1 // SPDX-License-Identifier: GPL-2.0-only
2
3 #ifndef KVM_X86_MMU_SPTE_H
4 #define KVM_X86_MMU_SPTE_H
5
6 #include <asm/vmx.h>
7
8 #include "mmu.h"
9 #include "mmu_internal.h"
10
11 /*
12 * A MMU present SPTE is backed by actual memory and may or may not be present
13 * in hardware. E.g. MMIO SPTEs are not considered present. Use bit 11, as it
14 * is ignored by all flavors of SPTEs and checking a low bit often generates
15 * better code than for a high bit, e.g. 56+. MMU present checks are pervasive
16 * enough that the improved code generation is noticeable in KVM's footprint.
17 */
18 #define SPTE_MMU_PRESENT_MASK BIT_ULL(11)
19
20 /*
21 * TDP SPTES (more specifically, EPT SPTEs) may not have A/D bits, and may also
22 * be restricted to using write-protection (for L2 when CPU dirty logging, i.e.
23 * PML, is enabled). Use bits 52 and 53 to hold the type of A/D tracking that
24 * is must be employed for a given TDP SPTE.
25 *
26 * Note, the "enabled" mask must be '0', as bits 62:52 are _reserved_ for PAE
27 * paging, including NPT PAE. This scheme works because legacy shadow paging
28 * is guaranteed to have A/D bits and write-protection is forced only for
29 * TDP with CPU dirty logging (PML). If NPT ever gains PML-like support, it
30 * must be restricted to 64-bit KVM.
31 */
32 #define SPTE_TDP_AD_SHIFT 52
33 #define SPTE_TDP_AD_MASK (3ULL << SPTE_TDP_AD_SHIFT)
34 #define SPTE_TDP_AD_ENABLED (0ULL << SPTE_TDP_AD_SHIFT)
35 #define SPTE_TDP_AD_DISABLED (1ULL << SPTE_TDP_AD_SHIFT)
36 #define SPTE_TDP_AD_WRPROT_ONLY (2ULL << SPTE_TDP_AD_SHIFT)
37 static_assert(SPTE_TDP_AD_ENABLED == 0);
38
39 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
40 #define SPTE_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
41 #else
42 #define SPTE_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
43 #endif
44
45 #define SPTE_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
46 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
47
48 #define ACC_EXEC_MASK 1
49 #define ACC_WRITE_MASK PT_WRITABLE_MASK
50 #define ACC_USER_MASK PT_USER_MASK
51 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
52
53 /* The mask for the R/X bits in EPT PTEs */
54 #define SPTE_EPT_READABLE_MASK 0x1ull
55 #define SPTE_EPT_EXECUTABLE_MASK 0x4ull
56
57 #define SPTE_LEVEL_BITS 9
58 #define SPTE_LEVEL_SHIFT(level) __PT_LEVEL_SHIFT(level, SPTE_LEVEL_BITS)
59 #define SPTE_INDEX(address, level) __PT_INDEX(address, level, SPTE_LEVEL_BITS)
60 #define SPTE_ENT_PER_PAGE __PT_ENT_PER_PAGE(SPTE_LEVEL_BITS)
61
62 /*
63 * The mask/shift to use for saving the original R/X bits when marking the PTE
64 * as not-present for access tracking purposes. We do not save the W bit as the
65 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
66 * restored only when a write is attempted to the page. This mask obviously
67 * must not overlap the A/D type mask.
68 */
69 #define SHADOW_ACC_TRACK_SAVED_BITS_MASK (SPTE_EPT_READABLE_MASK | \
70 SPTE_EPT_EXECUTABLE_MASK)
71 #define SHADOW_ACC_TRACK_SAVED_BITS_SHIFT 54
72 #define SHADOW_ACC_TRACK_SAVED_MASK (SHADOW_ACC_TRACK_SAVED_BITS_MASK << \
73 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
74 static_assert(!(SPTE_TDP_AD_MASK & SHADOW_ACC_TRACK_SAVED_MASK));
75
76 /*
77 * {DEFAULT,EPT}_SPTE_{HOST,MMU}_WRITABLE are used to keep track of why a given
78 * SPTE is write-protected. See is_writable_pte() for details.
