1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * USB Audio Driver for ALSA
4 *
5 * Quirks and vendor-specific extensions for mixer interfaces
6 *
7 * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
8 *
9 * Many codes borrowed from audio.c by
10 * Alan Cox (alan@lxorguk.ukuu.org.uk)
11 * Thomas Sailer (sailer@ife.ee.ethz.ch)
12 *
13 * Audio Advantage Micro II support added by:
14 * Przemek Rudy (prudy1@o2.pl)
15 */
16
17 #include <linux/bitfield.h>
18 #include <linux/hid.h>
19 #include <linux/init.h>
20 #include <linux/input.h>
21 #include <linux/math64.h>
22 #include <linux/slab.h>
23 #include <linux/usb.h>
24 #include <linux/usb/audio.h>
25
26 #include <sound/asoundef.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/hda_verbs.h>
30 #include <sound/hwdep.h>
31 #include <sound/info.h>
32 #include <sound/tlv.h>
33
34 #include "usbaudio.h"
35 #include "mixer.h"
36 #include "mixer_quirks.h"
37 #include "mixer_scarlett.h"
38 #include "mixer_scarlett2.h"
39 #include "mixer_us16x08.h"
40 #include "mixer_s1810c.h"
41 #include "helper.h"
42 #include "fcp.h"
43
44 struct std_mono_table {
45 unsigned int unitid, control, cmask;
46 int val_type;
47 const char *name;
48 snd_kcontrol_tlv_rw_t *tlv_callback;
49 };
50
51 /* This function allows for the creation of standard UAC controls.
52 * See the quirks for M-Audio FTUs or Ebox-44.
53 * If you don't want to set a TLV callback pass NULL.
54 *
55 * Since there doesn't seem to be a devices that needs a multichannel
56 * version, we keep it mono for simplicity.
57 */
snd_create_std_mono_ctl_offset(struct usb_mixer_interface * mixer,unsigned int unitid,unsigned int control,unsigned int cmask,int val_type,unsigned int idx_off,const char * name,snd_kcontrol_tlv_rw_t * tlv_callback)58 static int snd_create_std_mono_ctl_offset(struct usb_mixer_interface *mixer,
59 unsigned int unitid,
60 unsigned int control,
61 unsigned int cmask,
62 int val_type,
63 unsigned int idx_off,
64 const char *name,
65 snd_kcontrol_tlv_rw_t *tlv_callback)
66 {
67 struct usb_mixer_elem_info *cval;
68 struct snd_kcontrol *kctl;
69
70 cval = kzalloc(sizeof(*cval), GFP_KERNEL);
71 if (!cval)
72 return -ENOMEM;
73
74 snd_usb_mixer_elem_init_std(&cval->head, mixer, unitid);
75 cval->val_type = val_type;
76 cval->channels = 1;
77 cval->control = control;
78 cval->cmask = cmask;
79 cval->idx_off = idx_off;
80
81 /* get_min_max() is called only for integer volumes later,
82 * so provide a short-cut for booleans
83 */
84 cval->min = 0;
85 cval->max = 1;
86 cval->res = 0;
87 cval->dBmin = 0;
88 cval->dBmax = 0;
89
90 /* Create control */
91 kctl = snd_ctl_new1(snd_usb_feature_unit_ctl, cval);
92 if (!kctl) {
93 kfree(cval);
94 return -ENOMEM;
95 }
96
97 /* Set name */
98 snprintf(kctl->id.name, sizeof(kctl->id.name), name);
99 kctl->private_free = snd_usb_mixer_elem_free;
100
101 /* set TLV */
102 if (tlv_callback) {
103 kctl->tlv.c = tlv_callback;
104 kctl->vd[0].access |=
105 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
106 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
107 }
108 /* Add control to mixer */
109 return snd_usb_mixer_add_control(&cval->head, kctl);
110 }
111
snd_create_std_mono_ctl(struct usb_mixer_interface * mixer,unsigned int unitid,unsigned int control,unsigned int cmask,int val_type,const char * name,snd_kcontrol_tlv_rw_t * tlv_callback)112 static int snd_create_std_mono_ctl(struct usb_mixer_interface *mixer,
113 unsigned int unitid,
114 unsigned int control,
115 unsigned int cmask,
116 int val_type,
117 const char *name,
118 snd_kcontrol_tlv_rw_t *tlv_callback)
119 {
120 return snd_create_std_mono_ctl_offset(mixer, unitid, control, cmask,
121 val_type, 0 /* Offset */,
122 name, tlv_callback);
123 }
124
125 /*
126 * Create a set of standard UAC controls from a table
127 */
snd_create_std_mono_table(struct usb_mixer_interface * mixer,const struct std_mono_table * t)128 static int snd_create_std_mono_table(struct usb_mixer_interface *mixer,
129 const struct std_mono_table *t)
130 {
131 int err;
132
133 while (t->name) {
134 err = snd_create_std_mono_ctl(mixer, t->unitid, t->control,
135 t->cmask, t->val_type, t->name,
136 t->tlv_callback);
137 if (err < 0)
138 return err;
139 t++;
140 }
141
142 return 0;
143 }
144
add_single_ctl_with_resume(struct usb_mixer_interface * mixer,int id,usb_mixer_elem_resume_func_t resume,const struct snd_kcontrol_new * knew,struct usb_mixer_elem_list ** listp)145 static int add_single_ctl_with_resume(struct usb_mixer_interface *mixer,
146 int id,
147 usb_mixer_elem_resume_func_t resume,
148 const struct snd_kcontrol_new *knew,
149 struct usb_mixer_elem_list **listp)
150 {
151 struct usb_mixer_elem_list *list;
152 struct snd_kcontrol *kctl;
153
154 list = kzalloc(sizeof(*list), GFP_KERNEL);
155 if (!list)
156 return -ENOMEM;
157 if (listp)
158 *listp = list;
159 list->mixer = mixer;
160 list->id = id;
161 list->resume = resume;
162 kctl = snd_ctl_new1(knew, list);
163 if (!kctl) {
164 kfree(list);
165 return -ENOMEM;
166 }
167 kctl->private_free = snd_usb_mixer_elem_free;
168 /* don't use snd_usb_mixer_add_control() here, this is a special list element */
169 return snd_usb_mixer_add_list(list, kctl, false);
170 }
171
172 /*
173 * Sound Blaster remote control configuration
174 *
175 * format of remote control data:
176 * Extigy: xx 00
177 * Audigy 2 NX: 06 80 xx 00 00 00
178 * Live! 24-bit: 06 80 xx yy 22 83
179 */
180 static const struct rc_config {
181 u32 usb_id;
182 u8 offset;
183 u8 length;
184 u8 packet_length;
185 u8 min_packet_length; /* minimum accepted length of the URB result */
186 u8 mute_mixer_id;
187 u32 mute_code;
188 } rc_configs[] = {
189 { USB_ID(0x041e, 0x3000), 0, 1, 2, 1, 18, 0x0013 }, /* Extigy */
190 { USB_ID(0x041e, 0x3020), 2, 1, 6, 6, 18, 0x0013 }, /* Audigy 2 NX */
191 { USB_ID(0x041e, 0x3040), 2, 2, 6, 6, 2, 0x6e91 }, /* Live! 24-bit */
192 { USB_ID(0x041e, 0x3042), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 */
193 { USB_ID(0x041e, 0x30df), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 Pro */
194 { USB_ID(0x041e, 0x3237), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 Pro */
195 { USB_ID(0x041e, 0x3263), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 Pro */
196 { USB_ID(0x041e, 0x3048), 2, 2, 6, 6, 2, 0x6e91 }, /* Toshiba SB0500 */
197 };
198
snd_usb_soundblaster_remote_complete(struct urb * urb)199 static void snd_usb_soundblaster_remote_complete(struct urb *urb)
200 {
201 struct usb_mixer_interface *mixer = urb->context;
202 const struct rc_config *rc = mixer->rc_cfg;
203 u32 code;
204
205 if (urb->status < 0 || urb->actual_length < rc->min_packet_length)
206 return;
207
208 code = mixer->rc_buffer[rc->offset];
209 if (rc->length == 2)
210 code |= mixer->rc_buffer[rc->offset + 1] << 8;
211
212 /* the Mute button actually changes the mixer control */
213 if (code == rc->mute_code)
214 snd_usb_mixer_notify_id(mixer, rc->mute_mixer_id);
215 mixer->rc_code = code;
216 wake_up(&mixer->rc_waitq);
217 }
218
snd_usb_sbrc_hwdep_read(struct snd_hwdep * hw,char __user * buf,long count,loff_t * offset)219 static long snd_usb_sbrc_hwdep_read(struct snd_hwdep *hw, char __user *buf,
220 long count, loff_t *offset)
221 {
222 struct usb_mixer_interface *mixer = hw->private_data;
223 int err;
224 u32 rc_code;
225
226 if (count != 1 && count != 4)
227 return -EINVAL;
228 err = wait_event_interruptible(mixer->rc_waitq,
229 (rc_code = xchg(&mixer->rc_code, 0)) != 0);
230 if (err == 0) {
231 if (count == 1)
232 err = put_user(rc_code, buf);
233 else
234 err = put_user(rc_code, (u32 __user *)buf);
235 }
236 return err < 0 ? err : count;
237 }
238
snd_usb_sbrc_hwdep_poll(struct snd_hwdep * hw,struct file * file,poll_table * wait)239 static __poll_t snd_usb_sbrc_hwdep_poll(struct snd_hwdep *hw, struct file *file,
240 poll_table *wait)
241 {
242 struct usb_mixer_interface *mixer = hw->private_data;
243
244 poll_wait(file, &mixer->rc_waitq, wait);
245 return mixer->rc_code ? EPOLLIN | EPOLLRDNORM : 0;
246 }
247
snd_usb_soundblaster_remote_init(struct usb_mixer_interface * mixer)248 static int snd_usb_soundblaster_remote_init(struct usb_mixer_interface *mixer)
249 {
250 struct snd_hwdep *hwdep;
251 int err, len, i;
252
253 for (i = 0; i < ARRAY_SIZE(rc_configs); ++i)
254 if (rc_configs[i].usb_id == mixer->chip->usb_id)
255 break;
256 if (i >= ARRAY_SIZE(rc_configs))
257 return 0;
258 mixer->rc_cfg = &rc_configs[i];
259
260 len = mixer->rc_cfg->packet_length;
261
262 init_waitqueue_head(&mixer->rc_waitq);
263 err = snd_hwdep_new(mixer->chip->card, "SB remote control", 0, &hwdep);
264 if (err < 0)
265 return err;
266 snprintf(hwdep->name, sizeof(hwdep->name),
267 "%s remote control", mixer->chip->card->shortname);
268 hwdep->iface = SNDRV_HWDEP_IFACE_SB_RC;
269 hwdep->private_data = mixer;
270 hwdep->ops.read = snd_usb_sbrc_hwdep_read;
271 hwdep->ops.poll = snd_usb_sbrc_hwdep_poll;
272 hwdep->exclusive = 1;
273
274 mixer->rc_urb = usb_alloc_urb(0, GFP_KERNEL);
275 if (!mixer->rc_urb)
276 return -ENOMEM;
277 mixer->rc_setup_packet = kmalloc(sizeof(*mixer->rc_setup_packet), GFP_KERNEL);
278 if (!mixer->rc_setup_packet) {
279 usb_free_urb(mixer->rc_urb);
280 mixer->rc_urb = NULL;
281 return -ENOMEM;
282 }
283 mixer->rc_setup_packet->bRequestType =
284 USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE;
285 mixer->rc_setup_packet->bRequest = UAC_GET_MEM;
286 mixer->rc_setup_packet->wValue = cpu_to_le16(0);
287 mixer->rc_setup_packet->wIndex = cpu_to_le16(0);
288 mixer->rc_setup_packet->wLength = cpu_to_le16(len);
289 usb_fill_control_urb(mixer->rc_urb, mixer->chip->dev,
290 usb_rcvctrlpipe(mixer->chip->dev, 0),
291 (u8 *)mixer->rc_setup_packet, mixer->rc_buffer, len,
292 snd_usb_soundblaster_remote_complete, mixer);
293 return 0;
294 }
295
296 #define snd_audigy2nx_led_info snd_ctl_boolean_mono_info
297
snd_audigy2nx_led_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)298 static int snd_audigy2nx_led_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
299 {
300 ucontrol->value.integer.value[0] = kcontrol->private_value >> 8;
301 return 0;
302 }
303
snd_audigy2nx_led_update(struct usb_mixer_interface * mixer,int value,int index)304 static int snd_audigy2nx_led_update(struct usb_mixer_interface *mixer,
305 int value, int index)
306 {
307 struct snd_usb_audio *chip = mixer->chip;
308 int err;
309
310 err = snd_usb_lock_shutdown(chip);
311 if (err < 0)
312 return err;
313
314 if (chip->usb_id == USB_ID(0x041e, 0x3042))
315 err = snd_usb_ctl_msg(chip->dev,
316 usb_sndctrlpipe(chip->dev, 0), 0x24,
317 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
318 !value, 0, NULL, 0);
319 /* USB X-Fi S51 Pro */
320 if (chip->usb_id == USB_ID(0x041e, 0x30df))
321 err = snd_usb_ctl_msg(chip->dev,
322 usb_sndctrlpipe(chip->dev, 0), 0x24,
323 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
324 !value, 0, NULL, 0);
325 else
326 err = snd_usb_ctl_msg(chip->dev,
327 usb_sndctrlpipe(chip->dev, 0), 0x24,
328 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
329 value, index + 2, NULL, 0);
330 snd_usb_unlock_shutdown(chip);
331 return err;
332 }
333
snd_audigy2nx_led_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)334 static int snd_audigy2nx_led_put(struct snd_kcontrol *kcontrol,
335 struct snd_ctl_elem_value *ucontrol)
336 {
337 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
338 struct usb_mixer_interface *mixer = list->mixer;
339 int index = kcontrol->private_value & 0xff;
340 unsigned int value = ucontrol->value.integer.value[0];
341 int old_value = kcontrol->private_value >> 8;
342 int err;
343
344 if (value > 1)
345 return -EINVAL;
346 if (value == old_value)
347 return 0;
348 kcontrol->private_value = (value << 8) | index;
349 err = snd_audigy2nx_led_update(mixer, value, index);
350 return err < 0 ? err : 1;
351 }
352
snd_audigy2nx_led_resume(struct usb_mixer_elem_list * list)353 static int snd_audigy2nx_led_resume(struct usb_mixer_elem_list *list)
354 {
355 int priv_value = list->kctl->private_value;
356
357 return snd_audigy2nx_led_update(list->mixer, priv_value >> 8,
358 priv_value & 0xff);
359 }
360
361 /* name and private_value are set dynamically */
362 static const struct snd_kcontrol_new snd_audigy2nx_control = {
363 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
364 .info = snd_audigy2nx_led_info,
365 .get = snd_audigy2nx_led_get,
366 .put = snd_audigy2nx_led_put,
367 };
368
369 static const char * const snd_audigy2nx_led_names[] = {
370 "CMSS LED Switch",
371 "Power LED Switch",
372 "Dolby Digital LED Switch",
373 };
374
snd_audigy2nx_controls_create(struct usb_mixer_interface * mixer)375 static int snd_audigy2nx_controls_create(struct usb_mixer_interface *mixer)
376 {
377 int i, err;
378
379 for (i = 0; i < ARRAY_SIZE(snd_audigy2nx_led_names); ++i) {
380 struct snd_kcontrol_new knew;
381
382 /* USB X-Fi S51 doesn't have a CMSS LED */
383 if (mixer->chip->usb_id == USB_ID(0x041e, 0x3042) && i == 0)
384 continue;
385 /* USB X-Fi S51 Pro doesn't have one either */
386 if (mixer->chip->usb_id == USB_ID(0x041e, 0x30df) && i == 0)
387 continue;
388 if (i > 1 && /* Live24ext has 2 LEDs only */
389 (mixer->chip->usb_id == USB_ID(0x041e, 0x3040) ||
390 mixer->chip->usb_id == USB_ID(0x041e, 0x3042) ||
391 mixer->chip->usb_id == USB_ID(0x041e, 0x30df) ||
392 mixer->chip->usb_id == USB_ID(0x041e, 0x3048)))
393 break;
394
395 knew = snd_audigy2nx_control;
396 knew.name = snd_audigy2nx_led_names[i];
397 knew.private_value = (1 << 8) | i; /* LED on as default */
398 err = add_single_ctl_with_resume(mixer, 0,
399 snd_audigy2nx_led_resume,
400 &knew, NULL);
401 if (err < 0)
402 return err;
403 }
404 return 0;
405 }
406
snd_audigy2nx_proc_read(struct snd_info_entry * entry,struct snd_info_buffer * buffer)407 static void snd_audigy2nx_proc_read(struct snd_info_entry *entry,
408 struct snd_info_buffer *buffer)
409 {
410 static const struct sb_jack {
411 int unitid;
412 const char *name;
413 } jacks_audigy2nx[] = {
414 {4, "dig in "},
415 {7, "line in"},
416 {19, "spk out"},
417 {20, "hph out"},
418 {-1, NULL}
419 }, jacks_live24ext[] = {
420 {4, "line in"}, /* &1=Line, &2=Mic*/
421 {3, "hph out"}, /* headphones */
422 {0, "RC "}, /* last command, 6 bytes see rc_config above */
423 {-1, NULL}
424 };
425 const struct sb_jack *jacks;
426 struct usb_mixer_interface *mixer = entry->private_data;
427 int i, err;
428 u8 buf[3];
429
430 snd_iprintf(buffer, "%s jacks\n\n", mixer->chip->card->shortname);
431 if (mixer->chip->usb_id == USB_ID(0x041e, 0x3020))
432 jacks = jacks_audigy2nx;
433 else if (mixer->chip->usb_id == USB_ID(0x041e, 0x3040) ||
434 mixer->chip->usb_id == USB_ID(0x041e, 0x3048))
435 jacks = jacks_live24ext;
436 else
437 return;
438
439 for (i = 0; jacks[i].name; ++i) {
440 snd_iprintf(buffer, "%s: ", jacks[i].name);
441 err = snd_usb_lock_shutdown(mixer->chip);
442 if (err < 0)
443 return;
444 err = snd_usb_ctl_msg(mixer->chip->dev,
445 usb_rcvctrlpipe(mixer->chip->dev, 0),
446 UAC_GET_MEM, USB_DIR_IN | USB_TYPE_CLASS |
447 USB_RECIP_INTERFACE, 0,
448 jacks[i].unitid << 8, buf, 3);
449 snd_usb_unlock_shutdown(mixer->chip);
450 if (err == 3 && (buf[0] == 3 || buf[0] == 6))
451 snd_iprintf(buffer, "%02x %02x\n", buf[1], buf[2]);
452 else
453 snd_iprintf(buffer, "?\n");
454 }
455 }
456
457 /* EMU0204 */
snd_emu0204_ch_switch_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)458 static int snd_emu0204_ch_switch_info(struct snd_kcontrol *kcontrol,
459 struct snd_ctl_elem_info *uinfo)
460 {
461 static const char * const texts[2] = {"1/2", "3/4"};
462
463 return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
464 }
465
snd_emu0204_ch_switch_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)466 static int snd_emu0204_ch_switch_get(struct snd_kcontrol *kcontrol,
467 struct snd_ctl_elem_value *ucontrol)
468 {
469 ucontrol->value.enumerated.item[0] = kcontrol->private_value;
470 return 0;
471 }
472
snd_emu0204_ch_switch_update(struct usb_mixer_interface * mixer,int value)473 static int snd_emu0204_ch_switch_update(struct usb_mixer_interface *mixer,
474 int value)
475 {
476 struct snd_usb_audio *chip = mixer->chip;
477 int err;
478 unsigned char buf[2];
479
480 err = snd_usb_lock_shutdown(chip);
481 if (err < 0)
482 return err;
483
484 buf[0] = 0x01;
485 buf[1] = value ? 0x02 : 0x01;
486 err = snd_usb_ctl_msg(chip->dev,
487 usb_sndctrlpipe(chip->dev, 0), UAC_SET_CUR,
488 USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
489 0x0400, 0x0e00, buf, 2);
490 snd_usb_unlock_shutdown(chip);
491 return err;
492 }
493
snd_emu0204_ch_switch_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)494 static int snd_emu0204_ch_switch_put(struct snd_kcontrol *kcontrol,
495 struct snd_ctl_elem_value *ucontrol)
496 {
497 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
498 struct usb_mixer_interface *mixer = list->mixer;
499 unsigned int value = ucontrol->value.enumerated.item[0];
500 int err;
501
502 if (value > 1)
503 return -EINVAL;
504
505 if (value == kcontrol->private_value)
506 return 0;
507
508 kcontrol->private_value = value;
509 err = snd_emu0204_ch_switch_update(mixer, value);
510 return err < 0 ? err : 1;
511 }
512
snd_emu0204_ch_switch_resume(struct usb_mixer_elem_list * list)513 static int snd_emu0204_ch_switch_resume(struct usb_mixer_elem_list *list)
514 {
515 return snd_emu0204_ch_switch_update(list->mixer,
516 list->kctl->private_value);
517 }
518
519 static const struct snd_kcontrol_new snd_emu0204_control = {
520 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
521 .name = "Front Jack Channels",
522 .info = snd_emu0204_ch_switch_info,
523 .get = snd_emu0204_ch_switch_get,
524 .put = snd_emu0204_ch_switch_put,
525 .private_value = 0,
526 };
527
snd_emu0204_controls_create(struct usb_mixer_interface * mixer)528 static int snd_emu0204_controls_create(struct usb_mixer_interface *mixer)
529 {
530 return add_single_ctl_with_resume(mixer, 0,
531 snd_emu0204_ch_switch_resume,
532 &snd_emu0204_control, NULL);
533 }
534
535 #if IS_REACHABLE(CONFIG_INPUT)
536 /*
537 * Sony DualSense controller (PS5) jack detection
538 *
539 * Since this is an UAC 1 device, it doesn't support jack detection.
540 * However, the controller hid-playstation driver reports HP & MIC
541 * insert events through a dedicated input device.
542 */
543
544 #define SND_DUALSENSE_JACK_OUT_TERM_ID 3
545 #define SND_DUALSENSE_JACK_IN_TERM_ID 4
546
547 struct dualsense_mixer_elem_info {
548 struct usb_mixer_elem_info info;
549 struct input_handler ih;
550 struct input_device_id id_table[2];
551 bool connected;
552 };
553
snd_dualsense_ih_event(struct input_handle * handle,unsigned int type,unsigned int code,int value)554 static void snd_dualsense_ih_event(struct input_handle *handle,
555 unsigned int type, unsigned int code,
556 int value)
557 {
558 struct dualsense_mixer_elem_info *mei;
559 struct usb_mixer_elem_list *me;
560
561 if (type != EV_SW)
562 return;
563
564 mei = container_of(handle->handler, struct dualsense_mixer_elem_info, ih);
565 me = &mei->info.head;
566
567 if ((me->id == SND_DUALSENSE_JACK_OUT_TERM_ID && code == SW_HEADPHONE_INSERT) ||
568 (me->id == SND_DUALSENSE_JACK_IN_TERM_ID && code == SW_MICROPHONE_INSERT)) {
569 mei->connected = !!value;
570 snd_ctl_notify(me->mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
571 &me->kctl->id);
572 }
573 }
574
snd_dualsense_ih_match(struct input_handler * handler,struct input_dev * dev)575 static bool snd_dualsense_ih_match(struct input_handler *handler,
576 struct input_dev *dev)
577 {
578 struct dualsense_mixer_elem_info *mei;
579 struct usb_device *snd_dev;
580 char *input_dev_path, *usb_dev_path;
581 size_t usb_dev_path_len;
582 bool match = false;
583
584 mei = container_of(handler, struct dualsense_mixer_elem_info, ih);
585 snd_dev = mei->info.head.mixer->chip->dev;
586
587 input_dev_path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
588 if (!input_dev_path) {
589 dev_warn(&snd_dev->dev, "Failed to get input dev path\n");
590 return false;
591 }
592
593 usb_dev_path = kobject_get_path(&snd_dev->dev.kobj, GFP_KERNEL);
594 if (!usb_dev_path) {
595 dev_warn(&snd_dev->dev, "Failed to get USB dev path\n");
596 goto free_paths;
597 }
598
599 /*
600 * Ensure the VID:PID matched input device supposedly owned by the
601 * hid-playstation driver belongs to the actual hardware handled by
602 * the current USB audio device, which implies input_dev_path being
603 * a subpath of usb_dev_path.
604 *
605 * This verification is necessary when there is more than one identical
606 * controller attached to the host system.
