xref: /linux/include/net/sock.h (revision ed9b70040d7b22552f1392bed529ef0861f2a25c)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72 
73 /*
74  * This structure really needs to be cleaned up.
75  * Most of it is for TCP, and not used by any of
76  * the other protocols.
77  */
78 
79 /* This is the per-socket lock.  The spinlock provides a synchronization
80  * between user contexts and software interrupt processing, whereas the
81  * mini-semaphore synchronizes multiple users amongst themselves.
82  */
83 typedef struct {
84 	spinlock_t		slock;
85 	int			owned;
86 	wait_queue_head_t	wq;
87 	/*
88 	 * We express the mutex-alike socket_lock semantics
89 	 * to the lock validator by explicitly managing
90 	 * the slock as a lock variant (in addition to
91 	 * the slock itself):
92 	 */
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 	struct lockdep_map dep_map;
95 #endif
96 } socket_lock_t;
97 
98 struct sock;
99 struct proto;
100 struct net;
101 
102 typedef __u32 __bitwise __portpair;
103 typedef __u64 __bitwise __addrpair;
104 
105 /**
106  *	struct sock_common - minimal network layer representation of sockets
107  *	@skc_daddr: Foreign IPv4 addr
108  *	@skc_rcv_saddr: Bound local IPv4 addr
109  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
110  *	@skc_hash: hash value used with various protocol lookup tables
111  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
112  *	@skc_dport: placeholder for inet_dport/tw_dport
113  *	@skc_num: placeholder for inet_num/tw_num
114  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
115  *	@skc_family: network address family
116  *	@skc_state: Connection state
117  *	@skc_reuse: %SO_REUSEADDR setting
118  *	@skc_reuseport: %SO_REUSEPORT setting
119  *	@skc_ipv6only: socket is IPV6 only
120  *	@skc_net_refcnt: socket is using net ref counting
121  *	@skc_bypass_prot_mem: bypass the per-protocol memory accounting for skb
122  *	@skc_bound_dev_if: bound device index if != 0
123  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
124  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
125  *	@skc_prot: protocol handlers inside a network family
126  *	@skc_net: reference to the network namespace of this socket
127  *	@skc_v6_daddr: IPV6 destination address
128  *	@skc_v6_rcv_saddr: IPV6 source address
129  *	@skc_cookie: socket's cookie value
130  *	@skc_node: main hash linkage for various protocol lookup tables
131  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
132  *	@skc_tx_queue_mapping: tx queue number for this connection
133  *	@skc_rx_queue_mapping: rx queue number for this connection
134  *	@skc_flags: place holder for sk_flags
135  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
136  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
137  *	@skc_listener: connection request listener socket (aka rsk_listener)
138  *		[union with @skc_flags]
139  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
140  *		[union with @skc_flags]
141  *	@skc_incoming_cpu: record/match cpu processing incoming packets
142  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
143  *		[union with @skc_incoming_cpu]
144  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
145  *		[union with @skc_incoming_cpu]
146  *	@skc_refcnt: reference count
147  *
148  *	This is the minimal network layer representation of sockets, the header
149  *	for struct sock and struct inet_timewait_sock.
150  */
151 struct sock_common {
152 	union {
153 		__addrpair	skc_addrpair;
154 		struct {
155 			__be32	skc_daddr;
156 			__be32	skc_rcv_saddr;
157 		};
158 	};
159 	union  {
160 		unsigned int	skc_hash;
161 		__u16		skc_u16hashes[2];
162 	};
163 	/* skc_dport && skc_num must be grouped as well */
164 	union {
165 		__portpair	skc_portpair;
166 		struct {
167 			__be16	skc_dport;
168 			__u16	skc_num;
169 		};
170 	};
171 
172 	unsigned short		skc_family;
173 	volatile unsigned char	skc_state;
174 	unsigned char		skc_reuse:4;
175 	unsigned char		skc_reuseport:1;
176 	unsigned char		skc_ipv6only:1;
177 	unsigned char		skc_net_refcnt:1;
178 	unsigned char		skc_bypass_prot_mem:1;
179 	int			skc_bound_dev_if;
180 	union {
181 		struct hlist_node	skc_bind_node;
182 		struct hlist_node	skc_portaddr_node;
183 	};
184 	struct proto		*skc_prot;
185 	possible_net_t		skc_net;
186 
187 #if IS_ENABLED(CONFIG_IPV6)
188 	struct in6_addr		skc_v6_daddr;
189 	struct in6_addr		skc_v6_rcv_saddr;
190 #endif
191 
192 	atomic64_t		skc_cookie;
193 
194 	/* following fields are padding to force
195 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
196 	 * assuming IPV6 is enabled. We use this padding differently
197 	 * for different kind of 'sockets'
198 	 */
199 	union {
200 		unsigned long	skc_flags;
201 		struct sock	*skc_listener; /* request_sock */
202 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
203 	};
204 	/*
205 	 * fields between dontcopy_begin/dontcopy_end
206 	 * are not copied in sock_copy()
207 	 */
208 	/* private: */
209 	int			skc_dontcopy_begin[0];
210 	/* public: */
211 	union {
212 		struct hlist_node	skc_node;
213 		struct hlist_nulls_node skc_nulls_node;
214 	};
215 	unsigned short		skc_tx_queue_mapping;
216 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
217 	unsigned short		skc_rx_queue_mapping;
218 #endif
219 	union {
220 		int		skc_incoming_cpu;
221 		u32		skc_rcv_wnd;
222 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
223 	};
224 
225 	refcount_t		skc_refcnt;
226 	/* private: */
227 	int                     skc_dontcopy_end[0];
228 	union {
229 		u32		skc_rxhash;
230 		u32		skc_window_clamp;
231 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
232 	};
233 	/* public: */
234 };
235 
236 struct bpf_local_storage;
237 struct sk_filter;
238 
239 /**
240   *	struct sock - network layer representation of sockets
241   *	@__sk_common: shared layout with inet_timewait_sock
242   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
243   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
244   *	@sk_lock:	synchronizer
245   *	@sk_kern_sock: True if sock is using kernel lock classes
246   *	@sk_rcvbuf: size of receive buffer in bytes
247   *	@sk_wq: sock wait queue and async head
248   *	@sk_rx_dst: receive input route used by early demux
249   *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst
250   *	@sk_rx_dst_cookie: cookie for @sk_rx_dst
251   *	@sk_dst_cache: destination cache
252   *	@sk_dst_pending_confirm: need to confirm neighbour
253   *	@sk_policy: flow policy
254   *	@psp_assoc: PSP association, if socket is PSP-secured
255   *	@sk_receive_queue: incoming packets
256   *	@sk_wmem_alloc: transmit queue bytes committed
257   *	@sk_tsq_flags: TCP Small Queues flags
258   *	@sk_write_queue: Packet sending queue
259   *	@sk_omem_alloc: "o" is "option" or "other"
260   *	@sk_wmem_queued: persistent queue size
261   *	@sk_forward_alloc: space allocated forward
262   *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
263   *	@sk_napi_id: id of the last napi context to receive data for sk
264   *	@sk_ll_usec: usecs to busypoll when there is no data
265   *	@sk_allocation: allocation mode
266   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
267   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
268   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
269   *	@sk_sndbuf: size of send buffer in bytes
270   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
271   *	@sk_no_check_rx: allow zero checksum in RX packets
272   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
273   *	@sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
274   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
275   *	@sk_gso_max_size: Maximum GSO segment size to build
276   *	@sk_gso_max_segs: Maximum number of GSO segments
277   *	@sk_pacing_shift: scaling factor for TCP Small Queues
278   *	@sk_lingertime: %SO_LINGER l_linger setting
279   *	@sk_backlog: always used with the per-socket spinlock held
280   *	@sk_callback_lock: used with the callbacks in the end of this struct
281   *	@sk_error_queue: rarely used
282   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
283   *			  IPV6_ADDRFORM for instance)
284   *	@sk_err: last error
285   *	@sk_err_soft: errors that don't cause failure but are the cause of a
286   *		      persistent failure not just 'timed out'
287   *	@sk_drops: raw/udp drops counter
288   *	@sk_drop_counters: optional pointer to numa_drop_counters
289   *	@sk_ack_backlog: current listen backlog
290   *	@sk_max_ack_backlog: listen backlog set in listen()
291   *	@sk_uid: user id of owner
292   *	@sk_ino: inode number (zero if orphaned)
293   *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
294   *	@sk_busy_poll_budget: napi processing budget when busypolling
295   *	@sk_priority: %SO_PRIORITY setting
296   *	@sk_type: socket type (%SOCK_STREAM, etc)
297   *	@sk_protocol: which protocol this socket belongs in this network family
298   *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
299   *	@sk_peer_pid: &struct pid for this socket's peer
300   *	@sk_peer_cred: %SO_PEERCRED setting
301   *	@sk_rcvlowat: %SO_RCVLOWAT setting
302   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
303   *	@sk_sndtimeo: %SO_SNDTIMEO setting
304   *	@sk_txhash: computed flow hash for use on transmit
305   *	@sk_txrehash: enable TX hash rethink
306   *	@sk_filter: socket filtering instructions
307   *	@sk_timer: sock cleanup timer
308   *	@tcp_retransmit_timer: tcp retransmit timer
309   *	@mptcp_retransmit_timer: mptcp retransmit timer
310   *	@sk_stamp: time stamp of last packet received
311   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
312   *	@sk_tsflags: SO_TIMESTAMPING flags
313   *	@sk_bpf_cb_flags: used in bpf_setsockopt()
314   *	@sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
315   *			   Sockets that can be used under memory reclaim should
316   *			   set this to false.
317   *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
318   *	              for timestamping
319   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
320   *	@sk_tx_queue_mapping_jiffies: time in jiffies of last @sk_tx_queue_mapping refresh.
321   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
322   *	@sk_socket: Identd and reporting IO signals
323   *	@sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
324   *	@sk_frag: cached page frag
325   *	@sk_peek_off: current peek_offset value
326   *	@sk_send_head: front of stuff to transmit
327   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
328   *	@sk_security: used by security modules
329   *	@sk_mark: generic packet mark
330   *	@sk_cgrp_data: cgroup data for this cgroup
331   *	@sk_memcg: this socket's memory cgroup association
332   *	@sk_write_pending: a write to stream socket waits to start
333   *	@sk_disconnects: number of disconnect operations performed on this sock
334   *	@sk_state_change: callback to indicate change in the state of the sock
335   *	@sk_data_ready: callback to indicate there is data to be processed
336   *	@sk_write_space: callback to indicate there is bf sending space available
337   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
338   *	@sk_backlog_rcv: callback to process the backlog
339   *	@sk_validate_xmit_skb: ptr to an optional validate function
340   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
341   *	@sk_reuseport_cb: reuseport group container
342   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
343   *	@sk_rcu: used during RCU grace period
344   *	@sk_freeptr: used for SLAB_TYPESAFE_BY_RCU managed sockets
345   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
346   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
347   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
348   *	@sk_txtime_unused: unused txtime flags
349   *	@sk_scm_recv_flags: all flags used by scm_recv()
350   *	@sk_scm_credentials: flagged by SO_PASSCRED to recv SCM_CREDENTIALS
351   *	@sk_scm_security: flagged by SO_PASSSEC to recv SCM_SECURITY
352   *	@sk_scm_pidfd: flagged by SO_PASSPIDFD to recv SCM_PIDFD
353   *	@sk_scm_rights: flagged by SO_PASSRIGHTS to recv SCM_RIGHTS
354   *	@sk_scm_unused: unused flags for scm_recv()
355   *	@ns_tracker: tracker for netns reference
356   *	@sk_user_frags: xarray of pages the user is holding a reference on.
357   *	@sk_owner: reference to the real owner of the socket that calls
358   *		   sock_lock_init_class_and_name().
