1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * AMD SVM-SEV support
6 *
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kvm_types.h>
12 #include <linux/kvm_host.h>
13 #include <linux/kernel.h>
14 #include <linux/highmem.h>
15 #include <linux/psp.h>
16 #include <linux/psp-sev.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/misc_cgroup.h>
20 #include <linux/processor.h>
21 #include <linux/trace_events.h>
22 #include <uapi/linux/sev-guest.h>
23
24 #include <asm/pkru.h>
25 #include <asm/trapnr.h>
26 #include <asm/fpu/xcr.h>
27 #include <asm/fpu/xstate.h>
28 #include <asm/debugreg.h>
29 #include <asm/sev.h>
30
31 #include "mmu.h"
32 #include "x86.h"
33 #include "svm.h"
34 #include "svm_ops.h"
35 #include "cpuid.h"
36 #include "trace.h"
37
38 #define GHCB_VERSION_MAX 2ULL
39 #define GHCB_VERSION_DEFAULT 2ULL
40 #define GHCB_VERSION_MIN 1ULL
41
42 #define GHCB_HV_FT_SUPPORTED (GHCB_HV_FT_SNP | GHCB_HV_FT_SNP_AP_CREATION)
43
44 /* enable/disable SEV support */
45 static bool sev_enabled = true;
46 module_param_named(sev, sev_enabled, bool, 0444);
47
48 /* enable/disable SEV-ES support */
49 static bool sev_es_enabled = true;
50 module_param_named(sev_es, sev_es_enabled, bool, 0444);
51
52 /* enable/disable SEV-SNP support */
53 static bool sev_snp_enabled = true;
54 module_param_named(sev_snp, sev_snp_enabled, bool, 0444);
55
56 /* enable/disable SEV-ES DebugSwap support */
57 static bool sev_es_debug_swap_enabled = true;
58 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444);
59 static u64 sev_supported_vmsa_features;
60
61 #define AP_RESET_HOLD_NONE 0
62 #define AP_RESET_HOLD_NAE_EVENT 1
63 #define AP_RESET_HOLD_MSR_PROTO 2
64
65 /* As defined by SEV-SNP Firmware ABI, under "Guest Policy". */
66 #define SNP_POLICY_MASK_API_MINOR GENMASK_ULL(7, 0)
67 #define SNP_POLICY_MASK_API_MAJOR GENMASK_ULL(15, 8)
68 #define SNP_POLICY_MASK_SMT BIT_ULL(16)
69 #define SNP_POLICY_MASK_RSVD_MBO BIT_ULL(17)
70 #define SNP_POLICY_MASK_DEBUG BIT_ULL(19)
71 #define SNP_POLICY_MASK_SINGLE_SOCKET BIT_ULL(20)
72
73 #define SNP_POLICY_MASK_VALID (SNP_POLICY_MASK_API_MINOR | \
74 SNP_POLICY_MASK_API_MAJOR | \
75 SNP_POLICY_MASK_SMT | \
76 SNP_POLICY_MASK_RSVD_MBO | \
77 SNP_POLICY_MASK_DEBUG | \
78 SNP_POLICY_MASK_SINGLE_SOCKET)
79
80 #define INITIAL_VMSA_GPA 0xFFFFFFFFF000
81
82 static u8 sev_enc_bit;
83 static DECLARE_RWSEM(sev_deactivate_lock);
84 static DEFINE_MUTEX(sev_bitmap_lock);
85 unsigned int max_sev_asid;
86 static unsigned int min_sev_asid;
87 static unsigned long sev_me_mask;
88 static unsigned int nr_asids;
89 static unsigned long *sev_asid_bitmap;
90 static unsigned long *sev_reclaim_asid_bitmap;
91
92 static int snp_decommission_context(struct kvm *kvm);
93
94 struct enc_region {
95 struct list_head list;
96 unsigned long npages;
97 struct page **pages;
98 unsigned long uaddr;
99 unsigned long size;
100 };
101
102 /* Called with the sev_bitmap_lock held, or on shutdown */
sev_flush_asids(unsigned int min_asid,unsigned int max_asid)103 static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid)
104 {
105 int ret, error = 0;
106 unsigned int asid;
107
108 /* Check if there are any ASIDs to reclaim before performing a flush */
109 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
110 if (asid > max_asid)
111 return -EBUSY;
112
113 /*
114 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
115 * so it must be guarded.
116 */
117 down_write(&sev_deactivate_lock);
118
119 wbinvd_on_all_cpus();
120
121 if (sev_snp_enabled)
122 ret = sev_do_cmd(SEV_CMD_SNP_DF_FLUSH, NULL, &error);
123 else
124 ret = sev_guest_df_flush(&error);
125
126 up_write(&sev_deactivate_lock);
127
128 if (ret)
129 pr_err("SEV%s: DF_FLUSH failed, ret=%d, error=%#x\n",
130 sev_snp_enabled ? "-SNP" : "", ret, error);
131
132 return ret;
133 }
134
is_mirroring_enc_context(struct kvm * kvm)135 static inline bool is_mirroring_enc_context(struct kvm *kvm)
136 {
137 return !!to_kvm_sev_info(kvm)->enc_context_owner;
138 }
139
sev_vcpu_has_debug_swap(struct vcpu_svm * svm)140 static bool sev_vcpu_has_debug_swap(struct vcpu_svm *svm)
141 {
142 struct kvm_vcpu *vcpu = &svm->vcpu;
143 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
144
145 return sev->vmsa_features & SVM_SEV_FEAT_DEBUG_SWAP;
146 }
147
148 /* Must be called with the sev_bitmap_lock held */
__sev_recycle_asids(unsigned int min_asid,unsigned int max_asid)149 static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid)
150 {
151 if (sev_flush_asids(min_asid, max_asid))
152 return false;
153
154 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
155 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
156 nr_asids);
157 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
158
159 return true;
160 }
161
sev_misc_cg_try_charge(struct kvm_sev_info * sev)162 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
163 {
164 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
165 return misc_cg_try_charge(type, sev->misc_cg, 1);
166 }
167
sev_misc_cg_uncharge(struct kvm_sev_info * sev)168 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
169 {
170 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
171 misc_cg_uncharge(type, sev->misc_cg, 1);
172 }
173
sev_asid_new(struct kvm_sev_info * sev)174 static int sev_asid_new(struct kvm_sev_info *sev)
175 {
176 /*
177 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
178 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
179 * Note: min ASID can end up larger than the max if basic SEV support is
180 * effectively disabled by disallowing use of ASIDs for SEV guests.
181 */
182 unsigned int min_asid = sev->es_active ? 1 : min_sev_asid;
183 unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
184 unsigned int asid;
185 bool retry = true;
186 int ret;
187
188 if (min_asid > max_asid)
189 return -ENOTTY;
190
191 WARN_ON(sev->misc_cg);
192 sev->misc_cg = get_current_misc_cg();
193 ret = sev_misc_cg_try_charge(sev);
194 if (ret) {
195 put_misc_cg(sev->misc_cg);
196 sev->misc_cg = NULL;
197 return ret;
198 }
199
200 mutex_lock(&sev_bitmap_lock);
201
202 again:
203 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
204 if (asid > max_asid) {
205 if (retry && __sev_recycle_asids(min_asid, max_asid)) {
206 retry = false;
207 goto again;
208 }
209 mutex_unlock(&sev_bitmap_lock);
210 ret = -EBUSY;
211 goto e_uncharge;
212 }
213
214 __set_bit(asid, sev_asid_bitmap);
215
216 mutex_unlock(&sev_bitmap_lock);
217
218 sev->asid = asid;
219 return 0;
220 e_uncharge:
221 sev_misc_cg_uncharge(sev);
222 put_misc_cg(sev->misc_cg);
223 sev->misc_cg = NULL;
224 return ret;
225 }
226
sev_get_asid(struct kvm * kvm)227 static unsigned int sev_get_asid(struct kvm *kvm)
228 {
229 return to_kvm_sev_info(kvm)->asid;
230 }
231
sev_asid_free(struct kvm_sev_info * sev)232 static void sev_asid_free(struct kvm_sev_info *sev)
233 {
234 struct svm_cpu_data *sd;
235 int cpu;
236
237 mutex_lock(&sev_bitmap_lock);
238
239 __set_bit(sev->asid, sev_reclaim_asid_bitmap);
240
241 for_each_possible_cpu(cpu) {
242 sd = per_cpu_ptr(&svm_data, cpu);
243 sd->sev_vmcbs[sev->asid] = NULL;
244 }
245
246 mutex_unlock(&sev_bitmap_lock);
247
248 sev_misc_cg_uncharge(sev);
249 put_misc_cg(sev->misc_cg);
250 sev->misc_cg = NULL;
251 }
252
sev_decommission(unsigned int handle)253 static void sev_decommission(unsigned int handle)
254 {
255 struct sev_data_decommission decommission;
256
257 if (!handle)
258 return;
259
260 decommission.handle = handle;
261 sev_guest_decommission(&decommission, NULL);
262 }
263
264 /*
265 * Transition a page to hypervisor-owned/shared state in the RMP table. This
266 * should not fail under normal conditions, but leak the page should that
267 * happen since it will no longer be usable by the host due to RMP protections.
268 */
kvm_rmp_make_shared(struct kvm * kvm,u64 pfn,enum pg_level level)269 static int kvm_rmp_make_shared(struct kvm *kvm, u64 pfn, enum pg_level level)
270 {
271 if (KVM_BUG_ON(rmp_make_shared(pfn, level), kvm)) {
272 snp_leak_pages(pfn, page_level_size(level) >> PAGE_SHIFT);
273 return -EIO;
274 }
275
276 return 0;
277 }
278
279 /*
280 * Certain page-states, such as Pre-Guest and Firmware pages (as documented
281 * in Chapter 5 of the SEV-SNP Firmware ABI under "Page States") cannot be
282 * directly transitioned back to normal/hypervisor-owned state via RMPUPDATE
283 * unless they are reclaimed first.
284 *
285 * Until they are reclaimed and subsequently transitioned via RMPUPDATE, they
286 * might not be usable by the host due to being set as immutable or still
287 * being associated with a guest ASID.
288 *
289 * Bug the VM and leak the page if reclaim fails, or if the RMP entry can't be
290 * converted back to shared, as the page is no longer usable due to RMP
291 * protections, and it's infeasible for the guest to continue on.
292 */
snp_page_reclaim(struct kvm * kvm,u64 pfn)293 static int snp_page_reclaim(struct kvm *kvm, u64 pfn)
294 {
295 struct sev_data_snp_page_reclaim data = {0};
296 int fw_err, rc;
297
298 data.paddr = __sme_set(pfn << PAGE_SHIFT);
299 rc = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &fw_err);
300 if (KVM_BUG(rc, kvm, "Failed to reclaim PFN %llx, rc %d fw_err %d", pfn, rc, fw_err)) {
301 snp_leak_pages(pfn, 1);
302 return -EIO;
303 }
304
305 if (kvm_rmp_make_shared(kvm, pfn, PG_LEVEL_4K))
306 return -EIO;
307
308 return rc;
309 }
310
sev_unbind_asid(struct kvm * kvm,unsigned int handle)311 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
312 {
313 struct sev_data_deactivate deactivate;
314
315 if (!handle)
316 return;
317
318 deactivate.handle = handle;
319
320 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
321 down_read(&sev_deactivate_lock);
322 sev_guest_deactivate(&deactivate, NULL);
323 up_read(&sev_deactivate_lock);
324
325 sev_decommission(handle);
326 }
327
328 /*
329 * This sets up bounce buffers/firmware pages to handle SNP Guest Request
330 * messages (e.g. attestation requests). See "SNP Guest Request" in the GHCB
331 * 2.0 specification for more details.
332 *
333 * Technically, when an SNP Guest Request is issued, the guest will provide its
334 * own request/response pages, which could in theory be passed along directly
335 * to firmware rather than using bounce pages. However, these pages would need
336 * special care:
337 *
338 * - Both pages are from shared guest memory, so they need to be protected
339 * from migration/etc. occurring while firmware reads/writes to them. At a
340 * minimum, this requires elevating the ref counts and potentially needing
341 * an explicit pinning of the memory. This places additional restrictions
342 * on what type of memory backends userspace can use for shared guest
343 * memory since there is some reliance on using refcounted pages.
344 *
345 * - The response page needs to be switched to Firmware-owned[1] state
346 * before the firmware can write to it, which can lead to potential
347 * host RMP #PFs if the guest is misbehaved and hands the host a
348 * guest page that KVM might write to for other reasons (e.g. virtio
349 * buffers/etc.).
350 *
351 * Both of these issues can be avoided completely by using separately-allocated
352 * bounce pages for both the request/response pages and passing those to
353 * firmware instead. So that's what is being set up here.
354 *
355 * Guest requests rely on message sequence numbers to ensure requests are
356 * issued to firmware in the order the guest issues them, so concurrent guest
357 * requests generally shouldn't happen. But a misbehaved guest could issue
358 * concurrent guest requests in theory, so a mutex is used to serialize
359 * access to the bounce buffers.
360 *
361 * [1] See the "Page States" section of the SEV-SNP Firmware ABI for more
362 * details on Firmware-owned pages, along with "RMP and VMPL Access Checks"
363 * in the APM for details on the related RMP restrictions.
364 */
snp_guest_req_init(struct kvm * kvm)365 static int snp_guest_req_init(struct kvm *kvm)
366 {
367 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
368 struct page *req_page;
369
370 req_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
371 if (!req_page)
372 return -ENOMEM;
373
374 sev->guest_resp_buf = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
375 if (!sev->guest_resp_buf) {
376 __free_page(req_page);
377 return -EIO;
378 }
379
380 sev->guest_req_buf = page_address(req_page);
381 mutex_init(&sev->guest_req_mutex);
382
383 return 0;
384 }
385
snp_guest_req_cleanup(struct kvm * kvm)386 static void snp_guest_req_cleanup(struct kvm *kvm)
387 {
388 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
389
390 if (sev->guest_resp_buf)
391 snp_free_firmware_page(sev->guest_resp_buf);
392
393 if (sev->guest_req_buf)
394 __free_page(virt_to_page(sev->guest_req_buf));
395
396 sev->guest_req_buf = NULL;
397 sev->guest_resp_buf = NULL;
398 }
399
__sev_guest_init(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_init * data,unsigned long vm_type)400 static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp,
401 struct kvm_sev_init *data,
402 unsigned long vm_type)
403 {
404 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
405 struct sev_platform_init_args init_args = {0};
406 bool es_active = vm_type != KVM_X86_SEV_VM;
407 u64 valid_vmsa_features = es_active ? sev_supported_vmsa_features : 0;
408 int ret;
409
410 if (kvm->created_vcpus)
411 return -EINVAL;
412
413 if (data->flags)
414 return -EINVAL;
415
416 if (data->vmsa_features & ~valid_vmsa_features)
417 return -EINVAL;
418
419 if (data->ghcb_version > GHCB_VERSION_MAX || (!es_active && data->ghcb_version))
420 return -EINVAL;
421
422 if (unlikely(sev->active))
423 return -EINVAL;
424
425 sev->active = true;
426 sev->es_active = es_active;
427 sev->vmsa_features = data->vmsa_features;
428 sev->ghcb_version = data->ghcb_version;
429
430 /*
431 * Currently KVM supports the full range of mandatory features defined
432 * by version 2 of the GHCB protocol, so default to that for SEV-ES
433 * guests created via KVM_SEV_INIT2.
434 */
435 if (sev->es_active && !sev->ghcb_version)
436 sev->ghcb_version = GHCB_VERSION_DEFAULT;
437
438 if (vm_type == KVM_X86_SNP_VM)
439 sev->vmsa_features |= SVM_SEV_FEAT_SNP_ACTIVE;
440
441 ret = sev_asid_new(sev);
442 if (ret)
443 goto e_no_asid;
444
445 init_args.probe = false;
446 ret = sev_platform_init(&init_args);
447 if (ret)
448 goto e_free;
449
450 /* This needs to happen after SEV/SNP firmware initialization. */
451 if (vm_type == KVM_X86_SNP_VM) {
452 ret = snp_guest_req_init(kvm);
453 if (ret)
454 goto e_free;
455 }
456
457 INIT_LIST_HEAD(&sev->regions_list);
458 INIT_LIST_HEAD(&sev->mirror_vms);
459 sev->need_init = false;
460
461 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
462
463 return 0;
464
465 e_free:
466 argp->error = init_args.error;
467 sev_asid_free(sev);
468 sev->asid = 0;
469 e_no_asid:
470 sev->vmsa_features = 0;
471 sev->es_active = false;
472 sev->active = false;
473 return ret;
474 }
475
sev_guest_init(struct kvm * kvm,struct kvm_sev_cmd * argp)476 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
477 {
478 struct kvm_sev_init data = {
479 .vmsa_features = 0,
480 .ghcb_version = 0,
481 };
482 unsigned long vm_type;
483
484 if (kvm->arch.vm_type != KVM_X86_DEFAULT_VM)
485 return -EINVAL;
486
487 vm_type = (argp->id == KVM_SEV_INIT ? KVM_X86_SEV_VM : KVM_X86_SEV_ES_VM);
488
489 /*
490 * KVM_SEV_ES_INIT has been deprecated by KVM_SEV_INIT2, so it will
491 * continue to only ever support the minimal GHCB protocol version.
492 */
493 if (vm_type == KVM_X86_SEV_ES_VM)
494 data.ghcb_version = GHCB_VERSION_MIN;
495
496 return __sev_guest_init(kvm, argp, &data, vm_type);
497 }
498
sev_guest_init2(struct kvm * kvm,struct kvm_sev_cmd * argp)499 static int sev_guest_init2(struct kvm *kvm, struct kvm_sev_cmd *argp)
500 {
501 struct kvm_sev_init data;
502
503 if (!to_kvm_sev_info(kvm)->need_init)
504 return -EINVAL;
505
506 if (kvm->arch.vm_type != KVM_X86_SEV_VM &&
507 kvm->arch.vm_type != KVM_X86_SEV_ES_VM &&
508 kvm->arch.vm_type != KVM_X86_SNP_VM)
509 return -EINVAL;
510
511 if (copy_from_user(&data, u64_to_user_ptr(argp->data), sizeof(data)))
512 return -EFAULT;
513
514 return __sev_guest_init(kvm, argp, &data, kvm->arch.vm_type);
515 }
516
sev_bind_asid(struct kvm * kvm,unsigned int handle,int * error)517 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
518 {
519 unsigned int asid = sev_get_asid(kvm);
520 struct sev_data_activate activate;
521 int ret;
522
523 /* activate ASID on the given handle */
524 activate.handle = handle;
525 activate.asid = asid;
526 ret = sev_guest_activate(&activate, error);
527
528 return ret;
529 }
530
__sev_issue_cmd(int fd,int id,void * data,int * error)531 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
532 {
533 CLASS(fd, f)(fd);
534
535 if (fd_empty(f))
536 return -EBADF;
537
538 return sev_issue_cmd_external_user(fd_file(f), id, data, error);
539 }
540
sev_issue_cmd(struct kvm * kvm,int id,void * data,int * error)541 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
542 {
543 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
544
545 return __sev_issue_cmd(sev->fd, id, data, error);
546 }
547
sev_launch_start(struct kvm * kvm,struct kvm_sev_cmd * argp)548 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
549 {
550 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
551 struct sev_data_launch_start start;
552 struct kvm_sev_launch_start params;
553 void *dh_blob, *session_blob;
554 int *error = &argp->error;
555 int ret;
556
557 if (!sev_guest(kvm))
558 return -ENOTTY;
559
560 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
561 return -EFAULT;
562
563 memset(&start, 0, sizeof(start));
564
565 dh_blob = NULL;
566 if (params.dh_uaddr) {
567 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
568 if (IS_ERR(dh_blob))
569 return PTR_ERR(dh_blob);
570
571 start.dh_cert_address = __sme_set(__pa(dh_blob));
572 start.dh_cert_len = params.dh_len;
573 }
574
575 session_blob = NULL;
576 if (params.session_uaddr) {
577 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
578 if (IS_ERR(session_blob)) {
579 ret = PTR_ERR(session_blob);
580 goto e_free_dh;
581 }
582
583 start.session_address = __sme_set(__pa(session_blob));
584 start.session_len = params.session_len;
585 }
586
587 start.handle = params.handle;
588 start.policy = params.policy;
589
590 /* create memory encryption context */
591 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
592 if (ret)
593 goto e_free_session;
594
595 /* Bind ASID to this guest */
596 ret = sev_bind_asid(kvm, start.handle, error);
597 if (ret) {
598 sev_decommission(start.handle);
599 goto e_free_session;
600 }
601
602 /* return handle to userspace */
603 params.handle = start.handle;
604 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) {
605 sev_unbind_asid(kvm, start.handle);
606 ret = -EFAULT;
607 goto e_free_session;
608 }
609
610 sev->handle = start.handle;
611 sev->fd = argp->sev_fd;
612
613 e_free_session:
614 kfree(session_blob);
615 e_free_dh:
616 kfree(dh_blob);
617 return ret;
618 }
619
sev_pin_memory(struct kvm * kvm,unsigned long uaddr,unsigned long ulen,unsigned long * n,unsigned int flags)620 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
621 unsigned long ulen, unsigned long *n,
622 unsigned int flags)
623 {
624 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
625 unsigned long npages, size;
626 int npinned;
627 unsigned long locked, lock_limit;
628 struct page **pages;
629 unsigned long first, last;
630 int ret;
631
632 lockdep_assert_held(&kvm->lock);
633
634 if (ulen == 0 || uaddr + ulen < uaddr)
635 return ERR_PTR(-EINVAL);
636
637 /* Calculate number of pages. */
638 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
639 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
640 npages = (last - first + 1);
641
642 locked = sev->pages_locked + npages;
643 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
644 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
645 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
646 return ERR_PTR(-ENOMEM);
647 }
648
649 if (WARN_ON_ONCE(npages > INT_MAX))
650 return ERR_PTR(-EINVAL);
651
652 /* Avoid using vmalloc for smaller buffers. */
653 size = npages * sizeof(struct page *);
654 if (size > PAGE_SIZE)
655 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT);
656 else
657 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
658
659 if (!pages)
660 return ERR_PTR(-ENOMEM);
661
662 /* Pin the user virtual address. */
663 npinned = pin_user_pages_fast(uaddr, npages, flags, pages);
664 if (npinned != npages) {
665 pr_err("SEV: Failure locking %lu pages.\n", npages);
666 ret = -ENOMEM;
667 goto err;
668 }
669
670 *n = npages;
671 sev->pages_locked = locked;
672
673 return pages;
674
675 err:
676 if (npinned > 0)
677 unpin_user_pages(pages, npinned);
678
679 kvfree(pages);
680 return ERR_PTR(ret);
681 }
682
sev_unpin_memory(struct kvm * kvm,struct page ** pages,unsigned long npages)683 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
684 unsigned long npages)
685 {
686 unpin_user_pages(pages, npages);
687 kvfree(pages);
688 to_kvm_sev_info(kvm)->pages_locked -= npages;
689 }
690
sev_clflush_pages(struct page * pages[],unsigned long npages)691 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
692 {
693 uint8_t *page_virtual;
694 unsigned long i;
695
696 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
697 pages == NULL)
698 return;
699
700 for (i = 0; i < npages; i++) {
701 page_virtual = kmap_local_page(pages[i]);
702 clflush_cache_range(page_virtual, PAGE_SIZE);
703 kunmap_local(page_virtual);
704 cond_resched();
705 }
706 }
707
get_num_contig_pages(unsigned long idx,struct page ** inpages,unsigned long npages)708 static unsigned long get_num_contig_pages(unsigned long idx,
709 struct page **inpages, unsigned long npages)
710 {
711 unsigned long paddr, next_paddr;
712 unsigned long i = idx + 1, pages = 1;
713
714 /* find the number of contiguous pages starting from idx */
715 paddr = __sme_page_pa(inpages[idx]);
716 while (i < npages) {
717 next_paddr = __sme_page_pa(inpages[i++]);
718 if ((paddr + PAGE_SIZE) == next_paddr) {
719 pages++;
720 paddr = next_paddr;
721 continue;
722 }
723 break;
724 }
725
726 return pages;
727 }
728
sev_launch_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)729 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
730 {
731 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
732 struct kvm_sev_launch_update_data params;
733 struct sev_data_launch_update_data data;
734 struct page **inpages;
735 int ret;
736
737 if (!sev_guest(kvm))
738 return -ENOTTY;
739
740 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
741 return -EFAULT;
742
743 vaddr = params.uaddr;
744 size = params.len;
745 vaddr_end = vaddr + size;
746
747 /* Lock the user memory. */
748 inpages = sev_pin_memory(kvm, vaddr, size, &npages, FOLL_WRITE);
749 if (IS_ERR(inpages))
750 return PTR_ERR(inpages);
751
752 /*
753 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
754 * place; the cache may contain the data that was written unencrypted.
