xref: /linux/drivers/gpu/drm/bridge/ti-sn65dsi86.c (revision 6dfafbd0299a60bfb5d5e277fdf100037c7ded07)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4  * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
5  */
6 
7 #include <linux/atomic.h>
8 #include <linux/auxiliary_bus.h>
9 #include <linux/bitfield.h>
10 #include <linux/bits.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/gpio/driver.h>
15 #include <linux/i2c.h>
16 #include <linux/iopoll.h>
17 #include <linux/module.h>
18 #include <linux/of_graph.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/pwm.h>
21 #include <linux/regmap.h>
22 #include <linux/regulator/consumer.h>
23 
24 #include <linux/unaligned.h>
25 
26 #include <drm/display/drm_dp_aux_bus.h>
27 #include <drm/display/drm_dp_helper.h>
28 #include <drm/drm_atomic.h>
29 #include <drm/drm_atomic_helper.h>
30 #include <drm/drm_bridge.h>
31 #include <drm/drm_bridge_connector.h>
32 #include <drm/drm_edid.h>
33 #include <drm/drm_mipi_dsi.h>
34 #include <drm/drm_of.h>
35 #include <drm/drm_print.h>
36 #include <drm/drm_probe_helper.h>
37 
38 #define SN_DEVICE_ID_REGS			0x00	/* up to 0x07 */
39 #define SN_DEVICE_REV_REG			0x08
40 #define SN_DPPLL_SRC_REG			0x0A
41 #define  DPPLL_CLK_SRC_DSICLK			BIT(0)
42 #define  REFCLK_FREQ_MASK			GENMASK(3, 1)
43 #define  REFCLK_FREQ(x)				((x) << 1)
44 #define  DPPLL_SRC_DP_PLL_LOCK			BIT(7)
45 #define SN_PLL_ENABLE_REG			0x0D
46 #define SN_DSI_LANES_REG			0x10
47 #define  CHA_DSI_LANES_MASK			GENMASK(4, 3)
48 #define  CHA_DSI_LANES(x)			((x) << 3)
49 #define SN_DSIA_CLK_FREQ_REG			0x12
50 #define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG	0x20
51 #define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG	0x24
52 #define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG	0x2C
53 #define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG	0x2D
54 #define  CHA_HSYNC_POLARITY			BIT(7)
55 #define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG	0x30
56 #define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG	0x31
57 #define  CHA_VSYNC_POLARITY			BIT(7)
58 #define SN_CHA_HORIZONTAL_BACK_PORCH_REG	0x34
59 #define SN_CHA_VERTICAL_BACK_PORCH_REG		0x36
60 #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG	0x38
61 #define SN_CHA_VERTICAL_FRONT_PORCH_REG		0x3A
62 #define SN_LN_ASSIGN_REG			0x59
63 #define  LN_ASSIGN_WIDTH			2
64 #define SN_ENH_FRAME_REG			0x5A
65 #define  VSTREAM_ENABLE				BIT(3)
66 #define  LN_POLRS_OFFSET			4
67 #define  LN_POLRS_MASK				0xf0
68 #define SN_DATA_FORMAT_REG			0x5B
69 #define  BPP_18_RGB				BIT(0)
70 #define SN_HPD_DISABLE_REG			0x5C
71 #define  HPD_DISABLE				BIT(0)
72 #define  HPD_DEBOUNCED_STATE			BIT(4)
73 #define SN_GPIO_IO_REG				0x5E
74 #define  SN_GPIO_INPUT_SHIFT			4
75 #define  SN_GPIO_OUTPUT_SHIFT			0
76 #define SN_GPIO_CTRL_REG			0x5F
77 #define  SN_GPIO_MUX_INPUT			0
78 #define  SN_GPIO_MUX_OUTPUT			1
79 #define  SN_GPIO_MUX_SPECIAL			2
80 #define  SN_GPIO_MUX_MASK			0x3
81 #define SN_AUX_WDATA_REG(x)			(0x64 + (x))
82 #define SN_AUX_ADDR_19_16_REG			0x74
83 #define SN_AUX_ADDR_15_8_REG			0x75
84 #define SN_AUX_ADDR_7_0_REG			0x76
85 #define SN_AUX_ADDR_MASK			GENMASK(19, 0)
86 #define SN_AUX_LENGTH_REG			0x77
87 #define SN_AUX_CMD_REG				0x78
88 #define  AUX_CMD_SEND				BIT(0)
89 #define  AUX_CMD_REQ(x)				((x) << 4)
90 #define SN_AUX_RDATA_REG(x)			(0x79 + (x))
91 #define SN_SSC_CONFIG_REG			0x93
92 #define  DP_NUM_LANES_MASK			GENMASK(5, 4)
93 #define  DP_NUM_LANES(x)			((x) << 4)
94 #define SN_DATARATE_CONFIG_REG			0x94
95 #define  DP_DATARATE_MASK			GENMASK(7, 5)
96 #define  DP_DATARATE(x)				((x) << 5)
97 #define SN_TRAINING_SETTING_REG			0x95
98 #define  SCRAMBLE_DISABLE			BIT(4)
99 #define SN_ML_TX_MODE_REG			0x96
100 #define  ML_TX_MAIN_LINK_OFF			0
101 #define  ML_TX_NORMAL_MODE			BIT(0)
102 #define SN_PWM_PRE_DIV_REG			0xA0
103 #define SN_BACKLIGHT_SCALE_REG			0xA1
104 #define  BACKLIGHT_SCALE_MAX			0xFFFF
105 #define SN_BACKLIGHT_REG			0xA3
106 #define SN_PWM_EN_INV_REG			0xA5
107 #define  SN_PWM_INV_MASK			BIT(0)
108 #define  SN_PWM_EN_MASK				BIT(1)
109 
110 #define SN_IRQ_EN_REG				0xE0
111 #define  IRQ_EN					BIT(0)
112 
113 #define SN_IRQ_EVENTS_EN_REG			0xE6
114 #define  HPD_INSERTION_EN			BIT(1)
115 #define  HPD_REMOVAL_EN				BIT(2)
116 
117 #define SN_AUX_CMD_STATUS_REG			0xF4
118 #define  AUX_IRQ_STATUS_AUX_RPLY_TOUT		BIT(3)
119 #define  AUX_IRQ_STATUS_AUX_SHORT		BIT(5)
120 #define  AUX_IRQ_STATUS_NAT_I2C_FAIL		BIT(6)
121 #define SN_IRQ_STATUS_REG			0xF5
122 #define  HPD_REMOVAL_STATUS			BIT(2)
123 #define  HPD_INSERTION_STATUS			BIT(1)
124 
125 #define MIN_DSI_CLK_FREQ_MHZ	40
126 
127 /* fudge factor required to account for 8b/10b encoding */
128 #define DP_CLK_FUDGE_NUM	10
129 #define DP_CLK_FUDGE_DEN	8
130 
131 /* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
132 #define SN_AUX_MAX_PAYLOAD_BYTES	16
133 
134 #define SN_REGULATOR_SUPPLY_NUM		4
135 
136 #define SN_MAX_DP_LANES			4
137 #define SN_NUM_GPIOS			4
138 #define SN_GPIO_PHYSICAL_OFFSET		1
139 
140 #define SN_LINK_TRAINING_TRIES		10
141 
142 #define SN_PWM_GPIO_IDX			3 /* 4th GPIO */
143 
144 /**
145  * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver.
146  * @bridge_aux:   AUX-bus sub device for MIPI-to-eDP bridge functionality.
147  * @gpio_aux:     AUX-bus sub device for GPIO controller functionality.
148  * @aux_aux:      AUX-bus sub device for eDP AUX channel functionality.
149  * @pwm_aux:      AUX-bus sub device for PWM controller functionality.
150  *
151  * @dev:          Pointer to the top level (i2c) device.
152  * @regmap:       Regmap for accessing i2c.
153  * @aux:          Our aux channel.
154  * @bridge:       Our bridge.
155  * @connector:    Our connector.
156  * @host_node:    Remote DSI node.
157  * @dsi:          Our MIPI DSI source.
158  * @refclk:       Our reference clock.
159  * @next_bridge:  The bridge on the eDP side.
160  * @enable_gpio:  The GPIO we toggle to enable the bridge.
161  * @supplies:     Data for bulk enabling/disabling our regulators.
162  * @dp_lanes:     Count of dp_lanes we're using.
163  * @ln_assign:    Value to program to the LN_ASSIGN register.
164  * @ln_polrs:     Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
165  * @comms_enabled: If true then communication over the aux channel is enabled.
166  * @hpd_enabled:   If true then HPD events are enabled.
167  * @comms_mutex:   Protects modification of comms_enabled.
168  * @hpd_mutex:     Protects modification of hpd_enabled.
169  *
170  * @gchip:        If we expose our GPIOs, this is used.
171  * @gchip_output: A cache of whether we've set GPIOs to output.  This
172  *                serves double-duty of keeping track of the direction and
173  *                also keeping track of whether we've incremented the
174  *                pm_runtime reference count for this pin, which we do
175  *                whenever a pin is configured as an output.  This is a
176  *                bitmap so we can do atomic ops on it without an extra
177  *                lock so concurrent users of our 4 GPIOs don't stomp on
178  *                each other's read-modify-write.
179  *
180  * @pchip:        pwm_chip if the PWM is exposed.
181  * @pwm_enabled:  Used to track if the PWM signal is currently enabled.
182  * @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM.
183  * @pwm_refclk_freq: Cache for the reference clock input to the PWM.
