_max_nodelay_phase)
665 				jbase = 1;
666 		}
667 	}
668 	return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase;
669 }
670 
671 /**
672  * cleanup_srcu_struct - deconstruct a sleep-RCU structure
673  * @ssp: structure to clean up.
674  *
675  * Must invoke this after you are finished using a given srcu_struct that
676  * was initialized via init_srcu_struct(), else you leak memory.
677  */
678 void cleanup_srcu_struct(struct srcu_struct *ssp)
679 {
680 	int cpu;
681 	unsigned long delay;
682 	struct srcu_usage *sup = ssp->srcu_sup;
683 
684 	spin_lock_irq_rcu_node(ssp->srcu_sup);
685 	delay = srcu_get_delay(ssp);
686 	spin_unlock_irq_rcu_node(ssp->srcu_sup);
687 	if (WARN_ON(!delay))
688 		return; /* Just leak it! */
689 	if (WARN_ON(srcu_readers_active(ssp)))
690 		return; /* Just leak it! */
691 	flush_delayed_work(&sup->work);
692 	for_each_possible_cpu(cpu) {
693 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
694 
695 		timer_delete_sync(&sdp->delay_work);
696 		flush_work(&sdp->work);
697 		if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
698 			return; /* Forgot srcu_barrier(), so just leak it! */
699 	}
700 	if (WARN_ON(rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
701 	    WARN_ON(rcu_seq_current(&sup->srcu_gp_seq) != sup->srcu_gp_seq_needed) ||
702 	    WARN_ON(srcu_readers_active(ssp))) {
703 		pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n",
704 			__func__, ssp, rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)),
705 			rcu_seq_current(&sup->srcu_gp_seq), sup->srcu_gp_seq_needed);
706 		return; // Caller forgot to stop doing call_srcu()?
707 			// Or caller invoked start_poll_synchronize_srcu()
708 			// and then cleanup_srcu_struct() before that grace
709 			// period ended?
710 	}
711 	kfree(sup->node);
712 	sup->node = NULL;
713 	sup->srcu_size_state = SRCU_SIZE_SMALL;
714 	if (!sup->sda_is_static) {
715 		free_percpu(ssp->sda);
716 		ssp->sda = NULL;
717 		kfree(sup);
718 		ssp->srcu_sup = NULL;
719 	}
720 }
721 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
722 
723 /*
724  * Check for consistent reader flavor.
725  */
726 void __srcu_check_read_flavor(struct srcu_struct *ssp, int read_flavor)
727 {
728 	int old_read_flavor;
729 	struct srcu_data *sdp;
730 
731 	/* NMI-unsafe use in NMI is a bad sign, as is multi-bit read_flavor values. */
732 	WARN_ON_ONCE((read_flavor != SRCU_READ_FLAVOR_NMI) && in_nmi());
733 	WARN_ON_ONCE(read_flavor & (read_flavor - 1));
734 
735 	sdp = raw_cpu_ptr(ssp->sda);
736 	old_read_flavor = READ_ONCE(sdp->srcu_reader_flavor);
737 	if (!old_read_flavor) {
738 		old_read_flavor = cmpxchg(&sdp->srcu_reader_flavor, 0, read_flavor);
739 		if (!old_read_flavor)
740 			return;
741 	}
742 	WARN_ONCE(old_read_flavor != read_flavor, "CPU %d old state %d new state %d\n", sdp->cpu, old_read_flavor, read_flavor);
743 }
744 EXPORT_SYMBOL_GPL(__srcu_check_read_flavor);
745 
746 /*
747  * Counts the new reader in the appropriate per-CPU element of the
748  * srcu_struct.
749  * Returns a guaranteed non-negative index that must be passed to the
750  * matching __srcu_read_unlock().
751  */
752 int __srcu_read_lock(struct srcu_struct *ssp)
753 {
754 	struct srcu_ctr __percpu *scp = READ_ONCE(ssp->srcu_ctrp);
755 
756 	this_cpu_inc(scp->srcu_locks.counter);
757 	smp_mb(); /* B */  /* Avoid leaking the critical section. */
758 	return __srcu_ptr_to_ctr(ssp, scp);
759 }
760 EXPORT_SYMBOL_GPL(__srcu_read_lock);
761 
762 /*
763  * Removes the count for the old reader from the appropriate per-CPU
764  * element of the srcu_struct.  Note that this may well be a different
765  * CPU than that which was incremented by the corresponding srcu_read_lock().
766  */
767 void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
768 {
769 	smp_mb(); /* C */  /* Avoid leaking the critical section. */
770 	this_cpu_inc(__srcu_ctr_to_ptr(ssp, idx)->srcu_unlocks.counter);
771 }
772 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
773 
774 #ifdef CONFIG_NEED_SRCU_NMI_SAFE
775 
776 /*
777  * Counts the new reader in the appropriate per-CPU element of the
778  * srcu_struct, but in an NMI-safe manner using RMW atomics.
779  * Returns an index that must be passed to the matching srcu_read_unlock().
780  */
781 int __srcu_read_lock_nmisafe(struct srcu_struct *ssp)
782 {
783 	struct srcu_ctr __percpu *scpp = READ_ONCE(ssp->srcu_ctrp);
784 	struct srcu_ctr *scp = raw_cpu_ptr(scpp);
785 
786 	atomic_long_inc(&scp->srcu_locks);
787 	smp_mb__after_atomic(); /* B */  /* Avoid leaking the critical section. */
788 	return __srcu_ptr_to_ctr(ssp, scpp);
789 }
790 EXPORT_SYMBOL_GPL(__srcu_read_lock_nmisafe);
791 
792 /*
793  * Removes the count for the old reader from the appropriate per-CPU
794  * element of the srcu_struct.  Note that this may well be a different
795  * CPU than that which was incremented by the corresponding srcu_read_lock().
796  */
797 void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx)
798 {
799 	smp_mb__before_atomic(); /* C */  /* Avoid leaking the critical section. */
800 	atomic_long_inc(&raw_cpu_ptr(__srcu_ctr_to_ptr(ssp, idx))->srcu_unlocks);
801 }
802 EXPORT_SYMBOL_GPL(__srcu_read_unlock_nmisafe);
803 
804 #endif // CONFIG_NEED_SRCU_NMI_SAFE
805 
806 /*
807  * Start an SRCU grace period.
808  */
809 static void srcu_gp_start(struct srcu_struct *ssp)
810 {
811 	int state;
812 
813 	lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
814 	WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed));
815 	WRITE_ONCE(ssp->srcu_sup->srcu_gp_start, jiffies);
816 	WRITE_ONCE(ssp->srcu_sup->srcu_n_exp_nodelay, 0);
817 	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
818 	rcu_seq_start(&ssp->srcu_sup->srcu_gp_seq);
819 	state = rcu_seq_state(ssp->srcu_sup->srcu_gp_seq);
820 	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
821 }
822 
823 
824 static void srcu_delay_timer(struct timer_list *t)
825 {
826 	struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
827 
828 	queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
829 }
830 
831 static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
832 				       unsigned long delay)
833 {
834 	if (!delay) {
835 		queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
836 		return;
837 	}
838 
839 	timer_reduce(&sdp->delay_work, jiffies + delay);
840 }
841 
842 /*
843  * Schedule callback invocation for the specified srcu_data structure,
844  * if possible, on the corresponding CPU.
845  */
846 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
847 {
848 	srcu_queue_delayed_work_on(sdp, delay);
849 }
850 
851 /*
852  * Schedule callback invocation for all srcu_data structures associated
853  * with the specified srcu_node structure that have callbacks for the
854  * just-completed grace period, the one corresponding to idx.  If possible,
855  * schedule this invocation on the corresponding CPUs.