755 */
756 sev_clflush_pages(inpages, npages);
757
758 data.reserved = 0;
759 data.handle = to_kvm_sev_info(kvm)->handle;
760
761 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
762 int offset, len;
763
764 /*
765 * If the user buffer is not page-aligned, calculate the offset
766 * within the page.
767 */
768 offset = vaddr & (PAGE_SIZE - 1);
769
770 /* Calculate the number of pages that can be encrypted in one go. */
771 pages = get_num_contig_pages(i, inpages, npages);
772
773 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
774
775 data.len = len;
776 data.address = __sme_page_pa(inpages[i]) + offset;
777 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
778 if (ret)
779 goto e_unpin;
780
781 size -= len;
782 next_vaddr = vaddr + len;
783 }
784
785 e_unpin:
786 /* content of memory is updated, mark pages dirty */
787 for (i = 0; i < npages; i++) {
788 set_page_dirty_lock(inpages[i]);
789 mark_page_accessed(inpages[i]);
790 }
791 /* unlock the user pages */
792 sev_unpin_memory(kvm, inpages, npages);
793 return ret;
794 }
795
sev_es_sync_vmsa(struct vcpu_svm * svm)796 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
797 {
798 struct kvm_vcpu *vcpu = &svm->vcpu;
799 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
800 struct sev_es_save_area *save = svm->sev_es.vmsa;
801 struct xregs_state *xsave;
802 const u8 *s;
803 u8 *d;
804 int i;
805
806 /* Check some debug related fields before encrypting the VMSA */
807 if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
808 return -EINVAL;
809
810 /*
811 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
812 * the traditional VMSA that is part of the VMCB. Copy the
813 * traditional VMSA as it has been built so far (in prep
814 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
815 */
816 memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
817
818 /* Sync registgers */
819 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
820 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
821 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
822 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
823 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
824 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
825 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
826 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
827 #ifdef CONFIG_X86_64
828 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8];
829 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9];
830 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
831 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
832 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
833 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
834 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
835 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
836 #endif
837 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
838
839 /* Sync some non-GPR registers before encrypting */
840 save->xcr0 = svm->vcpu.arch.xcr0;
841 save->pkru = svm->vcpu.arch.pkru;
842 save->xss = svm->vcpu.arch.ia32_xss;
843 save->dr6 = svm->vcpu.arch.dr6;
844
845 save->sev_features = sev->vmsa_features;
846
847 /*
848 * Skip FPU and AVX setup with KVM_SEV_ES_INIT to avoid
849 * breaking older measurements.
850 */
851 if (vcpu->kvm->arch.vm_type != KVM_X86_DEFAULT_VM) {
852 xsave = &vcpu->arch.guest_fpu.fpstate->regs.xsave;
853 save->x87_dp = xsave->i387.rdp;
854 save->mxcsr = xsave->i387.mxcsr;
855 save->x87_ftw = xsave->i387.twd;
856 save->x87_fsw = xsave->i387.swd;
857 save->x87_fcw = xsave->i387.cwd;
858 save->x87_fop = xsave->i387.fop;
859 save->x87_ds = 0;
860 save->x87_cs = 0;
861 save->x87_rip = xsave->i387.rip;
862
863 for (i = 0; i < 8; i++) {
864 /*
865 * The format of the x87 save area is undocumented and
866 * definitely not what you would expect. It consists of
867 * an 8*8 bytes area with bytes 0-7, and an 8*2 bytes
868 * area with bytes 8-9 of each register.
869 */
870 d = save->fpreg_x87 + i * 8;
871 s = ((u8 *)xsave->i387.st_space) + i * 16;
872 memcpy(d, s, 8);
873 save->fpreg_x87[64 + i * 2] = s[8];
874 save->fpreg_x87[64 + i * 2 + 1] = s[9];
875 }
876 memcpy(save->fpreg_xmm, xsave->i387.xmm_space, 256);
877
878 s = get_xsave_addr(xsave, XFEATURE_YMM);
879 if (s)
880 memcpy(save->fpreg_ymm, s, 256);
881 else
882 memset(save->fpreg_ymm, 0, 256);
883 }
884
885 pr_debug("Virtual Machine Save Area (VMSA):\n");
886 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
887
888 return 0;
889 }
890
__sev_launch_update_vmsa(struct kvm * kvm,struct kvm_vcpu * vcpu,int * error)891 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
892 int *error)
893 {
894 struct sev_data_launch_update_vmsa vmsa;
895 struct vcpu_svm *svm = to_svm(vcpu);
896 int ret;
897
898 if (vcpu->guest_debug) {
899 pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported");
900 return -EINVAL;
901 }
902
903 /* Perform some pre-encryption checks against the VMSA */
904 ret = sev_es_sync_vmsa(svm);
905 if (ret)
906 return ret;
907
908 /*
909 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
910 * the VMSA memory content (i.e it will write the same memory region
911 * with the guest's key), so invalidate it first.
912 */
913 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
914
915 vmsa.reserved = 0;
916 vmsa.handle = to_kvm_sev_info(kvm)->handle;
917 vmsa.address = __sme_pa(svm->sev_es.vmsa);
918 vmsa.len = PAGE_SIZE;
919 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
920 if (ret)
921 return ret;
922
923 /*
924 * SEV-ES guests maintain an encrypted version of their FPU
925 * state which is restored and saved on VMRUN and VMEXIT.
926 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
927 * do xsave/xrstor on it.
928 */
929 fpstate_set_confidential(&vcpu->arch.guest_fpu);
930 vcpu->arch.guest_state_protected = true;
931
932 /*
933 * SEV-ES guest mandates LBR Virtualization to be _always_ ON. Enable it
934 * only after setting guest_state_protected because KVM_SET_MSRS allows
935 * dynamic toggling of LBRV (for performance reason) on write access to
936 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
937 */
938 svm_enable_lbrv(vcpu);
939 return 0;
940 }
941
sev_launch_update_vmsa(struct kvm * kvm,struct kvm_sev_cmd * argp)942 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
943 {
944 struct kvm_vcpu *vcpu;
945 unsigned long i;
946 int ret;
947
948 if (!sev_es_guest(kvm))
949 return -ENOTTY;
950
951 kvm_for_each_vcpu(i, vcpu, kvm) {
952 ret = mutex_lock_killable(&vcpu->mutex);
953 if (ret)
954 return ret;
955
956 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
957
958 mutex_unlock(&vcpu->mutex);
959 if (ret)
960 return ret;
961 }
962
963 return 0;
964 }
965
sev_launch_measure(struct kvm * kvm,struct kvm_sev_cmd * argp)966 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
967 {
968 void __user *measure = u64_to_user_ptr(argp->data);
969 struct sev_data_launch_measure data;
970 struct kvm_sev_launch_measure params;
971 void __user *p = NULL;
972 void *blob = NULL;
973 int ret;
974
975 if (!sev_guest(kvm))
976 return -ENOTTY;
977
978 if (copy_from_user(¶ms, measure, sizeof(params)))
979 return -EFAULT;
980
981 memset(&data, 0, sizeof(data));
982
983 /* User wants to query the blob length */
984 if (!params.len)
985 goto cmd;
986
987 p = u64_to_user_ptr(params.uaddr);
988 if (p) {
989 if (params.len > SEV_FW_BLOB_MAX_SIZE)
990 return -EINVAL;
991
992 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
993 if (!blob)
994 return -ENOMEM;
995
996 data.address = __psp_pa(blob);
997 data.len = params.len;
998 }
999
1000 cmd:
1001 data.handle = to_kvm_sev_info(kvm)->handle;
1002 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
1003
1004 /*
1005 * If we query the session length, FW responded with expected data.
1006 */
1007 if (!params.len)
1008 goto done;
1009
1010 if (ret)
1011 goto e_free_blob;
1012
1013 if (blob) {
1014 if (copy_to_user(p, blob, params.len))
1015 ret = -EFAULT;
1016 }
1017
1018 done:
1019 params.len = data.len;
1020 if (copy_to_user(measure, ¶ms, sizeof(params)))
1021 ret = -EFAULT;
1022 e_free_blob:
1023 kfree(blob);
1024 return ret;
1025 }
1026
sev_launch_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1027 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1028 {
1029 struct sev_data_launch_finish data;
1030
1031 if (!sev_guest(kvm))
1032 return -ENOTTY;
1033
1034 data.handle = to_kvm_sev_info(kvm)->handle;
1035 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
1036 }
1037
sev_guest_status(struct kvm * kvm,struct kvm_sev_cmd * argp)1038 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
1039 {
1040 struct kvm_sev_guest_status params;
1041 struct sev_data_guest_status data;
1042 int ret;
1043
1044 if (!sev_guest(kvm))
1045 return -ENOTTY;
1046
1047 memset(&data, 0, sizeof(data));
1048
1049 data.handle = to_kvm_sev_info(kvm)->handle;
1050 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
1051 if (ret)
1052 return ret;
1053
1054 params.policy = data.policy;
1055 params.state = data.state;
1056 params.handle = data.handle;
1057
1058 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params)))
1059 ret = -EFAULT;
1060
1061 return ret;
1062 }
1063
__sev_issue_dbg_cmd(struct kvm * kvm,unsigned long src,unsigned long dst,int size,int * error,bool enc)1064 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
1065 unsigned long dst, int size,
1066 int *error, bool enc)
1067 {
1068 struct sev_data_dbg data;
1069
1070 data.reserved = 0;
1071 data.handle = to_kvm_sev_info(kvm)->handle;
1072 data.dst_addr = dst;
1073 data.src_addr = src;
1074 data.len = size;
1075
1076 return sev_issue_cmd(kvm,
1077 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
1078 &data, error);
1079 }
1080
__sev_dbg_decrypt(struct kvm * kvm,unsigned long src_paddr,unsigned long dst_paddr,int sz,int * err)1081 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
1082 unsigned long dst_paddr, int sz, int *err)
1083 {
1084 int offset;
1085
1086 /*
1087 * Its safe to read more than we are asked, caller should ensure that
1088 * destination has enough space.
1089 */
1090 offset = src_paddr & 15;
1091 src_paddr = round_down(src_paddr, 16);
1092 sz = round_up(sz + offset, 16);
1093
1094 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
1095 }
1096
__sev_dbg_decrypt_user(struct kvm * kvm,unsigned long paddr,void __user * dst_uaddr,unsigned long dst_paddr,int size,int * err)1097 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
1098 void __user *dst_uaddr,
1099 unsigned long dst_paddr,
1100 int size, int *err)
1101 {
1102 struct page *tpage = NULL;
1103 int ret, offset;
1104
1105 /* if inputs are not 16-byte then use intermediate buffer */
1106 if (!IS_ALIGNED(dst_paddr, 16) ||
1107 !IS_ALIGNED(paddr, 16) ||
1108 !IS_ALIGNED(size, 16)) {
1109 tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1110 if (!tpage)
1111 return -ENOMEM;
1112
1113 dst_paddr = __sme_page_pa(tpage);
1114 }
1115
1116 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
1117 if (ret)
1118 goto e_free;
1119
1120 if (tpage) {
1121 offset = paddr & 15;
1122 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
1123 ret = -EFAULT;
1124 }
1125
1126 e_free:
1127 if (tpage)
1128 __free_page(tpage);
1129
1130 return ret;
1131 }
1132
__sev_dbg_encrypt_user(struct kvm * kvm,unsigned long paddr,void __user * vaddr,unsigned long dst_paddr,void __user * dst_vaddr,int size,int * error)1133 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
1134 void __user *vaddr,
1135 unsigned long dst_paddr,
1136 void __user *dst_vaddr,
1137 int size, int *error)
1138 {
1139 struct page *src_tpage = NULL;
1140 struct page *dst_tpage = NULL;
1141 int ret, len = size;
1142
1143 /* If source buffer is not aligned then use an intermediate buffer */
1144 if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
1145 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
1146 if (!src_tpage)
1147 return -ENOMEM;
1148
1149 if (copy_from_user(page_address(src_tpage), vaddr, size)) {
1150 __free_page(src_tpage);
1151 return -EFAULT;
1152 }
1153
1154 paddr = __sme_page_pa(src_tpage);
1155 }
1156
1157 /*
1158 * If destination buffer or length is not aligned then do read-modify-write:
1159 * - decrypt destination in an intermediate buffer
1160 * - copy the source buffer in an intermediate buffer
1161 * - use the intermediate buffer as source buffer
1162 */
1163 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
1164 int dst_offset;
1165
1166 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
1167 if (!dst_tpage) {
1168 ret = -ENOMEM;
1169 goto e_free;
1170 }
1171
1172 ret = __sev_dbg_decrypt(kvm, dst_paddr,
1173 __sme_page_pa(dst_tpage), size, error);
1174 if (ret)
1175 goto e_free;
1176
1177 /*
1178 * If source is kernel buffer then use memcpy() otherwise
1179 * copy_from_user().
1180 */
1181 dst_offset = dst_paddr & 15;
1182
1183 if (src_tpage)
1184 memcpy(page_address(dst_tpage) + dst_offset,
1185 page_address(src_tpage), size);
1186 else {
1187 if (copy_from_user(page_address(dst_tpage) + dst_offset,
1188 vaddr, size)) {
1189 ret = -EFAULT;
1190 goto e_free;
1191 }
1192 }
1193
1194 paddr = __sme_page_pa(dst_tpage);
1195 dst_paddr = round_down(dst_paddr, 16);
1196 len = round_up(size, 16);
1197 }
1198
1199 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
1200
1201 e_free:
1202 if (src_tpage)
1203 __free_page(src_tpage);
1204 if (dst_tpage)
1205 __free_page(dst_tpage);
1206 return ret;
1207 }
1208
sev_dbg_crypt(struct kvm * kvm,struct kvm_sev_cmd * argp,bool dec)1209 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
1210 {
1211 unsigned long vaddr, vaddr_end, next_vaddr;
1212 unsigned long dst_vaddr;
1213 struct page **src_p, **dst_p;
1214 struct kvm_sev_dbg debug;
1215 unsigned long n;
1216 unsigned int size;
1217 int ret;
1218
1219 if (!sev_guest(kvm))
1220 return -ENOTTY;
1221
1222 if (copy_from_user(&debug, u64_to_user_ptr(argp->data), sizeof(debug)))
1223 return -EFAULT;
1224
1225 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
1226 return -EINVAL;
1227 if (!debug.dst_uaddr)
1228 return -EINVAL;
1229
1230 vaddr = debug.src_uaddr;
1231 size = debug.len;
1232 vaddr_end = vaddr + size;
1233 dst_vaddr = debug.dst_uaddr;
1234
1235 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
1236 int len, s_off, d_off;
1237
1238 /* lock userspace source and destination page */
1239 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
1240 if (IS_ERR(src_p))
1241 return PTR_ERR(src_p);
1242
1243 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, FOLL_WRITE);
1244 if (IS_ERR(dst_p)) {
1245 sev_unpin_memory(kvm, src_p, n);
1246 return PTR_ERR(dst_p);
1247 }
1248
1249 /*
1250 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
1251 * the pages; flush the destination too so that future accesses do not
1252 * see stale data.
1253 */
1254 sev_clflush_pages(src_p, 1);
1255 sev_clflush_pages(dst_p, 1);
1256
1257 /*
1258 * Since user buffer may not be page aligned, calculate the
1259 * offset within the page.
1260 */
1261 s_off = vaddr & ~PAGE_MASK;
1262 d_off = dst_vaddr & ~PAGE_MASK;
1263 len = min_t(size_t, (PAGE_SIZE - s_off), size);
1264
1265 if (dec)
1266 ret = __sev_dbg_decrypt_user(kvm,
1267 __sme_page_pa(src_p[0]) + s_off,
1268 (void __user *)dst_vaddr,
1269 __sme_page_pa(dst_p[0]) + d_off,
1270 len, &argp->error);
1271 else
1272 ret = __sev_dbg_encrypt_user(kvm,
1273 __sme_page_pa(src_p[0]) + s_off,
1274 (void __user *)vaddr,
1275 __sme_page_pa(dst_p[0]) + d_off,
1276 (void __user *)dst_vaddr,
1277 len, &argp->error);
1278
1279 sev_unpin_memory(kvm, src_p, n);
1280 sev_unpin_memory(kvm, dst_p, n);
1281
1282 if (ret)
1283 goto err;
1284
1285 next_vaddr = vaddr + len;
1286 dst_vaddr = dst_vaddr + len;
1287 size -= len;
1288 }
1289 err:
1290 return ret;
1291 }
1292
sev_launch_secret(struct kvm * kvm,struct kvm_sev_cmd * argp)1293 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1294 {
1295 struct sev_data_launch_secret data;
1296 struct kvm_sev_launch_secret params;
1297 struct page **pages;
1298 void *blob, *hdr;
1299 unsigned long n, i;
1300 int ret, offset;
1301
1302 if (!sev_guest(kvm))
1303 return -ENOTTY;
1304
1305 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
1306 return -EFAULT;
1307
1308 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, FOLL_WRITE);
1309 if (IS_ERR(pages))
1310 return PTR_ERR(pages);
1311
1312 /*
1313 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1314 * place; the cache may contain the data that was written unencrypted.
1315 */
1316 sev_clflush_pages(pages, n);
1317
1318 /*
1319 * The secret must be copied into contiguous memory region, lets verify
1320 * that userspace memory pages are contiguous before we issue command.
