1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the AF_INET socket handler. 8 * 9 * Version: @(#)sock.h 1.0.4 05/13/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche <flla@stud.uni-sb.de> 15 * 16 * Fixes: 17 * Alan Cox : Volatiles in skbuff pointers. See 18 * skbuff comments. May be overdone, 19 * better to prove they can be removed 20 * than the reverse. 21 * Alan Cox : Added a zapped field for tcp to note 22 * a socket is reset and must stay shut up 23 * Alan Cox : New fields for options 24 * Pauline Middelink : identd support 25 * Alan Cox : Eliminate low level recv/recvfrom 26 * David S. Miller : New socket lookup architecture. 27 * Steve Whitehouse: Default routines for sock_ops 28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 29 * protinfo be just a void pointer, as the 30 * protocol specific parts were moved to 31 * respective headers and ipv4/v6, etc now 32 * use private slabcaches for its socks 33 * Pedro Hortas : New flags field for socket options 34 */ 35 #ifndef _SOCK_H 36 #define _SOCK_H 37 38 #include <linux/hardirq.h> 39 #include <linux/kernel.h> 40 #include <linux/list.h> 41 #include <linux/list_nulls.h> 42 #include <linux/timer.h> 43 #include <linux/cache.h> 44 #include <linux/bitops.h> 45 #include <linux/lockdep.h> 46 #include <linux/netdevice.h> 47 #include <linux/skbuff.h> /* struct sk_buff */ 48 #include <linux/mm.h> 49 #include <linux/security.h> 50 #include <linux/slab.h> 51 #include <linux/uaccess.h> 52 #include <linux/page_counter.h> 53 #include <linux/memcontrol.h> 54 #include <linux/static_key.h> 55 #include <linux/sched.h> 56 #include <linux/wait.h> 57 #include <linux/cgroup-defs.h> 58 #include <linux/rbtree.h> 59 #include <linux/rculist_nulls.h> 60 #include <linux/poll.h> 61 #include <linux/sockptr.h> 62 #include <linux/indirect_call_wrapper.h> 63 #include <linux/atomic.h> 64 #include <linux/refcount.h> 65 #include <linux/llist.h> 66 #include <net/dst.h> 67 #include <net/checksum.h> 68 #include <net/tcp_states.h> 69 #include <linux/net_tstamp.h> 70 #include <net/l3mdev.h> 71 #include <uapi/linux/socket.h> 72 73 /* 74 * This structure really needs to be cleaned up. 75 * Most of it is for TCP, and not used by any of 76 * the other protocols. 77 */ 78 79 /* This is the per-socket lock. The spinlock provides a synchronization 80 * between user contexts and software interrupt processing, whereas the 81 * mini-semaphore synchronizes multiple users amongst themselves. 82 */ 83 typedef struct { 84 spinlock_t slock; 85 int owned; 86 wait_queue_head_t wq; 87 /* 88 * We express the mutex-alike socket_lock semantics 89 * to the lock validator by explicitly managing 90 * the slock as a lock variant (in addition to 91 * the slock itself): 92 */ 93 #ifdef CONFIG_DEBUG_LOCK_ALLOC 94 struct lockdep_map dep_map; 95 #endif 96 } socket_lock_t; 97 98 struct sock; 99 struct proto; 100 struct net; 101 102 typedef __u32 __bitwise __portpair; 103 typedef __u64 __bitwise __addrpair; 104 105 /** 106 * struct sock_common - minimal network layer representation of sockets 107 * @skc_daddr: Foreign IPv4 addr 108 * @skc_rcv_saddr: Bound local IPv4 addr 109 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr 110 * @skc_hash: hash value used with various protocol lookup tables 111 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 112 * @skc_dport: placeholder for inet_dport/tw_dport 113 * @skc_num: placeholder for inet_num/tw_num 114 * @skc_portpair: __u32 union of @skc_dport & @skc_num 115 * @skc_family: network address family 116 * @skc_state: Connection state 117 * @skc_reuse: %SO_REUSEADDR setting 118 * @skc_reuseport: %SO_REUSEPORT setting 119 * @skc_ipv6only: socket is IPV6 only 120 * @skc_net_refcnt: socket is using net ref counting 121 * @skc_bypass_prot_mem: bypass the per-protocol memory accounting for skb 122 * @skc_bound_dev_if: bound device index if != 0 123 * @skc_bind_node: bind hash linkage for various protocol lookup tables 124 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 125 * @skc_prot: protocol handlers inside a network family 126 * @skc_net: reference to the network namespace of this socket 127 * @skc_v6_daddr: IPV6 destination address 128 * @skc_v6_rcv_saddr: IPV6 source address 129 * @skc_cookie: socket's cookie value 130 * @skc_node: main hash linkage for various protocol lookup tables 131 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 132 * @skc_tx_queue_mapping: tx queue number for this connection 133 * @skc_rx_queue_mapping: rx queue number for this connection 134 * @skc_flags: place holder for sk_flags 135 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 136 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 137 * @skc_listener: connection request listener socket (aka rsk_listener) 138 * [union with @skc_flags] 139 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row 140 * [union with @skc_flags] 141 * @skc_incoming_cpu: record/match cpu processing incoming packets 142 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) 143 * [union with @skc_incoming_cpu] 144 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number 145 * [union with @skc_incoming_cpu] 146 * @skc_refcnt: reference count 147 * 148 * This is the minimal network layer representation of sockets, the header 149 * for struct sock and struct inet_timewait_sock. 150 */ 151 struct sock_common { 152 union { 153 __addrpair skc_addrpair; 154 struct { 155 __be32 skc_daddr; 156 __be32 skc_rcv_saddr; 157 }; 158 }; 159 union { 160 unsigned int skc_hash; 161 __u16 skc_u16hashes[2]; 162 }; 163 /* skc_dport && skc_num must be grouped as well */ 164 union { 165 __portpair skc_portpair; 166 struct { 167 __be16 skc_dport; 168 __u16 skc_num; 169 }; 170 }; 171 172 unsigned short skc_family; 173 volatile unsigned char skc_state; 174 unsigned char skc_reuse:4; 175 unsigned char skc_reuseport:1; 176 unsigned char skc_ipv6only:1; 177 unsigned char skc_net_refcnt:1; 178 unsigned char skc_bypass_prot_mem:1; 179 int skc_bound_dev_if; 180 union { 181 struct hlist_node skc_bind_node; 182 struct hlist_node skc_portaddr_node; 183 }; 184 struct proto *skc_prot; 185 possible_net_t skc_net; 186 187 #if IS_ENABLED(CONFIG_IPV6) 188 struct in6_addr skc_v6_daddr; 189 struct in6_addr skc_v6_rcv_saddr; 190 #endif 191 192 atomic64_t skc_cookie; 193 194 /* following fields are padding to force 195 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 196 * assuming IPV6 is enabled. We use this padding differently 197 * for different kind of 'sockets' 198 */ 199 union { 200 unsigned long skc_flags; 201 struct sock *skc_listener; /* request_sock */ 202 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 203 }; 204 /* 205 * fields between dontcopy_begin/dontcopy_end 206 * are not copied in sock_copy() 207 */ 208 /* private: */ 209 int skc_dontcopy_begin[0]; 210 /* public: */ 211 union { 212 struct hlist_node skc_node; 213 struct hlist_nulls_node skc_nulls_node; 214 }; 215 unsigned short skc_tx_queue_mapping; 216 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 217 unsigned short skc_rx_queue_mapping; 218 #endif 219 union { 220 int skc_incoming_cpu; 221 u32 skc_rcv_wnd; 222 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 223 }; 224 225 refcount_t skc_refcnt; 226 /* private: */ 227 int skc_dontcopy_end[0]; 228 union { 229 u32 skc_rxhash; 230 u32 skc_window_clamp; 231 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 232 }; 233 /* public: */ 234 }; 235 236 struct bpf_local_storage; 237 struct sk_filter; 238 239 /** 240 * struct sock - network layer representation of sockets 241 * @__sk_common: shared layout with inet_timewait_sock 242 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 243 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 244 * @sk_lock: synchronizer 245 * @sk_kern_sock: True if sock is using kernel lock classes 246 * @sk_rcvbuf: size of receive buffer in bytes 247 * @sk_wq: sock wait queue and async head 248 * @sk_rx_dst: receive input route used by early demux 249 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst 250 * @sk_rx_dst_cookie: cookie for @sk_rx_dst 251 * @sk_dst_cache: destination cache 252 * @sk_dst_pending_confirm: need to confirm neighbour 253 * @sk_policy: flow policy 254 * @psp_assoc: PSP association, if socket is PSP-secured 255 * @sk_receive_queue: incoming packets 256 * @sk_wmem_alloc: transmit queue bytes committed 257 * @sk_tsq_flags: TCP Small Queues flags 258 * @sk_write_queue: Packet sending queue 259 * @sk_omem_alloc: "o" is "option" or "other" 260 * @sk_wmem_queued: persistent queue size 261 * @sk_forward_alloc: space allocated forward 262 * @sk_reserved_mem: space reserved and non-reclaimable for the socket 263 * @sk_napi_id: id of the last napi context to receive data for sk 264 * @sk_ll_usec: usecs to busypoll when there is no data 265 * @sk_allocation: allocation mode 266 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 267 * @sk_pacing_status: Pacing status (requested, handled by sch_fq) 268 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 269 * @sk_sndbuf: size of send buffer in bytes 270 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 271 * @sk_no_check_rx: allow zero checksum in RX packets 272 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 273 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden. 274 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 275 * @sk_gso_max_size: Maximum GSO segment size to build 276 * @sk_gso_max_segs: Maximum number of GSO segments 277 * @sk_pacing_shift: scaling factor for TCP Small Queues 278 * @sk_lingertime: %SO_LINGER l_linger setting 279 * @sk_backlog: always used with the per-socket spinlock held 280 * @sk_callback_lock: used with the callbacks in the end of this struct 281 * @sk_error_queue: rarely used 282 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 283 * IPV6_ADDRFORM for instance) 284 * @sk_err: last error 285 * @sk_err_soft: errors that don't cause failure but are the cause of a 286 * persistent failure not just 'timed out' 287 * @sk_drops: raw/udp drops counter 288 * @sk_drop_counters: optional pointer to numa_drop_counters 289 * @sk_ack_backlog: current listen backlog 290 * @sk_max_ack_backlog: listen backlog set in listen() 291 * @sk_uid: user id of owner 292 * @sk_ino: inode number (zero if orphaned) 293 * @sk_prefer_busy_poll: prefer busypolling over softirq processing 294 * @sk_busy_poll_budget: napi processing budget when busypolling 295 * @sk_priority: %SO_PRIORITY setting 296 * @sk_type: socket type (%SOCK_STREAM, etc) 297 * @sk_protocol: which protocol this socket belongs in this network family 298 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred 299 * @sk_peer_pid: &struct pid for this socket's peer 300 * @sk_peer_cred: %SO_PEERCRED setting 301 * @sk_rcvlowat: %SO_RCVLOWAT setting 302 * @sk_rcvtimeo: %SO_RCVTIMEO setting 303 * @sk_sndtimeo: %SO_SNDTIMEO setting 304 * @sk_txhash: computed flow hash for use on transmit 305 * @sk_txrehash: enable TX hash rethink 306 * @sk_filter: socket filtering instructions 307 * @sk_timer: sock cleanup timer 308 * @tcp_retransmit_timer: tcp retransmit timer 309 * @mptcp_retransmit_timer: mptcp retransmit timer 310 * @sk_stamp: time stamp of last packet received 311 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only 312 * @sk_tsflags: SO_TIMESTAMPING flags 313 * @sk_bpf_cb_flags: used in bpf_setsockopt() 314 * @sk_use_task_frag: allow sk_page_frag() to use current->task_frag. 315 * Sockets that can be used under memory reclaim should 316 * set this to false. 317 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock 318 * for timestamping 319 * @sk_tskey: counter to disambiguate concurrent tstamp requests 320 * @sk_tx_queue_mapping_jiffies: time in jiffies of last @sk_tx_queue_mapping refresh. 