359   */
360 struct sock {
361 	/*
362 	 * Now struct inet_timewait_sock also uses sock_common, so please just
363 	 * don't add nothing before this first member (__sk_common) --acme
364 	 */
365 	struct sock_common	__sk_common;
366 #define sk_node			__sk_common.skc_node
367 #define sk_nulls_node		__sk_common.skc_nulls_node
368 #define sk_refcnt		__sk_common.skc_refcnt
369 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
370 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
371 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
372 #endif
373 
374 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
375 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
376 #define sk_hash			__sk_common.skc_hash
377 #define sk_portpair		__sk_common.skc_portpair
378 #define sk_num			__sk_common.skc_num
379 #define sk_dport		__sk_common.skc_dport
380 #define sk_addrpair		__sk_common.skc_addrpair
381 #define sk_daddr		__sk_common.skc_daddr
382 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
383 #define sk_family		__sk_common.skc_family
384 #define sk_state		__sk_common.skc_state
385 #define sk_reuse		__sk_common.skc_reuse
386 #define sk_reuseport		__sk_common.skc_reuseport
387 #define sk_ipv6only		__sk_common.skc_ipv6only
388 #define sk_net_refcnt		__sk_common.skc_net_refcnt
389 #define sk_bypass_prot_mem	__sk_common.skc_bypass_prot_mem
390 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
391 #define sk_bind_node		__sk_common.skc_bind_node
392 #define sk_prot			__sk_common.skc_prot
393 #define sk_net			__sk_common.skc_net
394 #define sk_v6_daddr		__sk_common.skc_v6_daddr
395 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
396 #define sk_cookie		__sk_common.skc_cookie
397 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
398 #define sk_flags		__sk_common.skc_flags
399 #define sk_rxhash		__sk_common.skc_rxhash
400 
401 	__cacheline_group_begin(sock_write_rx);
402 
403 	atomic_t		sk_drops;
404 	__s32			sk_peek_off;
405 	struct sk_buff_head	sk_error_queue;
406 	struct sk_buff_head	sk_receive_queue;
407 	/*
408 	 * The backlog queue is special, it is always used with
409 	 * the per-socket spinlock held and requires low latency
410 	 * access. Therefore we special case it's implementation.
411 	 * Note : rmem_alloc is in this structure to fill a hole
412 	 * on 64bit arches, not because its logically part of
413 	 * backlog.
414 	 */
415 	struct {
416 		atomic_t	rmem_alloc;
417 		int		len;
418 		struct sk_buff	*head;
419 		struct sk_buff	*tail;
420 	} sk_backlog;
421 #define sk_rmem_alloc sk_backlog.rmem_alloc
422 
423 	__cacheline_group_end(sock_write_rx);
424 
425 	__cacheline_group_begin(sock_read_rx);
426 	/* early demux fields */
427 	struct dst_entry __rcu	*sk_rx_dst;
428 	int			sk_rx_dst_ifindex;
429 	u32			sk_rx_dst_cookie;
430 
431 #ifdef CONFIG_NET_RX_BUSY_POLL
432 	unsigned int		sk_ll_usec;
433 	unsigned int		sk_napi_id;
434 	u16			sk_busy_poll_budget;
435 	u8			sk_prefer_busy_poll;
436 #endif
437 	u8			sk_userlocks;
438 	int			sk_rcvbuf;
439 
440 	struct sk_filter __rcu	*sk_filter;
441 	union {
442 		struct socket_wq __rcu	*sk_wq;
443 		/* private: */
444 		struct socket_wq	*sk_wq_raw;
445 		/* public: */
446 	};
447 
448 	void			(*sk_data_ready)(struct sock *sk);
449 	long			sk_rcvtimeo;
450 	int			sk_rcvlowat;
451 	__cacheline_group_end(sock_read_rx);
452 
453 	__cacheline_group_begin(sock_read_rxtx);
454 	int			sk_err;
455 	struct socket		*sk_socket;
456 #ifdef CONFIG_MEMCG
457 	struct mem_cgroup	*sk_memcg;
458 #endif
459 #ifdef CONFIG_XFRM
460 	struct xfrm_policy __rcu *sk_policy[2];
461 #endif
462 #if IS_ENABLED(CONFIG_INET_PSP)
463 	struct psp_assoc __rcu	*psp_assoc;
464 #endif
465 	__cacheline_group_end(sock_read_rxtx);
466 
467 	__cacheline_group_begin(sock_write_rxtx);
468 	socket_lock_t		sk_lock;
469 	u32			sk_reserved_mem;
470 	int			sk_forward_alloc;
471 	u32			sk_tsflags;
472 	__cacheline_group_end(sock_write_rxtx);
473 
474 	__cacheline_group_begin(sock_write_tx);
475 	int			sk_write_pending;
476 	atomic_t		sk_omem_alloc;
477 	int			sk_err_soft;
478 
479 	int			sk_wmem_queued;
480 	refcount_t		sk_wmem_alloc;
481 	unsigned long		sk_tsq_flags;
482 	union {
483 		struct sk_buff	*sk_send_head;
484 		struct rb_root	tcp_rtx_queue;
485 	};
486 	struct sk_buff_head	sk_write_queue;
487 	struct page_frag	sk_frag;
488 	union {
489 		struct timer_list	sk_timer;
490 		struct timer_list	tcp_retransmit_timer;
491 		struct timer_list	mptcp_retransmit_timer;
492 	};
493 	unsigned long		sk_pacing_rate; /* bytes per second */
494 	atomic_t		sk_zckey;
495 	atomic_t		sk_tskey;
496 	unsigned long		sk_tx_queue_mapping_jiffies;
497 	__cacheline_group_end(sock_write_tx);
498 
499 	__cacheline_group_begin(sock_read_tx);
500 	u32			sk_dst_pending_confirm;
501 	u32			sk_pacing_status; /* see enum sk_pacing */
502 	unsigned long		sk_max_pacing_rate;
503 	long			sk_sndtimeo;
504 	u32			sk_priority;
505 	u32			sk_mark;
506 	kuid_t			sk_uid;
507 	u16			sk_protocol;
508 	u16			sk_type;
509 	struct dst_entry __rcu	*sk_dst_cache;
510 	netdev_features_t	sk_route_caps;
511 #ifdef CONFIG_SOCK_VALIDATE_XMIT
512 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
513 							struct net_device *dev,
514 							struct sk_buff *skb);
515 #endif
516 	u16			sk_gso_type;
517 	u16			sk_gso_max_segs;
518 	unsigned int		sk_gso_max_size;
519 	gfp_t			sk_allocation;
520 	u32			sk_txhash;
521 	int			sk_sndbuf;
522 	u8			sk_pacing_shift;
523 	bool			sk_use_task_frag;
524 	__cacheline_group_end(sock_read_tx);
525 
526 	/*
527 	 * Because of non atomicity rules, all
528 	 * changes are protected by socket lock.
529 	 */
530 	u8			sk_gso_disabled : 1,
531 				sk_kern_sock : 1,
532 				sk_no_check_tx : 1,
533 				sk_no_check_rx : 1;
534 	u8			sk_shutdown;
535 	unsigned long	        sk_lingertime;
536 	struct proto		*sk_prot_creator;
537 	rwlock_t		sk_callback_lock;
538 	u32			sk_ack_backlog;
539 	u32			sk_max_ack_backlog;
540 	unsigned long		sk_ino;
541 	spinlock_t		sk_peer_lock;
542 	int			sk_bind_phc;
543 	struct pid		*sk_peer_pid;
544 	const struct cred	*sk_peer_cred;
545 
546 	ktime_t			sk_stamp;
547 #if BITS_PER_LONG==32
548 	seqlock_t		sk_stamp_seq;
549 #endif
550 	int			sk_disconnects;
551 
552 	union {
553 		u8		sk_txrehash;
554 		u8		sk_scm_recv_flags;
555 		struct {
556 			u8	sk_scm_credentials : 1,
557 				sk_scm_security : 1,
558 				sk_scm_pidfd : 1,
559 				sk_scm_rights : 1,
560 				sk_scm_unused : 4;
561 		};
562 	};
563 	u8			sk_clockid;
564 	u8			sk_txtime_deadline_mode : 1,
565 				sk_txtime_report_errors : 1,
566 				sk_txtime_unused : 6;
567 #define SK_BPF_CB_FLAG_TEST(SK, FLAG) ((SK)->sk_bpf_cb_flags & (FLAG))
568 	u8			sk_bpf_cb_flags;
569 
570 	void			*sk_user_data;
571 #ifdef CONFIG_SECURITY
572 	void			*sk_security;
573 #endif
574 	struct sock_cgroup_data	sk_cgrp_data;
575 	void			(*sk_state_change)(struct sock *sk);
576 	void			(*sk_write_space)(struct sock *sk);
577 	void			(*sk_error_report)(struct sock *sk);
578 	int			(*sk_backlog_rcv)(struct sock *sk,
579 						  struct sk_buff *skb);
580 	void                    (*sk_destruct)(struct sock *sk);
581 	struct sock_reuseport __rcu	*sk_reuseport_cb;
582 #ifdef CONFIG_BPF_SYSCALL
583 	struct bpf_local_storage __rcu	*sk_bpf_storage;
584 #endif
585 	struct numa_drop_counters *sk_drop_counters;
586 	/* sockets using SLAB_TYPESAFE_BY_RCU can use sk_freeptr.
587 	 * By the time kfree() is called, sk_rcu can not be in
588 	 * use and can be mangled.
589 	 */
590 	union {
591 		struct rcu_head	sk_rcu;
592 		freeptr_t	sk_freeptr;
593 	};
594 	netns_tracker		ns_tracker;
595 	struct xarray		sk_user_frags;
596 
597 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES)
598 	struct module		*sk_owner;
599 #endif
600 };
601 
602 struct sock_bh_locked {
603 	struct sock *sock;
604 	local_lock_t bh_lock;
605 };
606 
607 enum sk_pacing {
608 	SK_PACING_NONE		= 0,
609 	SK_PACING_NEEDED	= 1,
610 	SK_PACING_FQ		= 2,
611 };
612 
613 /* flag bits in sk_user_data
614  *
615  * - SK_USER_DATA_NOCOPY:      Pointer stored in sk_user_data might
616  *   not be suitable for copying when cloning the socket. For instance,
617  *   it can point to a reference counted object. sk_user_data bottom
618  *   bit is set if pointer must not be copied.
619  *
620  * - SK_USER_DATA_BPF:         Mark whether sk_user_data field is
621  *   managed/owned by a BPF reuseport array. This bit should be set
622  *   when sk_user_data's sk is added to the bpf's reuseport_array.
623  *
624  * - SK_USER_DATA_PSOCK:       Mark whether pointer stored in
625  *   sk_user_data points to psock type. This bit should be set
626  *   when sk_user_data is assigned to a psock object.
627  */
628 #define SK_USER_DATA_NOCOPY	1UL
629 #define SK_USER_DATA_BPF	2UL
630 #define SK_USER_DATA_PSOCK	4UL
631 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
632 				  SK_USER_DATA_PSOCK)
633 
634 /**
635  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
636  * @sk: socket
637  */
638 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
639 {
640 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
641 }
642 
643 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
644 
645 /**
646  * __locked_read_sk_user_data_with_flags - return the pointer
647  * only if argument flags all has been set in sk_user_data. Otherwise
648  * return NULL
649  *
650  * @sk: socket
651  * @flags: flag bits
652  *
653  * The caller must be holding sk->sk_callback_lock.
654  */
655 static inline void *
656 __locked_read_sk_user_data_with_flags(const struct sock *sk,
657 				      uintptr_t flags)
658 {
659 	uintptr_t sk_user_data =
660 		(uintptr_t)rcu_dereference_check(__sk_user_data(sk),
661 						 lockdep_is_held(&sk->sk_callback_lock));
662 
663 	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
664 
665 	if ((sk_user_data & flags) == flags)
666 		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
667 	return NULL;
668 }
669 
670 /**
671  * __rcu_dereference_sk_user_data_with_flags - return the pointer
672  * only if argument flags all has been set in sk_user_data. Otherwise
673  * return NULL
674  *
675  * @sk: socket
676  * @flags: flag bits
677  */
678 static inline void *
679 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
680 					  uintptr_t flags)
681 {
682 	uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
683 
684 	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
685 
686 	if ((sk_user_data & flags) == flags)
687 		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
688 	return NULL;
689 }
690 
691 #define rcu_dereference_sk_user_data(sk)				\
692 	__rcu_dereference_sk_user_data_with_flags(sk, 0)
693 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags)		\
694 ({									\
695 	uintptr_t __tmp1 = (uintptr_t)(ptr),				\
696 		  __tmp2 = (uintptr_t)(flags);				\
697 	WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK);			\
698 	WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK);			\
699 	rcu_assign_pointer(__sk_user_data((sk)),			\
700 			   __tmp1 | __tmp2);				\
701 })
702 #define rcu_assign_sk_user_data(sk, ptr)				\
703 	__rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
704 
705 static inline
706 struct net *sock_net(const struct sock *sk)
707 {
708 	return read_pnet(&sk->sk_net);
709 }
710 
711 static inline
712 void sock_net_set(struct sock *sk, struct net *net)
713 {
714 	write_pnet(&sk->sk_net, net);
715 }
716 
717 /*
718  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
719  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
720  * on a socket means that the socket will reuse everybody else's port
721  * without looking at the other's sk_reuse value.