1321 */
1322 if (get_num_contig_pages(0, pages, n) != n) {
1323 ret = -EINVAL;
1324 goto e_unpin_memory;
1325 }
1326
1327 memset(&data, 0, sizeof(data));
1328
1329 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1330 data.guest_address = __sme_page_pa(pages[0]) + offset;
1331 data.guest_len = params.guest_len;
1332
1333 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1334 if (IS_ERR(blob)) {
1335 ret = PTR_ERR(blob);
1336 goto e_unpin_memory;
1337 }
1338
1339 data.trans_address = __psp_pa(blob);
1340 data.trans_len = params.trans_len;
1341
1342 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1343 if (IS_ERR(hdr)) {
1344 ret = PTR_ERR(hdr);
1345 goto e_free_blob;
1346 }
1347 data.hdr_address = __psp_pa(hdr);
1348 data.hdr_len = params.hdr_len;
1349
1350 data.handle = to_kvm_sev_info(kvm)->handle;
1351 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1352
1353 kfree(hdr);
1354
1355 e_free_blob:
1356 kfree(blob);
1357 e_unpin_memory:
1358 /* content of memory is updated, mark pages dirty */
1359 for (i = 0; i < n; i++) {
1360 set_page_dirty_lock(pages[i]);
1361 mark_page_accessed(pages[i]);
1362 }
1363 sev_unpin_memory(kvm, pages, n);
1364 return ret;
1365 }
1366
sev_get_attestation_report(struct kvm * kvm,struct kvm_sev_cmd * argp)1367 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1368 {
1369 void __user *report = u64_to_user_ptr(argp->data);
1370 struct sev_data_attestation_report data;
1371 struct kvm_sev_attestation_report params;
1372 void __user *p;
1373 void *blob = NULL;
1374 int ret;
1375
1376 if (!sev_guest(kvm))
1377 return -ENOTTY;
1378
1379 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
1380 return -EFAULT;
1381
1382 memset(&data, 0, sizeof(data));
1383
1384 /* User wants to query the blob length */
1385 if (!params.len)
1386 goto cmd;
1387
1388 p = u64_to_user_ptr(params.uaddr);
1389 if (p) {
1390 if (params.len > SEV_FW_BLOB_MAX_SIZE)
1391 return -EINVAL;
1392
1393 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1394 if (!blob)
1395 return -ENOMEM;
1396
1397 data.address = __psp_pa(blob);
1398 data.len = params.len;
1399 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1400 }
1401 cmd:
1402 data.handle = to_kvm_sev_info(kvm)->handle;
1403 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1404 /*
1405 * If we query the session length, FW responded with expected data.
1406 */
1407 if (!params.len)
1408 goto done;
1409
1410 if (ret)
1411 goto e_free_blob;
1412
1413 if (blob) {
1414 if (copy_to_user(p, blob, params.len))
1415 ret = -EFAULT;
1416 }
1417
1418 done:
1419 params.len = data.len;
1420 if (copy_to_user(report, ¶ms, sizeof(params)))
1421 ret = -EFAULT;
1422 e_free_blob:
1423 kfree(blob);
1424 return ret;
1425 }
1426
1427 /* Userspace wants to query session length. */
1428 static int
__sev_send_start_query_session_length(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_send_start * params)1429 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1430 struct kvm_sev_send_start *params)
1431 {
1432 struct sev_data_send_start data;
1433 int ret;
1434
1435 memset(&data, 0, sizeof(data));
1436 data.handle = to_kvm_sev_info(kvm)->handle;
1437 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1438
1439 params->session_len = data.session_len;
1440 if (copy_to_user(u64_to_user_ptr(argp->data), params,
1441 sizeof(struct kvm_sev_send_start)))
1442 ret = -EFAULT;
1443
1444 return ret;
1445 }
1446
sev_send_start(struct kvm * kvm,struct kvm_sev_cmd * argp)1447 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1448 {
1449 struct sev_data_send_start data;
1450 struct kvm_sev_send_start params;
1451 void *amd_certs, *session_data;
1452 void *pdh_cert, *plat_certs;
1453 int ret;
1454
1455 if (!sev_guest(kvm))
1456 return -ENOTTY;
1457
1458 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data),
1459 sizeof(struct kvm_sev_send_start)))
1460 return -EFAULT;
1461
1462 /* if session_len is zero, userspace wants to query the session length */
1463 if (!params.session_len)
1464 return __sev_send_start_query_session_length(kvm, argp,
1465 ¶ms);
1466
1467 /* some sanity checks */
1468 if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1469 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1470 return -EINVAL;
1471
1472 /* allocate the memory to hold the session data blob */
1473 session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1474 if (!session_data)
1475 return -ENOMEM;
1476
1477 /* copy the certificate blobs from userspace */
1478 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1479 params.pdh_cert_len);
1480 if (IS_ERR(pdh_cert)) {
1481 ret = PTR_ERR(pdh_cert);
1482 goto e_free_session;
1483 }
1484
1485 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1486 params.plat_certs_len);
1487 if (IS_ERR(plat_certs)) {
1488 ret = PTR_ERR(plat_certs);
1489 goto e_free_pdh;
1490 }
1491
1492 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1493 params.amd_certs_len);
1494 if (IS_ERR(amd_certs)) {
1495 ret = PTR_ERR(amd_certs);
1496 goto e_free_plat_cert;
1497 }
1498
1499 /* populate the FW SEND_START field with system physical address */
1500 memset(&data, 0, sizeof(data));
1501 data.pdh_cert_address = __psp_pa(pdh_cert);
1502 data.pdh_cert_len = params.pdh_cert_len;
1503 data.plat_certs_address = __psp_pa(plat_certs);
1504 data.plat_certs_len = params.plat_certs_len;
1505 data.amd_certs_address = __psp_pa(amd_certs);
1506 data.amd_certs_len = params.amd_certs_len;
1507 data.session_address = __psp_pa(session_data);
1508 data.session_len = params.session_len;
1509 data.handle = to_kvm_sev_info(kvm)->handle;
1510
1511 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1512
1513 if (!ret && copy_to_user(u64_to_user_ptr(params.session_uaddr),
1514 session_data, params.session_len)) {
1515 ret = -EFAULT;
1516 goto e_free_amd_cert;
1517 }
1518
1519 params.policy = data.policy;
1520 params.session_len = data.session_len;
1521 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms,
1522 sizeof(struct kvm_sev_send_start)))
1523 ret = -EFAULT;
1524
1525 e_free_amd_cert:
1526 kfree(amd_certs);
1527 e_free_plat_cert:
1528 kfree(plat_certs);
1529 e_free_pdh:
1530 kfree(pdh_cert);
1531 e_free_session:
1532 kfree(session_data);
1533 return ret;
1534 }
1535
1536 /* Userspace wants to query either header or trans length. */
1537 static int
__sev_send_update_data_query_lengths(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_send_update_data * params)1538 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1539 struct kvm_sev_send_update_data *params)
1540 {
1541 struct sev_data_send_update_data data;
1542 int ret;
1543
1544 memset(&data, 0, sizeof(data));
1545 data.handle = to_kvm_sev_info(kvm)->handle;
1546 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1547
1548 params->hdr_len = data.hdr_len;
1549 params->trans_len = data.trans_len;
1550
1551 if (copy_to_user(u64_to_user_ptr(argp->data), params,
1552 sizeof(struct kvm_sev_send_update_data)))
1553 ret = -EFAULT;
1554
1555 return ret;
1556 }
1557
sev_send_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)1558 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1559 {
1560 struct sev_data_send_update_data data;
1561 struct kvm_sev_send_update_data params;
1562 void *hdr, *trans_data;
1563 struct page **guest_page;
1564 unsigned long n;
1565 int ret, offset;
1566
1567 if (!sev_guest(kvm))
1568 return -ENOTTY;
1569
1570 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data),
1571 sizeof(struct kvm_sev_send_update_data)))
1572 return -EFAULT;
1573
1574 /* userspace wants to query either header or trans length */
1575 if (!params.trans_len || !params.hdr_len)
1576 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms);
1577
1578 if (!params.trans_uaddr || !params.guest_uaddr ||
1579 !params.guest_len || !params.hdr_uaddr)
1580 return -EINVAL;
1581
1582 /* Check if we are crossing the page boundary */
1583 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1584 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1585 return -EINVAL;
1586
1587 /* Pin guest memory */
1588 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1589 PAGE_SIZE, &n, 0);
1590 if (IS_ERR(guest_page))
1591 return PTR_ERR(guest_page);
1592
1593 /* allocate memory for header and transport buffer */
1594 ret = -ENOMEM;
1595 hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1596 if (!hdr)
1597 goto e_unpin;
1598
1599 trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1600 if (!trans_data)
1601 goto e_free_hdr;
1602
1603 memset(&data, 0, sizeof(data));
1604 data.hdr_address = __psp_pa(hdr);
1605 data.hdr_len = params.hdr_len;
1606 data.trans_address = __psp_pa(trans_data);
1607 data.trans_len = params.trans_len;
1608
1609 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1610 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1611 data.guest_address |= sev_me_mask;
1612 data.guest_len = params.guest_len;
1613 data.handle = to_kvm_sev_info(kvm)->handle;
1614
1615 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1616
1617 if (ret)
1618 goto e_free_trans_data;
1619
1620 /* copy transport buffer to user space */
1621 if (copy_to_user(u64_to_user_ptr(params.trans_uaddr),
1622 trans_data, params.trans_len)) {
1623 ret = -EFAULT;
1624 goto e_free_trans_data;
1625 }
1626
1627 /* Copy packet header to userspace. */
1628 if (copy_to_user(u64_to_user_ptr(params.hdr_uaddr), hdr,
1629 params.hdr_len))
1630 ret = -EFAULT;
1631
1632 e_free_trans_data:
1633 kfree(trans_data);
1634 e_free_hdr:
1635 kfree(hdr);
1636 e_unpin:
1637 sev_unpin_memory(kvm, guest_page, n);
1638
1639 return ret;
1640 }
1641
sev_send_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1642 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1643 {
1644 struct sev_data_send_finish data;
1645
1646 if (!sev_guest(kvm))
1647 return -ENOTTY;
1648
1649 data.handle = to_kvm_sev_info(kvm)->handle;
1650 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1651 }
1652
sev_send_cancel(struct kvm * kvm,struct kvm_sev_cmd * argp)1653 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1654 {
1655 struct sev_data_send_cancel data;
1656
1657 if (!sev_guest(kvm))
1658 return -ENOTTY;
1659
1660 data.handle = to_kvm_sev_info(kvm)->handle;
1661 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1662 }
1663
sev_receive_start(struct kvm * kvm,struct kvm_sev_cmd * argp)1664 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1665 {
1666 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
1667 struct sev_data_receive_start start;
1668 struct kvm_sev_receive_start params;
1669 int *error = &argp->error;
1670 void *session_data;
1671 void *pdh_data;
1672 int ret;
1673
1674 if (!sev_guest(kvm))
1675 return -ENOTTY;
1676
1677 /* Get parameter from the userspace */
1678 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data),
1679 sizeof(struct kvm_sev_receive_start)))
1680 return -EFAULT;
1681
1682 /* some sanity checks */
1683 if (!params.pdh_uaddr || !params.pdh_len ||
1684 !params.session_uaddr || !params.session_len)
1685 return -EINVAL;
1686
1687 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1688 if (IS_ERR(pdh_data))
1689 return PTR_ERR(pdh_data);
1690
1691 session_data = psp_copy_user_blob(params.session_uaddr,
1692 params.session_len);
1693 if (IS_ERR(session_data)) {
1694 ret = PTR_ERR(session_data);
1695 goto e_free_pdh;
1696 }
1697
1698 memset(&start, 0, sizeof(start));
1699 start.handle = params.handle;
1700 start.policy = params.policy;
1701 start.pdh_cert_address = __psp_pa(pdh_data);
1702 start.pdh_cert_len = params.pdh_len;
1703 start.session_address = __psp_pa(session_data);
1704 start.session_len = params.session_len;
1705
1706 /* create memory encryption context */
1707 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1708 error);
1709 if (ret)
1710 goto e_free_session;
1711
1712 /* Bind ASID to this guest */
1713 ret = sev_bind_asid(kvm, start.handle, error);
1714 if (ret) {
1715 sev_decommission(start.handle);
1716 goto e_free_session;
1717 }
1718
1719 params.handle = start.handle;
1720 if (copy_to_user(u64_to_user_ptr(argp->data),
1721 ¶ms, sizeof(struct kvm_sev_receive_start))) {
1722 ret = -EFAULT;
1723 sev_unbind_asid(kvm, start.handle);
1724 goto e_free_session;
1725 }
1726
1727 sev->handle = start.handle;
1728 sev->fd = argp->sev_fd;
1729
1730 e_free_session:
1731 kfree(session_data);
1732 e_free_pdh:
1733 kfree(pdh_data);
1734
1735 return ret;
1736 }
1737
sev_receive_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)1738 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1739 {
1740 struct kvm_sev_receive_update_data params;
1741 struct sev_data_receive_update_data data;
1742 void *hdr = NULL, *trans = NULL;
1743 struct page **guest_page;
1744 unsigned long n;
1745 int ret, offset;
1746
1747 if (!sev_guest(kvm))
1748 return -EINVAL;
1749
1750 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data),
1751 sizeof(struct kvm_sev_receive_update_data)))
1752 return -EFAULT;
1753
1754 if (!params.hdr_uaddr || !params.hdr_len ||
1755 !params.guest_uaddr || !params.guest_len ||
1756 !params.trans_uaddr || !params.trans_len)
1757 return -EINVAL;
1758
1759 /* Check if we are crossing the page boundary */
1760 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1761 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1762 return -EINVAL;
1763
1764 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1765 if (IS_ERR(hdr))
1766 return PTR_ERR(hdr);
1767
1768 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1769 if (IS_ERR(trans)) {
1770 ret = PTR_ERR(trans);
1771 goto e_free_hdr;
1772 }
1773
1774 memset(&data, 0, sizeof(data));
1775 data.hdr_address = __psp_pa(hdr);
1776 data.hdr_len = params.hdr_len;
1777 data.trans_address = __psp_pa(trans);
1778 data.trans_len = params.trans_len;
1779
1780 /* Pin guest memory */
1781 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1782 PAGE_SIZE, &n, FOLL_WRITE);
1783 if (IS_ERR(guest_page)) {
1784 ret = PTR_ERR(guest_page);
1785 goto e_free_trans;
1786 }
1787
1788 /*
1789 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1790 * encrypts the written data with the guest's key, and the cache may
1791 * contain dirty, unencrypted data.
1792 */
1793 sev_clflush_pages(guest_page, n);
1794
1795 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1796 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1797 data.guest_address |= sev_me_mask;
1798 data.guest_len = params.guest_len;
1799 data.handle = to_kvm_sev_info(kvm)->handle;
1800
1801 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1802 &argp->error);
1803
1804 sev_unpin_memory(kvm, guest_page, n);
1805
1806 e_free_trans:
1807 kfree(trans);
1808 e_free_hdr:
1809 kfree(hdr);
1810
1811 return ret;
1812 }
1813
sev_receive_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1814 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1815 {
1816 struct sev_data_receive_finish data;
1817
1818 if (!sev_guest(kvm))
1819 return -ENOTTY;
1820
1821 data.handle = to_kvm_sev_info(kvm)->handle;
1822 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1823 }
1824
is_cmd_allowed_from_mirror(u32 cmd_id)1825 static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1826 {
1827 /*
1828 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1829 * active mirror VMs. Also allow the debugging and status commands.
1830 */
1831 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1832 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1833 cmd_id == KVM_SEV_DBG_ENCRYPT)
1834 return true;
1835
1836 return false;
1837 }
1838
sev_lock_two_vms(struct kvm * dst_kvm,struct kvm * src_kvm)1839 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1840 {
1841 struct kvm_sev_info *dst_sev = to_kvm_sev_info(dst_kvm);
1842 struct kvm_sev_info *src_sev = to_kvm_sev_info(src_kvm);
1843 int r = -EBUSY;
1844
1845 if (dst_kvm == src_kvm)
1846 return -EINVAL;
1847
1848 /*
1849 * Bail if these VMs are already involved in a migration to avoid
1850 * deadlock between two VMs trying to migrate to/from each other.
1851 */
1852 if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1853 return -EBUSY;
1854
1855 if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1856 goto release_dst;
1857
1858 r = -EINTR;
1859 if (mutex_lock_killable(&dst_kvm->lock))
1860 goto release_src;
1861 if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1862 goto unlock_dst;
1863 return 0;
1864
1865 unlock_dst:
1866 mutex_unlock(&dst_kvm->lock);
1867 release_src:
1868 atomic_set_release(&src_sev->migration_in_progress, 0);
1869 release_dst:
1870 atomic_set_release(&dst_sev->migration_in_progress, 0);
1871 return r;
1872 }
1873
sev_unlock_two_vms(struct kvm * dst_kvm,struct kvm * src_kvm)1874 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1875 {
1876 struct kvm_sev_info *dst_sev = to_kvm_sev_info(dst_kvm);
1877 struct kvm_sev_info *src_sev = to_kvm_sev_info(src_kvm);
1878
1879 mutex_unlock(&dst_kvm->lock);
1880 mutex_unlock(&src_kvm->lock);
1881 atomic_set_release(&dst_sev->migration_in_progress, 0);
1882 atomic_set_release(&src_sev->migration_in_progress, 0);
1883 }
1884
1885 /* vCPU mutex subclasses. */
1886 enum sev_migration_role {
1887 SEV_MIGRATION_SOURCE = 0,
1888 SEV_MIGRATION_TARGET,
1889 SEV_NR_MIGRATION_ROLES,
1890 };
1891
sev_lock_vcpus_for_migration(struct kvm * kvm,enum sev_migration_role role)1892 static int sev_lock_vcpus_for_migration(struct kvm *kvm,
1893 enum sev_migration_role role)
1894 {
1895 struct kvm_vcpu *vcpu;
1896 unsigned long i, j;
1897
1898 kvm_for_each_vcpu(i, vcpu, kvm) {
1899 if (mutex_lock_killable_nested(&vcpu->mutex, role))
1900 goto out_unlock;
1901
1902 #ifdef CONFIG_PROVE_LOCKING
1903 if (!i)
1904 /*
1905 * Reset the role to one that avoids colliding with
1906 * the role used for the first vcpu mutex.
1907 */
1908 role = SEV_NR_MIGRATION_ROLES;
1909 else
1910 mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
1911 #endif
1912 }
1913
1914 return 0;
1915
1916 out_unlock:
1917
1918 kvm_for_each_vcpu(j, vcpu, kvm) {
1919 if (i == j)
1920 break;
1921
1922 #ifdef CONFIG_PROVE_LOCKING
1923 if (j)
1924 mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
1925 #endif
1926
1927 mutex_unlock(&vcpu->mutex);
1928 }
1929 return -EINTR;
1930 }
1931
sev_unlock_vcpus_for_migration(struct kvm * kvm)1932 static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
1933 {
1934 struct kvm_vcpu *vcpu;
1935 unsigned long i;
1936 bool first = true;
1937
1938 kvm_for_each_vcpu(i, vcpu, kvm) {
1939 if (first)
1940 first = false;
1941 else
1942 mutex_acquire(&vcpu->mutex.dep_map,
1943 SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);
1944
1945 mutex_unlock(&vcpu->mutex);
1946 }
1947 }
1948
sev_migrate_from(struct kvm * dst_kvm,struct kvm * src_kvm)1949 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1950 {
1951 struct kvm_sev_info *dst = to_kvm_sev_info(dst_kvm);
1952 struct kvm_sev_info *src = to_kvm_sev_info(src_kvm);
1953 struct kvm_vcpu *dst_vcpu, *src_vcpu;
1954 struct vcpu_svm *dst_svm, *src_svm;
1955 struct kvm_sev_info *mirror;
1956 unsigned long i;
1957
1958 dst->active = true;
1959 dst->asid = src->asid;
1960 dst->handle = src->handle;
1961 dst->pages_locked = src->pages_locked;
1962 dst->enc_context_owner = src->enc_context_owner;
1963 dst->es_active = src->es_active;
1964 dst->vmsa_features = src->vmsa_features;
1965
1966 src->asid = 0;
1967 src->active = false;
1968 src->handle = 0;
1969 src->pages_locked = 0;
1970 src->enc_context_owner = NULL;
1971 src->es_active = false;
1972
1973 list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1974
1975 /*
1976 * If this VM has mirrors, "transfer" each mirror's refcount of the
1977 * source to the destination (this KVM). The caller holds a reference
1978 * to the source, so there's no danger of use-after-free.
1979 */
1980 list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
1981 list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
1982 kvm_get_kvm(dst_kvm);
1983 kvm_put_kvm(src_kvm);
1984 mirror->enc_context_owner = dst_kvm;
1985 }
1986
1987 /*
1988 * If this VM is a mirror, remove the old mirror from the owners list
1989 * and add the new mirror to the list.
1990 */
1991 if (is_mirroring_enc_context(dst_kvm)) {
1992 struct kvm_sev_info *owner_sev_info = to_kvm_sev_info(dst->enc_context_owner);
1993
1994 list_del(&src->mirror_entry);
1995 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
1996 }
1997
1998 kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
1999 dst_svm = to_svm(dst_vcpu);
2000
2001 sev_init_vmcb(dst_svm);
2002
2003 if (!dst->es_active)
2004 continue;
2005
2006 /*
2007 * Note, the source is not required to have the same number of
2008 * vCPUs as the destination when migrating a vanilla SEV VM.
2009 */
2010 src_vcpu = kvm_get_vcpu(src_kvm, i);
2011 src_svm = to_svm(src_vcpu);
2012
2013 /*
2014 * Transfer VMSA and GHCB state to the destination. Nullify and
2015 * clear source fields as appropriate, the state now belongs to
2016 * the destination.