79 */
80
81 /* Bits 9 and 10 are ignored by all non-EPT PTEs. */
82 #define DEFAULT_SPTE_HOST_WRITABLE BIT_ULL(9)
83 #define DEFAULT_SPTE_MMU_WRITABLE BIT_ULL(10)
84
85 /*
86 * Low ignored bits are at a premium for EPT, use high ignored bits, taking care
87 * to not overlap the A/D type mask or the saved access bits of access-tracked
88 * SPTEs when A/D bits are disabled.
89 */
90 #define EPT_SPTE_HOST_WRITABLE BIT_ULL(57)
91 #define EPT_SPTE_MMU_WRITABLE BIT_ULL(58)
92
93 static_assert(!(EPT_SPTE_HOST_WRITABLE & SPTE_TDP_AD_MASK));
94 static_assert(!(EPT_SPTE_MMU_WRITABLE & SPTE_TDP_AD_MASK));
95 static_assert(!(EPT_SPTE_HOST_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK));
96 static_assert(!(EPT_SPTE_MMU_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK));
97
98 /* Defined only to keep the above static asserts readable. */
99 #undef SHADOW_ACC_TRACK_SAVED_MASK
100
101 /*
102 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
103 * the memslots generation and is derived as follows:
104 *
105 * Bits 0-7 of the MMIO generation are propagated to spte bits 3-10
106 * Bits 8-18 of the MMIO generation are propagated to spte bits 52-62
107 *
108 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
109 * the MMIO generation number, as doing so would require stealing a bit from
110 * the "real" generation number and thus effectively halve the maximum number
111 * of MMIO generations that can be handled before encountering a wrap (which
112 * requires a full MMU zap). The flag is instead explicitly queried when
113 * checking for MMIO spte cache hits.
114 */
115
116 #define MMIO_SPTE_GEN_LOW_START 3
117 #define MMIO_SPTE_GEN_LOW_END 10
118
119 #define MMIO_SPTE_GEN_HIGH_START 52
120 #define MMIO_SPTE_GEN_HIGH_END 62
121
122 #define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
123 MMIO_SPTE_GEN_LOW_START)
124 #define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
125 MMIO_SPTE_GEN_HIGH_START)
126 static_assert(!(SPTE_MMU_PRESENT_MASK &
127 (MMIO_SPTE_GEN_LOW_MASK | MMIO_SPTE_GEN_HIGH_MASK)));
128
129 /*
130 * The SPTE MMIO mask must NOT overlap the MMIO generation bits or the
131 * MMU-present bit. The generation obviously co-exists with the magic MMIO
132 * mask/value, and MMIO SPTEs are considered !MMU-present.
133 *
134 * The SPTE MMIO mask is allowed to use hardware "present" bits (i.e. all EPT
135 * RWX bits), all physical address bits (legal PA bits are used for "fast" MMIO
136 * and so they're off-limits for generation; additional checks ensure the mask
137 * doesn't overlap legal PA bits), and bit 63 (carved out for future usage).