321 * @sk_zckey: counter to order MSG_ZEROCOPY notifications 322 * @sk_socket: Identd and reporting IO signals 323 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock. 324 * @sk_frag: cached page frag 325 * @sk_peek_off: current peek_offset value 326 * @sk_send_head: front of stuff to transmit 327 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] 328 * @sk_security: used by security modules 329 * @sk_mark: generic packet mark 330 * @sk_cgrp_data: cgroup data for this cgroup 331 * @sk_memcg: this socket's memory cgroup association 332 * @sk_write_pending: a write to stream socket waits to start 333 * @sk_disconnects: number of disconnect operations performed on this sock 334 * @sk_state_change: callback to indicate change in the state of the sock 335 * @sk_data_ready: callback to indicate there is data to be processed 336 * @sk_write_space: callback to indicate there is bf sending space available 337 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 338 * @sk_backlog_rcv: callback to process the backlog 339 * @sk_validate_xmit_skb: ptr to an optional validate function 340 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 341 * @sk_reuseport_cb: reuseport group container 342 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage 343 * @sk_rcu: used during RCU grace period 344 * @sk_freeptr: used for SLAB_TYPESAFE_BY_RCU managed sockets 345 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) 346 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME 347 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME 348 * @sk_txtime_unused: unused txtime flags 349 * @sk_scm_recv_flags: all flags used by scm_recv() 350 * @sk_scm_credentials: flagged by SO_PASSCRED to recv SCM_CREDENTIALS 351 * @sk_scm_security: flagged by SO_PASSSEC to recv SCM_SECURITY 352 * @sk_scm_pidfd: flagged by SO_PASSPIDFD to recv SCM_PIDFD 353 * @sk_scm_rights: flagged by SO_PASSRIGHTS to recv SCM_RIGHTS 354 * @sk_scm_unused: unused flags for scm_recv() 355 * @ns_tracker: tracker for netns reference 356 * @sk_user_frags: xarray of pages the user is holding a reference on. 357 * @sk_owner: reference to the real owner of the socket that calls 358 * sock_lock_init_class_and_name(). 359 */ 360 struct sock { 361 /* 362 * Now struct inet_timewait_sock also uses sock_common, so please just 363 * don't add nothing before this first member (__sk_common) --acme 364 */ 365 struct sock_common __sk_common; 366 #define sk_node __sk_common.skc_node 367 #define sk_nulls_node __sk_common.skc_nulls_node 368 #define sk_refcnt __sk_common.skc_refcnt 369 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 370 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 371 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping 372 #endif 373 374 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 375 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 376 #define sk_hash __sk_common.skc_hash 377 #define sk_portpair __sk_common.skc_portpair 378 #define sk_num __sk_common.skc_num 379 #define sk_dport __sk_common.skc_dport 380 #define sk_addrpair __sk_common.skc_addrpair 381 #define sk_daddr __sk_common.skc_daddr 382 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 383 #define sk_family __sk_common.skc_family 384 #define sk_state __sk_common.skc_state 385 #define sk_reuse __sk_common.skc_reuse 386 #define sk_reuseport __sk_common.skc_reuseport 387 #define sk_ipv6only __sk_common.skc_ipv6only 388 #define sk_net_refcnt __sk_common.skc_net_refcnt 389 #define sk_bypass_prot_mem __sk_common.skc_bypass_prot_mem 390 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 391 #define sk_bind_node __sk_common.skc_bind_node 392 #define sk_prot __sk_common.skc_prot 393 #define sk_net __sk_common.skc_net 394 #define sk_v6_daddr __sk_common.skc_v6_daddr 395 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 396 #define sk_cookie __sk_common.skc_cookie 397 #define sk_incoming_cpu __sk_common.skc_incoming_cpu 398 #define sk_flags __sk_common.skc_flags 399 #define sk_rxhash __sk_common.skc_rxhash 400 401 __cacheline_group_begin(sock_write_rx); 402 403 atomic_t sk_drops; 404 __s32 sk_peek_off; 405 struct sk_buff_head sk_error_queue; 406 struct sk_buff_head sk_receive_queue; 407 /* 408 * The backlog queue is special, it is always used with 409 * the per-socket spinlock held and requires low latency 410 * access. Therefore we special case it's implementation. 411 * Note : rmem_alloc is in this structure to fill a hole 412 * on 64bit arches, not because its logically part of 413 * backlog. 414 */ 415 struct { 416 atomic_t rmem_alloc; 417 int len; 418 struct sk_buff *head; 419 struct sk_buff *tail; 420 } sk_backlog; 421 #define sk_rmem_alloc sk_backlog.rmem_alloc 422 423 __cacheline_group_end(sock_write_rx); 424 425 __cacheline_group_begin(sock_read_rx); 426 /* early demux fields */ 427 struct dst_entry __rcu *sk_rx_dst; 428 int sk_rx_dst_ifindex; 429 u32 sk_rx_dst_cookie; 430 431 #ifdef CONFIG_NET_RX_BUSY_POLL 432 unsigned int sk_ll_usec; 433 unsigned int sk_napi_id; 434 u16 sk_busy_poll_budget; 435 u8 sk_prefer_busy_poll; 436 #endif 437 u8 sk_userlocks; 438 int sk_rcvbuf; 439 440 struct sk_filter __rcu *sk_filter; 441 union { 442 struct socket_wq __rcu *sk_wq; 443 /* private: */ 444 struct socket_wq *sk_wq_raw; 445 /* public: */ 446 }; 447 448 void (*sk_data_ready)(struct sock *sk); 449 long sk_rcvtimeo; 450 int sk_rcvlowat; 451 __cacheline_group_end(sock_read_rx); 452 453 __cacheline_group_begin(sock_read_rxtx); 454 int sk_err; 455 struct socket *sk_socket; 456 #ifdef CONFIG_MEMCG 457 struct mem_cgroup *sk_memcg; 458 #endif 459 #ifdef CONFIG_XFRM 460 struct xfrm_policy __rcu *sk_policy[2]; 461 #endif 462 #if IS_ENABLED(CONFIG_INET_PSP) 463 struct psp_assoc __rcu *psp_assoc; 464 #endif 465 __cacheline_group_end(sock_read_rxtx); 466 467 __cacheline_group_begin(sock_write_rxtx); 468 socket_lock_t sk_lock; 469 u32 sk_reserved_mem; 470 int sk_forward_alloc; 471 u32 sk_tsflags; 472 __cacheline_group_end(sock_write_rxtx); 473 474 __cacheline_group_begin(sock_write_tx); 475 int sk_write_pending; 476 atomic_t sk_omem_alloc; 477 int sk_err_soft; 478 479 int sk_wmem_queued; 480 refcount_t sk_wmem_alloc; 481 unsigned long sk_tsq_flags; 482 union { 483 struct sk_buff *sk_send_head; 484 struct rb_root tcp_rtx_queue; 485 }; 486 struct sk_buff_head sk_write_queue; 487 struct page_frag sk_frag; 488 union { 489 struct timer_list sk_timer; 490 struct timer_list tcp_retransmit_timer; 491 struct timer_list mptcp_retransmit_timer; 492 }; 493 unsigned long sk_pacing_rate; /* bytes per second */ 494 atomic_t sk_zckey; 495 atomic_t sk_tskey; 496 unsigned long sk_tx_queue_mapping_jiffies; 497 __cacheline_group_end(sock_write_tx); 498 499 __cacheline_group_begin(sock_read_tx); 500 u32 sk_dst_pending_confirm; 501 u32 sk_pacing_status; /* see enum sk_pacing */ 502 unsigned long sk_max_pacing_rate; 503 long sk_sndtimeo; 504 u32 sk_priority; 505 u32 sk_mark; 506 kuid_t sk_uid; 507 u16 sk_protocol; 508 u16 sk_type; 509 struct dst_entry __rcu *sk_dst_cache; 510 netdev_features_t sk_route_caps; 511 #ifdef CONFIG_SOCK_VALIDATE_XMIT 512 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, 513 struct net_device *dev, 514 struct sk_buff *skb); 515 #endif 516 u16 sk_gso_type; 517 u16 sk_gso_max_segs; 518 unsigned int sk_gso_max_size; 519 gfp_t sk_allocation; 520 u32 sk_txhash; 521 int sk_sndbuf; 522 u8 sk_pacing_shift; 523 bool sk_use_task_frag; 524 __cacheline_group_end(sock_read_tx); 525 526 /* 527 * Because of non atomicity rules, all 528 * changes are protected by socket lock. 529 */ 530 u8 sk_gso_disabled : 1, 531 sk_kern_sock : 1, 532 sk_no_check_tx : 1, 533 sk_no_check_rx : 1; 534 u8 sk_shutdown; 535 unsigned long sk_lingertime; 536 struct proto *sk_prot_creator; 537 rwlock_t sk_callback_lock; 538 u32 sk_ack_backlog; 539 u32 sk_max_ack_backlog; 540 unsigned long sk_ino; 541 spinlock_t sk_peer_lock; 542 int sk_bind_phc; 543 struct pid *sk_peer_pid; 544 const struct cred *sk_peer_cred; 545 546 ktime_t sk_stamp; 547 #if BITS_PER_LONG==32 548 seqlock_t sk_stamp_seq; 549 #endif 550 int sk_disconnects; 551 552 union { 553 u8 sk_txrehash; 554 u8 sk_scm_recv_flags; 555 struct { 556 u8 sk_scm_credentials : 1, 557 sk_scm_security : 1, 558 sk_scm_pidfd : 1, 559 sk_scm_rights : 1, 560 sk_scm_unused : 4; 561 }; 562 }; 563 u8 sk_clockid; 564 u8 sk_txtime_deadline_mode : 1, 565 sk_txtime_report_errors : 1, 566 sk_txtime_unused : 6; 567 #define SK_BPF_CB_FLAG_TEST(SK, FLAG) ((SK)->sk_bpf_cb_flags & (FLAG)) 568 u8 sk_bpf_cb_flags; 569 570 void *sk_user_data; 571 #ifdef CONFIG_SECURITY 572 void *sk_security; 573 #endif 574 struct sock_cgroup_data sk_cgrp_data; 575 void (*sk_state_change)(struct sock *sk); 576 void (*sk_write_space)(struct sock *sk); 577 void (*sk_error_report)(struct sock *sk); 578 int (*sk_backlog_rcv)(struct sock *sk, 579 struct sk_buff *skb); 580 void (*sk_destruct)(struct sock *sk); 581 struct sock_reuseport __rcu *sk_reuseport_cb; 582 #ifdef CONFIG_BPF_SYSCALL 583 struct bpf_local_storage __rcu *sk_bpf_storage; 584 #endif 585 struct numa_drop_counters *sk_drop_counters; 586 /* sockets using SLAB_TYPESAFE_BY_RCU can use sk_freeptr. 587 * By the time kfree() is called, sk_rcu can not be in 588 * use and can be mangled. 589 */ 590 union { 591 struct rcu_head sk_rcu; 592 freeptr_t sk_freeptr; 593 }; 594 netns_tracker ns_tracker; 595 struct xarray sk_user_frags; 596 597 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES) 598 struct module *sk_owner; 599 #endif 600 }; 601 602 struct sock_bh_locked { 603 struct sock *sock; 604 local_lock_t bh_lock; 605 }; 606 607 enum sk_pacing { 608 SK_PACING_NONE = 0, 609 SK_PACING_NEEDED = 1, 610 SK_PACING_FQ = 2, 611 }; 612 613 /* flag bits in sk_user_data 614 * 615 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might 616 * not be suitable for copying when cloning the socket. For instance, 617 * it can point to a reference counted object. sk_user_data bottom 618 * bit is set if pointer must not be copied. 619 * 620 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is 621 * managed/owned by a BPF reuseport array. This bit should be set 622 * when sk_user_data's sk is added to the bpf's reuseport_array. 623 * 624 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in 625 * sk_user_data points to psock type. This bit should be set 626 * when sk_user_data is assigned to a psock object. 627 */ 628 #define SK_USER_DATA_NOCOPY 1UL 629 #define SK_USER_DATA_BPF 2UL 630 #define SK_USER_DATA_PSOCK 4UL 631 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\ 632 SK_USER_DATA_PSOCK) 633 634 /** 635 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied 636 * @sk: socket 637 */ 638 static inline bool sk_user_data_is_nocopy(const struct sock *sk) 639 { 640 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); 641 } 642 643 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 644 645 /** 646 * __locked_read_sk_user_data_with_flags - return the pointer 647 * only if argument flags all has been set in sk_user_data. Otherwise 648 * return NULL 649 * 650 * @sk: socket 651 * @flags: flag bits 652 * 653 * The caller must be holding sk->sk_callback_lock. 654 */ 655 static inline void * 656 __locked_read_sk_user_data_with_flags(const struct sock *sk, 657 uintptr_t flags) 658 { 659 uintptr_t sk_user_data = 660 (uintptr_t)rcu_dereference_check(__sk_user_data(sk), 661 lockdep_is_held(&sk->sk_callback_lock)); 662 663 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); 664 665 if ((sk_user_data & flags) == flags) 666 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); 667 return NULL; 668 } 669 670 /** 671 * __rcu_dereference_sk_user_data_with_flags - return the pointer 672 * only if argument flags all has been set in sk_user_data. Otherwise 673 * return NULL 674 * 675 * @sk: socket 676 * @flags: flag bits 677 */ 678 static inline void * 679 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk, 680 uintptr_t flags) 681 { 682 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk)); 683 684 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); 685 686 if ((sk_user_data & flags) == flags) 687 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); 688 return NULL; 689 } 690 691 #define rcu_dereference_sk_user_data(sk) \ 692 __rcu_dereference_sk_user_data_with_flags(sk, 0) 693 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \ 694 ({ \ 695 uintptr_t __tmp1 = (uintptr_t)(ptr), \ 696 __tmp2 = (uintptr_t)(flags); \ 697 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \ 698 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \ 699 rcu_assign_pointer(__sk_user_data((sk)), \ 700 __tmp1 | __tmp2); \ 701 }) 702 #define rcu_assign_sk_user_data(sk, ptr) \ 703 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0) 704 705 static inline 706 struct net *sock_net(const struct sock *sk) 707 { 708 return read_pnet(&sk->sk_net); 709 } 710 711 static inline 712 void sock_net_set(struct sock *sk, struct net *net) 713 { 714 write_pnet(&sk->sk_net, net); 715 } 716 717 /* 718 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 719 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 720 * on a socket means that the socket will reuse everybody else's port 721 * without looking at the other's sk_reuse value. 