2017 */
2018 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
2019 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
2020 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
2021 dst_vcpu->arch.guest_state_protected = true;
2022
2023 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
2024 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
2025 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
2026 src_vcpu->arch.guest_state_protected = false;
2027 }
2028 }
2029
sev_check_source_vcpus(struct kvm * dst,struct kvm * src)2030 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
2031 {
2032 struct kvm_vcpu *src_vcpu;
2033 unsigned long i;
2034
2035 if (!sev_es_guest(src))
2036 return 0;
2037
2038 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
2039 return -EINVAL;
2040
2041 kvm_for_each_vcpu(i, src_vcpu, src) {
2042 if (!src_vcpu->arch.guest_state_protected)
2043 return -EINVAL;
2044 }
2045
2046 return 0;
2047 }
2048
sev_vm_move_enc_context_from(struct kvm * kvm,unsigned int source_fd)2049 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2050 {
2051 struct kvm_sev_info *dst_sev = to_kvm_sev_info(kvm);
2052 struct kvm_sev_info *src_sev, *cg_cleanup_sev;
2053 CLASS(fd, f)(source_fd);
2054 struct kvm *source_kvm;
2055 bool charged = false;
2056 int ret;
2057
2058 if (fd_empty(f))
2059 return -EBADF;
2060
2061 if (!file_is_kvm(fd_file(f)))
2062 return -EBADF;
2063
2064 source_kvm = fd_file(f)->private_data;
2065 ret = sev_lock_two_vms(kvm, source_kvm);
2066 if (ret)
2067 return ret;
2068
2069 if (kvm->arch.vm_type != source_kvm->arch.vm_type ||
2070 sev_guest(kvm) || !sev_guest(source_kvm)) {
2071 ret = -EINVAL;
2072 goto out_unlock;
2073 }
2074
2075 src_sev = to_kvm_sev_info(source_kvm);
2076
2077 dst_sev->misc_cg = get_current_misc_cg();
2078 cg_cleanup_sev = dst_sev;
2079 if (dst_sev->misc_cg != src_sev->misc_cg) {
2080 ret = sev_misc_cg_try_charge(dst_sev);
2081 if (ret)
2082 goto out_dst_cgroup;
2083 charged = true;
2084 }
2085
2086 ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE);
2087 if (ret)
2088 goto out_dst_cgroup;
2089 ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET);
2090 if (ret)
2091 goto out_dst_vcpu;
2092
2093 ret = sev_check_source_vcpus(kvm, source_kvm);
2094 if (ret)
2095 goto out_source_vcpu;
2096
2097 sev_migrate_from(kvm, source_kvm);
2098 kvm_vm_dead(source_kvm);
2099 cg_cleanup_sev = src_sev;
2100 ret = 0;
2101
2102 out_source_vcpu:
2103 sev_unlock_vcpus_for_migration(source_kvm);
2104 out_dst_vcpu:
2105 sev_unlock_vcpus_for_migration(kvm);
2106 out_dst_cgroup:
2107 /* Operates on the source on success, on the destination on failure. */
2108 if (charged)
2109 sev_misc_cg_uncharge(cg_cleanup_sev);
2110 put_misc_cg(cg_cleanup_sev->misc_cg);
2111 cg_cleanup_sev->misc_cg = NULL;
2112 out_unlock:
2113 sev_unlock_two_vms(kvm, source_kvm);
2114 return ret;
2115 }
2116
sev_dev_get_attr(u32 group,u64 attr,u64 * val)2117 int sev_dev_get_attr(u32 group, u64 attr, u64 *val)
2118 {
2119 if (group != KVM_X86_GRP_SEV)
2120 return -ENXIO;
2121
2122 switch (attr) {
2123 case KVM_X86_SEV_VMSA_FEATURES:
2124 *val = sev_supported_vmsa_features;
2125 return 0;
2126
2127 default:
2128 return -ENXIO;
2129 }
2130 }
2131
2132 /*
2133 * The guest context contains all the information, keys and metadata
2134 * associated with the guest that the firmware tracks to implement SEV
2135 * and SNP features. The firmware stores the guest context in hypervisor
2136 * provide page via the SNP_GCTX_CREATE command.
2137 */
snp_context_create(struct kvm * kvm,struct kvm_sev_cmd * argp)2138 static void *snp_context_create(struct kvm *kvm, struct kvm_sev_cmd *argp)
2139 {
2140 struct sev_data_snp_addr data = {};
2141 void *context;
2142 int rc;
2143
2144 /* Allocate memory for context page */
2145 context = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT);
2146 if (!context)
2147 return NULL;
2148
2149 data.address = __psp_pa(context);
2150 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_GCTX_CREATE, &data, &argp->error);
2151 if (rc) {
2152 pr_warn("Failed to create SEV-SNP context, rc %d fw_error %d",
2153 rc, argp->error);
2154 snp_free_firmware_page(context);
2155 return NULL;
2156 }
2157
2158 return context;
2159 }
2160
snp_bind_asid(struct kvm * kvm,int * error)2161 static int snp_bind_asid(struct kvm *kvm, int *error)
2162 {
2163 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2164 struct sev_data_snp_activate data = {0};
2165
2166 data.gctx_paddr = __psp_pa(sev->snp_context);
2167 data.asid = sev_get_asid(kvm);
2168 return sev_issue_cmd(kvm, SEV_CMD_SNP_ACTIVATE, &data, error);
2169 }
2170
snp_launch_start(struct kvm * kvm,struct kvm_sev_cmd * argp)2171 static int snp_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
2172 {
2173 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2174 struct sev_data_snp_launch_start start = {0};
2175 struct kvm_sev_snp_launch_start params;
2176 int rc;
2177
2178 if (!sev_snp_guest(kvm))
2179 return -ENOTTY;
2180
2181 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
2182 return -EFAULT;
2183
2184 /* Don't allow userspace to allocate memory for more than 1 SNP context. */
2185 if (sev->snp_context)
2186 return -EINVAL;
2187
2188 if (params.flags)
2189 return -EINVAL;
2190
2191 if (params.policy & ~SNP_POLICY_MASK_VALID)
2192 return -EINVAL;
2193
2194 /* Check for policy bits that must be set */
2195 if (!(params.policy & SNP_POLICY_MASK_RSVD_MBO) ||
2196 !(params.policy & SNP_POLICY_MASK_SMT))
2197 return -EINVAL;
2198
2199 if (params.policy & SNP_POLICY_MASK_SINGLE_SOCKET)
2200 return -EINVAL;
2201
2202 sev->snp_context = snp_context_create(kvm, argp);
2203 if (!sev->snp_context)
2204 return -ENOTTY;
2205
2206 start.gctx_paddr = __psp_pa(sev->snp_context);
2207 start.policy = params.policy;
2208 memcpy(start.gosvw, params.gosvw, sizeof(params.gosvw));
2209 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_START, &start, &argp->error);
2210 if (rc) {
2211 pr_debug("%s: SEV_CMD_SNP_LAUNCH_START firmware command failed, rc %d\n",
2212 __func__, rc);
2213 goto e_free_context;
2214 }
2215
2216 sev->fd = argp->sev_fd;
2217 rc = snp_bind_asid(kvm, &argp->error);
2218 if (rc) {
2219 pr_debug("%s: Failed to bind ASID to SEV-SNP context, rc %d\n",
2220 __func__, rc);
2221 goto e_free_context;
2222 }
2223
2224 return 0;
2225
2226 e_free_context:
2227 snp_decommission_context(kvm);
2228
2229 return rc;
2230 }
2231
2232 struct sev_gmem_populate_args {
2233 __u8 type;
2234 int sev_fd;
2235 int fw_error;
2236 };
2237
sev_gmem_post_populate(struct kvm * kvm,gfn_t gfn_start,kvm_pfn_t pfn,void __user * src,int order,void * opaque)2238 static int sev_gmem_post_populate(struct kvm *kvm, gfn_t gfn_start, kvm_pfn_t pfn,
2239 void __user *src, int order, void *opaque)
2240 {
2241 struct sev_gmem_populate_args *sev_populate_args = opaque;
2242 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2243 int n_private = 0, ret, i;
2244 int npages = (1 << order);
2245 gfn_t gfn;
2246
2247 if (WARN_ON_ONCE(sev_populate_args->type != KVM_SEV_SNP_PAGE_TYPE_ZERO && !src))
2248 return -EINVAL;
2249
2250 for (gfn = gfn_start, i = 0; gfn < gfn_start + npages; gfn++, i++) {
2251 struct sev_data_snp_launch_update fw_args = {0};
2252 bool assigned = false;
2253 int level;
2254
2255 ret = snp_lookup_rmpentry((u64)pfn + i, &assigned, &level);
2256 if (ret || assigned) {
2257 pr_debug("%s: Failed to ensure GFN 0x%llx RMP entry is initial shared state, ret: %d assigned: %d\n",
2258 __func__, gfn, ret, assigned);
2259 ret = ret ? -EINVAL : -EEXIST;
2260 goto err;
2261 }
2262
2263 if (src) {
2264 void *vaddr = kmap_local_pfn(pfn + i);
2265
2266 if (copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE)) {
2267 ret = -EFAULT;
2268 goto err;
2269 }
2270 kunmap_local(vaddr);
2271 }
2272
2273 ret = rmp_make_private(pfn + i, gfn << PAGE_SHIFT, PG_LEVEL_4K,
2274 sev_get_asid(kvm), true);
2275 if (ret)
2276 goto err;
2277
2278 n_private++;
2279
2280 fw_args.gctx_paddr = __psp_pa(sev->snp_context);
2281 fw_args.address = __sme_set(pfn_to_hpa(pfn + i));
2282 fw_args.page_size = PG_LEVEL_TO_RMP(PG_LEVEL_4K);
2283 fw_args.page_type = sev_populate_args->type;
2284
2285 ret = __sev_issue_cmd(sev_populate_args->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE,
2286 &fw_args, &sev_populate_args->fw_error);
2287 if (ret)
2288 goto fw_err;
2289 }
2290
2291 return 0;
2292
2293 fw_err:
2294 /*
2295 * If the firmware command failed handle the reclaim and cleanup of that
2296 * PFN specially vs. prior pages which can be cleaned up below without
2297 * needing to reclaim in advance.
2298 *
2299 * Additionally, when invalid CPUID function entries are detected,
2300 * firmware writes the expected values into the page and leaves it
2301 * unencrypted so it can be used for debugging and error-reporting.
2302 *
2303 * Copy this page back into the source buffer so userspace can use this
2304 * information to provide information on which CPUID leaves/fields
2305 * failed CPUID validation.
2306 */
2307 if (!snp_page_reclaim(kvm, pfn + i) &&
2308 sev_populate_args->type == KVM_SEV_SNP_PAGE_TYPE_CPUID &&
2309 sev_populate_args->fw_error == SEV_RET_INVALID_PARAM) {
2310 void *vaddr = kmap_local_pfn(pfn + i);
2311
2312 if (copy_to_user(src + i * PAGE_SIZE, vaddr, PAGE_SIZE))
2313 pr_debug("Failed to write CPUID page back to userspace\n");
2314
2315 kunmap_local(vaddr);
2316 }
2317
2318 /* pfn + i is hypervisor-owned now, so skip below cleanup for it. */
2319 n_private--;
2320
2321 err:
2322 pr_debug("%s: exiting with error ret %d (fw_error %d), restoring %d gmem PFNs to shared.\n",
2323 __func__, ret, sev_populate_args->fw_error, n_private);
2324 for (i = 0; i < n_private; i++)
2325 kvm_rmp_make_shared(kvm, pfn + i, PG_LEVEL_4K);
2326
2327 return ret;
2328 }
2329
snp_launch_update(struct kvm * kvm,struct kvm_sev_cmd * argp)2330 static int snp_launch_update(struct kvm *kvm, struct kvm_sev_cmd *argp)
2331 {
2332 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2333 struct sev_gmem_populate_args sev_populate_args = {0};
2334 struct kvm_sev_snp_launch_update params;
2335 struct kvm_memory_slot *memslot;
2336 long npages, count;
2337 void __user *src;
2338 int ret = 0;
2339
2340 if (!sev_snp_guest(kvm) || !sev->snp_context)
2341 return -EINVAL;
2342
2343 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
2344 return -EFAULT;
2345
2346 pr_debug("%s: GFN start 0x%llx length 0x%llx type %d flags %d\n", __func__,
2347 params.gfn_start, params.len, params.type, params.flags);
2348
2349 if (!PAGE_ALIGNED(params.len) || params.flags ||
2350 (params.type != KVM_SEV_SNP_PAGE_TYPE_NORMAL &&
2351 params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO &&
2352 params.type != KVM_SEV_SNP_PAGE_TYPE_UNMEASURED &&
2353 params.type != KVM_SEV_SNP_PAGE_TYPE_SECRETS &&
2354 params.type != KVM_SEV_SNP_PAGE_TYPE_CPUID))
2355 return -EINVAL;
2356
2357 npages = params.len / PAGE_SIZE;
2358
2359 /*
2360 * For each GFN that's being prepared as part of the initial guest
2361 * state, the following pre-conditions are verified:
2362 *
2363 * 1) The backing memslot is a valid private memslot.
2364 * 2) The GFN has been set to private via KVM_SET_MEMORY_ATTRIBUTES
2365 * beforehand.
2366 * 3) The PFN of the guest_memfd has not already been set to private
2367 * in the RMP table.
2368 *
2369 * The KVM MMU relies on kvm->mmu_invalidate_seq to retry nested page
2370 * faults if there's a race between a fault and an attribute update via
2371 * KVM_SET_MEMORY_ATTRIBUTES, and a similar approach could be utilized
2372 * here. However, kvm->slots_lock guards against both this as well as
2373 * concurrent memslot updates occurring while these checks are being
2374 * performed, so use that here to make it easier to reason about the
2375 * initial expected state and better guard against unexpected
2376 * situations.
2377 */
2378 mutex_lock(&kvm->slots_lock);
2379
2380 memslot = gfn_to_memslot(kvm, params.gfn_start);
2381 if (!kvm_slot_can_be_private(memslot)) {
2382 ret = -EINVAL;
2383 goto out;
2384 }
2385
2386 sev_populate_args.sev_fd = argp->sev_fd;
2387 sev_populate_args.type = params.type;
2388 src = params.type == KVM_SEV_SNP_PAGE_TYPE_ZERO ? NULL : u64_to_user_ptr(params.uaddr);
2389
2390 count = kvm_gmem_populate(kvm, params.gfn_start, src, npages,
2391 sev_gmem_post_populate, &sev_populate_args);
2392 if (count < 0) {
2393 argp->error = sev_populate_args.fw_error;
2394 pr_debug("%s: kvm_gmem_populate failed, ret %ld (fw_error %d)\n",
2395 __func__, count, argp->error);
2396 ret = -EIO;
2397 } else {
2398 params.gfn_start += count;
2399 params.len -= count * PAGE_SIZE;
2400 if (params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO)
2401 params.uaddr += count * PAGE_SIZE;
2402
2403 ret = 0;
2404 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params)))
2405 ret = -EFAULT;
2406 }
2407
2408 out:
2409 mutex_unlock(&kvm->slots_lock);
2410
2411 return ret;
2412 }
2413
snp_launch_update_vmsa(struct kvm * kvm,struct kvm_sev_cmd * argp)2414 static int snp_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
2415 {
2416 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2417 struct sev_data_snp_launch_update data = {};
2418 struct kvm_vcpu *vcpu;
2419 unsigned long i;
2420 int ret;
2421
2422 data.gctx_paddr = __psp_pa(sev->snp_context);
2423 data.page_type = SNP_PAGE_TYPE_VMSA;
2424
2425 kvm_for_each_vcpu(i, vcpu, kvm) {
2426 struct vcpu_svm *svm = to_svm(vcpu);
2427 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT;
2428
2429 ret = sev_es_sync_vmsa(svm);
2430 if (ret)
2431 return ret;
2432
2433 /* Transition the VMSA page to a firmware state. */
2434 ret = rmp_make_private(pfn, INITIAL_VMSA_GPA, PG_LEVEL_4K, sev->asid, true);
2435 if (ret)
2436 return ret;
2437
2438 /* Issue the SNP command to encrypt the VMSA */
2439 data.address = __sme_pa(svm->sev_es.vmsa);
2440 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE,
2441 &data, &argp->error);
2442 if (ret) {
2443 snp_page_reclaim(kvm, pfn);
2444
2445 return ret;
2446 }
2447
2448 svm->vcpu.arch.guest_state_protected = true;
2449 /*
2450 * SEV-ES (and thus SNP) guest mandates LBR Virtualization to
2451 * be _always_ ON. Enable it only after setting
2452 * guest_state_protected because KVM_SET_MSRS allows dynamic
2453 * toggling of LBRV (for performance reason) on write access to
2454 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
2455 */
2456 svm_enable_lbrv(vcpu);
2457 }
2458
2459 return 0;
2460 }
2461
snp_launch_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)2462 static int snp_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
2463 {
2464 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2465 struct kvm_sev_snp_launch_finish params;
2466 struct sev_data_snp_launch_finish *data;
2467 void *id_block = NULL, *id_auth = NULL;
2468 int ret;
2469
2470 if (!sev_snp_guest(kvm))
2471 return -ENOTTY;
2472
2473 if (!sev->snp_context)
2474 return -EINVAL;
2475
2476 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
2477 return -EFAULT;
2478
2479 if (params.flags)
2480 return -EINVAL;
2481
2482 /* Measure all vCPUs using LAUNCH_UPDATE before finalizing the launch flow. */
2483 ret = snp_launch_update_vmsa(kvm, argp);
2484 if (ret)
2485 return ret;
2486
2487 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
2488 if (!data)
2489 return -ENOMEM;
2490
2491 if (params.id_block_en) {
2492 id_block = psp_copy_user_blob(params.id_block_uaddr, KVM_SEV_SNP_ID_BLOCK_SIZE);
2493 if (IS_ERR(id_block)) {
2494 ret = PTR_ERR(id_block);
2495 goto e_free;
2496 }
2497
2498 data->id_block_en = 1;
2499 data->id_block_paddr = __sme_pa(id_block);
2500
2501 id_auth = psp_copy_user_blob(params.id_auth_uaddr, KVM_SEV_SNP_ID_AUTH_SIZE);
2502 if (IS_ERR(id_auth)) {
2503 ret = PTR_ERR(id_auth);
2504 goto e_free_id_block;
2505 }
2506
2507 data->id_auth_paddr = __sme_pa(id_auth);
2508
2509 if (params.auth_key_en)
2510 data->auth_key_en = 1;
2511 }
2512
2513 data->vcek_disabled = params.vcek_disabled;
2514
2515 memcpy(data->host_data, params.host_data, KVM_SEV_SNP_FINISH_DATA_SIZE);
2516 data->gctx_paddr = __psp_pa(sev->snp_context);
2517 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_LAUNCH_FINISH, data, &argp->error);
2518
2519 /*
2520 * Now that there will be no more SNP_LAUNCH_UPDATE ioctls, private pages
2521 * can be given to the guest simply by marking the RMP entry as private.
2522 * This can happen on first access and also with KVM_PRE_FAULT_MEMORY.
2523 */
2524 if (!ret)
2525 kvm->arch.pre_fault_allowed = true;
2526
2527 kfree(id_auth);
2528
2529 e_free_id_block:
2530 kfree(id_block);
2531
2532 e_free:
2533 kfree(data);
2534
2535 return ret;
2536 }
2537
sev_mem_enc_ioctl(struct kvm * kvm,void __user * argp)2538 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
2539 {
2540 struct kvm_sev_cmd sev_cmd;
2541 int r;
2542
2543 if (!sev_enabled)
2544 return -ENOTTY;
2545
2546 if (!argp)
2547 return 0;
2548
2549 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
2550 return -EFAULT;
2551
2552 mutex_lock(&kvm->lock);
2553
2554 /* Only the enc_context_owner handles some memory enc operations. */
2555 if (is_mirroring_enc_context(kvm) &&
2556 !is_cmd_allowed_from_mirror(sev_cmd.id)) {
2557 r = -EINVAL;
2558 goto out;
2559 }
2560
2561 /*
2562 * Once KVM_SEV_INIT2 initializes a KVM instance as an SNP guest, only
2563 * allow the use of SNP-specific commands.