856  */
857 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
858 				  unsigned long mask, unsigned long delay)
859 {
860 	int cpu;
861 
862 	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
863 		if (!(mask & (1UL << (cpu - snp->grplo))))
864 			continue;
865 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
866 	}
867 }
868 
869 /*
870  * Note the end of an SRCU grace period.  Initiates callback invocation
871  * and starts a new grace period if needed.
872  *
873  * The ->srcu_cb_mutex acquisition does not protect any data, but
874  * instead prevents more than one grace period from starting while we
875  * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
876  * array to have a finite number of elements.
877  */
878 static void srcu_gp_end(struct srcu_struct *ssp)
879 {
880 	unsigned long cbdelay = 1;
881 	bool cbs;
882 	bool last_lvl;
883 	int cpu;
884 	unsigned long gpseq;
885 	int idx;
886 	unsigned long mask;
887 	struct srcu_data *sdp;
888 	unsigned long sgsne;
889 	struct srcu_node *snp;
890 	int ss_state;
891 	struct srcu_usage *sup = ssp->srcu_sup;
892 
893 	/* Prevent more than one additional grace period. */
894 	mutex_lock(&sup->srcu_cb_mutex);
895 
896 	/* End the current grace period. */
897 	spin_lock_irq_rcu_node(sup);
898 	idx = rcu_seq_state(sup->srcu_gp_seq);
899 	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
900 	if (srcu_gp_is_expedited(ssp))
901 		cbdelay = 0;
902 
903 	WRITE_ONCE(sup->srcu_last_gp_end, ktime_get_mono_fast_ns());
904 	rcu_seq_end(&sup->srcu_gp_seq);
905 	gpseq = rcu_seq_current(&sup->srcu_gp_seq);
906 	if (ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, gpseq))
907 		WRITE_ONCE(sup->srcu_gp_seq_needed_exp, gpseq);
908 	spin_unlock_irq_rcu_node(sup);
909 	mutex_unlock(&sup->srcu_gp_mutex);
910 	/* A new grace period can start at this point.  But only one. */
911 
912 	/* Initiate callback invocation as needed. */
913 	ss_state = smp_load_acquire(&sup->srcu_size_state);
914 	if (ss_state < SRCU_SIZE_WAIT_BARRIER) {
915 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, get_boot_cpu_id()),
916 					cbdelay);
917 	} else {
918 		idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
919 		srcu_for_each_node_breadth_first(ssp, snp) {
920 			spin_lock_irq_rcu_node(snp);
921 			cbs = false;
922 			last_lvl = snp >= sup->level[rcu_num_lvls - 1];
923 			if (last_lvl)
924 				cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq;
925 			snp->srcu_have_cbs[idx] = gpseq;
926 			rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
927 			sgsne = snp->srcu_gp_seq_needed_exp;
928 			if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq))
929 				WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq);
930 			if (ss_state < SRCU_SIZE_BIG)
931 				mask = ~0;
932 			else
933 				mask = snp->srcu_data_have_cbs[idx];
934 			snp->srcu_data_have_cbs[idx] = 0;
935 			spin_unlock_irq_rcu_node(snp);
936 			if (cbs)
937 				srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
938 		}
939 	}
940 
941 	/* Occasionally prevent srcu_data counter wrap. */
942 	if (!(gpseq & counter_wrap_check))
943 		for_each_possible_cpu(cpu) {
944 			sdp = per_cpu_ptr(ssp->sda, cpu);
945 			spin_lock_irq_rcu_node(sdp);
946 			if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100))
947 				sdp->srcu_gp_seq_needed = gpseq;
948 			if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100))
949 				sdp->srcu_gp_seq_needed_exp = gpseq;
950 			spin_unlock_irq_rcu_node(sdp);
951 		}
952 
953 	/* Callback initiation done, allow grace periods after next. */
954 	mutex_unlock(&sup->srcu_cb_mutex);
955 
956 	/* Start a new grace period if needed. */
957 	spin_lock_irq_rcu_node(sup);
958 	gpseq = rcu_seq_current(&sup->srcu_gp_seq);
959 	if (!rcu_seq_state(gpseq) &&
960 	    ULONG_CMP_LT(gpseq, sup->srcu_gp_seq_needed)) {
961 		srcu_gp_start(ssp);
962 		spin_unlock_irq_rcu_node(sup);
963 		srcu_reschedule(ssp, 0);
964 	} else {
965 		spin_unlock_irq_rcu_node(sup);
966 	}
967 
968 	/* Transition to big if needed. */
969 	if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) {
970 		if (ss_state == SRCU_SIZE_ALLOC)
971 			init_srcu_struct_nodes(ssp, GFP_KERNEL);
972 		else
973 			smp_store_release(&sup->srcu_size_state, ss_state + 1);
974 	}
975 }
976 
977 /*
978  * Funnel-locking scheme to scalably mediate many concurrent expedited
979  * grace-period requests.  This function is invoked for the first known
980  * expedited request for a grace period that has already been requested,
981  * but without expediting.  To start a completely new grace period,
982  * whether expedited or not, use srcu_funnel_gp_start() instead.
983  */
984 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
985 				  unsigned long s)
986 {
987 	unsigned long flags;
988 	unsigned long sgsne;
989 
990 	if (snp)
991 		for (; snp != NULL; snp = snp->srcu_parent) {
992 			sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp);
993 			if (WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, s)) ||
994 			    (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)))
995 				return;
996 			spin_lock_irqsave_rcu_node(snp, flags);
997 			sgsne = snp->srcu_gp_seq_needed_exp;
998 			if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) {
999 				spin_unlock_irqrestore_rcu_node(snp, flags);
1000 				return;
1001 			}
1002 			WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
1003 			spin_unlock_irqrestore_rcu_node(snp, flags);
1004 		}
1005 	spin_lock_irqsave_ssp_contention(ssp, &flags);
1006 	if (ULONG_CMP_LT(ssp->srcu_sup->srcu_gp_seq_needed_exp, s))
1007 		WRITE_ONCE(ssp->srcu_sup->srcu_gp_seq_needed_exp, s);
1008 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
1009 }
1010 
1011 /*
1012  * Funnel-locking scheme to scalably mediate many concurrent grace-period
1013  * requests.  The winner has to do the work of actually starting grace
1014  * period s.  Losers must either ensure that their desired grace-period
1015  * number is recorded on at least their leaf srcu_node structure, or they
1016  * must take steps to invoke their own callbacks.
1017  *
1018  * Note that this function also does the work of srcu_funnel_exp_start(),
1019  * in some cases by directly invoking it.
1020  *
1021  * The srcu read lock should be hold around this function. And s is a seq snap
1022  * after holding that lock.