138 */
139 #define SPTE_MMIO_ALLOWED_MASK (BIT_ULL(63) | GENMASK_ULL(51, 12) | GENMASK_ULL(2, 0))
140 static_assert(!(SPTE_MMIO_ALLOWED_MASK &
141 (SPTE_MMU_PRESENT_MASK | MMIO_SPTE_GEN_LOW_MASK | MMIO_SPTE_GEN_HIGH_MASK)));
142
143 #define MMIO_SPTE_GEN_LOW_BITS (MMIO_SPTE_GEN_LOW_END - MMIO_SPTE_GEN_LOW_START + 1)
144 #define MMIO_SPTE_GEN_HIGH_BITS (MMIO_SPTE_GEN_HIGH_END - MMIO_SPTE_GEN_HIGH_START + 1)
145
146 /* remember to adjust the comment above as well if you change these */
147 static_assert(MMIO_SPTE_GEN_LOW_BITS == 8 && MMIO_SPTE_GEN_HIGH_BITS == 11);
148
149 #define MMIO_SPTE_GEN_LOW_SHIFT (MMIO_SPTE_GEN_LOW_START - 0)
150 #define MMIO_SPTE_GEN_HIGH_SHIFT (MMIO_SPTE_GEN_HIGH_START - MMIO_SPTE_GEN_LOW_BITS)
151
152 #define MMIO_SPTE_GEN_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_BITS + MMIO_SPTE_GEN_HIGH_BITS - 1, 0)
153
154 /*
155 * Non-present SPTE value needs to set bit 63 for TDX, in order to suppress
156 * #VE and get EPT violations on non-present PTEs. We can use the
157 * same value also without TDX for both VMX and SVM:
158 *
159 * For SVM NPT, for non-present spte (bit 0 = 0), other bits are ignored.
160 * For VMX EPT, bit 63 is ignored if #VE is disabled. (EPT_VIOLATION_VE=0)
161 * bit 63 is #VE suppress if #VE is enabled. (EPT_VIOLATION_VE=1)
162 */
163 #ifdef CONFIG_X86_64
164 #define SHADOW_NONPRESENT_VALUE BIT_ULL(63)
165 static_assert(!(SHADOW_NONPRESENT_VALUE & SPTE_MMU_PRESENT_MASK));
166 #else
167 #define SHADOW_NONPRESENT_VALUE 0ULL
168 #endif
169
170
171 /*
172 * True if A/D bits are supported in hardware and are enabled by KVM. When
173 * enabled, KVM uses A/D bits for all non-nested MMUs. Because L1 can disable
174 * A/D bits in EPTP12, SP and SPTE variants are needed to handle the scenario
175 * where KVM is using A/D bits for L1, but not L2.
176 */
177 extern bool __read_mostly kvm_ad_enabled;
178
179 extern u64 __read_mostly shadow_host_writable_mask;
180 extern u64 __read_mostly shadow_mmu_writable_mask;
181 extern u64 __read_mostly shadow_nx_mask;
182 extern u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
183 extern u64 __read_mostly shadow_user_mask;
184 extern u64 __read_mostly shadow_accessed_mask;
185 extern u64 __read_mostly shadow_dirty_mask;
186 extern u64 __read_mostly shadow_mmio_value;
187 extern u64 __read_mostly shadow_mmio_mask;
188 extern u64 __read_mostly shadow_mmio_access_mask;
189 extern u64 __read_mostly shadow_present_mask;
190 extern u64 __read_mostly shadow_me_value;
191 extern u64 __read_mostly shadow_me_mask;
192
193 /*
194 * SPTEs in MMUs without A/D bits are marked with SPTE_TDP_AD_DISABLED;
195 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
196 * pages.
197 */
198 extern u64 __read_mostly shadow_acc_track_mask;
199
200 /*
201 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
202 * to guard against L1TF attacks.
203 */
204 extern u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
205
206 /*
207 * The number of high-order 1 bits to use in the mask above.
208 */
209 #define SHADOW_NONPRESENT_OR_RSVD_MASK_LEN 5
210
211 /*
212 * If a thread running without exclusive control of the MMU lock must perform a
213 * multi-part operation on an SPTE, it can set the SPTE to FROZEN_SPTE as a
214 * non-present intermediate value. Other threads which encounter this value
215 * should not modify the SPTE.
216 *
217 * Use a semi-arbitrary value that doesn't set RWX bits, i.e. is not-present on
218 * both AMD and Intel CPUs, and doesn't set PFN bits, i.e. doesn't create a L1TF
219 * vulnerability.
220 *
221 * Only used by the TDP MMU.