2564 */
2565 if (sev_snp_guest(kvm) && sev_cmd.id < KVM_SEV_SNP_LAUNCH_START) {
2566 r = -EPERM;
2567 goto out;
2568 }
2569
2570 switch (sev_cmd.id) {
2571 case KVM_SEV_ES_INIT:
2572 if (!sev_es_enabled) {
2573 r = -ENOTTY;
2574 goto out;
2575 }
2576 fallthrough;
2577 case KVM_SEV_INIT:
2578 r = sev_guest_init(kvm, &sev_cmd);
2579 break;
2580 case KVM_SEV_INIT2:
2581 r = sev_guest_init2(kvm, &sev_cmd);
2582 break;
2583 case KVM_SEV_LAUNCH_START:
2584 r = sev_launch_start(kvm, &sev_cmd);
2585 break;
2586 case KVM_SEV_LAUNCH_UPDATE_DATA:
2587 r = sev_launch_update_data(kvm, &sev_cmd);
2588 break;
2589 case KVM_SEV_LAUNCH_UPDATE_VMSA:
2590 r = sev_launch_update_vmsa(kvm, &sev_cmd);
2591 break;
2592 case KVM_SEV_LAUNCH_MEASURE:
2593 r = sev_launch_measure(kvm, &sev_cmd);
2594 break;
2595 case KVM_SEV_LAUNCH_FINISH:
2596 r = sev_launch_finish(kvm, &sev_cmd);
2597 break;
2598 case KVM_SEV_GUEST_STATUS:
2599 r = sev_guest_status(kvm, &sev_cmd);
2600 break;
2601 case KVM_SEV_DBG_DECRYPT:
2602 r = sev_dbg_crypt(kvm, &sev_cmd, true);
2603 break;
2604 case KVM_SEV_DBG_ENCRYPT:
2605 r = sev_dbg_crypt(kvm, &sev_cmd, false);
2606 break;
2607 case KVM_SEV_LAUNCH_SECRET:
2608 r = sev_launch_secret(kvm, &sev_cmd);
2609 break;
2610 case KVM_SEV_GET_ATTESTATION_REPORT:
2611 r = sev_get_attestation_report(kvm, &sev_cmd);
2612 break;
2613 case KVM_SEV_SEND_START:
2614 r = sev_send_start(kvm, &sev_cmd);
2615 break;
2616 case KVM_SEV_SEND_UPDATE_DATA:
2617 r = sev_send_update_data(kvm, &sev_cmd);
2618 break;
2619 case KVM_SEV_SEND_FINISH:
2620 r = sev_send_finish(kvm, &sev_cmd);
2621 break;
2622 case KVM_SEV_SEND_CANCEL:
2623 r = sev_send_cancel(kvm, &sev_cmd);
2624 break;
2625 case KVM_SEV_RECEIVE_START:
2626 r = sev_receive_start(kvm, &sev_cmd);
2627 break;
2628 case KVM_SEV_RECEIVE_UPDATE_DATA:
2629 r = sev_receive_update_data(kvm, &sev_cmd);
2630 break;
2631 case KVM_SEV_RECEIVE_FINISH:
2632 r = sev_receive_finish(kvm, &sev_cmd);
2633 break;
2634 case KVM_SEV_SNP_LAUNCH_START:
2635 r = snp_launch_start(kvm, &sev_cmd);
2636 break;
2637 case KVM_SEV_SNP_LAUNCH_UPDATE:
2638 r = snp_launch_update(kvm, &sev_cmd);
2639 break;
2640 case KVM_SEV_SNP_LAUNCH_FINISH:
2641 r = snp_launch_finish(kvm, &sev_cmd);
2642 break;
2643 default:
2644 r = -EINVAL;
2645 goto out;
2646 }
2647
2648 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
2649 r = -EFAULT;
2650
2651 out:
2652 mutex_unlock(&kvm->lock);
2653 return r;
2654 }
2655
sev_mem_enc_register_region(struct kvm * kvm,struct kvm_enc_region * range)2656 int sev_mem_enc_register_region(struct kvm *kvm,
2657 struct kvm_enc_region *range)
2658 {
2659 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2660 struct enc_region *region;
2661 int ret = 0;
2662
2663 if (!sev_guest(kvm))
2664 return -ENOTTY;
2665
2666 /* If kvm is mirroring encryption context it isn't responsible for it */
2667 if (is_mirroring_enc_context(kvm))
2668 return -EINVAL;
2669
2670 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
2671 return -EINVAL;
2672
2673 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
2674 if (!region)
2675 return -ENOMEM;
2676
2677 mutex_lock(&kvm->lock);
2678 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages,
2679 FOLL_WRITE | FOLL_LONGTERM);
2680 if (IS_ERR(region->pages)) {
2681 ret = PTR_ERR(region->pages);
2682 mutex_unlock(&kvm->lock);
2683 goto e_free;
2684 }
2685
2686 /*
2687 * The guest may change the memory encryption attribute from C=0 -> C=1
2688 * or vice versa for this memory range. Lets make sure caches are
2689 * flushed to ensure that guest data gets written into memory with
2690 * correct C-bit. Note, this must be done before dropping kvm->lock,
2691 * as region and its array of pages can be freed by a different task
2692 * once kvm->lock is released.
2693 */
2694 sev_clflush_pages(region->pages, region->npages);
2695
2696 region->uaddr = range->addr;
2697 region->size = range->size;
2698
2699 list_add_tail(®ion->list, &sev->regions_list);
2700 mutex_unlock(&kvm->lock);
2701
2702 return ret;
2703
2704 e_free:
2705 kfree(region);
2706 return ret;
2707 }
2708
2709 static struct enc_region *
find_enc_region(struct kvm * kvm,struct kvm_enc_region * range)2710 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
2711 {
2712 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2713 struct list_head *head = &sev->regions_list;
2714 struct enc_region *i;
2715
2716 list_for_each_entry(i, head, list) {
2717 if (i->uaddr == range->addr &&
2718 i->size == range->size)
2719 return i;
2720 }
2721
2722 return NULL;
2723 }
2724
__unregister_enc_region_locked(struct kvm * kvm,struct enc_region * region)2725 static void __unregister_enc_region_locked(struct kvm *kvm,
2726 struct enc_region *region)
2727 {
2728 sev_unpin_memory(kvm, region->pages, region->npages);
2729 list_del(®ion->list);
2730 kfree(region);
2731 }
2732
sev_mem_enc_unregister_region(struct kvm * kvm,struct kvm_enc_region * range)2733 int sev_mem_enc_unregister_region(struct kvm *kvm,
2734 struct kvm_enc_region *range)
2735 {
2736 struct enc_region *region;
2737 int ret;
2738
2739 /* If kvm is mirroring encryption context it isn't responsible for it */
2740 if (is_mirroring_enc_context(kvm))
2741 return -EINVAL;
2742
2743 mutex_lock(&kvm->lock);
2744
2745 if (!sev_guest(kvm)) {
2746 ret = -ENOTTY;
2747 goto failed;
2748 }
2749
2750 region = find_enc_region(kvm, range);
2751 if (!region) {
2752 ret = -EINVAL;
2753 goto failed;
2754 }
2755
2756 /*
2757 * Ensure that all guest tagged cache entries are flushed before
2758 * releasing the pages back to the system for use. CLFLUSH will
2759 * not do this, so issue a WBINVD.
2760 */
2761 wbinvd_on_all_cpus();
2762
2763 __unregister_enc_region_locked(kvm, region);
2764
2765 mutex_unlock(&kvm->lock);
2766 return 0;
2767
2768 failed:
2769 mutex_unlock(&kvm->lock);
2770 return ret;
2771 }
2772
sev_vm_copy_enc_context_from(struct kvm * kvm,unsigned int source_fd)2773 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2774 {
2775 CLASS(fd, f)(source_fd);
2776 struct kvm *source_kvm;
2777 struct kvm_sev_info *source_sev, *mirror_sev;
2778 int ret;
2779
2780 if (fd_empty(f))
2781 return -EBADF;
2782
2783 if (!file_is_kvm(fd_file(f)))
2784 return -EBADF;
2785
2786 source_kvm = fd_file(f)->private_data;
2787 ret = sev_lock_two_vms(kvm, source_kvm);
2788 if (ret)
2789 return ret;
2790
2791 /*
2792 * Mirrors of mirrors should work, but let's not get silly. Also
2793 * disallow out-of-band SEV/SEV-ES init if the target is already an
2794 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being
2795 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2796 */
2797 if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2798 is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2799 ret = -EINVAL;
2800 goto e_unlock;
2801 }
2802
2803 /*
2804 * The mirror kvm holds an enc_context_owner ref so its asid can't
2805 * disappear until we're done with it
2806 */
2807 source_sev = to_kvm_sev_info(source_kvm);
2808 kvm_get_kvm(source_kvm);
2809 mirror_sev = to_kvm_sev_info(kvm);
2810 list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2811
2812 /* Set enc_context_owner and copy its encryption context over */
2813 mirror_sev->enc_context_owner = source_kvm;
2814 mirror_sev->active = true;
2815 mirror_sev->asid = source_sev->asid;
2816 mirror_sev->fd = source_sev->fd;
2817 mirror_sev->es_active = source_sev->es_active;
2818 mirror_sev->need_init = false;
2819 mirror_sev->handle = source_sev->handle;
2820 INIT_LIST_HEAD(&mirror_sev->regions_list);
2821 INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2822 ret = 0;
2823
2824 /*
2825 * Do not copy ap_jump_table. Since the mirror does not share the same
2826 * KVM contexts as the original, and they may have different
2827 * memory-views.
2828 */
2829
2830 e_unlock:
2831 sev_unlock_two_vms(kvm, source_kvm);
2832 return ret;
2833 }
2834
snp_decommission_context(struct kvm * kvm)2835 static int snp_decommission_context(struct kvm *kvm)
2836 {
2837 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2838 struct sev_data_snp_addr data = {};
2839 int ret;
2840
2841 /* If context is not created then do nothing */
2842 if (!sev->snp_context)
2843 return 0;
2844
2845 /* Do the decommision, which will unbind the ASID from the SNP context */
2846 data.address = __sme_pa(sev->snp_context);
2847 down_write(&sev_deactivate_lock);
2848 ret = sev_do_cmd(SEV_CMD_SNP_DECOMMISSION, &data, NULL);
2849 up_write(&sev_deactivate_lock);
2850
2851 if (WARN_ONCE(ret, "Failed to release guest context, ret %d", ret))
2852 return ret;
2853
2854 snp_free_firmware_page(sev->snp_context);
2855 sev->snp_context = NULL;
2856
2857 return 0;
2858 }
2859
sev_vm_destroy(struct kvm * kvm)2860 void sev_vm_destroy(struct kvm *kvm)
2861 {
2862 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2863 struct list_head *head = &sev->regions_list;
2864 struct list_head *pos, *q;
2865
2866 if (!sev_guest(kvm))
2867 return;
2868
2869 WARN_ON(!list_empty(&sev->mirror_vms));
2870
2871 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
2872 if (is_mirroring_enc_context(kvm)) {
2873 struct kvm *owner_kvm = sev->enc_context_owner;
2874
2875 mutex_lock(&owner_kvm->lock);
2876 list_del(&sev->mirror_entry);
2877 mutex_unlock(&owner_kvm->lock);
2878 kvm_put_kvm(owner_kvm);
2879 return;
2880 }
2881
2882 /*
2883 * Ensure that all guest tagged cache entries are flushed before
2884 * releasing the pages back to the system for use. CLFLUSH will
2885 * not do this, so issue a WBINVD.
2886 */
2887 wbinvd_on_all_cpus();
2888
2889 /*
2890 * if userspace was terminated before unregistering the memory regions
2891 * then lets unpin all the registered memory.
2892 */
2893 if (!list_empty(head)) {
2894 list_for_each_safe(pos, q, head) {
2895 __unregister_enc_region_locked(kvm,
2896 list_entry(pos, struct enc_region, list));
2897 cond_resched();
2898 }
2899 }
2900
2901 if (sev_snp_guest(kvm)) {
2902 snp_guest_req_cleanup(kvm);
2903
2904 /*
2905 * Decomission handles unbinding of the ASID. If it fails for
2906 * some unexpected reason, just leak the ASID.
2907 */
2908 if (snp_decommission_context(kvm))
2909 return;
2910 } else {
2911 sev_unbind_asid(kvm, sev->handle);
2912 }
2913
2914 sev_asid_free(sev);
2915 }
2916
sev_set_cpu_caps(void)2917 void __init sev_set_cpu_caps(void)
2918 {
2919 if (sev_enabled) {
2920 kvm_cpu_cap_set(X86_FEATURE_SEV);
2921 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_VM);
2922 }
2923 if (sev_es_enabled) {
2924 kvm_cpu_cap_set(X86_FEATURE_SEV_ES);
2925 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_ES_VM);
2926 }
2927 if (sev_snp_enabled) {
2928 kvm_cpu_cap_set(X86_FEATURE_SEV_SNP);
2929 kvm_caps.supported_vm_types |= BIT(KVM_X86_SNP_VM);
2930 }
2931 }
2932
sev_hardware_setup(void)2933 void __init sev_hardware_setup(void)
2934 {
2935 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2936 bool sev_snp_supported = false;
2937 bool sev_es_supported = false;
2938 bool sev_supported = false;
2939
2940 if (!sev_enabled || !npt_enabled || !nrips)
2941 goto out;
2942
2943 /*
2944 * SEV must obviously be supported in hardware. Sanity check that the
2945 * CPU supports decode assists, which is mandatory for SEV guests to
2946 * support instruction emulation. Ditto for flushing by ASID, as SEV
2947 * guests are bound to a single ASID, i.e. KVM can't rotate to a new
2948 * ASID to effect a TLB flush.
2949 */
2950 if (!boot_cpu_has(X86_FEATURE_SEV) ||
2951 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) ||
2952 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID)))
2953 goto out;
2954
2955 /*
2956 * The kernel's initcall infrastructure lacks the ability to express
2957 * dependencies between initcalls, whereas the modules infrastructure
2958 * automatically handles dependencies via symbol loading. Ensure the
2959 * PSP SEV driver is initialized before proceeding if KVM is built-in,
2960 * as the dependency isn't handled by the initcall infrastructure.
2961 */
2962 if (IS_BUILTIN(CONFIG_KVM_AMD) && sev_module_init())
2963 goto out;
2964
2965 /* Retrieve SEV CPUID information */
2966 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2967
2968 /* Set encryption bit location for SEV-ES guests */
2969 sev_enc_bit = ebx & 0x3f;
2970
2971 /* Maximum number of encrypted guests supported simultaneously */
2972 max_sev_asid = ecx;
2973 if (!max_sev_asid)
2974 goto out;
2975
2976 /* Minimum ASID value that should be used for SEV guest */
2977 min_sev_asid = edx;
2978 sev_me_mask = 1UL << (ebx & 0x3f);
2979
2980 /*
2981 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2982 * even though it's never used, so that the bitmap is indexed by the
2983 * actual ASID.
2984 */
2985 nr_asids = max_sev_asid + 1;
2986 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2987 if (!sev_asid_bitmap)
2988 goto out;
2989
2990 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2991 if (!sev_reclaim_asid_bitmap) {
2992 bitmap_free(sev_asid_bitmap);
2993 sev_asid_bitmap = NULL;
2994 goto out;
2995 }
2996
2997 if (min_sev_asid <= max_sev_asid) {
2998 sev_asid_count = max_sev_asid - min_sev_asid + 1;
2999 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count));
3000 }
3001 sev_supported = true;
3002
3003 /* SEV-ES support requested? */
3004 if (!sev_es_enabled)
3005 goto out;
3006
3007 /*
3008 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
3009 * instruction stream, i.e. can't emulate in response to a #NPF and
3010 * instead relies on #NPF(RSVD) being reflected into the guest as #VC
3011 * (the guest can then do a #VMGEXIT to request MMIO emulation).
3012 */
3013 if (!enable_mmio_caching)
3014 goto out;
3015
3016 /* Does the CPU support SEV-ES? */
3017 if (!boot_cpu_has(X86_FEATURE_SEV_ES))
3018 goto out;
3019
3020 if (!lbrv) {
3021 WARN_ONCE(!boot_cpu_has(X86_FEATURE_LBRV),
3022 "LBRV must be present for SEV-ES support");
3023 goto out;
3024 }
3025
3026 /* Has the system been allocated ASIDs for SEV-ES? */
3027 if (min_sev_asid == 1)
3028 goto out;
3029
3030 sev_es_asid_count = min_sev_asid - 1;
3031 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count));
3032 sev_es_supported = true;
3033 sev_snp_supported = sev_snp_enabled && cc_platform_has(CC_ATTR_HOST_SEV_SNP);
3034
3035 out:
3036 if (boot_cpu_has(X86_FEATURE_SEV))
3037 pr_info("SEV %s (ASIDs %u - %u)\n",
3038 sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" :
3039 "unusable" :
3040 "disabled",
3041 min_sev_asid, max_sev_asid);
3042 if (boot_cpu_has(X86_FEATURE_SEV_ES))
3043 pr_info("SEV-ES %s (ASIDs %u - %u)\n",
3044 str_enabled_disabled(sev_es_supported),
3045 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
3046 if (boot_cpu_has(X86_FEATURE_SEV_SNP))
3047 pr_info("SEV-SNP %s (ASIDs %u - %u)\n",
3048 str_enabled_disabled(sev_snp_supported),
3049 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
3050
3051 sev_enabled = sev_supported;
3052 sev_es_enabled = sev_es_supported;
3053 sev_snp_enabled = sev_snp_supported;
3054
3055 if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) ||
3056 !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP))
3057 sev_es_debug_swap_enabled = false;
3058
3059 sev_supported_vmsa_features = 0;
3060 if (sev_es_debug_swap_enabled)
3061 sev_supported_vmsa_features |= SVM_SEV_FEAT_DEBUG_SWAP;
3062 }
3063
sev_hardware_unsetup(void)3064 void sev_hardware_unsetup(void)
3065 {
3066 if (!sev_enabled)
3067 return;
3068
3069 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */
3070 sev_flush_asids(1, max_sev_asid);
3071
3072 bitmap_free(sev_asid_bitmap);
3073 bitmap_free(sev_reclaim_asid_bitmap);
3074
3075 misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
3076 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
3077 }
3078
sev_cpu_init(struct svm_cpu_data * sd)3079 int sev_cpu_init(struct svm_cpu_data *sd)
3080 {
3081 if (!sev_enabled)
3082 return 0;
3083
3084 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
3085 if (!sd->sev_vmcbs)
3086 return -ENOMEM;
3087
3088 return 0;
3089 }
3090
3091 /*
3092 * Pages used by hardware to hold guest encrypted state must be flushed before
3093 * returning them to the system.
3094 */
sev_flush_encrypted_page(struct kvm_vcpu * vcpu,void * va)3095 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
3096 {
3097 unsigned int asid = sev_get_asid(vcpu->kvm);
3098
3099 /*
3100 * Note! The address must be a kernel address, as regular page walk
3101 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
3102 * address is non-deterministic and unsafe. This function deliberately
3103 * takes a pointer to deter passing in a user address.
3104 */
3105 unsigned long addr = (unsigned long)va;
3106
3107 /*
3108 * If CPU enforced cache coherency for encrypted mappings of the
3109 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
3110 * flush is still needed in order to work properly with DMA devices.
3111 */
3112 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
3113 clflush_cache_range(va, PAGE_SIZE);
3114 return;
3115 }
3116
3117 /*
3118 * VM Page Flush takes a host virtual address and a guest ASID. Fall
3119 * back to WBINVD if this faults so as not to make any problems worse
3120 * by leaving stale encrypted data in the cache.
3121 */
3122 if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
3123 goto do_wbinvd;
3124
3125 return;
3126
3127 do_wbinvd:
3128 wbinvd_on_all_cpus();
3129 }
3130
sev_guest_memory_reclaimed(struct kvm * kvm)3131 void sev_guest_memory_reclaimed(struct kvm *kvm)
3132 {
3133 /*
3134 * With SNP+gmem, private/encrypted memory is unreachable via the
3135 * hva-based mmu notifiers, so these events are only actually
3136 * pertaining to shared pages where there is no need to perform
3137 * the WBINVD to flush associated caches.
3138 */
3139 if (!sev_guest(kvm) || sev_snp_guest(kvm))
3140 return;
3141
3142 wbinvd_on_all_cpus();
3143 }
3144
sev_free_vcpu(struct kvm_vcpu * vcpu)3145 void sev_free_vcpu(struct kvm_vcpu *vcpu)
3146 {
3147 struct vcpu_svm *svm;
3148
3149 if (!sev_es_guest(vcpu->kvm))
3150 return;
3151
3152 svm = to_svm(vcpu);
3153
3154 /*
3155 * If it's an SNP guest, then the VMSA was marked in the RMP table as
3156 * a guest-owned page. Transition the page to hypervisor state before
3157 * releasing it back to the system.
3158 */
3159 if (sev_snp_guest(vcpu->kvm)) {
3160 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT;
3161
3162 if (kvm_rmp_make_shared(vcpu->kvm, pfn, PG_LEVEL_4K))
3163 goto skip_vmsa_free;
3164 }
3165
3166 if (vcpu->arch.guest_state_protected)
3167 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
3168
3169 __free_page(virt_to_page(svm->sev_es.vmsa));
3170
3171 skip_vmsa_free:
3172 if (svm->sev_es.ghcb_sa_free)
3173 kvfree(svm->sev_es.ghcb_sa);
3174 }
3175
dump_ghcb(struct vcpu_svm * svm)3176 static void dump_ghcb(struct vcpu_svm *svm)
3177 {
3178 struct ghcb *ghcb = svm->sev_es.ghcb;
3179 unsigned int nbits;
3180
3181 /* Re-use the dump_invalid_vmcb module parameter */
3182 if (!dump_invalid_vmcb) {
3183 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3184 return;
3185 }
3186
3187 nbits = sizeof(ghcb->save.valid_bitmap) * 8;
3188
3189 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
3190 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
3191 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
3192 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
3193 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
3194 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
3195 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
3196 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
3197 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
3198 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
3199 }
3200
sev_es_sync_to_ghcb(struct vcpu_svm * svm)3201 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
3202 {
3203 struct kvm_vcpu *vcpu = &svm->vcpu;
3204 struct ghcb *ghcb = svm->sev_es.ghcb;
3205
3206 /*
3207 * The GHCB protocol so far allows for the following data
3208 * to be returned:
3209 * GPRs RAX, RBX, RCX, RDX
3210 *
3211 * Copy their values, even if they may not have been written during the
3212 * VM-Exit. It's the guest's responsibility to not consume random data.
3213 */
3214 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
3215 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
3216 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
3217 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
3218 }
3219
sev_es_sync_from_ghcb(struct vcpu_svm * svm)3220 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
3221 {
3222 struct vmcb_control_area *control = &svm->vmcb->control;
3223 struct kvm_vcpu *vcpu = &svm->vcpu;
3224 struct ghcb *ghcb = svm->sev_es.ghcb;
3225 u64 exit_code;
3226
3227 /*
3228 * The GHCB protocol so far allows for the following data
3229 * to be supplied:
3230 * GPRs RAX, RBX, RCX, RDX
3231 * XCR0
3232 * CPL
3233 *
3234 * VMMCALL allows the guest to provide extra registers. KVM also
3235 * expects RSI for hypercalls, so include that, too.
3236 *
3237 * Copy their values to the appropriate location if supplied.