607 */
608 usb_dev_path_len = strlen(usb_dev_path);
609 if (usb_dev_path_len >= strlen(input_dev_path))
610 goto free_paths;
611
612 usb_dev_path[usb_dev_path_len] = '/';
613 match = !memcmp(input_dev_path, usb_dev_path, usb_dev_path_len + 1);
614
615 free_paths:
616 kfree(input_dev_path);
617 kfree(usb_dev_path);
618
619 return match;
620 }
621
snd_dualsense_ih_connect(struct input_handler * handler,struct input_dev * dev,const struct input_device_id * id)622 static int snd_dualsense_ih_connect(struct input_handler *handler,
623 struct input_dev *dev,
624 const struct input_device_id *id)
625 {
626 struct input_handle *handle;
627 int err;
628
629 handle = kzalloc(sizeof(*handle), GFP_KERNEL);
630 if (!handle)
631 return -ENOMEM;
632
633 handle->dev = dev;
634 handle->handler = handler;
635 handle->name = handler->name;
636
637 err = input_register_handle(handle);
638 if (err)
639 goto err_free;
640
641 err = input_open_device(handle);
642 if (err)
643 goto err_unregister;
644
645 return 0;
646
647 err_unregister:
648 input_unregister_handle(handle);
649 err_free:
650 kfree(handle);
651 return err;
652 }
653
snd_dualsense_ih_disconnect(struct input_handle * handle)654 static void snd_dualsense_ih_disconnect(struct input_handle *handle)
655 {
656 input_close_device(handle);
657 input_unregister_handle(handle);
658 kfree(handle);
659 }
660
snd_dualsense_ih_start(struct input_handle * handle)661 static void snd_dualsense_ih_start(struct input_handle *handle)
662 {
663 struct dualsense_mixer_elem_info *mei;
664 struct usb_mixer_elem_list *me;
665 int status = -1;
666
667 mei = container_of(handle->handler, struct dualsense_mixer_elem_info, ih);
668 me = &mei->info.head;
669
670 if (me->id == SND_DUALSENSE_JACK_OUT_TERM_ID &&
671 test_bit(SW_HEADPHONE_INSERT, handle->dev->swbit))
672 status = test_bit(SW_HEADPHONE_INSERT, handle->dev->sw);
673 else if (me->id == SND_DUALSENSE_JACK_IN_TERM_ID &&
674 test_bit(SW_MICROPHONE_INSERT, handle->dev->swbit))
675 status = test_bit(SW_MICROPHONE_INSERT, handle->dev->sw);
676
677 if (status >= 0) {
678 mei->connected = !!status;
679 snd_ctl_notify(me->mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
680 &me->kctl->id);
681 }
682 }
683
snd_dualsense_jack_get(struct snd_kcontrol * kctl,struct snd_ctl_elem_value * ucontrol)684 static int snd_dualsense_jack_get(struct snd_kcontrol *kctl,
685 struct snd_ctl_elem_value *ucontrol)
686 {
687 struct dualsense_mixer_elem_info *mei = snd_kcontrol_chip(kctl);
688
689 ucontrol->value.integer.value[0] = mei->connected;
690
691 return 0;
692 }
693
694 static const struct snd_kcontrol_new snd_dualsense_jack_control = {
695 .iface = SNDRV_CTL_ELEM_IFACE_CARD,
696 .access = SNDRV_CTL_ELEM_ACCESS_READ,
697 .info = snd_ctl_boolean_mono_info,
698 .get = snd_dualsense_jack_get,
699 };
700
snd_dualsense_resume_jack(struct usb_mixer_elem_list * list)701 static int snd_dualsense_resume_jack(struct usb_mixer_elem_list *list)
702 {
703 snd_ctl_notify(list->mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
704 &list->kctl->id);
705 return 0;
706 }
707
snd_dualsense_mixer_elem_free(struct snd_kcontrol * kctl)708 static void snd_dualsense_mixer_elem_free(struct snd_kcontrol *kctl)
709 {
710 struct dualsense_mixer_elem_info *mei = snd_kcontrol_chip(kctl);
711
712 if (mei->ih.event)
713 input_unregister_handler(&mei->ih);
714
715 snd_usb_mixer_elem_free(kctl);
716 }
717
snd_dualsense_jack_create(struct usb_mixer_interface * mixer,const char * name,bool is_output)718 static int snd_dualsense_jack_create(struct usb_mixer_interface *mixer,
719 const char *name, bool is_output)
720 {
721 struct dualsense_mixer_elem_info *mei;
722 struct input_device_id *idev_id;
723 struct snd_kcontrol *kctl;
724 int err;
725
726 mei = kzalloc(sizeof(*mei), GFP_KERNEL);
727 if (!mei)
728 return -ENOMEM;
729
730 snd_usb_mixer_elem_init_std(&mei->info.head, mixer,
731 is_output ? SND_DUALSENSE_JACK_OUT_TERM_ID :
732 SND_DUALSENSE_JACK_IN_TERM_ID);
733
734 mei->info.head.resume = snd_dualsense_resume_jack;
735 mei->info.val_type = USB_MIXER_BOOLEAN;
736 mei->info.channels = 1;
737 mei->info.min = 0;
738 mei->info.max = 1;
739
740 kctl = snd_ctl_new1(&snd_dualsense_jack_control, mei);
741 if (!kctl) {
742 kfree(mei);
743 return -ENOMEM;
744 }
745
746 strscpy(kctl->id.name, name, sizeof(kctl->id.name));
747 kctl->private_free = snd_dualsense_mixer_elem_free;
748
749 err = snd_usb_mixer_add_control(&mei->info.head, kctl);
750 if (err)
751 return err;
752
753 idev_id = &mei->id_table[0];
754 idev_id->flags = INPUT_DEVICE_ID_MATCH_VENDOR | INPUT_DEVICE_ID_MATCH_PRODUCT |
755 INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_SWBIT;
756 idev_id->vendor = USB_ID_VENDOR(mixer->chip->usb_id);
757 idev_id->product = USB_ID_PRODUCT(mixer->chip->usb_id);
758 idev_id->evbit[BIT_WORD(EV_SW)] = BIT_MASK(EV_SW);
759 if (is_output)
760 idev_id->swbit[BIT_WORD(SW_HEADPHONE_INSERT)] = BIT_MASK(SW_HEADPHONE_INSERT);
761 else
762 idev_id->swbit[BIT_WORD(SW_MICROPHONE_INSERT)] = BIT_MASK(SW_MICROPHONE_INSERT);
763
764 mei->ih.event = snd_dualsense_ih_event;
765 mei->ih.match = snd_dualsense_ih_match;
766 mei->ih.connect = snd_dualsense_ih_connect;
767 mei->ih.disconnect = snd_dualsense_ih_disconnect;
768 mei->ih.start = snd_dualsense_ih_start;
769 mei->ih.name = name;
770 mei->ih.id_table = mei->id_table;
771
772 err = input_register_handler(&mei->ih);
773 if (err) {
774 dev_warn(&mixer->chip->dev->dev,
775 "Could not register input handler: %d\n", err);
776 mei->ih.event = NULL;
777 }
778
779 return 0;
780 }
781
snd_dualsense_controls_create(struct usb_mixer_interface * mixer)782 static int snd_dualsense_controls_create(struct usb_mixer_interface *mixer)
783 {
784 int err;
785
786 err = snd_dualsense_jack_create(mixer, "Headphone Jack", true);
787 if (err < 0)
788 return err;
789
790 return snd_dualsense_jack_create(mixer, "Headset Mic Jack", false);
791 }
792 #endif /* IS_REACHABLE(CONFIG_INPUT) */
793
794 /* ASUS Xonar U1 / U3 controls */
795
snd_xonar_u1_switch_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)796 static int snd_xonar_u1_switch_get(struct snd_kcontrol *kcontrol,
797 struct snd_ctl_elem_value *ucontrol)
798 {
799 ucontrol->value.integer.value[0] = !!(kcontrol->private_value & 0x02);
800 return 0;
801 }
802
snd_xonar_u1_switch_update(struct usb_mixer_interface * mixer,unsigned char status)803 static int snd_xonar_u1_switch_update(struct usb_mixer_interface *mixer,
804 unsigned char status)
805 {
806 struct snd_usb_audio *chip = mixer->chip;
807 int err;
808
809 err = snd_usb_lock_shutdown(chip);
810 if (err < 0)
811 return err;
812 err = snd_usb_ctl_msg(chip->dev,
813 usb_sndctrlpipe(chip->dev, 0), 0x08,
814 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
815 50, 0, &status, 1);
816 snd_usb_unlock_shutdown(chip);
817 return err;
818 }
819
snd_xonar_u1_switch_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)820 static int snd_xonar_u1_switch_put(struct snd_kcontrol *kcontrol,
821 struct snd_ctl_elem_value *ucontrol)
822 {
823 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
824 u8 old_status, new_status;
825 int err;
826
827 old_status = kcontrol->private_value;
828 if (ucontrol->value.integer.value[0])
829 new_status = old_status | 0x02;
830 else
831 new_status = old_status & ~0x02;
832 if (new_status == old_status)
833 return 0;
834
835 kcontrol->private_value = new_status;
836 err = snd_xonar_u1_switch_update(list->mixer, new_status);
837 return err < 0 ? err : 1;
838 }
839
snd_xonar_u1_switch_resume(struct usb_mixer_elem_list * list)840 static int snd_xonar_u1_switch_resume(struct usb_mixer_elem_list *list)
841 {
842 return snd_xonar_u1_switch_update(list->mixer,
843 list->kctl->private_value);
844 }
845
846 static const struct snd_kcontrol_new snd_xonar_u1_output_switch = {
847 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
848 .name = "Digital Playback Switch",
849 .info = snd_ctl_boolean_mono_info,
850 .get = snd_xonar_u1_switch_get,
851 .put = snd_xonar_u1_switch_put,
852 .private_value = 0x05,
853 };
854
snd_xonar_u1_controls_create(struct usb_mixer_interface * mixer)855 static int snd_xonar_u1_controls_create(struct usb_mixer_interface *mixer)
856 {
857 return add_single_ctl_with_resume(mixer, 0,
858 snd_xonar_u1_switch_resume,
859 &snd_xonar_u1_output_switch, NULL);
860 }
861
862 /* Digidesign Mbox 1 helper functions */
863
snd_mbox1_is_spdif_synced(struct snd_usb_audio * chip)864 static int snd_mbox1_is_spdif_synced(struct snd_usb_audio *chip)
865 {
866 unsigned char buff[3];
867 int err;
868 int is_spdif_synced;
869
870 /* Read clock source */
871 err = snd_usb_ctl_msg(chip->dev,
872 usb_rcvctrlpipe(chip->dev, 0), 0x81,
873 USB_DIR_IN |
874 USB_TYPE_CLASS |
875 USB_RECIP_ENDPOINT, 0x100, 0x81, buff, 3);
876 if (err < 0)
877 return err;
878
879 /* spdif sync: buff is all zeroes */
880 is_spdif_synced = !(buff[0] | buff[1] | buff[2]);
881 return is_spdif_synced;
882 }
883
snd_mbox1_set_clk_source(struct snd_usb_audio * chip,int rate_or_zero)884 static int snd_mbox1_set_clk_source(struct snd_usb_audio *chip, int rate_or_zero)
885 {
886 /* 2 possibilities: Internal -> expects sample rate
887 * S/PDIF sync -> expects rate = 0
888 */
889 unsigned char buff[3];
890
891 buff[0] = (rate_or_zero >> 0) & 0xff;
892 buff[1] = (rate_or_zero >> 8) & 0xff;
893 buff[2] = (rate_or_zero >> 16) & 0xff;
894
895 /* Set clock source */
896 return snd_usb_ctl_msg(chip->dev,
897 usb_sndctrlpipe(chip->dev, 0), 0x1,
898 USB_TYPE_CLASS |
899 USB_RECIP_ENDPOINT, 0x100, 0x81, buff, 3);
900 }
901
snd_mbox1_is_spdif_input(struct snd_usb_audio * chip)902 static int snd_mbox1_is_spdif_input(struct snd_usb_audio *chip)
903 {
904 /* Hardware gives 2 possibilities: ANALOG Source -> 0x01
905 * S/PDIF Source -> 0x02
906 */
907 int err;
908 unsigned char source[1];
909
910 /* Read input source */
911 err = snd_usb_ctl_msg(chip->dev,
912 usb_rcvctrlpipe(chip->dev, 0), 0x81,
913 USB_DIR_IN |
914 USB_TYPE_CLASS |
915 USB_RECIP_INTERFACE, 0x00, 0x500, source, 1);
916 if (err < 0)
917 return err;
918
919 return (source[0] == 2);
920 }
921
snd_mbox1_set_input_source(struct snd_usb_audio * chip,int is_spdif)922 static int snd_mbox1_set_input_source(struct snd_usb_audio *chip, int is_spdif)
923 {
924 /* NB: Setting the input source to S/PDIF resets the clock source to S/PDIF
925 * Hardware expects 2 possibilities: ANALOG Source -> 0x01
926 * S/PDIF Source -> 0x02
927 */
928 unsigned char buff[1];
929
930 buff[0] = (is_spdif & 1) + 1;
931
932 /* Set input source */
933 return snd_usb_ctl_msg(chip->dev,
934 usb_sndctrlpipe(chip->dev, 0), 0x1,
935 USB_TYPE_CLASS |
936 USB_RECIP_INTERFACE, 0x00, 0x500, buff, 1);
937 }
938
939 /* Digidesign Mbox 1 clock source switch (internal/spdif) */
940
snd_mbox1_clk_switch_get(struct snd_kcontrol * kctl,struct snd_ctl_elem_value * ucontrol)941 static int snd_mbox1_clk_switch_get(struct snd_kcontrol *kctl,
942 struct snd_ctl_elem_value *ucontrol)
943 {
944 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
945 struct snd_usb_audio *chip = list->mixer->chip;
946 int err;
947
948 err = snd_usb_lock_shutdown(chip);
949 if (err < 0)
950 goto err;
951
952 err = snd_mbox1_is_spdif_synced(chip);
953 if (err < 0)
954 goto err;
955
956 kctl->private_value = err;
957 err = 0;
958 ucontrol->value.enumerated.item[0] = kctl->private_value;
959 err:
960 snd_usb_unlock_shutdown(chip);
961 return err;
962 }
963
snd_mbox1_clk_switch_update(struct usb_mixer_interface * mixer,int is_spdif_sync)964 static int snd_mbox1_clk_switch_update(struct usb_mixer_interface *mixer, int is_spdif_sync)
965 {
966 struct snd_usb_audio *chip = mixer->chip;
967 int err;
968
969 err = snd_usb_lock_shutdown(chip);
970 if (err < 0)
971 return err;
972
973 err = snd_mbox1_is_spdif_input(chip);
974 if (err < 0)
975 goto err;
976
977 err = snd_mbox1_is_spdif_synced(chip);
978 if (err < 0)
979 goto err;
980
981 /* FIXME: hardcoded sample rate */
982 err = snd_mbox1_set_clk_source(chip, is_spdif_sync ? 0 : 48000);
983 if (err < 0)
984 goto err;
985
986 err = snd_mbox1_is_spdif_synced(chip);
987 err:
988 snd_usb_unlock_shutdown(chip);
989 return err;
990 }
991
snd_mbox1_clk_switch_put(struct snd_kcontrol * kctl,struct snd_ctl_elem_value * ucontrol)992 static int snd_mbox1_clk_switch_put(struct snd_kcontrol *kctl,
993 struct snd_ctl_elem_value *ucontrol)
994 {
995 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
996 struct usb_mixer_interface *mixer = list->mixer;
997 int err;
998 bool cur_val, new_val;
999
1000 cur_val = kctl->private_value;
1001 new_val = ucontrol->value.enumerated.item[0];
1002 if (cur_val == new_val)
1003 return 0;
1004
1005 kctl->private_value = new_val;
1006 err = snd_mbox1_clk_switch_update(mixer, new_val);
1007 return err < 0 ? err : 1;
1008 }
1009
snd_mbox1_clk_switch_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)1010 static int snd_mbox1_clk_switch_info(struct snd_kcontrol *kcontrol,
1011 struct snd_ctl_elem_info *uinfo)
1012 {
1013 static const char *const texts[2] = {
1014 "Internal",
1015 "S/PDIF"
1016 };
1017
1018 return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
1019 }
1020
snd_mbox1_clk_switch_resume(struct usb_mixer_elem_list * list)1021 static int snd_mbox1_clk_switch_resume(struct usb_mixer_elem_list *list)
1022 {
1023 return snd_mbox1_clk_switch_update(list->mixer, list->kctl->private_value);
1024 }
1025
1026 /* Digidesign Mbox 1 input source switch (analog/spdif) */
1027
snd_mbox1_src_switch_get(struct snd_kcontrol * kctl,struct snd_ctl_elem_value * ucontrol)1028 static int snd_mbox1_src_switch_get(struct snd_kcontrol *kctl,
1029 struct snd_ctl_elem_value *ucontrol)
1030 {
1031 ucontrol->value.enumerated.item[0] = kctl->private_value;
1032 return 0;
1033 }
1034
snd_mbox1_src_switch_update(struct usb_mixer_interface * mixer,int is_spdif_input)1035 static int snd_mbox1_src_switch_update(struct usb_mixer_interface *mixer, int is_spdif_input)
1036 {
1037 struct snd_usb_audio *chip = mixer->chip;
1038 int err;
1039
1040 err = snd_usb_lock_shutdown(chip);
1041 if (err < 0)
1042 return err;
1043
1044 err = snd_mbox1_is_spdif_input(chip);
1045 if (err < 0)
1046 goto err;
1047
1048 err = snd_mbox1_set_input_source(chip, is_spdif_input);
1049 if (err < 0)
1050 goto err;
1051
1052 err = snd_mbox1_is_spdif_input(chip);
1053 if (err < 0)
1054 goto err;
1055
1056 err = snd_mbox1_is_spdif_synced(chip);
1057 err:
1058 snd_usb_unlock_shutdown(chip);
1059 return err;
1060 }
1061
snd_mbox1_src_switch_put(struct snd_kcontrol * kctl,struct snd_ctl_elem_value * ucontrol)1062 static int snd_mbox1_src_switch_put(struct snd_kcontrol *kctl,
1063 struct snd_ctl_elem_value *ucontrol)
1064 {
1065 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
1066 struct usb_mixer_interface *mixer = list->mixer;
1067 int err;
1068 bool cur_val, new_val;
1069
1070 cur_val = kctl->private_value;
1071 new_val = ucontrol->value.enumerated.item[0];
1072 if (cur_val == new_val)
1073 return 0;
1074
1075 kctl->private_value = new_val;
1076 err = snd_mbox1_src_switch_update(mixer, new_val);
1077 return err < 0 ? err : 1;
1078 }
1079
snd_mbox1_src_switch_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)1080 static int snd_mbox1_src_switch_info(struct snd_kcontrol *kcontrol,
1081 struct snd_ctl_elem_info *uinfo)
1082 {
1083 static const char *const texts[2] = {
1084 "Analog",
1085 "S/PDIF"
1086 };
1087
1088 return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
1089 }
1090
snd_mbox1_src_switch_resume(struct usb_mixer_elem_list * list)1091 static int snd_mbox1_src_switch_resume(struct usb_mixer_elem_list *list)
1092 {
1093 return snd_mbox1_src_switch_update(list->mixer, list->kctl->private_value);
1094 }
1095
1096 static const struct snd_kcontrol_new snd_mbox1_clk_switch = {
1097 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1098 .name = "Clock Source",
1099 .index = 0,
1100 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1101 .info = snd_mbox1_clk_switch_info,
1102 .get = snd_mbox1_clk_switch_get,
1103 .put = snd_mbox1_clk_switch_put,
1104 .private_value = 0
1105 };
1106
1107 static const struct snd_kcontrol_new snd_mbox1_src_switch = {
1108 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1109 .name = "Input Source",
1110 .index = 1,
1111 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1112 .info = snd_mbox1_src_switch_info,
1113 .get = snd_mbox1_src_switch_get,
1114 .put = snd_mbox1_src_switch_put,
1115 .private_value = 0
1116 };
1117
snd_mbox1_controls_create(struct usb_mixer_interface * mixer)1118 static int snd_mbox1_controls_create(struct usb_mixer_interface *mixer)
1119 {
1120 int err;
1121
1122 err = add_single_ctl_with_resume(mixer, 0,
1123 snd_mbox1_clk_switch_resume,
1124 &snd_mbox1_clk_switch, NULL);
1125 if (err < 0)
1126 return err;
1127
1128 return add_single_ctl_with_resume(mixer, 1,
1129 snd_mbox1_src_switch_resume,
1130 &snd_mbox1_src_switch, NULL);
1131 }
1132
1133 /* Native Instruments device quirks */
1134
1135 #define _MAKE_NI_CONTROL(bRequest, wIndex) ((bRequest) << 16 | (wIndex))
1136
snd_ni_control_init_val(struct usb_mixer_interface * mixer,struct snd_kcontrol * kctl)1137 static int snd_ni_control_init_val(struct usb_mixer_interface *mixer,
1138 struct snd_kcontrol *kctl)
1139 {
1140 struct usb_device *dev = mixer->chip->dev;
1141 unsigned int pval = kctl->private_value;
1142 u8 value;
1143 int err;
1144
1145 err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0),
1146 (pval >> 16) & 0xff,
1147 USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN,
1148 0, pval & 0xffff, &value, 1);
1149 if (err < 0) {
1150 dev_err(&dev->dev,
1151 "unable to issue vendor read request (ret = %d)", err);
1152 return err;
1153 }
1154
1155 kctl->private_value |= ((unsigned int)value << 24);
1156 return 0;
1157 }
1158
snd_nativeinstruments_control_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1159 static int snd_nativeinstruments_control_get(struct snd_kcontrol *kcontrol,
1160 struct snd_ctl_elem_value *ucontrol)
1161 {
1162 ucontrol->value.integer.value[0] = kcontrol->private_value >> 24;
1163 return 0;
1164 }
1165
snd_ni_update_cur_val(struct usb_mixer_elem_list * list)1166 static int snd_ni_update_cur_val(struct usb_mixer_elem_list *list)
1167 {
1168 struct snd_usb_audio *chip = list->mixer->chip;
1169 unsigned int pval = list->kctl->private_value;
1170 int err;
1171
1172 err = snd_usb_lock_shutdown(chip);
1173 if (err < 0)
1174 return err;
1175 err = usb_control_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0),
1176 (pval >> 16) & 0xff,
1177 USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT,
1178 pval >> 24, pval & 0xffff, NULL, 0, 1000);
1179 snd_usb_unlock_shutdown(chip);
1180 return err;
1181 }
1182
snd_nativeinstruments_control_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1183 static int snd_nativeinstruments_control_put(struct snd_kcontrol *kcontrol,
1184 struct snd_ctl_elem_value *ucontrol)
1185 {
1186 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
1187 u8 oldval = (kcontrol->private_value >> 24) & 0xff;
1188 u8 newval = ucontrol->value.integer.value[0];
1189 int err;
1190
1191 if (oldval == newval)
1192 return 0;
1193
1194 kcontrol->private_value &= ~(0xff << 24);
1195 kcontrol->private_value |= (unsigned int)newval << 24;
1196 err = snd_ni_update_cur_val(list);
1197 return err < 0 ? err : 1;
1198 }
1199
1200 static const struct snd_kcontrol_new snd_nativeinstruments_ta6_mixers[] = {
1201 {
1202 .name = "Direct Thru Channel A",
1203 .private_value = _MAKE_NI_CONTROL(0x01, 0x03),
1204 },
1205 {
1206 .name = "Direct Thru Channel B",
1207 .private_value = _MAKE_NI_CONTROL(0x01, 0x05),
1208 },
1209 {
1210 .name = "Phono Input Channel A",
1211 .private_value = _MAKE_NI_CONTROL(0x02, 0x03),
1212 },
1213 {
1214 .name = "Phono Input Channel B",
1215 .private_value = _MAKE_NI_CONTROL(0x02, 0x05),