222 */
223 #define FROZEN_SPTE (SHADOW_NONPRESENT_VALUE | 0x5a0ULL)
224
225 /* Frozen SPTEs must not be misconstrued as shadow present PTEs. */
226 static_assert(!(FROZEN_SPTE & SPTE_MMU_PRESENT_MASK));
227
is_frozen_spte(u64 spte)228 static inline bool is_frozen_spte(u64 spte)
229 {
230 return spte == FROZEN_SPTE;
231 }
232
233 /* Get an SPTE's index into its parent's page table (and the spt array). */
spte_index(u64 * sptep)234 static inline int spte_index(u64 *sptep)
235 {
236 return ((unsigned long)sptep / sizeof(*sptep)) & (SPTE_ENT_PER_PAGE - 1);
237 }
238
239 /*
240 * In some cases, we need to preserve the GFN of a non-present or reserved
241 * SPTE when we usurp the upper five bits of the physical address space to
242 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
243 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
244 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
245 * high and low parts. This mask covers the lower bits of the GFN.
246 */
247 extern u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
248
kvm_mmu_get_dummy_root(void)249 static inline hpa_t kvm_mmu_get_dummy_root(void)
250 {
251 return my_zero_pfn(0) << PAGE_SHIFT;
252 }
253
kvm_mmu_is_dummy_root(hpa_t shadow_page)254 static inline bool kvm_mmu_is_dummy_root(hpa_t shadow_page)
255 {
256 return is_zero_pfn(shadow_page >> PAGE_SHIFT);
257 }
258
to_shadow_page(hpa_t shadow_page)259 static inline struct kvm_mmu_page *to_shadow_page(hpa_t shadow_page)
260 {
261 struct page *page = pfn_to_page((shadow_page) >> PAGE_SHIFT);
262
263 return (struct kvm_mmu_page *)page_private(page);
264 }
265
spte_to_child_sp(u64 spte)266 static inline struct kvm_mmu_page *spte_to_child_sp(u64 spte)
267 {
268 return to_shadow_page(spte & SPTE_BASE_ADDR_MASK);
269 }
270
sptep_to_sp(u64 * sptep)271 static inline struct kvm_mmu_page *sptep_to_sp(u64 *sptep)
272 {
273 return to_shadow_page(__pa(sptep));
274 }
275
root_to_sp(hpa_t root)276 static inline struct kvm_mmu_page *root_to_sp(hpa_t root)
277 {
278 if (kvm_mmu_is_dummy_root(root))
279 return NULL;
280
281 /*
282 * The "root" may be a special root, e.g. a PAE entry, treat it as a
283 * SPTE to ensure any non-PA bits are dropped.
284 */
285 return spte_to_child_sp(root);
286 }
287
is_mirror_sptep(tdp_ptep_t sptep)288 static inline bool is_mirror_sptep(tdp_ptep_t sptep)
289 {
290 return is_mirror_sp(sptep_to_sp(rcu_dereference(sptep)));
291 }
292
kvm_vcpu_can_access_host_mmio(struct kvm_vcpu * vcpu)293 static inline bool kvm_vcpu_can_access_host_mmio(struct kvm_vcpu *vcpu)
294 {
295 struct kvm_mmu_page *root = root_to_sp(vcpu->arch.mmu->root.hpa);
296
297 if (root)
298 return READ_ONCE(root->has_mapped_host_mmio);
299
300 return READ_ONCE(vcpu->kvm->arch.has_mapped_host_mmio);
301 }
302
is_mmio_spte(struct kvm * kvm,u64 spte)303 static inline bool is_mmio_spte(struct kvm *kvm, u64 spte)
304 {
305 return (spte & shadow_mmio_mask) == kvm->arch.shadow_mmio_value &&
306 likely(enable_mmio_caching);
307 }
308
is_shadow_present_pte(u64 pte)309 static inline bool is_shadow_present_pte(u64 pte)
310 {
311 return !!(pte & SPTE_MMU_PRESENT_MASK);
312 }
313
is_ept_ve_possible(u64 spte)314 static inline bool is_ept_ve_possible(u64 spte)
315 {
316 return (shadow_present_mask & VMX_EPT_SUPPRESS_VE_BIT) &&
317 !(spte & VMX_EPT_SUPPRESS_VE_BIT) &&