3238 */
3239 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
3240
3241 BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap));
3242 memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap));
3243
3244 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb);
3245 vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb);
3246 vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb);
3247 vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb);
3248 vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb);
3249
3250 svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb);
3251
3252 if (kvm_ghcb_xcr0_is_valid(svm)) {
3253 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
3254 vcpu->arch.cpuid_dynamic_bits_dirty = true;
3255 }
3256
3257 /* Copy the GHCB exit information into the VMCB fields */
3258 exit_code = ghcb_get_sw_exit_code(ghcb);
3259 control->exit_code = lower_32_bits(exit_code);
3260 control->exit_code_hi = upper_32_bits(exit_code);
3261 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
3262 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
3263 svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb);
3264
3265 /* Clear the valid entries fields */
3266 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
3267 }
3268
kvm_ghcb_get_sw_exit_code(struct vmcb_control_area * control)3269 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control)
3270 {
3271 return (((u64)control->exit_code_hi) << 32) | control->exit_code;
3272 }
3273
sev_es_validate_vmgexit(struct vcpu_svm * svm)3274 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
3275 {
3276 struct vmcb_control_area *control = &svm->vmcb->control;
3277 struct kvm_vcpu *vcpu = &svm->vcpu;
3278 u64 exit_code;
3279 u64 reason;
3280
3281 /*
3282 * Retrieve the exit code now even though it may not be marked valid
3283 * as it could help with debugging.
3284 */
3285 exit_code = kvm_ghcb_get_sw_exit_code(control);
3286
3287 /* Only GHCB Usage code 0 is supported */
3288 if (svm->sev_es.ghcb->ghcb_usage) {
3289 reason = GHCB_ERR_INVALID_USAGE;
3290 goto vmgexit_err;
3291 }
3292
3293 reason = GHCB_ERR_MISSING_INPUT;
3294
3295 if (!kvm_ghcb_sw_exit_code_is_valid(svm) ||
3296 !kvm_ghcb_sw_exit_info_1_is_valid(svm) ||
3297 !kvm_ghcb_sw_exit_info_2_is_valid(svm))
3298 goto vmgexit_err;
3299
3300 switch (exit_code) {
3301 case SVM_EXIT_READ_DR7:
3302 break;
3303 case SVM_EXIT_WRITE_DR7:
3304 if (!kvm_ghcb_rax_is_valid(svm))
3305 goto vmgexit_err;
3306 break;
3307 case SVM_EXIT_RDTSC:
3308 break;
3309 case SVM_EXIT_RDPMC:
3310 if (!kvm_ghcb_rcx_is_valid(svm))
3311 goto vmgexit_err;
3312 break;
3313 case SVM_EXIT_CPUID:
3314 if (!kvm_ghcb_rax_is_valid(svm) ||
3315 !kvm_ghcb_rcx_is_valid(svm))
3316 goto vmgexit_err;
3317 if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd)
3318 if (!kvm_ghcb_xcr0_is_valid(svm))
3319 goto vmgexit_err;
3320 break;
3321 case SVM_EXIT_INVD:
3322 break;
3323 case SVM_EXIT_IOIO:
3324 if (control->exit_info_1 & SVM_IOIO_STR_MASK) {
3325 if (!kvm_ghcb_sw_scratch_is_valid(svm))
3326 goto vmgexit_err;
3327 } else {
3328 if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK))
3329 if (!kvm_ghcb_rax_is_valid(svm))
3330 goto vmgexit_err;
3331 }
3332 break;
3333 case SVM_EXIT_MSR:
3334 if (!kvm_ghcb_rcx_is_valid(svm))
3335 goto vmgexit_err;
3336 if (control->exit_info_1) {
3337 if (!kvm_ghcb_rax_is_valid(svm) ||
3338 !kvm_ghcb_rdx_is_valid(svm))
3339 goto vmgexit_err;
3340 }
3341 break;
3342 case SVM_EXIT_VMMCALL:
3343 if (!kvm_ghcb_rax_is_valid(svm) ||
3344 !kvm_ghcb_cpl_is_valid(svm))
3345 goto vmgexit_err;
3346 break;
3347 case SVM_EXIT_RDTSCP:
3348 break;
3349 case SVM_EXIT_WBINVD:
3350 break;
3351 case SVM_EXIT_MONITOR:
3352 if (!kvm_ghcb_rax_is_valid(svm) ||
3353 !kvm_ghcb_rcx_is_valid(svm) ||
3354 !kvm_ghcb_rdx_is_valid(svm))
3355 goto vmgexit_err;
3356 break;
3357 case SVM_EXIT_MWAIT:
3358 if (!kvm_ghcb_rax_is_valid(svm) ||
3359 !kvm_ghcb_rcx_is_valid(svm))
3360 goto vmgexit_err;
3361 break;
3362 case SVM_VMGEXIT_MMIO_READ:
3363 case SVM_VMGEXIT_MMIO_WRITE:
3364 if (!kvm_ghcb_sw_scratch_is_valid(svm))
3365 goto vmgexit_err;
3366 break;
3367 case SVM_VMGEXIT_AP_CREATION:
3368 if (!sev_snp_guest(vcpu->kvm))
3369 goto vmgexit_err;
3370 if (lower_32_bits(control->exit_info_1) != SVM_VMGEXIT_AP_DESTROY)
3371 if (!kvm_ghcb_rax_is_valid(svm))
3372 goto vmgexit_err;
3373 break;
3374 case SVM_VMGEXIT_NMI_COMPLETE:
3375 case SVM_VMGEXIT_AP_HLT_LOOP:
3376 case SVM_VMGEXIT_AP_JUMP_TABLE:
3377 case SVM_VMGEXIT_UNSUPPORTED_EVENT:
3378 case SVM_VMGEXIT_HV_FEATURES:
3379 case SVM_VMGEXIT_TERM_REQUEST:
3380 break;
3381 case SVM_VMGEXIT_PSC:
3382 if (!sev_snp_guest(vcpu->kvm) || !kvm_ghcb_sw_scratch_is_valid(svm))
3383 goto vmgexit_err;
3384 break;
3385 case SVM_VMGEXIT_GUEST_REQUEST:
3386 case SVM_VMGEXIT_EXT_GUEST_REQUEST:
3387 if (!sev_snp_guest(vcpu->kvm) ||
3388 !PAGE_ALIGNED(control->exit_info_1) ||
3389 !PAGE_ALIGNED(control->exit_info_2) ||
3390 control->exit_info_1 == control->exit_info_2)
3391 goto vmgexit_err;
3392 break;
3393 default:
3394 reason = GHCB_ERR_INVALID_EVENT;
3395 goto vmgexit_err;
3396 }
3397
3398 return 0;
3399
3400 vmgexit_err:
3401 if (reason == GHCB_ERR_INVALID_USAGE) {
3402 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
3403 svm->sev_es.ghcb->ghcb_usage);
3404 } else if (reason == GHCB_ERR_INVALID_EVENT) {
3405 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
3406 exit_code);
3407 } else {
3408 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
3409 exit_code);
3410 dump_ghcb(svm);
3411 }
3412
3413 svm_vmgexit_bad_input(svm, reason);
3414
3415 /* Resume the guest to "return" the error code. */
3416 return 1;
3417 }
3418
sev_es_unmap_ghcb(struct vcpu_svm * svm)3419 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
3420 {
3421 /* Clear any indication that the vCPU is in a type of AP Reset Hold */
3422 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NONE;
3423
3424 if (!svm->sev_es.ghcb)
3425 return;
3426
3427 if (svm->sev_es.ghcb_sa_free) {
3428 /*
3429 * The scratch area lives outside the GHCB, so there is a
3430 * buffer that, depending on the operation performed, may
3431 * need to be synced, then freed.
3432 */
3433 if (svm->sev_es.ghcb_sa_sync) {
3434 kvm_write_guest(svm->vcpu.kvm,
3435 svm->sev_es.sw_scratch,
3436 svm->sev_es.ghcb_sa,
3437 svm->sev_es.ghcb_sa_len);
3438 svm->sev_es.ghcb_sa_sync = false;
3439 }
3440
3441 kvfree(svm->sev_es.ghcb_sa);
3442 svm->sev_es.ghcb_sa = NULL;
3443 svm->sev_es.ghcb_sa_free = false;
3444 }
3445
3446 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
3447
3448 sev_es_sync_to_ghcb(svm);
3449
3450 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map);
3451 svm->sev_es.ghcb = NULL;
3452 }
3453
pre_sev_run(struct vcpu_svm * svm,int cpu)3454 int pre_sev_run(struct vcpu_svm *svm, int cpu)
3455 {
3456 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
3457 struct kvm *kvm = svm->vcpu.kvm;
3458 unsigned int asid = sev_get_asid(kvm);
3459
3460 /*
3461 * Reject KVM_RUN if userspace attempts to run the vCPU with an invalid
3462 * VMSA, e.g. if userspace forces the vCPU to be RUNNABLE after an SNP
3463 * AP Destroy event.
3464 */
3465 if (sev_es_guest(kvm) && !VALID_PAGE(svm->vmcb->control.vmsa_pa))
3466 return -EINVAL;
3467
3468 /* Assign the asid allocated with this SEV guest */
3469 svm->asid = asid;
3470
3471 /*
3472 * Flush guest TLB:
3473 *
3474 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
3475 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
3476 */
3477 if (sd->sev_vmcbs[asid] == svm->vmcb &&
3478 svm->vcpu.arch.last_vmentry_cpu == cpu)
3479 return 0;
3480
3481 sd->sev_vmcbs[asid] = svm->vmcb;
3482 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3483 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3484 return 0;
3485 }
3486
3487 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE)
setup_vmgexit_scratch(struct vcpu_svm * svm,bool sync,u64 len)3488 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
3489 {
3490 struct vmcb_control_area *control = &svm->vmcb->control;
3491 u64 ghcb_scratch_beg, ghcb_scratch_end;
3492 u64 scratch_gpa_beg, scratch_gpa_end;
3493 void *scratch_va;
3494
3495 scratch_gpa_beg = svm->sev_es.sw_scratch;
3496 if (!scratch_gpa_beg) {
3497 pr_err("vmgexit: scratch gpa not provided\n");
3498 goto e_scratch;
3499 }
3500
3501 scratch_gpa_end = scratch_gpa_beg + len;
3502 if (scratch_gpa_end < scratch_gpa_beg) {
3503 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
3504 len, scratch_gpa_beg);
3505 goto e_scratch;
3506 }
3507
3508 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
3509 /* Scratch area begins within GHCB */
3510 ghcb_scratch_beg = control->ghcb_gpa +
3511 offsetof(struct ghcb, shared_buffer);
3512 ghcb_scratch_end = control->ghcb_gpa +
3513 offsetof(struct ghcb, reserved_0xff0);
3514
3515 /*
3516 * If the scratch area begins within the GHCB, it must be
3517 * completely contained in the GHCB shared buffer area.
3518 */
3519 if (scratch_gpa_beg < ghcb_scratch_beg ||
3520 scratch_gpa_end > ghcb_scratch_end) {
3521 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
3522 scratch_gpa_beg, scratch_gpa_end);
3523 goto e_scratch;
3524 }
3525
3526 scratch_va = (void *)svm->sev_es.ghcb;
3527 scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
3528 } else {
3529 /*
3530 * The guest memory must be read into a kernel buffer, so
3531 * limit the size
3532 */
3533 if (len > GHCB_SCRATCH_AREA_LIMIT) {
3534 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
3535 len, GHCB_SCRATCH_AREA_LIMIT);
3536 goto e_scratch;
3537 }
3538 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
3539 if (!scratch_va)
3540 return -ENOMEM;
3541
3542 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
3543 /* Unable to copy scratch area from guest */
3544 pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
3545
3546 kvfree(scratch_va);
3547 return -EFAULT;
3548 }
3549
3550 /*
3551 * The scratch area is outside the GHCB. The operation will
3552 * dictate whether the buffer needs to be synced before running
3553 * the vCPU next time (i.e. a read was requested so the data
3554 * must be written back to the guest memory).
3555 */
3556 svm->sev_es.ghcb_sa_sync = sync;
3557 svm->sev_es.ghcb_sa_free = true;
3558 }
3559
3560 svm->sev_es.ghcb_sa = scratch_va;
3561 svm->sev_es.ghcb_sa_len = len;
3562
3563 return 0;
3564
3565 e_scratch:
3566 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_SCRATCH_AREA);
3567
3568 return 1;
3569 }
3570
set_ghcb_msr_bits(struct vcpu_svm * svm,u64 value,u64 mask,unsigned int pos)3571 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
3572 unsigned int pos)
3573 {
3574 svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
3575 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
3576 }
3577
get_ghcb_msr_bits(struct vcpu_svm * svm,u64 mask,unsigned int pos)3578 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
3579 {
3580 return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
3581 }
3582
set_ghcb_msr(struct vcpu_svm * svm,u64 value)3583 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
3584 {
3585 svm->vmcb->control.ghcb_gpa = value;
3586 }
3587
snp_rmptable_psmash(kvm_pfn_t pfn)3588 static int snp_rmptable_psmash(kvm_pfn_t pfn)
3589 {
3590 int ret;
3591
3592 pfn = pfn & ~(KVM_PAGES_PER_HPAGE(PG_LEVEL_2M) - 1);
3593
3594 /*
3595 * PSMASH_FAIL_INUSE indicates another processor is modifying the
3596 * entry, so retry until that's no longer the case.
3597 */
3598 do {
3599 ret = psmash(pfn);
3600 } while (ret == PSMASH_FAIL_INUSE);
3601
3602 return ret;
3603 }
3604
snp_complete_psc_msr(struct kvm_vcpu * vcpu)3605 static int snp_complete_psc_msr(struct kvm_vcpu *vcpu)
3606 {
3607 struct vcpu_svm *svm = to_svm(vcpu);
3608
3609 if (vcpu->run->hypercall.ret)
3610 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3611 else
3612 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP);
3613
3614 return 1; /* resume guest */
3615 }
3616
snp_begin_psc_msr(struct vcpu_svm * svm,u64 ghcb_msr)3617 static int snp_begin_psc_msr(struct vcpu_svm *svm, u64 ghcb_msr)
3618 {
3619 u64 gpa = gfn_to_gpa(GHCB_MSR_PSC_REQ_TO_GFN(ghcb_msr));
3620 u8 op = GHCB_MSR_PSC_REQ_TO_OP(ghcb_msr);
3621 struct kvm_vcpu *vcpu = &svm->vcpu;
3622
3623 if (op != SNP_PAGE_STATE_PRIVATE && op != SNP_PAGE_STATE_SHARED) {
3624 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3625 return 1; /* resume guest */
3626 }
3627
3628 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) {
3629 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3630 return 1; /* resume guest */
3631 }
3632
3633 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
3634 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
3635 /*
3636 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
3637 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
3638 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting
3639 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
3640 */
3641 vcpu->run->hypercall.ret = 0;
3642 vcpu->run->hypercall.args[0] = gpa;
3643 vcpu->run->hypercall.args[1] = 1;
3644 vcpu->run->hypercall.args[2] = (op == SNP_PAGE_STATE_PRIVATE)
3645 ? KVM_MAP_GPA_RANGE_ENCRYPTED
3646 : KVM_MAP_GPA_RANGE_DECRYPTED;
3647 vcpu->run->hypercall.args[2] |= KVM_MAP_GPA_RANGE_PAGE_SZ_4K;
3648
3649 vcpu->arch.complete_userspace_io = snp_complete_psc_msr;
3650
3651 return 0; /* forward request to userspace */
3652 }
3653
3654 struct psc_buffer {
3655 struct psc_hdr hdr;
3656 struct psc_entry entries[];
3657 } __packed;
3658
3659 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc);
3660
snp_complete_psc(struct vcpu_svm * svm,u64 psc_ret)3661 static void snp_complete_psc(struct vcpu_svm *svm, u64 psc_ret)
3662 {
3663 svm->sev_es.psc_inflight = 0;
3664 svm->sev_es.psc_idx = 0;
3665 svm->sev_es.psc_2m = false;
3666
3667 /*
3668 * PSC requests always get a "no action" response in SW_EXITINFO1, with
3669 * a PSC-specific return code in SW_EXITINFO2 that provides the "real"
3670 * return code. E.g. if the PSC request was interrupted, the need to
3671 * retry is communicated via SW_EXITINFO2, not SW_EXITINFO1.
3672 */
3673 svm_vmgexit_no_action(svm, psc_ret);
3674 }
3675
__snp_complete_one_psc(struct vcpu_svm * svm)3676 static void __snp_complete_one_psc(struct vcpu_svm *svm)
3677 {
3678 struct psc_buffer *psc = svm->sev_es.ghcb_sa;
3679 struct psc_entry *entries = psc->entries;
3680 struct psc_hdr *hdr = &psc->hdr;
3681 __u16 idx;
3682
3683 /*
3684 * Everything in-flight has been processed successfully. Update the
3685 * corresponding entries in the guest's PSC buffer and zero out the
3686 * count of in-flight PSC entries.
3687 */
3688 for (idx = svm->sev_es.psc_idx; svm->sev_es.psc_inflight;
3689 svm->sev_es.psc_inflight--, idx++) {
3690 struct psc_entry *entry = &entries[idx];
3691
3692 entry->cur_page = entry->pagesize ? 512 : 1;
3693 }
3694
3695 hdr->cur_entry = idx;
3696 }
3697
snp_complete_one_psc(struct kvm_vcpu * vcpu)3698 static int snp_complete_one_psc(struct kvm_vcpu *vcpu)
3699 {
3700 struct vcpu_svm *svm = to_svm(vcpu);
3701 struct psc_buffer *psc = svm->sev_es.ghcb_sa;
3702
3703 if (vcpu->run->hypercall.ret) {
3704 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3705 return 1; /* resume guest */
3706 }
3707
3708 __snp_complete_one_psc(svm);
3709
3710 /* Handle the next range (if any). */
3711 return snp_begin_psc(svm, psc);
3712 }
3713
snp_begin_psc(struct vcpu_svm * svm,struct psc_buffer * psc)3714 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc)
3715 {
3716 struct psc_entry *entries = psc->entries;
3717 struct kvm_vcpu *vcpu = &svm->vcpu;
3718 struct psc_hdr *hdr = &psc->hdr;
3719 struct psc_entry entry_start;
3720 u16 idx, idx_start, idx_end;
3721 int npages;
3722 bool huge;
3723 u64 gfn;
3724
3725 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) {
3726 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3727 return 1;
3728 }
3729
3730 next_range:
3731 /* There should be no other PSCs in-flight at this point. */
3732 if (WARN_ON_ONCE(svm->sev_es.psc_inflight)) {
3733 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3734 return 1;
3735 }
3736
3737 /*
3738 * The PSC descriptor buffer can be modified by a misbehaved guest after
3739 * validation, so take care to only use validated copies of values used
3740 * for things like array indexing.
3741 */
3742 idx_start = hdr->cur_entry;
3743 idx_end = hdr->end_entry;
3744
3745 if (idx_end >= VMGEXIT_PSC_MAX_COUNT) {
3746 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_HDR);
3747 return 1;
3748 }
3749
3750 /* Find the start of the next range which needs processing. */
3751 for (idx = idx_start; idx <= idx_end; idx++, hdr->cur_entry++) {
3752 entry_start = entries[idx];
3753
3754 gfn = entry_start.gfn;
3755 huge = entry_start.pagesize;
3756 npages = huge ? 512 : 1;
3757
3758 if (entry_start.cur_page > npages || !IS_ALIGNED(gfn, npages)) {
3759 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_ENTRY);
3760 return 1;
3761 }
3762
3763 if (entry_start.cur_page) {
3764 /*
3765 * If this is a partially-completed 2M range, force 4K handling
3766 * for the remaining pages since they're effectively split at
3767 * this point. Subsequent code should ensure this doesn't get
3768 * combined with adjacent PSC entries where 2M handling is still
3769 * possible.
3770 */
3771 npages -= entry_start.cur_page;
3772 gfn += entry_start.cur_page;
3773 huge = false;
3774 }
3775
3776 if (npages)
3777 break;
3778 }
3779
3780 if (idx > idx_end) {
3781 /* Nothing more to process. */
3782 snp_complete_psc(svm, 0);
3783 return 1;
3784 }
3785
3786 svm->sev_es.psc_2m = huge;
3787 svm->sev_es.psc_idx = idx;
3788 svm->sev_es.psc_inflight = 1;
3789
3790 /*
3791 * Find all subsequent PSC entries that contain adjacent GPA
3792 * ranges/operations and can be combined into a single
3793 * KVM_HC_MAP_GPA_RANGE exit.
3794 */
3795 while (++idx <= idx_end) {
3796 struct psc_entry entry = entries[idx];
3797
3798 if (entry.operation != entry_start.operation ||
3799 entry.gfn != entry_start.gfn + npages ||
3800 entry.cur_page || !!entry.pagesize != huge)
3801 break;
3802
3803 svm->sev_es.psc_inflight++;
3804 npages += huge ? 512 : 1;
3805 }
3806
3807 switch (entry_start.operation) {
3808 case VMGEXIT_PSC_OP_PRIVATE:
3809 case VMGEXIT_PSC_OP_SHARED:
3810 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
3811 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
3812 /*
3813 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
3814 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
3815 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting
3816 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
3817 */
3818 vcpu->run->hypercall.ret = 0;
3819 vcpu->run->hypercall.args[0] = gfn_to_gpa(gfn);
3820 vcpu->run->hypercall.args[1] = npages;
3821 vcpu->run->hypercall.args[2] = entry_start.operation == VMGEXIT_PSC_OP_PRIVATE
3822 ? KVM_MAP_GPA_RANGE_ENCRYPTED
3823 : KVM_MAP_GPA_RANGE_DECRYPTED;
3824 vcpu->run->hypercall.args[2] |= entry_start.pagesize
3825 ? KVM_MAP_GPA_RANGE_PAGE_SZ_2M
3826 : KVM_MAP_GPA_RANGE_PAGE_SZ_4K;
3827 vcpu->arch.complete_userspace_io = snp_complete_one_psc;
3828 return 0; /* forward request to userspace */
3829 default:
3830 /*
3831 * Only shared/private PSC operations are currently supported, so if the
3832 * entire range consists of unsupported operations (e.g. SMASH/UNSMASH),
3833 * then consider the entire range completed and avoid exiting to
3834 * userspace. In theory snp_complete_psc() can always be called directly
3835 * at this point to complete the current range and start the next one,
3836 * but that could lead to unexpected levels of recursion.