722 */ 723 724 #define SK_NO_REUSE 0 725 #define SK_CAN_REUSE 1 726 #define SK_FORCE_REUSE 2 727 728 int sk_set_peek_off(struct sock *sk, int val); 729 730 static inline int sk_peek_offset(const struct sock *sk, int flags) 731 { 732 if (unlikely(flags & MSG_PEEK)) { 733 return READ_ONCE(sk->sk_peek_off); 734 } 735 736 return 0; 737 } 738 739 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 740 { 741 s32 off = READ_ONCE(sk->sk_peek_off); 742 743 if (unlikely(off >= 0)) { 744 off = max_t(s32, off - val, 0); 745 WRITE_ONCE(sk->sk_peek_off, off); 746 } 747 } 748 749 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 750 { 751 sk_peek_offset_bwd(sk, -val); 752 } 753 754 /* 755 * Hashed lists helper routines 756 */ 757 static inline struct sock *sk_entry(const struct hlist_node *node) 758 { 759 return hlist_entry(node, struct sock, sk_node); 760 } 761 762 static inline struct sock *__sk_head(const struct hlist_head *head) 763 { 764 return hlist_entry(head->first, struct sock, sk_node); 765 } 766 767 static inline struct sock *sk_head(const struct hlist_head *head) 768 { 769 return hlist_empty(head) ? NULL : __sk_head(head); 770 } 771 772 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 773 { 774 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 775 } 776 777 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 778 { 779 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 780 } 781 782 static inline struct sock *sk_next(const struct sock *sk) 783 { 784 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); 785 } 786 787 static inline struct sock *sk_nulls_next(const struct sock *sk) 788 { 789 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 790 hlist_nulls_entry(sk->sk_nulls_node.next, 791 struct sock, sk_nulls_node) : 792 NULL; 793 } 794 795 static inline bool sk_unhashed(const struct sock *sk) 796 { 797 return hlist_unhashed(&sk->sk_node); 798 } 799 800 static inline bool sk_hashed(const struct sock *sk) 801 { 802 return !sk_unhashed(sk); 803 } 804 805 static inline void sk_node_init(struct hlist_node *node) 806 { 807 node->pprev = NULL; 808 } 809 810 static inline void __sk_del_node(struct sock *sk) 811 { 812 __hlist_del(&sk->sk_node); 813 } 814 815 /* NB: equivalent to hlist_del_init_rcu */ 816 static inline bool __sk_del_node_init(struct sock *sk) 817 { 818 if (sk_hashed(sk)) { 819 __sk_del_node(sk); 820 sk_node_init(&sk->sk_node); 821 return true; 822 } 823 return false; 824 } 825 826 /* Grab socket reference count. This operation is valid only 827 when sk is ALREADY grabbed f.e. it is found in hash table 828 or a list and the lookup is made under lock preventing hash table 829 modifications. 830 */ 831 832 static __always_inline void sock_hold(struct sock *sk) 833 { 834 refcount_inc(&sk->sk_refcnt); 835 } 836 837 /* Ungrab socket in the context, which assumes that socket refcnt 838 cannot hit zero, f.e. it is true in context of any socketcall. 839 */ 840 static __always_inline void __sock_put(struct sock *sk) 841 { 842 refcount_dec(&sk->sk_refcnt); 843 } 844 845 static inline bool sk_del_node_init(struct sock *sk) 846 { 847 bool rc = __sk_del_node_init(sk); 848 849 if (rc) 850 __sock_put(sk); 851 852 return rc; 853 } 854 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 855 856 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 857 { 858 if (sk_hashed(sk)) { 859 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 860 return true; 861 } 862 return false; 863 } 864 865 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 866 { 867 bool rc = __sk_nulls_del_node_init_rcu(sk); 868 869 if (rc) 870 __sock_put(sk); 871 872 return rc; 873 } 874 875 static inline bool sk_nulls_replace_node_init_rcu(struct sock *old, 876 struct sock *new) 877 { 878 if (sk_hashed(old)) { 879 hlist_nulls_replace_init_rcu(&old->sk_nulls_node, 880 &new->sk_nulls_node); 881 __sock_put(old); 882 return true; 883 } 884 885 return false; 886 } 887 888 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 889 { 890 hlist_add_head(&sk->sk_node, list); 891 } 892 893 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 894 { 895 sock_hold(sk); 896 __sk_add_node(sk, list); 897 } 898 899 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 900 { 901 sock_hold(sk); 902 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 903 sk->sk_family == AF_INET6) 904 hlist_add_tail_rcu(&sk->sk_node, list); 905 else 906 hlist_add_head_rcu(&sk->sk_node, list); 907 } 908 909 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) 910 { 911 sock_hold(sk); 912 hlist_add_tail_rcu(&sk->sk_node, list); 913 } 914 915 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 916 { 917 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 918 } 919 920 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) 921 { 922 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); 923 } 924 925 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 926 { 927 sock_hold(sk); 928 __sk_nulls_add_node_rcu(sk, list); 929 } 930 931 static inline void __sk_del_bind_node(struct sock *sk) 932 { 933 __hlist_del(&sk->sk_bind_node); 934 } 935 936 static inline void sk_add_bind_node(struct sock *sk, 937 struct hlist_head *list) 938 { 939 hlist_add_head(&sk->sk_bind_node, list); 940 } 941 942 #define sk_for_each(__sk, list) \ 943 hlist_for_each_entry(__sk, list, sk_node) 944 #define sk_for_each_rcu(__sk, list) \ 945 hlist_for_each_entry_rcu(__sk, list, sk_node) 946 #define sk_nulls_for_each(__sk, node, list) \ 947 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 948 #define sk_nulls_for_each_rcu(__sk, node, list) \ 949 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 950 #define sk_for_each_from(__sk) \ 951 hlist_for_each_entry_from(__sk, sk_node) 952 #define sk_nulls_for_each_from(__sk, node) \ 953 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 954 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 955 #define sk_for_each_safe(__sk, tmp, list) \ 956 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 957 #define sk_for_each_bound(__sk, list) \ 958 hlist_for_each_entry(__sk, list, sk_bind_node) 959 #define sk_for_each_bound_safe(__sk, tmp, list) \ 960 hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node) 961 962 /** 963 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 964 * @tpos: the type * to use as a loop cursor. 965 * @pos: the &struct hlist_node to use as a loop cursor. 966 * @head: the head for your list. 967 * @offset: offset of hlist_node within the struct. 968 * 969 */ 970 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 971 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 972 pos != NULL && \ 973 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 974 pos = rcu_dereference(hlist_next_rcu(pos))) 975 976 static inline struct user_namespace *sk_user_ns(const struct sock *sk) 977 { 978 /* Careful only use this in a context where these parameters 979 * can not change and must all be valid, such as recvmsg from 980 * userspace. 981 */ 982 return sk->sk_socket->file->f_cred->user_ns; 983 } 984 985 /* Sock flags */ 986 enum sock_flags { 987 SOCK_DEAD, 988 SOCK_DONE, 989 SOCK_URGINLINE, 990 SOCK_KEEPOPEN, 991 SOCK_LINGER, 992 SOCK_DESTROY, 993 SOCK_BROADCAST, 994 SOCK_TIMESTAMP, 995 SOCK_ZAPPED, 996 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 997 SOCK_DBG, /* %SO_DEBUG setting */ 998 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 999 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 1000 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 1001 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 1002 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 1003 SOCK_FASYNC, /* fasync() active */ 1004 SOCK_RXQ_OVFL, 1005 SOCK_ZEROCOPY, /* buffers from userspace */ 1006 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 1007 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 1008 * Will use last 4 bytes of packet sent from 1009 * user-space instead. 1010 */ 1011 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 1012 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 1013 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 1014 SOCK_TXTIME, 1015 SOCK_XDP, /* XDP is attached */ 1016 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ 1017 SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */ 1018 SOCK_RCVPRIORITY, /* Receive SO_PRIORITY ancillary data with packet */ 1019 SOCK_TIMESTAMPING_ANY, /* Copy of sk_tsflags & TSFLAGS_ANY */ 1020 }; 1021 1022 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 1023 /* 1024 * The highest bit of sk_tsflags is reserved for kernel-internal 1025 * SOCKCM_FLAG_TS_OPT_ID. There is a check in core/sock.c to control that 1026 * SOF_TIMESTAMPING* values do not reach this reserved area 1027 */ 1028 #define SOCKCM_FLAG_TS_OPT_ID BIT(31) 1029 1030 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk) 1031 { 1032 nsk->sk_flags = osk->sk_flags; 1033 } 1034 1035 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 1036 { 1037 __set_bit(flag, &sk->sk_flags); 1038 } 1039 1040 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 1041 { 1042 __clear_bit(flag, &sk->sk_flags); 1043 } 1044 1045 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit, 1046 int valbool) 1047 { 1048 if (valbool) 1049 sock_set_flag(sk, bit); 1050 else 1051 sock_reset_flag(sk, bit); 1052 } 1053 1054 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 1055 { 1056 return test_bit(flag, &sk->sk_flags); 1057 } 1058 1059 #ifdef CONFIG_NET 1060 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); 1061 static inline int sk_memalloc_socks(void) 1062 { 1063 return static_branch_unlikely(&memalloc_socks_key); 1064 } 1065 1066 void __receive_sock(struct file *file); 1067 #else 1068 1069 static inline int sk_memalloc_socks(void) 1070 { 1071 return 0; 1072 } 1073 1074 static inline void __receive_sock(struct file *file) 1075 { } 1076 #endif 1077 1078 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 1079 { 1080 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 1081 } 1082 1083 static inline void sk_acceptq_removed(struct sock *sk) 1084 { 1085 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); 1086 } 1087 1088 static inline void sk_acceptq_added(struct sock *sk) 1089 { 1090 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); 1091 } 1092 1093 /* Note: If you think the test should be: 1094 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog); 1095 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.") 1096 */ 1097 static inline bool sk_acceptq_is_full(const struct sock *sk) 1098 { 1099 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); 1100 } 1101 1102 /* 1103 * Compute minimal free write space needed to queue new packets. 