184  */
185 struct ti_sn65dsi86 {
186 	struct auxiliary_device		*bridge_aux;
187 	struct auxiliary_device		*gpio_aux;
188 	struct auxiliary_device		*aux_aux;
189 	struct auxiliary_device		*pwm_aux;
190 
191 	struct device			*dev;
192 	struct regmap			*regmap;
193 	struct drm_dp_aux		aux;
194 	struct drm_bridge		bridge;
195 	struct drm_connector		*connector;
196 	struct device_node		*host_node;
197 	struct mipi_dsi_device		*dsi;
198 	struct clk			*refclk;
199 	struct drm_bridge		*next_bridge;
200 	struct gpio_desc		*enable_gpio;
201 	struct regulator_bulk_data	supplies[SN_REGULATOR_SUPPLY_NUM];
202 	int				dp_lanes;
203 	u8				ln_assign;
204 	u8				ln_polrs;
205 	bool				comms_enabled;
206 	bool				hpd_enabled;
207 	struct mutex			comms_mutex;
208 	struct mutex			hpd_mutex;
209 
210 #if defined(CONFIG_OF_GPIO)
211 	struct gpio_chip		gchip;
212 	DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
213 #endif
214 #if IS_REACHABLE(CONFIG_PWM)
215 	struct pwm_chip			*pchip;
216 	bool				pwm_enabled;
217 	atomic_t			pwm_pin_busy;
218 #endif
219 	unsigned int			pwm_refclk_freq;
220 };
221 
222 static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = {
223 	{ .range_min = 0, .range_max = 0xFF },
224 };
225 
226 static const struct regmap_access_table ti_sn_bridge_volatile_table = {
227 	.yes_ranges = ti_sn65dsi86_volatile_ranges,
228 	.n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges),
229 };
230 
231 static const struct regmap_config ti_sn65dsi86_regmap_config = {
232 	.reg_bits = 8,
233 	.val_bits = 8,
234 	.volatile_table = &ti_sn_bridge_volatile_table,
235 	.cache_type = REGCACHE_NONE,
236 	.max_register = 0xFF,
237 };
238 
239 static int ti_sn65dsi86_read_u8(struct ti_sn65dsi86 *pdata, unsigned int reg,
240 				u8 *val)
241 {
242 	int ret;
243 	unsigned int reg_val;
244 
245 	ret = regmap_read(pdata->regmap, reg, &reg_val);
246 	if (ret) {
247 		dev_err(pdata->dev, "fail to read raw reg %#x: %d\n",
248 			reg, ret);
249 		return ret;
250 	}
251 	*val = (u8)reg_val;
252 
253 	return 0;
254 }
255 
256 static int __maybe_unused ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata,
257 						unsigned int reg, u16 *val)
258 {
259 	u8 buf[2];
260 	int ret;
261 
262 	ret = regmap_bulk_read(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
263 	if (ret)
264 		return ret;
265 
266 	*val = buf[0] | (buf[1] << 8);
267 
268 	return 0;
269 }
270 
271 static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata,
272 				   unsigned int reg, u16 val)
273 {
274 	u8 buf[2] = { val & 0xff, val >> 8 };
275 
276 	regmap_bulk_write(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
277 }
278 
279 static struct drm_display_mode *
280 get_new_adjusted_display_mode(struct drm_bridge *bridge,
281 			      struct drm_atomic_state *state)
282 {
283 	struct drm_connector *connector =
284 		drm_atomic_get_new_connector_for_encoder(state, bridge->encoder);
285 	struct drm_connector_state *conn_state =
286 		drm_atomic_get_new_connector_state(state, connector);
287 	struct drm_crtc_state *crtc_state =
288 		drm_atomic_get_new_crtc_state(state, conn_state->crtc);
289 
290 	return &crtc_state->adjusted_mode;
291 }
292 
293 static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata,
294 				     struct drm_atomic_state *state)
295 {
296 	u32 bit_rate_khz, clk_freq_khz;
297 	struct drm_display_mode *mode =
298 		get_new_adjusted_display_mode(&pdata->bridge, state);
299 
300 	bit_rate_khz = mode->clock *
301 			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
302 	clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
303 
304 	return clk_freq_khz;
305 }
306 
307 /* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
308 static const u32 ti_sn_bridge_refclk_lut[] = {
309 	12000000,
310 	19200000,
311 	26000000,
312 	27000000,
313 	38400000,
314 };
315 
316 /* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
317 static const u32 ti_sn_bridge_dsiclk_lut[] = {
318 	468000000,
319 	384000000,
320 	416000000,
321 	486000000,
322 	460800000,
323 };
324 
325 static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata,
326 					 struct drm_atomic_state *state)
327 {
328 	int i;
329 	u32 refclk_rate;
330 	const u32 *refclk_lut;
331 	size_t refclk_lut_size;
332 
333 	if (pdata->refclk) {
334 		refclk_rate = clk_get_rate(pdata->refclk);
335 		refclk_lut = ti_sn_bridge_refclk_lut;
336 		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
337 		clk_prepare_enable(pdata->refclk);
338 	} else {
339 		refclk_rate = ti_sn_bridge_get_dsi_freq(pdata, state) * 1000;
340 		refclk_lut = ti_sn_bridge_dsiclk_lut;
341 		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
342 	}
343 
344 	/* for i equals to refclk_lut_size means default frequency */
345 	for (i = 0; i < refclk_lut_size; i++)
346 		if (refclk_lut[i] == refclk_rate)
347 			break;
348 
349 	/* avoid buffer overflow and "1" is the default rate in the datasheet. */
350 	if (i >= refclk_lut_size)
351 		i = 1;
352 
353 	regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
354 			   REFCLK_FREQ(i));
355 
356 	/*
357 	 * The PWM refclk is based on the value written to SN_DPPLL_SRC_REG,
358 	 * regardless of its actual sourcing.
359 	 */
360 	pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i];
361 }
362 
363 static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata,
364 				      struct drm_atomic_state *state)
365 {
366 	mutex_lock(&pdata->comms_mutex);
367 
368 	/* configure bridge ref_clk */
369 	ti_sn_bridge_set_refclk_freq(pdata, state);
370 
371 	/*
372 	 * HPD on this bridge chip is a bit useless.  This is an eDP bridge
373 	 * so the HPD is an internal signal that's only there to signal that
374 	 * the panel is done powering up.  ...but the bridge chip debounces
375 	 * this signal by between 100 ms and 400 ms (depending on process,
376 	 * voltage, and temperate--I measured it at about 200 ms).  One
377 	 * particular panel asserted HPD 84 ms after it was powered on meaning
378 	 * that we saw HPD 284 ms after power on.  ...but the same panel said
379 	 * that instead of looking at HPD you could just hardcode a delay of
380 	 * 200 ms.  We'll assume that the panel driver will have the hardcoded
381 	 * delay in its prepare and always disable HPD.
382 	 *
383 	 * For DisplayPort bridge type, we need HPD. So we use the bridge type
384 	 * to conditionally disable HPD.
385 	 * NOTE: The bridge type is set in ti_sn_bridge_probe() but enable_comms()
386 	 * can be called before. So for DisplayPort, HPD will be enabled once
387 	 * bridge type is set. We are using bridge type instead of "no-hpd"
388 	 * property because it is not used properly in devicetree description
389 	 * and hence is unreliable.
390 	 */
391 
392 	if (pdata->bridge.type != DRM_MODE_CONNECTOR_DisplayPort)
393 		regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
394 				   HPD_DISABLE);
395 
396 	pdata->comms_enabled = true;
397 
398 	mutex_unlock(&pdata->comms_mutex);
399 }
400 
401 static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata)
402 {
403 	mutex_lock(&pdata->comms_mutex);
404 
405 	pdata->comms_enabled = false;
406 	clk_disable_unprepare(pdata->refclk);
407 
408 	mutex_unlock(&pdata->comms_mutex);
409 }
410 
411 static int __maybe_unused ti_sn65dsi86_resume(struct device *dev)
412 {
413 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
414 	const struct i2c_client *client = to_i2c_client(pdata->dev);
415 	int ret;
416 
417 	ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
418 	if (ret) {
419 		DRM_ERROR("failed to enable supplies %d\n", ret);
420 		return ret;
421 	}
422 
423 	/* td2: min 100 us after regulators before enabling the GPIO */
424 	usleep_range(100, 110);
425 
426 	gpiod_set_value_cansleep(pdata->enable_gpio, 1);
427 
428 	/*
429 	 * After EN is deasserted and an external clock is detected, the bridge
430 	 * will sample GPIO3:1 to determine its frequency. The driver will
431 	 * overwrite this setting in ti_sn_bridge_set_refclk_freq(). But this is
432 	 * racy. Thus we have to wait a couple of us. According to the datasheet
433 	 * the GPIO lines has to be stable at least 5 us (td5) but it seems that
434 	 * is not enough and the refclk frequency value is still lost or
435 	 * overwritten by the bridge itself. Waiting for 20us seems to work.
436 	 */
437 	usleep_range(20, 30);
438 
439 	/*
440 	 * If we have a reference clock we can enable communication w/ the
441 	 * panel (including the aux channel) w/out any need for an input clock
442 	 * so we can do it in resume which lets us read the EDID before
443 	 * pre_enable(). Without a reference clock we need the MIPI reference
444 	 * clock so reading early doesn't work.