3837 */
3838 __snp_complete_one_psc(svm);
3839 goto next_range;
3840 }
3841
3842 BUG();
3843 }
3844
3845 /*
3846 * Invoked as part of svm_vcpu_reset() processing of an init event.
3847 */
sev_snp_init_protected_guest_state(struct kvm_vcpu * vcpu)3848 void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu)
3849 {
3850 struct vcpu_svm *svm = to_svm(vcpu);
3851 struct kvm_memory_slot *slot;
3852 struct page *page;
3853 kvm_pfn_t pfn;
3854 gfn_t gfn;
3855
3856 if (!sev_snp_guest(vcpu->kvm))
3857 return;
3858
3859 guard(mutex)(&svm->sev_es.snp_vmsa_mutex);
3860
3861 if (!svm->sev_es.snp_ap_waiting_for_reset)
3862 return;
3863
3864 svm->sev_es.snp_ap_waiting_for_reset = false;
3865
3866 /* Mark the vCPU as offline and not runnable */
3867 vcpu->arch.pv.pv_unhalted = false;
3868 kvm_set_mp_state(vcpu, KVM_MP_STATE_HALTED);
3869
3870 /* Clear use of the VMSA */
3871 svm->vmcb->control.vmsa_pa = INVALID_PAGE;
3872
3873 /*
3874 * When replacing the VMSA during SEV-SNP AP creation,
3875 * mark the VMCB dirty so that full state is always reloaded.
3876 */
3877 vmcb_mark_all_dirty(svm->vmcb);
3878
3879 if (!VALID_PAGE(svm->sev_es.snp_vmsa_gpa))
3880 return;
3881
3882 gfn = gpa_to_gfn(svm->sev_es.snp_vmsa_gpa);
3883 svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
3884
3885 slot = gfn_to_memslot(vcpu->kvm, gfn);
3886 if (!slot)
3887 return;
3888
3889 /*
3890 * The new VMSA will be private memory guest memory, so retrieve the
3891 * PFN from the gmem backend.
3892 */
3893 if (kvm_gmem_get_pfn(vcpu->kvm, slot, gfn, &pfn, &page, NULL))
3894 return;
3895
3896 /*
3897 * From this point forward, the VMSA will always be a guest-mapped page
3898 * rather than the initial one allocated by KVM in svm->sev_es.vmsa. In
3899 * theory, svm->sev_es.vmsa could be free'd and cleaned up here, but
3900 * that involves cleanups like wbinvd_on_all_cpus() which would ideally
3901 * be handled during teardown rather than guest boot. Deferring that
3902 * also allows the existing logic for SEV-ES VMSAs to be re-used with
3903 * minimal SNP-specific changes.
3904 */
3905 svm->sev_es.snp_has_guest_vmsa = true;
3906
3907 /* Use the new VMSA */
3908 svm->vmcb->control.vmsa_pa = pfn_to_hpa(pfn);
3909
3910 /* Mark the vCPU as runnable */
3911 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
3912
3913 /*
3914 * gmem pages aren't currently migratable, but if this ever changes
3915 * then care should be taken to ensure svm->sev_es.vmsa is pinned
3916 * through some other means.
3917 */
3918 kvm_release_page_clean(page);
3919 }
3920
sev_snp_ap_creation(struct vcpu_svm * svm)3921 static int sev_snp_ap_creation(struct vcpu_svm *svm)
3922 {
3923 struct kvm_sev_info *sev = to_kvm_sev_info(svm->vcpu.kvm);
3924 struct kvm_vcpu *vcpu = &svm->vcpu;
3925 struct kvm_vcpu *target_vcpu;
3926 struct vcpu_svm *target_svm;
3927 unsigned int request;
3928 unsigned int apic_id;
3929
3930 request = lower_32_bits(svm->vmcb->control.exit_info_1);
3931 apic_id = upper_32_bits(svm->vmcb->control.exit_info_1);
3932
3933 /* Validate the APIC ID */
3934 target_vcpu = kvm_get_vcpu_by_id(vcpu->kvm, apic_id);
3935 if (!target_vcpu) {
3936 vcpu_unimpl(vcpu, "vmgexit: invalid AP APIC ID [%#x] from guest\n",
3937 apic_id);
3938 return -EINVAL;
3939 }
3940
3941 target_svm = to_svm(target_vcpu);
3942
3943 guard(mutex)(&target_svm->sev_es.snp_vmsa_mutex);
3944
3945 switch (request) {
3946 case SVM_VMGEXIT_AP_CREATE_ON_INIT:
3947 case SVM_VMGEXIT_AP_CREATE:
3948 if (vcpu->arch.regs[VCPU_REGS_RAX] != sev->vmsa_features) {
3949 vcpu_unimpl(vcpu, "vmgexit: mismatched AP sev_features [%#lx] != [%#llx] from guest\n",
3950 vcpu->arch.regs[VCPU_REGS_RAX], sev->vmsa_features);
3951 return -EINVAL;
3952 }
3953
3954 if (!page_address_valid(vcpu, svm->vmcb->control.exit_info_2)) {
3955 vcpu_unimpl(vcpu, "vmgexit: invalid AP VMSA address [%#llx] from guest\n",
3956 svm->vmcb->control.exit_info_2);
3957 return -EINVAL;
3958 }
3959
3960 /*
3961 * Malicious guest can RMPADJUST a large page into VMSA which
3962 * will hit the SNP erratum where the CPU will incorrectly signal
3963 * an RMP violation #PF if a hugepage collides with the RMP entry
3964 * of VMSA page, reject the AP CREATE request if VMSA address from
3965 * guest is 2M aligned.
3966 */
3967 if (IS_ALIGNED(svm->vmcb->control.exit_info_2, PMD_SIZE)) {
3968 vcpu_unimpl(vcpu,
3969 "vmgexit: AP VMSA address [%llx] from guest is unsafe as it is 2M aligned\n",
3970 svm->vmcb->control.exit_info_2);
3971 return -EINVAL;
3972 }
3973
3974 target_svm->sev_es.snp_vmsa_gpa = svm->vmcb->control.exit_info_2;
3975 break;
3976 case SVM_VMGEXIT_AP_DESTROY:
3977 target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
3978 break;
3979 default:
3980 vcpu_unimpl(vcpu, "vmgexit: invalid AP creation request [%#x] from guest\n",
3981 request);
3982 return -EINVAL;
3983 }
3984
3985 target_svm->sev_es.snp_ap_waiting_for_reset = true;
3986
3987 /*
3988 * Unless Creation is deferred until INIT, signal the vCPU to update
3989 * its state.
3990 */
3991 if (request != SVM_VMGEXIT_AP_CREATE_ON_INIT) {
3992 kvm_make_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu);
3993 kvm_vcpu_kick(target_vcpu);
3994 }
3995
3996 return 0;
3997 }
3998
snp_handle_guest_req(struct vcpu_svm * svm,gpa_t req_gpa,gpa_t resp_gpa)3999 static int snp_handle_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa)
4000 {
4001 struct sev_data_snp_guest_request data = {0};
4002 struct kvm *kvm = svm->vcpu.kvm;
4003 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
4004 sev_ret_code fw_err = 0;
4005 int ret;
4006
4007 if (!sev_snp_guest(kvm))
4008 return -EINVAL;
4009
4010 mutex_lock(&sev->guest_req_mutex);
4011
4012 if (kvm_read_guest(kvm, req_gpa, sev->guest_req_buf, PAGE_SIZE)) {
4013 ret = -EIO;
4014 goto out_unlock;
4015 }
4016
4017 data.gctx_paddr = __psp_pa(sev->snp_context);
4018 data.req_paddr = __psp_pa(sev->guest_req_buf);
4019 data.res_paddr = __psp_pa(sev->guest_resp_buf);
4020
4021 /*
4022 * Firmware failures are propagated on to guest, but any other failure
4023 * condition along the way should be reported to userspace. E.g. if
4024 * the PSP is dead and commands are timing out.
4025 */
4026 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_GUEST_REQUEST, &data, &fw_err);
4027 if (ret && !fw_err)
4028 goto out_unlock;
4029
4030 if (kvm_write_guest(kvm, resp_gpa, sev->guest_resp_buf, PAGE_SIZE)) {
4031 ret = -EIO;
4032 goto out_unlock;
4033 }
4034
4035 /* No action is requested *from KVM* if there was a firmware error. */
4036 svm_vmgexit_no_action(svm, SNP_GUEST_ERR(0, fw_err));
4037
4038 ret = 1; /* resume guest */
4039
4040 out_unlock:
4041 mutex_unlock(&sev->guest_req_mutex);
4042 return ret;
4043 }
4044
snp_handle_ext_guest_req(struct vcpu_svm * svm,gpa_t req_gpa,gpa_t resp_gpa)4045 static int snp_handle_ext_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa)
4046 {
4047 struct kvm *kvm = svm->vcpu.kvm;
4048 u8 msg_type;
4049
4050 if (!sev_snp_guest(kvm))
4051 return -EINVAL;
4052
4053 if (kvm_read_guest(kvm, req_gpa + offsetof(struct snp_guest_msg_hdr, msg_type),
4054 &msg_type, 1))
4055 return -EIO;
4056
4057 /*
4058 * As per GHCB spec, requests of type MSG_REPORT_REQ also allow for
4059 * additional certificate data to be provided alongside the attestation
4060 * report via the guest-provided data pages indicated by RAX/RBX. The
4061 * certificate data is optional and requires additional KVM enablement
4062 * to provide an interface for userspace to provide it, but KVM still
4063 * needs to be able to handle extended guest requests either way. So
4064 * provide a stub implementation that will always return an empty
4065 * certificate table in the guest-provided data pages.
4066 */
4067 if (msg_type == SNP_MSG_REPORT_REQ) {
4068 struct kvm_vcpu *vcpu = &svm->vcpu;
4069 u64 data_npages;
4070 gpa_t data_gpa;
4071
4072 if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rbx_is_valid(svm))
4073 goto request_invalid;
4074
4075 data_gpa = vcpu->arch.regs[VCPU_REGS_RAX];
4076 data_npages = vcpu->arch.regs[VCPU_REGS_RBX];
4077
4078 if (!PAGE_ALIGNED(data_gpa))
4079 goto request_invalid;
4080
4081 /*
4082 * As per GHCB spec (see "SNP Extended Guest Request"), the
4083 * certificate table is terminated by 24-bytes of zeroes.
4084 */
4085 if (data_npages && kvm_clear_guest(kvm, data_gpa, 24))
4086 return -EIO;
4087 }
4088
4089 return snp_handle_guest_req(svm, req_gpa, resp_gpa);
4090
4091 request_invalid:
4092 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT);
4093 return 1; /* resume guest */
4094 }
4095
sev_handle_vmgexit_msr_protocol(struct vcpu_svm * svm)4096 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
4097 {
4098 struct vmcb_control_area *control = &svm->vmcb->control;
4099 struct kvm_vcpu *vcpu = &svm->vcpu;
4100 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
4101 u64 ghcb_info;
4102 int ret = 1;
4103
4104 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
4105
4106 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
4107 control->ghcb_gpa);
4108
4109 switch (ghcb_info) {
4110 case GHCB_MSR_SEV_INFO_REQ:
4111 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
4112 GHCB_VERSION_MIN,
4113 sev_enc_bit));
4114 break;
4115 case GHCB_MSR_CPUID_REQ: {
4116 u64 cpuid_fn, cpuid_reg, cpuid_value;
4117
4118 cpuid_fn = get_ghcb_msr_bits(svm,
4119 GHCB_MSR_CPUID_FUNC_MASK,
4120 GHCB_MSR_CPUID_FUNC_POS);
4121
4122 /* Initialize the registers needed by the CPUID intercept */
4123 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
4124 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
4125
4126 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
4127 if (!ret) {
4128 /* Error, keep GHCB MSR value as-is */
4129 break;
4130 }
4131
4132 cpuid_reg = get_ghcb_msr_bits(svm,
4133 GHCB_MSR_CPUID_REG_MASK,
4134 GHCB_MSR_CPUID_REG_POS);
4135 if (cpuid_reg == 0)
4136 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
4137 else if (cpuid_reg == 1)
4138 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
4139 else if (cpuid_reg == 2)
4140 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
4141 else
4142 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
4143
4144 set_ghcb_msr_bits(svm, cpuid_value,
4145 GHCB_MSR_CPUID_VALUE_MASK,
4146 GHCB_MSR_CPUID_VALUE_POS);
4147
4148 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
4149 GHCB_MSR_INFO_MASK,
4150 GHCB_MSR_INFO_POS);
4151 break;
4152 }
4153 case GHCB_MSR_AP_RESET_HOLD_REQ:
4154 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_MSR_PROTO;
4155 ret = kvm_emulate_ap_reset_hold(&svm->vcpu);
4156
4157 /*
4158 * Preset the result to a non-SIPI return and then only set
4159 * the result to non-zero when delivering a SIPI.
4160 */
4161 set_ghcb_msr_bits(svm, 0,
4162 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
4163 GHCB_MSR_AP_RESET_HOLD_RESULT_POS);
4164
4165 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
4166 GHCB_MSR_INFO_MASK,
4167 GHCB_MSR_INFO_POS);
4168 break;
4169 case GHCB_MSR_HV_FT_REQ:
4170 set_ghcb_msr_bits(svm, GHCB_HV_FT_SUPPORTED,
4171 GHCB_MSR_HV_FT_MASK, GHCB_MSR_HV_FT_POS);
4172 set_ghcb_msr_bits(svm, GHCB_MSR_HV_FT_RESP,
4173 GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS);
4174 break;
4175 case GHCB_MSR_PREF_GPA_REQ:
4176 if (!sev_snp_guest(vcpu->kvm))
4177 goto out_terminate;
4178
4179 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_NONE, GHCB_MSR_GPA_VALUE_MASK,
4180 GHCB_MSR_GPA_VALUE_POS);
4181 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_RESP, GHCB_MSR_INFO_MASK,
4182 GHCB_MSR_INFO_POS);
4183 break;
4184 case GHCB_MSR_REG_GPA_REQ: {
4185 u64 gfn;
4186
4187 if (!sev_snp_guest(vcpu->kvm))
4188 goto out_terminate;
4189
4190 gfn = get_ghcb_msr_bits(svm, GHCB_MSR_GPA_VALUE_MASK,
4191 GHCB_MSR_GPA_VALUE_POS);
4192
4193 svm->sev_es.ghcb_registered_gpa = gfn_to_gpa(gfn);
4194
4195 set_ghcb_msr_bits(svm, gfn, GHCB_MSR_GPA_VALUE_MASK,
4196 GHCB_MSR_GPA_VALUE_POS);
4197 set_ghcb_msr_bits(svm, GHCB_MSR_REG_GPA_RESP, GHCB_MSR_INFO_MASK,
4198 GHCB_MSR_INFO_POS);
4199 break;
4200 }
4201 case GHCB_MSR_PSC_REQ:
4202 if (!sev_snp_guest(vcpu->kvm))
4203 goto out_terminate;
4204
4205 ret = snp_begin_psc_msr(svm, control->ghcb_gpa);
4206 break;
4207 case GHCB_MSR_TERM_REQ: {
4208 u64 reason_set, reason_code;
4209
4210 reason_set = get_ghcb_msr_bits(svm,
4211 GHCB_MSR_TERM_REASON_SET_MASK,
4212 GHCB_MSR_TERM_REASON_SET_POS);
4213 reason_code = get_ghcb_msr_bits(svm,
4214 GHCB_MSR_TERM_REASON_MASK,
4215 GHCB_MSR_TERM_REASON_POS);
4216 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
4217 reason_set, reason_code);
4218
4219 goto out_terminate;
4220 }
4221 default:
4222 /* Error, keep GHCB MSR value as-is */
4223 break;
4224 }
4225
4226 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
4227 control->ghcb_gpa, ret);
4228
4229 return ret;
4230
4231 out_terminate:
4232 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
4233 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
4234 vcpu->run->system_event.ndata = 1;
4235 vcpu->run->system_event.data[0] = control->ghcb_gpa;
4236
4237 return 0;
4238 }
4239
sev_handle_vmgexit(struct kvm_vcpu * vcpu)4240 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
4241 {
4242 struct vcpu_svm *svm = to_svm(vcpu);
4243 struct vmcb_control_area *control = &svm->vmcb->control;
4244 u64 ghcb_gpa, exit_code;
4245 int ret;
4246
4247 /* Validate the GHCB */
4248 ghcb_gpa = control->ghcb_gpa;
4249 if (ghcb_gpa & GHCB_MSR_INFO_MASK)
4250 return sev_handle_vmgexit_msr_protocol(svm);
4251
4252 if (!ghcb_gpa) {
4253 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
4254
4255 /* Without a GHCB, just return right back to the guest */
4256 return 1;
4257 }
4258
4259 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
4260 /* Unable to map GHCB from guest */
4261 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
4262 ghcb_gpa);
4263
4264 /* Without a GHCB, just return right back to the guest */
4265 return 1;
4266 }
4267
4268 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
4269
4270 trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb);
4271
4272 sev_es_sync_from_ghcb(svm);
4273
4274 /* SEV-SNP guest requires that the GHCB GPA must be registered */
4275 if (sev_snp_guest(svm->vcpu.kvm) && !ghcb_gpa_is_registered(svm, ghcb_gpa)) {
4276 vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB GPA [%#llx] is not registered.\n", ghcb_gpa);
4277 return -EINVAL;
4278 }
4279
4280 ret = sev_es_validate_vmgexit(svm);
4281 if (ret)
4282 return ret;
4283
4284 svm_vmgexit_success(svm, 0);
4285
4286 exit_code = kvm_ghcb_get_sw_exit_code(control);
4287 switch (exit_code) {
4288 case SVM_VMGEXIT_MMIO_READ:
4289 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
4290 if (ret)
4291 break;
4292
4293 ret = kvm_sev_es_mmio_read(vcpu,
4294 control->exit_info_1,
4295 control->exit_info_2,
4296 svm->sev_es.ghcb_sa);
4297 break;
4298 case SVM_VMGEXIT_MMIO_WRITE:
4299 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
4300 if (ret)
4301 break;
4302
4303 ret = kvm_sev_es_mmio_write(vcpu,
4304 control->exit_info_1,
4305 control->exit_info_2,
4306 svm->sev_es.ghcb_sa);
4307 break;
4308 case SVM_VMGEXIT_NMI_COMPLETE:
4309 ++vcpu->stat.nmi_window_exits;
4310 svm->nmi_masked = false;
4311 kvm_make_request(KVM_REQ_EVENT, vcpu);
4312 ret = 1;
4313 break;
4314 case SVM_VMGEXIT_AP_HLT_LOOP:
4315 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NAE_EVENT;
4316 ret = kvm_emulate_ap_reset_hold(vcpu);
4317 break;
4318 case SVM_VMGEXIT_AP_JUMP_TABLE: {
4319 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
4320
4321 switch (control->exit_info_1) {
4322 case 0:
4323 /* Set AP jump table address */
4324 sev->ap_jump_table = control->exit_info_2;
4325 break;
4326 case 1:
4327 /* Get AP jump table address */
4328 svm_vmgexit_success(svm, sev->ap_jump_table);
4329 break;
4330 default:
4331 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
4332 control->exit_info_1);
4333 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT);
4334 }
4335
4336 ret = 1;
4337 break;
4338 }
4339 case SVM_VMGEXIT_HV_FEATURES:
4340 svm_vmgexit_success(svm, GHCB_HV_FT_SUPPORTED);
4341 ret = 1;
4342 break;
4343 case SVM_VMGEXIT_TERM_REQUEST:
4344 pr_info("SEV-ES guest requested termination: reason %#llx info %#llx\n",
4345 control->exit_info_1, control->exit_info_2);
4346 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
4347 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
4348 vcpu->run->system_event.ndata = 1;
4349 vcpu->run->system_event.data[0] = control->ghcb_gpa;
4350 break;
4351 case SVM_VMGEXIT_PSC:
4352 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
4353 if (ret)
4354 break;
4355
4356 ret = snp_begin_psc(svm, svm->sev_es.ghcb_sa);
4357 break;
4358 case SVM_VMGEXIT_AP_CREATION:
4359 ret = sev_snp_ap_creation(svm);
4360 if (ret) {
4361 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT);
4362 }
4363
4364 ret = 1;
4365 break;
4366 case SVM_VMGEXIT_GUEST_REQUEST:
4367 ret = snp_handle_guest_req(svm, control->exit_info_1, control->exit_info_2);
4368 break;
4369 case SVM_VMGEXIT_EXT_GUEST_REQUEST:
4370 ret = snp_handle_ext_guest_req(svm, control->exit_info_1, control->exit_info_2);
4371 break;
4372 case SVM_VMGEXIT_UNSUPPORTED_EVENT:
4373 vcpu_unimpl(vcpu,
4374 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
4375 control->exit_info_1, control->exit_info_2);
4376 ret = -EINVAL;
4377 break;
4378 default:
4379 ret = svm_invoke_exit_handler(vcpu, exit_code);
4380 }
4381
4382 return ret;
4383 }
4384
sev_es_string_io(struct vcpu_svm * svm,int size,unsigned int port,int in)4385 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
4386 {
4387 int count;
4388 int bytes;
4389 int r;
4390
4391 if (svm->vmcb->control.exit_info_2 > INT_MAX)
4392 return -EINVAL;
4393
4394 count = svm->vmcb->control.exit_info_2;
4395 if (unlikely(check_mul_overflow(count, size, &bytes)))
4396 return -EINVAL;
4397
4398 r = setup_vmgexit_scratch(svm, in, bytes);
4399 if (r)
4400 return r;
4401
4402 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
4403 count, in);
4404 }
4405
sev_es_vcpu_after_set_cpuid(struct vcpu_svm * svm)4406 static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm)
4407 {
4408 struct kvm_vcpu *vcpu = &svm->vcpu;
4409
4410 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
4411 bool v_tsc_aux = guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) ||
4412 guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID);
4413
4414 set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux);
4415 }
4416
4417 /*
4418 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if
4419 * the host/guest supports its use.