722  */
723 
724 #define SK_NO_REUSE	0
725 #define SK_CAN_REUSE	1
726 #define SK_FORCE_REUSE	2
727 
728 int sk_set_peek_off(struct sock *sk, int val);
729 
730 static inline int sk_peek_offset(const struct sock *sk, int flags)
731 {
732 	if (unlikely(flags & MSG_PEEK)) {
733 		return READ_ONCE(sk->sk_peek_off);
734 	}
735 
736 	return 0;
737 }
738 
739 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
740 {
741 	s32 off = READ_ONCE(sk->sk_peek_off);
742 
743 	if (unlikely(off >= 0)) {
744 		off = max_t(s32, off - val, 0);
745 		WRITE_ONCE(sk->sk_peek_off, off);
746 	}
747 }
748 
749 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
750 {
751 	sk_peek_offset_bwd(sk, -val);
752 }
753 
754 /*
755  * Hashed lists helper routines
756  */
757 static inline struct sock *sk_entry(const struct hlist_node *node)
758 {
759 	return hlist_entry(node, struct sock, sk_node);
760 }
761 
762 static inline struct sock *__sk_head(const struct hlist_head *head)
763 {
764 	return hlist_entry(head->first, struct sock, sk_node);
765 }
766 
767 static inline struct sock *sk_head(const struct hlist_head *head)
768 {
769 	return hlist_empty(head) ? NULL : __sk_head(head);
770 }
771 
772 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
773 {
774 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
775 }
776 
777 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
778 {
779 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
780 }
781 
782 static inline struct sock *sk_next(const struct sock *sk)
783 {
784 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
785 }
786 
787 static inline struct sock *sk_nulls_next(const struct sock *sk)
788 {
789 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
790 		hlist_nulls_entry(sk->sk_nulls_node.next,
791 				  struct sock, sk_nulls_node) :
792 		NULL;
793 }
794 
795 static inline bool sk_unhashed(const struct sock *sk)
796 {
797 	return hlist_unhashed(&sk->sk_node);
798 }
799 
800 static inline bool sk_hashed(const struct sock *sk)
801 {
802 	return !sk_unhashed(sk);
803 }
804 
805 static inline void sk_node_init(struct hlist_node *node)
806 {
807 	node->pprev = NULL;
808 }
809 
810 static inline void __sk_del_node(struct sock *sk)
811 {
812 	__hlist_del(&sk->sk_node);
813 }
814 
815 /* NB: equivalent to hlist_del_init_rcu */
816 static inline bool __sk_del_node_init(struct sock *sk)
817 {
818 	if (sk_hashed(sk)) {
819 		__sk_del_node(sk);
820 		sk_node_init(&sk->sk_node);
821 		return true;
822 	}
823 	return false;
824 }
825 
826 /* Grab socket reference count. This operation is valid only
827    when sk is ALREADY grabbed f.e. it is found in hash table
828    or a list and the lookup is made under lock preventing hash table
829    modifications.
830  */
831 
832 static __always_inline void sock_hold(struct sock *sk)
833 {
834 	refcount_inc(&sk->sk_refcnt);
835 }
836 
837 /* Ungrab socket in the context, which assumes that socket refcnt
838    cannot hit zero, f.e. it is true in context of any socketcall.
839  */
840 static __always_inline void __sock_put(struct sock *sk)
841 {
842 	refcount_dec(&sk->sk_refcnt);
843 }
844 
845 static inline bool sk_del_node_init(struct sock *sk)
846 {
847 	bool rc = __sk_del_node_init(sk);
848 
849 	if (rc)
850 		__sock_put(sk);
851 
852 	return rc;
853 }
854 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
855 
856 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
857 {
858 	if (sk_hashed(sk)) {
859 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
860 		return true;
861 	}
862 	return false;
863 }
864 
865 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
866 {
867 	bool rc = __sk_nulls_del_node_init_rcu(sk);
868 
869 	if (rc)
870 		__sock_put(sk);
871 
872 	return rc;
873 }
874 
875 static inline bool sk_nulls_replace_node_init_rcu(struct sock *old,
876 						  struct sock *new)
877 {
878 	if (sk_hashed(old)) {
879 		hlist_nulls_replace_init_rcu(&old->sk_nulls_node,
880 					     &new->sk_nulls_node);
881 		__sock_put(old);
882 		return true;
883 	}
884 
885 	return false;
886 }
887 
888 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
889 {
890 	hlist_add_head(&sk->sk_node, list);
891 }
892 
893 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
894 {
895 	sock_hold(sk);
896 	__sk_add_node(sk, list);
897 }
898 
899 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
900 {
901 	sock_hold(sk);
902 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
903 	    sk->sk_family == AF_INET6)
904 		hlist_add_tail_rcu(&sk->sk_node, list);
905 	else
906 		hlist_add_head_rcu(&sk->sk_node, list);
907 }
908 
909 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
910 {
911 	sock_hold(sk);
912 	hlist_add_tail_rcu(&sk->sk_node, list);
913 }
914 
915 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
916 {
917 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
918 }
919 
920 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
921 {
922 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
923 }
924 
925 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
926 {
927 	sock_hold(sk);
928 	__sk_nulls_add_node_rcu(sk, list);
929 }
930 
931 static inline void __sk_del_bind_node(struct sock *sk)
932 {
933 	__hlist_del(&sk->sk_bind_node);
934 }
935 
936 static inline void sk_add_bind_node(struct sock *sk,
937 					struct hlist_head *list)
938 {
939 	hlist_add_head(&sk->sk_bind_node, list);
940 }
941 
942 #define sk_for_each(__sk, list) \
943 	hlist_for_each_entry(__sk, list, sk_node)
944 #define sk_for_each_rcu(__sk, list) \
945 	hlist_for_each_entry_rcu(__sk, list, sk_node)
946 #define sk_nulls_for_each(__sk, node, list) \
947 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
948 #define sk_nulls_for_each_rcu(__sk, node, list) \
949 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
950 #define sk_for_each_from(__sk) \
951 	hlist_for_each_entry_from(__sk, sk_node)
952 #define sk_nulls_for_each_from(__sk, node) \
953 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
954 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
955 #define sk_for_each_safe(__sk, tmp, list) \
956 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
957 #define sk_for_each_bound(__sk, list) \
958 	hlist_for_each_entry(__sk, list, sk_bind_node)
959 #define sk_for_each_bound_safe(__sk, tmp, list) \
960 	hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node)
961 
962 /**
963  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
964  * @tpos:	the type * to use as a loop cursor.
965  * @pos:	the &struct hlist_node to use as a loop cursor.
966  * @head:	the head for your list.
967  * @offset:	offset of hlist_node within the struct.
968  *
969  */
970 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
971 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
972 	     pos != NULL &&						       \
973 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
974 	     pos = rcu_dereference(hlist_next_rcu(pos)))
975 
976 static inline struct user_namespace *sk_user_ns(const struct sock *sk)
977 {
978 	/* Careful only use this in a context where these parameters
979 	 * can not change and must all be valid, such as recvmsg from
980 	 * userspace.
981 	 */
982 	return sk->sk_socket->file->f_cred->user_ns;
983 }
984 
985 /* Sock flags */
986 enum sock_flags {
987 	SOCK_DEAD,
988 	SOCK_DONE,
989 	SOCK_URGINLINE,
990 	SOCK_KEEPOPEN,
991 	SOCK_LINGER,
992 	SOCK_DESTROY,
993 	SOCK_BROADCAST,
994 	SOCK_TIMESTAMP,
995 	SOCK_ZAPPED,
996 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
997 	SOCK_DBG, /* %SO_DEBUG setting */
998 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
999 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
1000 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
1001 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
1002 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
1003 	SOCK_FASYNC, /* fasync() active */
1004 	SOCK_RXQ_OVFL,
1005 	SOCK_ZEROCOPY, /* buffers from userspace */
1006 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
1007 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
1008 		     * Will use last 4 bytes of packet sent from
1009 		     * user-space instead.
1010 		     */
1011 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
1012 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
1013 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
1014 	SOCK_TXTIME,
1015 	SOCK_XDP, /* XDP is attached */
1016 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
1017 	SOCK_RCVMARK, /* Receive SO_MARK  ancillary data with packet */
1018 	SOCK_RCVPRIORITY, /* Receive SO_PRIORITY ancillary data with packet */
1019 	SOCK_TIMESTAMPING_ANY, /* Copy of sk_tsflags & TSFLAGS_ANY */
1020 };
1021 
1022 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
1023 /*
1024  * The highest bit of sk_tsflags is reserved for kernel-internal
1025  * SOCKCM_FLAG_TS_OPT_ID. There is a check in core/sock.c to control that
1026  * SOF_TIMESTAMPING* values do not reach this reserved area
1027  */
1028 #define SOCKCM_FLAG_TS_OPT_ID	BIT(31)
1029 
1030 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
1031 {
1032 	nsk->sk_flags = osk->sk_flags;
1033 }
1034 
1035 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
1036 {
1037 	__set_bit(flag, &sk->sk_flags);
1038 }
1039 
1040 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
1041 {
1042 	__clear_bit(flag, &sk->sk_flags);
1043 }
1044 
1045 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
1046 				     int valbool)
1047 {
1048 	if (valbool)
1049 		sock_set_flag(sk, bit);
1050 	else
1051 		sock_reset_flag(sk, bit);
1052 }
1053 
1054 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
1055 {
1056 	return test_bit(flag, &sk->sk_flags);
1057 }
1058 
1059 #ifdef CONFIG_NET
1060 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
1061 static inline int sk_memalloc_socks(void)
1062 {
1063 	return static_branch_unlikely(&memalloc_socks_key);
1064 }
1065 
1066 void __receive_sock(struct file *file);
1067 #else
1068 
1069 static inline int sk_memalloc_socks(void)
1070 {
1071 	return 0;
1072 }
1073 
1074 static inline void __receive_sock(struct file *file)
1075 { }
1076 #endif
1077 
1078 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1079 {
1080 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1081 }
1082 
1083 static inline void sk_acceptq_removed(struct sock *sk)
1084 {
1085 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1086 }
1087 
1088 static inline void sk_acceptq_added(struct sock *sk)
1089 {
1090 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1091 }
1092 
1093 /* Note: If you think the test should be:
1094  *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1095  * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1096  */
1097 static inline bool sk_acceptq_is_full(const struct sock *sk)
1098 {
1099 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1100 }
1101 
1102 /*
1103  * Compute minimal free write space needed to queue new packets.
1104  */
1105 static inline int sk_stream_min_wspace(const struct sock *sk)
1106 {
1107 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
1108 }
1109 
1110 static inline int sk_stream_wspace(const struct sock *sk)
1111 {
1112 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1113 }
1114 
1115 static inline void sk_wmem_queued_add(struct sock *sk, int val)
1116 {
1117 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1118 }
1119 
1120 static inline void sk_forward_alloc_add(struct sock *sk, int val)
1121 {
1122 	/* Paired with lockless reads of sk->sk_forward_alloc */
1123 	WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val);
1124 }
1125 
1126 void sk_stream_write_space(struct sock *sk);
1127 
1128 /* OOB backlog add */
1129 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1130 {
1131 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
1132 	skb_dst_force(skb);
1133 
1134 	if (!sk->sk_backlog.tail)
1135 		WRITE_ONCE(sk->sk_backlog.head, skb);
1136 	else
1137 		sk->sk_backlog.tail->next = skb;
1138 
1139 	WRITE_ONCE(sk->sk_backlog.tail, skb);
1140 	skb->next = NULL;
1141 }
1142 
1143 /*
1144  * Take into account size of receive queue and backlog queue
1145  * Do not take into account this skb truesize,
1146  * to allow even a single big packet to come.