445 	 */
446 	if (pdata->refclk)
447 		ti_sn65dsi86_enable_comms(pdata, NULL);
448 
449 	if (client->irq) {
450 		ret = regmap_update_bits(pdata->regmap, SN_IRQ_EN_REG, IRQ_EN,
451 					 IRQ_EN);
452 		if (ret)
453 			dev_err(pdata->dev, "Failed to enable IRQ events: %d\n", ret);
454 	}
455 
456 	return ret;
457 }
458 
459 static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev)
460 {
461 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
462 	int ret;
463 
464 	if (pdata->refclk)
465 		ti_sn65dsi86_disable_comms(pdata);
466 
467 	gpiod_set_value_cansleep(pdata->enable_gpio, 0);
468 
469 	ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
470 	if (ret)
471 		DRM_ERROR("failed to disable supplies %d\n", ret);
472 
473 	return ret;
474 }
475 
476 static const struct dev_pm_ops ti_sn65dsi86_pm_ops = {
477 	SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL)
478 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
479 				pm_runtime_force_resume)
480 };
481 
482 static int status_show(struct seq_file *s, void *data)
483 {
484 	struct ti_sn65dsi86 *pdata = s->private;
485 	unsigned int reg, val;
486 
487 	seq_puts(s, "STATUS REGISTERS:\n");
488 
489 	pm_runtime_get_sync(pdata->dev);
490 
491 	/* IRQ Status Registers, see Table 31 in datasheet */
492 	for (reg = 0xf0; reg <= 0xf8; reg++) {
493 		regmap_read(pdata->regmap, reg, &val);
494 		seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
495 	}
496 
497 	pm_runtime_put_autosuspend(pdata->dev);
498 
499 	return 0;
500 }
501 DEFINE_SHOW_ATTRIBUTE(status);
502 
503 /* -----------------------------------------------------------------------------
504  * Auxiliary Devices (*not* AUX)
505  */
506 
507 static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata,
508 				       struct auxiliary_device **aux_out,
509 				       const char *name)
510 {
511 	struct device *dev = pdata->dev;
512 	const struct i2c_client *client = to_i2c_client(dev);
513 	struct auxiliary_device *aux;
514 	int id;
515 
516 	id = (client->adapter->nr << 10) | client->addr;
517 	aux = __devm_auxiliary_device_create(dev, KBUILD_MODNAME, name,
518 					     NULL, id);
519 	if (!aux)
520 		return -ENODEV;
521 
522 	*aux_out = aux;
523 	return 0;
524 }
525 
526 /* -----------------------------------------------------------------------------
527  * AUX Adapter
528  */
529 
530 static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux)
531 {
532 	return container_of(aux, struct ti_sn65dsi86, aux);
533 }
534 
535 static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
536 				  struct drm_dp_aux_msg *msg)
537 {
538 	struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux);
539 	u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE);
540 	u32 request_val = AUX_CMD_REQ(msg->request);
541 	u8 *buf = msg->buffer;
542 	unsigned int len = msg->size;
543 	unsigned int short_len;
544 	unsigned int val;
545 	int ret;
546 	u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG];
547 
548 	if (len > SN_AUX_MAX_PAYLOAD_BYTES)
549 		return -EINVAL;
550 
551 	pm_runtime_get_sync(pdata->dev);
552 	mutex_lock(&pdata->comms_mutex);
553 
554 	/*
555 	 * If someone tries to do a DDC over AUX transaction before pre_enable()
556 	 * on a device without a dedicated reference clock then we just can't
557 	 * do it. Fail right away. This prevents non-refclk users from reading
558 	 * the EDID before enabling the panel but such is life.
559 	 */
560 	if (!pdata->comms_enabled) {
561 		ret = -EIO;
562 		goto exit;
563 	}
564 
565 	switch (request) {
566 	case DP_AUX_NATIVE_WRITE:
567 	case DP_AUX_I2C_WRITE:
568 	case DP_AUX_NATIVE_READ:
569 	case DP_AUX_I2C_READ:
570 		regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
571 		/* Assume it's good */
572 		msg->reply = 0;
573 		break;
574 	default:
575 		ret = -EINVAL;
576 		goto exit;
577 	}
578 
579 	BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32));
580 	put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len,
581 			   addr_len);
582 	regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len,
583 			  ARRAY_SIZE(addr_len));
584 
585 	if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
586 		regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len);
587 
588 	/* Clear old status bits before start so we don't get confused */
589 	regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
590 		     AUX_IRQ_STATUS_NAT_I2C_FAIL |
591 		     AUX_IRQ_STATUS_AUX_RPLY_TOUT |
592 		     AUX_IRQ_STATUS_AUX_SHORT);
593 
594 	regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
595 
596 	/* Zero delay loop because i2c transactions are slow already */
597 	ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
598 				       !(val & AUX_CMD_SEND), 0, 50 * 1000);
599 	if (ret)
600 		goto exit;
601 
602 	ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
603 	if (ret)
604 		goto exit;
605 
606 	if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) {
607 		/*
608 		 * The hardware tried the message seven times per the DP spec
609 		 * but it hit a timeout. We ignore defers here because they're
610 		 * handled in hardware.
611 		 */
612 		ret = -ETIMEDOUT;
613 		goto exit;
614 	}
615 
616 	if (val & AUX_IRQ_STATUS_AUX_SHORT) {
617 		ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &short_len);
618 		len = min(len, short_len);
619 		if (ret)
620 			goto exit;
621 	} else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) {
622 		switch (request) {
623 		case DP_AUX_I2C_WRITE:
624 		case DP_AUX_I2C_READ:
625 			msg->reply |= DP_AUX_I2C_REPLY_NACK;
626 			break;
627 		case DP_AUX_NATIVE_READ:
628 		case DP_AUX_NATIVE_WRITE:
629 			msg->reply |= DP_AUX_NATIVE_REPLY_NACK;
630 			break;
631 		}
632 		len = 0;
633 		goto exit;
634 	}
635 
636 	if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0)
637 		ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len);
638 
639 exit:
640 	mutex_unlock(&pdata->comms_mutex);
641 	pm_runtime_mark_last_busy(pdata->dev);
642 	pm_runtime_put_autosuspend(pdata->dev);
643 
644 	if (ret)
645 		return ret;
646 	return len;
647 }
648 
649 static int ti_sn_aux_wait_hpd_asserted(struct drm_dp_aux *aux, unsigned long wait_us)
650 {
651 	/*
652 	 * The HPD in this chip is a bit useless (See comment in
653 	 * ti_sn65dsi86_enable_comms) so if our driver is expected to wait
654 	 * for HPD, we just assume it's asserted after the wait_us delay.
655 	 *
656 	 * In case we are asked to wait forever (wait_us=0) take conservative
657 	 * 500ms delay.
658 	 */
659 	if (wait_us == 0)
660 		wait_us = 500000;
661 
662 	usleep_range(wait_us, wait_us + 1000);
663 
664 	return 0;
665 }
666 
667 static int ti_sn_aux_probe(struct auxiliary_device *adev,
668 			   const struct auxiliary_device_id *id)
669 {
670 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
671 	int ret;
672 
673 	pdata->aux.name = "ti-sn65dsi86-aux";
674 	pdata->aux.dev = &adev->dev;
675 	pdata->aux.transfer = ti_sn_aux_transfer;
676 	pdata->aux.wait_hpd_asserted = ti_sn_aux_wait_hpd_asserted;
677 	drm_dp_aux_init(&pdata->aux);
678 
679 	ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux);
680 	if (ret)
681 		return ret;
682 
683 	/*
684 	 * The eDP to MIPI bridge parts don't work until the AUX channel is
685 	 * setup so we don't add it in the main driver probe, we add it now.
686 	 */
687 	return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge");
688 }
689 
690 static const struct auxiliary_device_id ti_sn_aux_id_table[] = {
691 	{ .name = "ti_sn65dsi86.aux", },
692 	{},
693 };
694 
695 static struct auxiliary_driver ti_sn_aux_driver = {
696 	.name = "aux",
697 	.probe = ti_sn_aux_probe,
698 	.id_table = ti_sn_aux_id_table,
699 };
700 
701 /*------------------------------------------------------------------------------
702  * DRM Bridge
703  */
704 
705 static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge)
706 {
707 	return container_of(bridge, struct ti_sn65dsi86, bridge);
708 }
709 
710 static int ti_sn_attach_host(struct auxiliary_device *adev, struct ti_sn65dsi86 *pdata)
711 {
712 	int val;
713 	struct mipi_dsi_host *host;
714 	struct mipi_dsi_device *dsi;
715 	struct device *dev = pdata->dev;
716 	const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
717 						   .channel = 0,
718 						   .node = NULL,
719 	};
720 
721 	host = of_find_mipi_dsi_host_by_node(pdata->host_node);
722 	if (!host)
723 		return -EPROBE_DEFER;
724 
725 	dsi = devm_mipi_dsi_device_register_full(&adev->dev, host, &info);
726 	if (IS_ERR(dsi))
727 		return PTR_ERR(dsi);
728 
729 	/* TODO: setting to 4 MIPI lanes always for now */
730 	dsi->lanes = 4;
731 	dsi->format = MIPI_DSI_FMT_RGB888;
732 	dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
733 
734 	/* check if continuous dsi clock is required or not */
735 	pm_runtime_get_sync(dev);
736 	regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
737 	pm_runtime_put_autosuspend(dev);
738 	if (!(val & DPPLL_CLK_SRC_DSICLK))
739 		dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
740 
741 	pdata->dsi = dsi;
742 
743 	return devm_mipi_dsi_attach(&adev->dev, dsi);
744 }
745 
746 static int ti_sn_bridge_attach(struct drm_bridge *bridge,
747 			       struct drm_encoder *encoder,
748 			       enum drm_bridge_attach_flags flags)
749 {
750 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
751 	int ret;
752 
753 	pdata->aux.drm_dev = bridge->dev;
754 	ret = drm_dp_aux_register(&pdata->aux);
755 	if (ret < 0) {
756 		drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret);
757 		return ret;
758 	}
759 
760 	/*
761 	 * Attach the next bridge.
762 	 * We never want the next bridge to *also* create a connector.
763 	 */
764 	ret = drm_bridge_attach(encoder, pdata->next_bridge,
765 				&pdata->bridge, flags | DRM_BRIDGE_ATTACH_NO_CONNECTOR);
766 	if (ret < 0)
767 		goto err_initted_aux;
768 
769 	if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
770 		return 0;
771 
772 	pdata->connector = drm_bridge_connector_init(pdata->bridge.dev,
773 						     pdata->bridge.encoder);
774 	if (IS_ERR(pdata->connector)) {
775 		ret = PTR_ERR(pdata->connector);
776 		goto err_initted_aux;
777 	}
778 
779 	drm_connector_attach_encoder(pdata->connector, pdata->bridge.encoder);
780 
781 	return 0;
782 
783 err_initted_aux:
784 	drm_dp_aux_unregister(&pdata->aux);
785 	return ret;
786 }
787 
788 static void ti_sn_bridge_detach(struct drm_bridge *bridge)
789 {
790 	drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux);
791 }
792 
793 static enum drm_mode_status
794 ti_sn_bridge_mode_valid(struct drm_bridge *bridge,
795 			const struct drm_display_info *info,
796 			const struct drm_display_mode *mode)
797 {
798 	/* maximum supported resolution is 4K at 60 fps */
799 	if (mode->clock > 594000)
800 		return MODE_CLOCK_HIGH;
801 
802 	/*
803 	 * The front and back porch registers are 8 bits, and pulse width
804 	 * registers are 15 bits, so reject any modes with larger periods.