1023  */
1024 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
1025 				 unsigned long s, bool do_norm)
1026 {
1027 	unsigned long flags;
1028 	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
1029 	unsigned long sgsne;
1030 	struct srcu_node *snp;
1031 	struct srcu_node *snp_leaf;
1032 	unsigned long snp_seq;
1033 	struct srcu_usage *sup = ssp->srcu_sup;
1034 
1035 	/* Ensure that snp node tree is fully initialized before traversing it */
1036 	if (smp_load_acquire(&sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1037 		snp_leaf = NULL;
1038 	else
1039 		snp_leaf = sdp->mynode;
1040 
1041 	if (snp_leaf)
1042 		/* Each pass through the loop does one level of the srcu_node tree. */
1043 		for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) {
1044 			if (WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && snp != snp_leaf)
1045 				return; /* GP already done and CBs recorded. */
1046 			spin_lock_irqsave_rcu_node(snp, flags);
1047 			snp_seq = snp->srcu_have_cbs[idx];
1048 			if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) {
1049 				if (snp == snp_leaf && snp_seq == s)
1050 					snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
1051 				spin_unlock_irqrestore_rcu_node(snp, flags);
1052 				if (snp == snp_leaf && snp_seq != s) {
1053 					srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0);
1054 					return;
1055 				}
1056 				if (!do_norm)
1057 					srcu_funnel_exp_start(ssp, snp, s);
1058 				return;
1059 			}
1060 			snp->srcu_have_cbs[idx] = s;
1061 			if (snp == snp_leaf)
1062 				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
1063 			sgsne = snp->srcu_gp_seq_needed_exp;
1064 			if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s)))
1065 				WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
1066 			spin_unlock_irqrestore_rcu_node(snp, flags);
1067 		}
1068 
1069 	/* Top of tree, must ensure the grace period will be started. */
1070 	spin_lock_irqsave_ssp_contention(ssp, &flags);
1071 	if (ULONG_CMP_LT(sup->srcu_gp_seq_needed, s)) {
1072 		/*
1073 		 * Record need for grace period s.  Pair with load
1074 		 * acquire setting up for initialization.
1075 		 */
1076 		smp_store_release(&sup->srcu_gp_seq_needed, s); /*^^^*/
1077 	}
1078 	if (!do_norm && ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, s))
1079 		WRITE_ONCE(sup->srcu_gp_seq_needed_exp, s);
1080 
1081 	/* If grace period not already in progress, start it. */
1082 	if (!WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) &&
1083 	    rcu_seq_state(sup->srcu_gp_seq) == SRCU_STATE_IDLE) {
1084 		srcu_gp_start(ssp);
1085 
1086 		// And how can that list_add() in the "else" clause
1087 		// possibly be safe for concurrent execution?  Well,
1088 		// it isn't.  And it does not have to be.  After all, it
1089 		// can only be executed during early boot when there is only
1090 		// the one boot CPU running with interrupts still disabled.
1091 		if (likely(srcu_init_done))
1092 			queue_delayed_work(rcu_gp_wq, &sup->work,
1093 					   !!srcu_get_delay(ssp));
1094 		else if (list_empty(&sup->work.work.entry))
1095 			list_add(&sup->work.work.entry, &srcu_boot_list);
1096 	}
1097 	spin_unlock_irqrestore_rcu_node(sup, flags);
1098 }
1099 
1100 /*
1101  * Wait until all readers counted by array index idx complete, but
1102  * loop an additional time if there is an expedited grace period pending.
1103  * The caller must ensure that ->srcu_ctrp is not changed while checking.
1104  */
1105 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
1106 {
1107 	unsigned long curdelay;
1108 
1109 	spin_lock_irq_rcu_node(ssp->srcu_sup);
1110 	curdelay = !srcu_get_delay(ssp);
1111 	spin_unlock_irq_rcu_node(ssp->srcu_sup);
1112 
1113 	for (;;) {
1114 		if (srcu_readers_active_idx_check(ssp, idx))
1115 			return true;
1116 		if ((--trycount + curdelay) <= 0)
1117 			return false;
1118 		udelay(srcu_retry_check_delay);
1119 	}
1120 }
1121 
1122 /*
1123  * Increment the ->srcu_ctrp counter so that future SRCU readers will
1124  * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
1125  * us to wait for pre-existing readers in a starvation-free manner.
1126  */
1127 static void srcu_flip(struct srcu_struct *ssp)
1128 {
1129 	/*
1130 	 * Because the flip of ->srcu_ctrp is executed only if the
1131 	 * preceding call to srcu_readers_active_idx_check() found that
1132 	 * the ->srcu_ctrs[].srcu_unlocks and ->srcu_ctrs[].srcu_locks sums
1133 	 * matched and because that summing uses atomic_long_read(),
1134 	 * there is ordering due to a control dependency between that
1135 	 * summing and the WRITE_ONCE() in this call to srcu_flip().
1136 	 * This ordering ensures that if this updater saw a given reader's
1137 	 * increment from __srcu_read_lock(), that reader was using a value
1138 	 * of ->srcu_ctrp from before the previous call to srcu_flip(),
1139 	 * which should be quite rare.  This ordering thus helps forward
1140 	 * progress because the grace period could otherwise be delayed
1141 	 * by additional calls to __srcu_read_lock() using that old (soon
1142 	 * to be new) value of ->srcu_ctrp.
1143 	 *
1144 	 * This sum-equality check and ordering also ensures that if
1145 	 * a given call to __srcu_read_lock() uses the new value of
1146 	 * ->srcu_ctrp, this updater's earlier scans cannot have seen
1147 	 * that reader's increments, which is all to the good, because
1148 	 * this grace period need not wait on that reader.  After all,
1149 	 * if those earlier scans had seen that reader, there would have
1150 	 * been a sum mismatch and this code would not be reached.
1151 	 *
1152 	 * This means that the following smp_mb() is redundant, but
1153 	 * it stays until either (1) Compilers learn about this sort of
1154 	 * control dependency or (2) Some production workload running on
1155 	 * a production system is unduly delayed by this slowpath smp_mb().
1156 	 * Except for _lite() readers, where it is inoperative, which
1157 	 * means that it is a good thing that it is redundant.
1158 	 */
1159 	smp_mb(); /* E */  /* Pairs with B and C. */
1160 
1161 	WRITE_ONCE(ssp->srcu_ctrp,
1162 		   &ssp->sda->srcu_ctrs[!(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0])]);
1163 
1164 	/*
1165 	 * Ensure that if the updater misses an __srcu_read_unlock()
1166 	 * increment, that task's __srcu_read_lock() following its next
1167 	 * __srcu_read_lock() or __srcu_read_unlock() will see the above
1168 	 * counter update.  Note that both this memory barrier and the
1169 	 * one in srcu_readers_active_idx_check() provide the guarantee
1170 	 * for __srcu_read_lock().
1171 	 *
1172 	 * Note that this is a performance optimization, in which we spend
1173 	 * an otherwise unnecessary smp_mb() in order to reduce the number
1174 	 * of full per-CPU-variable scans in srcu_readers_lock_idx() and
1175 	 * srcu_readers_unlock_idx().  But this performance optimization
1176 	 * is not so optimal for SRCU-fast, where we would be spending
1177 	 * not smp_mb(), but rather synchronize_rcu().  At the same time,
1178 	 * the overhead of the smp_mb() is in the noise, so there is no
1179 	 * point in omitting it in the SRCU-fast case.  So the same code
1180 	 * is executed either way.
1181 	 */
1182 	smp_mb(); /* D */  /* Pairs with C. */
1183 }
1184 
1185 /*
1186  * If SRCU is likely idle, in other words, the next SRCU grace period
1187  * should be expedited, return true, otherwise return false.  Except that
1188  * in the presence of _lite() readers, always return false.
1189  *
1190  * Note that it is OK for several current from-idle requests for a new
1191  * grace period from idle to specify expediting because they will all end
1192  * up requesting the same grace period anyhow.  So no loss.
1193  *
1194  * Note also that if any CPU (including the current one) is still invoking
1195  * callbacks, this function will nevertheless say "idle".  This is not
1196  * ideal, but the overhead of checking all CPUs' callback lists is even
1197  * less ideal, especially on large systems.  Furthermore, the wakeup
1198  * can happen before the callback is fully removed, so we have no choice
1199  * but to accept this type of error.