1147  */
1148 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1149 {
1150 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1151 
1152 	return qsize > limit;
1153 }
1154 
1155 /* The per-socket spinlock must be held here. */
1156 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1157 					      unsigned int limit)
1158 {
1159 	if (sk_rcvqueues_full(sk, limit))
1160 		return -ENOBUFS;
1161 
1162 	/*
1163 	 * If the skb was allocated from pfmemalloc reserves, only
1164 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1165 	 * helping free memory
1166 	 */
1167 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1168 		return -ENOMEM;
1169 
1170 	__sk_add_backlog(sk, skb);
1171 	sk->sk_backlog.len += skb->truesize;
1172 	return 0;
1173 }
1174 
1175 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1176 
1177 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1178 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1179 
1180 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1181 {
1182 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1183 		return __sk_backlog_rcv(sk, skb);
1184 
1185 	return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1186 				  tcp_v6_do_rcv,
1187 				  tcp_v4_do_rcv,
1188 				  sk, skb);
1189 }
1190 
1191 static inline void sk_incoming_cpu_update(struct sock *sk)
1192 {
1193 	int cpu = raw_smp_processor_id();
1194 
1195 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1196 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1197 }
1198 
1199 
1200 static inline void sock_rps_save_rxhash(struct sock *sk,
1201 					const struct sk_buff *skb)
1202 {
1203 #ifdef CONFIG_RPS
1204 	/* The following WRITE_ONCE() is paired with the READ_ONCE()
1205 	 * here, and another one in sock_rps_record_flow().
1206 	 */
1207 	if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1208 		WRITE_ONCE(sk->sk_rxhash, skb->hash);
1209 #endif
1210 }
1211 
1212 static inline void sock_rps_reset_rxhash(struct sock *sk)
1213 {
1214 #ifdef CONFIG_RPS
1215 	/* Paired with READ_ONCE() in sock_rps_record_flow() */
1216 	WRITE_ONCE(sk->sk_rxhash, 0);
1217 #endif
1218 }
1219 
1220 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1221 	({	int __rc, __dis = __sk->sk_disconnects;			\
1222 		release_sock(__sk);					\
1223 		__rc = __condition;					\
1224 		if (!__rc) {						\
1225 			*(__timeo) = wait_woken(__wait,			\
1226 						TASK_INTERRUPTIBLE,	\
1227 						*(__timeo));		\
1228 		}							\
1229 		sched_annotate_sleep();					\
1230 		lock_sock(__sk);					\
1231 		__rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \
1232 		__rc;							\
1233 	})
1234 
1235 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1236 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1237 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1238 int sk_stream_error(struct sock *sk, int flags, int err);
1239 void sk_stream_kill_queues(struct sock *sk);
1240 void sk_set_memalloc(struct sock *sk);
1241 void sk_clear_memalloc(struct sock *sk);
1242 
1243 void __sk_flush_backlog(struct sock *sk);
1244 
1245 static inline bool sk_flush_backlog(struct sock *sk)
1246 {
1247 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1248 		__sk_flush_backlog(sk);
1249 		return true;
1250 	}
1251 	return false;
1252 }
1253 
1254 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1255 
1256 struct request_sock_ops;
1257 struct timewait_sock_ops;
1258 struct inet_hashinfo;
1259 struct raw_hashinfo;
1260 struct smc_hashinfo;
1261 struct module;
1262 struct sk_psock;
1263 
1264 /*
1265  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1266  * un-modified. Special care is taken when initializing object to zero.
1267  */
1268 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1269 {
1270 	if (offsetof(struct sock, sk_node.next) != 0)
1271 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1272 	memset(&sk->sk_node.pprev, 0,
1273 	       size - offsetof(struct sock, sk_node.pprev));
1274 }
1275 
1276 struct proto_accept_arg {
1277 	int flags;
1278 	int err;
1279 	int is_empty;
1280 	bool kern;
1281 };
1282 
1283 /* Networking protocol blocks we attach to sockets.
1284  * socket layer -> transport layer interface
1285  */
1286 struct proto {
1287 	void			(*close)(struct sock *sk,
1288 					long timeout);
1289 	int			(*pre_connect)(struct sock *sk,
1290 					struct sockaddr_unsized *uaddr,
1291 					int addr_len);
1292 	int			(*connect)(struct sock *sk,
1293 					struct sockaddr_unsized *uaddr,
1294 					int addr_len);
1295 	int			(*disconnect)(struct sock *sk, int flags);
1296 
1297 	struct sock *		(*accept)(struct sock *sk,
1298 					  struct proto_accept_arg *arg);
1299 
1300 	int			(*ioctl)(struct sock *sk, int cmd,
1301 					 int *karg);
1302 	int			(*init)(struct sock *sk);
1303 	void			(*destroy)(struct sock *sk);
1304 	void			(*shutdown)(struct sock *sk, int how);
1305 	int			(*setsockopt)(struct sock *sk, int level,
1306 					int optname, sockptr_t optval,
1307 					unsigned int optlen);
1308 	int			(*getsockopt)(struct sock *sk, int level,
1309 					int optname, char __user *optval,
1310 					int __user *option);
1311 	void			(*keepalive)(struct sock *sk, int valbool);
1312 #ifdef CONFIG_COMPAT
1313 	int			(*compat_ioctl)(struct sock *sk,
1314 					unsigned int cmd, unsigned long arg);
1315 #endif
1316 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1317 					   size_t len);
1318 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1319 					   size_t len, int flags, int *addr_len);
1320 	void			(*splice_eof)(struct socket *sock);
1321 	int			(*bind)(struct sock *sk,
1322 					struct sockaddr_unsized *addr, int addr_len);
1323 	int			(*bind_add)(struct sock *sk,
1324 					struct sockaddr_unsized *addr, int addr_len);
1325 
1326 	int			(*backlog_rcv) (struct sock *sk,
1327 						struct sk_buff *skb);
1328 	bool			(*bpf_bypass_getsockopt)(int level,
1329 							 int optname);
1330 
1331 	void		(*release_cb)(struct sock *sk);
1332 
1333 	/* Keeping track of sk's, looking them up, and port selection methods. */
1334 	int			(*hash)(struct sock *sk);
1335 	void			(*unhash)(struct sock *sk);
1336 	void			(*rehash)(struct sock *sk);
1337 	int			(*get_port)(struct sock *sk, unsigned short snum);
1338 	void			(*put_port)(struct sock *sk);
1339 #ifdef CONFIG_BPF_SYSCALL
1340 	int			(*psock_update_sk_prot)(struct sock *sk,
1341 							struct sk_psock *psock,
1342 							bool restore);
1343 #endif
1344 
1345 	/* Keeping track of sockets in use */
1346 #ifdef CONFIG_PROC_FS
1347 	unsigned int		inuse_idx;
1348 #endif
1349 
1350 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1351 	bool			(*sock_is_readable)(struct sock *sk);
1352 	/* Memory pressure */
1353 	void			(*enter_memory_pressure)(struct sock *sk);
1354 	void			(*leave_memory_pressure)(struct sock *sk);
1355 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1356 	int  __percpu		*per_cpu_fw_alloc;
1357 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1358 
1359 	/*
1360 	 * Pressure flag: try to collapse.
1361 	 * Technical note: it is used by multiple contexts non atomically.
1362 	 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1363 	 * All the __sk_mem_schedule() is of this nature: accounting
1364 	 * is strict, actions are advisory and have some latency.
1365 	 */
1366 	unsigned long		*memory_pressure;
1367 	long			*sysctl_mem;
1368 
1369 	int			*sysctl_wmem;
1370 	int			*sysctl_rmem;
1371 	u32			sysctl_wmem_offset;
1372 	u32			sysctl_rmem_offset;
1373 
1374 	int			max_header;
1375 	bool			no_autobind;
1376 
1377 	struct kmem_cache	*slab;
1378 	unsigned int		obj_size;
1379 	unsigned int		freeptr_offset;
1380 	unsigned int		ipv6_pinfo_offset;
1381 	slab_flags_t		slab_flags;
1382 	unsigned int		useroffset;	/* Usercopy region offset */
1383 	unsigned int		usersize;	/* Usercopy region size */
1384 
1385 	struct request_sock_ops	*rsk_prot;
1386 	struct timewait_sock_ops *twsk_prot;
1387 
1388 	union {
1389 		struct inet_hashinfo	*hashinfo;
1390 		struct udp_table	*udp_table;
1391 		struct raw_hashinfo	*raw_hash;
1392 		struct smc_hashinfo	*smc_hash;
1393 	} h;
1394 
1395 	struct module		*owner;
1396 
1397 	char			name[32];
1398 
1399 	struct list_head	node;
1400 	int			(*diag_destroy)(struct sock *sk, int err);
1401 } __randomize_layout;
1402 
1403 int proto_register(struct proto *prot, int alloc_slab);
1404 void proto_unregister(struct proto *prot);
1405 int sock_load_diag_module(int family, int protocol);
1406 
1407 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1408 
1409 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1410 {
1411 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1412 		return false;
1413 
1414 	return sk->sk_prot->stream_memory_free ?
1415 		INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1416 				     tcp_stream_memory_free, sk, wake) : true;
1417 }
1418 
1419 static inline bool sk_stream_memory_free(const struct sock *sk)
1420 {
1421 	return __sk_stream_memory_free(sk, 0);
1422 }
1423 
1424 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1425 {
1426 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1427 	       __sk_stream_memory_free(sk, wake);
1428 }
1429 
1430 static inline bool sk_stream_is_writeable(const struct sock *sk)
1431 {
1432 	return __sk_stream_is_writeable(sk, 0);
1433 }
1434 
1435 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1436 					    struct cgroup *ancestor)
1437 {
1438 #ifdef CONFIG_SOCK_CGROUP_DATA
1439 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1440 				    ancestor);
1441 #else
1442 	return -ENOTSUPP;
1443 #endif
1444 }
1445 
1446 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1447 
1448 static inline void sk_sockets_allocated_dec(struct sock *sk)
1449 {
1450 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1451 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1452 }
1453 
1454 static inline void sk_sockets_allocated_inc(struct sock *sk)
1455 {
1456 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1457 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1458 }
1459 
1460 static inline u64
1461 sk_sockets_allocated_read_positive(struct sock *sk)
1462 {
1463 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1464 }
1465 
1466 static inline int
1467 proto_sockets_allocated_sum_positive(struct proto *prot)
1468 {
1469 	return percpu_counter_sum_positive(prot->sockets_allocated);
1470 }
1471 
1472 #ifdef CONFIG_PROC_FS
1473 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
1474 struct prot_inuse {
1475 	int all;
1476 	int val[PROTO_INUSE_NR];
1477 };
1478 
1479 static inline void sock_prot_inuse_add(const struct net *net,
1480 				       const struct proto *prot, int val)
1481 {
1482 	this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1483 }
1484 
1485 static inline void sock_inuse_add(const struct net *net, int val)
1486 {
1487 	this_cpu_add(net->core.prot_inuse->all, val);
1488 }
1489 
1490 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1491 int sock_inuse_get(struct net *net);
1492 #else
1493 static inline void sock_prot_inuse_add(const struct net *net,
1494 				       const struct proto *prot, int val)
1495 {
1496 }
1497 
1498 static inline void sock_inuse_add(const struct net *net, int val)
1499 {
1500 }
1501 #endif
1502 
1503 
1504 /* With per-bucket locks this operation is not-atomic, so that
1505  * this version is not worse.