1216 },
1217 };
1218
1219 static const struct snd_kcontrol_new snd_nativeinstruments_ta10_mixers[] = {
1220 {
1221 .name = "Direct Thru Channel A",
1222 .private_value = _MAKE_NI_CONTROL(0x01, 0x03),
1223 },
1224 {
1225 .name = "Direct Thru Channel B",
1226 .private_value = _MAKE_NI_CONTROL(0x01, 0x05),
1227 },
1228 {
1229 .name = "Direct Thru Channel C",
1230 .private_value = _MAKE_NI_CONTROL(0x01, 0x07),
1231 },
1232 {
1233 .name = "Direct Thru Channel D",
1234 .private_value = _MAKE_NI_CONTROL(0x01, 0x09),
1235 },
1236 {
1237 .name = "Phono Input Channel A",
1238 .private_value = _MAKE_NI_CONTROL(0x02, 0x03),
1239 },
1240 {
1241 .name = "Phono Input Channel B",
1242 .private_value = _MAKE_NI_CONTROL(0x02, 0x05),
1243 },
1244 {
1245 .name = "Phono Input Channel C",
1246 .private_value = _MAKE_NI_CONTROL(0x02, 0x07),
1247 },
1248 {
1249 .name = "Phono Input Channel D",
1250 .private_value = _MAKE_NI_CONTROL(0x02, 0x09),
1251 },
1252 };
1253
snd_nativeinstruments_create_mixer(struct usb_mixer_interface * mixer,const struct snd_kcontrol_new * kc,unsigned int count)1254 static int snd_nativeinstruments_create_mixer(struct usb_mixer_interface *mixer,
1255 const struct snd_kcontrol_new *kc,
1256 unsigned int count)
1257 {
1258 int i, err = 0;
1259 struct snd_kcontrol_new template = {
1260 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1261 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1262 .get = snd_nativeinstruments_control_get,
1263 .put = snd_nativeinstruments_control_put,
1264 .info = snd_ctl_boolean_mono_info,
1265 };
1266
1267 for (i = 0; i < count; i++) {
1268 struct usb_mixer_elem_list *list;
1269
1270 template.name = kc[i].name;
1271 template.private_value = kc[i].private_value;
1272
1273 err = add_single_ctl_with_resume(mixer, 0,
1274 snd_ni_update_cur_val,
1275 &template, &list);
1276 if (err < 0)
1277 break;
1278 snd_ni_control_init_val(mixer, list->kctl);
1279 }
1280
1281 return err;
1282 }
1283
1284 /* M-Audio FastTrack Ultra quirks */
1285 /* FTU Effect switch (also used by C400/C600) */
snd_ftu_eff_switch_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)1286 static int snd_ftu_eff_switch_info(struct snd_kcontrol *kcontrol,
1287 struct snd_ctl_elem_info *uinfo)
1288 {
1289 static const char *const texts[8] = {
1290 "Room 1", "Room 2", "Room 3", "Hall 1",
1291 "Hall 2", "Plate", "Delay", "Echo"
1292 };
1293
1294 return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
1295 }
1296
snd_ftu_eff_switch_init(struct usb_mixer_interface * mixer,struct snd_kcontrol * kctl)1297 static int snd_ftu_eff_switch_init(struct usb_mixer_interface *mixer,
1298 struct snd_kcontrol *kctl)
1299 {
1300 struct usb_device *dev = mixer->chip->dev;
1301 unsigned int pval = kctl->private_value;
1302 int err;
1303 unsigned char value[2];
1304
1305 value[0] = 0x00;
1306 value[1] = 0x00;
1307
1308 err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), UAC_GET_CUR,
1309 USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
1310 pval & 0xff00,
1311 snd_usb_ctrl_intf(mixer->hostif) | ((pval & 0xff) << 8),
1312 value, 2);
1313 if (err < 0)
1314 return err;
1315
1316 kctl->private_value |= (unsigned int)value[0] << 24;
1317 return 0;
1318 }
1319
snd_ftu_eff_switch_get(struct snd_kcontrol * kctl,struct snd_ctl_elem_value * ucontrol)1320 static int snd_ftu_eff_switch_get(struct snd_kcontrol *kctl,
1321 struct snd_ctl_elem_value *ucontrol)
1322 {
1323 ucontrol->value.enumerated.item[0] = kctl->private_value >> 24;
1324 return 0;
1325 }
1326
snd_ftu_eff_switch_update(struct usb_mixer_elem_list * list)1327 static int snd_ftu_eff_switch_update(struct usb_mixer_elem_list *list)
1328 {
1329 struct snd_usb_audio *chip = list->mixer->chip;
1330 unsigned int pval = list->kctl->private_value;
1331 unsigned char value[2];
1332 int err;
1333
1334 value[0] = pval >> 24;
1335 value[1] = 0;
1336
1337 err = snd_usb_lock_shutdown(chip);
1338 if (err < 0)
1339 return err;
1340 err = snd_usb_ctl_msg(chip->dev,
1341 usb_sndctrlpipe(chip->dev, 0),
1342 UAC_SET_CUR,
1343 USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
1344 pval & 0xff00,
1345 snd_usb_ctrl_intf(list->mixer->hostif) | ((pval & 0xff) << 8),
1346 value, 2);
1347 snd_usb_unlock_shutdown(chip);
1348 return err;
1349 }
1350
snd_ftu_eff_switch_put(struct snd_kcontrol * kctl,struct snd_ctl_elem_value * ucontrol)1351 static int snd_ftu_eff_switch_put(struct snd_kcontrol *kctl,
1352 struct snd_ctl_elem_value *ucontrol)
1353 {
1354 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
1355 unsigned int pval = list->kctl->private_value;
1356 int cur_val, err, new_val;
1357
1358 cur_val = pval >> 24;
1359 new_val = ucontrol->value.enumerated.item[0];
1360 if (cur_val == new_val)
1361 return 0;
1362
1363 kctl->private_value &= ~(0xff << 24);
1364 kctl->private_value |= new_val << 24;
1365 err = snd_ftu_eff_switch_update(list);
1366 return err < 0 ? err : 1;
1367 }
1368
snd_ftu_create_effect_switch(struct usb_mixer_interface * mixer,int validx,int bUnitID)1369 static int snd_ftu_create_effect_switch(struct usb_mixer_interface *mixer,
1370 int validx, int bUnitID)
1371 {
1372 static struct snd_kcontrol_new template = {
1373 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1374 .name = "Effect Program Switch",
1375 .index = 0,
1376 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1377 .info = snd_ftu_eff_switch_info,
1378 .get = snd_ftu_eff_switch_get,
1379 .put = snd_ftu_eff_switch_put
1380 };
1381 struct usb_mixer_elem_list *list;
1382 int err;
1383
1384 err = add_single_ctl_with_resume(mixer, bUnitID,
1385 snd_ftu_eff_switch_update,
1386 &template, &list);
1387 if (err < 0)
1388 return err;
1389 list->kctl->private_value = (validx << 8) | bUnitID;
1390 snd_ftu_eff_switch_init(mixer, list->kctl);
1391 return 0;
1392 }
1393
1394 /* Create volume controls for FTU devices*/
snd_ftu_create_volume_ctls(struct usb_mixer_interface * mixer)1395 static int snd_ftu_create_volume_ctls(struct usb_mixer_interface *mixer)
1396 {
1397 char name[64];
1398 unsigned int control, cmask;
1399 int in, out, err;
1400
1401 const unsigned int id = 5;
1402 const int val_type = USB_MIXER_S16;
1403
1404 for (out = 0; out < 8; out++) {
1405 control = out + 1;
1406 for (in = 0; in < 8; in++) {
1407 cmask = BIT(in);
1408 snprintf(name, sizeof(name),
1409 "AIn%d - Out%d Capture Volume",
1410 in + 1, out + 1);
1411 err = snd_create_std_mono_ctl(mixer, id, control,
1412 cmask, val_type, name,
1413 &snd_usb_mixer_vol_tlv);
1414 if (err < 0)
1415 return err;
1416 }
1417 for (in = 8; in < 16; in++) {
1418 cmask = BIT(in);
1419 snprintf(name, sizeof(name),
1420 "DIn%d - Out%d Playback Volume",
1421 in - 7, out + 1);
1422 err = snd_create_std_mono_ctl(mixer, id, control,
1423 cmask, val_type, name,
1424 &snd_usb_mixer_vol_tlv);
1425 if (err < 0)
1426 return err;
1427 }
1428 }
1429
1430 return 0;
1431 }
1432
1433 /* This control needs a volume quirk, see mixer.c */
snd_ftu_create_effect_volume_ctl(struct usb_mixer_interface * mixer)1434 static int snd_ftu_create_effect_volume_ctl(struct usb_mixer_interface *mixer)
1435 {
1436 static const char name[] = "Effect Volume";
1437 const unsigned int id = 6;
1438 const int val_type = USB_MIXER_U8;
1439 const unsigned int control = 2;
1440 const unsigned int cmask = 0;
1441
1442 return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
1443 name, snd_usb_mixer_vol_tlv);
1444 }
1445
1446 /* This control needs a volume quirk, see mixer.c */
snd_ftu_create_effect_duration_ctl(struct usb_mixer_interface * mixer)1447 static int snd_ftu_create_effect_duration_ctl(struct usb_mixer_interface *mixer)
1448 {
1449 static const char name[] = "Effect Duration";
1450 const unsigned int id = 6;
1451 const int val_type = USB_MIXER_S16;
1452 const unsigned int control = 3;
1453 const unsigned int cmask = 0;
1454
1455 return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
1456 name, snd_usb_mixer_vol_tlv);
1457 }
1458
1459 /* This control needs a volume quirk, see mixer.c */
snd_ftu_create_effect_feedback_ctl(struct usb_mixer_interface * mixer)1460 static int snd_ftu_create_effect_feedback_ctl(struct usb_mixer_interface *mixer)
1461 {
1462 static const char name[] = "Effect Feedback Volume";
1463 const unsigned int id = 6;
1464 const int val_type = USB_MIXER_U8;
1465 const unsigned int control = 4;
1466 const unsigned int cmask = 0;
1467
1468 return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
1469 name, NULL);
1470 }
1471
snd_ftu_create_effect_return_ctls(struct usb_mixer_interface * mixer)1472 static int snd_ftu_create_effect_return_ctls(struct usb_mixer_interface *mixer)
1473 {
1474 unsigned int cmask;
1475 int err, ch;
1476 char name[48];
1477
1478 const unsigned int id = 7;
1479 const int val_type = USB_MIXER_S16;
1480 const unsigned int control = 7;
1481
1482 for (ch = 0; ch < 4; ++ch) {
1483 cmask = BIT(ch);
1484 snprintf(name, sizeof(name),
1485 "Effect Return %d Volume", ch + 1);
1486 err = snd_create_std_mono_ctl(mixer, id, control,
1487 cmask, val_type, name,
1488 snd_usb_mixer_vol_tlv);
1489 if (err < 0)
1490 return err;
1491 }
1492
1493 return 0;
1494 }
1495
snd_ftu_create_effect_send_ctls(struct usb_mixer_interface * mixer)1496 static int snd_ftu_create_effect_send_ctls(struct usb_mixer_interface *mixer)
1497 {
1498 unsigned int cmask;
1499 int err, ch;
1500 char name[48];
1501
1502 const unsigned int id = 5;
1503 const int val_type = USB_MIXER_S16;
1504 const unsigned int control = 9;
1505
1506 for (ch = 0; ch < 8; ++ch) {
1507 cmask = BIT(ch);
1508 snprintf(name, sizeof(name),
1509 "Effect Send AIn%d Volume", ch + 1);
1510 err = snd_create_std_mono_ctl(mixer, id, control, cmask,
1511 val_type, name,
1512 snd_usb_mixer_vol_tlv);
1513 if (err < 0)
1514 return err;
1515 }
1516 for (ch = 8; ch < 16; ++ch) {
1517 cmask = BIT(ch);
1518 snprintf(name, sizeof(name),
1519 "Effect Send DIn%d Volume", ch - 7);
1520 err = snd_create_std_mono_ctl(mixer, id, control, cmask,
1521 val_type, name,
1522 snd_usb_mixer_vol_tlv);
1523 if (err < 0)
1524 return err;
1525 }
1526 return 0;
1527 }
1528
snd_ftu_create_mixer(struct usb_mixer_interface * mixer)1529 static int snd_ftu_create_mixer(struct usb_mixer_interface *mixer)
1530 {
1531 int err;
1532
1533 err = snd_ftu_create_volume_ctls(mixer);
1534 if (err < 0)
1535 return err;
1536
1537 err = snd_ftu_create_effect_switch(mixer, 1, 6);
1538 if (err < 0)
1539 return err;
1540
1541 err = snd_ftu_create_effect_volume_ctl(mixer);
1542 if (err < 0)
1543 return err;
1544
1545 err = snd_ftu_create_effect_duration_ctl(mixer);
1546 if (err < 0)
1547 return err;
1548
1549 err = snd_ftu_create_effect_feedback_ctl(mixer);
1550 if (err < 0)
1551 return err;
1552
1553 err = snd_ftu_create_effect_return_ctls(mixer);
1554 if (err < 0)
1555 return err;
1556
1557 err = snd_ftu_create_effect_send_ctls(mixer);
1558 if (err < 0)
1559 return err;
1560
1561 return 0;
1562 }
1563
snd_emuusb_set_samplerate(struct snd_usb_audio * chip,unsigned char samplerate_id)1564 void snd_emuusb_set_samplerate(struct snd_usb_audio *chip,
1565 unsigned char samplerate_id)
1566 {
1567 struct usb_mixer_interface *mixer;
1568 struct usb_mixer_elem_info *cval;
1569 int unitid = 12; /* SampleRate ExtensionUnit ID */
1570
1571 list_for_each_entry(mixer, &chip->mixer_list, list) {
1572 if (mixer->id_elems[unitid]) {
1573 cval = mixer_elem_list_to_info(mixer->id_elems[unitid]);
1574 snd_usb_mixer_set_ctl_value(cval, UAC_SET_CUR,
1575 cval->control << 8,
1576 samplerate_id);
1577 snd_usb_mixer_notify_id(mixer, unitid);
1578 break;
1579 }
1580 }
1581 }
1582
1583 /* M-Audio Fast Track C400/C600 */
1584 /* C400/C600 volume controls, this control needs a volume quirk, see mixer.c */
snd_c400_create_vol_ctls(struct usb_mixer_interface * mixer)1585 static int snd_c400_create_vol_ctls(struct usb_mixer_interface *mixer)
1586 {
1587 char name[64];
1588 unsigned int cmask, offset;
1589 int out, chan, err;
1590 int num_outs = 0;
1591 int num_ins = 0;
1592
1593 const unsigned int id = 0x40;
1594 const int val_type = USB_MIXER_S16;
1595 const int control = 1;
1596
1597 switch (mixer->chip->usb_id) {
1598 case USB_ID(0x0763, 0x2030):
1599 num_outs = 6;
1600 num_ins = 4;
1601 break;
1602 case USB_ID(0x0763, 0x2031):
1603 num_outs = 8;
1604 num_ins = 6;
1605 break;
1606 }
1607
1608 for (chan = 0; chan < num_outs + num_ins; chan++) {
1609 for (out = 0; out < num_outs; out++) {
1610 if (chan < num_outs) {
1611 snprintf(name, sizeof(name),
1612 "PCM%d-Out%d Playback Volume",
1613 chan + 1, out + 1);
1614 } else {
1615 snprintf(name, sizeof(name),
1616 "In%d-Out%d Playback Volume",
1617 chan - num_outs + 1, out + 1);
1618 }
1619
1620 cmask = (out == 0) ? 0 : BIT(out - 1);
1621 offset = chan * num_outs;
1622 err = snd_create_std_mono_ctl_offset(mixer, id, control,
1623 cmask, val_type, offset, name,
1624 &snd_usb_mixer_vol_tlv);
1625 if (err < 0)
1626 return err;
1627 }
1628 }
1629
1630 return 0;
1631 }
1632
1633 /* This control needs a volume quirk, see mixer.c */
snd_c400_create_effect_volume_ctl(struct usb_mixer_interface * mixer)1634 static int snd_c400_create_effect_volume_ctl(struct usb_mixer_interface *mixer)
1635 {
1636 static const char name[] = "Effect Volume";
1637 const unsigned int id = 0x43;
1638 const int val_type = USB_MIXER_U8;
1639 const unsigned int control = 3;
1640 const unsigned int cmask = 0;
1641
1642 return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
1643 name, snd_usb_mixer_vol_tlv);
1644 }
1645
1646 /* This control needs a volume quirk, see mixer.c */
snd_c400_create_effect_duration_ctl(struct usb_mixer_interface * mixer)1647 static int snd_c400_create_effect_duration_ctl(struct usb_mixer_interface *mixer)
1648 {
1649 static const char name[] = "Effect Duration";
1650 const unsigned int id = 0x43;
1651 const int val_type = USB_MIXER_S16;
1652 const unsigned int control = 4;
1653 const unsigned int cmask = 0;
1654
1655 return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
1656 name, snd_usb_mixer_vol_tlv);
1657 }
1658
1659 /* This control needs a volume quirk, see mixer.c */
snd_c400_create_effect_feedback_ctl(struct usb_mixer_interface * mixer)1660 static int snd_c400_create_effect_feedback_ctl(struct usb_mixer_interface *mixer)
1661 {
1662 static const char name[] = "Effect Feedback Volume";
1663 const unsigned int id = 0x43;
1664 const int val_type = USB_MIXER_U8;
1665 const unsigned int control = 5;
1666 const unsigned int cmask = 0;
1667
1668 return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
1669 name, NULL);
1670 }
1671
snd_c400_create_effect_vol_ctls(struct usb_mixer_interface * mixer)1672 static int snd_c400_create_effect_vol_ctls(struct usb_mixer_interface *mixer)
1673 {
1674 char name[64];
1675 unsigned int cmask;
1676 int chan, err;
1677 int num_outs = 0;
1678 int num_ins = 0;
1679
1680 const unsigned int id = 0x42;
1681 const int val_type = USB_MIXER_S16;
1682 const int control = 1;
1683
1684 switch (mixer->chip->usb_id) {
1685 case USB_ID(0x0763, 0x2030):
1686 num_outs = 6;
1687 num_ins = 4;
1688 break;
1689 case USB_ID(0x0763, 0x2031):
1690 num_outs = 8;
1691 num_ins = 6;
1692 break;
1693 }
1694
1695 for (chan = 0; chan < num_outs + num_ins; chan++) {
1696 if (chan < num_outs) {
1697 snprintf(name, sizeof(name),
1698 "Effect Send DOut%d",
1699 chan + 1);
1700 } else {
1701 snprintf(name, sizeof(name),
1702 "Effect Send AIn%d",
1703 chan - num_outs + 1);
1704 }
1705
1706 cmask = (chan == 0) ? 0 : BIT(chan - 1);
1707 err = snd_create_std_mono_ctl(mixer, id, control,
1708 cmask, val_type, name,
1709 &snd_usb_mixer_vol_tlv);
1710 if (err < 0)
1711 return err;
1712 }
1713
1714 return 0;
1715 }
1716
snd_c400_create_effect_ret_vol_ctls(struct usb_mixer_interface * mixer)1717 static int snd_c400_create_effect_ret_vol_ctls(struct usb_mixer_interface *mixer)
1718 {
1719 char name[64];
1720 unsigned int cmask;
1721 int chan, err;
1722 int num_outs = 0;
1723 int offset = 0;
1724
1725 const unsigned int id = 0x40;
1726 const int val_type = USB_MIXER_S16;
1727 const int control = 1;
1728
1729 switch (mixer->chip->usb_id) {
1730 case USB_ID(0x0763, 0x2030):
1731 num_outs = 6;
1732 offset = 0x3c;
1733 /* { 0x3c, 0x43, 0x3e, 0x45, 0x40, 0x47 } */
1734 break;
1735 case USB_ID(0x0763, 0x2031):
1736 num_outs = 8;
1737 offset = 0x70;
1738 /* { 0x70, 0x79, 0x72, 0x7b, 0x74, 0x7d, 0x76, 0x7f } */
1739 break;
1740 }
1741
1742 for (chan = 0; chan < num_outs; chan++) {
1743 snprintf(name, sizeof(name),
1744 "Effect Return %d",
1745 chan + 1);
1746
1747 cmask = (chan == 0) ? 0 :
1748 BIT(chan + (chan % 2) * num_outs - 1);
1749 err = snd_create_std_mono_ctl_offset(mixer, id, control,
1750 cmask, val_type, offset, name,
1751 &snd_usb_mixer_vol_tlv);
1752 if (err < 0)
1753 return err;
1754 }
1755
1756 return 0;
1757 }
1758
snd_c400_create_mixer(struct usb_mixer_interface * mixer)1759 static int snd_c400_create_mixer(struct usb_mixer_interface *mixer)
1760 {
1761 int err;
1762
1763 err = snd_c400_create_vol_ctls(mixer);
1764 if (err < 0)
1765 return err;
1766
1767 err = snd_c400_create_effect_vol_ctls(mixer);
1768 if (err < 0)
1769 return err;
1770
1771 err = snd_c400_create_effect_ret_vol_ctls(mixer);
1772 if (err < 0)
1773 return err;
1774
1775 err = snd_ftu_create_effect_switch(mixer, 2, 0x43);
1776 if (err < 0)
1777 return err;
1778
1779 err = snd_c400_create_effect_volume_ctl(mixer);
1780 if (err < 0)
1781 return err;
1782
1783 err = snd_c400_create_effect_duration_ctl(mixer);
1784 if (err < 0)
1785 return err;
1786
1787 err = snd_c400_create_effect_feedback_ctl(mixer);
1788 if (err < 0)
1789 return err;
1790
1791 return 0;
1792 }
1793
1794 /*
1795 * The mixer units for Ebox-44 are corrupt, and even where they
1796 * are valid they presents mono controls as L and R channels of
1797 * stereo. So we provide a good mixer here.
1798 */
1799 static const struct std_mono_table ebox44_table[] = {
1800 {
1801 .unitid = 4,
1802 .control = 1,
1803 .cmask = 0x0,
1804 .val_type = USB_MIXER_INV_BOOLEAN,
1805 .name = "Headphone Playback Switch"
1806 },
1807 {
1808 .unitid = 4,
1809 .control = 2,
1810 .cmask = 0x1,
1811 .val_type = USB_MIXER_S16,
1812 .name = "Headphone A Mix Playback Volume"
1813 },
1814 {
1815 .unitid = 4,
1816 .control = 2,
1817 .cmask = 0x2,
1818 .val_type = USB_MIXER_S16,
1819 .name = "Headphone B Mix Playback Volume"
1820 },
1821
1822 {
1823 .unitid = 7,
1824 .control = 1,
1825 .cmask = 0x0,
1826 .val_type = USB_MIXER_INV_BOOLEAN,
1827 .name = "Output Playback Switch"
1828 },
1829 {
1830 .unitid = 7,
1831 .control = 2,
1832 .cmask = 0x1,
1833 .val_type = USB_MIXER_S16,
1834 .name = "Output A Playback Volume"
1835 },
1836 {
1837 .unitid = 7,
1838 .control = 2,
1839 .cmask = 0x2,
1840 .val_type = USB_MIXER_S16,
1841 .name = "Output B Playback Volume"
1842 },
1843
1844 {
1845 .unitid = 10,
1846 .control = 1,
1847 .cmask = 0x0,
1848 .val_type = USB_MIXER_INV_BOOLEAN,
1849 .name = "Input Capture Switch"
1850 },
1851 {
1852 .unitid = 10,
1853 .control = 2,
1854 .cmask = 0x1,
1855 .val_type = USB_MIXER_S16,
1856 .name = "Input A Capture Volume"
1857 },
1858 {
1859 .unitid = 10,
1860 .control = 2,
1861 .cmask = 0x2,
1862 .val_type = USB_MIXER_S16,
1863 .name = "Input B Capture Volume"
1864 },
1865
1866 {}
1867 };
1868
1869 /* Audio Advantage Micro II findings:
1870 *
1871 * Mapping spdif AES bits to vendor register.bit:
1872 * AES0: [0 0 0 0 2.3 2.2 2.1 2.0] - default 0x00
1873 * AES1: [3.3 3.2.3.1.3.0 2.7 2.6 2.5 2.4] - default: 0x01
1874 * AES2: [0 0 0 0 0 0 0 0]
1875 * AES3: [0 0 0 0 0 0 x 0] - 'x' bit is set basing on standard usb request
1876 * (UAC_EP_CS_ATTR_SAMPLE_RATE) for Audio Devices
1877 *
1878 * power on values:
1879 * r2: 0x10
1880 * r3: 0x20 (b7 is zeroed just before playback (except IEC61937) and set
1881 * just after it to 0xa0, presumably it disables/mutes some analog
1882 * parts when there is no audio.)