1200  *
1201  * This function is also subject to counter-wrap errors, but let's face
1202  * it, if this function was preempted for enough time for the counters
1203  * to wrap, it really doesn't matter whether or not we expedite the grace
1204  * period.  The extra overhead of a needlessly expedited grace period is
1205  * negligible when amortized over that time period, and the extra latency
1206  * of a needlessly non-expedited grace period is similarly negligible.
1207  */
1208 static bool srcu_should_expedite(struct srcu_struct *ssp)
1209 {
1210 	unsigned long curseq;
1211 	unsigned long flags;
1212 	struct srcu_data *sdp;
1213 	unsigned long t;
1214 	unsigned long tlast;
1215 
1216 	check_init_srcu_struct(ssp);
1217 	/* If _lite() readers, don't do unsolicited expediting. */
1218 	if (this_cpu_read(ssp->sda->srcu_reader_flavor) & SRCU_READ_FLAVOR_SLOWGP)
1219 		return false;
1220 	/* If the local srcu_data structure has callbacks, not idle.  */
1221 	sdp = raw_cpu_ptr(ssp->sda);
1222 	spin_lock_irqsave_rcu_node(sdp, flags);
1223 	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
1224 		spin_unlock_irqrestore_rcu_node(sdp, flags);
1225 		return false; /* Callbacks already present, so not idle. */
1226 	}
1227 	spin_unlock_irqrestore_rcu_node(sdp, flags);
1228 
1229 	/*
1230 	 * No local callbacks, so probabilistically probe global state.
1231 	 * Exact information would require acquiring locks, which would
1232 	 * kill scalability, hence the probabilistic nature of the probe.
1233 	 */
1234 
1235 	/* First, see if enough time has passed since the last GP. */
1236 	t = ktime_get_mono_fast_ns();
1237 	tlast = READ_ONCE(ssp->srcu_sup->srcu_last_gp_end);
1238 	if (exp_holdoff == 0 ||
1239 	    time_in_range_open(t, tlast, tlast + exp_holdoff))
1240 		return false; /* Too soon after last GP. */
1241 
1242 	/* Next, check for probable idleness. */
1243 	curseq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
1244 	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
1245 	if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_sup->srcu_gp_seq_needed)))
1246 		return false; /* Grace period in progress, so not idle. */
1247 	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
1248 	if (curseq != rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq))
1249 		return false; /* GP # changed, so not idle. */
1250 	return true; /* With reasonable probability, idle! */
1251 }
1252 
1253 /*
1254  * SRCU callback function to leak a callback.
1255  */
1256 static void srcu_leak_callback(struct rcu_head *rhp)
1257 {
1258 }
1259 
1260 /*
1261  * Start an SRCU grace period, and also queue the callback if non-NULL.
1262  */
1263 static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp,
1264 					     struct rcu_head *rhp, bool do_norm)
1265 {
1266 	unsigned long flags;
1267 	int idx;
1268 	bool needexp = false;
1269 	bool needgp = false;
1270 	unsigned long s;
1271 	struct srcu_data *sdp;
1272 	struct srcu_node *sdp_mynode;
1273 	int ss_state;
1274 
1275 	check_init_srcu_struct(ssp);
1276 	/*
1277 	 * While starting a new grace period, make sure we are in an
1278 	 * SRCU read-side critical section so that the grace-period
1279 	 * sequence number cannot wrap around in the meantime.
1280 	 */
1281 	idx = __srcu_read_lock_nmisafe(ssp);
1282 	ss_state = smp_load_acquire(&ssp->srcu_sup->srcu_size_state);
1283 	if (ss_state < SRCU_SIZE_WAIT_CALL)
1284 		sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id());
1285 	else
1286 		sdp = raw_cpu_ptr(ssp->sda);
1287 	spin_lock_irqsave_sdp_contention(sdp, &flags);
1288 	if (rhp)
1289 		rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
1290 	/*
1291 	 * It's crucial to capture the snapshot 's' for acceleration before
1292 	 * reading the current gp_seq that is used for advancing. This is
1293 	 * essential because if the acceleration snapshot is taken after a
1294 	 * failed advancement attempt, there's a risk that a grace period may
1295 	 * conclude and a new one may start in the interim. If the snapshot is
1296 	 * captured after this sequence of events, the acceleration snapshot 's'
1297 	 * could be excessively advanced, leading to acceleration failure.
1298 	 * In such a scenario, an 'acceleration leak' can occur, where new
1299 	 * callbacks become indefinitely stuck in the RCU_NEXT_TAIL segment.
1300 	 * Also note that encountering advancing failures is a normal
1301 	 * occurrence when the grace period for RCU_WAIT_TAIL is in progress.
1302 	 *
1303 	 * To see this, consider the following events which occur if
1304 	 * rcu_seq_snap() were to be called after advance:
1305 	 *
1306 	 *  1) The RCU_WAIT_TAIL segment has callbacks (gp_num = X + 4) and the
1307 	 *     RCU_NEXT_READY_TAIL also has callbacks (gp_num = X + 8).
1308 	 *
1309 	 *  2) The grace period for RCU_WAIT_TAIL is seen as started but not
1310 	 *     completed so rcu_seq_current() returns X + SRCU_STATE_SCAN1.
1311 	 *
1312 	 *  3) This value is passed to rcu_segcblist_advance() which can't move
1313 	 *     any segment forward and fails.
1314 	 *
1315 	 *  4) srcu_gp_start_if_needed() still proceeds with callback acceleration.
1316 	 *     But then the call to rcu_seq_snap() observes the grace period for the
1317 	 *     RCU_WAIT_TAIL segment as completed and the subsequent one for the
1318 	 *     RCU_NEXT_READY_TAIL segment as started (ie: X + 4 + SRCU_STATE_SCAN1)
1319 	 *     so it returns a snapshot of the next grace period, which is X + 12.
1320 	 *
1321 	 *  5) The value of X + 12 is passed to rcu_segcblist_accelerate() but the
1322 	 *     freshly enqueued callback in RCU_NEXT_TAIL can't move to
1323 	 *     RCU_NEXT_READY_TAIL which already has callbacks for a previous grace
1324 	 *     period (gp_num = X + 8). So acceleration fails.
1325 	 */
1326 	s = rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
1327 	if (rhp) {
1328 		rcu_segcblist_advance(&sdp->srcu_cblist,
1329 				      rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
1330 		/*
1331 		 * Acceleration can never fail because the base current gp_seq
1332 		 * used for acceleration is <= the value of gp_seq used for
1333 		 * advancing. This means that RCU_NEXT_TAIL segment will
1334 		 * always be able to be emptied by the acceleration into the
1335 		 * RCU_NEXT_READY_TAIL or RCU_WAIT_TAIL segments.
1336 		 */
1337 		WARN_ON_ONCE(!rcu_segcblist_accelerate(&sdp->srcu_cblist, s));
1338 	}
1339 	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
1340 		sdp->srcu_gp_seq_needed = s;
1341 		needgp = true;
1342 	}
1343 	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
1344 		sdp->srcu_gp_seq_needed_exp = s;
1345 		needexp = true;
1346 	}
1347 	spin_unlock_irqrestore_rcu_node(sdp, flags);
1348 
1349 	/* Ensure that snp node tree is fully initialized before traversing it */
1350 	if (ss_state < SRCU_SIZE_WAIT_BARRIER)
1351 		sdp_mynode = NULL;
1352 	else
1353 		sdp_mynode = sdp->mynode;
1354 
1355 	if (needgp)
1356 		srcu_funnel_gp_start(ssp, sdp, s, do_norm);
1357 	else if (needexp)
1358 		srcu_funnel_exp_start(ssp, sdp_mynode, s);
1359 	__srcu_read_unlock_nmisafe(ssp, idx);
1360 	return s;
1361 }
1362 
1363 /*
1364  * Enqueue an SRCU callback on the srcu_data structure associated with
1365  * the current CPU and the specified srcu_struct structure, initiating
1366  * grace-period processing if it is not already running.