318 (spte & VMX_EPT_RWX_MASK) != VMX_EPT_MISCONFIG_WX_VALUE;
319 }
320
sp_ad_disabled(struct kvm_mmu_page * sp)321 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
322 {
323 return sp->role.ad_disabled;
324 }
325
spte_ad_enabled(u64 spte)326 static inline bool spte_ad_enabled(u64 spte)
327 {
328 KVM_MMU_WARN_ON(!is_shadow_present_pte(spte));
329 return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_DISABLED;
330 }
331
spte_ad_need_write_protect(u64 spte)332 static inline bool spte_ad_need_write_protect(u64 spte)
333 {
334 KVM_MMU_WARN_ON(!is_shadow_present_pte(spte));
335 /*
336 * This is benign for non-TDP SPTEs as SPTE_TDP_AD_ENABLED is '0',
337 * and non-TDP SPTEs will never set these bits. Optimize for 64-bit
338 * TDP and do the A/D type check unconditionally.
339 */
340 return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_ENABLED;
341 }
342
is_access_track_spte(u64 spte)343 static inline bool is_access_track_spte(u64 spte)
344 {
345 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
346 }
347
is_large_pte(u64 pte)348 static inline bool is_large_pte(u64 pte)
349 {
350 return pte & PT_PAGE_SIZE_MASK;
351 }
352
is_last_spte(u64 pte,int level)353 static inline bool is_last_spte(u64 pte, int level)
354 {
355 return (level == PG_LEVEL_4K) || is_large_pte(pte);
356 }
357
is_executable_pte(u64 spte)358 static inline bool is_executable_pte(u64 spte)
359 {
360 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
361 }
362
spte_to_pfn(u64 pte)363 static inline kvm_pfn_t spte_to_pfn(u64 pte)
364 {
365 return (pte & SPTE_BASE_ADDR_MASK) >> PAGE_SHIFT;
366 }
367
is_accessed_spte(u64 spte)368 static inline bool is_accessed_spte(u64 spte)
369 {
370 return spte & shadow_accessed_mask;
371 }
372
get_rsvd_bits(struct rsvd_bits_validate * rsvd_check,u64 pte,int level)373 static inline u64 get_rsvd_bits(struct rsvd_bits_validate *rsvd_check, u64 pte,
374 int level)
375 {
376 int bit7 = (pte >> 7) & 1;
377
378 return rsvd_check->rsvd_bits_mask[bit7][level-1];
379 }
380
__is_rsvd_bits_set(struct rsvd_bits_validate * rsvd_check,u64 pte,int level)381 static inline bool __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check,
382 u64 pte, int level)
383 {
384 return pte & get_rsvd_bits(rsvd_check, pte, level);
385 }
386
__is_bad_mt_xwr(struct rsvd_bits_validate * rsvd_check,u64 pte)387 static inline bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check,
388 u64 pte)
389 {
390 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
391 }
392
is_rsvd_spte(struct rsvd_bits_validate * rsvd_check,u64 spte,int level)393 static __always_inline bool is_rsvd_spte(struct rsvd_bits_validate *rsvd_check,
394 u64 spte, int level)
395 {
396 return __is_bad_mt_xwr(rsvd_check, spte) ||
397 __is_rsvd_bits_set(rsvd_check, spte, level);
398 }
399
400 /*
401 * A shadow-present leaf SPTE may be non-writable for 4 possible reasons:
402 *
403 * 1. To intercept writes for dirty logging. KVM write-protects huge pages
404 * so that they can be split down into the dirty logging
405 * granularity (4KiB) whenever the guest writes to them. KVM also
406 * write-protects 4KiB pages so that writes can be recorded in the dirty log
407 * (e.g. if not using PML). SPTEs are write-protected for dirty logging
408 * during the VM-iotcls that enable dirty logging.