1104 */ 1105 static inline int sk_stream_min_wspace(const struct sock *sk) 1106 { 1107 return READ_ONCE(sk->sk_wmem_queued) >> 1; 1108 } 1109 1110 static inline int sk_stream_wspace(const struct sock *sk) 1111 { 1112 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); 1113 } 1114 1115 static inline void sk_wmem_queued_add(struct sock *sk, int val) 1116 { 1117 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); 1118 } 1119 1120 static inline void sk_forward_alloc_add(struct sock *sk, int val) 1121 { 1122 /* Paired with lockless reads of sk->sk_forward_alloc */ 1123 WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val); 1124 } 1125 1126 void sk_stream_write_space(struct sock *sk); 1127 1128 /* OOB backlog add */ 1129 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 1130 { 1131 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 1132 skb_dst_force(skb); 1133 1134 if (!sk->sk_backlog.tail) 1135 WRITE_ONCE(sk->sk_backlog.head, skb); 1136 else 1137 sk->sk_backlog.tail->next = skb; 1138 1139 WRITE_ONCE(sk->sk_backlog.tail, skb); 1140 skb->next = NULL; 1141 } 1142 1143 /* 1144 * Take into account size of receive queue and backlog queue 1145 * Do not take into account this skb truesize, 1146 * to allow even a single big packet to come. 1147 */ 1148 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 1149 { 1150 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 1151 1152 return qsize > limit; 1153 } 1154 1155 /* The per-socket spinlock must be held here. */ 1156 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 1157 unsigned int limit) 1158 { 1159 if (sk_rcvqueues_full(sk, limit)) 1160 return -ENOBUFS; 1161 1162 /* 1163 * If the skb was allocated from pfmemalloc reserves, only 1164 * allow SOCK_MEMALLOC sockets to use it as this socket is 1165 * helping free memory 1166 */ 1167 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 1168 return -ENOMEM; 1169 1170 __sk_add_backlog(sk, skb); 1171 sk->sk_backlog.len += skb->truesize; 1172 return 0; 1173 } 1174 1175 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 1176 1177 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)); 1178 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb)); 1179 1180 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 1181 { 1182 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 1183 return __sk_backlog_rcv(sk, skb); 1184 1185 return INDIRECT_CALL_INET(sk->sk_backlog_rcv, 1186 tcp_v6_do_rcv, 1187 tcp_v4_do_rcv, 1188 sk, skb); 1189 } 1190 1191 static inline void sk_incoming_cpu_update(struct sock *sk) 1192 { 1193 int cpu = raw_smp_processor_id(); 1194 1195 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) 1196 WRITE_ONCE(sk->sk_incoming_cpu, cpu); 1197 } 1198 1199 1200 static inline void sock_rps_save_rxhash(struct sock *sk, 1201 const struct sk_buff *skb) 1202 { 1203 #ifdef CONFIG_RPS 1204 /* The following WRITE_ONCE() is paired with the READ_ONCE() 1205 * here, and another one in sock_rps_record_flow(). 1206 */ 1207 if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash)) 1208 WRITE_ONCE(sk->sk_rxhash, skb->hash); 1209 #endif 1210 } 1211 1212 static inline void sock_rps_reset_rxhash(struct sock *sk) 1213 { 1214 #ifdef CONFIG_RPS 1215 /* Paired with READ_ONCE() in sock_rps_record_flow() */ 1216 WRITE_ONCE(sk->sk_rxhash, 0); 1217 #endif 1218 } 1219 1220 #define sk_wait_event(__sk, __timeo, __condition, __wait) \ 1221 ({ int __rc, __dis = __sk->sk_disconnects; \ 1222 release_sock(__sk); \ 1223 __rc = __condition; \ 1224 if (!__rc) { \ 1225 *(__timeo) = wait_woken(__wait, \ 1226 TASK_INTERRUPTIBLE, \ 1227 *(__timeo)); \ 1228 } \ 1229 sched_annotate_sleep(); \ 1230 lock_sock(__sk); \ 1231 __rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \ 1232 __rc; \ 1233 }) 1234 1235 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 1236 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 1237 void sk_stream_wait_close(struct sock *sk, long timeo_p); 1238 int sk_stream_error(struct sock *sk, int flags, int err); 1239 void sk_stream_kill_queues(struct sock *sk); 1240 void sk_set_memalloc(struct sock *sk); 1241 void sk_clear_memalloc(struct sock *sk); 1242 1243 void __sk_flush_backlog(struct sock *sk); 1244 1245 static inline bool sk_flush_backlog(struct sock *sk) 1246 { 1247 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 1248 __sk_flush_backlog(sk); 1249 return true; 1250 } 1251 return false; 1252 } 1253 1254 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 1255 1256 struct request_sock_ops; 1257 struct timewait_sock_ops; 1258 struct inet_hashinfo; 1259 struct raw_hashinfo; 1260 struct smc_hashinfo; 1261 struct module; 1262 struct sk_psock; 1263 1264 /* 1265 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes 1266 * un-modified. Special care is taken when initializing object to zero. 1267 */ 1268 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 1269 { 1270 if (offsetof(struct sock, sk_node.next) != 0) 1271 memset(sk, 0, offsetof(struct sock, sk_node.next)); 1272 memset(&sk->sk_node.pprev, 0, 1273 size - offsetof(struct sock, sk_node.pprev)); 1274 } 1275 1276 struct proto_accept_arg { 1277 int flags; 1278 int err; 1279 int is_empty; 1280 bool kern; 1281 }; 1282 1283 /* Networking protocol blocks we attach to sockets. 1284 * socket layer -> transport layer interface 1285 */ 1286 struct proto { 1287 void (*close)(struct sock *sk, 1288 long timeout); 1289 int (*pre_connect)(struct sock *sk, 1290 struct sockaddr_unsized *uaddr, 1291 int addr_len); 1292 int (*connect)(struct sock *sk, 1293 struct sockaddr_unsized *uaddr, 1294 int addr_len); 1295 int (*disconnect)(struct sock *sk, int flags); 1296 1297 struct sock * (*accept)(struct sock *sk, 1298 struct proto_accept_arg *arg); 1299 1300 int (*ioctl)(struct sock *sk, int cmd, 1301 int *karg); 1302 int (*init)(struct sock *sk); 1303 void (*destroy)(struct sock *sk); 1304 void (*shutdown)(struct sock *sk, int how); 1305 int (*setsockopt)(struct sock *sk, int level, 1306 int optname, sockptr_t optval, 1307 unsigned int optlen); 1308 int (*getsockopt)(struct sock *sk, int level, 1309 int optname, char __user *optval, 1310 int __user *option); 1311 void (*keepalive)(struct sock *sk, int valbool); 1312 #ifdef CONFIG_COMPAT 1313 int (*compat_ioctl)(struct sock *sk, 1314 unsigned int cmd, unsigned long arg); 1315 #endif 1316 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1317 size_t len); 1318 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1319 size_t len, int flags, int *addr_len); 1320 void (*splice_eof)(struct socket *sock); 1321 int (*bind)(struct sock *sk, 1322 struct sockaddr_unsized *addr, int addr_len); 1323 int (*bind_add)(struct sock *sk, 1324 struct sockaddr_unsized *addr, int addr_len); 1325 1326 int (*backlog_rcv) (struct sock *sk, 1327 struct sk_buff *skb); 1328 bool (*bpf_bypass_getsockopt)(int level, 1329 int optname); 1330 1331 void (*release_cb)(struct sock *sk); 1332 1333 /* Keeping track of sk's, looking them up, and port selection methods. */ 1334 int (*hash)(struct sock *sk); 1335 void (*unhash)(struct sock *sk); 1336 void (*rehash)(struct sock *sk); 1337 int (*get_port)(struct sock *sk, unsigned short snum); 1338 void (*put_port)(struct sock *sk); 1339 #ifdef CONFIG_BPF_SYSCALL 1340 int (*psock_update_sk_prot)(struct sock *sk, 1341 struct sk_psock *psock, 1342 bool restore); 1343 #endif 1344 1345 /* Keeping track of sockets in use */ 1346 #ifdef CONFIG_PROC_FS 1347 unsigned int inuse_idx; 1348 #endif 1349 1350 bool (*stream_memory_free)(const struct sock *sk, int wake); 1351 bool (*sock_is_readable)(struct sock *sk); 1352 /* Memory pressure */ 1353 void (*enter_memory_pressure)(struct sock *sk); 1354 void (*leave_memory_pressure)(struct sock *sk); 1355 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1356 int __percpu *per_cpu_fw_alloc; 1357 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1358 1359 /* 1360 * Pressure flag: try to collapse. 1361 * Technical note: it is used by multiple contexts non atomically. 1362 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes. 1363 * All the __sk_mem_schedule() is of this nature: accounting 1364 * is strict, actions are advisory and have some latency. 1365 */ 1366 unsigned long *memory_pressure; 1367 long *sysctl_mem; 1368 1369 int *sysctl_wmem; 1370 int *sysctl_rmem; 1371 u32 sysctl_wmem_offset; 1372 u32 sysctl_rmem_offset; 1373 1374 int max_header; 1375 bool no_autobind; 1376 1377 struct kmem_cache *slab; 1378 unsigned int obj_size; 1379 unsigned int freeptr_offset; 1380 unsigned int ipv6_pinfo_offset; 1381 slab_flags_t slab_flags; 1382 unsigned int useroffset; /* Usercopy region offset */ 1383 unsigned int usersize; /* Usercopy region size */ 1384 1385 struct request_sock_ops *rsk_prot; 1386 struct timewait_sock_ops *twsk_prot; 1387 1388 union { 1389 struct inet_hashinfo *hashinfo; 1390 struct udp_table *udp_table; 1391 struct raw_hashinfo *raw_hash; 1392 struct smc_hashinfo *smc_hash; 1393 } h; 1394 1395 struct module *owner; 1396 1397 char name[32]; 1398 1399 struct list_head node; 1400 int (*diag_destroy)(struct sock *sk, int err); 1401 } __randomize_layout; 1402 1403 int proto_register(struct proto *prot, int alloc_slab); 1404 void proto_unregister(struct proto *prot); 1405 int sock_load_diag_module(int family, int protocol); 1406 1407 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake)); 1408 1409 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) 1410 { 1411 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) 1412 return false; 1413 1414 return sk->sk_prot->stream_memory_free ? 1415 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free, 1416 tcp_stream_memory_free, sk, wake) : true; 1417 } 1418 1419 static inline bool sk_stream_memory_free(const struct sock *sk) 1420 { 1421 return __sk_stream_memory_free(sk, 0); 1422 } 1423 1424 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) 1425 { 1426 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1427 __sk_stream_memory_free(sk, wake); 1428 } 1429 1430 static inline bool sk_stream_is_writeable(const struct sock *sk) 1431 { 1432 return __sk_stream_is_writeable(sk, 0); 1433 } 1434 1435 static inline int sk_under_cgroup_hierarchy(struct sock *sk, 1436 struct cgroup *ancestor) 1437 { 1438 #ifdef CONFIG_SOCK_CGROUP_DATA 1439 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), 1440 ancestor); 1441 #else 1442 return -ENOTSUPP; 1443 #endif 1444 } 1445 1446 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16 1447 1448 static inline void sk_sockets_allocated_dec(struct sock *sk) 1449 { 1450 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1, 1451 SK_ALLOC_PERCPU_COUNTER_BATCH); 1452 } 1453 1454 static inline void sk_sockets_allocated_inc(struct sock *sk) 1455 { 1456 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1, 1457 SK_ALLOC_PERCPU_COUNTER_BATCH); 1458 } 1459 1460 static inline u64 1461 sk_sockets_allocated_read_positive(struct sock *sk) 1462 { 1463 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1464 } 1465 1466 static inline int 1467 proto_sockets_allocated_sum_positive(struct proto *prot) 1468 { 1469 return percpu_counter_sum_positive(prot->sockets_allocated); 1470 } 1471 1472 #ifdef CONFIG_PROC_FS 1473 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 1474 struct prot_inuse { 1475 int all; 1476 int val[PROTO_INUSE_NR]; 1477 }; 1478 1479 static inline void sock_prot_inuse_add(const struct net *net, 1480 const struct proto *prot, int val) 1481 { 1482 this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); 1483 } 1484 1485 static inline void sock_inuse_add(const struct net *net, int val) 1486 { 1487 this_cpu_add(net->core.prot_inuse->all, val); 1488 } 1489 1490 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1491 int sock_inuse_get(struct net *net); 1492 #else 1493 static inline void sock_prot_inuse_add(const struct net *net, 1494 const struct proto *prot, int val) 1495 { 1496 } 1497 1498 static inline void sock_inuse_add(const struct net *net, int val) 1499 { 1500 } 1501 #endif 1502 1503 1504 /* With per-bucket locks this operation is not-atomic, so that 1505 * this version is not worse. 