1367  *
1368  * Note that all CPUs must agree that the grace period extended beyond
1369  * all pre-existing SRCU read-side critical section.  On systems with
1370  * more than one CPU, this means that when "func()" is invoked, each CPU
1371  * is guaranteed to have executed a full memory barrier since the end of
1372  * its last corresponding SRCU read-side critical section whose beginning
1373  * preceded the call to call_srcu().  It also means that each CPU executing
1374  * an SRCU read-side critical section that continues beyond the start of
1375  * "func()" must have executed a memory barrier after the call_srcu()
1376  * but before the beginning of that SRCU read-side critical section.
1377  * Note that these guarantees include CPUs that are offline, idle, or
1378  * executing in user mode, as well as CPUs that are executing in the kernel.
1379  *
1380  * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
1381  * resulting SRCU callback function "func()", then both CPU A and CPU
1382  * B are guaranteed to execute a full memory barrier during the time
1383  * interval between the call to call_srcu() and the invocation of "func()".
1384  * This guarantee applies even if CPU A and CPU B are the same CPU (but
1385  * again only if the system has more than one CPU).
1386  *
1387  * Of course, these guarantees apply only for invocations of call_srcu(),
1388  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
1389  * srcu_struct structure.
1390  */
1391 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1392 			rcu_callback_t func, bool do_norm)
1393 {
1394 	if (debug_rcu_head_queue(rhp)) {
1395 		/* Probable double call_srcu(), so leak the callback. */
1396 		WRITE_ONCE(rhp->func, srcu_leak_callback);
1397 		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
1398 		return;
1399 	}
1400 	rhp->func = func;
1401 	(void)srcu_gp_start_if_needed(ssp, rhp, do_norm);
1402 }
1403 
1404 /**
1405  * call_srcu() - Queue a callback for invocation after an SRCU grace period
1406  * @ssp: srcu_struct in queue the callback
1407  * @rhp: structure to be used for queueing the SRCU callback.
1408  * @func: function to be invoked after the SRCU grace period
1409  *
1410  * The callback function will be invoked some time after a full SRCU
1411  * grace period elapses, in other words after all pre-existing SRCU
1412  * read-side critical sections have completed.  However, the callback
1413  * function might well execute concurrently with other SRCU read-side
1414  * critical sections that started after call_srcu() was invoked.  SRCU
1415  * read-side critical sections are delimited by srcu_read_lock() and
1416  * srcu_read_unlock(), and may be nested.
1417  *
1418  * The callback will be invoked from process context, but with bh
1419  * disabled.  The callback function must therefore be fast and must
1420  * not block.
1421  *
1422  * See the description of call_rcu() for more detailed information on
1423  * memory ordering guarantees.
1424  */
1425 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1426 	       rcu_callback_t func)
1427 {
1428 	__call_srcu(ssp, rhp, func, true);
1429 }
1430 EXPORT_SYMBOL_GPL(call_srcu);
1431 
1432 /*
1433  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
1434  */
1435 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
1436 {
1437 	struct rcu_synchronize rcu;
1438 
1439 	srcu_lock_sync(&ssp->dep_map);
1440 
1441 	RCU_LOCKDEP_WARN(lockdep_is_held(ssp) ||
1442 			 lock_is_held(&rcu_bh_lock_map) ||
1443 			 lock_is_held(&rcu_lock_map) ||
1444 			 lock_is_held(&rcu_sched_lock_map),
1445 			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
1446 
1447 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
1448 		return;
1449 	might_sleep();
1450 	check_init_srcu_struct(ssp);
1451 	init_completion(&rcu.completion);
1452 	init_rcu_head_on_stack(&rcu.head);
1453 	__call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
1454 	wait_for_completion(&rcu.completion);
1455 	destroy_rcu_head_on_stack(&rcu.head);
1456 
1457 	/*
1458 	 * Make sure that later code is ordered after the SRCU grace
1459 	 * period.  This pairs with the spin_lock_irq_rcu_node()
1460 	 * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
1461 	 * because the current CPU might have been totally uninvolved with
1462 	 * (and thus unordered against) that grace period.
1463 	 */
1464 	smp_mb();
1465 }
1466 
1467 /**
1468  * synchronize_srcu_expedited - Brute-force SRCU grace period
1469  * @ssp: srcu_struct with which to synchronize.
1470  *
1471  * Wait for an SRCU grace period to elapse, but be more aggressive about
1472  * spinning rather than blocking when waiting.
1473  *
1474  * Note that synchronize_srcu_expedited() has the same deadlock and
1475  * memory-ordering properties as does synchronize_srcu().
1476  */
1477 void synchronize_srcu_expedited(struct srcu_struct *ssp)
1478 {
1479 	__synchronize_srcu(ssp, rcu_gp_is_normal());
1480 }
1481 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
1482 
1483 /**
1484  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
1485  * @ssp: srcu_struct with which to synchronize.
1486  *
1487  * Wait for the count to drain to zero of both indexes. To avoid the
1488  * possible starvation of synchronize_srcu(), it waits for the count of
1489  * the index=!(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0]) to drain to zero
1490  * at first, and then flip the ->srcu_ctrp and wait for the count of the
1491  * other index.
1492  *
1493  * Can block; must be called from process context.
1494  *
1495  * Note that it is illegal to call synchronize_srcu() from the corresponding
1496  * SRCU read-side critical section; doing so will result in deadlock.
1497  * However, it is perfectly legal to call synchronize_srcu() on one
1498  * srcu_struct from some other srcu_struct's read-side critical section,
1499  * as long as the resulting graph of srcu_structs is acyclic.
1500  *
1501  * There are memory-ordering constraints implied by synchronize_srcu().
1502  * On systems with more than one CPU, when synchronize_srcu() returns,
1503  * each CPU is guaranteed to have executed a full memory barrier since
1504  * the end of its last corresponding SRCU read-side critical section
1505  * whose beginning preceded the call to synchronize_srcu().  In addition,
1506  * each CPU having an SRCU read-side critical section that extends beyond
1507  * the return from synchronize_srcu() is guaranteed to have executed a
1508  * full memory barrier after the beginning of synchronize_srcu() and before
1509  * the beginning of that SRCU read-side critical section.  Note that these
1510  * guarantees include CPUs that are offline, idle, or executing in user mode,
1511  * as well as CPUs that are executing in the kernel.
1512  *
1513  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
1514  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
1515  * to have executed a full memory barrier during the execution of
1516  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
1517  * are the same CPU, but again only if the system has more than one CPU.
1518  *
1519  * Of course, these memory-ordering guarantees apply only when
1520  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
1521  * passed the same srcu_struct structure.
1522  *
1523  * Implementation of these memory-ordering guarantees is similar to
1524  * that of synchronize_rcu().
1525  *
1526  * If SRCU is likely idle as determined by srcu_should_expedite(),
1527  * expedite the first request.  This semantic was provided by Classic SRCU,
1528  * and is relied upon by its users, so TREE SRCU must also provide it.