1506  */
1507 static inline int __sk_prot_rehash(struct sock *sk)
1508 {
1509 	sk->sk_prot->unhash(sk);
1510 	return sk->sk_prot->hash(sk);
1511 }
1512 
1513 /* About 10 seconds */
1514 #define SOCK_DESTROY_TIME (10*HZ)
1515 
1516 /* Sockets 0-1023 can't be bound to unless you are superuser */
1517 #define PROT_SOCK	1024
1518 
1519 #define SHUTDOWN_MASK	3
1520 #define RCV_SHUTDOWN	1
1521 #define SEND_SHUTDOWN	2
1522 
1523 #define SOCK_BINDADDR_LOCK	4
1524 #define SOCK_BINDPORT_LOCK	8
1525 /**
1526  * define SOCK_CONNECT_BIND - &sock->sk_userlocks flag for auto-bind at connect() time
1527  */
1528 #define SOCK_CONNECT_BIND	16
1529 
1530 struct socket_alloc {
1531 	struct socket socket;
1532 	struct inode vfs_inode;
1533 };
1534 
1535 static inline struct socket *SOCKET_I(struct inode *inode)
1536 {
1537 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1538 }
1539 
1540 static inline struct inode *SOCK_INODE(struct socket *socket)
1541 {
1542 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1543 }
1544 
1545 /*
1546  * Functions for memory accounting
1547  */
1548 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1549 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1550 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1551 void __sk_mem_reclaim(struct sock *sk, int amount);
1552 
1553 #define SK_MEM_SEND	0
1554 #define SK_MEM_RECV	1
1555 
1556 /* sysctl_mem values are in pages */
1557 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1558 {
1559 	return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1560 }
1561 
1562 static inline int sk_mem_pages(int amt)
1563 {
1564 	return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1565 }
1566 
1567 static inline bool sk_has_account(struct sock *sk)
1568 {
1569 	/* return true if protocol supports memory accounting */
1570 	return !!sk->sk_prot->memory_allocated;
1571 }
1572 
1573 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1574 {
1575 	int delta;
1576 
1577 	if (!sk_has_account(sk))
1578 		return true;
1579 	delta = size - sk->sk_forward_alloc;
1580 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1581 }
1582 
1583 static inline bool
1584 __sk_rmem_schedule(struct sock *sk, int size, bool pfmemalloc)
1585 {
1586 	int delta;
1587 
1588 	if (!sk_has_account(sk))
1589 		return true;
1590 	delta = size - sk->sk_forward_alloc;
1591 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1592 	       pfmemalloc;
1593 }
1594 
1595 static inline bool
1596 sk_rmem_schedule(struct sock *sk, const struct sk_buff *skb, int size)
1597 {
1598 	return __sk_rmem_schedule(sk, size, skb_pfmemalloc(skb));
1599 }
1600 
1601 static inline int sk_unused_reserved_mem(const struct sock *sk)
1602 {
1603 	int unused_mem;
1604 
1605 	if (likely(!sk->sk_reserved_mem))
1606 		return 0;
1607 
1608 	unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1609 			atomic_read(&sk->sk_rmem_alloc);
1610 
1611 	return unused_mem > 0 ? unused_mem : 0;
1612 }
1613 
1614 static inline void sk_mem_reclaim(struct sock *sk)
1615 {
1616 	int reclaimable;
1617 
1618 	if (!sk_has_account(sk))
1619 		return;
1620 
1621 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1622 
1623 	if (reclaimable >= (int)PAGE_SIZE)
1624 		__sk_mem_reclaim(sk, reclaimable);
1625 }
1626 
1627 static inline void sk_mem_reclaim_final(struct sock *sk)
1628 {
1629 	sk->sk_reserved_mem = 0;
1630 	sk_mem_reclaim(sk);
1631 }
1632 
1633 static inline void sk_mem_charge(struct sock *sk, int size)
1634 {
1635 	if (!sk_has_account(sk))
1636 		return;
1637 	sk_forward_alloc_add(sk, -size);
1638 }
1639 
1640 static inline void sk_mem_uncharge(struct sock *sk, int size)
1641 {
1642 	if (!sk_has_account(sk))
1643 		return;
1644 	sk_forward_alloc_add(sk, size);
1645 	sk_mem_reclaim(sk);
1646 }
1647 
1648 void __sk_charge(struct sock *sk, gfp_t gfp);
1649 
1650 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES)
1651 static inline void sk_owner_set(struct sock *sk, struct module *owner)
1652 {
1653 	__module_get(owner);
1654 	sk->sk_owner = owner;
1655 }
1656 
1657 static inline void sk_owner_clear(struct sock *sk)
1658 {
1659 	sk->sk_owner = NULL;
1660 }
1661 
1662 static inline void sk_owner_put(struct sock *sk)
1663 {
1664 	module_put(sk->sk_owner);
1665 }
1666 #else
1667 static inline void sk_owner_set(struct sock *sk, struct module *owner)
1668 {
1669 }
1670 
1671 static inline void sk_owner_clear(struct sock *sk)
1672 {
1673 }
1674 
1675 static inline void sk_owner_put(struct sock *sk)
1676 {
1677 }
1678 #endif
1679 /*
1680  * Macro so as to not evaluate some arguments when
1681  * lockdep is not enabled.
1682  *
1683  * Mark both the sk_lock and the sk_lock.slock as a
1684  * per-address-family lock class.
1685  */
1686 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1687 do {									\
1688 	sk_owner_set(sk, THIS_MODULE);					\
1689 	sk->sk_lock.owned = 0;						\
1690 	init_waitqueue_head(&sk->sk_lock.wq);				\
1691 	spin_lock_init(&(sk)->sk_lock.slock);				\
1692 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1693 				   sizeof((sk)->sk_lock));		\
1694 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1695 				   (skey), (sname));			\
1696 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1697 } while (0)
1698 
1699 static inline bool lockdep_sock_is_held(const struct sock *sk)
1700 {
1701 	return lockdep_is_held(&sk->sk_lock) ||
1702 	       lockdep_is_held(&sk->sk_lock.slock);
1703 }
1704 
1705 void lock_sock_nested(struct sock *sk, int subclass);
1706 
1707 static inline void lock_sock(struct sock *sk)
1708 {
1709 	lock_sock_nested(sk, 0);
1710 }
1711 
1712 void __lock_sock(struct sock *sk);
1713 void __release_sock(struct sock *sk);
1714 void release_sock(struct sock *sk);
1715 
1716 /* BH context may only use the following locking interface. */
1717 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1718 #define bh_lock_sock_nested(__sk) \
1719 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1720 				SINGLE_DEPTH_NESTING)
1721 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1722 
1723 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1724 
1725 /**
1726  * lock_sock_fast - fast version of lock_sock
1727  * @sk: socket
1728  *
1729  * This version should be used for very small section, where process won't block
1730  * return false if fast path is taken:
1731  *
1732  *   sk_lock.slock locked, owned = 0, BH disabled
1733  *
1734  * return true if slow path is taken:
1735  *
1736  *   sk_lock.slock unlocked, owned = 1, BH enabled
1737  */
1738 static inline bool lock_sock_fast(struct sock *sk)
1739 {
1740 	/* The sk_lock has mutex_lock() semantics here. */
1741 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1742 
1743 	return __lock_sock_fast(sk);
1744 }
1745 
1746 /* fast socket lock variant for caller already holding a [different] socket lock */
1747 static inline bool lock_sock_fast_nested(struct sock *sk)
1748 {
1749 	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1750 
1751 	return __lock_sock_fast(sk);
1752 }
1753 
1754 /**
1755  * unlock_sock_fast - complement of lock_sock_fast
1756  * @sk: socket
1757  * @slow: slow mode
1758  *
1759  * fast unlock socket for user context.
1760  * If slow mode is on, we call regular release_sock()
1761  */
1762 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1763 	__releases(&sk->sk_lock.slock)
1764 {
1765 	if (slow) {
1766 		release_sock(sk);
1767 		__release(&sk->sk_lock.slock);
1768 	} else {
1769 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1770 		spin_unlock_bh(&sk->sk_lock.slock);
1771 	}
1772 }
1773 
1774 void sockopt_lock_sock(struct sock *sk);
1775 void sockopt_release_sock(struct sock *sk);
1776 bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1777 bool sockopt_capable(int cap);
1778 
1779 /* Used by processes to "lock" a socket state, so that
1780  * interrupts and bottom half handlers won't change it
1781  * from under us. It essentially blocks any incoming
1782  * packets, so that we won't get any new data or any
1783  * packets that change the state of the socket.
1784  *
1785  * While locked, BH processing will add new packets to
1786  * the backlog queue.  This queue is processed by the
1787  * owner of the socket lock right before it is released.
1788  *
1789  * Since ~2.3.5 it is also exclusive sleep lock serializing
1790  * accesses from user process context.
1791  */
1792 
1793 static inline void sock_owned_by_me(const struct sock *sk)
1794 {
1795 #ifdef CONFIG_LOCKDEP
1796 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1797 #endif
1798 }
1799 
1800 static inline void sock_not_owned_by_me(const struct sock *sk)
1801 {
1802 #ifdef CONFIG_LOCKDEP
1803 	WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks);
1804 #endif
1805 }
1806 
1807 static inline bool sock_owned_by_user(const struct sock *sk)
1808 {
1809 	sock_owned_by_me(sk);
1810 	return sk->sk_lock.owned;
1811 }
1812 
1813 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1814 {
1815 	return sk->sk_lock.owned;
1816 }
1817 
1818 static inline void sock_release_ownership(struct sock *sk)
1819 {
1820 	DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk));
1821 	sk->sk_lock.owned = 0;
1822 
1823 	/* The sk_lock has mutex_unlock() semantics: */
1824 	mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1825 }
1826 
1827 /* no reclassification while locks are held */
1828 static inline bool sock_allow_reclassification(const struct sock *csk)
1829 {
1830 	struct sock *sk = (struct sock *)csk;
1831 
1832 	return !sock_owned_by_user_nocheck(sk) &&
1833 		!spin_is_locked(&sk->sk_lock.slock);
1834 }
1835 
1836 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1837 		      struct proto *prot, int kern);
1838 void sk_free(struct sock *sk);
1839 void sk_net_refcnt_upgrade(struct sock *sk);
1840 void sk_destruct(struct sock *sk);
1841 struct sock *sk_clone(const struct sock *sk, const gfp_t priority, bool lock);
1842 
1843 static inline struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1844 {
1845 	return sk_clone(sk, priority, true);
1846 }
1847 
1848 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1849 			     gfp_t priority);
1850 void __sock_wfree(struct sk_buff *skb);
1851 void sock_wfree(struct sk_buff *skb);
1852 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1853 			     gfp_t priority);
1854 void skb_orphan_partial(struct sk_buff *skb);
1855 void sock_rfree(struct sk_buff *skb);
1856 void sock_efree(struct sk_buff *skb);
1857 #ifdef CONFIG_INET
1858 void sock_edemux(struct sk_buff *skb);
1859 void sock_pfree(struct sk_buff *skb);
1860 
1861 static inline void skb_set_owner_edemux(struct sk_buff *skb, struct sock *sk)
1862 {
1863 	skb_orphan(skb);
1864 	if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1865 		skb->sk = sk;
1866 		skb->destructor = sock_edemux;
1867 	}
1868 }
1869 #else
1870 #define sock_edemux sock_efree
1871 #endif
1872 
1873 int sk_setsockopt(struct sock *sk, int level, int optname,
1874 		  sockptr_t optval, unsigned int optlen);
1875 int sock_setsockopt(struct socket *sock, int level, int op,
1876 		    sockptr_t optval, unsigned int optlen);
1877 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
1878 		       int optname, sockptr_t optval, int optlen);
1879 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
1880 		       int optname, sockptr_t optval, sockptr_t optlen);
1881 
1882 int sk_getsockopt(struct sock *sk, int level, int optname,
1883 		  sockptr_t optval, sockptr_t optlen);
1884 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1885 		   bool timeval, bool time32);
1886 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1887 				     unsigned long data_len, int noblock,
1888 				     int *errcode, int max_page_order);
1889 
1890 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1891 						  unsigned long size,
1892 						  int noblock, int *errcode)
1893 {
1894 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1895 }
1896 
1897 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1898 void *sock_kmemdup(struct sock *sk, const void *src,
1899 		   int size, gfp_t priority);
1900 void sock_kfree_s(struct sock *sk, void *mem, int size);
1901 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1902 void sk_send_sigurg(struct sock *sk);
1903 
1904 static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1905 {
1906 	if (sk->sk_socket)
1907 		clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1908 	WRITE_ONCE(sk->sk_prot, proto);
1909 }
1910 
1911 struct sockcm_cookie {
1912 	u64 transmit_time;
1913 	u32 mark;
1914 	u32 tsflags;
1915 	u32 ts_opt_id;
1916 	u32 priority;
1917 	u32 dmabuf_id;
1918 };
1919 
1920 static inline void sockcm_init(struct sockcm_cookie *sockc,
1921 			       const struct sock *sk)
1922 {
1923 	*sockc = (struct sockcm_cookie) {
1924 		.mark = READ_ONCE(sk->sk_mark),
1925 		.tsflags = READ_ONCE(sk->sk_tsflags),
1926 		.priority = READ_ONCE(sk->sk_priority),
1927 	};
1928 }
1929 
1930 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1931 		     struct sockcm_cookie *sockc);
1932 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1933 		   struct sockcm_cookie *sockc);
1934 
1935 /*
1936  * Functions to fill in entries in struct proto_ops when a protocol
1937  * does not implement a particular function.