1883 * r9: 0x28
1884 *
1885 * Optical transmitter on/off:
1886 * vendor register.bit: 9.1
1887 * 0 - on (0x28 register value)
1888 * 1 - off (0x2a register value)
1889 *
1890 */
snd_microii_spdif_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)1891 static int snd_microii_spdif_info(struct snd_kcontrol *kcontrol,
1892 struct snd_ctl_elem_info *uinfo)
1893 {
1894 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1895 uinfo->count = 1;
1896 return 0;
1897 }
1898
snd_microii_spdif_default_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1899 static int snd_microii_spdif_default_get(struct snd_kcontrol *kcontrol,
1900 struct snd_ctl_elem_value *ucontrol)
1901 {
1902 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
1903 struct snd_usb_audio *chip = list->mixer->chip;
1904 int err;
1905 struct usb_interface *iface;
1906 struct usb_host_interface *alts;
1907 unsigned int ep;
1908 unsigned char data[3];
1909 int rate;
1910
1911 err = snd_usb_lock_shutdown(chip);
1912 if (err < 0)
1913 return err;
1914
1915 ucontrol->value.iec958.status[0] = kcontrol->private_value & 0xff;
1916 ucontrol->value.iec958.status[1] = (kcontrol->private_value >> 8) & 0xff;
1917 ucontrol->value.iec958.status[2] = 0x00;
1918
1919 /* use known values for that card: interface#1 altsetting#1 */
1920 iface = usb_ifnum_to_if(chip->dev, 1);
1921 if (!iface || iface->num_altsetting < 2) {
1922 err = -EINVAL;
1923 goto end;
1924 }
1925 alts = &iface->altsetting[1];
1926 if (get_iface_desc(alts)->bNumEndpoints < 1) {
1927 err = -EINVAL;
1928 goto end;
1929 }
1930 ep = get_endpoint(alts, 0)->bEndpointAddress;
1931
1932 err = snd_usb_ctl_msg(chip->dev,
1933 usb_rcvctrlpipe(chip->dev, 0),
1934 UAC_GET_CUR,
1935 USB_TYPE_CLASS | USB_RECIP_ENDPOINT | USB_DIR_IN,
1936 UAC_EP_CS_ATTR_SAMPLE_RATE << 8,
1937 ep,
1938 data,
1939 sizeof(data));
1940 if (err < 0)
1941 goto end;
1942
1943 rate = data[0] | (data[1] << 8) | (data[2] << 16);
1944 ucontrol->value.iec958.status[3] = (rate == 48000) ?
1945 IEC958_AES3_CON_FS_48000 : IEC958_AES3_CON_FS_44100;
1946
1947 err = 0;
1948 end:
1949 snd_usb_unlock_shutdown(chip);
1950 return err;
1951 }
1952
snd_microii_spdif_default_update(struct usb_mixer_elem_list * list)1953 static int snd_microii_spdif_default_update(struct usb_mixer_elem_list *list)
1954 {
1955 struct snd_usb_audio *chip = list->mixer->chip;
1956 unsigned int pval = list->kctl->private_value;
1957 u8 reg;
1958 int err;
1959
1960 err = snd_usb_lock_shutdown(chip);
1961 if (err < 0)
1962 return err;
1963
1964 reg = ((pval >> 4) & 0xf0) | (pval & 0x0f);
1965 err = snd_usb_ctl_msg(chip->dev,
1966 usb_sndctrlpipe(chip->dev, 0),
1967 UAC_SET_CUR,
1968 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
1969 reg,
1970 2,
1971 NULL,
1972 0);
1973 if (err < 0)
1974 goto end;
1975
1976 reg = (pval & IEC958_AES0_NONAUDIO) ? 0xa0 : 0x20;
1977 reg |= (pval >> 12) & 0x0f;
1978 err = snd_usb_ctl_msg(chip->dev,
1979 usb_sndctrlpipe(chip->dev, 0),
1980 UAC_SET_CUR,
1981 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
1982 reg,
1983 3,
1984 NULL,
1985 0);
1986 if (err < 0)
1987 goto end;
1988
1989 end:
1990 snd_usb_unlock_shutdown(chip);
1991 return err;
1992 }
1993
snd_microii_spdif_default_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1994 static int snd_microii_spdif_default_put(struct snd_kcontrol *kcontrol,
1995 struct snd_ctl_elem_value *ucontrol)
1996 {
1997 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
1998 unsigned int pval, pval_old;
1999 int err;
2000
2001 pval = kcontrol->private_value;
2002 pval_old = pval;
2003 pval &= 0xfffff0f0;
2004 pval |= (ucontrol->value.iec958.status[1] & 0x0f) << 8;
2005 pval |= (ucontrol->value.iec958.status[0] & 0x0f);
2006
2007 pval &= 0xffff0fff;
2008 pval |= (ucontrol->value.iec958.status[1] & 0xf0) << 8;
2009
2010 /* The frequency bits in AES3 cannot be set via register access. */
2011
2012 /* Silently ignore any bits from the request that cannot be set. */
2013
2014 if (pval == pval_old)
2015 return 0;
2016
2017 kcontrol->private_value = pval;
2018 err = snd_microii_spdif_default_update(list);
2019 return err < 0 ? err : 1;
2020 }
2021
snd_microii_spdif_mask_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2022 static int snd_microii_spdif_mask_get(struct snd_kcontrol *kcontrol,
2023 struct snd_ctl_elem_value *ucontrol)
2024 {
2025 ucontrol->value.iec958.status[0] = 0x0f;
2026 ucontrol->value.iec958.status[1] = 0xff;
2027 ucontrol->value.iec958.status[2] = 0x00;
2028 ucontrol->value.iec958.status[3] = 0x00;
2029
2030 return 0;
2031 }
2032
snd_microii_spdif_switch_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2033 static int snd_microii_spdif_switch_get(struct snd_kcontrol *kcontrol,
2034 struct snd_ctl_elem_value *ucontrol)
2035 {
2036 ucontrol->value.integer.value[0] = !(kcontrol->private_value & 0x02);
2037
2038 return 0;
2039 }
2040
snd_microii_spdif_switch_update(struct usb_mixer_elem_list * list)2041 static int snd_microii_spdif_switch_update(struct usb_mixer_elem_list *list)
2042 {
2043 struct snd_usb_audio *chip = list->mixer->chip;
2044 u8 reg = list->kctl->private_value;
2045 int err;
2046
2047 err = snd_usb_lock_shutdown(chip);
2048 if (err < 0)
2049 return err;
2050
2051 err = snd_usb_ctl_msg(chip->dev,
2052 usb_sndctrlpipe(chip->dev, 0),
2053 UAC_SET_CUR,
2054 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
2055 reg,
2056 9,
2057 NULL,
2058 0);
2059
2060 snd_usb_unlock_shutdown(chip);
2061 return err;
2062 }
2063
snd_microii_spdif_switch_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2064 static int snd_microii_spdif_switch_put(struct snd_kcontrol *kcontrol,
2065 struct snd_ctl_elem_value *ucontrol)
2066 {
2067 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
2068 u8 reg;
2069 int err;
2070
2071 reg = ucontrol->value.integer.value[0] ? 0x28 : 0x2a;
2072 if (reg != list->kctl->private_value)
2073 return 0;
2074
2075 kcontrol->private_value = reg;
2076 err = snd_microii_spdif_switch_update(list);
2077 return err < 0 ? err : 1;
2078 }
2079
2080 static const struct snd_kcontrol_new snd_microii_mixer_spdif[] = {
2081 {
2082 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2083 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
2084 .info = snd_microii_spdif_info,
2085 .get = snd_microii_spdif_default_get,
2086 .put = snd_microii_spdif_default_put,
2087 .private_value = 0x00000100UL,/* reset value */
2088 },
2089 {
2090 .access = SNDRV_CTL_ELEM_ACCESS_READ,
2091 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2092 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
2093 .info = snd_microii_spdif_info,
2094 .get = snd_microii_spdif_mask_get,
2095 },
2096 {
2097 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2098 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH),
2099 .info = snd_ctl_boolean_mono_info,
2100 .get = snd_microii_spdif_switch_get,
2101 .put = snd_microii_spdif_switch_put,
2102 .private_value = 0x00000028UL,/* reset value */
2103 }
2104 };
2105
snd_microii_controls_create(struct usb_mixer_interface * mixer)2106 static int snd_microii_controls_create(struct usb_mixer_interface *mixer)
2107 {
2108 int err, i;
2109 static const usb_mixer_elem_resume_func_t resume_funcs[] = {
2110 snd_microii_spdif_default_update,
2111 NULL,
2112 snd_microii_spdif_switch_update
2113 };
2114
2115 for (i = 0; i < ARRAY_SIZE(snd_microii_mixer_spdif); ++i) {
2116 err = add_single_ctl_with_resume(mixer, 0,
2117 resume_funcs[i],
2118 &snd_microii_mixer_spdif[i],
2119 NULL);
2120 if (err < 0)
2121 return err;
2122 }
2123
2124 return 0;
2125 }
2126
2127 /* Creative Sound Blaster E1 */
2128
snd_soundblaster_e1_switch_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2129 static int snd_soundblaster_e1_switch_get(struct snd_kcontrol *kcontrol,
2130 struct snd_ctl_elem_value *ucontrol)
2131 {
2132 ucontrol->value.integer.value[0] = kcontrol->private_value;
2133 return 0;
2134 }
2135
snd_soundblaster_e1_switch_update(struct usb_mixer_interface * mixer,unsigned char state)2136 static int snd_soundblaster_e1_switch_update(struct usb_mixer_interface *mixer,
2137 unsigned char state)
2138 {
2139 struct snd_usb_audio *chip = mixer->chip;
2140 int err;
2141 unsigned char buff[2];
2142
2143 buff[0] = 0x02;
2144 buff[1] = state ? 0x02 : 0x00;
2145
2146 err = snd_usb_lock_shutdown(chip);
2147 if (err < 0)
2148 return err;
2149 err = snd_usb_ctl_msg(chip->dev,
2150 usb_sndctrlpipe(chip->dev, 0), HID_REQ_SET_REPORT,
2151 USB_TYPE_CLASS | USB_RECIP_INTERFACE | USB_DIR_OUT,
2152 0x0202, 3, buff, 2);
2153 snd_usb_unlock_shutdown(chip);
2154 return err;
2155 }
2156
snd_soundblaster_e1_switch_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2157 static int snd_soundblaster_e1_switch_put(struct snd_kcontrol *kcontrol,
2158 struct snd_ctl_elem_value *ucontrol)
2159 {
2160 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
2161 unsigned char value = !!ucontrol->value.integer.value[0];
2162 int err;
2163
2164 if (kcontrol->private_value == value)
2165 return 0;
2166 kcontrol->private_value = value;
2167 err = snd_soundblaster_e1_switch_update(list->mixer, value);
2168 return err < 0 ? err : 1;
2169 }
2170
snd_soundblaster_e1_switch_resume(struct usb_mixer_elem_list * list)2171 static int snd_soundblaster_e1_switch_resume(struct usb_mixer_elem_list *list)
2172 {
2173 return snd_soundblaster_e1_switch_update(list->mixer,
2174 list->kctl->private_value);
2175 }
2176
snd_soundblaster_e1_switch_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2177 static int snd_soundblaster_e1_switch_info(struct snd_kcontrol *kcontrol,
2178 struct snd_ctl_elem_info *uinfo)
2179 {
2180 static const char *const texts[2] = {
2181 "Mic", "Aux"
2182 };
2183
2184 return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
2185 }
2186
2187 static const struct snd_kcontrol_new snd_soundblaster_e1_input_switch = {
2188 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2189 .name = "Input Source",
2190 .info = snd_soundblaster_e1_switch_info,
2191 .get = snd_soundblaster_e1_switch_get,
2192 .put = snd_soundblaster_e1_switch_put,
2193 .private_value = 0,
2194 };
2195
snd_soundblaster_e1_switch_create(struct usb_mixer_interface * mixer)2196 static int snd_soundblaster_e1_switch_create(struct usb_mixer_interface *mixer)
2197 {
2198 return add_single_ctl_with_resume(mixer, 0,
2199 snd_soundblaster_e1_switch_resume,
2200 &snd_soundblaster_e1_input_switch,
2201 NULL);
2202 }
2203
2204 /*
2205 * Dell WD15 dock jack detection
2206 *
2207 * The WD15 contains an ALC4020 USB audio controller and ALC3263 audio codec
2208 * from Realtek. It is a UAC 1 device, and UAC 1 does not support jack
2209 * detection. Instead, jack detection works by sending HD Audio commands over
2210 * vendor-type USB messages.
2211 */
2212
2213 #define HDA_VERB_CMD(V, N, D) (((N) << 20) | ((V) << 8) | (D))
2214
2215 #define REALTEK_HDA_VALUE 0x0038
2216
2217 #define REALTEK_HDA_SET 62
2218 #define REALTEK_MANUAL_MODE 72
2219 #define REALTEK_HDA_GET_OUT 88
2220 #define REALTEK_HDA_GET_IN 89
2221
2222 #define REALTEK_AUDIO_FUNCTION_GROUP 0x01
2223 #define REALTEK_LINE1 0x1a
2224 #define REALTEK_VENDOR_REGISTERS 0x20
2225 #define REALTEK_HP_OUT 0x21
2226
2227 #define REALTEK_CBJ_CTRL2 0x50
2228
2229 #define REALTEK_JACK_INTERRUPT_NODE 5
2230
2231 #define REALTEK_MIC_FLAG 0x100
2232
realtek_hda_set(struct snd_usb_audio * chip,u32 cmd)2233 static int realtek_hda_set(struct snd_usb_audio *chip, u32 cmd)
2234 {
2235 struct usb_device *dev = chip->dev;
2236 __be32 buf = cpu_to_be32(cmd);
2237
2238 return snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), REALTEK_HDA_SET,
2239 USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_OUT,
2240 REALTEK_HDA_VALUE, 0, &buf, sizeof(buf));
2241 }
2242
realtek_hda_get(struct snd_usb_audio * chip,u32 cmd,u32 * value)2243 static int realtek_hda_get(struct snd_usb_audio *chip, u32 cmd, u32 *value)
2244 {
2245 struct usb_device *dev = chip->dev;
2246 int err;
2247 __be32 buf = cpu_to_be32(cmd);
2248
2249 err = snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), REALTEK_HDA_GET_OUT,
2250 USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_OUT,
2251 REALTEK_HDA_VALUE, 0, &buf, sizeof(buf));
2252 if (err < 0)
2253 return err;
2254 err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), REALTEK_HDA_GET_IN,
2255 USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_IN,
2256 REALTEK_HDA_VALUE, 0, &buf, sizeof(buf));
2257 if (err < 0)
2258 return err;
2259
2260 *value = be32_to_cpu(buf);
2261 return 0;
2262 }
2263
realtek_ctl_connector_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2264 static int realtek_ctl_connector_get(struct snd_kcontrol *kcontrol,
2265 struct snd_ctl_elem_value *ucontrol)
2266 {
2267 struct usb_mixer_elem_info *cval = snd_kcontrol_chip(kcontrol);
2268 struct snd_usb_audio *chip = cval->head.mixer->chip;
2269 u32 pv = kcontrol->private_value;
2270 u32 node_id = pv & 0xff;
2271 u32 sense;
2272 u32 cbj_ctrl2;
2273 bool presence;
2274 int err;
2275
2276 err = snd_usb_lock_shutdown(chip);
2277 if (err < 0)
2278 return err;
2279 err = realtek_hda_get(chip,
2280 HDA_VERB_CMD(AC_VERB_GET_PIN_SENSE, node_id, 0),
2281 &sense);
2282 if (err < 0)
2283 goto err;
2284 if (pv & REALTEK_MIC_FLAG) {
2285 err = realtek_hda_set(chip,
2286 HDA_VERB_CMD(AC_VERB_SET_COEF_INDEX,
2287 REALTEK_VENDOR_REGISTERS,
2288 REALTEK_CBJ_CTRL2));
2289 if (err < 0)
2290 goto err;
2291 err = realtek_hda_get(chip,
2292 HDA_VERB_CMD(AC_VERB_GET_PROC_COEF,
2293 REALTEK_VENDOR_REGISTERS, 0),
2294 &cbj_ctrl2);
2295 if (err < 0)
2296 goto err;
2297 }
2298 err:
2299 snd_usb_unlock_shutdown(chip);
2300 if (err < 0)
2301 return err;
2302
2303 presence = sense & AC_PINSENSE_PRESENCE;
2304 if (pv & REALTEK_MIC_FLAG)
2305 presence = presence && (cbj_ctrl2 & 0x0070) == 0x0070;
2306 ucontrol->value.integer.value[0] = presence;
2307 return 0;
2308 }
2309
2310 static const struct snd_kcontrol_new realtek_connector_ctl_ro = {
2311 .iface = SNDRV_CTL_ELEM_IFACE_CARD,
2312 .name = "", /* will be filled later manually */
2313 .access = SNDRV_CTL_ELEM_ACCESS_READ,
2314 .info = snd_ctl_boolean_mono_info,
2315 .get = realtek_ctl_connector_get,
2316 };
2317
realtek_resume_jack(struct usb_mixer_elem_list * list)2318 static int realtek_resume_jack(struct usb_mixer_elem_list *list)
2319 {
2320 snd_ctl_notify(list->mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
2321 &list->kctl->id);
2322 return 0;
2323 }
2324
realtek_add_jack(struct usb_mixer_interface * mixer,char * name,u32 val)2325 static int realtek_add_jack(struct usb_mixer_interface *mixer,
2326 char *name, u32 val)
2327 {
2328 struct usb_mixer_elem_info *cval;
2329 struct snd_kcontrol *kctl;
2330
2331 cval = kzalloc(sizeof(*cval), GFP_KERNEL);
2332 if (!cval)
2333 return -ENOMEM;
2334 snd_usb_mixer_elem_init_std(&cval->head, mixer,
2335 REALTEK_JACK_INTERRUPT_NODE);
2336 cval->head.resume = realtek_resume_jack;
2337 cval->val_type = USB_MIXER_BOOLEAN;
2338 cval->channels = 1;
2339 cval->min = 0;
2340 cval->max = 1;
2341 kctl = snd_ctl_new1(&realtek_connector_ctl_ro, cval);
2342 if (!kctl) {
2343 kfree(cval);
2344 return -ENOMEM;
2345 }
2346 kctl->private_value = val;
2347 strscpy(kctl->id.name, name, sizeof(kctl->id.name));
2348 kctl->private_free = snd_usb_mixer_elem_free;
2349 return snd_usb_mixer_add_control(&cval->head, kctl);
2350 }
2351
dell_dock_mixer_create(struct usb_mixer_interface * mixer)2352 static int dell_dock_mixer_create(struct usb_mixer_interface *mixer)
2353 {
2354 int err;
2355 struct usb_device *dev = mixer->chip->dev;
2356
2357 /* Power down the audio codec to avoid loud pops in the next step. */
2358 realtek_hda_set(mixer->chip,
2359 HDA_VERB_CMD(AC_VERB_SET_POWER_STATE,
2360 REALTEK_AUDIO_FUNCTION_GROUP,
2361 AC_PWRST_D3));
2362
2363 /*
2364 * Turn off 'manual mode' in case it was enabled. This removes the need
2365 * to power cycle the dock after it was attached to a Windows machine.