805 	 */
806 
807 	if ((mode->hsync_start - mode->hdisplay) > 0xff)
808 		return MODE_HBLANK_WIDE;
809 
810 	if ((mode->vsync_start - mode->vdisplay) > 0xff)
811 		return MODE_VBLANK_WIDE;
812 
813 	if ((mode->hsync_end - mode->hsync_start) > 0x7fff)
814 		return MODE_HSYNC_WIDE;
815 
816 	if ((mode->vsync_end - mode->vsync_start) > 0x7fff)
817 		return MODE_VSYNC_WIDE;
818 
819 	if ((mode->htotal - mode->hsync_end) > 0xff)
820 		return MODE_HBLANK_WIDE;
821 
822 	if ((mode->vtotal - mode->vsync_end) > 0xff)
823 		return MODE_VBLANK_WIDE;
824 
825 	return MODE_OK;
826 }
827 
828 static void ti_sn_bridge_atomic_disable(struct drm_bridge *bridge,
829 					struct drm_atomic_state *state)
830 {
831 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
832 
833 	/* disable video stream */
834 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
835 }
836 
837 static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata,
838 				      struct drm_atomic_state *state)
839 {
840 	unsigned int bit_rate_mhz, clk_freq_mhz;
841 	unsigned int val;
842 	struct drm_display_mode *mode =
843 		get_new_adjusted_display_mode(&pdata->bridge, state);
844 
845 	/* set DSIA clk frequency */
846 	bit_rate_mhz = (mode->clock / 1000) *
847 			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
848 	clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
849 
850 	/* for each increment in val, frequency increases by 5MHz */
851 	val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
852 		(((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
853 	regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
854 }
855 
856 static unsigned int ti_sn_bridge_get_bpp(struct drm_connector *connector)
857 {
858 	if (connector->display_info.bpc <= 6)
859 		return 18;
860 	else
861 		return 24;
862 }
863 
864 /*
865  * LUT index corresponds to register value and
866  * LUT values corresponds to dp data rate supported
867  * by the bridge in Mbps unit.
868  */
869 static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
870 	0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
871 };
872 
873 static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata,
874 					     struct drm_atomic_state *state,
875 					     unsigned int bpp)
876 {
877 	unsigned int bit_rate_khz, dp_rate_mhz;
878 	unsigned int i;
879 	struct drm_display_mode *mode =
880 		get_new_adjusted_display_mode(&pdata->bridge, state);
881 
882 	/* Calculate minimum bit rate based on our pixel clock. */
883 	bit_rate_khz = mode->clock * bpp;
884 
885 	/* Calculate minimum DP data rate, taking 80% as per DP spec */
886 	dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
887 				   1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
888 
889 	for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
890 		if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
891 			break;
892 
893 	return i;
894 }
895 
896 static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata)
897 {
898 	unsigned int valid_rates = 0;
899 	unsigned int rate_per_200khz;
900 	unsigned int rate_mhz;
901 	u8 dpcd_val;
902 	int ret;
903 	int i, j;
904 
905 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
906 	if (ret != 1) {
907 		DRM_DEV_ERROR(pdata->dev,
908 			      "Can't read eDP rev (%d), assuming 1.1\n", ret);
909 		dpcd_val = DP_EDP_11;
910 	}
911 
912 	if (dpcd_val >= DP_EDP_14) {
913 		/* eDP 1.4 devices must provide a custom table */
914 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
915 
916 		ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
917 				       sink_rates, sizeof(sink_rates));
918 
919 		if (ret != sizeof(sink_rates)) {
920 			DRM_DEV_ERROR(pdata->dev,
921 				"Can't read supported rate table (%d)\n", ret);
922 
923 			/* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
924 			memset(sink_rates, 0, sizeof(sink_rates));
925 		}
926 
927 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
928 			rate_per_200khz = le16_to_cpu(sink_rates[i]);
929 
930 			if (!rate_per_200khz)
931 				break;
932 
933 			rate_mhz = rate_per_200khz * 200 / 1000;
934 			for (j = 0;
935 			     j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
936 			     j++) {
937 				if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
938 					valid_rates |= BIT(j);
939 			}
940 		}
941 
942 		for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
943 			if (valid_rates & BIT(i))
944 				return valid_rates;
945 		}
946 		DRM_DEV_ERROR(pdata->dev,
947 			      "No matching eDP rates in table; falling back\n");
948 	}
949 
950 	/* On older versions best we can do is use DP_MAX_LINK_RATE */
951 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
952 	if (ret != 1) {
953 		DRM_DEV_ERROR(pdata->dev,
954 			      "Can't read max rate (%d); assuming 5.4 GHz\n",
955 			      ret);
956 		dpcd_val = DP_LINK_BW_5_4;
957 	}
958 
959 	switch (dpcd_val) {
960 	default:
961 		DRM_DEV_ERROR(pdata->dev,
962 			      "Unexpected max rate (%#x); assuming 5.4 GHz\n",
963 			      (int)dpcd_val);
964 		fallthrough;
965 	case DP_LINK_BW_5_4:
966 		valid_rates |= BIT(7);
967 		fallthrough;
968 	case DP_LINK_BW_2_7:
969 		valid_rates |= BIT(4);
970 		fallthrough;
971 	case DP_LINK_BW_1_62:
972 		valid_rates |= BIT(1);
973 		break;
974 	}
975 
976 	return valid_rates;
977 }
978 
979 static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata,
980 					   struct drm_atomic_state *state)
981 {
982 	struct drm_display_mode *mode =
983 		get_new_adjusted_display_mode(&pdata->bridge, state);
984 	u8 hsync_polarity = 0, vsync_polarity = 0;
985 
986 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
987 		hsync_polarity = CHA_HSYNC_POLARITY;
988 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
989 		vsync_polarity = CHA_VSYNC_POLARITY;
990 
991 	ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
992 			       mode->hdisplay);
993 	ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
994 			       mode->vdisplay);
995 	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
996 		     (mode->hsync_end - mode->hsync_start) & 0xFF);
997 	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
998 		     (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
999 		     hsync_polarity);
1000 	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
1001 		     (mode->vsync_end - mode->vsync_start) & 0xFF);
1002 	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
1003 		     (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
1004 		     vsync_polarity);
1005 
1006 	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
1007 		     (mode->htotal - mode->hsync_end) & 0xFF);
1008 	regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
1009 		     (mode->vtotal - mode->vsync_end) & 0xFF);
1010 
1011 	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
1012 		     (mode->hsync_start - mode->hdisplay) & 0xFF);
1013 	regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
1014 		     (mode->vsync_start - mode->vdisplay) & 0xFF);
1015 
1016 	usleep_range(10000, 10500); /* 10ms delay recommended by spec */
1017 }
1018 
1019 static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata)
1020 {
1021 	u8 data;
1022 	int ret;
1023 
1024 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
1025 	if (ret != 1) {
1026 		DRM_DEV_ERROR(pdata->dev,
1027 			      "Can't read lane count (%d); assuming 4\n", ret);
1028 		return 4;
1029 	}
1030 
1031 	return data & DP_LANE_COUNT_MASK;
1032 }
1033 
1034 static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx,
1035 			       const char **last_err_str)
1036 {
1037 	unsigned int val;
1038 	int ret;
1039 	int i;
1040 
1041 	/* set dp clk frequency value */
1042 	regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
1043 			   DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
1044 
1045 	/* enable DP PLL */
1046 	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
1047 
1048 	ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
1049 				       val & DPPLL_SRC_DP_PLL_LOCK, 1000,
1050 				       50 * 1000);
1051 	if (ret) {
1052 		*last_err_str = "DP_PLL_LOCK polling failed";
1053 		goto exit;
1054 	}
1055 
1056 	/*
1057 	 * We'll try to link train several times.  As part of link training
1058 	 * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER.  If
1059 	 * the panel isn't ready quite it might respond NAK here which means
1060 	 * we need to try again.
1061 	 */
1062 	for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) {
1063 		/* Semi auto link training mode */
1064 		regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
1065 		ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
1066 					       val == ML_TX_MAIN_LINK_OFF ||
1067 					       val == ML_TX_NORMAL_MODE, 1000,
1068 					       500 * 1000);
1069 		if (ret) {
1070 			*last_err_str = "Training complete polling failed";
1071 		} else if (val == ML_TX_MAIN_LINK_OFF) {
1072 			*last_err_str = "Link training failed, link is off";
1073 			ret = -EIO;
1074 			continue;
1075 		}
1076 
1077 		break;
1078 	}
1079 
1080 	/* If we saw quite a few retries, add a note about it */
1081 	if (!ret && i > SN_LINK_TRAINING_TRIES / 2)
1082 		DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i);
1083 
1084 exit:
1085 	/* Disable the PLL if we failed */
1086 	if (ret)
1087 		regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1088 
1089 	return ret;
1090 }
1091 
1092 static void ti_sn_bridge_atomic_enable(struct drm_bridge *bridge,
1093 				       struct drm_atomic_state *state)
1094 {
1095 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1096 	struct drm_connector *connector;
1097 	const char *last_err_str = "No supported DP rate";
1098 	unsigned int valid_rates;
1099 	int dp_rate_idx;
1100 	unsigned int val;
1101 	int ret = -EINVAL;
1102 	int max_dp_lanes;
1103 	unsigned int bpp;
1104 
1105 	connector = drm_atomic_get_new_connector_for_encoder(state,
1106 							     bridge->encoder);
1107 	if (!connector) {
1108 		dev_err_ratelimited(pdata->dev, "Could not get the connector\n");
1109 		return;
1110 	}
1111 
1112 	max_dp_lanes = ti_sn_get_max_lanes(pdata);
1113 	pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
1114 
1115 	/* DSI_A lane config */
1116 	val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
1117 	regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
1118 			   CHA_DSI_LANES_MASK, val);
1119 
1120 	regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
1121 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
1122 			   pdata->ln_polrs << LN_POLRS_OFFSET);
1123 
1124 	/* set dsi clk frequency value */
1125 	ti_sn_bridge_set_dsi_rate(pdata, state);
1126 
1127 	/*
1128 	 * The SN65DSI86 only supports ASSR Display Authentication method and
1129 	 * this method is enabled for eDP panels. An eDP panel must support this
1130 	 * authentication method. We need to enable this method in the eDP panel
1131 	 * at DisplayPort address 0x0010A prior to link training.