1938  */
1939 int sock_no_bind(struct socket *sock, struct sockaddr_unsized *saddr, int len);
1940 int sock_no_connect(struct socket *sock, struct sockaddr_unsized *saddr, int len, int flags);
1941 int sock_no_socketpair(struct socket *, struct socket *);
1942 int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *);
1943 int sock_no_getname(struct socket *, struct sockaddr *, int);
1944 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1945 int sock_no_listen(struct socket *, int);
1946 int sock_no_shutdown(struct socket *, int);
1947 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1948 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1949 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1950 int sock_no_mmap(struct file *file, struct socket *sock,
1951 		 struct vm_area_struct *vma);
1952 
1953 /*
1954  * Functions to fill in entries in struct proto_ops when a protocol
1955  * uses the inet style.
1956  */
1957 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1958 				  char __user *optval, int __user *optlen);
1959 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1960 			int flags);
1961 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1962 			   sockptr_t optval, unsigned int optlen);
1963 
1964 void sk_common_release(struct sock *sk);
1965 
1966 /*
1967  *	Default socket callbacks and setup code
1968  */
1969 
1970 /* Initialise core socket variables using an explicit uid. */
1971 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1972 
1973 /* Initialise core socket variables.
1974  * Assumes struct socket *sock is embedded in a struct socket_alloc.
1975  */
1976 void sock_init_data(struct socket *sock, struct sock *sk);
1977 
1978 /*
1979  * Socket reference counting postulates.
1980  *
1981  * * Each user of socket SHOULD hold a reference count.
1982  * * Each access point to socket (an hash table bucket, reference from a list,
1983  *   running timer, skb in flight MUST hold a reference count.
1984  * * When reference count hits 0, it means it will never increase back.
1985  * * When reference count hits 0, it means that no references from
1986  *   outside exist to this socket and current process on current CPU
1987  *   is last user and may/should destroy this socket.
1988  * * sk_free is called from any context: process, BH, IRQ. When
1989  *   it is called, socket has no references from outside -> sk_free
1990  *   may release descendant resources allocated by the socket, but
1991  *   to the time when it is called, socket is NOT referenced by any
1992  *   hash tables, lists etc.
1993  * * Packets, delivered from outside (from network or from another process)
1994  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1995  *   when they sit in queue. Otherwise, packets will leak to hole, when
1996  *   socket is looked up by one cpu and unhasing is made by another CPU.
1997  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1998  *   (leak to backlog). Packet socket does all the processing inside
1999  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
2000  *   use separate SMP lock, so that they are prone too.
2001  */
2002 
2003 /* Ungrab socket and destroy it, if it was the last reference. */
2004 static inline void sock_put(struct sock *sk)
2005 {
2006 	if (refcount_dec_and_test(&sk->sk_refcnt))
2007 		sk_free(sk);
2008 }
2009 /* Generic version of sock_put(), dealing with all sockets
2010  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
2011  */
2012 void sock_gen_put(struct sock *sk);
2013 
2014 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
2015 		     unsigned int trim_cap, bool refcounted);
2016 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
2017 				 const int nested)
2018 {
2019 	return __sk_receive_skb(sk, skb, nested, 1, true);
2020 }
2021 
2022 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
2023 {
2024 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
2025 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
2026 		return;
2027 	/* Paired with READ_ONCE() in sk_tx_queue_get() and
2028 	 * other WRITE_ONCE() because socket lock might be not held.
2029 	 */
2030 	if (READ_ONCE(sk->sk_tx_queue_mapping) != tx_queue) {
2031 		WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
2032 		WRITE_ONCE(sk->sk_tx_queue_mapping_jiffies, jiffies);
2033 		return;
2034 	}
2035 
2036 	/* Refresh sk_tx_queue_mapping_jiffies if too old. */
2037 	if (time_is_before_jiffies(READ_ONCE(sk->sk_tx_queue_mapping_jiffies) + HZ))
2038 		WRITE_ONCE(sk->sk_tx_queue_mapping_jiffies, jiffies);
2039 }
2040 
2041 #define NO_QUEUE_MAPPING	USHRT_MAX
2042 
2043 static inline void sk_tx_queue_clear(struct sock *sk)
2044 {
2045 	/* Paired with READ_ONCE() in sk_tx_queue_get() and
2046 	 * other WRITE_ONCE() because socket lock might be not held.
2047 	 */
2048 	WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
2049 }
2050 
2051 int sk_tx_queue_get(const struct sock *sk);
2052 
2053 static inline void __sk_rx_queue_set(struct sock *sk,
2054 				     const struct sk_buff *skb,
2055 				     bool force_set)
2056 {
2057 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2058 	if (skb_rx_queue_recorded(skb)) {
2059 		u16 rx_queue = skb_get_rx_queue(skb);
2060 
2061 		if (force_set ||
2062 		    unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2063 			WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
2064 	}
2065 #endif
2066 }
2067 
2068 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2069 {
2070 	__sk_rx_queue_set(sk, skb, true);
2071 }
2072 
2073 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2074 {
2075 	__sk_rx_queue_set(sk, skb, false);
2076 }
2077 
2078 static inline void sk_rx_queue_clear(struct sock *sk)
2079 {
2080 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2081 	WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2082 #endif
2083 }
2084 
2085 static inline int sk_rx_queue_get(const struct sock *sk)
2086 {
2087 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2088 	if (sk) {
2089 		int res = READ_ONCE(sk->sk_rx_queue_mapping);
2090 
2091 		if (res != NO_QUEUE_MAPPING)
2092 			return res;
2093 	}
2094 #endif
2095 
2096 	return -1;
2097 }
2098 
2099 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2100 {
2101 	sk->sk_socket = sock;
2102 	if (sock) {
2103 		WRITE_ONCE(sk->sk_uid, SOCK_INODE(sock)->i_uid);
2104 		WRITE_ONCE(sk->sk_ino, SOCK_INODE(sock)->i_ino);
2105 	} else {
2106 		/* Note: sk_uid is unchanged. */
2107 		WRITE_ONCE(sk->sk_ino, 0);
2108 	}
2109 }
2110 
2111 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2112 {
2113 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2114 	return &rcu_dereference_raw(sk->sk_wq)->wait;
2115 }
2116 /* Detach socket from process context.
2117  * Announce socket dead, detach it from wait queue and inode.
2118  * Note that parent inode held reference count on this struct sock,
2119  * we do not release it in this function, because protocol
2120  * probably wants some additional cleanups or even continuing
2121  * to work with this socket (TCP).
2122  */
2123 static inline void sock_orphan(struct sock *sk)
2124 {
2125 	write_lock_bh(&sk->sk_callback_lock);
2126 	sock_set_flag(sk, SOCK_DEAD);
2127 	sk_set_socket(sk, NULL);
2128 	sk->sk_wq  = NULL;
2129 	write_unlock_bh(&sk->sk_callback_lock);
2130 }
2131 
2132 static inline void sock_graft(struct sock *sk, struct socket *parent)
2133 {
2134 	WARN_ON(parent->sk);
2135 	write_lock_bh(&sk->sk_callback_lock);
2136 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2137 	parent->sk = sk;
2138 	sk_set_socket(sk, parent);
2139 	security_sock_graft(sk, parent);
2140 	write_unlock_bh(&sk->sk_callback_lock);
2141 }
2142 
2143 static inline unsigned long sock_i_ino(const struct sock *sk)
2144 {
2145 	/* Paired with WRITE_ONCE() in sock_graft() and sock_orphan() */
2146 	return READ_ONCE(sk->sk_ino);
2147 }
2148 
2149 static inline kuid_t sk_uid(const struct sock *sk)
2150 {
2151 	/* Paired with WRITE_ONCE() in sockfs_setattr() */
2152 	return READ_ONCE(sk->sk_uid);
2153 }
2154 
2155 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2156 {
2157 	return sk ? sk_uid(sk) : make_kuid(net->user_ns, 0);
2158 }
2159 
2160 static inline u32 net_tx_rndhash(void)
2161 {
2162 	u32 v = get_random_u32();
2163 
2164 	return v ?: 1;
2165 }
2166 
2167 static inline void sk_set_txhash(struct sock *sk)
2168 {
2169 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2170 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2171 }
2172 
2173 static inline bool sk_rethink_txhash(struct sock *sk)
2174 {
2175 	if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2176 		sk_set_txhash(sk);
2177 		return true;
2178 	}
2179 	return false;
2180 }
2181 
2182 static inline struct dst_entry *
2183 __sk_dst_get(const struct sock *sk)
2184 {
2185 	return rcu_dereference_check(sk->sk_dst_cache,
2186 				     lockdep_sock_is_held(sk));
2187 }
2188 
2189 static inline struct dst_entry *
2190 sk_dst_get(const struct sock *sk)
2191 {
2192 	struct dst_entry *dst;
2193 
2194 	rcu_read_lock();
2195 	dst = rcu_dereference(sk->sk_dst_cache);
2196 	if (dst && !rcuref_get(&dst->__rcuref))
2197 		dst = NULL;
2198 	rcu_read_unlock();
2199 	return dst;
2200 }
2201 
2202 static inline void __dst_negative_advice(struct sock *sk)
2203 {
2204 	struct dst_entry *dst = __sk_dst_get(sk);
2205 
2206 	if (dst && dst->ops->negative_advice)
2207 		dst->ops->negative_advice(sk, dst);
2208 }
2209 
2210 static inline void dst_negative_advice(struct sock *sk)
2211 {
2212 	sk_rethink_txhash(sk);
2213 	__dst_negative_advice(sk);
2214 }
2215 
2216 static inline void
2217 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2218 {
2219 	struct dst_entry *old_dst;
2220 
2221 	sk_tx_queue_clear(sk);
2222 	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2223 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2224 					    lockdep_sock_is_held(sk));
2225 	rcu_assign_pointer(sk->sk_dst_cache, dst);
2226 	dst_release(old_dst);
2227 }
2228 
2229 static inline void
2230 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2231 {
2232 	struct dst_entry *old_dst;
2233 
2234 	sk_tx_queue_clear(sk);
2235 	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2236 	old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst)));
2237 	dst_release(old_dst);
2238 }
2239 
2240 static inline void
2241 __sk_dst_reset(struct sock *sk)
2242 {
2243 	__sk_dst_set(sk, NULL);
2244 }
2245 
2246 static inline void
2247 sk_dst_reset(struct sock *sk)
2248 {
2249 	sk_dst_set(sk, NULL);
2250 }
2251 
2252 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2253 
2254 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2255 
2256 static inline void sk_dst_confirm(struct sock *sk)
2257 {
2258 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2259 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2260 }
2261 
2262 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2263 {
2264 	if (skb_get_dst_pending_confirm(skb)) {
2265 		struct sock *sk = skb->sk;
2266 
2267 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2268 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2269 		neigh_confirm(n);
2270 	}
2271 }
2272 
2273 bool sk_mc_loop(const struct sock *sk);
2274 
2275 static inline bool sk_can_gso(const struct sock *sk)
2276 {
2277 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2278 }
2279 
2280 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2281 
2282 static inline void sk_gso_disable(struct sock *sk)
2283 {
2284 	sk->sk_gso_disabled = 1;
2285 	sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2286 }
2287 
2288 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2289 					   struct iov_iter *from, char *to,
2290 					   int copy, int offset)
2291 {
2292 	if (skb->ip_summed == CHECKSUM_NONE) {
2293 		__wsum csum = 0;
2294 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2295 			return -EFAULT;
2296 		skb->csum = csum_block_add(skb->csum, csum, offset);
2297 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2298 		if (!copy_from_iter_full_nocache(to, copy, from))
2299 			return -EFAULT;
2300 	} else if (!copy_from_iter_full(to, copy, from))
2301 		return -EFAULT;
2302 
2303 	return 0;
2304 }
2305 
2306 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2307 				       struct iov_iter *from, int copy)
2308 {
2309 	int err, offset = skb->len;
2310 
2311 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2312 				       copy, offset);
2313 	if (err)
2314 		__skb_trim(skb, offset);
2315 
2316 	return err;
2317 }
2318 
2319 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2320 					   struct sk_buff *skb,
2321 					   struct page *page,
2322 					   int off, int copy)
2323 {
2324 	int err;
2325 
2326 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2327 				       copy, skb->len);
2328 	if (err)
2329 		return err;
2330 
2331 	skb_len_add(skb, copy);
2332 	sk_wmem_queued_add(sk, copy);
2333 	sk_mem_charge(sk, copy);
2334 	return 0;
2335 }
2336 
2337 #define SK_WMEM_ALLOC_BIAS 1
2338 /**
2339  * sk_wmem_alloc_get - returns write allocations
2340  * @sk: socket
2341  *
2342  * Return: sk_wmem_alloc minus initial offset of one
2343  */
2344 static inline int sk_wmem_alloc_get(const struct sock *sk)
2345 {
2346 	return refcount_read(&sk->sk_wmem_alloc) - SK_WMEM_ALLOC_BIAS;
2347 }
2348 
2349 /**
2350  * sk_rmem_alloc_get - returns read allocations
2351  * @sk: socket
2352  *
2353  * Return: sk_rmem_alloc
2354  */
2355 static inline int sk_rmem_alloc_get(const struct sock *sk)
2356 {
2357 	return atomic_read(&sk->sk_rmem_alloc);
2358 }
2359 
2360 /**
2361  * sk_has_allocations - check if allocations are outstanding
2362  * @sk: socket
2363  *
2364  * Return: true if socket has write or read allocations
2365  */
2366 static inline bool sk_has_allocations(const struct sock *sk)
2367 {
2368 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2369 }
2370 
2371 /**
2372  * skwq_has_sleeper - check if there are any waiting processes
2373  * @wq: struct socket_wq
2374  *
2375  * Return: true if socket_wq has waiting processes
2376  *
2377  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2378  * barrier call. They were added due to the race found within the tcp code.