409 *
410 * 2. To intercept writes to guest page tables that KVM is shadowing. When a
411 * guest writes to its page table the corresponding shadow page table will
412 * be marked "unsync". That way KVM knows which shadow page tables need to
413 * be updated on the next TLB flush, INVLPG, etc. and which do not.
414 *
415 * 3. To prevent guest writes to read-only memory, such as for memory in a
416 * read-only memslot or guest memory backed by a read-only VMA. Writes to
417 * such pages are disallowed entirely.
418 *
419 * 4. To emulate the Accessed bit for SPTEs without A/D bits. Note, in this
420 * case, the SPTE is access-protected, not just write-protected!
421 *
422 * For cases #1 and #4, KVM can safely make such SPTEs writable without taking
423 * mmu_lock as capturing the Accessed/Dirty state doesn't require taking it.
424 * To differentiate #1 and #4 from #2 and #3, KVM uses two software-only bits
425 * in the SPTE:
426 *
427 * shadow_mmu_writable_mask, aka MMU-writable -
428 * Cleared on SPTEs that KVM is currently write-protecting for shadow paging
429 * purposes (case 2 above).
430 *
431 * shadow_host_writable_mask, aka Host-writable -
432 * Cleared on SPTEs that are not host-writable (case 3 above)
433 *
434 * Note, not all possible combinations of PT_WRITABLE_MASK,
435 * shadow_mmu_writable_mask, and shadow_host_writable_mask are valid. A given
436 * SPTE can be in only one of the following states, which map to the
437 * aforementioned 3 cases:
438 *
439 * shadow_host_writable_mask | shadow_mmu_writable_mask | PT_WRITABLE_MASK
440 * ------------------------- | ------------------------ | ----------------
441 * 1 | 1 | 1 (writable)
442 * 1 | 1 | 0 (case 1)
443 * 1 | 0 | 0 (case 2)
444 * 0 | 0 | 0 (case 3)
445 *
446 * The valid combinations of these bits are checked by
447 * check_spte_writable_invariants() whenever an SPTE is modified.
448 *
449 * Clearing the MMU-writable bit is always done under the MMU lock and always
450 * accompanied by a TLB flush before dropping the lock to avoid corrupting the
451 * shadow page tables between vCPUs. Write-protecting an SPTE for dirty logging
452 * (which does not clear the MMU-writable bit), does not flush TLBs before
453 * dropping the lock, as it only needs to synchronize guest writes with the
454 * dirty bitmap. Similarly, making the SPTE inaccessible (and non-writable) for
455 * access-tracking via the clear_young() MMU notifier also does not flush TLBs.
456 *
457 * So, there is the problem: clearing the MMU-writable bit can encounter a
458 * write-protected SPTE while CPUs still have writable mappings for that SPTE
459 * cached in their TLB. To address this, KVM always flushes TLBs when
460 * write-protecting SPTEs if the MMU-writable bit is set on the old SPTE.
461 *
462 * The Host-writable bit is not modified on present SPTEs, it is only set or
463 * cleared when an SPTE is first faulted in from non-present and then remains
464 * immutable.
465 */
is_writable_pte(unsigned long pte)466 static inline bool is_writable_pte(unsigned long pte)
467 {
468 return pte & PT_WRITABLE_MASK;
469 }
470
471 /* Note: spte must be a shadow-present leaf SPTE. */
check_spte_writable_invariants(u64 spte)472 static inline void check_spte_writable_invariants(u64 spte)
473 {
474 if (spte & shadow_mmu_writable_mask)
475 WARN_ONCE(!(spte & shadow_host_writable_mask),
476 KBUILD_MODNAME ": MMU-writable SPTE is not Host-writable: %llx",
477 spte);
478 else
479 WARN_ONCE(is_writable_pte(spte),
480 KBUILD_MODNAME ": Writable SPTE is not MMU-writable: %llx", spte);
481 }
482
is_mmu_writable_spte(u64 spte)483 static inline bool is_mmu_writable_spte(u64 spte)
484 {
485 return spte & shadow_mmu_writable_mask;
486 }
487
488 /*
489 * Returns true if the access indicated by @fault is allowed by the existing
490 * SPTE protections. Note, the caller is responsible for checking that the
491 * SPTE is a shadow-present, leaf SPTE (either before or after).