1506 */ 1507 static inline int __sk_prot_rehash(struct sock *sk) 1508 { 1509 sk->sk_prot->unhash(sk); 1510 return sk->sk_prot->hash(sk); 1511 } 1512 1513 /* About 10 seconds */ 1514 #define SOCK_DESTROY_TIME (10*HZ) 1515 1516 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1517 #define PROT_SOCK 1024 1518 1519 #define SHUTDOWN_MASK 3 1520 #define RCV_SHUTDOWN 1 1521 #define SEND_SHUTDOWN 2 1522 1523 #define SOCK_BINDADDR_LOCK 4 1524 #define SOCK_BINDPORT_LOCK 8 1525 /** 1526 * define SOCK_CONNECT_BIND - &sock->sk_userlocks flag for auto-bind at connect() time 1527 */ 1528 #define SOCK_CONNECT_BIND 16 1529 1530 struct socket_alloc { 1531 struct socket socket; 1532 struct inode vfs_inode; 1533 }; 1534 1535 static inline struct socket *SOCKET_I(struct inode *inode) 1536 { 1537 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1538 } 1539 1540 static inline struct inode *SOCK_INODE(struct socket *socket) 1541 { 1542 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1543 } 1544 1545 /* 1546 * Functions for memory accounting 1547 */ 1548 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); 1549 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1550 void __sk_mem_reduce_allocated(struct sock *sk, int amount); 1551 void __sk_mem_reclaim(struct sock *sk, int amount); 1552 1553 #define SK_MEM_SEND 0 1554 #define SK_MEM_RECV 1 1555 1556 /* sysctl_mem values are in pages */ 1557 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1558 { 1559 return READ_ONCE(sk->sk_prot->sysctl_mem[index]); 1560 } 1561 1562 static inline int sk_mem_pages(int amt) 1563 { 1564 return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT; 1565 } 1566 1567 static inline bool sk_has_account(struct sock *sk) 1568 { 1569 /* return true if protocol supports memory accounting */ 1570 return !!sk->sk_prot->memory_allocated; 1571 } 1572 1573 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1574 { 1575 int delta; 1576 1577 if (!sk_has_account(sk)) 1578 return true; 1579 delta = size - sk->sk_forward_alloc; 1580 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND); 1581 } 1582 1583 static inline bool 1584 __sk_rmem_schedule(struct sock *sk, int size, bool pfmemalloc) 1585 { 1586 int delta; 1587 1588 if (!sk_has_account(sk)) 1589 return true; 1590 delta = size - sk->sk_forward_alloc; 1591 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) || 1592 pfmemalloc; 1593 } 1594 1595 static inline bool 1596 sk_rmem_schedule(struct sock *sk, const struct sk_buff *skb, int size) 1597 { 1598 return __sk_rmem_schedule(sk, size, skb_pfmemalloc(skb)); 1599 } 1600 1601 static inline int sk_unused_reserved_mem(const struct sock *sk) 1602 { 1603 int unused_mem; 1604 1605 if (likely(!sk->sk_reserved_mem)) 1606 return 0; 1607 1608 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued - 1609 atomic_read(&sk->sk_rmem_alloc); 1610 1611 return unused_mem > 0 ? unused_mem : 0; 1612 } 1613 1614 static inline void sk_mem_reclaim(struct sock *sk) 1615 { 1616 int reclaimable; 1617 1618 if (!sk_has_account(sk)) 1619 return; 1620 1621 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk); 1622 1623 if (reclaimable >= (int)PAGE_SIZE) 1624 __sk_mem_reclaim(sk, reclaimable); 1625 } 1626 1627 static inline void sk_mem_reclaim_final(struct sock *sk) 1628 { 1629 sk->sk_reserved_mem = 0; 1630 sk_mem_reclaim(sk); 1631 } 1632 1633 static inline void sk_mem_charge(struct sock *sk, int size) 1634 { 1635 if (!sk_has_account(sk)) 1636 return; 1637 sk_forward_alloc_add(sk, -size); 1638 } 1639 1640 static inline void sk_mem_uncharge(struct sock *sk, int size) 1641 { 1642 if (!sk_has_account(sk)) 1643 return; 1644 sk_forward_alloc_add(sk, size); 1645 sk_mem_reclaim(sk); 1646 } 1647 1648 void __sk_charge(struct sock *sk, gfp_t gfp); 1649 1650 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES) 1651 static inline void sk_owner_set(struct sock *sk, struct module *owner) 1652 { 1653 __module_get(owner); 1654 sk->sk_owner = owner; 1655 } 1656 1657 static inline void sk_owner_clear(struct sock *sk) 1658 { 1659 sk->sk_owner = NULL; 1660 } 1661 1662 static inline void sk_owner_put(struct sock *sk) 1663 { 1664 module_put(sk->sk_owner); 1665 } 1666 #else 1667 static inline void sk_owner_set(struct sock *sk, struct module *owner) 1668 { 1669 } 1670 1671 static inline void sk_owner_clear(struct sock *sk) 1672 { 1673 } 1674 1675 static inline void sk_owner_put(struct sock *sk) 1676 { 1677 } 1678 #endif 1679 /* 1680 * Macro so as to not evaluate some arguments when 1681 * lockdep is not enabled. 1682 * 1683 * Mark both the sk_lock and the sk_lock.slock as a 1684 * per-address-family lock class. 1685 */ 1686 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1687 do { \ 1688 sk_owner_set(sk, THIS_MODULE); \ 1689 sk->sk_lock.owned = 0; \ 1690 init_waitqueue_head(&sk->sk_lock.wq); \ 1691 spin_lock_init(&(sk)->sk_lock.slock); \ 1692 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1693 sizeof((sk)->sk_lock)); \ 1694 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1695 (skey), (sname)); \ 1696 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1697 } while (0) 1698 1699 static inline bool lockdep_sock_is_held(const struct sock *sk) 1700 { 1701 return lockdep_is_held(&sk->sk_lock) || 1702 lockdep_is_held(&sk->sk_lock.slock); 1703 } 1704 1705 void lock_sock_nested(struct sock *sk, int subclass); 1706 1707 static inline void lock_sock(struct sock *sk) 1708 { 1709 lock_sock_nested(sk, 0); 1710 } 1711 1712 void __lock_sock(struct sock *sk); 1713 void __release_sock(struct sock *sk); 1714 void release_sock(struct sock *sk); 1715 1716 /* BH context may only use the following locking interface. */ 1717 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1718 #define bh_lock_sock_nested(__sk) \ 1719 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1720 SINGLE_DEPTH_NESTING) 1721 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1722 1723 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock); 1724 1725 /** 1726 * lock_sock_fast - fast version of lock_sock 1727 * @sk: socket 1728 * 1729 * This version should be used for very small section, where process won't block 1730 * return false if fast path is taken: 1731 * 1732 * sk_lock.slock locked, owned = 0, BH disabled 1733 * 1734 * return true if slow path is taken: 1735 * 1736 * sk_lock.slock unlocked, owned = 1, BH enabled 1737 */ 1738 static inline bool lock_sock_fast(struct sock *sk) 1739 { 1740 /* The sk_lock has mutex_lock() semantics here. */ 1741 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 1742 1743 return __lock_sock_fast(sk); 1744 } 1745 1746 /* fast socket lock variant for caller already holding a [different] socket lock */ 1747 static inline bool lock_sock_fast_nested(struct sock *sk) 1748 { 1749 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_); 1750 1751 return __lock_sock_fast(sk); 1752 } 1753 1754 /** 1755 * unlock_sock_fast - complement of lock_sock_fast 1756 * @sk: socket 1757 * @slow: slow mode 1758 * 1759 * fast unlock socket for user context. 1760 * If slow mode is on, we call regular release_sock() 1761 */ 1762 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1763 __releases(&sk->sk_lock.slock) 1764 { 1765 if (slow) { 1766 release_sock(sk); 1767 __release(&sk->sk_lock.slock); 1768 } else { 1769 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1770 spin_unlock_bh(&sk->sk_lock.slock); 1771 } 1772 } 1773 1774 void sockopt_lock_sock(struct sock *sk); 1775 void sockopt_release_sock(struct sock *sk); 1776 bool sockopt_ns_capable(struct user_namespace *ns, int cap); 1777 bool sockopt_capable(int cap); 1778 1779 /* Used by processes to "lock" a socket state, so that 1780 * interrupts and bottom half handlers won't change it 1781 * from under us. It essentially blocks any incoming 1782 * packets, so that we won't get any new data or any 1783 * packets that change the state of the socket. 1784 * 1785 * While locked, BH processing will add new packets to 1786 * the backlog queue. This queue is processed by the 1787 * owner of the socket lock right before it is released. 1788 * 1789 * Since ~2.3.5 it is also exclusive sleep lock serializing 1790 * accesses from user process context. 1791 */ 1792 1793 static inline void sock_owned_by_me(const struct sock *sk) 1794 { 1795 #ifdef CONFIG_LOCKDEP 1796 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1797 #endif 1798 } 1799 1800 static inline void sock_not_owned_by_me(const struct sock *sk) 1801 { 1802 #ifdef CONFIG_LOCKDEP 1803 WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks); 1804 #endif 1805 } 1806 1807 static inline bool sock_owned_by_user(const struct sock *sk) 1808 { 1809 sock_owned_by_me(sk); 1810 return sk->sk_lock.owned; 1811 } 1812 1813 static inline bool sock_owned_by_user_nocheck(const struct sock *sk) 1814 { 1815 return sk->sk_lock.owned; 1816 } 1817 1818 static inline void sock_release_ownership(struct sock *sk) 1819 { 1820 DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk)); 1821 sk->sk_lock.owned = 0; 1822 1823 /* The sk_lock has mutex_unlock() semantics: */ 1824 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1825 } 1826 1827 /* no reclassification while locks are held */ 1828 static inline bool sock_allow_reclassification(const struct sock *csk) 1829 { 1830 struct sock *sk = (struct sock *)csk; 1831 1832 return !sock_owned_by_user_nocheck(sk) && 1833 !spin_is_locked(&sk->sk_lock.slock); 1834 } 1835 1836 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1837 struct proto *prot, int kern); 1838 void sk_free(struct sock *sk); 1839 void sk_net_refcnt_upgrade(struct sock *sk); 1840 void sk_destruct(struct sock *sk); 1841 struct sock *sk_clone(const struct sock *sk, const gfp_t priority, bool lock); 1842 1843 static inline struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 1844 { 1845 return sk_clone(sk, priority, true); 1846 } 1847 1848 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1849 gfp_t priority); 1850 void __sock_wfree(struct sk_buff *skb); 1851 void sock_wfree(struct sk_buff *skb); 1852 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1853 gfp_t priority); 1854 void skb_orphan_partial(struct sk_buff *skb); 1855 void sock_rfree(struct sk_buff *skb); 1856 void sock_efree(struct sk_buff *skb); 1857 #ifdef CONFIG_INET 1858 void sock_edemux(struct sk_buff *skb); 1859 void sock_pfree(struct sk_buff *skb); 1860 1861 static inline void skb_set_owner_edemux(struct sk_buff *skb, struct sock *sk) 1862 { 1863 skb_orphan(skb); 1864 if (refcount_inc_not_zero(&sk->sk_refcnt)) { 1865 skb->sk = sk; 1866 skb->destructor = sock_edemux; 1867 } 1868 } 1869 #else 1870 #define sock_edemux sock_efree 1871 #endif 1872 1873 int sk_setsockopt(struct sock *sk, int level, int optname, 1874 sockptr_t optval, unsigned int optlen); 1875 int sock_setsockopt(struct socket *sock, int level, int op, 1876 sockptr_t optval, unsigned int optlen); 1877 int do_sock_setsockopt(struct socket *sock, bool compat, int level, 1878 int optname, sockptr_t optval, int optlen); 1879 int do_sock_getsockopt(struct socket *sock, bool compat, int level, 1880 int optname, sockptr_t optval, sockptr_t optlen); 1881 1882 int sk_getsockopt(struct sock *sk, int level, int optname, 1883 sockptr_t optval, sockptr_t optlen); 1884 int sock_gettstamp(struct socket *sock, void __user *userstamp, 1885 bool timeval, bool time32); 1886 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1887 unsigned long data_len, int noblock, 1888 int *errcode, int max_page_order); 1889 1890 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk, 1891 unsigned long size, 1892 int noblock, int *errcode) 1893 { 1894 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 1895 } 1896 1897 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1898 void *sock_kmemdup(struct sock *sk, const void *src, 1899 int size, gfp_t priority); 1900 void sock_kfree_s(struct sock *sk, void *mem, int size); 1901 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1902 void sk_send_sigurg(struct sock *sk); 1903 1904 static inline void sock_replace_proto(struct sock *sk, struct proto *proto) 1905 { 1906 if (sk->sk_socket) 1907 clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1908 WRITE_ONCE(sk->sk_prot, proto); 1909 } 1910 1911 struct sockcm_cookie { 1912 u64 transmit_time; 1913 u32 mark; 1914 u32 tsflags; 1915 u32 ts_opt_id; 1916 u32 priority; 1917 u32 dmabuf_id; 1918 }; 1919 1920 static inline void sockcm_init(struct sockcm_cookie *sockc, 1921 const struct sock *sk) 1922 { 1923 *sockc = (struct sockcm_cookie) { 1924 .mark = READ_ONCE(sk->sk_mark), 1925 .tsflags = READ_ONCE(sk->sk_tsflags), 1926 .priority = READ_ONCE(sk->sk_priority), 1927 }; 1928 } 1929 1930 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, 1931 struct sockcm_cookie *sockc); 1932 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1933 struct sockcm_cookie *sockc); 1934 1935 /* 1936 * Functions to fill in entries in struct proto_ops when a protocol 1937 * does not implement a particular function. 