2366 */
2367 snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), REALTEK_MANUAL_MODE,
2368 USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_OUT,
2369 0, 0, NULL, 0);
2370
2371 err = realtek_add_jack(mixer, "Line Out Jack", REALTEK_LINE1);
2372 if (err < 0)
2373 return err;
2374 err = realtek_add_jack(mixer, "Headphone Jack", REALTEK_HP_OUT);
2375 if (err < 0)
2376 return err;
2377 err = realtek_add_jack(mixer, "Headset Mic Jack",
2378 REALTEK_HP_OUT | REALTEK_MIC_FLAG);
2379 if (err < 0)
2380 return err;
2381 return 0;
2382 }
2383
dell_dock_init_vol(struct usb_mixer_interface * mixer,int ch,int id)2384 static void dell_dock_init_vol(struct usb_mixer_interface *mixer, int ch, int id)
2385 {
2386 struct snd_usb_audio *chip = mixer->chip;
2387 u16 buf = 0;
2388
2389 snd_usb_ctl_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0), UAC_SET_CUR,
2390 USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
2391 (UAC_FU_VOLUME << 8) | ch,
2392 snd_usb_ctrl_intf(mixer->hostif) | (id << 8),
2393 &buf, 2);
2394 }
2395
dell_dock_mixer_init(struct usb_mixer_interface * mixer)2396 static int dell_dock_mixer_init(struct usb_mixer_interface *mixer)
2397 {
2398 /* fix to 0dB playback volumes */
2399 dell_dock_init_vol(mixer, 1, 16);
2400 dell_dock_init_vol(mixer, 2, 16);
2401 dell_dock_init_vol(mixer, 1, 19);
2402 dell_dock_init_vol(mixer, 2, 19);
2403 return 0;
2404 }
2405
2406 /* RME Class Compliant device quirks */
2407
2408 #define SND_RME_GET_STATUS1 23
2409 #define SND_RME_GET_CURRENT_FREQ 17
2410 #define SND_RME_CLK_SYSTEM_SHIFT 16
2411 #define SND_RME_CLK_SYSTEM_MASK 0x1f
2412 #define SND_RME_CLK_AES_SHIFT 8
2413 #define SND_RME_CLK_SPDIF_SHIFT 12
2414 #define SND_RME_CLK_AES_SPDIF_MASK 0xf
2415 #define SND_RME_CLK_SYNC_SHIFT 6
2416 #define SND_RME_CLK_SYNC_MASK 0x3
2417 #define SND_RME_CLK_FREQMUL_SHIFT 18
2418 #define SND_RME_CLK_FREQMUL_MASK 0x7
2419 #define SND_RME_CLK_SYSTEM(x) \
2420 (((x) >> SND_RME_CLK_SYSTEM_SHIFT) & SND_RME_CLK_SYSTEM_MASK)
2421 #define SND_RME_CLK_AES(x) \
2422 (((x) >> SND_RME_CLK_AES_SHIFT) & SND_RME_CLK_AES_SPDIF_MASK)
2423 #define SND_RME_CLK_SPDIF(x) \
2424 (((x) >> SND_RME_CLK_SPDIF_SHIFT) & SND_RME_CLK_AES_SPDIF_MASK)
2425 #define SND_RME_CLK_SYNC(x) \
2426 (((x) >> SND_RME_CLK_SYNC_SHIFT) & SND_RME_CLK_SYNC_MASK)
2427 #define SND_RME_CLK_FREQMUL(x) \
2428 (((x) >> SND_RME_CLK_FREQMUL_SHIFT) & SND_RME_CLK_FREQMUL_MASK)
2429 #define SND_RME_CLK_AES_LOCK 0x1
2430 #define SND_RME_CLK_AES_SYNC 0x4
2431 #define SND_RME_CLK_SPDIF_LOCK 0x2
2432 #define SND_RME_CLK_SPDIF_SYNC 0x8
2433 #define SND_RME_SPDIF_IF_SHIFT 4
2434 #define SND_RME_SPDIF_FORMAT_SHIFT 5
2435 #define SND_RME_BINARY_MASK 0x1
2436 #define SND_RME_SPDIF_IF(x) \
2437 (((x) >> SND_RME_SPDIF_IF_SHIFT) & SND_RME_BINARY_MASK)
2438 #define SND_RME_SPDIF_FORMAT(x) \
2439 (((x) >> SND_RME_SPDIF_FORMAT_SHIFT) & SND_RME_BINARY_MASK)
2440
2441 static const u32 snd_rme_rate_table[] = {
2442 32000, 44100, 48000, 50000,
2443 64000, 88200, 96000, 100000,
2444 128000, 176400, 192000, 200000,
2445 256000, 352800, 384000, 400000,
2446 512000, 705600, 768000, 800000
2447 };
2448
2449 /* maximum number of items for AES and S/PDIF rates for above table */
2450 #define SND_RME_RATE_IDX_AES_SPDIF_NUM 12
2451
2452 enum snd_rme_domain {
2453 SND_RME_DOMAIN_SYSTEM,
2454 SND_RME_DOMAIN_AES,
2455 SND_RME_DOMAIN_SPDIF
2456 };
2457
2458 enum snd_rme_clock_status {
2459 SND_RME_CLOCK_NOLOCK,
2460 SND_RME_CLOCK_LOCK,
2461 SND_RME_CLOCK_SYNC
2462 };
2463
snd_rme_read_value(struct snd_usb_audio * chip,unsigned int item,u32 * value)2464 static int snd_rme_read_value(struct snd_usb_audio *chip,
2465 unsigned int item,
2466 u32 *value)
2467 {
2468 struct usb_device *dev = chip->dev;
2469 int err;
2470
2471 err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0),
2472 item,
2473 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2474 0, 0,
2475 value, sizeof(*value));
2476 if (err < 0)
2477 dev_err(&dev->dev,
2478 "unable to issue vendor read request %d (ret = %d)",
2479 item, err);
2480 return err;
2481 }
2482
snd_rme_get_status1(struct snd_kcontrol * kcontrol,u32 * status1)2483 static int snd_rme_get_status1(struct snd_kcontrol *kcontrol,
2484 u32 *status1)
2485 {
2486 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
2487 struct snd_usb_audio *chip = list->mixer->chip;
2488 int err;
2489
2490 err = snd_usb_lock_shutdown(chip);
2491 if (err < 0)
2492 return err;
2493 err = snd_rme_read_value(chip, SND_RME_GET_STATUS1, status1);
2494 snd_usb_unlock_shutdown(chip);
2495 return err;
2496 }
2497
snd_rme_rate_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2498 static int snd_rme_rate_get(struct snd_kcontrol *kcontrol,
2499 struct snd_ctl_elem_value *ucontrol)
2500 {
2501 u32 status1;
2502 u32 rate = 0;
2503 int idx;
2504 int err;
2505
2506 err = snd_rme_get_status1(kcontrol, &status1);
2507 if (err < 0)
2508 return err;
2509 switch (kcontrol->private_value) {
2510 case SND_RME_DOMAIN_SYSTEM:
2511 idx = SND_RME_CLK_SYSTEM(status1);
2512 if (idx < ARRAY_SIZE(snd_rme_rate_table))
2513 rate = snd_rme_rate_table[idx];
2514 break;
2515 case SND_RME_DOMAIN_AES:
2516 idx = SND_RME_CLK_AES(status1);
2517 if (idx < SND_RME_RATE_IDX_AES_SPDIF_NUM)
2518 rate = snd_rme_rate_table[idx];
2519 break;
2520 case SND_RME_DOMAIN_SPDIF:
2521 idx = SND_RME_CLK_SPDIF(status1);
2522 if (idx < SND_RME_RATE_IDX_AES_SPDIF_NUM)
2523 rate = snd_rme_rate_table[idx];
2524 break;
2525 default:
2526 return -EINVAL;
2527 }
2528 ucontrol->value.integer.value[0] = rate;
2529 return 0;
2530 }
2531
snd_rme_sync_state_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2532 static int snd_rme_sync_state_get(struct snd_kcontrol *kcontrol,
2533 struct snd_ctl_elem_value *ucontrol)
2534 {
2535 u32 status1;
2536 int idx = SND_RME_CLOCK_NOLOCK;
2537 int err;
2538
2539 err = snd_rme_get_status1(kcontrol, &status1);
2540 if (err < 0)
2541 return err;
2542 switch (kcontrol->private_value) {
2543 case SND_RME_DOMAIN_AES: /* AES */
2544 if (status1 & SND_RME_CLK_AES_SYNC)
2545 idx = SND_RME_CLOCK_SYNC;
2546 else if (status1 & SND_RME_CLK_AES_LOCK)
2547 idx = SND_RME_CLOCK_LOCK;
2548 break;
2549 case SND_RME_DOMAIN_SPDIF: /* SPDIF */
2550 if (status1 & SND_RME_CLK_SPDIF_SYNC)
2551 idx = SND_RME_CLOCK_SYNC;
2552 else if (status1 & SND_RME_CLK_SPDIF_LOCK)
2553 idx = SND_RME_CLOCK_LOCK;
2554 break;
2555 default:
2556 return -EINVAL;
2557 }
2558 ucontrol->value.enumerated.item[0] = idx;
2559 return 0;
2560 }
2561
snd_rme_spdif_if_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2562 static int snd_rme_spdif_if_get(struct snd_kcontrol *kcontrol,
2563 struct snd_ctl_elem_value *ucontrol)
2564 {
2565 u32 status1;
2566 int err;
2567
2568 err = snd_rme_get_status1(kcontrol, &status1);
2569 if (err < 0)
2570 return err;
2571 ucontrol->value.enumerated.item[0] = SND_RME_SPDIF_IF(status1);
2572 return 0;
2573 }
2574
snd_rme_spdif_format_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2575 static int snd_rme_spdif_format_get(struct snd_kcontrol *kcontrol,
2576 struct snd_ctl_elem_value *ucontrol)
2577 {
2578 u32 status1;
2579 int err;
2580
2581 err = snd_rme_get_status1(kcontrol, &status1);
2582 if (err < 0)
2583 return err;
2584 ucontrol->value.enumerated.item[0] = SND_RME_SPDIF_FORMAT(status1);
2585 return 0;
2586 }
2587
snd_rme_sync_source_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2588 static int snd_rme_sync_source_get(struct snd_kcontrol *kcontrol,
2589 struct snd_ctl_elem_value *ucontrol)
2590 {
2591 u32 status1;
2592 int err;
2593
2594 err = snd_rme_get_status1(kcontrol, &status1);
2595 if (err < 0)
2596 return err;
2597 ucontrol->value.enumerated.item[0] = SND_RME_CLK_SYNC(status1);
2598 return 0;
2599 }
2600
snd_rme_current_freq_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2601 static int snd_rme_current_freq_get(struct snd_kcontrol *kcontrol,
2602 struct snd_ctl_elem_value *ucontrol)
2603 {
2604 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
2605 struct snd_usb_audio *chip = list->mixer->chip;
2606 u32 status1;
2607 const u64 num = 104857600000000ULL;
2608 u32 den;
2609 unsigned int freq;
2610 int err;
2611
2612 err = snd_usb_lock_shutdown(chip);
2613 if (err < 0)
2614 return err;
2615 err = snd_rme_read_value(chip, SND_RME_GET_STATUS1, &status1);
2616 if (err < 0)
2617 goto end;
2618 err = snd_rme_read_value(chip, SND_RME_GET_CURRENT_FREQ, &den);
2619 if (err < 0)
2620 goto end;
2621 freq = (den == 0) ? 0 : div64_u64(num, den);
2622 freq <<= SND_RME_CLK_FREQMUL(status1);
2623 ucontrol->value.integer.value[0] = freq;
2624
2625 end:
2626 snd_usb_unlock_shutdown(chip);
2627 return err;
2628 }
2629
snd_rme_rate_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2630 static int snd_rme_rate_info(struct snd_kcontrol *kcontrol,
2631 struct snd_ctl_elem_info *uinfo)
2632 {
2633 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2634 uinfo->count = 1;
2635 switch (kcontrol->private_value) {
2636 case SND_RME_DOMAIN_SYSTEM:
2637 uinfo->value.integer.min = 32000;
2638 uinfo->value.integer.max = 800000;
2639 break;
2640 case SND_RME_DOMAIN_AES:
2641 case SND_RME_DOMAIN_SPDIF:
2642 default:
2643 uinfo->value.integer.min = 0;
2644 uinfo->value.integer.max = 200000;
2645 }
2646 uinfo->value.integer.step = 0;
2647 return 0;
2648 }
2649
snd_rme_sync_state_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2650 static int snd_rme_sync_state_info(struct snd_kcontrol *kcontrol,
2651 struct snd_ctl_elem_info *uinfo)
2652 {
2653 static const char *const sync_states[] = {
2654 "No Lock", "Lock", "Sync"
2655 };
2656
2657 return snd_ctl_enum_info(uinfo, 1,
2658 ARRAY_SIZE(sync_states), sync_states);
2659 }
2660
snd_rme_spdif_if_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2661 static int snd_rme_spdif_if_info(struct snd_kcontrol *kcontrol,
2662 struct snd_ctl_elem_info *uinfo)
2663 {
2664 static const char *const spdif_if[] = {
2665 "Coaxial", "Optical"
2666 };
2667
2668 return snd_ctl_enum_info(uinfo, 1,
2669 ARRAY_SIZE(spdif_if), spdif_if);
2670 }
2671
snd_rme_spdif_format_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2672 static int snd_rme_spdif_format_info(struct snd_kcontrol *kcontrol,
2673 struct snd_ctl_elem_info *uinfo)
2674 {
2675 static const char *const optical_type[] = {
2676 "Consumer", "Professional"
2677 };
2678
2679 return snd_ctl_enum_info(uinfo, 1,
2680 ARRAY_SIZE(optical_type), optical_type);
2681 }
2682
snd_rme_sync_source_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2683 static int snd_rme_sync_source_info(struct snd_kcontrol *kcontrol,
2684 struct snd_ctl_elem_info *uinfo)
2685 {
2686 static const char *const sync_sources[] = {
2687 "Internal", "AES", "SPDIF", "Internal"
2688 };
2689
2690 return snd_ctl_enum_info(uinfo, 1,
2691 ARRAY_SIZE(sync_sources), sync_sources);
2692 }
2693
2694 static const struct snd_kcontrol_new snd_rme_controls[] = {
2695 {
2696 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2697 .name = "AES Rate",
2698 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2699 .info = snd_rme_rate_info,
2700 .get = snd_rme_rate_get,
2701 .private_value = SND_RME_DOMAIN_AES
2702 },
2703 {
2704 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2705 .name = "AES Sync",
2706 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2707 .info = snd_rme_sync_state_info,
2708 .get = snd_rme_sync_state_get,
2709 .private_value = SND_RME_DOMAIN_AES
2710 },
2711 {
2712 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2713 .name = "SPDIF Rate",
2714 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2715 .info = snd_rme_rate_info,
2716 .get = snd_rme_rate_get,
2717 .private_value = SND_RME_DOMAIN_SPDIF
2718 },
2719 {
2720 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2721 .name = "SPDIF Sync",
2722 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2723 .info = snd_rme_sync_state_info,
2724 .get = snd_rme_sync_state_get,
2725 .private_value = SND_RME_DOMAIN_SPDIF
2726 },
2727 {
2728 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2729 .name = "SPDIF Interface",
2730 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2731 .info = snd_rme_spdif_if_info,
2732 .get = snd_rme_spdif_if_get,
2733 },
2734 {
2735 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2736 .name = "SPDIF Format",
2737 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2738 .info = snd_rme_spdif_format_info,
2739 .get = snd_rme_spdif_format_get,
2740 },
2741 {
2742 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2743 .name = "Sync Source",
2744 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2745 .info = snd_rme_sync_source_info,
2746 .get = snd_rme_sync_source_get
2747 },
2748 {
2749 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2750 .name = "System Rate",
2751 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2752 .info = snd_rme_rate_info,
2753 .get = snd_rme_rate_get,
2754 .private_value = SND_RME_DOMAIN_SYSTEM
2755 },
2756 {
2757 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2758 .name = "Current Frequency",
2759 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2760 .info = snd_rme_rate_info,
2761 .get = snd_rme_current_freq_get
2762 }
2763 };
2764
snd_rme_controls_create(struct usb_mixer_interface * mixer)2765 static int snd_rme_controls_create(struct usb_mixer_interface *mixer)
2766 {
2767 int err, i;
2768
2769 for (i = 0; i < ARRAY_SIZE(snd_rme_controls); ++i) {
2770 err = add_single_ctl_with_resume(mixer, 0,
2771 NULL,
2772 &snd_rme_controls[i],
2773 NULL);
2774 if (err < 0)
2775 return err;
2776 }
2777
2778 return 0;
2779 }
2780
2781 /*
2782 * RME Babyface Pro (FS)
2783 *
2784 * These devices exposes a couple of DSP functions via request to EP0.
2785 * Switches are available via control registers, while routing is controlled
2786 * by controlling the volume on each possible crossing point.
2787 * Volume control is linear, from -inf (dec. 0) to +6dB (dec. 65536) with
2788 * 0dB being at dec. 32768.
2789 */
2790 enum {
2791 SND_BBFPRO_CTL_REG1 = 0,
2792 SND_BBFPRO_CTL_REG2
2793 };
2794
2795 #define SND_BBFPRO_CTL_REG_MASK 1
2796 #define SND_BBFPRO_CTL_IDX_MASK 0xff
2797 #define SND_BBFPRO_CTL_IDX_SHIFT 1
2798 #define SND_BBFPRO_CTL_VAL_MASK 1
2799 #define SND_BBFPRO_CTL_VAL_SHIFT 9
2800 #define SND_BBFPRO_CTL_REG1_CLK_MASTER 0
2801 #define SND_BBFPRO_CTL_REG1_CLK_OPTICAL 1
2802 #define SND_BBFPRO_CTL_REG1_SPDIF_PRO 7
2803 #define SND_BBFPRO_CTL_REG1_SPDIF_EMPH 8
2804 #define SND_BBFPRO_CTL_REG1_SPDIF_OPTICAL 10
2805 #define SND_BBFPRO_CTL_REG2_48V_AN1 0
2806 #define SND_BBFPRO_CTL_REG2_48V_AN2 1
2807 #define SND_BBFPRO_CTL_REG2_SENS_IN3 2
2808 #define SND_BBFPRO_CTL_REG2_SENS_IN4 3
2809 #define SND_BBFPRO_CTL_REG2_PAD_AN1 4
2810 #define SND_BBFPRO_CTL_REG2_PAD_AN2 5
2811
2812 #define SND_BBFPRO_MIXER_MAIN_OUT_CH_OFFSET 992
2813 #define SND_BBFPRO_MIXER_IDX_MASK 0x3ff
2814 #define SND_BBFPRO_MIXER_VAL_MASK 0x3ffff
2815 #define SND_BBFPRO_MIXER_VAL_SHIFT 9
2816 #define SND_BBFPRO_MIXER_VAL_MIN 0 // -inf
2817 #define SND_BBFPRO_MIXER_VAL_MAX 65536 // +6dB
2818
2819 #define SND_BBFPRO_GAIN_CHANNEL_MASK 0x03
2820 #define SND_BBFPRO_GAIN_CHANNEL_SHIFT 7
2821 #define SND_BBFPRO_GAIN_VAL_MASK 0x7f
2822 #define SND_BBFPRO_GAIN_VAL_MIN 0
2823 #define SND_BBFPRO_GAIN_VAL_MIC_MAX 65
2824 #define SND_BBFPRO_GAIN_VAL_LINE_MAX 18 // 9db in 0.5db incraments
2825
2826 #define SND_BBFPRO_USBREQ_CTL_REG1 0x10
2827 #define SND_BBFPRO_USBREQ_CTL_REG2 0x17
2828 #define SND_BBFPRO_USBREQ_GAIN 0x1a
2829 #define SND_BBFPRO_USBREQ_MIXER 0x12
2830
snd_bbfpro_ctl_update(struct usb_mixer_interface * mixer,u8 reg,u8 index,u8 value)2831 static int snd_bbfpro_ctl_update(struct usb_mixer_interface *mixer, u8 reg,
2832 u8 index, u8 value)
2833 {
2834 int err;
2835 u16 usb_req, usb_idx, usb_val;
2836 struct snd_usb_audio *chip = mixer->chip;
2837
2838 err = snd_usb_lock_shutdown(chip);
2839 if (err < 0)
2840 return err;
2841
2842 if (reg == SND_BBFPRO_CTL_REG1) {
2843 usb_req = SND_BBFPRO_USBREQ_CTL_REG1;
2844 if (index == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) {
2845 usb_idx = 3;
2846 usb_val = value ? 3 : 0;
2847 } else {
2848 usb_idx = BIT(index);
2849 usb_val = value ? usb_idx : 0;
2850 }
2851 } else {
2852 usb_req = SND_BBFPRO_USBREQ_CTL_REG2;
2853 usb_idx = BIT(index);
2854 usb_val = value ? usb_idx : 0;
2855 }
2856
2857 err = snd_usb_ctl_msg(chip->dev,
2858 usb_sndctrlpipe(chip->dev, 0), usb_req,
2859 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2860 usb_val, usb_idx, NULL, 0);
2861
2862 snd_usb_unlock_shutdown(chip);
2863 return err;
2864 }
2865
snd_bbfpro_ctl_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2866 static int snd_bbfpro_ctl_get(struct snd_kcontrol *kcontrol,
2867 struct snd_ctl_elem_value *ucontrol)
2868 {
2869 u8 reg, idx, val;
2870 int pv;
2871
2872 pv = kcontrol->private_value;
2873 reg = pv & SND_BBFPRO_CTL_REG_MASK;
2874 idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
2875 val = kcontrol->private_value >> SND_BBFPRO_CTL_VAL_SHIFT;
2876
2877 if ((reg == SND_BBFPRO_CTL_REG1 &&
2878 idx == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) ||
2879 (reg == SND_BBFPRO_CTL_REG2 &&
2880 (idx == SND_BBFPRO_CTL_REG2_SENS_IN3 ||
2881 idx == SND_BBFPRO_CTL_REG2_SENS_IN4))) {
2882 ucontrol->value.enumerated.item[0] = val;
2883 } else {
2884 ucontrol->value.integer.value[0] = val;
2885 }
2886 return 0;
2887 }
2888
snd_bbfpro_ctl_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2889 static int snd_bbfpro_ctl_info(struct snd_kcontrol *kcontrol,
2890 struct snd_ctl_elem_info *uinfo)
2891 {
2892 u8 reg, idx;
2893 int pv;
2894
2895 pv = kcontrol->private_value;
2896 reg = pv & SND_BBFPRO_CTL_REG_MASK;
2897 idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
2898
2899 if (reg == SND_BBFPRO_CTL_REG1 &&
2900 idx == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) {
2901 static const char * const texts[2] = {
2902 "AutoSync",
2903 "Internal"
2904 };
2905 return snd_ctl_enum_info(uinfo, 1, 2, texts);
2906 } else if (reg == SND_BBFPRO_CTL_REG2 &&
2907 (idx == SND_BBFPRO_CTL_REG2_SENS_IN3 ||
2908 idx == SND_BBFPRO_CTL_REG2_SENS_IN4)) {
2909 static const char * const texts[2] = {
2910 "-10dBV",
2911 "+4dBu"
2912 };
2913 return snd_ctl_enum_info(uinfo, 1, 2, texts);
2914 }
2915
2916 uinfo->count = 1;
2917 uinfo->value.integer.min = 0;
2918 uinfo->value.integer.max = 1;
2919 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2920 return 0;
2921 }
2922
snd_bbfpro_ctl_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2923 static int snd_bbfpro_ctl_put(struct snd_kcontrol *kcontrol,
2924 struct snd_ctl_elem_value *ucontrol)
2925 {
2926 int err;
2927 u8 reg, idx;
2928 int old_value, pv, val;
2929
2930 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
2931 struct usb_mixer_interface *mixer = list->mixer;
2932
2933 pv = kcontrol->private_value;
2934 reg = pv & SND_BBFPRO_CTL_REG_MASK;
2935 idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
2936 old_value = (pv >> SND_BBFPRO_CTL_VAL_SHIFT) & SND_BBFPRO_CTL_VAL_MASK;
2937
2938 if ((reg == SND_BBFPRO_CTL_REG1 &&
2939 idx == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) ||
2940 (reg == SND_BBFPRO_CTL_REG2 &&
2941 (idx == SND_BBFPRO_CTL_REG2_SENS_IN3 ||
2942 idx == SND_BBFPRO_CTL_REG2_SENS_IN4))) {
2943 val = ucontrol->value.enumerated.item[0];
2944 } else {
2945 val = ucontrol->value.integer.value[0];
2946 }
2947
2948 if (val > 1)
2949 return -EINVAL;
2950
2951 if (val == old_value)
2952 return 0;
2953
2954 kcontrol->private_value = reg
2955 | ((idx & SND_BBFPRO_CTL_IDX_MASK) << SND_BBFPRO_CTL_IDX_SHIFT)
2956 | ((val & SND_BBFPRO_CTL_VAL_MASK) << SND_BBFPRO_CTL_VAL_SHIFT);
2957
2958 err = snd_bbfpro_ctl_update(mixer, reg, idx, val);
2959 return err < 0 ? err : 1;
2960 }
2961
snd_bbfpro_ctl_resume(struct usb_mixer_elem_list * list)2962 static int snd_bbfpro_ctl_resume(struct usb_mixer_elem_list *list)
2963 {
2964 u8 reg, idx;
2965 int value, pv;
2966
2967 pv = list->kctl->private_value;
2968 reg = pv & SND_BBFPRO_CTL_REG_MASK;
2969 idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
2970 value = (pv >> SND_BBFPRO_CTL_VAL_SHIFT) & SND_BBFPRO_CTL_VAL_MASK;
2971
2972 return snd_bbfpro_ctl_update(list->mixer, reg, idx, value);
2973 }
2974
snd_bbfpro_gain_update(struct usb_mixer_interface * mixer,u8 channel,u8 gain)2975 static int snd_bbfpro_gain_update(struct usb_mixer_interface *mixer,
2976 u8 channel, u8 gain)
2977 {
2978 int err;
2979 struct snd_usb_audio *chip = mixer->chip;
2980
2981 if (channel < 2) {
2982 // XLR preamp: 3-bit fine, 5-bit coarse; special case >60
2983 if (gain < 60)
2984 gain = ((gain % 3) << 5) | (gain / 3);
2985 else
2986 gain = ((gain % 6) << 5) | (60 / 3);
2987 }
2988
2989 err = snd_usb_lock_shutdown(chip);
2990 if (err < 0)
2991 return err;
2992
2993 err = snd_usb_ctl_msg(chip->dev,
2994 usb_sndctrlpipe(chip->dev, 0),
2995 SND_BBFPRO_USBREQ_GAIN,
2996 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2997 gain, channel, NULL, 0);
2998
2999 snd_usb_unlock_shutdown(chip);
3000 return err;
3001 }
3002
snd_bbfpro_gain_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)3003 static int snd_bbfpro_gain_get(struct snd_kcontrol *kcontrol,
3004 struct snd_ctl_elem_value *ucontrol)
3005 {
3006 int value = kcontrol->private_value & SND_BBFPRO_GAIN_VAL_MASK;
3007
3008 ucontrol->value.integer.value[0] = value;
3009 return 0;
3010 }
3011
snd_bbfpro_gain_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)3012 static int snd_bbfpro_gain_info(struct snd_kcontrol *kcontrol,
3013 struct snd_ctl_elem_info *uinfo)
3014 {
3015 int pv, channel;
3016
3017 pv = kcontrol->private_value;
3018 channel = (pv >> SND_BBFPRO_GAIN_CHANNEL_SHIFT) &
3019 SND_BBFPRO_GAIN_CHANNEL_MASK;
3020
3021 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3022 uinfo->count = 1;
3023 uinfo->value.integer.min = SND_BBFPRO_GAIN_VAL_MIN;
3024
3025 if (channel < 2)
3026 uinfo->value.integer.max = SND_BBFPRO_GAIN_VAL_MIC_MAX;
3027 else
3028 uinfo->value.integer.max = SND_BBFPRO_GAIN_VAL_LINE_MAX;
3029
3030 return 0;
3031 }
3032
snd_bbfpro_gain_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)3033 static int snd_bbfpro_gain_put(struct snd_kcontrol *kcontrol,
3034 struct snd_ctl_elem_value *ucontrol)
3035 {
3036 int pv, channel, old_value, value, err;
3037
3038 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
3039 struct usb_mixer_interface *mixer = list->mixer;
3040
3041 pv = kcontrol->private_value;
3042 channel = (pv >> SND_BBFPRO_GAIN_CHANNEL_SHIFT) &
3043 SND_BBFPRO_GAIN_CHANNEL_MASK;
3044 old_value = pv & SND_BBFPRO_GAIN_VAL_MASK;
3045 value = ucontrol->value.integer.value[0];
3046
3047 if (value < SND_BBFPRO_GAIN_VAL_MIN)
3048 return -EINVAL;
3049
3050 if (channel < 2) {
3051 if (value > SND_BBFPRO_GAIN_VAL_MIC_MAX)
3052 return -EINVAL;
3053 } else {
3054 if (value > SND_BBFPRO_GAIN_VAL_LINE_MAX)
3055 return -EINVAL;
3056 }
3057
3058 if (value == old_value)
3059 return 0;
3060
3061 err = snd_bbfpro_gain_update(mixer, channel, value);
3062 if (err < 0)
3063 return err;
3064
3065 kcontrol->private_value =
3066 (channel << SND_BBFPRO_GAIN_CHANNEL_SHIFT) | value;
3067 return 1;
3068 }
3069
snd_bbfpro_gain_resume(struct usb_mixer_elem_list * list)3070 static int snd_bbfpro_gain_resume(struct usb_mixer_elem_list *list)
3071 {
3072 int pv, channel, value;
3073 struct snd_kcontrol *kctl = list->kctl;
3074
3075 pv = kctl->private_value;
3076 channel = (pv >> SND_BBFPRO_GAIN_CHANNEL_SHIFT) &
3077 SND_BBFPRO_GAIN_CHANNEL_MASK;
3078 value = pv & SND_BBFPRO_GAIN_VAL_MASK;
3079
3080 return snd_bbfpro_gain_update(list->mixer, channel, value);
3081 }
3082
snd_bbfpro_vol_update(struct usb_mixer_interface * mixer,u16 index,u32 value)3083 static int snd_bbfpro_vol_update(struct usb_mixer_interface *mixer, u16 index,
3084 u32 value)
3085 {
3086 struct snd_usb_audio *chip = mixer->chip;
3087 int err;
3088 u16 idx;
3089 u16 usb_idx, usb_val;
3090 u32 v;
3091
3092 err = snd_usb_lock_shutdown(chip);
3093 if (err < 0)
3094 return err;
3095
3096 idx = index & SND_BBFPRO_MIXER_IDX_MASK;
3097 // 18 bit linear volume, split so 2 bits end up in index.