1132 	 *
1133 	 * As only ASSR is supported by SN65DSI86, for full DisplayPort displays
1134 	 * we need to disable the scrambler.
1135 	 */
1136 	if (pdata->bridge.type == DRM_MODE_CONNECTOR_eDP) {
1137 		drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
1138 				   DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
1139 
1140 		regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1141 				   SCRAMBLE_DISABLE, 0);
1142 	} else {
1143 		regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1144 				   SCRAMBLE_DISABLE, SCRAMBLE_DISABLE);
1145 	}
1146 
1147 	bpp = ti_sn_bridge_get_bpp(connector);
1148 	/* Set the DP output format (18 bpp or 24 bpp) */
1149 	val = bpp == 18 ? BPP_18_RGB : 0;
1150 	regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
1151 
1152 	/* DP lane config */
1153 	val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
1154 	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
1155 			   val);
1156 
1157 	valid_rates = ti_sn_bridge_read_valid_rates(pdata);
1158 
1159 	/* Train until we run out of rates */
1160 	for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata, state, bpp);
1161 	     dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
1162 	     dp_rate_idx++) {
1163 		if (!(valid_rates & BIT(dp_rate_idx)))
1164 			continue;
1165 
1166 		ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
1167 		if (!ret)
1168 			break;
1169 	}
1170 	if (ret) {
1171 		DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
1172 		return;
1173 	}
1174 
1175 	/* config video parameters */
1176 	ti_sn_bridge_set_video_timings(pdata, state);
1177 
1178 	/* enable video stream */
1179 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
1180 			   VSTREAM_ENABLE);
1181 }
1182 
1183 static void ti_sn_bridge_atomic_pre_enable(struct drm_bridge *bridge,
1184 					   struct drm_atomic_state *state)
1185 {
1186 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1187 
1188 	pm_runtime_get_sync(pdata->dev);
1189 
1190 	if (!pdata->refclk)
1191 		ti_sn65dsi86_enable_comms(pdata, state);
1192 
1193 	/* td7: min 100 us after enable before DSI data */
1194 	usleep_range(100, 110);
1195 }
1196 
1197 static void ti_sn_bridge_atomic_post_disable(struct drm_bridge *bridge,
1198 					     struct drm_atomic_state *state)
1199 {
1200 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1201 
1202 	/* semi auto link training mode OFF */
1203 	regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
1204 	/* Num lanes to 0 as per power sequencing in data sheet */
1205 	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0);
1206 	/* disable DP PLL */
1207 	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1208 
1209 	if (!pdata->refclk)
1210 		ti_sn65dsi86_disable_comms(pdata);
1211 
1212 	pm_runtime_put_sync(pdata->dev);
1213 }
1214 
1215 static enum drm_connector_status
1216 ti_sn_bridge_detect(struct drm_bridge *bridge, struct drm_connector *connector)
1217 {
1218 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1219 	int val = 0;
1220 
1221 	/*
1222 	 * Runtime reference is grabbed in ti_sn_bridge_hpd_enable()
1223 	 * as the chip won't report HPD just after being powered on.
1224 	 * HPD_DEBOUNCED_STATE reflects correct state only after the
1225 	 * debounce time (~100-400 ms).
1226 	 */
1227 
1228 	regmap_read(pdata->regmap, SN_HPD_DISABLE_REG, &val);
1229 
1230 	return val & HPD_DEBOUNCED_STATE ? connector_status_connected
1231 					 : connector_status_disconnected;
1232 }
1233 
1234 static const struct drm_edid *ti_sn_bridge_edid_read(struct drm_bridge *bridge,
1235 						     struct drm_connector *connector)
1236 {
1237 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1238 
1239 	return drm_edid_read_ddc(connector, &pdata->aux.ddc);
1240 }
1241 
1242 static void ti_sn65dsi86_debugfs_init(struct drm_bridge *bridge, struct dentry *root)
1243 {
1244 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1245 	struct dentry *debugfs;
1246 
1247 	debugfs = debugfs_create_dir(dev_name(pdata->dev), root);
1248 	debugfs_create_file("status", 0600, debugfs, pdata, &status_fops);
1249 }
1250 
1251 static void ti_sn_bridge_hpd_enable(struct drm_bridge *bridge)
1252 {
1253 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1254 	const struct i2c_client *client = to_i2c_client(pdata->dev);
1255 	int ret;
1256 
1257 	/*
1258 	 * Device needs to be powered on before reading the HPD state
1259 	 * for reliable hpd detection in ti_sn_bridge_detect() due to
1260 	 * the high debounce time.
1261 	 */
1262 
1263 	pm_runtime_get_sync(pdata->dev);
1264 
1265 	mutex_lock(&pdata->hpd_mutex);
1266 	pdata->hpd_enabled = true;
1267 	mutex_unlock(&pdata->hpd_mutex);
1268 
1269 	if (client->irq) {
1270 		ret = regmap_set_bits(pdata->regmap, SN_IRQ_EVENTS_EN_REG,
1271 				      HPD_REMOVAL_EN | HPD_INSERTION_EN);
1272 		if (ret)
1273 			dev_err(pdata->dev, "Failed to enable HPD events: %d\n", ret);
1274 	}
1275 }
1276 
1277 static void ti_sn_bridge_hpd_disable(struct drm_bridge *bridge)
1278 {
1279 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1280 	const struct i2c_client *client = to_i2c_client(pdata->dev);
1281 	int ret;
1282 
1283 	if (client->irq) {
1284 		ret = regmap_clear_bits(pdata->regmap, SN_IRQ_EVENTS_EN_REG,
1285 					HPD_REMOVAL_EN | HPD_INSERTION_EN);
1286 		if (ret)
1287 			dev_err(pdata->dev, "Failed to disable HPD events: %d\n", ret);
1288 	}
1289 
1290 	mutex_lock(&pdata->hpd_mutex);
1291 	pdata->hpd_enabled = false;
1292 	mutex_unlock(&pdata->hpd_mutex);
1293 
1294 	pm_runtime_put_autosuspend(pdata->dev);
1295 }
1296 
1297 static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
1298 	.attach = ti_sn_bridge_attach,
1299 	.detach = ti_sn_bridge_detach,
1300 	.mode_valid = ti_sn_bridge_mode_valid,
1301 	.edid_read = ti_sn_bridge_edid_read,
1302 	.detect = ti_sn_bridge_detect,
1303 	.atomic_pre_enable = ti_sn_bridge_atomic_pre_enable,
1304 	.atomic_enable = ti_sn_bridge_atomic_enable,
1305 	.atomic_disable = ti_sn_bridge_atomic_disable,
1306 	.atomic_post_disable = ti_sn_bridge_atomic_post_disable,
1307 	.atomic_reset = drm_atomic_helper_bridge_reset,
1308 	.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
1309 	.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
1310 	.debugfs_init = ti_sn65dsi86_debugfs_init,
1311 	.hpd_enable = ti_sn_bridge_hpd_enable,
1312 	.hpd_disable = ti_sn_bridge_hpd_disable,
1313 };
1314 
1315 static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata,
1316 				     struct device_node *np)
1317 {
1318 	u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
1319 	u32 lane_polarities[SN_MAX_DP_LANES] = { };
1320 	struct device_node *endpoint;
1321 	u8 ln_assign = 0;
1322 	u8 ln_polrs = 0;
1323 	int dp_lanes;
1324 	int i;
1325 
1326 	/*
1327 	 * Read config from the device tree about lane remapping and lane
1328 	 * polarities.  These are optional and we assume identity map and
1329 	 * normal polarity if nothing is specified.  It's OK to specify just
1330 	 * data-lanes but not lane-polarities but not vice versa.
1331 	 *
1332 	 * Error checking is light (we just make sure we don't crash or
1333 	 * buffer overrun) and we assume dts is well formed and specifying
1334 	 * mappings that the hardware supports.
1335 	 */
1336 	endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1337 	dp_lanes = drm_of_get_data_lanes_count(endpoint, 1, SN_MAX_DP_LANES);
1338 	if (dp_lanes > 0) {
1339 		of_property_read_u32_array(endpoint, "data-lanes",
1340 					   lane_assignments, dp_lanes);
1341 		of_property_read_u32_array(endpoint, "lane-polarities",
1342 					   lane_polarities, dp_lanes);
1343 	} else {
1344 		dp_lanes = SN_MAX_DP_LANES;
1345 	}
1346 	of_node_put(endpoint);
1347 
1348 	/*
1349 	 * Convert into register format.  Loop over all lanes even if
1350 	 * data-lanes had fewer elements so that we nicely initialize
1351 	 * the LN_ASSIGN register.