1938 */ 1939 int sock_no_bind(struct socket *sock, struct sockaddr_unsized *saddr, int len); 1940 int sock_no_connect(struct socket *sock, struct sockaddr_unsized *saddr, int len, int flags); 1941 int sock_no_socketpair(struct socket *, struct socket *); 1942 int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *); 1943 int sock_no_getname(struct socket *, struct sockaddr *, int); 1944 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1945 int sock_no_listen(struct socket *, int); 1946 int sock_no_shutdown(struct socket *, int); 1947 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1948 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); 1949 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1950 int sock_no_mmap(struct file *file, struct socket *sock, 1951 struct vm_area_struct *vma); 1952 1953 /* 1954 * Functions to fill in entries in struct proto_ops when a protocol 1955 * uses the inet style. 1956 */ 1957 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1958 char __user *optval, int __user *optlen); 1959 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1960 int flags); 1961 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1962 sockptr_t optval, unsigned int optlen); 1963 1964 void sk_common_release(struct sock *sk); 1965 1966 /* 1967 * Default socket callbacks and setup code 1968 */ 1969 1970 /* Initialise core socket variables using an explicit uid. */ 1971 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid); 1972 1973 /* Initialise core socket variables. 1974 * Assumes struct socket *sock is embedded in a struct socket_alloc. 1975 */ 1976 void sock_init_data(struct socket *sock, struct sock *sk); 1977 1978 /* 1979 * Socket reference counting postulates. 1980 * 1981 * * Each user of socket SHOULD hold a reference count. 1982 * * Each access point to socket (an hash table bucket, reference from a list, 1983 * running timer, skb in flight MUST hold a reference count. 1984 * * When reference count hits 0, it means it will never increase back. 1985 * * When reference count hits 0, it means that no references from 1986 * outside exist to this socket and current process on current CPU 1987 * is last user and may/should destroy this socket. 1988 * * sk_free is called from any context: process, BH, IRQ. When 1989 * it is called, socket has no references from outside -> sk_free 1990 * may release descendant resources allocated by the socket, but 1991 * to the time when it is called, socket is NOT referenced by any 1992 * hash tables, lists etc. 1993 * * Packets, delivered from outside (from network or from another process) 1994 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1995 * when they sit in queue. Otherwise, packets will leak to hole, when 1996 * socket is looked up by one cpu and unhasing is made by another CPU. 1997 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1998 * (leak to backlog). Packet socket does all the processing inside 1999 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 2000 * use separate SMP lock, so that they are prone too. 2001 */ 2002 2003 /* Ungrab socket and destroy it, if it was the last reference. */ 2004 static inline void sock_put(struct sock *sk) 2005 { 2006 if (refcount_dec_and_test(&sk->sk_refcnt)) 2007 sk_free(sk); 2008 } 2009 /* Generic version of sock_put(), dealing with all sockets 2010 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 2011 */ 2012 void sock_gen_put(struct sock *sk); 2013 2014 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 2015 unsigned int trim_cap, bool refcounted); 2016 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 2017 const int nested) 2018 { 2019 return __sk_receive_skb(sk, skb, nested, 1, true); 2020 } 2021 2022 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 2023 { 2024 /* sk_tx_queue_mapping accept only upto a 16-bit value */ 2025 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) 2026 return; 2027 /* Paired with READ_ONCE() in sk_tx_queue_get() and 2028 * other WRITE_ONCE() because socket lock might be not held. 2029 */ 2030 if (READ_ONCE(sk->sk_tx_queue_mapping) != tx_queue) { 2031 WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue); 2032 WRITE_ONCE(sk->sk_tx_queue_mapping_jiffies, jiffies); 2033 return; 2034 } 2035 2036 /* Refresh sk_tx_queue_mapping_jiffies if too old. */ 2037 if (time_is_before_jiffies(READ_ONCE(sk->sk_tx_queue_mapping_jiffies) + HZ)) 2038 WRITE_ONCE(sk->sk_tx_queue_mapping_jiffies, jiffies); 2039 } 2040 2041 #define NO_QUEUE_MAPPING USHRT_MAX 2042 2043 static inline void sk_tx_queue_clear(struct sock *sk) 2044 { 2045 /* Paired with READ_ONCE() in sk_tx_queue_get() and 2046 * other WRITE_ONCE() because socket lock might be not held. 2047 */ 2048 WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING); 2049 } 2050 2051 int sk_tx_queue_get(const struct sock *sk); 2052 2053 static inline void __sk_rx_queue_set(struct sock *sk, 2054 const struct sk_buff *skb, 2055 bool force_set) 2056 { 2057 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 2058 if (skb_rx_queue_recorded(skb)) { 2059 u16 rx_queue = skb_get_rx_queue(skb); 2060 2061 if (force_set || 2062 unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue)) 2063 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue); 2064 } 2065 #endif 2066 } 2067 2068 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) 2069 { 2070 __sk_rx_queue_set(sk, skb, true); 2071 } 2072 2073 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb) 2074 { 2075 __sk_rx_queue_set(sk, skb, false); 2076 } 2077 2078 static inline void sk_rx_queue_clear(struct sock *sk) 2079 { 2080 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 2081 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING); 2082 #endif 2083 } 2084 2085 static inline int sk_rx_queue_get(const struct sock *sk) 2086 { 2087 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 2088 if (sk) { 2089 int res = READ_ONCE(sk->sk_rx_queue_mapping); 2090 2091 if (res != NO_QUEUE_MAPPING) 2092 return res; 2093 } 2094 #endif 2095 2096 return -1; 2097 } 2098 2099 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 2100 { 2101 sk->sk_socket = sock; 2102 if (sock) { 2103 WRITE_ONCE(sk->sk_uid, SOCK_INODE(sock)->i_uid); 2104 WRITE_ONCE(sk->sk_ino, SOCK_INODE(sock)->i_ino); 2105 } else { 2106 /* Note: sk_uid is unchanged. */ 2107 WRITE_ONCE(sk->sk_ino, 0); 2108 } 2109 } 2110 2111 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 2112 { 2113 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 2114 return &rcu_dereference_raw(sk->sk_wq)->wait; 2115 } 2116 /* Detach socket from process context. 2117 * Announce socket dead, detach it from wait queue and inode. 2118 * Note that parent inode held reference count on this struct sock, 2119 * we do not release it in this function, because protocol 2120 * probably wants some additional cleanups or even continuing 2121 * to work with this socket (TCP). 2122 */ 2123 static inline void sock_orphan(struct sock *sk) 2124 { 2125 write_lock_bh(&sk->sk_callback_lock); 2126 sock_set_flag(sk, SOCK_DEAD); 2127 sk_set_socket(sk, NULL); 2128 sk->sk_wq = NULL; 2129 write_unlock_bh(&sk->sk_callback_lock); 2130 } 2131 2132 static inline void sock_graft(struct sock *sk, struct socket *parent) 2133 { 2134 WARN_ON(parent->sk); 2135 write_lock_bh(&sk->sk_callback_lock); 2136 rcu_assign_pointer(sk->sk_wq, &parent->wq); 2137 parent->sk = sk; 2138 sk_set_socket(sk, parent); 2139 security_sock_graft(sk, parent); 2140 write_unlock_bh(&sk->sk_callback_lock); 2141 } 2142 2143 static inline unsigned long sock_i_ino(const struct sock *sk) 2144 { 2145 /* Paired with WRITE_ONCE() in sock_graft() and sock_orphan() */ 2146 return READ_ONCE(sk->sk_ino); 2147 } 2148 2149 static inline kuid_t sk_uid(const struct sock *sk) 2150 { 2151 /* Paired with WRITE_ONCE() in sockfs_setattr() */ 2152 return READ_ONCE(sk->sk_uid); 2153 } 2154 2155 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) 2156 { 2157 return sk ? sk_uid(sk) : make_kuid(net->user_ns, 0); 2158 } 2159 2160 static inline u32 net_tx_rndhash(void) 2161 { 2162 u32 v = get_random_u32(); 2163 2164 return v ?: 1; 2165 } 2166 2167 static inline void sk_set_txhash(struct sock *sk) 2168 { 2169 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */ 2170 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash()); 2171 } 2172 2173 static inline bool sk_rethink_txhash(struct sock *sk) 2174 { 2175 if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) { 2176 sk_set_txhash(sk); 2177 return true; 2178 } 2179 return false; 2180 } 2181 2182 static inline struct dst_entry * 2183 __sk_dst_get(const struct sock *sk) 2184 { 2185 return rcu_dereference_check(sk->sk_dst_cache, 2186 lockdep_sock_is_held(sk)); 2187 } 2188 2189 static inline struct dst_entry * 2190 sk_dst_get(const struct sock *sk) 2191 { 2192 struct dst_entry *dst; 2193 2194 rcu_read_lock(); 2195 dst = rcu_dereference(sk->sk_dst_cache); 2196 if (dst && !rcuref_get(&dst->__rcuref)) 2197 dst = NULL; 2198 rcu_read_unlock(); 2199 return dst; 2200 } 2201 2202 static inline void __dst_negative_advice(struct sock *sk) 2203 { 2204 struct dst_entry *dst = __sk_dst_get(sk); 2205 2206 if (dst && dst->ops->negative_advice) 2207 dst->ops->negative_advice(sk, dst); 2208 } 2209 2210 static inline void dst_negative_advice(struct sock *sk) 2211 { 2212 sk_rethink_txhash(sk); 2213 __dst_negative_advice(sk); 2214 } 2215 2216 static inline void 2217 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 2218 { 2219 struct dst_entry *old_dst; 2220 2221 sk_tx_queue_clear(sk); 2222 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2223 old_dst = rcu_dereference_protected(sk->sk_dst_cache, 2224 lockdep_sock_is_held(sk)); 2225 rcu_assign_pointer(sk->sk_dst_cache, dst); 2226 dst_release(old_dst); 2227 } 2228 2229 static inline void 2230 sk_dst_set(struct sock *sk, struct dst_entry *dst) 2231 { 2232 struct dst_entry *old_dst; 2233 2234 sk_tx_queue_clear(sk); 2235 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2236 old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst))); 2237 dst_release(old_dst); 2238 } 2239 2240 static inline void 2241 __sk_dst_reset(struct sock *sk) 2242 { 2243 __sk_dst_set(sk, NULL); 2244 } 2245 2246 static inline void 2247 sk_dst_reset(struct sock *sk) 2248 { 2249 sk_dst_set(sk, NULL); 2250 } 2251 2252 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 2253 2254 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 2255 2256 static inline void sk_dst_confirm(struct sock *sk) 2257 { 2258 if (!READ_ONCE(sk->sk_dst_pending_confirm)) 2259 WRITE_ONCE(sk->sk_dst_pending_confirm, 1); 2260 } 2261 2262 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) 2263 { 2264 if (skb_get_dst_pending_confirm(skb)) { 2265 struct sock *sk = skb->sk; 2266 2267 if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) 2268 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2269 neigh_confirm(n); 2270 } 2271 } 2272 2273 bool sk_mc_loop(const struct sock *sk); 2274 2275 static inline bool sk_can_gso(const struct sock *sk) 2276 { 2277 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 2278 } 2279 2280 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 2281 2282 static inline void sk_gso_disable(struct sock *sk) 2283 { 2284 sk->sk_gso_disabled = 1; 2285 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2286 } 2287 2288 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 2289 struct iov_iter *from, char *to, 2290 int copy, int offset) 2291 { 2292 if (skb->ip_summed == CHECKSUM_NONE) { 2293 __wsum csum = 0; 2294 if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) 2295 return -EFAULT; 2296 skb->csum = csum_block_add(skb->csum, csum, offset); 2297 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 2298 if (!copy_from_iter_full_nocache(to, copy, from)) 2299 return -EFAULT; 2300 } else if (!copy_from_iter_full(to, copy, from)) 2301 return -EFAULT; 2302 2303 return 0; 2304 } 2305 2306 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 2307 struct iov_iter *from, int copy) 2308 { 2309 int err, offset = skb->len; 2310 2311 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 2312 copy, offset); 2313 if (err) 2314 __skb_trim(skb, offset); 2315 2316 return err; 2317 } 2318 2319 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 2320 struct sk_buff *skb, 2321 struct page *page, 2322 int off, int copy) 2323 { 2324 int err; 2325 2326 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 2327 copy, skb->len); 2328 if (err) 2329 return err; 2330 2331 skb_len_add(skb, copy); 2332 sk_wmem_queued_add(sk, copy); 2333 sk_mem_charge(sk, copy); 2334 return 0; 2335 } 2336 2337 #define SK_WMEM_ALLOC_BIAS 1 2338 /** 2339 * sk_wmem_alloc_get - returns write allocations 2340 * @sk: socket 2341 * 2342 * Return: sk_wmem_alloc minus initial offset of one 2343 */ 2344 static inline int sk_wmem_alloc_get(const struct sock *sk) 2345 { 2346 return refcount_read(&sk->sk_wmem_alloc) - SK_WMEM_ALLOC_BIAS; 2347 } 2348 2349 /** 2350 * sk_rmem_alloc_get - returns read allocations 2351 * @sk: socket 2352 * 2353 * Return: sk_rmem_alloc 2354 */ 2355 static inline int sk_rmem_alloc_get(const struct sock *sk) 2356 { 2357 return atomic_read(&sk->sk_rmem_alloc); 2358 } 2359 2360 /** 2361 * sk_has_allocations - check if allocations are outstanding 2362 * @sk: socket 2363 * 2364 * Return: true if socket has write or read allocations 2365 */ 2366 static inline bool sk_has_allocations(const struct sock *sk) 2367 { 2368 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 2369 } 2370 2371 /** 2372 * skwq_has_sleeper - check if there are any waiting processes 2373 * @wq: struct socket_wq 2374 * 2375 * Return: true if socket_wq has waiting processes 2376 * 2377 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 2378 * barrier call. They were added due to the race found within the tcp code. 2379 * 2380 * Consider following tcp code paths:: 2381 * 2382 * CPU1 CPU2 2383 * sys_select receive packet 2384 * ... ... 