3098 v = value & SND_BBFPRO_MIXER_VAL_MASK;
3099 usb_idx = idx | (v & 0x3) << 14;
3100 usb_val = (v >> 2) & 0xffff;
3101
3102 err = snd_usb_ctl_msg(chip->dev,
3103 usb_sndctrlpipe(chip->dev, 0),
3104 SND_BBFPRO_USBREQ_MIXER,
3105 USB_DIR_OUT | USB_TYPE_VENDOR |
3106 USB_RECIP_DEVICE,
3107 usb_val, usb_idx, NULL, 0);
3108
3109 snd_usb_unlock_shutdown(chip);
3110 return err;
3111 }
3112
snd_bbfpro_vol_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)3113 static int snd_bbfpro_vol_get(struct snd_kcontrol *kcontrol,
3114 struct snd_ctl_elem_value *ucontrol)
3115 {
3116 ucontrol->value.integer.value[0] =
3117 kcontrol->private_value >> SND_BBFPRO_MIXER_VAL_SHIFT;
3118 return 0;
3119 }
3120
snd_bbfpro_vol_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)3121 static int snd_bbfpro_vol_info(struct snd_kcontrol *kcontrol,
3122 struct snd_ctl_elem_info *uinfo)
3123 {
3124 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3125 uinfo->count = 1;
3126 uinfo->value.integer.min = SND_BBFPRO_MIXER_VAL_MIN;
3127 uinfo->value.integer.max = SND_BBFPRO_MIXER_VAL_MAX;
3128 return 0;
3129 }
3130
snd_bbfpro_vol_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)3131 static int snd_bbfpro_vol_put(struct snd_kcontrol *kcontrol,
3132 struct snd_ctl_elem_value *ucontrol)
3133 {
3134 int err;
3135 u16 idx;
3136 u32 new_val, old_value, uvalue;
3137 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
3138 struct usb_mixer_interface *mixer = list->mixer;
3139
3140 uvalue = ucontrol->value.integer.value[0];
3141 idx = kcontrol->private_value & SND_BBFPRO_MIXER_IDX_MASK;
3142 old_value = kcontrol->private_value >> SND_BBFPRO_MIXER_VAL_SHIFT;
3143
3144 if (uvalue > SND_BBFPRO_MIXER_VAL_MAX)
3145 return -EINVAL;
3146
3147 if (uvalue == old_value)
3148 return 0;
3149
3150 new_val = uvalue & SND_BBFPRO_MIXER_VAL_MASK;
3151
3152 kcontrol->private_value = idx
3153 | (new_val << SND_BBFPRO_MIXER_VAL_SHIFT);
3154
3155 err = snd_bbfpro_vol_update(mixer, idx, new_val);
3156 return err < 0 ? err : 1;
3157 }
3158
snd_bbfpro_vol_resume(struct usb_mixer_elem_list * list)3159 static int snd_bbfpro_vol_resume(struct usb_mixer_elem_list *list)
3160 {
3161 int pv = list->kctl->private_value;
3162 u16 idx = pv & SND_BBFPRO_MIXER_IDX_MASK;
3163 u32 val = (pv >> SND_BBFPRO_MIXER_VAL_SHIFT)
3164 & SND_BBFPRO_MIXER_VAL_MASK;
3165 return snd_bbfpro_vol_update(list->mixer, idx, val);
3166 }
3167
3168 // Predfine elements
3169 static const struct snd_kcontrol_new snd_bbfpro_ctl_control = {
3170 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3171 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3172 .index = 0,
3173 .info = snd_bbfpro_ctl_info,
3174 .get = snd_bbfpro_ctl_get,
3175 .put = snd_bbfpro_ctl_put
3176 };
3177
3178 static const struct snd_kcontrol_new snd_bbfpro_gain_control = {
3179 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3180 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3181 .index = 0,
3182 .info = snd_bbfpro_gain_info,
3183 .get = snd_bbfpro_gain_get,
3184 .put = snd_bbfpro_gain_put
3185 };
3186
3187 static const struct snd_kcontrol_new snd_bbfpro_vol_control = {
3188 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3189 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3190 .index = 0,
3191 .info = snd_bbfpro_vol_info,
3192 .get = snd_bbfpro_vol_get,
3193 .put = snd_bbfpro_vol_put
3194 };
3195
snd_bbfpro_ctl_add(struct usb_mixer_interface * mixer,u8 reg,u8 index,char * name)3196 static int snd_bbfpro_ctl_add(struct usb_mixer_interface *mixer, u8 reg,
3197 u8 index, char *name)
3198 {
3199 struct snd_kcontrol_new knew = snd_bbfpro_ctl_control;
3200
3201 knew.name = name;
3202 knew.private_value = (reg & SND_BBFPRO_CTL_REG_MASK)
3203 | ((index & SND_BBFPRO_CTL_IDX_MASK)
3204 << SND_BBFPRO_CTL_IDX_SHIFT);
3205
3206 return add_single_ctl_with_resume(mixer, 0, snd_bbfpro_ctl_resume,
3207 &knew, NULL);
3208 }
3209
snd_bbfpro_gain_add(struct usb_mixer_interface * mixer,u8 channel,char * name)3210 static int snd_bbfpro_gain_add(struct usb_mixer_interface *mixer, u8 channel,
3211 char *name)
3212 {
3213 struct snd_kcontrol_new knew = snd_bbfpro_gain_control;
3214
3215 knew.name = name;
3216 knew.private_value = channel << SND_BBFPRO_GAIN_CHANNEL_SHIFT;
3217
3218 return add_single_ctl_with_resume(mixer, 0, snd_bbfpro_gain_resume,
3219 &knew, NULL);
3220 }
3221
snd_bbfpro_vol_add(struct usb_mixer_interface * mixer,u16 index,char * name)3222 static int snd_bbfpro_vol_add(struct usb_mixer_interface *mixer, u16 index,
3223 char *name)
3224 {
3225 struct snd_kcontrol_new knew = snd_bbfpro_vol_control;
3226
3227 knew.name = name;
3228 knew.private_value = index & SND_BBFPRO_MIXER_IDX_MASK;
3229
3230 return add_single_ctl_with_resume(mixer, 0, snd_bbfpro_vol_resume,
3231 &knew, NULL);
3232 }
3233
snd_bbfpro_controls_create(struct usb_mixer_interface * mixer)3234 static int snd_bbfpro_controls_create(struct usb_mixer_interface *mixer)
3235 {
3236 int err, i, o;
3237 char name[48];
3238
3239 static const char * const input[] = {
3240 "AN1", "AN2", "IN3", "IN4", "AS1", "AS2", "ADAT3",
3241 "ADAT4", "ADAT5", "ADAT6", "ADAT7", "ADAT8"};
3242
3243 static const char * const output[] = {
3244 "AN1", "AN2", "PH3", "PH4", "AS1", "AS2", "ADAT3", "ADAT4",
3245 "ADAT5", "ADAT6", "ADAT7", "ADAT8"};
3246
3247 for (o = 0 ; o < 12 ; ++o) {
3248 for (i = 0 ; i < 12 ; ++i) {
3249 // Line routing
3250 snprintf(name, sizeof(name),
3251 "%s-%s-%s Playback Volume",
3252 (i < 2 ? "Mic" : "Line"),
3253 input[i], output[o]);
3254 err = snd_bbfpro_vol_add(mixer, (26 * o + i), name);
3255 if (err < 0)
3256 return err;
3257
3258 // PCM routing... yes, it is output remapping
3259 snprintf(name, sizeof(name),
3260 "PCM-%s-%s Playback Volume",
3261 output[i], output[o]);
3262 err = snd_bbfpro_vol_add(mixer, (26 * o + 12 + i),
3263 name);
3264 if (err < 0)
3265 return err;
3266 }
3267 }
3268
3269 // Main out volume
3270 for (i = 0 ; i < 12 ; ++i) {
3271 snprintf(name, sizeof(name), "Main-Out %s", output[i]);
3272 // Main outs are offset to 992
3273 err = snd_bbfpro_vol_add(mixer,
3274 i + SND_BBFPRO_MIXER_MAIN_OUT_CH_OFFSET,
3275 name);
3276 if (err < 0)
3277 return err;
3278 }
3279
3280 // Input gain
3281 for (i = 0 ; i < 4 ; ++i) {
3282 if (i < 2)
3283 snprintf(name, sizeof(name), "Mic-%s Gain", input[i]);
3284 else
3285 snprintf(name, sizeof(name), "Line-%s Gain", input[i]);
3286
3287 err = snd_bbfpro_gain_add(mixer, i, name);
3288 if (err < 0)
3289 return err;
3290 }
3291
3292 // Control Reg 1
3293 err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
3294 SND_BBFPRO_CTL_REG1_CLK_OPTICAL,
3295 "Sample Clock Source");
3296 if (err < 0)
3297 return err;
3298
3299 err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
3300 SND_BBFPRO_CTL_REG1_SPDIF_PRO,
3301 "IEC958 Pro Mask");
3302 if (err < 0)
3303 return err;
3304
3305 err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
3306 SND_BBFPRO_CTL_REG1_SPDIF_EMPH,
3307 "IEC958 Emphasis");
3308 if (err < 0)
3309 return err;
3310
3311 err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
3312 SND_BBFPRO_CTL_REG1_SPDIF_OPTICAL,
3313 "IEC958 Switch");
3314 if (err < 0)
3315 return err;
3316
3317 // Control Reg 2
3318 err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
3319 SND_BBFPRO_CTL_REG2_48V_AN1,
3320 "Mic-AN1 48V");
3321 if (err < 0)
3322 return err;
3323
3324 err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
3325 SND_BBFPRO_CTL_REG2_48V_AN2,
3326 "Mic-AN2 48V");
3327 if (err < 0)
3328 return err;
3329
3330 err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
3331 SND_BBFPRO_CTL_REG2_SENS_IN3,
3332 "Line-IN3 Sens.");
3333 if (err < 0)
3334 return err;
3335
3336 err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
3337 SND_BBFPRO_CTL_REG2_SENS_IN4,
3338 "Line-IN4 Sens.");
3339 if (err < 0)
3340 return err;
3341
3342 err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
3343 SND_BBFPRO_CTL_REG2_PAD_AN1,
3344 "Mic-AN1 PAD");
3345 if (err < 0)
3346 return err;
3347
3348 err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
3349 SND_BBFPRO_CTL_REG2_PAD_AN2,
3350 "Mic-AN2 PAD");
3351 if (err < 0)
3352 return err;
3353
3354 return 0;
3355 }
3356
3357 /*
3358 * RME Digiface USB
3359 */
3360
3361 #define RME_DIGIFACE_READ_STATUS 17
3362 #define RME_DIGIFACE_STATUS_REG0L 0
3363 #define RME_DIGIFACE_STATUS_REG0H 1
3364 #define RME_DIGIFACE_STATUS_REG1L 2
3365 #define RME_DIGIFACE_STATUS_REG1H 3
3366 #define RME_DIGIFACE_STATUS_REG2L 4
3367 #define RME_DIGIFACE_STATUS_REG2H 5
3368 #define RME_DIGIFACE_STATUS_REG3L 6
3369 #define RME_DIGIFACE_STATUS_REG3H 7
3370
3371 #define RME_DIGIFACE_CTL_REG1 16
3372 #define RME_DIGIFACE_CTL_REG2 18
3373
3374 /* Reg is overloaded, 0-7 for status halfwords or 16 or 18 for control registers */
3375 #define RME_DIGIFACE_REGISTER(reg, mask) (((reg) << 16) | (mask))
3376 #define RME_DIGIFACE_INVERT BIT(31)
3377
3378 /* Nonconst helpers */
3379 #define field_get(_mask, _reg) (((_reg) & (_mask)) >> (ffs(_mask) - 1))
3380 #define field_prep(_mask, _val) (((_val) << (ffs(_mask) - 1)) & (_mask))
3381
snd_rme_digiface_write_reg(struct snd_kcontrol * kcontrol,int item,u16 mask,u16 val)3382 static int snd_rme_digiface_write_reg(struct snd_kcontrol *kcontrol, int item, u16 mask, u16 val)
3383 {
3384 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
3385 struct snd_usb_audio *chip = list->mixer->chip;
3386 struct usb_device *dev = chip->dev;
3387 int err;
3388
3389 err = snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0),
3390 item,
3391 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
3392 val, mask, NULL, 0);
3393 if (err < 0)
3394 dev_err(&dev->dev,
3395 "unable to issue control set request %d (ret = %d)",
3396 item, err);
3397 return err;
3398 }
3399
snd_rme_digiface_read_status(struct snd_kcontrol * kcontrol,u32 status[4])3400 static int snd_rme_digiface_read_status(struct snd_kcontrol *kcontrol, u32 status[4])
3401 {
3402 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
3403 struct snd_usb_audio *chip = list->mixer->chip;
3404 struct usb_device *dev = chip->dev;
3405 __le32 buf[4];
3406 int err;
3407
3408 err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0),
3409 RME_DIGIFACE_READ_STATUS,
3410 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
3411 0, 0,
3412 buf, sizeof(buf));
3413 if (err < 0) {
3414 dev_err(&dev->dev,
3415 "unable to issue status read request (ret = %d)",
3416 err);
3417 } else {
3418 for (int i = 0; i < ARRAY_SIZE(buf); i++)
3419 status[i] = le32_to_cpu(buf[i]);
3420 }
3421 return err;
3422 }
3423
snd_rme_digiface_get_status_val(struct snd_kcontrol * kcontrol)3424 static int snd_rme_digiface_get_status_val(struct snd_kcontrol *kcontrol)
3425 {
3426 int err;
3427 u32 status[4];
3428 bool invert = kcontrol->private_value & RME_DIGIFACE_INVERT;
3429 u8 reg = (kcontrol->private_value >> 16) & 0xff;
3430 u16 mask = kcontrol->private_value & 0xffff;
3431 u16 val;
3432
3433 err = snd_rme_digiface_read_status(kcontrol, status);
3434 if (err < 0)
3435 return err;
3436
3437 switch (reg) {
3438 /* Status register halfwords */
3439 case RME_DIGIFACE_STATUS_REG0L ... RME_DIGIFACE_STATUS_REG3H:
3440 break;
3441 case RME_DIGIFACE_CTL_REG1: /* Control register 1, present in halfword 3L */
3442 reg = RME_DIGIFACE_STATUS_REG3L;
3443 break;
3444 case RME_DIGIFACE_CTL_REG2: /* Control register 2, present in halfword 3H */
3445 reg = RME_DIGIFACE_STATUS_REG3H;
3446 break;
3447 default:
3448 return -EINVAL;
3449 }
3450
3451 if (reg & 1)
3452 val = status[reg >> 1] >> 16;
3453 else
3454 val = status[reg >> 1] & 0xffff;
3455
3456 if (invert)
3457 val ^= mask;
3458
3459 return field_get(mask, val);
3460 }
3461
snd_rme_digiface_rate_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)3462 static int snd_rme_digiface_rate_get(struct snd_kcontrol *kcontrol,
3463 struct snd_ctl_elem_value *ucontrol)
3464 {
3465 int freq = snd_rme_digiface_get_status_val(kcontrol);
3466
3467 if (freq < 0)
3468 return freq;
3469 if (freq >= ARRAY_SIZE(snd_rme_rate_table))
3470 return -EIO;
3471
3472 ucontrol->value.integer.value[0] = snd_rme_rate_table[freq];
3473 return 0;
3474 }
3475
snd_rme_digiface_enum_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)3476 static int snd_rme_digiface_enum_get(struct snd_kcontrol *kcontrol,
3477 struct snd_ctl_elem_value *ucontrol)
3478 {
3479 int val = snd_rme_digiface_get_status_val(kcontrol);
3480
3481 if (val < 0)
3482 return val;
3483
3484 ucontrol->value.enumerated.item[0] = val;
3485 return 0;
3486 }
3487
snd_rme_digiface_enum_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)3488 static int snd_rme_digiface_enum_put(struct snd_kcontrol *kcontrol,
3489 struct snd_ctl_elem_value *ucontrol)
3490 {
3491 bool invert = kcontrol->private_value & RME_DIGIFACE_INVERT;
3492 u8 reg = (kcontrol->private_value >> 16) & 0xff;
3493 u16 mask = kcontrol->private_value & 0xffff;
3494 u16 val = field_prep(mask, ucontrol->value.enumerated.item[0]);
3495
3496 if (invert)
3497 val ^= mask;
3498
3499 return snd_rme_digiface_write_reg(kcontrol, reg, mask, val);
3500 }
3501
snd_rme_digiface_current_sync_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)3502 static int snd_rme_digiface_current_sync_get(struct snd_kcontrol *kcontrol,
3503 struct snd_ctl_elem_value *ucontrol)
3504 {
3505 int ret = snd_rme_digiface_enum_get(kcontrol, ucontrol);
3506
3507 /* 7 means internal for current sync */
3508 if (ucontrol->value.enumerated.item[0] == 7)
3509 ucontrol->value.enumerated.item[0] = 0;
3510
3511 return ret;
3512 }
3513
snd_rme_digiface_sync_state_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)3514 static int snd_rme_digiface_sync_state_get(struct snd_kcontrol *kcontrol,
3515 struct snd_ctl_elem_value *ucontrol)
3516 {
3517 u32 status[4];
3518 int err;
3519 bool valid, sync;
3520
3521 err = snd_rme_digiface_read_status(kcontrol, status);
3522 if (err < 0)
3523 return err;
3524
3525 valid = status[0] & BIT(kcontrol->private_value);
3526 sync = status[0] & BIT(5 + kcontrol->private_value);
3527
3528 if (!valid)
3529 ucontrol->value.enumerated.item[0] = SND_RME_CLOCK_NOLOCK;
3530 else if (!sync)
3531 ucontrol->value.enumerated.item[0] = SND_RME_CLOCK_LOCK;
3532 else
3533 ucontrol->value.enumerated.item[0] = SND_RME_CLOCK_SYNC;
3534 return 0;
3535 }
3536
snd_rme_digiface_format_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)3537 static int snd_rme_digiface_format_info(struct snd_kcontrol *kcontrol,
3538 struct snd_ctl_elem_info *uinfo)
3539 {
3540 static const char *const format[] = {
3541 "ADAT", "S/PDIF"
3542 };
3543
3544 return snd_ctl_enum_info(uinfo, 1,
3545 ARRAY_SIZE(format), format);
3546 }
3547
snd_rme_digiface_sync_source_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)3548 static int snd_rme_digiface_sync_source_info(struct snd_kcontrol *kcontrol,
3549 struct snd_ctl_elem_info *uinfo)
3550 {
3551 static const char *const sync_sources[] = {
3552 "Internal", "Input 1", "Input 2", "Input 3", "Input 4"
3553 };
3554
3555 return snd_ctl_enum_info(uinfo, 1,
3556 ARRAY_SIZE(sync_sources), sync_sources);
3557 }
3558
snd_rme_digiface_rate_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)3559 static int snd_rme_digiface_rate_info(struct snd_kcontrol *kcontrol,
3560 struct snd_ctl_elem_info *uinfo)
3561 {
3562 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3563 uinfo->count = 1;
3564 uinfo->value.integer.min = 0;
3565 uinfo->value.integer.max = 200000;
3566 uinfo->value.integer.step = 0;
3567 return 0;
3568 }
3569
3570 static const struct snd_kcontrol_new snd_rme_digiface_controls[] = {
3571 {
3572 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3573 .name = "Input 1 Sync",
3574 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3575 .info = snd_rme_sync_state_info,
3576 .get = snd_rme_digiface_sync_state_get,
3577 .private_value = 0,
3578 },
3579 {
3580 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3581 .name = "Input 1 Format",
3582 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3583 .info = snd_rme_digiface_format_info,
3584 .get = snd_rme_digiface_enum_get,
3585 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0H, BIT(0)) |
3586 RME_DIGIFACE_INVERT,
3587 },
3588 {
3589 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3590 .name = "Input 1 Rate",
3591 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3592 .info = snd_rme_digiface_rate_info,
3593 .get = snd_rme_digiface_rate_get,
3594 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(3, 0)),
3595 },
3596 {
3597 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3598 .name = "Input 2 Sync",
3599 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3600 .info = snd_rme_sync_state_info,
3601 .get = snd_rme_digiface_sync_state_get,
3602 .private_value = 1,
3603 },
3604 {
3605 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3606 .name = "Input 2 Format",
3607 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3608 .info = snd_rme_digiface_format_info,
3609 .get = snd_rme_digiface_enum_get,
3610 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, BIT(13)) |
3611 RME_DIGIFACE_INVERT,
3612 },
3613 {
3614 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3615 .name = "Input 2 Rate",
3616 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3617 .info = snd_rme_digiface_rate_info,
3618 .get = snd_rme_digiface_rate_get,
3619 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(7, 4)),
3620 },
3621 {
3622 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3623 .name = "Input 3 Sync",
3624 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3625 .info = snd_rme_sync_state_info,
3626 .get = snd_rme_digiface_sync_state_get,
3627 .private_value = 2,
3628 },
3629 {
3630 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3631 .name = "Input 3 Format",
3632 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3633 .info = snd_rme_digiface_format_info,
3634 .get = snd_rme_digiface_enum_get,
3635 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, BIT(14)) |
3636 RME_DIGIFACE_INVERT,
3637 },
3638 {
3639 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3640 .name = "Input 3 Rate",
3641 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3642 .info = snd_rme_digiface_rate_info,
3643 .get = snd_rme_digiface_rate_get,
3644 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(11, 8)),
3645 },
3646 {
3647 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3648 .name = "Input 4 Sync",
3649 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3650 .info = snd_rme_sync_state_info,
3651 .get = snd_rme_digiface_sync_state_get,
3652 .private_value = 3,
3653 },
3654 {
3655 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3656 .name = "Input 4 Format",
3657 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3658 .info = snd_rme_digiface_format_info,
3659 .get = snd_rme_digiface_enum_get,
3660 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, GENMASK(15, 12)) |
3661 RME_DIGIFACE_INVERT,
3662 },
3663 {
3664 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3665 .name = "Input 4 Rate",
3666 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3667 .info = snd_rme_digiface_rate_info,
3668 .get = snd_rme_digiface_rate_get,
3669 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(3, 0)),
3670 },
3671 {
3672 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3673 .name = "Output 1 Format",
3674 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3675 .info = snd_rme_digiface_format_info,
3676 .get = snd_rme_digiface_enum_get,
3677 .put = snd_rme_digiface_enum_put,
3678 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(0)),
3679 },
3680 {
3681 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3682 .name = "Output 2 Format",
3683 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3684 .info = snd_rme_digiface_format_info,
3685 .get = snd_rme_digiface_enum_get,
3686 .put = snd_rme_digiface_enum_put,
3687 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(1)),
3688 },
3689 {
3690 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3691 .name = "Output 3 Format",
3692 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3693 .info = snd_rme_digiface_format_info,
3694 .get = snd_rme_digiface_enum_get,
3695 .put = snd_rme_digiface_enum_put,
3696 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(3)),
3697 },
3698 {
3699 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3700 .name = "Output 4 Format",
3701 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3702 .info = snd_rme_digiface_format_info,
3703 .get = snd_rme_digiface_enum_get,
3704 .put = snd_rme_digiface_enum_put,
3705 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(4)),
3706 },
3707 {
3708 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3709 .name = "Sync Source",
3710 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3711 .info = snd_rme_digiface_sync_source_info,
3712 .get = snd_rme_digiface_enum_get,
3713 .put = snd_rme_digiface_enum_put,
3714 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG1, GENMASK(2, 0)),
3715 },
3716 {
3717 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3718 .name = "Current Sync Source",
3719 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3720 .info = snd_rme_digiface_sync_source_info,
3721 .get = snd_rme_digiface_current_sync_get,
3722 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, GENMASK(12, 10)),
3723 },
3724 {
3725 /*
3726 * This is writeable, but it is only set by the PCM rate.
3727 * Mixer apps currently need to drive the mixer using raw USB requests,
3728 * so they can also change this that way to configure the rate for
3729 * stand-alone operation when the PCM is closed.
3730 */
3731 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3732 .name = "System Rate",
3733 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3734 .info = snd_rme_rate_info,
3735 .get = snd_rme_digiface_rate_get,
3736 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG1, GENMASK(6, 3)),
3737 },
3738 {
3739 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3740 .name = "Current Rate",
3741 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3742 .info = snd_rme_rate_info,
3743 .get = snd_rme_digiface_rate_get,
3744 .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1H, GENMASK(7, 4)),
3745 }
3746 };
3747
snd_rme_digiface_controls_create(struct usb_mixer_interface * mixer)3748 static int snd_rme_digiface_controls_create(struct usb_mixer_interface *mixer)
3749 {
3750 int err, i;
3751
3752 for (i = 0; i < ARRAY_SIZE(snd_rme_digiface_controls); ++i) {
3753 err = add_single_ctl_with_resume(mixer, 0,
3754 NULL,
3755 &snd_rme_digiface_controls[i],
3756 NULL);
3757 if (err < 0)
3758 return err;
3759 }
3760
3761 return 0;
3762 }
3763
3764 /*
3765 * Pioneer DJ / AlphaTheta DJM Mixers
3766 *
3767 * These devices generally have options for soft-switching the playback and
3768 * capture sources in addition to the recording level. Although different
3769 * devices have different configurations, there seems to be canonical values
3770 * for specific capture/playback types: See the definitions of these below.