2379  *
2380  * Consider following tcp code paths::
2381  *
2382  *   CPU1                CPU2
2383  *   sys_select          receive packet
2384  *   ...                 ...
2385  *   __add_wait_queue    update tp->rcv_nxt
2386  *   ...                 ...
2387  *   tp->rcv_nxt check   sock_def_readable
2388  *   ...                 {
2389  *   schedule               rcu_read_lock();
2390  *                          wq = rcu_dereference(sk->sk_wq);
2391  *                          if (wq && waitqueue_active(&wq->wait))
2392  *                              wake_up_interruptible(&wq->wait)
2393  *                          ...
2394  *                       }
2395  *
2396  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2397  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2398  * could then endup calling schedule and sleep forever if there are no more
2399  * data on the socket.
2400  *
2401  */
2402 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2403 {
2404 	return wq && wq_has_sleeper(&wq->wait);
2405 }
2406 
2407 /**
2408  * sock_poll_wait - wrapper for the poll_wait call.
2409  * @filp:           file
2410  * @sock:           socket to wait on
2411  * @p:              poll_table
2412  *
2413  * See the comments in the wq_has_sleeper function.
2414  */
2415 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2416 				  poll_table *p)
2417 {
2418 	/* Provides a barrier we need to be sure we are in sync
2419 	 * with the socket flags modification.
2420 	 *
2421 	 * This memory barrier is paired in the wq_has_sleeper.
2422 	 */
2423 	poll_wait(filp, &sock->wq.wait, p);
2424 }
2425 
2426 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2427 {
2428 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2429 	u32 txhash = READ_ONCE(sk->sk_txhash);
2430 
2431 	if (txhash) {
2432 		skb->l4_hash = 1;
2433 		skb->hash = txhash;
2434 	}
2435 }
2436 
2437 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2438 
2439 /*
2440  *	Queue a received datagram if it will fit. Stream and sequenced
2441  *	protocols can't normally use this as they need to fit buffers in
2442  *	and play with them.
2443  *
2444  *	Inlined as it's very short and called for pretty much every
2445  *	packet ever received.
2446  */
2447 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2448 {
2449 	skb_orphan(skb);
2450 	skb->sk = sk;
2451 	skb->destructor = sock_rfree;
2452 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2453 	sk_mem_charge(sk, skb->truesize);
2454 }
2455 
2456 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2457 {
2458 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2459 		skb_orphan(skb);
2460 		skb->destructor = sock_efree;
2461 		skb->sk = sk;
2462 		return true;
2463 	}
2464 	return false;
2465 }
2466 
2467 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2468 {
2469 	skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2470 	if (skb) {
2471 		if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2472 			skb_set_owner_r(skb, sk);
2473 			return skb;
2474 		}
2475 		__kfree_skb(skb);
2476 	}
2477 	return NULL;
2478 }
2479 
2480 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2481 {
2482 	if (skb->destructor != sock_wfree) {
2483 		skb_orphan(skb);
2484 		return;
2485 	}
2486 	skb->slow_gro = 1;
2487 }
2488 
2489 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2490 		    unsigned long expires);
2491 
2492 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2493 
2494 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2495 
2496 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2497 			struct sk_buff *skb, unsigned int flags,
2498 			void (*destructor)(struct sock *sk,
2499 					   struct sk_buff *skb));
2500 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2501 
2502 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2503 			      enum skb_drop_reason *reason);
2504 
2505 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2506 {
2507 	return sock_queue_rcv_skb_reason(sk, skb, NULL);
2508 }
2509 
2510 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2511 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2512 
2513 /*
2514  *	Recover an error report and clear atomically
2515  */
2516 
2517 static inline int sock_error(struct sock *sk)
2518 {
2519 	int err;
2520 
2521 	/* Avoid an atomic operation for the common case.
2522 	 * This is racy since another cpu/thread can change sk_err under us.
2523 	 */
2524 	if (likely(data_race(!sk->sk_err)))
2525 		return 0;
2526 
2527 	err = xchg(&sk->sk_err, 0);
2528 	return -err;
2529 }
2530 
2531 void sk_error_report(struct sock *sk);
2532 
2533 static inline unsigned long sock_wspace(struct sock *sk)
2534 {
2535 	int amt = 0;
2536 
2537 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2538 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2539 		if (amt < 0)
2540 			amt = 0;
2541 	}
2542 	return amt;
2543 }
2544 
2545 /* Note:
2546  *  We use sk->sk_wq_raw, from contexts knowing this
2547  *  pointer is not NULL and cannot disappear/change.
2548  */
2549 static inline void sk_set_bit(int nr, struct sock *sk)
2550 {
2551 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2552 	    !sock_flag(sk, SOCK_FASYNC))
2553 		return;
2554 
2555 	set_bit(nr, &sk->sk_wq_raw->flags);
2556 }
2557 
2558 static inline void sk_clear_bit(int nr, struct sock *sk)
2559 {
2560 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2561 	    !sock_flag(sk, SOCK_FASYNC))
2562 		return;
2563 
2564 	clear_bit(nr, &sk->sk_wq_raw->flags);
2565 }
2566 
2567 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2568 {
2569 	if (sock_flag(sk, SOCK_FASYNC)) {
2570 		rcu_read_lock();
2571 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2572 		rcu_read_unlock();
2573 	}
2574 }
2575 
2576 static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band)
2577 {
2578 	if (unlikely(sock_flag(sk, SOCK_FASYNC)))
2579 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2580 }
2581 
2582 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2583  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2584  * Note: for send buffers, TCP works better if we can build two skbs at
2585  * minimum.
2586  */
2587 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2588 
2589 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2590 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2591 
2592 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2593 {
2594 	u32 val;
2595 
2596 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2597 		return;
2598 
2599 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2600 	val = max_t(u32, val, sk_unused_reserved_mem(sk));
2601 
2602 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2603 }
2604 
2605 /**
2606  * sk_page_frag - return an appropriate page_frag
2607  * @sk: socket
2608  *
2609  * Use the per task page_frag instead of the per socket one for
2610  * optimization when we know that we're in process context and own
2611  * everything that's associated with %current.
2612  *
2613  * Both direct reclaim and page faults can nest inside other
2614  * socket operations and end up recursing into sk_page_frag()
2615  * while it's already in use: explicitly avoid task page_frag
2616  * when users disable sk_use_task_frag.
2617  *
2618  * Return: a per task page_frag if context allows that,
2619  * otherwise a per socket one.
2620  */
2621 static inline struct page_frag *sk_page_frag(struct sock *sk)
2622 {
2623 	if (sk->sk_use_task_frag)
2624 		return &current->task_frag;
2625 
2626 	return &sk->sk_frag;
2627 }
2628 
2629 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2630 
2631 static inline bool __sock_writeable(const struct sock *sk, int wmem_alloc)
2632 {
2633 	return wmem_alloc < (READ_ONCE(sk->sk_sndbuf) >> 1);
2634 }
2635 /*
2636  *	Default write policy as shown to user space via poll/select/SIGIO
2637  */
2638 static inline bool sock_writeable(const struct sock *sk)
2639 {
2640 	return __sock_writeable(sk, refcount_read(&sk->sk_wmem_alloc));
2641 }
2642 
2643 static inline gfp_t gfp_any(void)
2644 {
2645 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2646 }
2647 
2648 static inline gfp_t gfp_memcg_charge(void)
2649 {
2650 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2651 }
2652 
2653 #ifdef CONFIG_MEMCG
2654 static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk)
2655 {
2656 	return sk->sk_memcg;
2657 }
2658 
2659 static inline bool mem_cgroup_sk_enabled(const struct sock *sk)
2660 {
2661 	return mem_cgroup_sockets_enabled && mem_cgroup_from_sk(sk);
2662 }
2663 
2664 static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk)
2665 {
2666 	struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
2667 
2668 #ifdef CONFIG_MEMCG_V1
2669 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2670 		return !!memcg->tcpmem_pressure;
2671 #endif /* CONFIG_MEMCG_V1 */
2672 
2673 	do {
2674 		if (time_before64(get_jiffies_64(),
2675 				  mem_cgroup_get_socket_pressure(memcg))) {
2676 			memcg_memory_event(mem_cgroup_from_sk(sk),
2677 					   MEMCG_SOCK_THROTTLED);
2678 			return true;
2679 		}
2680 	} while ((memcg = parent_mem_cgroup(memcg)));
2681 
2682 	return false;
2683 }
2684 #else
2685 static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk)
2686 {
2687 	return NULL;
2688 }
2689 
2690 static inline bool mem_cgroup_sk_enabled(const struct sock *sk)
2691 {
2692 	return false;
2693 }
2694 
2695 static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk)
2696 {
2697 	return false;
2698 }
2699 #endif
2700 
2701 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2702 {
2703 	return noblock ? 0 : READ_ONCE(sk->sk_rcvtimeo);
2704 }
2705 
2706 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2707 {
2708 	return noblock ? 0 : READ_ONCE(sk->sk_sndtimeo);
2709 }
2710 
2711 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2712 {
2713 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2714 
2715 	return v ?: 1;
2716 }
2717 
2718 /* Alas, with timeout socket operations are not restartable.
2719  * Compare this to poll().
2720  */
2721 static inline int sock_intr_errno(long timeo)
2722 {
2723 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2724 }
2725 
2726 struct sock_skb_cb {
2727 	u32 dropcount;
2728 };
2729 
2730 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2731  * using skb->cb[] would keep using it directly and utilize its
2732  * alignment guarantee.