4420 *
4421 * KVM treats the guest as being capable of using XSAVES even if XSAVES
4422 * isn't enabled in guest CPUID as there is no intercept for XSAVES,
4423 * i.e. the guest can use XSAVES/XRSTOR to read/write XSS if XSAVE is
4424 * exposed to the guest and XSAVES is supported in hardware. Condition
4425 * full XSS passthrough on the guest being able to use XSAVES *and*
4426 * XSAVES being exposed to the guest so that KVM can at least honor
4427 * guest CPUID for RDMSR and WRMSR.
4428 */
4429 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
4430 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4431 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 1, 1);
4432 else
4433 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 0, 0);
4434 }
4435
sev_vcpu_after_set_cpuid(struct vcpu_svm * svm)4436 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
4437 {
4438 struct kvm_vcpu *vcpu = &svm->vcpu;
4439 struct kvm_cpuid_entry2 *best;
4440
4441 /* For sev guests, the memory encryption bit is not reserved in CR3. */
4442 best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
4443 if (best)
4444 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4445
4446 if (sev_es_guest(svm->vcpu.kvm))
4447 sev_es_vcpu_after_set_cpuid(svm);
4448 }
4449
sev_es_init_vmcb(struct vcpu_svm * svm)4450 static void sev_es_init_vmcb(struct vcpu_svm *svm)
4451 {
4452 struct vmcb *vmcb = svm->vmcb01.ptr;
4453 struct kvm_vcpu *vcpu = &svm->vcpu;
4454
4455 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
4456
4457 /*
4458 * An SEV-ES guest requires a VMSA area that is a separate from the
4459 * VMCB page. Do not include the encryption mask on the VMSA physical
4460 * address since hardware will access it using the guest key. Note,
4461 * the VMSA will be NULL if this vCPU is the destination for intrahost
4462 * migration, and will be copied later.
4463 */
4464 if (svm->sev_es.vmsa && !svm->sev_es.snp_has_guest_vmsa)
4465 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
4466
4467 /* Can't intercept CR register access, HV can't modify CR registers */
4468 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
4469 svm_clr_intercept(svm, INTERCEPT_CR4_READ);
4470 svm_clr_intercept(svm, INTERCEPT_CR8_READ);
4471 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
4472 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
4473 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
4474
4475 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
4476
4477 /* Track EFER/CR register changes */
4478 svm_set_intercept(svm, TRAP_EFER_WRITE);
4479 svm_set_intercept(svm, TRAP_CR0_WRITE);
4480 svm_set_intercept(svm, TRAP_CR4_WRITE);
4481 svm_set_intercept(svm, TRAP_CR8_WRITE);
4482
4483 vmcb->control.intercepts[INTERCEPT_DR] = 0;
4484 if (!sev_vcpu_has_debug_swap(svm)) {
4485 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
4486 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
4487 recalc_intercepts(svm);
4488 } else {
4489 /*
4490 * Disable #DB intercept iff DebugSwap is enabled. KVM doesn't
4491 * allow debugging SEV-ES guests, and enables DebugSwap iff
4492 * NO_NESTED_DATA_BP is supported, so there's no reason to
4493 * intercept #DB when DebugSwap is enabled. For simplicity
4494 * with respect to guest debug, intercept #DB for other VMs
4495 * even if NO_NESTED_DATA_BP is supported, i.e. even if the
4496 * guest can't DoS the CPU with infinite #DB vectoring.
4497 */
4498 clr_exception_intercept(svm, DB_VECTOR);
4499 }
4500
4501 /* Can't intercept XSETBV, HV can't modify XCR0 directly */
4502 svm_clr_intercept(svm, INTERCEPT_XSETBV);
4503
4504 /* Clear intercepts on selected MSRs */
4505 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
4506 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
4507 }
4508
sev_init_vmcb(struct vcpu_svm * svm)4509 void sev_init_vmcb(struct vcpu_svm *svm)
4510 {
4511 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
4512 clr_exception_intercept(svm, UD_VECTOR);
4513
4514 /*
4515 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as
4516 * KVM can't decrypt guest memory to decode the faulting instruction.
4517 */
4518 clr_exception_intercept(svm, GP_VECTOR);
4519
4520 if (sev_es_guest(svm->vcpu.kvm))
4521 sev_es_init_vmcb(svm);
4522 }
4523
sev_es_vcpu_reset(struct vcpu_svm * svm)4524 void sev_es_vcpu_reset(struct vcpu_svm *svm)
4525 {
4526 struct kvm_vcpu *vcpu = &svm->vcpu;
4527 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
4528
4529 /*
4530 * Set the GHCB MSR value as per the GHCB specification when emulating
4531 * vCPU RESET for an SEV-ES guest.
4532 */
4533 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
4534 GHCB_VERSION_MIN,
4535 sev_enc_bit));
4536
4537 mutex_init(&svm->sev_es.snp_vmsa_mutex);
4538 }
4539
sev_es_prepare_switch_to_guest(struct vcpu_svm * svm,struct sev_es_save_area * hostsa)4540 void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa)
4541 {
4542 struct kvm *kvm = svm->vcpu.kvm;
4543
4544 /*
4545 * All host state for SEV-ES guests is categorized into three swap types
4546 * based on how it is handled by hardware during a world switch:
4547 *
4548 * A: VMRUN: Host state saved in host save area
4549 * VMEXIT: Host state loaded from host save area
4550 *
4551 * B: VMRUN: Host state _NOT_ saved in host save area
4552 * VMEXIT: Host state loaded from host save area
4553 *
4554 * C: VMRUN: Host state _NOT_ saved in host save area
4555 * VMEXIT: Host state initialized to default(reset) values
4556 *
4557 * Manually save type-B state, i.e. state that is loaded by VMEXIT but
4558 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed
4559 * by common SVM code).
4560 */
4561 hostsa->xcr0 = kvm_host.xcr0;
4562 hostsa->pkru = read_pkru();
4563 hostsa->xss = kvm_host.xss;
4564
4565 /*
4566 * If DebugSwap is enabled, debug registers are loaded but NOT saved by
4567 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU does
4568 * not save or load debug registers. Sadly, KVM can't prevent SNP
4569 * guests from lying about DebugSwap on secondary vCPUs, i.e. the
4570 * SEV_FEATURES provided at "AP Create" isn't guaranteed to match what
4571 * the guest has actually enabled (or not!) in the VMSA.
4572 *
4573 * If DebugSwap is *possible*, save the masks so that they're restored
4574 * if the guest enables DebugSwap. But for the DRs themselves, do NOT
4575 * rely on the CPU to restore the host values; KVM will restore them as
4576 * needed in common code, via hw_breakpoint_restore(). Note, KVM does
4577 * NOT support virtualizing Breakpoint Extensions, i.e. the mask MSRs
4578 * don't need to be restored per se, KVM just needs to ensure they are
4579 * loaded with the correct values *if* the CPU writes the MSRs.
4580 */
4581 if (sev_vcpu_has_debug_swap(svm) ||
4582 (sev_snp_guest(kvm) && cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP))) {
4583 hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0);
4584 hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1);
4585 hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2);
4586 hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3);
4587 }
4588 }
4589
sev_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)4590 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4591 {
4592 struct vcpu_svm *svm = to_svm(vcpu);
4593
4594 /* First SIPI: Use the values as initially set by the VMM */
4595 if (!svm->sev_es.received_first_sipi) {
4596 svm->sev_es.received_first_sipi = true;
4597 return;
4598 }
4599
4600 /* Subsequent SIPI */
4601 switch (svm->sev_es.ap_reset_hold_type) {
4602 case AP_RESET_HOLD_NAE_EVENT:
4603 /*
4604 * Return from an AP Reset Hold VMGEXIT, where the guest will
4605 * set the CS and RIP. Set SW_EXIT_INFO_2 to a non-zero value.
4606 */
4607 svm_vmgexit_success(svm, 1);
4608 break;
4609 case AP_RESET_HOLD_MSR_PROTO:
4610 /*
4611 * Return from an AP Reset Hold VMGEXIT, where the guest will
4612 * set the CS and RIP. Set GHCB data field to a non-zero value.
4613 */
4614 set_ghcb_msr_bits(svm, 1,
4615 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
4616 GHCB_MSR_AP_RESET_HOLD_RESULT_POS);
4617
4618 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
4619 GHCB_MSR_INFO_MASK,
4620 GHCB_MSR_INFO_POS);
4621 break;
4622 default:
4623 break;
4624 }
4625 }
4626
snp_safe_alloc_page_node(int node,gfp_t gfp)4627 struct page *snp_safe_alloc_page_node(int node, gfp_t gfp)
4628 {
4629 unsigned long pfn;
4630 struct page *p;
4631
4632 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
4633 return alloc_pages_node(node, gfp | __GFP_ZERO, 0);
4634
4635 /*
4636 * Allocate an SNP-safe page to workaround the SNP erratum where
4637 * the CPU will incorrectly signal an RMP violation #PF if a
4638 * hugepage (2MB or 1GB) collides with the RMP entry of a
4639 * 2MB-aligned VMCB, VMSA, or AVIC backing page.
4640 *
4641 * Allocate one extra page, choose a page which is not
4642 * 2MB-aligned, and free the other.
4643 */
4644 p = alloc_pages_node(node, gfp | __GFP_ZERO, 1);
4645 if (!p)
4646 return NULL;
4647
4648 split_page(p, 1);
4649
4650 pfn = page_to_pfn(p);
4651 if (IS_ALIGNED(pfn, PTRS_PER_PMD))
4652 __free_page(p++);
4653 else
4654 __free_page(p + 1);
4655
4656 return p;
4657 }
4658
sev_handle_rmp_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u64 error_code)4659 void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code)
4660 {
4661 struct kvm_memory_slot *slot;
4662 struct kvm *kvm = vcpu->kvm;
4663 int order, rmp_level, ret;
4664 struct page *page;
4665 bool assigned;
4666 kvm_pfn_t pfn;
4667 gfn_t gfn;
4668
4669 gfn = gpa >> PAGE_SHIFT;
4670
4671 /*
4672 * The only time RMP faults occur for shared pages is when the guest is
4673 * triggering an RMP fault for an implicit page-state change from
4674 * shared->private. Implicit page-state changes are forwarded to
4675 * userspace via KVM_EXIT_MEMORY_FAULT events, however, so RMP faults
4676 * for shared pages should not end up here.
4677 */
4678 if (!kvm_mem_is_private(kvm, gfn)) {
4679 pr_warn_ratelimited("SEV: Unexpected RMP fault for non-private GPA 0x%llx\n",
4680 gpa);
4681 return;
4682 }
4683
4684 slot = gfn_to_memslot(kvm, gfn);
4685 if (!kvm_slot_can_be_private(slot)) {
4686 pr_warn_ratelimited("SEV: Unexpected RMP fault, non-private slot for GPA 0x%llx\n",
4687 gpa);
4688 return;
4689 }
4690
4691 ret = kvm_gmem_get_pfn(kvm, slot, gfn, &pfn, &page, &order);
4692 if (ret) {
4693 pr_warn_ratelimited("SEV: Unexpected RMP fault, no backing page for private GPA 0x%llx\n",
4694 gpa);
4695 return;
4696 }
4697
4698 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4699 if (ret || !assigned) {
4700 pr_warn_ratelimited("SEV: Unexpected RMP fault, no assigned RMP entry found for GPA 0x%llx PFN 0x%llx error %d\n",
4701 gpa, pfn, ret);
4702 goto out_no_trace;
4703 }
4704
4705 /*
4706 * There are 2 cases where a PSMASH may be needed to resolve an #NPF
4707 * with PFERR_GUEST_RMP_BIT set:
4708 *
4709 * 1) RMPADJUST/PVALIDATE can trigger an #NPF with PFERR_GUEST_SIZEM
4710 * bit set if the guest issues them with a smaller granularity than
4711 * what is indicated by the page-size bit in the 2MB RMP entry for
4712 * the PFN that backs the GPA.
4713 *
4714 * 2) Guest access via NPT can trigger an #NPF if the NPT mapping is
4715 * smaller than what is indicated by the 2MB RMP entry for the PFN
4716 * that backs the GPA.
4717 *
4718 * In both these cases, the corresponding 2M RMP entry needs to
4719 * be PSMASH'd to 512 4K RMP entries. If the RMP entry is already
4720 * split into 4K RMP entries, then this is likely a spurious case which
4721 * can occur when there are concurrent accesses by the guest to a 2MB
4722 * GPA range that is backed by a 2MB-aligned PFN who's RMP entry is in
4723 * the process of being PMASH'd into 4K entries. These cases should
4724 * resolve automatically on subsequent accesses, so just ignore them
4725 * here.
4726 */
4727 if (rmp_level == PG_LEVEL_4K)
4728 goto out;
4729
4730 ret = snp_rmptable_psmash(pfn);
4731 if (ret) {
4732 /*
4733 * Look it up again. If it's 4K now then the PSMASH may have
4734 * raced with another process and the issue has already resolved
4735 * itself.
4736 */
4737 if (!snp_lookup_rmpentry(pfn, &assigned, &rmp_level) &&
4738 assigned && rmp_level == PG_LEVEL_4K)
4739 goto out;
4740
4741 pr_warn_ratelimited("SEV: Unable to split RMP entry for GPA 0x%llx PFN 0x%llx ret %d\n",
4742 gpa, pfn, ret);
4743 }
4744
4745 kvm_zap_gfn_range(kvm, gfn, gfn + PTRS_PER_PMD);
4746 out:
4747 trace_kvm_rmp_fault(vcpu, gpa, pfn, error_code, rmp_level, ret);
4748 out_no_trace:
4749 kvm_release_page_unused(page);
4750 }
4751
is_pfn_range_shared(kvm_pfn_t start,kvm_pfn_t end)4752 static bool is_pfn_range_shared(kvm_pfn_t start, kvm_pfn_t end)
4753 {
4754 kvm_pfn_t pfn = start;
4755
4756 while (pfn < end) {
4757 int ret, rmp_level;
4758 bool assigned;
4759
4760 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4761 if (ret) {
4762 pr_warn_ratelimited("SEV: Failed to retrieve RMP entry: PFN 0x%llx GFN start 0x%llx GFN end 0x%llx RMP level %d error %d\n",
4763 pfn, start, end, rmp_level, ret);
4764 return false;
4765 }
4766
4767 if (assigned) {
4768 pr_debug("%s: overlap detected, PFN 0x%llx start 0x%llx end 0x%llx RMP level %d\n",
4769 __func__, pfn, start, end, rmp_level);
4770 return false;
4771 }
4772
4773 pfn++;
4774 }
4775
4776 return true;
4777 }
4778
max_level_for_order(int order)4779 static u8 max_level_for_order(int order)
4780 {
4781 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M))
4782 return PG_LEVEL_2M;
4783
4784 return PG_LEVEL_4K;
4785 }
4786
is_large_rmp_possible(struct kvm * kvm,kvm_pfn_t pfn,int order)4787 static bool is_large_rmp_possible(struct kvm *kvm, kvm_pfn_t pfn, int order)
4788 {
4789 kvm_pfn_t pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD);
4790
4791 /*
4792 * If this is a large folio, and the entire 2M range containing the
4793 * PFN is currently shared, then the entire 2M-aligned range can be
4794 * set to private via a single 2M RMP entry.
4795 */
4796 if (max_level_for_order(order) > PG_LEVEL_4K &&
4797 is_pfn_range_shared(pfn_aligned, pfn_aligned + PTRS_PER_PMD))
4798 return true;
4799
4800 return false;
4801 }
4802
sev_gmem_prepare(struct kvm * kvm,kvm_pfn_t pfn,gfn_t gfn,int max_order)4803 int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order)
4804 {
4805 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
4806 kvm_pfn_t pfn_aligned;
4807 gfn_t gfn_aligned;
4808 int level, rc;
4809 bool assigned;
4810
4811 if (!sev_snp_guest(kvm))
4812 return 0;
4813
4814 rc = snp_lookup_rmpentry(pfn, &assigned, &level);
4815 if (rc) {
4816 pr_err_ratelimited("SEV: Failed to look up RMP entry: GFN %llx PFN %llx error %d\n",
4817 gfn, pfn, rc);
4818 return -ENOENT;
4819 }
4820
4821 if (assigned) {
4822 pr_debug("%s: already assigned: gfn %llx pfn %llx max_order %d level %d\n",
4823 __func__, gfn, pfn, max_order, level);
4824 return 0;
4825 }
4826
4827 if (is_large_rmp_possible(kvm, pfn, max_order)) {
4828 level = PG_LEVEL_2M;
4829 pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD);
4830 gfn_aligned = ALIGN_DOWN(gfn, PTRS_PER_PMD);
4831 } else {
4832 level = PG_LEVEL_4K;
4833 pfn_aligned = pfn;
4834 gfn_aligned = gfn;
4835 }
4836
4837 rc = rmp_make_private(pfn_aligned, gfn_to_gpa(gfn_aligned), level, sev->asid, false);
4838 if (rc) {
4839 pr_err_ratelimited("SEV: Failed to update RMP entry: GFN %llx PFN %llx level %d error %d\n",
4840 gfn, pfn, level, rc);
4841 return -EINVAL;
4842 }
4843
4844 pr_debug("%s: updated: gfn %llx pfn %llx pfn_aligned %llx max_order %d level %d\n",
4845 __func__, gfn, pfn, pfn_aligned, max_order, level);
4846
4847 return 0;
4848 }
4849
sev_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)4850 void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
4851 {
4852 kvm_pfn_t pfn;
4853
4854 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
4855 return;
4856
4857 pr_debug("%s: PFN start 0x%llx PFN end 0x%llx\n", __func__, start, end);
4858
4859 for (pfn = start; pfn < end;) {
4860 bool use_2m_update = false;
4861 int rc, rmp_level;
4862 bool assigned;
4863
4864 rc = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4865 if (rc || !assigned)
4866 goto next_pfn;
4867
4868 use_2m_update = IS_ALIGNED(pfn, PTRS_PER_PMD) &&
4869 end >= (pfn + PTRS_PER_PMD) &&
4870 rmp_level > PG_LEVEL_4K;
4871
4872 /*
4873 * If an unaligned PFN corresponds to a 2M region assigned as a
4874 * large page in the RMP table, PSMASH the region into individual
4875 * 4K RMP entries before attempting to convert a 4K sub-page.
4876 */
4877 if (!use_2m_update && rmp_level > PG_LEVEL_4K) {
4878 /*
4879 * This shouldn't fail, but if it does, report it, but
4880 * still try to update RMP entry to shared and pray this
4881 * was a spurious error that can be addressed later.
4882 */
4883 rc = snp_rmptable_psmash(pfn);
4884 WARN_ONCE(rc, "SEV: Failed to PSMASH RMP entry for PFN 0x%llx error %d\n",
4885 pfn, rc);
4886 }
4887
4888 rc = rmp_make_shared(pfn, use_2m_update ? PG_LEVEL_2M : PG_LEVEL_4K);
4889 if (WARN_ONCE(rc, "SEV: Failed to update RMP entry for PFN 0x%llx error %d\n",
4890 pfn, rc))
4891 goto next_pfn;
4892
4893 /*
4894 * SEV-ES avoids host/guest cache coherency issues through
4895 * WBINVD hooks issued via MMU notifiers during run-time, and
4896 * KVM's VM destroy path at shutdown. Those MMU notifier events
4897 * don't cover gmem since there is no requirement to map pages
4898 * to a HVA in order to use them for a running guest. While the
4899 * shutdown path would still likely cover things for SNP guests,
4900 * userspace may also free gmem pages during run-time via
4901 * hole-punching operations on the guest_memfd, so flush the
4902 * cache entries for these pages before free'ing them back to
4903 * the host.
4904 */
4905 clflush_cache_range(__va(pfn_to_hpa(pfn)),
4906 use_2m_update ? PMD_SIZE : PAGE_SIZE);
4907 next_pfn:
4908 pfn += use_2m_update ? PTRS_PER_PMD : 1;
4909 cond_resched();
4910 }
4911 }
4912
sev_private_max_mapping_level(struct kvm * kvm,kvm_pfn_t pfn)4913 int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn)
4914 {
4915 int level, rc;
4916 bool assigned;
4917
4918 if (!sev_snp_guest(kvm))
4919 return 0;
4920
4921 rc = snp_lookup_rmpentry(pfn, &assigned, &level);
4922 if (rc || !assigned)
4923 return PG_LEVEL_4K;
4924
4925 return level;
4926 }
4927