1352 	 */
1353 	for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
1354 		ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
1355 		ln_polrs = ln_polrs << 1 | lane_polarities[i];
1356 	}
1357 
1358 	/* Stash in our struct for when we power on */
1359 	pdata->dp_lanes = dp_lanes;
1360 	pdata->ln_assign = ln_assign;
1361 	pdata->ln_polrs = ln_polrs;
1362 }
1363 
1364 static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata)
1365 {
1366 	struct device_node *np = pdata->dev->of_node;
1367 
1368 	pdata->host_node = of_graph_get_remote_node(np, 0, 0);
1369 
1370 	if (!pdata->host_node) {
1371 		DRM_ERROR("remote dsi host node not found\n");
1372 		return -ENODEV;
1373 	}
1374 
1375 	return 0;
1376 }
1377 
1378 static irqreturn_t ti_sn_bridge_interrupt(int irq, void *private)
1379 {
1380 	struct ti_sn65dsi86 *pdata = private;
1381 	struct drm_device *dev = pdata->bridge.dev;
1382 	u8 status;
1383 	int ret;
1384 	bool hpd_event;
1385 
1386 	ret = ti_sn65dsi86_read_u8(pdata, SN_IRQ_STATUS_REG, &status);
1387 	if (ret) {
1388 		dev_err(pdata->dev, "Failed to read IRQ status: %d\n", ret);
1389 		return IRQ_NONE;
1390 	}
1391 
1392 	hpd_event = status & (HPD_REMOVAL_STATUS | HPD_INSERTION_STATUS);
1393 
1394 	dev_dbg(pdata->dev, "(SN_IRQ_STATUS_REG = %#x)\n", status);
1395 	if (!status)
1396 		return IRQ_NONE;
1397 
1398 	ret = regmap_write(pdata->regmap, SN_IRQ_STATUS_REG, status);
1399 	if (ret) {
1400 		dev_err(pdata->dev, "Failed to clear IRQ status: %d\n", ret);
1401 		return IRQ_NONE;
1402 	}
1403 
1404 	/* Only send the HPD event if we are bound with a device. */
1405 	mutex_lock(&pdata->hpd_mutex);
1406 	if (pdata->hpd_enabled && hpd_event)
1407 		drm_kms_helper_hotplug_event(dev);
1408 	mutex_unlock(&pdata->hpd_mutex);
1409 
1410 	return IRQ_HANDLED;
1411 }
1412 
1413 static int ti_sn_bridge_probe(struct auxiliary_device *adev,
1414 			      const struct auxiliary_device_id *id)
1415 {
1416 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1417 	struct device_node *np = pdata->dev->of_node;
1418 	int ret;
1419 
1420 	pdata->next_bridge = devm_drm_of_get_bridge(&adev->dev, np, 1, 0);
1421 	if (IS_ERR(pdata->next_bridge))
1422 		return dev_err_probe(&adev->dev, PTR_ERR(pdata->next_bridge),
1423 				     "failed to create panel bridge\n");
1424 
1425 	ti_sn_bridge_parse_lanes(pdata, np);
1426 
1427 	ret = ti_sn_bridge_parse_dsi_host(pdata);
1428 	if (ret)
1429 		return ret;
1430 
1431 	pdata->bridge.of_node = np;
1432 	pdata->bridge.type = pdata->next_bridge->type == DRM_MODE_CONNECTOR_DisplayPort
1433 			   ? DRM_MODE_CONNECTOR_DisplayPort : DRM_MODE_CONNECTOR_eDP;
1434 
1435 	if (pdata->bridge.type == DRM_MODE_CONNECTOR_DisplayPort) {
1436 		pdata->bridge.ops = DRM_BRIDGE_OP_EDID | DRM_BRIDGE_OP_DETECT |
1437 				    DRM_BRIDGE_OP_HPD;
1438 		/*
1439 		 * If comms were already enabled they would have been enabled
1440 		 * with the wrong value of HPD_DISABLE. Update it now. Comms
1441 		 * could be enabled if anyone is holding a pm_runtime reference
1442 		 * (like if a GPIO is in use). Note that in most cases nobody
1443 		 * is doing AUX channel xfers before the bridge is added so
1444 		 * HPD doesn't _really_ matter then. The only exception is in
1445 		 * the eDP case where the panel wants to read the EDID before
1446 		 * the bridge is added. We always consistently have HPD disabled
1447 		 * for eDP.
1448 		 */
1449 		mutex_lock(&pdata->comms_mutex);
1450 		if (pdata->comms_enabled)
1451 			regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG,
1452 					   HPD_DISABLE, 0);
1453 		mutex_unlock(&pdata->comms_mutex);
1454 	}
1455 
1456 	drm_bridge_add(&pdata->bridge);
1457 
1458 	ret = ti_sn_attach_host(adev, pdata);
1459 	if (ret) {
1460 		dev_err_probe(&adev->dev, ret, "failed to attach dsi host\n");
1461 		goto err_remove_bridge;
1462 	}
1463 
1464 	return 0;
1465 
1466 err_remove_bridge:
1467 	drm_bridge_remove(&pdata->bridge);
1468 	return ret;
1469 }
1470 
1471 static void ti_sn_bridge_remove(struct auxiliary_device *adev)
1472 {
1473 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1474 
1475 	if (!pdata)
1476 		return;
1477 
1478 	drm_bridge_remove(&pdata->bridge);
1479 
1480 	of_node_put(pdata->host_node);
1481 }
1482 
1483 static const struct auxiliary_device_id ti_sn_bridge_id_table[] = {
1484 	{ .name = "ti_sn65dsi86.bridge", },
1485 	{},
1486 };
1487 
1488 static struct auxiliary_driver ti_sn_bridge_driver = {
1489 	.name = "bridge",
1490 	.probe = ti_sn_bridge_probe,
1491 	.remove = ti_sn_bridge_remove,
1492 	.id_table = ti_sn_bridge_id_table,
1493 };
1494 
1495 /* -----------------------------------------------------------------------------
1496  * PWM Controller
1497  */
1498 #if IS_REACHABLE(CONFIG_PWM)
1499 static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata)
1500 {
1501 	return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0;
1502 }
1503 
1504 static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata)
1505 {
1506 	atomic_set(&pdata->pwm_pin_busy, 0);
1507 }
1508 
1509 static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip)
1510 {
1511 	return pwmchip_get_drvdata(chip);
1512 }
1513 
1514 static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
1515 {
1516 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1517 
1518 	return ti_sn_pwm_pin_request(pdata);
1519 }
1520 
1521 static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
1522 {
1523 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1524 
1525 	ti_sn_pwm_pin_release(pdata);
1526 }
1527 
1528 /*
1529  * Limitations:
1530  * - The PWM signal is not driven when the chip is powered down, or in its
1531  *   reset state and the driver does not implement the "suspend state"
1532  *   described in the documentation. In order to save power, state->enabled is
1533  *   interpreted as denoting if the signal is expected to be valid, and is used
1534  *   to determine if the chip needs to be kept powered.
1535  * - Changing both period and duty_cycle is not done atomically, neither is the
1536  *   multi-byte register updates, so the output might briefly be undefined
1537  *   during update.
1538  */
1539 static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
1540 			   const struct pwm_state *state)
1541 {
1542 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1543 	unsigned int pwm_en_inv;
1544 	unsigned int backlight;
1545 	unsigned int pre_div;
1546 	unsigned int scale;
1547 	u64 period_max;
1548 	u64 period;
1549 	int ret;
1550 
1551 	if (!pdata->pwm_enabled) {
1552 		ret = pm_runtime_resume_and_get(pwmchip_parent(chip));
1553 		if (ret < 0)
1554 			return ret;
1555 	}
1556 
1557 	if (state->enabled) {
1558 		if (!pdata->pwm_enabled) {
1559 			/*
1560 			 * The chip might have been powered down while we
1561 			 * didn't hold a PM runtime reference, so mux in the
1562 			 * PWM function on the GPIO pin again.
1563 			 */
1564 			ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1565 						 SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX),
1566 						 SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX));
1567 			if (ret) {
1568 				dev_err(pwmchip_parent(chip), "failed to mux in PWM function\n");
1569 				goto out;
1570 			}
1571 		}
1572 
1573 		/*
1574 		 * Per the datasheet the PWM frequency is given by:
1575 		 *
1576 		 *                          REFCLK_FREQ
1577 		 *   PWM_FREQ = -----------------------------------
1578 		 *               PWM_PRE_DIV * BACKLIGHT_SCALE + 1
1579 		 *
1580 		 * However, after careful review the author is convinced that
1581 		 * the documentation has lost some parenthesis around
1582 		 * "BACKLIGHT_SCALE + 1".
1583 		 *
1584 		 * With the period T_pwm = 1/PWM_FREQ this can be written:
1585 		 *
1586 		 *   T_pwm * REFCLK_FREQ = PWM_PRE_DIV * (BACKLIGHT_SCALE + 1)
1587 		 *
1588 		 * In order to keep BACKLIGHT_SCALE within its 16 bits,
1589 		 * PWM_PRE_DIV must be:
1590 		 *
1591 		 *                     T_pwm * REFCLK_FREQ
1592 		 *   PWM_PRE_DIV >= -------------------------
1593 		 *                   BACKLIGHT_SCALE_MAX + 1
1594 		 *
1595 		 * To simplify the search and to favour higher resolution of
1596 		 * the duty cycle over accuracy of the period, the lowest
1597 		 * possible PWM_PRE_DIV is used. Finally the scale is
1598 		 * calculated as:
1599 		 *
1600 		 *                      T_pwm * REFCLK_FREQ
1601 		 *   BACKLIGHT_SCALE = ---------------------- - 1
1602 		 *                          PWM_PRE_DIV
1603 		 *
1604 		 * Here T_pwm is represented in seconds, so appropriate scaling
1605 		 * to nanoseconds is necessary.