492 */
is_access_allowed(struct kvm_page_fault * fault,u64 spte)493 static inline bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
494 {
495 if (fault->exec)
496 return is_executable_pte(spte);
497
498 if (fault->write)
499 return is_writable_pte(spte);
500
501 /* Fault was on Read access */
502 return spte & PT_PRESENT_MASK;
503 }
504
505 /*
506 * If the MMU-writable flag is cleared, i.e. the SPTE is write-protected for
507 * write-tracking, remote TLBs must be flushed, even if the SPTE was read-only,
508 * as KVM allows stale Writable TLB entries to exist. When dirty logging, KVM
509 * flushes TLBs based on whether or not dirty bitmap/ring entries were reaped,
510 * not whether or not SPTEs were modified, i.e. only the write-tracking case
511 * needs to flush at the time the SPTEs is modified, before dropping mmu_lock.
512 *
513 * Don't flush if the Accessed bit is cleared, as access tracking tolerates
514 * false negatives, e.g. KVM x86 omits TLB flushes even when aging SPTEs for a
515 * mmu_notifier.clear_flush_young() event.
516 *
517 * Lastly, don't flush if the Dirty bit is cleared, as KVM unconditionally
518 * flushes when enabling dirty logging (see kvm_mmu_slot_apply_flags()), and
519 * when clearing dirty logs, KVM flushes based on whether or not dirty entries
520 * were reaped from the bitmap/ring, not whether or not dirty SPTEs were found.
521 *
522 * Note, this logic only applies to shadow-present leaf SPTEs. The caller is
523 * responsible for checking that the old SPTE is shadow-present, and is also
524 * responsible for determining whether or not a TLB flush is required when
525 * modifying a shadow-present non-leaf SPTE.
526 */
leaf_spte_change_needs_tlb_flush(u64 old_spte,u64 new_spte)527 static inline bool leaf_spte_change_needs_tlb_flush(u64 old_spte, u64 new_spte)
528 {
529 return is_mmu_writable_spte(old_spte) && !is_mmu_writable_spte(new_spte);
530 }
531
get_mmio_spte_generation(u64 spte)532 static inline u64 get_mmio_spte_generation(u64 spte)
533 {
534 u64 gen;
535
536 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_SHIFT;
537 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_SHIFT;
538 return gen;
539 }
540
541 bool spte_needs_atomic_update(u64 spte);
542
543 bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
544 const struct kvm_memory_slot *slot,
545 unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
546 u64 old_spte, bool prefetch, bool synchronizing,
547 bool host_writable, u64 *new_spte);
548 u64 make_small_spte(struct kvm *kvm, u64 huge_spte,
549 union kvm_mmu_page_role role, int index);
550 u64 make_huge_spte(struct kvm *kvm, u64 small_spte, int level);
551 u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled);
552 u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access);
553 u64 mark_spte_for_access_track(u64 spte);
554
555 /* Restore an acc-track PTE back to a regular PTE */
restore_acc_track_spte(u64 spte)556 static inline u64 restore_acc_track_spte(u64 spte)
557 {
558 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
559 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
560
561 spte &= ~shadow_acc_track_mask;
562 spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
563 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
564 spte |= saved_bits;
565
566 return spte;
567 }
568
569 void __init kvm_mmu_spte_module_init(void);
570 void kvm_mmu_reset_all_pte_masks(void);
571
572 #endif
573