1529  * Note that detecting idleness is heuristic and subject to both false
1530  * positives and negatives.
1531  */
1532 void synchronize_srcu(struct srcu_struct *ssp)
1533 {
1534 	if (srcu_should_expedite(ssp) || rcu_gp_is_expedited())
1535 		synchronize_srcu_expedited(ssp);
1536 	else
1537 		__synchronize_srcu(ssp, true);
1538 }
1539 EXPORT_SYMBOL_GPL(synchronize_srcu);
1540 
1541 /**
1542  * get_state_synchronize_srcu - Provide an end-of-grace-period cookie
1543  * @ssp: srcu_struct to provide cookie for.
1544  *
1545  * This function returns a cookie that can be passed to
1546  * poll_state_synchronize_srcu(), which will return true if a full grace
1547  * period has elapsed in the meantime.  It is the caller's responsibility
1548  * to make sure that grace period happens, for example, by invoking
1549  * call_srcu() after return from get_state_synchronize_srcu().
1550  */
1551 unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp)
1552 {
1553 	// Any prior manipulation of SRCU-protected data must happen
1554 	// before the load from ->srcu_gp_seq.
1555 	smp_mb();
1556 	return rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
1557 }
1558 EXPORT_SYMBOL_GPL(get_state_synchronize_srcu);
1559 
1560 /**
1561  * start_poll_synchronize_srcu - Provide cookie and start grace period
1562  * @ssp: srcu_struct to provide cookie for.
1563  *
1564  * This function returns a cookie that can be passed to
1565  * poll_state_synchronize_srcu(), which will return true if a full grace
1566  * period has elapsed in the meantime.  Unlike get_state_synchronize_srcu(),
1567  * this function also ensures that any needed SRCU grace period will be
1568  * started.  This convenience does come at a cost in terms of CPU overhead.
1569  */
1570 unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp)
1571 {
1572 	return srcu_gp_start_if_needed(ssp, NULL, true);
1573 }
1574 EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu);
1575 
1576 /**
1577  * poll_state_synchronize_srcu - Has cookie's grace period ended?
1578  * @ssp: srcu_struct to provide cookie for.
1579  * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu().
1580  *
1581  * This function takes the cookie that was returned from either
1582  * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and
1583  * returns @true if an SRCU grace period elapsed since the time that the
1584  * cookie was created.
1585  *
1586  * Because cookies are finite in size, wrapping/overflow is possible.
1587  * This is more pronounced on 32-bit systems where cookies are 32 bits,
1588  * where in theory wrapping could happen in about 14 hours assuming
1589  * 25-microsecond expedited SRCU grace periods.  However, a more likely
1590  * overflow lower bound is on the order of 24 days in the case of
1591  * one-millisecond SRCU grace periods.  Of course, wrapping in a 64-bit
1592  * system requires geologic timespans, as in more than seven million years
1593  * even for expedited SRCU grace periods.
1594  *
1595  * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems
1596  * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU.  This uses
1597  * a 16-bit cookie, which rcutorture routinely wraps in a matter of a
1598  * few minutes.  If this proves to be a problem, this counter will be
1599  * expanded to the same size as for Tree SRCU.
1600  */
1601 bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie)
1602 {
1603 	if (cookie != SRCU_GET_STATE_COMPLETED &&
1604 	    !rcu_seq_done_exact(&ssp->srcu_sup->srcu_gp_seq, cookie))
1605 		return false;
1606 	// Ensure that the end of the SRCU grace period happens before
1607 	// any subsequent code that the caller might execute.
1608 	smp_mb(); // ^^^
1609 	return true;
1610 }
1611 EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu);
1612 
1613 /*
1614  * Callback function for srcu_barrier() use.
1615  */
1616 static void srcu_barrier_cb(struct rcu_head *rhp)
1617 {
1618 	struct srcu_data *sdp;
1619 	struct srcu_struct *ssp;
1620 
1621 	rhp->next = rhp; // Mark the callback as having been invoked.
1622 	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1623 	ssp = sdp->ssp;
1624 	if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
1625 		complete(&ssp->srcu_sup->srcu_barrier_completion);
1626 }
1627 
1628 /*
1629  * Enqueue an srcu_barrier() callback on the specified srcu_data
1630  * structure's ->cblist.  but only if that ->cblist already has at least one
1631  * callback enqueued.  Note that if a CPU already has callbacks enqueue,
1632  * it must have already registered the need for a future grace period,
1633  * so all we need do is enqueue a callback that will use the same grace
1634  * period as the last callback already in the queue.
1635  */
1636 static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp)
1637 {
1638 	spin_lock_irq_rcu_node(sdp);
1639 	atomic_inc(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
1640 	sdp->srcu_barrier_head.func = srcu_barrier_cb;
1641 	debug_rcu_head_queue(&sdp->srcu_barrier_head);
1642 	if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1643 				   &sdp->srcu_barrier_head)) {
1644 		debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1645 		atomic_dec(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
1646 	}
1647 	spin_unlock_irq_rcu_node(sdp);
1648 }
1649 
1650 /**
1651  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1652  * @ssp: srcu_struct on which to wait for in-flight callbacks.
1653  */
1654 void srcu_barrier(struct srcu_struct *ssp)
1655 {
1656 	int cpu;
1657 	int idx;
1658 	unsigned long s = rcu_seq_snap(&ssp->srcu_sup->srcu_barrier_seq);
1659 
1660 	check_init_srcu_struct(ssp);
1661 	mutex_lock(&ssp->srcu_sup->srcu_barrier_mutex);
1662 	if (rcu_seq_done(&ssp->srcu_sup->srcu_barrier_seq, s)) {
1663 		smp_mb(); /* Force ordering following return. */
1664 		mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
1665 		return; /* Someone else did our work for us. */
1666 	}
1667 	rcu_seq_start(&ssp->srcu_sup->srcu_barrier_seq);
1668 	init_completion(&ssp->srcu_sup->srcu_barrier_completion);
1669 
1670 	/* Initial count prevents reaching zero until all CBs are posted. */
1671 	atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 1);
1672 
1673 	idx = __srcu_read_lock_nmisafe(ssp);
1674 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1675 		srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda,	get_boot_cpu_id()));
1676 	else
1677 		for_each_possible_cpu(cpu)
1678 			srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu));
1679 	__srcu_read_unlock_nmisafe(ssp, idx);
1680 
1681 	/* Remove the initial count, at which point reaching zero can happen. */
1682 	if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
1683 		complete(&ssp->srcu_sup->srcu_barrier_completion);
1684 	wait_for_completion(&ssp->srcu_sup->srcu_barrier_completion);
1685 
1686 	rcu_seq_end(&ssp->srcu_sup->srcu_barrier_seq);
1687 	mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
1688 }
1689 EXPORT_SYMBOL_GPL(srcu_barrier);
1690 
1691 /**
1692  * srcu_batches_completed - return batches completed.
1693  * @ssp: srcu_struct on which to report batch completion.
1694  *
1695  * Report the number of batches, correlated with, but not necessarily
1696  * precisely the same as, the number of grace periods that have elapsed.
1697  */
1698 unsigned long srcu_batches_completed(struct srcu_struct *ssp)
1699 {
1700 	return READ_ONCE(ssp->srcu_sup->srcu_gp_seq);
1701 }
1702 EXPORT_SYMBOL_GPL(srcu_batches_completed);
1703 
1704 /*
1705  * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1706  * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1707  * completed in that state.