2733  */
2734 #define SOCK_SKB_CB_OFFSET (sizeof_field(struct sk_buff, cb) - \
2735 			    sizeof(struct sock_skb_cb))
2736 
2737 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2738 			    SOCK_SKB_CB_OFFSET))
2739 
2740 #define sock_skb_cb_check_size(size) \
2741 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2742 
2743 static inline void sk_drops_add(struct sock *sk, int segs)
2744 {
2745 	struct numa_drop_counters *ndc = sk->sk_drop_counters;
2746 
2747 	if (ndc)
2748 		numa_drop_add(ndc, segs);
2749 	else
2750 		atomic_add(segs, &sk->sk_drops);
2751 }
2752 
2753 static inline void sk_drops_inc(struct sock *sk)
2754 {
2755 	sk_drops_add(sk, 1);
2756 }
2757 
2758 static inline int sk_drops_read(const struct sock *sk)
2759 {
2760 	const struct numa_drop_counters *ndc = sk->sk_drop_counters;
2761 
2762 	if (ndc) {
2763 		DEBUG_NET_WARN_ON_ONCE(atomic_read(&sk->sk_drops));
2764 		return numa_drop_read(ndc);
2765 	}
2766 	return atomic_read(&sk->sk_drops);
2767 }
2768 
2769 static inline void sk_drops_reset(struct sock *sk)
2770 {
2771 	struct numa_drop_counters *ndc = sk->sk_drop_counters;
2772 
2773 	if (ndc)
2774 		numa_drop_reset(ndc);
2775 	atomic_set(&sk->sk_drops, 0);
2776 }
2777 
2778 static inline void
2779 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2780 {
2781 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2782 						sk_drops_read(sk) : 0;
2783 }
2784 
2785 static inline void sk_drops_skbadd(struct sock *sk, const struct sk_buff *skb)
2786 {
2787 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2788 
2789 	sk_drops_add(sk, segs);
2790 }
2791 
2792 static inline ktime_t sock_read_timestamp(struct sock *sk)
2793 {
2794 #if BITS_PER_LONG==32
2795 	unsigned int seq;
2796 	ktime_t kt;
2797 
2798 	do {
2799 		seq = read_seqbegin(&sk->sk_stamp_seq);
2800 		kt = sk->sk_stamp;
2801 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2802 
2803 	return kt;
2804 #else
2805 	return READ_ONCE(sk->sk_stamp);
2806 #endif
2807 }
2808 
2809 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2810 {
2811 #if BITS_PER_LONG==32
2812 	write_seqlock(&sk->sk_stamp_seq);
2813 	sk->sk_stamp = kt;
2814 	write_sequnlock(&sk->sk_stamp_seq);
2815 #else
2816 	WRITE_ONCE(sk->sk_stamp, kt);
2817 #endif
2818 }
2819 
2820 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2821 			   struct sk_buff *skb);
2822 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2823 			     struct sk_buff *skb);
2824 
2825 bool skb_has_tx_timestamp(struct sk_buff *skb, const struct sock *sk);
2826 int skb_get_tx_timestamp(struct sk_buff *skb, struct sock *sk,
2827 			 struct timespec64 *ts);
2828 
2829 static inline void
2830 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2831 {
2832 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2833 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2834 	ktime_t kt = skb->tstamp;
2835 	/*
2836 	 * generate control messages if
2837 	 * - receive time stamping in software requested
2838 	 * - software time stamp available and wanted
2839 	 * - hardware time stamps available and wanted
2840 	 */
2841 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2842 	    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2843 	    (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2844 	    (hwtstamps->hwtstamp &&
2845 	     (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2846 		__sock_recv_timestamp(msg, sk, skb);
2847 	else
2848 		sock_write_timestamp(sk, kt);
2849 
2850 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb))
2851 		__sock_recv_wifi_status(msg, sk, skb);
2852 }
2853 
2854 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2855 		       struct sk_buff *skb);
2856 
2857 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2858 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2859 				   struct sk_buff *skb)
2860 {
2861 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL)			| \
2862 			   (1UL << SOCK_RCVTSTAMP)			| \
2863 			   (1UL << SOCK_RCVMARK)			| \
2864 			   (1UL << SOCK_RCVPRIORITY)			| \
2865 			   (1UL << SOCK_TIMESTAMPING_ANY))
2866 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2867 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2868 
2869 	if (READ_ONCE(sk->sk_flags) & FLAGS_RECV_CMSGS)
2870 		__sock_recv_cmsgs(msg, sk, skb);
2871 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2872 		sock_write_timestamp(sk, skb->tstamp);
2873 	else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2874 		sock_write_timestamp(sk, 0);
2875 }
2876 
2877 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags);
2878 
2879 /**
2880  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2881  * @sk:		socket sending this packet
2882  * @sockc:	pointer to socket cmsg cookie to get timestamping info
2883  * @tx_flags:	completed with instructions for time stamping
2884  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2885  *
2886  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2887  */
2888 static inline void _sock_tx_timestamp(struct sock *sk,
2889 				      const struct sockcm_cookie *sockc,
2890 				      __u8 *tx_flags, __u32 *tskey)
2891 {
2892 	__u32 tsflags = sockc->tsflags;
2893 
2894 	if (unlikely(tsflags)) {
2895 		__sock_tx_timestamp(tsflags, tx_flags);
2896 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2897 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) {
2898 			if (tsflags & SOCKCM_FLAG_TS_OPT_ID)
2899 				*tskey = sockc->ts_opt_id;
2900 			else
2901 				*tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2902 		}
2903 	}
2904 }
2905 
2906 static inline void sock_tx_timestamp(struct sock *sk,
2907 				     const struct sockcm_cookie *sockc,
2908 				     __u8 *tx_flags)
2909 {
2910 	_sock_tx_timestamp(sk, sockc, tx_flags, NULL);
2911 }
2912 
2913 static inline void skb_setup_tx_timestamp(struct sk_buff *skb,
2914 					  const struct sockcm_cookie *sockc)
2915 {
2916 	_sock_tx_timestamp(skb->sk, sockc, &skb_shinfo(skb)->tx_flags,
2917 			   &skb_shinfo(skb)->tskey);
2918 }
2919 
2920 static inline bool sk_is_inet(const struct sock *sk)
2921 {
2922 	int family = READ_ONCE(sk->sk_family);
2923 
2924 	return family == AF_INET || family == AF_INET6;
2925 }
2926 
2927 static inline bool sk_is_tcp(const struct sock *sk)
2928 {
2929 	return sk_is_inet(sk) &&
2930 	       sk->sk_type == SOCK_STREAM &&
2931 	       sk->sk_protocol == IPPROTO_TCP;
2932 }
2933 
2934 static inline bool sk_is_udp(const struct sock *sk)
2935 {
2936 	return sk_is_inet(sk) &&
2937 	       sk->sk_type == SOCK_DGRAM &&
2938 	       sk->sk_protocol == IPPROTO_UDP;
2939 }
2940 
2941 static inline bool sk_is_unix(const struct sock *sk)
2942 {
2943 	return sk->sk_family == AF_UNIX;
2944 }
2945 
2946 static inline bool sk_is_stream_unix(const struct sock *sk)
2947 {
2948 	return sk_is_unix(sk) && sk->sk_type == SOCK_STREAM;
2949 }
2950 
2951 static inline bool sk_is_vsock(const struct sock *sk)
2952 {
2953 	return sk->sk_family == AF_VSOCK;
2954 }
2955 
2956 static inline bool sk_may_scm_recv(const struct sock *sk)
2957 {
2958 	return (IS_ENABLED(CONFIG_UNIX) && sk->sk_family == AF_UNIX) ||
2959 		sk->sk_family == AF_NETLINK ||
2960 		(IS_ENABLED(CONFIG_BT) && sk->sk_family == AF_BLUETOOTH);
2961 }
2962 
2963 /**
2964  * sk_eat_skb - Release a skb if it is no longer needed
2965  * @sk: socket to eat this skb from
2966  * @skb: socket buffer to eat
2967  *
2968  * This routine must be called with interrupts disabled or with the socket
2969  * locked so that the sk_buff queue operation is ok.
2970 */
2971 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2972 {
2973 	__skb_unlink(skb, &sk->sk_receive_queue);
2974 	__kfree_skb(skb);
2975 }
2976 
2977 static inline bool
2978 skb_sk_is_prefetched(struct sk_buff *skb)
2979 {
2980 #ifdef CONFIG_INET
2981 	return skb->destructor == sock_pfree;
2982 #else
2983 	return false;
2984 #endif /* CONFIG_INET */
2985 }
2986 
2987 /* This helper checks if a socket is a full socket,
2988  * ie _not_ a timewait or request socket.
2989  */
2990 static inline bool sk_fullsock(const struct sock *sk)
2991 {
2992 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2993 }
2994 
2995 static inline bool
2996 sk_is_refcounted(struct sock *sk)
2997 {
2998 	/* Only full sockets have sk->sk_flags. */
2999 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
3000 }
3001 
3002 static inline bool
3003 sk_requests_wifi_status(struct sock *sk)
3004 {
3005 	return sk && sk_fullsock(sk) && sock_flag(sk, SOCK_WIFI_STATUS);
3006 }
3007 
3008 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
3009  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
3010  */
3011 static inline bool sk_listener(const struct sock *sk)
3012 {
3013 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
3014 }
3015 
3016 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV or TIME_WAIT
3017  * TCP SYNACK messages can be attached to LISTEN or NEW_SYN_RECV (depending on SYNCOOKIE)
3018  * TCP RST and ACK can be attached to TIME_WAIT.
3019  */
3020 static inline bool sk_listener_or_tw(const struct sock *sk)
3021 {
3022 	return (1 << READ_ONCE(sk->sk_state)) &
3023 	       (TCPF_LISTEN | TCPF_NEW_SYN_RECV | TCPF_TIME_WAIT);
3024 }
3025 
3026 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
3027 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
3028 		       int type);
3029 
3030 bool sk_ns_capable(const struct sock *sk,
3031 		   struct user_namespace *user_ns, int cap);
3032 bool sk_capable(const struct sock *sk, int cap);
3033 bool sk_net_capable(const struct sock *sk, int cap);
3034 
3035 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
3036 
3037 /* Take into consideration the size of the struct sk_buff overhead in the
3038  * determination of these values, since that is non-constant across
3039  * platforms.  This makes socket queueing behavior and performance
3040  * not depend upon such differences.
3041  */
3042 #define _SK_MEM_PACKETS		256
3043 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
3044 #define SK_WMEM_DEFAULT		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
3045 #define SK_RMEM_DEFAULT		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
3046 
3047 extern __u32 sysctl_wmem_max;
3048 extern __u32 sysctl_rmem_max;
3049 
3050 extern __u32 sysctl_wmem_default;
3051 extern __u32 sysctl_rmem_default;
3052 
3053 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
3054 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
3055 
3056 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
3057 {
3058 	/* Does this proto have per netns sysctl_wmem ? */
3059 	if (proto->sysctl_wmem_offset)
3060 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
3061 
3062 	return READ_ONCE(*proto->sysctl_wmem);
3063 }
3064 
3065 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
3066 {
3067 	/* Does this proto have per netns sysctl_rmem ? */
3068 	if (proto->sysctl_rmem_offset)
3069 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
3070 
3071 	return READ_ONCE(*proto->sysctl_rmem);
3072 }
3073 
3074 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
3075  * Some wifi drivers need to tweak it to get more chunks.
3076  * They can use this helper from their ndo_start_xmit()
3077  */
3078 static inline void sk_pacing_shift_update(struct sock *sk, int val)
3079 {
3080 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
3081 		return;
3082 	WRITE_ONCE(sk->sk_pacing_shift, val);
3083 }
3084 
3085 /* if a socket is bound to a device, check that the given device
3086  * index is either the same or that the socket is bound to an L3
3087  * master device and the given device index is also enslaved to
3088  * that L3 master
3089  */
3090 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
3091 {
3092 	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
3093 	int mdif;
3094 
3095 	if (!bound_dev_if || bound_dev_if == dif)
3096 		return true;
3097 
3098 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
3099 	if (mdif && mdif == bound_dev_if)
3100 		return true;
3101 
3102 	return false;
3103 }
3104 
3105 void sock_def_readable(struct sock *sk);
3106 
3107 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
3108 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
3109 int sock_set_timestamping(struct sock *sk, int optname,
3110 			  struct so_timestamping timestamping);
3111 
3112 #if defined(CONFIG_CGROUP_BPF)
3113 void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op);
3114 #else
3115 static inline void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op)
3116 {
3117 }
3118 #endif
3119 void sock_no_linger(struct sock *sk);
3120 void sock_set_keepalive(struct sock *sk);
3121 void sock_set_priority(struct sock *sk, u32 priority);
3122 void sock_set_rcvbuf(struct sock *sk, int val);
3123 void sock_set_mark(struct sock *sk, u32 val);
3124 void sock_set_reuseaddr(struct sock *sk);
3125 void sock_set_reuseport(struct sock *sk);
3126 void sock_set_sndtimeo(struct sock *sk, s64 secs);
3127 
3128 int sock_bind_add(struct sock *sk, struct sockaddr_unsized *addr, int addr_len);
3129 
3130 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
3131 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
3132 			   sockptr_t optval, int optlen, bool old_timeval);
3133 
3134 int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
3135 		     void __user *arg, void *karg, size_t size);
3136 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg);
3137 static inline bool sk_is_readable(struct sock *sk)
3138 {
3139 	const struct proto *prot = READ_ONCE(sk->sk_prot);
3140 
3141 	if (prot->sock_is_readable)
3142 		return prot->sock_is_readable(sk);
3143 
3144 	return false;
3145 }
3146 #endif	/* _SOCK_H */
3147