2385 * __add_wait_queue update tp->rcv_nxt 2386 * ... ... 2387 * tp->rcv_nxt check sock_def_readable 2388 * ... { 2389 * schedule rcu_read_lock(); 2390 * wq = rcu_dereference(sk->sk_wq); 2391 * if (wq && waitqueue_active(&wq->wait)) 2392 * wake_up_interruptible(&wq->wait) 2393 * ... 2394 * } 2395 * 2396 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 2397 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 2398 * could then endup calling schedule and sleep forever if there are no more 2399 * data on the socket. 2400 * 2401 */ 2402 static inline bool skwq_has_sleeper(struct socket_wq *wq) 2403 { 2404 return wq && wq_has_sleeper(&wq->wait); 2405 } 2406 2407 /** 2408 * sock_poll_wait - wrapper for the poll_wait call. 2409 * @filp: file 2410 * @sock: socket to wait on 2411 * @p: poll_table 2412 * 2413 * See the comments in the wq_has_sleeper function. 2414 */ 2415 static inline void sock_poll_wait(struct file *filp, struct socket *sock, 2416 poll_table *p) 2417 { 2418 /* Provides a barrier we need to be sure we are in sync 2419 * with the socket flags modification. 2420 * 2421 * This memory barrier is paired in the wq_has_sleeper. 2422 */ 2423 poll_wait(filp, &sock->wq.wait, p); 2424 } 2425 2426 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 2427 { 2428 /* This pairs with WRITE_ONCE() in sk_set_txhash() */ 2429 u32 txhash = READ_ONCE(sk->sk_txhash); 2430 2431 if (txhash) { 2432 skb->l4_hash = 1; 2433 skb->hash = txhash; 2434 } 2435 } 2436 2437 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 2438 2439 /* 2440 * Queue a received datagram if it will fit. Stream and sequenced 2441 * protocols can't normally use this as they need to fit buffers in 2442 * and play with them. 2443 * 2444 * Inlined as it's very short and called for pretty much every 2445 * packet ever received. 2446 */ 2447 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2448 { 2449 skb_orphan(skb); 2450 skb->sk = sk; 2451 skb->destructor = sock_rfree; 2452 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2453 sk_mem_charge(sk, skb->truesize); 2454 } 2455 2456 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk) 2457 { 2458 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) { 2459 skb_orphan(skb); 2460 skb->destructor = sock_efree; 2461 skb->sk = sk; 2462 return true; 2463 } 2464 return false; 2465 } 2466 2467 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk) 2468 { 2469 skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC)); 2470 if (skb) { 2471 if (sk_rmem_schedule(sk, skb, skb->truesize)) { 2472 skb_set_owner_r(skb, sk); 2473 return skb; 2474 } 2475 __kfree_skb(skb); 2476 } 2477 return NULL; 2478 } 2479 2480 static inline void skb_prepare_for_gro(struct sk_buff *skb) 2481 { 2482 if (skb->destructor != sock_wfree) { 2483 skb_orphan(skb); 2484 return; 2485 } 2486 skb->slow_gro = 1; 2487 } 2488 2489 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2490 unsigned long expires); 2491 2492 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2493 2494 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer); 2495 2496 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, 2497 struct sk_buff *skb, unsigned int flags, 2498 void (*destructor)(struct sock *sk, 2499 struct sk_buff *skb)); 2500 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2501 2502 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, 2503 enum skb_drop_reason *reason); 2504 2505 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2506 { 2507 return sock_queue_rcv_skb_reason(sk, skb, NULL); 2508 } 2509 2510 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2511 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2512 2513 /* 2514 * Recover an error report and clear atomically 2515 */ 2516 2517 static inline int sock_error(struct sock *sk) 2518 { 2519 int err; 2520 2521 /* Avoid an atomic operation for the common case. 2522 * This is racy since another cpu/thread can change sk_err under us. 2523 */ 2524 if (likely(data_race(!sk->sk_err))) 2525 return 0; 2526 2527 err = xchg(&sk->sk_err, 0); 2528 return -err; 2529 } 2530 2531 void sk_error_report(struct sock *sk); 2532 2533 static inline unsigned long sock_wspace(struct sock *sk) 2534 { 2535 int amt = 0; 2536 2537 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2538 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); 2539 if (amt < 0) 2540 amt = 0; 2541 } 2542 return amt; 2543 } 2544 2545 /* Note: 2546 * We use sk->sk_wq_raw, from contexts knowing this 2547 * pointer is not NULL and cannot disappear/change. 2548 */ 2549 static inline void sk_set_bit(int nr, struct sock *sk) 2550 { 2551 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2552 !sock_flag(sk, SOCK_FASYNC)) 2553 return; 2554 2555 set_bit(nr, &sk->sk_wq_raw->flags); 2556 } 2557 2558 static inline void sk_clear_bit(int nr, struct sock *sk) 2559 { 2560 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2561 !sock_flag(sk, SOCK_FASYNC)) 2562 return; 2563 2564 clear_bit(nr, &sk->sk_wq_raw->flags); 2565 } 2566 2567 static inline void sk_wake_async(const struct sock *sk, int how, int band) 2568 { 2569 if (sock_flag(sk, SOCK_FASYNC)) { 2570 rcu_read_lock(); 2571 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2572 rcu_read_unlock(); 2573 } 2574 } 2575 2576 static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band) 2577 { 2578 if (unlikely(sock_flag(sk, SOCK_FASYNC))) 2579 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2580 } 2581 2582 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2583 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2584 * Note: for send buffers, TCP works better if we can build two skbs at 2585 * minimum. 2586 */ 2587 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2588 2589 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2590 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2591 2592 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2593 { 2594 u32 val; 2595 2596 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 2597 return; 2598 2599 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2600 val = max_t(u32, val, sk_unused_reserved_mem(sk)); 2601 2602 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); 2603 } 2604 2605 /** 2606 * sk_page_frag - return an appropriate page_frag 2607 * @sk: socket 2608 * 2609 * Use the per task page_frag instead of the per socket one for 2610 * optimization when we know that we're in process context and own 2611 * everything that's associated with %current. 2612 * 2613 * Both direct reclaim and page faults can nest inside other 2614 * socket operations and end up recursing into sk_page_frag() 2615 * while it's already in use: explicitly avoid task page_frag 2616 * when users disable sk_use_task_frag. 2617 * 2618 * Return: a per task page_frag if context allows that, 2619 * otherwise a per socket one. 2620 */ 2621 static inline struct page_frag *sk_page_frag(struct sock *sk) 2622 { 2623 if (sk->sk_use_task_frag) 2624 return ¤t->task_frag; 2625 2626 return &sk->sk_frag; 2627 } 2628 2629 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2630 2631 static inline bool __sock_writeable(const struct sock *sk, int wmem_alloc) 2632 { 2633 return wmem_alloc < (READ_ONCE(sk->sk_sndbuf) >> 1); 2634 } 2635 /* 2636 * Default write policy as shown to user space via poll/select/SIGIO 2637 */ 2638 static inline bool sock_writeable(const struct sock *sk) 2639 { 2640 return __sock_writeable(sk, refcount_read(&sk->sk_wmem_alloc)); 2641 } 2642 2643 static inline gfp_t gfp_any(void) 2644 { 2645 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2646 } 2647 2648 static inline gfp_t gfp_memcg_charge(void) 2649 { 2650 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2651 } 2652 2653 #ifdef CONFIG_MEMCG 2654 static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk) 2655 { 2656 return sk->sk_memcg; 2657 } 2658 2659 static inline bool mem_cgroup_sk_enabled(const struct sock *sk) 2660 { 2661 return mem_cgroup_sockets_enabled && mem_cgroup_from_sk(sk); 2662 } 2663 2664 static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk) 2665 { 2666 struct mem_cgroup *memcg = mem_cgroup_from_sk(sk); 2667 2668 #ifdef CONFIG_MEMCG_V1 2669 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2670 return !!memcg->tcpmem_pressure; 2671 #endif /* CONFIG_MEMCG_V1 */ 2672 2673 do { 2674 if (time_before64(get_jiffies_64(), 2675 mem_cgroup_get_socket_pressure(memcg))) { 2676 memcg_memory_event(mem_cgroup_from_sk(sk), 2677 MEMCG_SOCK_THROTTLED); 2678 return true; 2679 } 2680 } while ((memcg = parent_mem_cgroup(memcg))); 2681 2682 return false; 2683 } 2684 #else 2685 static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk) 2686 { 2687 return NULL; 2688 } 2689 2690 static inline bool mem_cgroup_sk_enabled(const struct sock *sk) 2691 { 2692 return false; 2693 } 2694 2695 static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk) 2696 { 2697 return false; 2698 } 2699 #endif 2700 2701 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2702 { 2703 return noblock ? 0 : READ_ONCE(sk->sk_rcvtimeo); 2704 } 2705 2706 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2707 { 2708 return noblock ? 0 : READ_ONCE(sk->sk_sndtimeo); 2709 } 2710 2711 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2712 { 2713 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); 2714 2715 return v ?: 1; 2716 } 2717 2718 /* Alas, with timeout socket operations are not restartable. 2719 * Compare this to poll(). 2720 */ 2721 static inline int sock_intr_errno(long timeo) 2722 { 2723 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2724 } 2725 2726 struct sock_skb_cb { 2727 u32 dropcount; 2728 }; 2729 2730 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2731 * using skb->cb[] would keep using it directly and utilize its 2732 * alignment guarantee. 2733 */ 2734 #define SOCK_SKB_CB_OFFSET (sizeof_field(struct sk_buff, cb) - \ 2735 sizeof(struct sock_skb_cb)) 2736 2737 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2738 SOCK_SKB_CB_OFFSET)) 2739 2740 #define sock_skb_cb_check_size(size) \ 2741 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2742 2743 static inline void sk_drops_add(struct sock *sk, int segs) 2744 { 2745 struct numa_drop_counters *ndc = sk->sk_drop_counters; 2746 2747 if (ndc) 2748 numa_drop_add(ndc, segs); 2749 else 2750 atomic_add(segs, &sk->sk_drops); 2751 } 2752 2753 static inline void sk_drops_inc(struct sock *sk) 2754 { 2755 sk_drops_add(sk, 1); 2756 } 2757 2758 static inline int sk_drops_read(const struct sock *sk) 2759 { 2760 const struct numa_drop_counters *ndc = sk->sk_drop_counters; 2761 2762 if (ndc) { 2763 DEBUG_NET_WARN_ON_ONCE(atomic_read(&sk->sk_drops)); 2764 return numa_drop_read(ndc); 2765 } 2766 return atomic_read(&sk->sk_drops); 2767 } 2768 2769 static inline void sk_drops_reset(struct sock *sk) 2770 { 2771 struct numa_drop_counters *ndc = sk->sk_drop_counters; 2772 2773 if (ndc) 2774 numa_drop_reset(ndc); 2775 atomic_set(&sk->sk_drops, 0); 2776 } 2777 2778 static inline void 2779 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2780 { 2781 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? 