1708  */
1709 static void srcu_advance_state(struct srcu_struct *ssp)
1710 {
1711 	int idx;
1712 
1713 	mutex_lock(&ssp->srcu_sup->srcu_gp_mutex);
1714 
1715 	/*
1716 	 * Because readers might be delayed for an extended period after
1717 	 * fetching ->srcu_ctrp for their index, at any point in time there
1718 	 * might well be readers using both idx=0 and idx=1.  We therefore
1719 	 * need to wait for readers to clear from both index values before
1720 	 * invoking a callback.
1721 	 *
1722 	 * The load-acquire ensures that we see the accesses performed
1723 	 * by the prior grace period.
1724 	 */
1725 	idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq)); /* ^^^ */
1726 	if (idx == SRCU_STATE_IDLE) {
1727 		spin_lock_irq_rcu_node(ssp->srcu_sup);
1728 		if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
1729 			WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq));
1730 			spin_unlock_irq_rcu_node(ssp->srcu_sup);
1731 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1732 			return;
1733 		}
1734 		idx = rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq));
1735 		if (idx == SRCU_STATE_IDLE)
1736 			srcu_gp_start(ssp);
1737 		spin_unlock_irq_rcu_node(ssp->srcu_sup);
1738 		if (idx != SRCU_STATE_IDLE) {
1739 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1740 			return; /* Someone else started the grace period. */
1741 		}
1742 	}
1743 
1744 	if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1745 		idx = !(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0]);
1746 		if (!try_check_zero(ssp, idx, 1)) {
1747 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1748 			return; /* readers present, retry later. */
1749 		}
1750 		srcu_flip(ssp);
1751 		spin_lock_irq_rcu_node(ssp->srcu_sup);
1752 		rcu_seq_set_state(&ssp->srcu_sup->srcu_gp_seq, SRCU_STATE_SCAN2);
1753 		ssp->srcu_sup->srcu_n_exp_nodelay = 0;
1754 		spin_unlock_irq_rcu_node(ssp->srcu_sup);
1755 	}
1756 
1757 	if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1758 
1759 		/*
1760 		 * SRCU read-side critical sections are normally short,
1761 		 * so check at least twice in quick succession after a flip.
1762 		 */
1763 		idx = !(ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0]);
1764 		if (!try_check_zero(ssp, idx, 2)) {
1765 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1766 			return; /* readers present, retry later. */
1767 		}
1768 		ssp->srcu_sup->srcu_n_exp_nodelay = 0;
1769 		srcu_gp_end(ssp);  /* Releases ->srcu_gp_mutex. */
1770 	}
1771 }
1772 
1773 /*
1774  * Invoke a limited number of SRCU callbacks that have passed through
1775  * their grace period.  If there are more to do, SRCU will reschedule
1776  * the workqueue.  Note that needed memory barriers have been executed
1777  * in this task's context by srcu_readers_active_idx_check().
1778  */
1779 static void srcu_invoke_callbacks(struct work_struct *work)
1780 {
1781 	long len;
1782 	bool more;
1783 	struct rcu_cblist ready_cbs;
1784 	struct rcu_head *rhp;
1785 	struct srcu_data *sdp;
1786 	struct srcu_struct *ssp;
1787 
1788 	sdp = container_of(work, struct srcu_data, work);
1789 
1790 	ssp = sdp->ssp;
1791 	rcu_cblist_init(&ready_cbs);
1792 	spin_lock_irq_rcu_node(sdp);
1793 	WARN_ON_ONCE(!rcu_segcblist_segempty(&sdp->srcu_cblist, RCU_NEXT_TAIL));
1794 	rcu_segcblist_advance(&sdp->srcu_cblist,
1795 			      rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
1796 	/*
1797 	 * Although this function is theoretically re-entrant, concurrent
1798 	 * callbacks invocation is disallowed to avoid executing an SRCU barrier
1799 	 * too early.
1800 	 */
1801 	if (sdp->srcu_cblist_invoking ||
1802 	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1803 		spin_unlock_irq_rcu_node(sdp);
1804 		return;  /* Someone else on the job or nothing to do. */
1805 	}
1806 
1807 	/* We are on the job!  Extract and invoke ready callbacks. */
1808 	sdp->srcu_cblist_invoking = true;
1809 	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1810 	len = ready_cbs.len;
1811 	spin_unlock_irq_rcu_node(sdp);
1812 	rhp = rcu_cblist_dequeue(&ready_cbs);
1813 	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1814 		debug_rcu_head_unqueue(rhp);
1815 		debug_rcu_head_callback(rhp);
1816 		local_bh_disable();
1817 		rhp->func(rhp);
1818 		local_bh_enable();
1819 	}
1820 	WARN_ON_ONCE(ready_cbs.len);
1821 
1822 	/*
1823 	 * Update counts, accelerate new callbacks, and if needed,
1824 	 * schedule another round of callback invocation.
1825 	 */
1826 	spin_lock_irq_rcu_node(sdp);
1827 	rcu_segcblist_add_len(&sdp->srcu_cblist, -len);
1828 	sdp->srcu_cblist_invoking = false;
1829 	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1830 	spin_unlock_irq_rcu_node(sdp);
1831 	/* An SRCU barrier or callbacks from previous nesting work pending */
1832 	if (more)
1833 		srcu_schedule_cbs_sdp(sdp, 0);
1834 }
1835 
1836 /*
1837  * Finished one round of SRCU grace period.  Start another if there are
1838  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1839  */
1840 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
1841 {
1842 	bool pushgp = true;
1843 
1844 	spin_lock_irq_rcu_node(ssp->srcu_sup);
1845 	if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
1846 		if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq))) {
1847 			/* All requests fulfilled, time to go idle. */
1848 			pushgp = false;
1849 		}
1850 	} else if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)) {
1851 		/* Outstanding request and no GP.  Start one. */
1852 		srcu_gp_start(ssp);
1853 	}
1854 	spin_unlock_irq_rcu_node(ssp->srcu_sup);
1855 
1856 	if (pushgp)
1857 		queue_delayed_work(rcu_gp_wq, &ssp->srcu_sup->work, delay);
1858 }
1859 
1860 /*
1861  * This is the work-queue function that handles SRCU grace periods.