1606 		 */
1607 
1608 		/* Minimum T_pwm is 1 / REFCLK_FREQ */
1609 		if (state->period <= NSEC_PER_SEC / pdata->pwm_refclk_freq) {
1610 			ret = -EINVAL;
1611 			goto out;
1612 		}
1613 
1614 		/*
1615 		 * Maximum T_pwm is 255 * (65535 + 1) / REFCLK_FREQ
1616 		 * Limit period to this to avoid overflows
1617 		 */
1618 		period_max = div_u64((u64)NSEC_PER_SEC * 255 * (65535 + 1),
1619 				     pdata->pwm_refclk_freq);
1620 		period = min(state->period, period_max);
1621 
1622 		pre_div = DIV64_U64_ROUND_UP(period * pdata->pwm_refclk_freq,
1623 					     (u64)NSEC_PER_SEC * (BACKLIGHT_SCALE_MAX + 1));
1624 		scale = div64_u64(period * pdata->pwm_refclk_freq, (u64)NSEC_PER_SEC * pre_div) - 1;
1625 
1626 		/*
1627 		 * The documentation has the duty ratio given as:
1628 		 *
1629 		 *     duty          BACKLIGHT
1630 		 *   ------- = ---------------------
1631 		 *    period    BACKLIGHT_SCALE + 1
1632 		 *
1633 		 * Solve for BACKLIGHT, substituting BACKLIGHT_SCALE according
1634 		 * to definition above and adjusting for nanosecond
1635 		 * representation of duty cycle gives us:
1636 		 */
1637 		backlight = div64_u64(state->duty_cycle * pdata->pwm_refclk_freq,
1638 				      (u64)NSEC_PER_SEC * pre_div);
1639 		if (backlight > scale)
1640 			backlight = scale;
1641 
1642 		ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div);
1643 		if (ret) {
1644 			dev_err(pwmchip_parent(chip), "failed to update PWM_PRE_DIV\n");
1645 			goto out;
1646 		}
1647 
1648 		ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale);
1649 		ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight);
1650 	}
1651 
1652 	pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, state->enabled) |
1653 		     FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED);
1654 	ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv);
1655 	if (ret) {
1656 		dev_err(pwmchip_parent(chip), "failed to update PWM_EN/PWM_INV\n");
1657 		goto out;
1658 	}
1659 
1660 	pdata->pwm_enabled = state->enabled;
1661 out:
1662 
1663 	if (!pdata->pwm_enabled)
1664 		pm_runtime_put_sync(pwmchip_parent(chip));
1665 
1666 	return ret;
1667 }
1668 
1669 static int ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
1670 			       struct pwm_state *state)
1671 {
1672 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1673 	unsigned int pwm_en_inv;
1674 	unsigned int pre_div;
1675 	u16 backlight;
1676 	u16 scale;
1677 	int ret;
1678 
1679 	ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv);
1680 	if (ret)
1681 		return ret;
1682 
1683 	ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale);
1684 	if (ret)
1685 		return ret;
1686 
1687 	ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight);
1688 	if (ret)
1689 		return ret;
1690 
1691 	ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div);
1692 	if (ret)
1693 		return ret;
1694 
1695 	state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv);
1696 	if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv))
1697 		state->polarity = PWM_POLARITY_INVERSED;
1698 	else
1699 		state->polarity = PWM_POLARITY_NORMAL;
1700 
1701 	state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * (scale + 1),
1702 					 pdata->pwm_refclk_freq);
1703 	state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * backlight,
1704 					     pdata->pwm_refclk_freq);
1705 
1706 	if (state->duty_cycle > state->period)
1707 		state->duty_cycle = state->period;
1708 
1709 	return 0;
1710 }
1711 
1712 static const struct pwm_ops ti_sn_pwm_ops = {
1713 	.request = ti_sn_pwm_request,
1714 	.free = ti_sn_pwm_free,
1715 	.apply = ti_sn_pwm_apply,
1716 	.get_state = ti_sn_pwm_get_state,
1717 };
1718 
1719 static int ti_sn_pwm_probe(struct auxiliary_device *adev,
1720 			   const struct auxiliary_device_id *id)
1721 {
1722 	struct pwm_chip *chip;
1723 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1724 
1725 	pdata->pchip = chip = devm_pwmchip_alloc(&adev->dev, 1, 0);
1726 	if (IS_ERR(chip))
1727 		return PTR_ERR(chip);
1728 
1729 	pwmchip_set_drvdata(chip, pdata);
1730 
1731 	chip->ops = &ti_sn_pwm_ops;
1732 	chip->of_xlate = of_pwm_single_xlate;
1733 
1734 	devm_pm_runtime_enable(&adev->dev);
1735 
1736 	return pwmchip_add(chip);
1737 }
1738 
1739 static void ti_sn_pwm_remove(struct auxiliary_device *adev)
1740 {
1741 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1742 
1743 	pwmchip_remove(pdata->pchip);
1744 
1745 	if (pdata->pwm_enabled)
1746 		pm_runtime_put_sync(&adev->dev);
1747 }
1748 
1749 static const struct auxiliary_device_id ti_sn_pwm_id_table[] = {
1750 	{ .name = "ti_sn65dsi86.pwm", },
1751 	{},
1752 };
1753 
1754 static struct auxiliary_driver ti_sn_pwm_driver = {
1755 	.name = "pwm",
1756 	.probe = ti_sn_pwm_probe,
1757 	.remove = ti_sn_pwm_remove,
1758 	.id_table = ti_sn_pwm_id_table,
1759 };
1760 
1761 static int __init ti_sn_pwm_register(void)
1762 {
1763 	return auxiliary_driver_register(&ti_sn_pwm_driver);
1764 }
1765 
1766 static void ti_sn_pwm_unregister(void)
1767 {
1768 	auxiliary_driver_unregister(&ti_sn_pwm_driver);
1769 }
1770 
1771 #else
1772 static inline int __maybe_unused ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) { return 0; }
1773 static inline void __maybe_unused ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) {}
1774 
1775 static inline int ti_sn_pwm_register(void) { return 0; }
1776 static inline void ti_sn_pwm_unregister(void) {}
1777 #endif
1778 
1779 /* -----------------------------------------------------------------------------
1780  * GPIO Controller
1781  */
1782 #if defined(CONFIG_OF_GPIO)
1783 
1784 static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
1785 				 const struct of_phandle_args *gpiospec,
1786 				 u32 *flags)
1787 {
1788 	if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
1789 		return -EINVAL;
1790 
1791 	if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
1792 		return -EINVAL;
1793 
1794 	if (flags)
1795 		*flags = gpiospec->args[1];
1796 
1797 	return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
1798 }
1799 
1800 static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
1801 					   unsigned int offset)
1802 {
1803 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1804 
1805 	/*
1806 	 * We already have to keep track of the direction because we use
1807 	 * that to figure out whether we've powered the device.  We can
1808 	 * just return that rather than (maybe) powering up the device
1809 	 * to ask its direction.
1810 	 */
1811 	return test_bit(offset, pdata->gchip_output) ?
1812 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1813 }
1814 
1815 static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
1816 {
1817 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1818 	unsigned int val;
1819 	int ret;
1820 
1821 	/*
1822 	 * When the pin is an input we don't forcibly keep the bridge
1823 	 * powered--we just power it on to read the pin.  NOTE: part of
1824 	 * the reason this works is that the bridge defaults (when
1825 	 * powered back on) to all 4 GPIOs being configured as GPIO input.
1826 	 * Also note that if something else is keeping the chip powered the
1827 	 * pm_runtime functions are lightweight increments of a refcount.
1828 	 */
1829 	pm_runtime_get_sync(pdata->dev);
1830 	ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
1831 	pm_runtime_put_autosuspend(pdata->dev);
1832 
1833 	if (ret)
1834 		return ret;
1835 
1836 	return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
1837 }
1838 
1839 static int ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
1840 				 int val)
1841 {
1842 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1843 
1844 	val &= 1;
1845 	return regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
1846 				  BIT(SN_GPIO_OUTPUT_SHIFT + offset),
1847 				  val << (SN_GPIO_OUTPUT_SHIFT + offset));
1848 }
1849 
1850 static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
1851 					     unsigned int offset)
1852 {
1853 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1854 	int shift = offset * 2;
1855 	int ret;
1856 
1857 	if (!test_and_clear_bit(offset, pdata->gchip_output))
1858 		return 0;
1859 
1860 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1861 				 SN_GPIO_MUX_MASK << shift,
1862 				 SN_GPIO_MUX_INPUT << shift);
1863 	if (ret) {
1864 		set_bit(offset, pdata->gchip_output);
1865 		return ret;
1866 	}
1867 
1868 	/*
1869 	 * NOTE: if nobody else is powering the device this may fully power
1870 	 * it off and when it comes back it will have lost all state, but
1871 	 * that's OK because the default is input and we're now an input.