3771 *
3772 * The wValue is masked with the stereo channel number. e.g. Setting Ch2 to
3773 * capture phono would be 0x0203. Capture, playback and capture level have
3774 * different wIndexes.
3775 */
3776
3777 // Capture types
3778 #define SND_DJM_CAP_LINE 0x00
3779 #define SND_DJM_CAP_CDLINE 0x01
3780 #define SND_DJM_CAP_DIGITAL 0x02
3781 #define SND_DJM_CAP_PHONO 0x03
3782 #define SND_DJM_CAP_PREFADER 0x05
3783 #define SND_DJM_CAP_PFADER 0x06
3784 #define SND_DJM_CAP_XFADERA 0x07
3785 #define SND_DJM_CAP_XFADERB 0x08
3786 #define SND_DJM_CAP_MIC 0x09
3787 #define SND_DJM_CAP_AUX 0x0d
3788 #define SND_DJM_CAP_RECOUT 0x0a
3789 #define SND_DJM_CAP_RECOUT_NOMIC 0x0e
3790 #define SND_DJM_CAP_NONE 0x0f
3791 #define SND_DJM_CAP_FXSEND 0x10
3792 #define SND_DJM_CAP_CH1PFADER 0x11
3793 #define SND_DJM_CAP_CH2PFADER 0x12
3794 #define SND_DJM_CAP_CH3PFADER 0x13
3795 #define SND_DJM_CAP_CH4PFADER 0x14
3796 #define SND_DJM_CAP_EXT1SEND 0x21
3797 #define SND_DJM_CAP_EXT2SEND 0x22
3798 #define SND_DJM_CAP_CH1PREFADER 0x31
3799 #define SND_DJM_CAP_CH2PREFADER 0x32
3800 #define SND_DJM_CAP_CH3PREFADER 0x33
3801 #define SND_DJM_CAP_CH4PREFADER 0x34
3802
3803 // Playback types
3804 #define SND_DJM_PB_CH1 0x00
3805 #define SND_DJM_PB_CH2 0x01
3806 #define SND_DJM_PB_AUX 0x04
3807
3808 #define SND_DJM_WINDEX_CAP 0x8002
3809 #define SND_DJM_WINDEX_CAPLVL 0x8003
3810 #define SND_DJM_WINDEX_PB 0x8016
3811
3812 // kcontrol->private_value layout
3813 #define SND_DJM_VALUE_MASK 0x0000ffff
3814 #define SND_DJM_GROUP_MASK 0x00ff0000
3815 #define SND_DJM_DEVICE_MASK 0xff000000
3816 #define SND_DJM_GROUP_SHIFT 16
3817 #define SND_DJM_DEVICE_SHIFT 24
3818
3819 // device table index
3820 // used for the snd_djm_devices table, so please update accordingly
3821 #define SND_DJM_250MK2_IDX 0x0
3822 #define SND_DJM_750_IDX 0x1
3823 #define SND_DJM_850_IDX 0x2
3824 #define SND_DJM_900NXS2_IDX 0x3
3825 #define SND_DJM_750MK2_IDX 0x4
3826 #define SND_DJM_450_IDX 0x5
3827 #define SND_DJM_A9_IDX 0x6
3828 #define SND_DJM_V10_IDX 0x7
3829
3830 #define SND_DJM_CTL(_name, suffix, _default_value, _windex) { \
3831 .name = _name, \
3832 .options = snd_djm_opts_##suffix, \
3833 .noptions = ARRAY_SIZE(snd_djm_opts_##suffix), \
3834 .default_value = _default_value, \
3835 .wIndex = _windex }
3836
3837 #define SND_DJM_DEVICE(suffix) { \
3838 .controls = snd_djm_ctls_##suffix, \
3839 .ncontrols = ARRAY_SIZE(snd_djm_ctls_##suffix) }
3840
3841 struct snd_djm_device {
3842 const char *name;
3843 const struct snd_djm_ctl *controls;
3844 size_t ncontrols;
3845 };
3846
3847 struct snd_djm_ctl {
3848 const char *name;
3849 const u16 *options;
3850 size_t noptions;
3851 u16 default_value;
3852 u16 wIndex;
3853 };
3854
snd_djm_get_label_caplevel_common(u16 wvalue)3855 static const char *snd_djm_get_label_caplevel_common(u16 wvalue)
3856 {
3857 switch (wvalue) {
3858 case 0x0000: return "-19dB";
3859 case 0x0100: return "-15dB";
3860 case 0x0200: return "-10dB";
3861 case 0x0300: return "-5dB";
3862 default: return NULL;
3863 }
3864 };
3865
3866 // Models like DJM-A9 or DJM-V10 have different capture levels than others
snd_djm_get_label_caplevel_high(u16 wvalue)3867 static const char *snd_djm_get_label_caplevel_high(u16 wvalue)
3868 {
3869 switch (wvalue) {
3870 case 0x0000: return "+15dB";
3871 case 0x0100: return "+12dB";
3872 case 0x0200: return "+9dB";
3873 case 0x0300: return "+6dB";
3874 case 0x0400: return "+3dB";
3875 case 0x0500: return "0dB";
3876 default: return NULL;
3877 }
3878 };
3879
snd_djm_get_label_cap_common(u16 wvalue)3880 static const char *snd_djm_get_label_cap_common(u16 wvalue)
3881 {
3882 switch (wvalue & 0x00ff) {
3883 case SND_DJM_CAP_LINE: return "Control Tone LINE";
3884 case SND_DJM_CAP_CDLINE: return "Control Tone CD/LINE";
3885 case SND_DJM_CAP_DIGITAL: return "Control Tone DIGITAL";
3886 case SND_DJM_CAP_PHONO: return "Control Tone PHONO";
3887 case SND_DJM_CAP_PFADER: return "Post Fader";
3888 case SND_DJM_CAP_XFADERA: return "Cross Fader A";
3889 case SND_DJM_CAP_XFADERB: return "Cross Fader B";
3890 case SND_DJM_CAP_MIC: return "Mic";
3891 case SND_DJM_CAP_RECOUT: return "Rec Out";
3892 case SND_DJM_CAP_RECOUT_NOMIC: return "Rec Out without Mic";
3893 case SND_DJM_CAP_AUX: return "Aux";
3894 case SND_DJM_CAP_NONE: return "None";
3895 case SND_DJM_CAP_FXSEND: return "FX SEND";
3896 case SND_DJM_CAP_CH1PREFADER: return "Pre Fader Ch1";
3897 case SND_DJM_CAP_CH2PREFADER: return "Pre Fader Ch2";
3898 case SND_DJM_CAP_CH3PREFADER: return "Pre Fader Ch3";
3899 case SND_DJM_CAP_CH4PREFADER: return "Pre Fader Ch4";
3900 case SND_DJM_CAP_CH1PFADER: return "Post Fader Ch1";
3901 case SND_DJM_CAP_CH2PFADER: return "Post Fader Ch2";
3902 case SND_DJM_CAP_CH3PFADER: return "Post Fader Ch3";
3903 case SND_DJM_CAP_CH4PFADER: return "Post Fader Ch4";
3904 case SND_DJM_CAP_EXT1SEND: return "EXT1 SEND";
3905 case SND_DJM_CAP_EXT2SEND: return "EXT2 SEND";
3906 default: return NULL;
3907 }
3908 };
3909
3910 // The DJM-850 has different values for CD/LINE and LINE capture
3911 // control options than the other DJM declared in this file.
snd_djm_get_label_cap_850(u16 wvalue)3912 static const char *snd_djm_get_label_cap_850(u16 wvalue)
3913 {
3914 switch (wvalue & 0x00ff) {
3915 case 0x00: return "Control Tone CD/LINE";
3916 case 0x01: return "Control Tone LINE";
3917 default: return snd_djm_get_label_cap_common(wvalue);
3918 }
3919 };
3920
snd_djm_get_label_caplevel(u8 device_idx,u16 wvalue)3921 static const char *snd_djm_get_label_caplevel(u8 device_idx, u16 wvalue)
3922 {
3923 switch (device_idx) {
3924 case SND_DJM_A9_IDX: return snd_djm_get_label_caplevel_high(wvalue);
3925 case SND_DJM_V10_IDX: return snd_djm_get_label_caplevel_high(wvalue);
3926 default: return snd_djm_get_label_caplevel_common(wvalue);
3927 }
3928 };
3929
snd_djm_get_label_cap(u8 device_idx,u16 wvalue)3930 static const char *snd_djm_get_label_cap(u8 device_idx, u16 wvalue)
3931 {
3932 switch (device_idx) {
3933 case SND_DJM_850_IDX: return snd_djm_get_label_cap_850(wvalue);
3934 default: return snd_djm_get_label_cap_common(wvalue);
3935 }
3936 };
3937
snd_djm_get_label_pb(u16 wvalue)3938 static const char *snd_djm_get_label_pb(u16 wvalue)
3939 {
3940 switch (wvalue & 0x00ff) {
3941 case SND_DJM_PB_CH1: return "Ch1";
3942 case SND_DJM_PB_CH2: return "Ch2";
3943 case SND_DJM_PB_AUX: return "Aux";
3944 default: return NULL;
3945 }
3946 };
3947
snd_djm_get_label(u8 device_idx,u16 wvalue,u16 windex)3948 static const char *snd_djm_get_label(u8 device_idx, u16 wvalue, u16 windex)
3949 {
3950 switch (windex) {
3951 case SND_DJM_WINDEX_CAPLVL: return snd_djm_get_label_caplevel(device_idx, wvalue);
3952 case SND_DJM_WINDEX_CAP: return snd_djm_get_label_cap(device_idx, wvalue);
3953 case SND_DJM_WINDEX_PB: return snd_djm_get_label_pb(wvalue);
3954 default: return NULL;
3955 }
3956 };
3957
3958 // common DJM capture level option values
3959 static const u16 snd_djm_opts_cap_level[] = {
3960 0x0000, 0x0100, 0x0200, 0x0300 };
3961
3962 // DJM-250MK2
3963 static const u16 snd_djm_opts_250mk2_cap1[] = {
3964 0x0103, 0x0100, 0x0106, 0x0107, 0x0108, 0x0109, 0x010d, 0x010a };
3965
3966 static const u16 snd_djm_opts_250mk2_cap2[] = {
3967 0x0203, 0x0200, 0x0206, 0x0207, 0x0208, 0x0209, 0x020d, 0x020a };
3968
3969 static const u16 snd_djm_opts_250mk2_cap3[] = {
3970 0x030a, 0x0311, 0x0312, 0x0307, 0x0308, 0x0309, 0x030d };
3971
3972 static const u16 snd_djm_opts_250mk2_pb1[] = { 0x0100, 0x0101, 0x0104 };
3973 static const u16 snd_djm_opts_250mk2_pb2[] = { 0x0200, 0x0201, 0x0204 };
3974 static const u16 snd_djm_opts_250mk2_pb3[] = { 0x0300, 0x0301, 0x0304 };
3975
3976 static const struct snd_djm_ctl snd_djm_ctls_250mk2[] = {
3977 SND_DJM_CTL("Master Input Level Capture Switch", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
3978 SND_DJM_CTL("Input 1 Capture Switch", 250mk2_cap1, 2, SND_DJM_WINDEX_CAP),
3979 SND_DJM_CTL("Input 2 Capture Switch", 250mk2_cap2, 2, SND_DJM_WINDEX_CAP),
3980 SND_DJM_CTL("Input 3 Capture Switch", 250mk2_cap3, 0, SND_DJM_WINDEX_CAP),
3981 SND_DJM_CTL("Output 1 Playback Switch", 250mk2_pb1, 0, SND_DJM_WINDEX_PB),
3982 SND_DJM_CTL("Output 2 Playback Switch", 250mk2_pb2, 1, SND_DJM_WINDEX_PB),
3983 SND_DJM_CTL("Output 3 Playback Switch", 250mk2_pb3, 2, SND_DJM_WINDEX_PB)
3984 };
3985
3986 // DJM-450
3987 static const u16 snd_djm_opts_450_cap1[] = {
3988 0x0103, 0x0100, 0x0106, 0x0107, 0x0108, 0x0109, 0x010d, 0x010a };
3989
3990 static const u16 snd_djm_opts_450_cap2[] = {
3991 0x0203, 0x0200, 0x0206, 0x0207, 0x0208, 0x0209, 0x020d, 0x020a };
3992
3993 static const u16 snd_djm_opts_450_cap3[] = {
3994 0x030a, 0x0311, 0x0312, 0x0307, 0x0308, 0x0309, 0x030d };
3995
3996 static const u16 snd_djm_opts_450_pb1[] = { 0x0100, 0x0101, 0x0104 };
3997 static const u16 snd_djm_opts_450_pb2[] = { 0x0200, 0x0201, 0x0204 };
3998 static const u16 snd_djm_opts_450_pb3[] = { 0x0300, 0x0301, 0x0304 };
3999
4000 static const struct snd_djm_ctl snd_djm_ctls_450[] = {
4001 SND_DJM_CTL("Master Input Level Capture Switch", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
4002 SND_DJM_CTL("Input 1 Capture Switch", 450_cap1, 2, SND_DJM_WINDEX_CAP),
4003 SND_DJM_CTL("Input 2 Capture Switch", 450_cap2, 2, SND_DJM_WINDEX_CAP),
4004 SND_DJM_CTL("Input 3 Capture Switch", 450_cap3, 0, SND_DJM_WINDEX_CAP),
4005 SND_DJM_CTL("Output 1 Playback Switch", 450_pb1, 0, SND_DJM_WINDEX_PB),
4006 SND_DJM_CTL("Output 2 Playback Switch", 450_pb2, 1, SND_DJM_WINDEX_PB),
4007 SND_DJM_CTL("Output 3 Playback Switch", 450_pb3, 2, SND_DJM_WINDEX_PB)
4008 };
4009
4010 // DJM-750
4011 static const u16 snd_djm_opts_750_cap1[] = {
4012 0x0101, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a, 0x010f };
4013 static const u16 snd_djm_opts_750_cap2[] = {
4014 0x0200, 0x0201, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a, 0x020f };
4015 static const u16 snd_djm_opts_750_cap3[] = {
4016 0x0300, 0x0301, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a, 0x030f };
4017 static const u16 snd_djm_opts_750_cap4[] = {
4018 0x0401, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a, 0x040f };
4019
4020 static const struct snd_djm_ctl snd_djm_ctls_750[] = {
4021 SND_DJM_CTL("Master Input Level Capture Switch", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
4022 SND_DJM_CTL("Input 1 Capture Switch", 750_cap1, 2, SND_DJM_WINDEX_CAP),
4023 SND_DJM_CTL("Input 2 Capture Switch", 750_cap2, 2, SND_DJM_WINDEX_CAP),
4024 SND_DJM_CTL("Input 3 Capture Switch", 750_cap3, 0, SND_DJM_WINDEX_CAP),
4025 SND_DJM_CTL("Input 4 Capture Switch", 750_cap4, 0, SND_DJM_WINDEX_CAP)
4026 };
4027
4028 // DJM-850
4029 static const u16 snd_djm_opts_850_cap1[] = {
4030 0x0100, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a, 0x010f };
4031 static const u16 snd_djm_opts_850_cap2[] = {
4032 0x0200, 0x0201, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a, 0x020f };
4033 static const u16 snd_djm_opts_850_cap3[] = {
4034 0x0300, 0x0301, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a, 0x030f };
4035 static const u16 snd_djm_opts_850_cap4[] = {
4036 0x0400, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a, 0x040f };
4037
4038 static const struct snd_djm_ctl snd_djm_ctls_850[] = {
4039 SND_DJM_CTL("Master Input Level Capture Switch", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
4040 SND_DJM_CTL("Input 1 Capture Switch", 850_cap1, 1, SND_DJM_WINDEX_CAP),
4041 SND_DJM_CTL("Input 2 Capture Switch", 850_cap2, 0, SND_DJM_WINDEX_CAP),
4042 SND_DJM_CTL("Input 3 Capture Switch", 850_cap3, 0, SND_DJM_WINDEX_CAP),
4043 SND_DJM_CTL("Input 4 Capture Switch", 850_cap4, 1, SND_DJM_WINDEX_CAP)
4044 };
4045
4046 // DJM-900NXS2
4047 static const u16 snd_djm_opts_900nxs2_cap1[] = {
4048 0x0100, 0x0102, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a };
4049 static const u16 snd_djm_opts_900nxs2_cap2[] = {
4050 0x0200, 0x0202, 0x0203, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a };
4051 static const u16 snd_djm_opts_900nxs2_cap3[] = {
4052 0x0300, 0x0302, 0x0303, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a };
4053 static const u16 snd_djm_opts_900nxs2_cap4[] = {
4054 0x0400, 0x0402, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a };
4055 static const u16 snd_djm_opts_900nxs2_cap5[] = {
4056 0x0507, 0x0508, 0x0509, 0x050a, 0x0511, 0x0512, 0x0513, 0x0514 };
4057
4058 static const struct snd_djm_ctl snd_djm_ctls_900nxs2[] = {
4059 SND_DJM_CTL("Master Input Level Capture Switch", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
4060 SND_DJM_CTL("Input 1 Capture Switch", 900nxs2_cap1, 2, SND_DJM_WINDEX_CAP),
4061 SND_DJM_CTL("Input 2 Capture Switch", 900nxs2_cap2, 2, SND_DJM_WINDEX_CAP),
4062 SND_DJM_CTL("Input 3 Capture Switch", 900nxs2_cap3, 2, SND_DJM_WINDEX_CAP),
4063 SND_DJM_CTL("Input 4 Capture Switch", 900nxs2_cap4, 2, SND_DJM_WINDEX_CAP),
4064 SND_DJM_CTL("Input 5 Capture Switch", 900nxs2_cap5, 3, SND_DJM_WINDEX_CAP)
4065 };
4066
4067 // DJM-750MK2
4068 static const u16 snd_djm_opts_750mk2_cap1[] = {
4069 0x0100, 0x0102, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a };
4070 static const u16 snd_djm_opts_750mk2_cap2[] = {
4071 0x0200, 0x0202, 0x0203, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a };
4072 static const u16 snd_djm_opts_750mk2_cap3[] = {
4073 0x0300, 0x0302, 0x0303, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a };
4074 static const u16 snd_djm_opts_750mk2_cap4[] = {
4075 0x0400, 0x0402, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a };
4076 static const u16 snd_djm_opts_750mk2_cap5[] = {
4077 0x0507, 0x0508, 0x0509, 0x050a, 0x0511, 0x0512, 0x0513, 0x0514 };
4078
4079 static const u16 snd_djm_opts_750mk2_pb1[] = { 0x0100, 0x0101, 0x0104 };
4080 static const u16 snd_djm_opts_750mk2_pb2[] = { 0x0200, 0x0201, 0x0204 };
4081 static const u16 snd_djm_opts_750mk2_pb3[] = { 0x0300, 0x0301, 0x0304 };
4082
4083 static const struct snd_djm_ctl snd_djm_ctls_750mk2[] = {
4084 SND_DJM_CTL("Master Input Level Capture Switch", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
4085 SND_DJM_CTL("Input 1 Capture Switch", 750mk2_cap1, 2, SND_DJM_WINDEX_CAP),
4086 SND_DJM_CTL("Input 2 Capture Switch", 750mk2_cap2, 2, SND_DJM_WINDEX_CAP),
4087 SND_DJM_CTL("Input 3 Capture Switch", 750mk2_cap3, 2, SND_DJM_WINDEX_CAP),
4088 SND_DJM_CTL("Input 4 Capture Switch", 750mk2_cap4, 2, SND_DJM_WINDEX_CAP),
4089 SND_DJM_CTL("Input 5 Capture Switch", 750mk2_cap5, 3, SND_DJM_WINDEX_CAP),
4090 SND_DJM_CTL("Output 1 Playback Switch", 750mk2_pb1, 0, SND_DJM_WINDEX_PB),
4091 SND_DJM_CTL("Output 2 Playback Switch", 750mk2_pb2, 1, SND_DJM_WINDEX_PB),
4092 SND_DJM_CTL("Output 3 Playback Switch", 750mk2_pb3, 2, SND_DJM_WINDEX_PB)
4093 };
4094
4095 // DJM-A9
4096 static const u16 snd_djm_opts_a9_cap_level[] = {
4097 0x0000, 0x0100, 0x0200, 0x0300, 0x0400, 0x0500 };
4098 static const u16 snd_djm_opts_a9_cap1[] = {
4099 0x0107, 0x0108, 0x0109, 0x010a, 0x010e,
4100 0x111, 0x112, 0x113, 0x114, 0x0131, 0x132, 0x133, 0x134 };
4101 static const u16 snd_djm_opts_a9_cap2[] = {
4102 0x0201, 0x0202, 0x0203, 0x0205, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a, 0x020e };
4103 static const u16 snd_djm_opts_a9_cap3[] = {
4104 0x0301, 0x0302, 0x0303, 0x0305, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a, 0x030e };
4105 static const u16 snd_djm_opts_a9_cap4[] = {
4106 0x0401, 0x0402, 0x0403, 0x0405, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a, 0x040e };
4107 static const u16 snd_djm_opts_a9_cap5[] = {
4108 0x0501, 0x0502, 0x0503, 0x0505, 0x0506, 0x0507, 0x0508, 0x0509, 0x050a, 0x050e };
4109
4110 static const struct snd_djm_ctl snd_djm_ctls_a9[] = {
4111 SND_DJM_CTL("Master Input Level Capture Switch", a9_cap_level, 0, SND_DJM_WINDEX_CAPLVL),
4112 SND_DJM_CTL("Master Input Capture Switch", a9_cap1, 3, SND_DJM_WINDEX_CAP),
4113 SND_DJM_CTL("Input 1 Capture Switch", a9_cap2, 2, SND_DJM_WINDEX_CAP),
4114 SND_DJM_CTL("Input 2 Capture Switch", a9_cap3, 2, SND_DJM_WINDEX_CAP),
4115 SND_DJM_CTL("Input 3 Capture Switch", a9_cap4, 2, SND_DJM_WINDEX_CAP),
4116 SND_DJM_CTL("Input 4 Capture Switch", a9_cap5, 2, SND_DJM_WINDEX_CAP)
4117 };
4118
4119 // DJM-V10
4120 static const u16 snd_djm_opts_v10_cap_level[] = {
4121 0x0000, 0x0100, 0x0200, 0x0300, 0x0400, 0x0500
4122 };
4123
4124 static const u16 snd_djm_opts_v10_cap1[] = {
4125 0x0103,
4126 0x0100, 0x0102, 0x0106, 0x0110, 0x0107,
4127 0x0108, 0x0109, 0x010a, 0x0121, 0x0122
4128 };
4129
4130 static const u16 snd_djm_opts_v10_cap2[] = {
4131 0x0200, 0x0202, 0x0206, 0x0210, 0x0207,
4132 0x0208, 0x0209, 0x020a, 0x0221, 0x0222
4133 };
4134
4135 static const u16 snd_djm_opts_v10_cap3[] = {
4136 0x0303,
4137 0x0300, 0x0302, 0x0306, 0x0310, 0x0307,
4138 0x0308, 0x0309, 0x030a, 0x0321, 0x0322
4139 };
4140
4141 static const u16 snd_djm_opts_v10_cap4[] = {
4142 0x0403,
4143 0x0400, 0x0402, 0x0406, 0x0410, 0x0407,
4144 0x0408, 0x0409, 0x040a, 0x0421, 0x0422
4145 };
4146
4147 static const u16 snd_djm_opts_v10_cap5[] = {
4148 0x0500, 0x0502, 0x0506, 0x0510, 0x0507,
4149 0x0508, 0x0509, 0x050a, 0x0521, 0x0522
4150 };
4151
4152 static const u16 snd_djm_opts_v10_cap6[] = {
4153 0x0603,
4154 0x0600, 0x0602, 0x0606, 0x0610, 0x0607,
4155 0x0608, 0x0609, 0x060a, 0x0621, 0x0622
4156 };
4157
4158 static const struct snd_djm_ctl snd_djm_ctls_v10[] = {
4159 SND_DJM_CTL("Master Input Level Capture Switch", v10_cap_level, 0, SND_DJM_WINDEX_CAPLVL),
4160 SND_DJM_CTL("Input 1 Capture Switch", v10_cap1, 2, SND_DJM_WINDEX_CAP),
4161 SND_DJM_CTL("Input 2 Capture Switch", v10_cap2, 2, SND_DJM_WINDEX_CAP),
4162 SND_DJM_CTL("Input 3 Capture Switch", v10_cap3, 0, SND_DJM_WINDEX_CAP),
4163 SND_DJM_CTL("Input 4 Capture Switch", v10_cap4, 0, SND_DJM_WINDEX_CAP),
4164 SND_DJM_CTL("Input 5 Capture Switch", v10_cap5, 0, SND_DJM_WINDEX_CAP),
4165 SND_DJM_CTL("Input 6 Capture Switch", v10_cap6, 0, SND_DJM_WINDEX_CAP)
4166 // playback channels are fixed and controlled by hardware knobs on the mixer
4167 };
4168