1862  */
1863 static void process_srcu(struct work_struct *work)
1864 {
1865 	unsigned long curdelay;
1866 	unsigned long j;
1867 	struct srcu_struct *ssp;
1868 	struct srcu_usage *sup;
1869 
1870 	sup = container_of(work, struct srcu_usage, work.work);
1871 	ssp = sup->srcu_ssp;
1872 
1873 	srcu_advance_state(ssp);
1874 	spin_lock_irq_rcu_node(ssp->srcu_sup);
1875 	curdelay = srcu_get_delay(ssp);
1876 	spin_unlock_irq_rcu_node(ssp->srcu_sup);
1877 	if (curdelay) {
1878 		WRITE_ONCE(sup->reschedule_count, 0);
1879 	} else {
1880 		j = jiffies;
1881 		if (READ_ONCE(sup->reschedule_jiffies) == j) {
1882 			ASSERT_EXCLUSIVE_WRITER(sup->reschedule_count);
1883 			WRITE_ONCE(sup->reschedule_count, READ_ONCE(sup->reschedule_count) + 1);
1884 			if (READ_ONCE(sup->reschedule_count) > srcu_max_nodelay)
1885 				curdelay = 1;
1886 		} else {
1887 			WRITE_ONCE(sup->reschedule_count, 1);
1888 			WRITE_ONCE(sup->reschedule_jiffies, j);
1889 		}
1890 	}
1891 	srcu_reschedule(ssp, curdelay);
1892 }
1893 
1894 void srcutorture_get_gp_data(struct srcu_struct *ssp, int *flags,
1895 			     unsigned long *gp_seq)
1896 {
1897 	*flags = 0;
1898 	*gp_seq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
1899 }
1900 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1901 
1902 static const char * const srcu_size_state_name[] = {
1903 	"SRCU_SIZE_SMALL",
1904 	"SRCU_SIZE_ALLOC",
1905 	"SRCU_SIZE_WAIT_BARRIER",
1906 	"SRCU_SIZE_WAIT_CALL",
1907 	"SRCU_SIZE_WAIT_CBS1",
1908 	"SRCU_SIZE_WAIT_CBS2",
1909 	"SRCU_SIZE_WAIT_CBS3",
1910 	"SRCU_SIZE_WAIT_CBS4",
1911 	"SRCU_SIZE_BIG",
1912 	"SRCU_SIZE_???",
1913 };
1914 
1915 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
1916 {
1917 	int cpu;
1918 	int idx;
1919 	unsigned long s0 = 0, s1 = 0;
1920 	int ss_state = READ_ONCE(ssp->srcu_sup->srcu_size_state);
1921 	int ss_state_idx = ss_state;
1922 
1923 	idx = ssp->srcu_ctrp - &ssp->sda->srcu_ctrs[0];
1924 	if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name))
1925 		ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1;
1926 	pr_alert("%s%s Tree SRCU g%ld state %d (%s)",
1927 		 tt, tf, rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq), ss_state,
1928 		 srcu_size_state_name[ss_state_idx]);
1929 	if (!ssp->sda) {
1930 		// Called after cleanup_srcu_struct(), perhaps.
1931 		pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n");
1932 	} else {
1933 		pr_cont(" per-CPU(idx=%d):", idx);
1934 		for_each_possible_cpu(cpu) {
1935 			unsigned long l0, l1;
1936 			unsigned long u0, u1;
1937 			long c0, c1;
1938 			struct srcu_data *sdp;
1939 
1940 			sdp = per_cpu_ptr(ssp->sda, cpu);
1941 			u0 = data_race(atomic_long_read(&sdp->srcu_ctrs[!idx].srcu_unlocks));
1942 			u1 = data_race(atomic_long_read(&sdp->srcu_ctrs[idx].srcu_unlocks));
1943 
1944 			/*
1945 			 * Make sure that a lock is always counted if the corresponding
1946 			 * unlock is counted.
1947 			 */
1948 			smp_rmb();
1949 
1950 			l0 = data_race(atomic_long_read(&sdp->srcu_ctrs[!idx].srcu_locks));
1951 			l1 = data_race(atomic_long_read(&sdp->srcu_ctrs[idx].srcu_locks));
1952 
1953 			c0 = l0 - u0;
1954 			c1 = l1 - u1;
1955 			pr_cont(" %d(%ld,%ld %c)",
1956 				cpu, c0, c1,
1957 				"C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
1958 			s0 += c0;
1959 			s1 += c1;
1960 		}
1961 		pr_cont(" T(%ld,%ld)\n", s0, s1);
1962 	}
1963 	if (SRCU_SIZING_IS_TORTURE())
1964 		srcu_transition_to_big(ssp);
1965 }
1966 EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1967 
1968 static int __init srcu_bootup_announce(void)
1969 {
1970 	pr_info("Hierarchical SRCU implementation.\n");
1971 	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1972 		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1973 	if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY)
1974 		pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay);
1975 	if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY)
1976 		pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay);
1977 	pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase);
1978 	return 0;
1979 }
1980 early_initcall(srcu_bootup_announce);
1981 
1982 void __init srcu_init(void)
1983 {
1984 	struct srcu_usage *sup;
1985 
1986 	/* Decide on srcu_struct-size strategy. */
1987 	if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) {
1988 		if (nr_cpu_ids >= big_cpu_lim) {
1989 			convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention.
1990 			pr_info("%s: Setting srcu_struct sizes to big.\n", __func__);
1991 		} else {
1992 			convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND;
1993 			pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__);
1994 		}
1995 	}
1996 
1997 	/*
1998 	 * Once that is set, call_srcu() can follow the normal path and
1999 	 * queue delayed work. This must follow RCU workqueues creation
2000 	 * and timers initialization.
2001 	 */
2002 	srcu_init_done = true;
2003 	while (!list_empty(&srcu_boot_list)) {
2004 		sup = list_first_entry(&srcu_boot_list, struct srcu_usage,
2005 				      work.work.entry);
2006 		list_del_init(&sup->work.work.entry);
2007 		if (SRCU_SIZING_IS(SRCU_SIZING_INIT) &&
2008 		    sup->srcu_size_state == SRCU_SIZE_SMALL)
2009 			sup->srcu_size_state = SRCU_SIZE_ALLOC;
2010 		queue_work(rcu_gp_wq, &sup->work.work);
2011 	}
2012 }
2013 
2014 #ifdef CONFIG_MODULES
2015 
2016 /* Initialize any global-scope srcu_struct structures used by this module. */
2017 static int srcu_module_coming(struct module *mod)
2018 {
2019 	int i;
2020 	struct srcu_struct *ssp;
2021 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
2022 
2023 	for (i = 0; i < mod->num_srcu_structs; i++) {
2024 		ssp = *(sspp++);
2025 		ssp->sda = alloc_percpu(struct srcu_data);
2026 		if (WARN_ON_ONCE(!ssp->sda))
2027 			return -ENOMEM;
2028 		ssp->srcu_ctrp = &ssp->sda->srcu_ctrs[0];
2029 	}
2030 	return 0;
2031 }
2032 
2033 /* Clean up any global-scope srcu_struct structures used by this module. */
2034 static void srcu_module_going(struct module *mod)
2035 {
2036 	int i;
2037 	struct srcu_struct *ssp;
2038 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
2039 
2040 	for (i = 0; i < mod->num_srcu_structs; i++) {
2041 		ssp = *(sspp++);
2042 		if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed)) &&
2043 		    !WARN_ON_ONCE(!ssp->srcu_sup->sda_is_static))
2044 			cleanup_srcu_struct(ssp);
2045 		if (!WARN_ON(srcu_readers_active(ssp)))
2046 			free_percpu(ssp->sda);
2047 	}
2048 }
2049 
2050 /* Handle one module, either coming or going. */
2051 static int srcu_module_notify(struct notifier_block *self,
2052 			      unsigned long val, void *data)
2053 {
2054 	struct module *mod = data;
2055 	int ret = 0;
2056 
2057 	switch (val) {
2058 	case MODULE_STATE_COMING:
2059 		ret = srcu_module_coming(mod);
2060 		break;
2061 	case MODULE_STATE_GOING:
2062 		srcu_module_going(mod);
2063 		break;
2064 	default:
2065 		break;
2066 	}
2067 	return ret;
2068 }
2069 
2070 static struct notifier_block srcu_module_nb = {
2071 	.notifier_call = srcu_module_notify,
2072 	.priority = 0,
2073 };
2074 
2075 static __init int init_srcu_module_notifier(void)
2076 {
2077 	int ret;
2078 
2079 	ret = register_module_notifier(&srcu_module_nb);
2080 	if (ret)
2081 		pr_warn("Failed to register srcu module notifier\n");
2082 	return ret;
2083 }
2084 late_initcall(init_srcu_module_notifier);
2085 
2086 #endif /* #ifdef CONFIG_MODULES */
2087