1872 	 */
1873 	pm_runtime_put_autosuspend(pdata->dev);
1874 
1875 	return 0;
1876 }
1877 
1878 static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
1879 					      unsigned int offset, int val)
1880 {
1881 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1882 	int shift = offset * 2;
1883 	int ret;
1884 
1885 	if (test_and_set_bit(offset, pdata->gchip_output))
1886 		return 0;
1887 
1888 	pm_runtime_get_sync(pdata->dev);
1889 
1890 	/* Set value first to avoid glitching */
1891 	ti_sn_bridge_gpio_set(chip, offset, val);
1892 
1893 	/* Set direction */
1894 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1895 				 SN_GPIO_MUX_MASK << shift,
1896 				 SN_GPIO_MUX_OUTPUT << shift);
1897 	if (ret) {
1898 		clear_bit(offset, pdata->gchip_output);
1899 		pm_runtime_put_autosuspend(pdata->dev);
1900 	}
1901 
1902 	return ret;
1903 }
1904 
1905 static int ti_sn_bridge_gpio_request(struct gpio_chip *chip, unsigned int offset)
1906 {
1907 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1908 
1909 	if (offset == SN_PWM_GPIO_IDX)
1910 		return ti_sn_pwm_pin_request(pdata);
1911 
1912 	return 0;
1913 }
1914 
1915 static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
1916 {
1917 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1918 
1919 	/* We won't keep pm_runtime if we're input, so switch there on free */
1920 	ti_sn_bridge_gpio_direction_input(chip, offset);
1921 
1922 	if (offset == SN_PWM_GPIO_IDX)
1923 		ti_sn_pwm_pin_release(pdata);
1924 }
1925 
1926 static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
1927 	"GPIO1", "GPIO2", "GPIO3", "GPIO4"
1928 };
1929 
1930 static int ti_sn_gpio_probe(struct auxiliary_device *adev,
1931 			    const struct auxiliary_device_id *id)
1932 {
1933 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1934 	int ret;
1935 
1936 	/* Only init if someone is going to use us as a GPIO controller */
1937 	if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
1938 		return 0;
1939 
1940 	pdata->gchip.label = dev_name(pdata->dev);
1941 	pdata->gchip.parent = pdata->dev;
1942 	pdata->gchip.owner = THIS_MODULE;
1943 	pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
1944 	pdata->gchip.of_gpio_n_cells = 2;
1945 	pdata->gchip.request = ti_sn_bridge_gpio_request;
1946 	pdata->gchip.free = ti_sn_bridge_gpio_free;
1947 	pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
1948 	pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
1949 	pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
1950 	pdata->gchip.get = ti_sn_bridge_gpio_get;
1951 	pdata->gchip.set = ti_sn_bridge_gpio_set;
1952 	pdata->gchip.can_sleep = true;
1953 	pdata->gchip.names = ti_sn_bridge_gpio_names;
1954 	pdata->gchip.ngpio = SN_NUM_GPIOS;
1955 	pdata->gchip.base = -1;
1956 	ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata);
1957 	if (ret)
1958 		dev_err(pdata->dev, "can't add gpio chip\n");
1959 
1960 	return ret;
1961 }
1962 
1963 static const struct auxiliary_device_id ti_sn_gpio_id_table[] = {
1964 	{ .name = "ti_sn65dsi86.gpio", },
1965 	{},
1966 };
1967 
1968 MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table);
1969 
1970 static struct auxiliary_driver ti_sn_gpio_driver = {
1971 	.name = "gpio",
1972 	.probe = ti_sn_gpio_probe,
1973 	.id_table = ti_sn_gpio_id_table,
1974 };
1975 
1976 static int __init ti_sn_gpio_register(void)
1977 {
1978 	return auxiliary_driver_register(&ti_sn_gpio_driver);
1979 }
1980 
1981 static void ti_sn_gpio_unregister(void)
1982 {
1983 	auxiliary_driver_unregister(&ti_sn_gpio_driver);
1984 }
1985 
1986 #else
1987 
1988 static inline int ti_sn_gpio_register(void) { return 0; }
1989 static inline void ti_sn_gpio_unregister(void) {}
1990 
1991 #endif
1992 
1993 /* -----------------------------------------------------------------------------
1994  * Probe & Remove
1995  */
1996 
1997 static void ti_sn65dsi86_runtime_disable(void *data)
1998 {
1999 	pm_runtime_dont_use_autosuspend(data);
2000 	pm_runtime_disable(data);
2001 }
2002 
2003 static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata)
2004 {
2005 	unsigned int i;
2006 	const char * const ti_sn_bridge_supply_names[] = {
2007 		"vcca", "vcc", "vccio", "vpll",
2008 	};
2009 
2010 	for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
2011 		pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
2012 
2013 	return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
2014 				       pdata->supplies);
2015 }
2016 
2017 static int ti_sn65dsi86_probe(struct i2c_client *client)
2018 {
2019 	struct device *dev = &client->dev;
2020 	struct ti_sn65dsi86 *pdata;
2021 	u8 id_buf[8];
2022 	int ret;
2023 
2024 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
2025 		DRM_ERROR("device doesn't support I2C\n");
2026 		return -ENODEV;
2027 	}
2028 
2029 	pdata = devm_drm_bridge_alloc(dev, struct ti_sn65dsi86, bridge, &ti_sn_bridge_funcs);
2030 	if (IS_ERR(pdata))
2031 		return PTR_ERR(pdata);
2032 	dev_set_drvdata(dev, pdata);
2033 	pdata->dev = dev;
2034 
2035 	mutex_init(&pdata->hpd_mutex);
2036 	mutex_init(&pdata->comms_mutex);
2037 
2038 	pdata->regmap = devm_regmap_init_i2c(client,
2039 					     &ti_sn65dsi86_regmap_config);
2040 	if (IS_ERR(pdata->regmap))
2041 		return dev_err_probe(dev, PTR_ERR(pdata->regmap),
2042 				     "regmap i2c init failed\n");
2043 
2044 	pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable",
2045 						     GPIOD_OUT_LOW);
2046 	if (IS_ERR(pdata->enable_gpio))
2047 		return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio),
2048 				     "failed to get enable gpio from DT\n");
2049 
2050 	ret = ti_sn65dsi86_parse_regulators(pdata);
2051 	if (ret)
2052 		return dev_err_probe(dev, ret, "failed to parse regulators\n");
2053 
2054 	pdata->refclk = devm_clk_get_optional(dev, "refclk");
2055 	if (IS_ERR(pdata->refclk))
2056 		return dev_err_probe(dev, PTR_ERR(pdata->refclk),
2057 				     "failed to get reference clock\n");
2058 
2059 	pm_runtime_enable(dev);
2060 	pm_runtime_set_autosuspend_delay(pdata->dev, 500);
2061 	pm_runtime_use_autosuspend(pdata->dev);
2062 	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev);
2063 	if (ret)
2064 		return ret;
2065 
2066 	pm_runtime_get_sync(dev);
2067 	ret = regmap_bulk_read(pdata->regmap, SN_DEVICE_ID_REGS, id_buf, ARRAY_SIZE(id_buf));
2068 	pm_runtime_put_autosuspend(dev);
2069 	if (ret)
2070 		return dev_err_probe(dev, ret, "failed to read device id\n");
2071 
2072 	/* The ID string is stored backwards */
2073 	if (strncmp(id_buf, "68ISD   ", ARRAY_SIZE(id_buf)))
2074 		return dev_err_probe(dev, -EOPNOTSUPP, "unsupported device id\n");
2075 
2076 	if (client->irq) {
2077 		ret = devm_request_threaded_irq(pdata->dev, client->irq, NULL,
2078 						ti_sn_bridge_interrupt,
2079 						IRQF_ONESHOT,
2080 						dev_name(pdata->dev), pdata);
2081 
2082 		if (ret)
2083 			return dev_err_probe(dev, ret, "failed to request interrupt\n");
2084 	}
2085 
2086 	/*
2087 	 * Break ourselves up into a collection of aux devices. The only real
2088 	 * motiviation here is to solve the chicken-and-egg problem of probe
2089 	 * ordering. The bridge wants the panel to be there when it probes.
2090 	 * The panel wants its HPD GPIO (provided by sn65dsi86 on some boards)
2091 	 * when it probes. The panel and maybe backlight might want the DDC
2092 	 * bus or the pwm_chip. Having sub-devices allows the some sub devices
2093 	 * to finish probing even if others return -EPROBE_DEFER and gets us
2094 	 * around the problems.
2095 	 */
2096 
2097 	if (IS_ENABLED(CONFIG_OF_GPIO)) {
2098 		ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio");
2099 		if (ret)
2100 			return ret;
2101 	}
2102 
2103 	if (IS_REACHABLE(CONFIG_PWM)) {
2104 		ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->pwm_aux, "pwm");
2105 		if (ret)
2106 			return ret;
2107 	}
2108 
2109 	/*
2110 	 * NOTE: At the end of the AUX channel probe we'll add the aux device
2111 	 * for the bridge. This is because the bridge can't be used until the
2112 	 * AUX channel is there and this is a very simple solution to the
2113 	 * dependency problem.
2114 	 */
2115 	return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux");
2116 }
2117 
2118 static const struct i2c_device_id ti_sn65dsi86_id[] = {
2119 	{ "ti,sn65dsi86" },
2120 	{}
2121 };
2122 MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id);
2123 
2124 static const struct of_device_id ti_sn65dsi86_match_table[] = {
2125 	{.compatible = "ti,sn65dsi86"},
2126 	{},
2127 };
2128 MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table);
2129 
2130 static struct i2c_driver ti_sn65dsi86_driver = {
2131 	.driver = {
2132 		.name = "ti_sn65dsi86",
2133 		.of_match_table = ti_sn65dsi86_match_table,
2134 		.pm = &ti_sn65dsi86_pm_ops,
2135 	},
2136 	.probe = ti_sn65dsi86_probe,
2137 	.id_table = ti_sn65dsi86_id,
2138 };
2139 
2140 static int __init ti_sn65dsi86_init(void)
2141 {
2142 	int ret;
2143 
2144 	ret = i2c_add_driver(&ti_sn65dsi86_driver);
2145 	if (ret)
2146 		return ret;
2147 
2148 	ret = ti_sn_gpio_register();
2149 	if (ret)
2150 		goto err_main_was_registered;
2151 
2152 	ret = ti_sn_pwm_register();
2153 	if (ret)
2154 		goto err_gpio_was_registered;
2155 
2156 	ret = auxiliary_driver_register(&ti_sn_aux_driver);
2157 	if (ret)
2158 		goto err_pwm_was_registered;
2159 
2160 	ret = auxiliary_driver_register(&ti_sn_bridge_driver);
2161 	if (ret)
2162 		goto err_aux_was_registered;
2163 
2164 	return 0;
2165 
2166 err_aux_was_registered:
2167 	auxiliary_driver_unregister(&ti_sn_aux_driver);
2168 err_pwm_was_registered:
2169 	ti_sn_pwm_unregister();
2170 err_gpio_was_registered:
2171 	ti_sn_gpio_unregister();
2172 err_main_was_registered:
2173 	i2c_del_driver(&ti_sn65dsi86_driver);
2174 
2175 	return ret;
2176 }
2177 module_init(ti_sn65dsi86_init);
2178 
2179 static void __exit ti_sn65dsi86_exit(void)
2180 {
2181 	auxiliary_driver_unregister(&ti_sn_bridge_driver);
2182 	auxiliary_driver_unregister(&ti_sn_aux_driver);
2183 	ti_sn_pwm_unregister();
2184 	ti_sn_gpio_unregister();
2185 	i2c_del_driver(&ti_sn65dsi86_driver);
2186 }
2187 module_exit(ti_sn65dsi86_exit);
2188 
2189 MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>");
2190 MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
2191 MODULE_LICENSE("GPL v2");
2192