2782 sk_drops_read(sk) : 0; 2783 } 2784 2785 static inline void sk_drops_skbadd(struct sock *sk, const struct sk_buff *skb) 2786 { 2787 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2788 2789 sk_drops_add(sk, segs); 2790 } 2791 2792 static inline ktime_t sock_read_timestamp(struct sock *sk) 2793 { 2794 #if BITS_PER_LONG==32 2795 unsigned int seq; 2796 ktime_t kt; 2797 2798 do { 2799 seq = read_seqbegin(&sk->sk_stamp_seq); 2800 kt = sk->sk_stamp; 2801 } while (read_seqretry(&sk->sk_stamp_seq, seq)); 2802 2803 return kt; 2804 #else 2805 return READ_ONCE(sk->sk_stamp); 2806 #endif 2807 } 2808 2809 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) 2810 { 2811 #if BITS_PER_LONG==32 2812 write_seqlock(&sk->sk_stamp_seq); 2813 sk->sk_stamp = kt; 2814 write_sequnlock(&sk->sk_stamp_seq); 2815 #else 2816 WRITE_ONCE(sk->sk_stamp, kt); 2817 #endif 2818 } 2819 2820 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2821 struct sk_buff *skb); 2822 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2823 struct sk_buff *skb); 2824 2825 bool skb_has_tx_timestamp(struct sk_buff *skb, const struct sock *sk); 2826 int skb_get_tx_timestamp(struct sk_buff *skb, struct sock *sk, 2827 struct timespec64 *ts); 2828 2829 static inline void 2830 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2831 { 2832 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2833 u32 tsflags = READ_ONCE(sk->sk_tsflags); 2834 ktime_t kt = skb->tstamp; 2835 /* 2836 * generate control messages if 2837 * - receive time stamping in software requested 2838 * - software time stamp available and wanted 2839 * - hardware time stamps available and wanted 2840 */ 2841 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2842 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2843 (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2844 (hwtstamps->hwtstamp && 2845 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2846 __sock_recv_timestamp(msg, sk, skb); 2847 else 2848 sock_write_timestamp(sk, kt); 2849 2850 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb)) 2851 __sock_recv_wifi_status(msg, sk, skb); 2852 } 2853 2854 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 2855 struct sk_buff *skb); 2856 2857 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) 2858 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 2859 struct sk_buff *skb) 2860 { 2861 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \ 2862 (1UL << SOCK_RCVTSTAMP) | \ 2863 (1UL << SOCK_RCVMARK) | \ 2864 (1UL << SOCK_RCVPRIORITY) | \ 2865 (1UL << SOCK_TIMESTAMPING_ANY)) 2866 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2867 SOF_TIMESTAMPING_RAW_HARDWARE) 2868 2869 if (READ_ONCE(sk->sk_flags) & FLAGS_RECV_CMSGS) 2870 __sock_recv_cmsgs(msg, sk, skb); 2871 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) 2872 sock_write_timestamp(sk, skb->tstamp); 2873 else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP)) 2874 sock_write_timestamp(sk, 0); 2875 } 2876 2877 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags); 2878 2879 /** 2880 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2881 * @sk: socket sending this packet 2882 * @sockc: pointer to socket cmsg cookie to get timestamping info 2883 * @tx_flags: completed with instructions for time stamping 2884 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) 2885 * 2886 * Note: callers should take care of initial ``*tx_flags`` value (usually 0) 2887 */ 2888 static inline void _sock_tx_timestamp(struct sock *sk, 2889 const struct sockcm_cookie *sockc, 2890 __u8 *tx_flags, __u32 *tskey) 2891 { 2892 __u32 tsflags = sockc->tsflags; 2893 2894 if (unlikely(tsflags)) { 2895 __sock_tx_timestamp(tsflags, tx_flags); 2896 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && 2897 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) { 2898 if (tsflags & SOCKCM_FLAG_TS_OPT_ID) 2899 *tskey = sockc->ts_opt_id; 2900 else 2901 *tskey = atomic_inc_return(&sk->sk_tskey) - 1; 2902 } 2903 } 2904 } 2905 2906 static inline void sock_tx_timestamp(struct sock *sk, 2907 const struct sockcm_cookie *sockc, 2908 __u8 *tx_flags) 2909 { 2910 _sock_tx_timestamp(sk, sockc, tx_flags, NULL); 2911 } 2912 2913 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, 2914 const struct sockcm_cookie *sockc) 2915 { 2916 _sock_tx_timestamp(skb->sk, sockc, &skb_shinfo(skb)->tx_flags, 2917 &skb_shinfo(skb)->tskey); 2918 } 2919 2920 static inline bool sk_is_inet(const struct sock *sk) 2921 { 2922 int family = READ_ONCE(sk->sk_family); 2923 2924 return family == AF_INET || family == AF_INET6; 2925 } 2926 2927 static inline bool sk_is_tcp(const struct sock *sk) 2928 { 2929 return sk_is_inet(sk) && 2930 sk->sk_type == SOCK_STREAM && 2931 sk->sk_protocol == IPPROTO_TCP; 2932 } 2933 2934 static inline bool sk_is_udp(const struct sock *sk) 2935 { 2936 return sk_is_inet(sk) && 2937 sk->sk_type == SOCK_DGRAM && 2938 sk->sk_protocol == IPPROTO_UDP; 2939 } 2940 2941 static inline bool sk_is_unix(const struct sock *sk) 2942 { 2943 return sk->sk_family == AF_UNIX; 2944 } 2945 2946 static inline bool sk_is_stream_unix(const struct sock *sk) 2947 { 2948 return sk_is_unix(sk) && sk->sk_type == SOCK_STREAM; 2949 } 2950 2951 static inline bool sk_is_vsock(const struct sock *sk) 2952 { 2953 return sk->sk_family == AF_VSOCK; 2954 } 2955 2956 static inline bool sk_may_scm_recv(const struct sock *sk) 2957 { 2958 return (IS_ENABLED(CONFIG_UNIX) && sk->sk_family == AF_UNIX) || 2959 sk->sk_family == AF_NETLINK || 2960 (IS_ENABLED(CONFIG_BT) && sk->sk_family == AF_BLUETOOTH); 2961 } 2962 2963 /** 2964 * sk_eat_skb - Release a skb if it is no longer needed 2965 * @sk: socket to eat this skb from 2966 * @skb: socket buffer to eat 2967 * 2968 * This routine must be called with interrupts disabled or with the socket 2969 * locked so that the sk_buff queue operation is ok. 2970 */ 2971 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2972 { 2973 __skb_unlink(skb, &sk->sk_receive_queue); 2974 __kfree_skb(skb); 2975 } 2976 2977 static inline bool 2978 skb_sk_is_prefetched(struct sk_buff *skb) 2979 { 2980 #ifdef CONFIG_INET 2981 return skb->destructor == sock_pfree; 2982 #else 2983 return false; 2984 #endif /* CONFIG_INET */ 2985 } 2986 2987 /* This helper checks if a socket is a full socket, 2988 * ie _not_ a timewait or request socket. 2989 */ 2990 static inline bool sk_fullsock(const struct sock *sk) 2991 { 2992 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2993 } 2994 2995 static inline bool 2996 sk_is_refcounted(struct sock *sk) 2997 { 2998 /* Only full sockets have sk->sk_flags. */ 2999 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE); 3000 } 3001 3002 static inline bool 3003 sk_requests_wifi_status(struct sock *sk) 3004 { 3005 return sk && sk_fullsock(sk) && sock_flag(sk, SOCK_WIFI_STATUS); 3006 } 3007 3008 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 3009 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 3010 */ 3011 static inline bool sk_listener(const struct sock *sk) 3012 { 3013 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 3014 } 3015 3016 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV or TIME_WAIT 3017 * TCP SYNACK messages can be attached to LISTEN or NEW_SYN_RECV (depending on SYNCOOKIE) 3018 * TCP RST and ACK can be attached to TIME_WAIT. 3019 */ 3020 static inline bool sk_listener_or_tw(const struct sock *sk) 3021 { 3022 return (1 << READ_ONCE(sk->sk_state)) & 3023 (TCPF_LISTEN | TCPF_NEW_SYN_RECV | TCPF_TIME_WAIT); 3024 } 3025 3026 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); 3027 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 3028 int type); 3029 3030 bool sk_ns_capable(const struct sock *sk, 3031 struct user_namespace *user_ns, int cap); 3032 bool sk_capable(const struct sock *sk, int cap); 3033 bool sk_net_capable(const struct sock *sk, int cap); 3034 3035 void sk_get_meminfo(const struct sock *sk, u32 *meminfo); 3036 3037 /* Take into consideration the size of the struct sk_buff overhead in the 3038 * determination of these values, since that is non-constant across 3039 * platforms. This makes socket queueing behavior and performance 3040 * not depend upon such differences. 3041 */ 3042 #define _SK_MEM_PACKETS 256 3043 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 3044 #define SK_WMEM_DEFAULT (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 3045 #define SK_RMEM_DEFAULT (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 3046 3047 extern __u32 sysctl_wmem_max; 3048 extern __u32 sysctl_rmem_max; 3049 3050 extern __u32 sysctl_wmem_default; 3051 extern __u32 sysctl_rmem_default; 3052 3053 #define SKB_FRAG_PAGE_ORDER get_order(32768) 3054 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 3055 3056 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) 3057 { 3058 /* Does this proto have per netns sysctl_wmem ? */ 3059 if (proto->sysctl_wmem_offset) 3060 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset)); 3061 3062 return READ_ONCE(*proto->sysctl_wmem); 3063 } 3064 3065 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) 3066 { 3067 /* Does this proto have per netns sysctl_rmem ? */ 3068 if (proto->sysctl_rmem_offset) 3069 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset)); 3070 3071 return READ_ONCE(*proto->sysctl_rmem); 3072 } 3073 3074 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) 3075 * Some wifi drivers need to tweak it to get more chunks. 3076 * They can use this helper from their ndo_start_xmit() 3077 */ 3078 static inline void sk_pacing_shift_update(struct sock *sk, int val) 3079 { 3080 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) 3081 return; 3082 WRITE_ONCE(sk->sk_pacing_shift, val); 3083 } 3084 3085 /* if a socket is bound to a device, check that the given device 3086 * index is either the same or that the socket is bound to an L3 3087 * master device and the given device index is also enslaved to 3088 * that L3 master 3089 */ 3090 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) 3091 { 3092 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); 3093 int mdif; 3094 3095 if (!bound_dev_if || bound_dev_if == dif) 3096 return true; 3097 3098 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); 3099 if (mdif && mdif == bound_dev_if) 3100 return true; 3101 3102 return false; 3103 } 3104 3105 void sock_def_readable(struct sock *sk); 3106 3107 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk); 3108 void sock_set_timestamp(struct sock *sk, int optname, bool valbool); 3109 int sock_set_timestamping(struct sock *sk, int optname, 3110 struct so_timestamping timestamping); 3111 3112 #if defined(CONFIG_CGROUP_BPF) 3113 void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op); 3114 #else 3115 static inline void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op) 3116 { 3117 } 3118 #endif 3119 void sock_no_linger(struct sock *sk); 3120 void sock_set_keepalive(struct sock *sk); 3121 void sock_set_priority(struct sock *sk, u32 priority); 3122 void sock_set_rcvbuf(struct sock *sk, int val); 3123 void sock_set_mark(struct sock *sk, u32 val); 3124 void sock_set_reuseaddr(struct sock *sk); 3125 void sock_set_reuseport(struct sock *sk); 3126 void sock_set_sndtimeo(struct sock *sk, s64 secs); 3127 3128 int sock_bind_add(struct sock *sk, struct sockaddr_unsized *addr, int addr_len); 3129 3130 int sock_get_timeout(long timeo, void *optval, bool old_timeval); 3131 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 3132 sockptr_t optval, int optlen, bool old_timeval); 3133 3134 int sock_ioctl_inout(struct sock *sk, unsigned int cmd, 3135 void __user *arg, void *karg, size_t size); 3136 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg); 3137 static inline bool sk_is_readable(struct sock *sk) 3138 { 3139 const struct proto *prot = READ_ONCE(sk->sk_prot); 3140 3141 if (prot->sock_is_readable) 3142 return prot->sock_is_readable(sk); 3143 3144 return false; 3145 } 3146 #endif /* _SOCK_H */ 3147