4169 static const struct snd_djm_device snd_djm_devices[] = {
4170 [SND_DJM_250MK2_IDX] = SND_DJM_DEVICE(250mk2),
4171 [SND_DJM_750_IDX] = SND_DJM_DEVICE(750),
4172 [SND_DJM_850_IDX] = SND_DJM_DEVICE(850),
4173 [SND_DJM_900NXS2_IDX] = SND_DJM_DEVICE(900nxs2),
4174 [SND_DJM_750MK2_IDX] = SND_DJM_DEVICE(750mk2),
4175 [SND_DJM_450_IDX] = SND_DJM_DEVICE(450),
4176 [SND_DJM_A9_IDX] = SND_DJM_DEVICE(a9),
4177 [SND_DJM_V10_IDX] = SND_DJM_DEVICE(v10),
4178 };
4179
snd_djm_controls_info(struct snd_kcontrol * kctl,struct snd_ctl_elem_info * info)4180 static int snd_djm_controls_info(struct snd_kcontrol *kctl,
4181 struct snd_ctl_elem_info *info)
4182 {
4183 unsigned long private_value = kctl->private_value;
4184 u8 device_idx = (private_value & SND_DJM_DEVICE_MASK) >> SND_DJM_DEVICE_SHIFT;
4185 u8 ctl_idx = (private_value & SND_DJM_GROUP_MASK) >> SND_DJM_GROUP_SHIFT;
4186 const struct snd_djm_device *device = &snd_djm_devices[device_idx];
4187 const char *name;
4188 const struct snd_djm_ctl *ctl;
4189 size_t noptions;
4190
4191 if (ctl_idx >= device->ncontrols)
4192 return -EINVAL;
4193
4194 ctl = &device->controls[ctl_idx];
4195 noptions = ctl->noptions;
4196 if (info->value.enumerated.item >= noptions)
4197 info->value.enumerated.item = noptions - 1;
4198
4199 name = snd_djm_get_label(device_idx,
4200 ctl->options[info->value.enumerated.item],
4201 ctl->wIndex);
4202 if (!name)
4203 return -EINVAL;
4204
4205 strscpy(info->value.enumerated.name, name, sizeof(info->value.enumerated.name));
4206 info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
4207 info->count = 1;
4208 info->value.enumerated.items = noptions;
4209 return 0;
4210 }
4211
snd_djm_controls_update(struct usb_mixer_interface * mixer,u8 device_idx,u8 group,u16 value)4212 static int snd_djm_controls_update(struct usb_mixer_interface *mixer,
4213 u8 device_idx, u8 group, u16 value)
4214 {
4215 int err;
4216 const struct snd_djm_device *device = &snd_djm_devices[device_idx];
4217
4218 if (group >= device->ncontrols || value >= device->controls[group].noptions)
4219 return -EINVAL;
4220
4221 err = snd_usb_lock_shutdown(mixer->chip);
4222 if (err)
4223 return err;
4224
4225 err = snd_usb_ctl_msg(mixer->chip->dev,
4226 usb_sndctrlpipe(mixer->chip->dev, 0),
4227 USB_REQ_SET_FEATURE,
4228 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
4229 device->controls[group].options[value],
4230 device->controls[group].wIndex,
4231 NULL, 0);
4232
4233 snd_usb_unlock_shutdown(mixer->chip);
4234 return err;
4235 }
4236
snd_djm_controls_get(struct snd_kcontrol * kctl,struct snd_ctl_elem_value * elem)4237 static int snd_djm_controls_get(struct snd_kcontrol *kctl,
4238 struct snd_ctl_elem_value *elem)
4239 {
4240 elem->value.enumerated.item[0] = kctl->private_value & SND_DJM_VALUE_MASK;
4241 return 0;
4242 }
4243
snd_djm_controls_put(struct snd_kcontrol * kctl,struct snd_ctl_elem_value * elem)4244 static int snd_djm_controls_put(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *elem)
4245 {
4246 struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
4247 struct usb_mixer_interface *mixer = list->mixer;
4248 unsigned long private_value = kctl->private_value;
4249
4250 u8 device = (private_value & SND_DJM_DEVICE_MASK) >> SND_DJM_DEVICE_SHIFT;
4251 u8 group = (private_value & SND_DJM_GROUP_MASK) >> SND_DJM_GROUP_SHIFT;
4252 u16 value = elem->value.enumerated.item[0];
4253
4254 kctl->private_value = (((unsigned long)device << SND_DJM_DEVICE_SHIFT) |
4255 (group << SND_DJM_GROUP_SHIFT) |
4256 value);
4257
4258 return snd_djm_controls_update(mixer, device, group, value);
4259 }
4260
snd_djm_controls_resume(struct usb_mixer_elem_list * list)4261 static int snd_djm_controls_resume(struct usb_mixer_elem_list *list)
4262 {
4263 unsigned long private_value = list->kctl->private_value;
4264 u8 device = (private_value & SND_DJM_DEVICE_MASK) >> SND_DJM_DEVICE_SHIFT;
4265 u8 group = (private_value & SND_DJM_GROUP_MASK) >> SND_DJM_GROUP_SHIFT;
4266 u16 value = (private_value & SND_DJM_VALUE_MASK);
4267
4268 return snd_djm_controls_update(list->mixer, device, group, value);
4269 }
4270
snd_djm_controls_create(struct usb_mixer_interface * mixer,const u8 device_idx)4271 static int snd_djm_controls_create(struct usb_mixer_interface *mixer,
4272 const u8 device_idx)
4273 {
4274 int err, i;
4275 u16 value;
4276
4277 const struct snd_djm_device *device = &snd_djm_devices[device_idx];
4278
4279 struct snd_kcontrol_new knew = {
4280 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
4281 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
4282 .index = 0,
4283 .info = snd_djm_controls_info,
4284 .get = snd_djm_controls_get,
4285 .put = snd_djm_controls_put
4286 };
4287
4288 for (i = 0; i < device->ncontrols; i++) {
4289 value = device->controls[i].default_value;
4290 knew.name = device->controls[i].name;
4291 knew.private_value =
4292 ((unsigned long)device_idx << SND_DJM_DEVICE_SHIFT) |
4293 (i << SND_DJM_GROUP_SHIFT) |
4294 value;
4295 err = snd_djm_controls_update(mixer, device_idx, i, value);
4296 if (err)
4297 return err;
4298 err = add_single_ctl_with_resume(mixer, 0, snd_djm_controls_resume,
4299 &knew, NULL);
4300 if (err)
4301 return err;
4302 }
4303 return 0;
4304 }
4305
snd_usb_mixer_apply_create_quirk(struct usb_mixer_interface * mixer)4306 int snd_usb_mixer_apply_create_quirk(struct usb_mixer_interface *mixer)
4307 {
4308 int err = 0;
4309
4310 err = snd_usb_soundblaster_remote_init(mixer);
4311 if (err < 0)
4312 return err;
4313
4314 switch (mixer->chip->usb_id) {
4315 /* Tascam US-16x08 */
4316 case USB_ID(0x0644, 0x8047):
4317 err = snd_us16x08_controls_create(mixer);
4318 break;
4319 case USB_ID(0x041e, 0x3020):
4320 case USB_ID(0x041e, 0x3040):
4321 case USB_ID(0x041e, 0x3042):
4322 case USB_ID(0x041e, 0x30df):
4323 case USB_ID(0x041e, 0x3048):
4324 err = snd_audigy2nx_controls_create(mixer);
4325 if (err < 0)
4326 break;
4327 snd_card_ro_proc_new(mixer->chip->card, "audigy2nx",
4328 mixer, snd_audigy2nx_proc_read);
4329 break;
4330
4331 /* EMU0204 */
4332 case USB_ID(0x041e, 0x3f19):
4333 err = snd_emu0204_controls_create(mixer);
4334 break;
4335
4336 #if IS_REACHABLE(CONFIG_INPUT)
4337 case USB_ID(0x054c, 0x0ce6): /* Sony DualSense controller (PS5) */
4338 case USB_ID(0x054c, 0x0df2): /* Sony DualSense Edge controller (PS5) */
4339 err = snd_dualsense_controls_create(mixer);
4340 break;
4341 #endif /* IS_REACHABLE(CONFIG_INPUT) */
4342
4343 case USB_ID(0x0763, 0x2030): /* M-Audio Fast Track C400 */
4344 case USB_ID(0x0763, 0x2031): /* M-Audio Fast Track C400 */
4345 err = snd_c400_create_mixer(mixer);
4346 break;
4347
4348 case USB_ID(0x0763, 0x2080): /* M-Audio Fast Track Ultra */
4349 case USB_ID(0x0763, 0x2081): /* M-Audio Fast Track Ultra 8R */
4350 err = snd_ftu_create_mixer(mixer);
4351 break;
4352
4353 case USB_ID(0x0b05, 0x1739): /* ASUS Xonar U1 */
4354 case USB_ID(0x0b05, 0x1743): /* ASUS Xonar U1 (2) */
4355 case USB_ID(0x0b05, 0x17a0): /* ASUS Xonar U3 */
4356 err = snd_xonar_u1_controls_create(mixer);
4357 break;
4358
4359 case USB_ID(0x0d8c, 0x0103): /* Audio Advantage Micro II */
4360 err = snd_microii_controls_create(mixer);
4361 break;
4362
4363 case USB_ID(0x0dba, 0x1000): /* Digidesign Mbox 1 */
4364 err = snd_mbox1_controls_create(mixer);
4365 break;
4366
4367 case USB_ID(0x17cc, 0x1011): /* Traktor Audio 6 */
4368 err = snd_nativeinstruments_create_mixer(/* checkpatch hack */
4369 mixer,
4370 snd_nativeinstruments_ta6_mixers,
4371 ARRAY_SIZE(snd_nativeinstruments_ta6_mixers));
4372 break;
4373
4374 case USB_ID(0x17cc, 0x1021): /* Traktor Audio 10 */
4375 err = snd_nativeinstruments_create_mixer(/* checkpatch hack */
4376 mixer,
4377 snd_nativeinstruments_ta10_mixers,
4378 ARRAY_SIZE(snd_nativeinstruments_ta10_mixers));
4379 break;
4380
4381 case USB_ID(0x200c, 0x1018): /* Electrix Ebox-44 */
4382 /* detection is disabled in mixer_maps.c */
4383 err = snd_create_std_mono_table(mixer, ebox44_table);
4384 break;
4385
4386 case USB_ID(0x1235, 0x8012): /* Focusrite Scarlett 6i6 */
4387 case USB_ID(0x1235, 0x8002): /* Focusrite Scarlett 8i6 */
4388 case USB_ID(0x1235, 0x8004): /* Focusrite Scarlett 18i6 */
4389 case USB_ID(0x1235, 0x8014): /* Focusrite Scarlett 18i8 */
4390 case USB_ID(0x1235, 0x800c): /* Focusrite Scarlett 18i20 */
4391 err = snd_scarlett_controls_create(mixer);
4392 break;
4393
4394 case USB_ID(0x1235, 0x8203): /* Focusrite Scarlett 6i6 2nd Gen */
4395 case USB_ID(0x1235, 0x8204): /* Focusrite Scarlett 18i8 2nd Gen */
4396 case USB_ID(0x1235, 0x8201): /* Focusrite Scarlett 18i20 2nd Gen */
4397 case USB_ID(0x1235, 0x8211): /* Focusrite Scarlett Solo 3rd Gen */
4398 case USB_ID(0x1235, 0x8210): /* Focusrite Scarlett 2i2 3rd Gen */
4399 case USB_ID(0x1235, 0x8212): /* Focusrite Scarlett 4i4 3rd Gen */
4400 case USB_ID(0x1235, 0x8213): /* Focusrite Scarlett 8i6 3rd Gen */
4401 case USB_ID(0x1235, 0x8214): /* Focusrite Scarlett 18i8 3rd Gen */
4402 case USB_ID(0x1235, 0x8215): /* Focusrite Scarlett 18i20 3rd Gen */
4403 case USB_ID(0x1235, 0x8216): /* Focusrite Vocaster One */
4404 case USB_ID(0x1235, 0x8217): /* Focusrite Vocaster Two */
4405 case USB_ID(0x1235, 0x8218): /* Focusrite Scarlett Solo 4th Gen */
4406 case USB_ID(0x1235, 0x8219): /* Focusrite Scarlett 2i2 4th Gen */
4407 case USB_ID(0x1235, 0x821a): /* Focusrite Scarlett 4i4 4th Gen */
4408 case USB_ID(0x1235, 0x8206): /* Focusrite Clarett 2Pre USB */
4409 case USB_ID(0x1235, 0x8207): /* Focusrite Clarett 4Pre USB */
4410 case USB_ID(0x1235, 0x8208): /* Focusrite Clarett 8Pre USB */
4411 case USB_ID(0x1235, 0x820a): /* Focusrite Clarett+ 2Pre */
4412 case USB_ID(0x1235, 0x820b): /* Focusrite Clarett+ 4Pre */
4413 case USB_ID(0x1235, 0x820c): /* Focusrite Clarett+ 8Pre */
4414 err = snd_scarlett2_init(mixer);
4415 break;
4416
4417 case USB_ID(0x1235, 0x821b): /* Focusrite Scarlett 16i16 4th Gen */
4418 case USB_ID(0x1235, 0x821c): /* Focusrite Scarlett 18i16 4th Gen */
4419 case USB_ID(0x1235, 0x821d): /* Focusrite Scarlett 18i20 4th Gen */
4420 err = snd_fcp_init(mixer);
4421 break;
4422
4423 case USB_ID(0x041e, 0x323b): /* Creative Sound Blaster E1 */
4424 err = snd_soundblaster_e1_switch_create(mixer);
4425 break;
4426 case USB_ID(0x0bda, 0x4014): /* Dell WD15 dock */
4427 err = dell_dock_mixer_create(mixer);
4428 if (err < 0)
4429 break;
4430 err = dell_dock_mixer_init(mixer);
4431 break;
4432 case USB_ID(0x0bda, 0x402e): /* Dell WD19 dock */
4433 err = dell_dock_mixer_create(mixer);
4434 break;
4435
4436 case USB_ID(0x2a39, 0x3fd2): /* RME ADI-2 Pro */
4437 case USB_ID(0x2a39, 0x3fd3): /* RME ADI-2 DAC */
4438 case USB_ID(0x2a39, 0x3fd4): /* RME */
4439 err = snd_rme_controls_create(mixer);
4440 break;
4441
4442 case USB_ID(0x194f, 0x010c): /* Presonus Studio 1810c */
4443 err = snd_sc1810_init_mixer(mixer);
4444 break;
4445 case USB_ID(0x194f, 0x010d): /* Presonus Studio 1824c */
4446 err = snd_sc1810_init_mixer(mixer);
4447 break;
4448 case USB_ID(0x2a39, 0x3fb0): /* RME Babyface Pro FS */
4449 err = snd_bbfpro_controls_create(mixer);
4450 break;
4451 case USB_ID(0x2a39, 0x3f8c): /* RME Digiface USB */
4452 case USB_ID(0x2a39, 0x3fa0): /* RME Digiface USB (alternate) */
4453 err = snd_rme_digiface_controls_create(mixer);
4454 break;
4455 case USB_ID(0x2b73, 0x0017): /* Pioneer DJ DJM-250MK2 */
4456 err = snd_djm_controls_create(mixer, SND_DJM_250MK2_IDX);
4457 break;
4458 case USB_ID(0x2b73, 0x0013): /* Pioneer DJ DJM-450 */
4459 err = snd_djm_controls_create(mixer, SND_DJM_450_IDX);
4460 break;
4461 case USB_ID(0x08e4, 0x017f): /* Pioneer DJ DJM-750 */
4462 err = snd_djm_controls_create(mixer, SND_DJM_750_IDX);
4463 break;
4464 case USB_ID(0x2b73, 0x001b): /* Pioneer DJ DJM-750MK2 */
4465 err = snd_djm_controls_create(mixer, SND_DJM_750MK2_IDX);
4466 break;
4467 case USB_ID(0x08e4, 0x0163): /* Pioneer DJ DJM-850 */
4468 err = snd_djm_controls_create(mixer, SND_DJM_850_IDX);
4469 break;
4470 case USB_ID(0x2b73, 0x000a): /* Pioneer DJ DJM-900NXS2 */
4471 err = snd_djm_controls_create(mixer, SND_DJM_900NXS2_IDX);
4472 break;
4473 case USB_ID(0x2b73, 0x003c): /* Pioneer DJ / AlphaTheta DJM-A9 */
4474 err = snd_djm_controls_create(mixer, SND_DJM_A9_IDX);
4475 break;
4476 case USB_ID(0x2b73, 0x0034): /* Pioneer DJ DJM-V10 */
4477 err = snd_djm_controls_create(mixer, SND_DJM_V10_IDX);
4478 break;
4479 }
4480
4481 return err;
4482 }
4483
snd_usb_mixer_resume_quirk(struct usb_mixer_interface * mixer)4484 void snd_usb_mixer_resume_quirk(struct usb_mixer_interface *mixer)
4485 {
4486 switch (mixer->chip->usb_id) {
4487 case USB_ID(0x0bda, 0x4014): /* Dell WD15 dock */
4488 dell_dock_mixer_init(mixer);
4489 break;
4490 }
4491 }
4492
snd_usb_mixer_rc_memory_change(struct usb_mixer_interface * mixer,int unitid)4493 void snd_usb_mixer_rc_memory_change(struct usb_mixer_interface *mixer,
4494 int unitid)
4495 {
4496 if (!mixer->rc_cfg)
4497 return;
4498 /* unit ids specific to Extigy/Audigy 2 NX: */
4499 switch (unitid) {
4500 case 0: /* remote control */
4501 mixer->rc_urb->dev = mixer->chip->dev;
4502 usb_submit_urb(mixer->rc_urb, GFP_ATOMIC);
4503 break;
4504 case 4: /* digital in jack */
4505 case 7: /* line in jacks */
4506 case 19: /* speaker out jacks */
4507 case 20: /* headphones out jack */
4508 break;
4509 /* live24ext: 4 = line-in jack */
4510 case 3: /* hp-out jack (may actuate Mute) */
4511 if (mixer->chip->usb_id == USB_ID(0x041e, 0x3040) ||
4512 mixer->chip->usb_id == USB_ID(0x041e, 0x3048))
4513 snd_usb_mixer_notify_id(mixer, mixer->rc_cfg->mute_mixer_id);
4514 break;
4515 default:
4516 usb_audio_dbg(mixer->chip, "memory change in unknown unit %d\n", unitid);
4517 break;
4518 }
4519 }
4520
snd_dragonfly_quirk_db_scale(struct usb_mixer_interface * mixer,struct usb_mixer_elem_info * cval,struct snd_kcontrol * kctl)4521 static void snd_dragonfly_quirk_db_scale(struct usb_mixer_interface *mixer,
4522 struct usb_mixer_elem_info *cval,
4523 struct snd_kcontrol *kctl)
4524 {
4525 /* Approximation using 10 ranges based on output measurement on hw v1.2.
4526 * This seems close to the cubic mapping e.g. alsamixer uses.
4527 */
4528 static const DECLARE_TLV_DB_RANGE(scale,
4529 0, 1, TLV_DB_MINMAX_ITEM(-5300, -4970),
4530 2, 5, TLV_DB_MINMAX_ITEM(-4710, -4160),
4531 6, 7, TLV_DB_MINMAX_ITEM(-3884, -3710),
4532 8, 14, TLV_DB_MINMAX_ITEM(-3443, -2560),
4533 15, 16, TLV_DB_MINMAX_ITEM(-2475, -2324),
4534 17, 19, TLV_DB_MINMAX_ITEM(-2228, -2031),
4535 20, 26, TLV_DB_MINMAX_ITEM(-1910, -1393),
4536 27, 31, TLV_DB_MINMAX_ITEM(-1322, -1032),
4537 32, 40, TLV_DB_MINMAX_ITEM(-968, -490),
4538 41, 50, TLV_DB_MINMAX_ITEM(-441, 0),
4539 );
4540
4541 if (cval->min == 0 && cval->max == 50) {
4542 usb_audio_info(mixer->chip, "applying DragonFly dB scale quirk (0-50 variant)\n");
4543 kctl->tlv.p = scale;
4544 kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ;
4545 kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
4546
4547 } else if (cval->min == 0 && cval->max <= 1000) {
4548 /* Some other clearly broken DragonFly variant.
4549 * At least a 0..53 variant (hw v1.0) exists.
4550 */
4551 usb_audio_info(mixer->chip, "ignoring too narrow dB range on a DragonFly device");
4552 kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
4553 }
4554 }
4555
4556 /*
4557 * Some Plantronics headsets have control names that don't meet ALSA naming
4558 * standards. This function fixes nonstandard source names. By the time
4559 * this function is called the control name should look like one of these:
4560 * "source names Playback Volume"
4561 * "source names Playback Switch"
4562 * "source names Capture Volume"
4563 * "source names Capture Switch"
4564 * If any of the trigger words are found in the name then the name will
4565 * be changed to:
4566 * "Headset Playback Volume"
4567 * "Headset Playback Switch"
4568 * "Headset Capture Volume"
4569 * "Headset Capture Switch"
4570 * depending on the current suffix.
4571 */
snd_fix_plt_name(struct snd_usb_audio * chip,struct snd_ctl_elem_id * id)4572 static void snd_fix_plt_name(struct snd_usb_audio *chip,
4573 struct snd_ctl_elem_id *id)
4574 {
4575 /* no variant of "Sidetone" should be added to this list */
4576 static const char * const trigger[] = {
4577 "Earphone", "Microphone", "Receive", "Transmit"
4578 };
4579 static const char * const suffix[] = {
4580 " Playback Volume", " Playback Switch",
4581 " Capture Volume", " Capture Switch"
4582 };
4583 int i;
4584
4585 for (i = 0; i < ARRAY_SIZE(trigger); i++)
4586 if (strstr(id->name, trigger[i]))
4587 goto triggered;
4588 usb_audio_dbg(chip, "no change in %s\n", id->name);
4589 return;
4590
4591 triggered:
4592 for (i = 0; i < ARRAY_SIZE(suffix); i++)
4593 if (strstr(id->name, suffix[i])) {
4594 usb_audio_dbg(chip, "fixing kctl name %s\n", id->name);
4595 snprintf(id->name, sizeof(id->name), "Headset%s",
4596 suffix[i]);
4597 return;
4598 }
4599 usb_audio_dbg(chip, "something wrong in kctl name %s\n", id->name);
4600 }
4601
snd_usb_mixer_fu_apply_quirk(struct usb_mixer_interface * mixer,struct usb_mixer_elem_info * cval,int unitid,struct snd_kcontrol * kctl)4602 void snd_usb_mixer_fu_apply_quirk(struct usb_mixer_interface *mixer,
4603 struct usb_mixer_elem_info *cval, int unitid,
4604 struct snd_kcontrol *kctl)
4605 {
4606 switch (mixer->chip->usb_id) {
4607 case USB_ID(0x21b4, 0x0081): /* AudioQuest DragonFly */
4608 if (unitid == 7 && cval->control == UAC_FU_VOLUME)
4609 snd_dragonfly_quirk_db_scale(mixer, cval, kctl);
4610 break;
4611 /* lowest playback value is muted on some devices */
4612 case USB_ID(0x0d8c, 0x000c): /* C-Media */
4613 case USB_ID(0x0d8c, 0x0014): /* C-Media */
4614 case USB_ID(0x19f7, 0x0003): /* RODE NT-USB */
4615 if (strstr(kctl->id.name, "Playback"))
4616 cval->min_mute = 1;
4617 break;
4618 }
4619
4620 /* ALSA-ify some Plantronics headset control names */
4621 if (USB_ID_VENDOR(mixer->chip->usb_id) == 0x047f &&
4622 (cval->control == UAC_FU_MUTE || cval->control == UAC_FU_VOLUME))
4623 snd_fix_plt_name(mixer->chip, &kctl->id);
4624 }
4625