xref: /linux/drivers/mtd/spi-nor/sfdp.c (revision edd2b9832d604a234b60a4910c7496f351cd1e12)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2005, Intec Automation Inc.
4  * Copyright (C) 2014, Freescale Semiconductor, Inc.
5  */
6 
7 #include <linux/bitfield.h>
8 #include <linux/mtd/spi-nor.h>
9 #include <linux/slab.h>
10 #include <linux/sort.h>
11 
12 #include "core.h"
13 
14 #define SFDP_PARAM_HEADER_ID(p)	(((p)->id_msb << 8) | (p)->id_lsb)
15 #define SFDP_PARAM_HEADER_PTP(p) \
16 	(((p)->parameter_table_pointer[2] << 16) | \
17 	 ((p)->parameter_table_pointer[1] <<  8) | \
18 	 ((p)->parameter_table_pointer[0] <<  0))
19 #define SFDP_PARAM_HEADER_PARAM_LEN(p) ((p)->length * 4)
20 
21 #define SFDP_BFPT_ID		0xff00	/* Basic Flash Parameter Table */
22 #define SFDP_SECTOR_MAP_ID	0xff81	/* Sector Map Table */
23 #define SFDP_4BAIT_ID		0xff84  /* 4-byte Address Instruction Table */
24 #define SFDP_PROFILE1_ID	0xff05	/* xSPI Profile 1.0 table. */
25 #define SFDP_SCCR_MAP_ID	0xff87	/*
26 					 * Status, Control and Configuration
27 					 * Register Map.
28 					 */
29 #define SFDP_SCCR_MAP_MC_ID	0xff88	/*
30 					 * Status, Control and Configuration
31 					 * Register Map Offsets for Multi-Chip
32 					 * SPI Memory Devices.
33 					 */
34 
35 #define SFDP_SIGNATURE		0x50444653U
36 
37 struct sfdp_header {
38 	u32		signature; /* Ox50444653U <=> "SFDP" */
39 	u8		minor;
40 	u8		major;
41 	u8		nph; /* 0-base number of parameter headers */
42 	u8		unused;
43 
44 	/* Basic Flash Parameter Table. */
45 	struct sfdp_parameter_header	bfpt_header;
46 };
47 
48 /* Fast Read settings. */
49 struct sfdp_bfpt_read {
50 	/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
51 	u32			hwcaps;
52 
53 	/*
54 	 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
55 	 * whether the Fast Read x-y-z command is supported.
56 	 */
57 	u32			supported_dword;
58 	u32			supported_bit;
59 
60 	/*
61 	 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
62 	 * encodes the op code, the number of mode clocks and the number of wait
63 	 * states to be used by Fast Read x-y-z command.
64 	 */
65 	u32			settings_dword;
66 	u32			settings_shift;
67 
68 	/* The SPI protocol for this Fast Read x-y-z command. */
69 	enum spi_nor_protocol	proto;
70 };
71 
72 struct sfdp_bfpt_erase {
73 	/*
74 	 * The half-word at offset <shift> in DWORD <dword> encodes the
75 	 * op code and erase sector size to be used by Sector Erase commands.
76 	 */
77 	u32			dword;
78 	u32			shift;
79 };
80 
81 #define SMPT_CMD_ADDRESS_LEN_MASK		GENMASK(23, 22)
82 #define SMPT_CMD_ADDRESS_LEN_0			(0x0UL << 22)
83 #define SMPT_CMD_ADDRESS_LEN_3			(0x1UL << 22)
84 #define SMPT_CMD_ADDRESS_LEN_4			(0x2UL << 22)
85 #define SMPT_CMD_ADDRESS_LEN_USE_CURRENT	(0x3UL << 22)
86 
87 #define SMPT_CMD_READ_DUMMY_MASK		GENMASK(19, 16)
88 #define SMPT_CMD_READ_DUMMY_SHIFT		16
89 #define SMPT_CMD_READ_DUMMY(_cmd) \
90 	(((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT)
91 #define SMPT_CMD_READ_DUMMY_IS_VARIABLE		0xfUL
92 
93 #define SMPT_CMD_READ_DATA_MASK			GENMASK(31, 24)
94 #define SMPT_CMD_READ_DATA_SHIFT		24
95 #define SMPT_CMD_READ_DATA(_cmd) \
96 	(((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT)
97 
98 #define SMPT_CMD_OPCODE_MASK			GENMASK(15, 8)
99 #define SMPT_CMD_OPCODE_SHIFT			8
100 #define SMPT_CMD_OPCODE(_cmd) \
101 	(((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT)
102 
103 #define SMPT_MAP_REGION_COUNT_MASK		GENMASK(23, 16)
104 #define SMPT_MAP_REGION_COUNT_SHIFT		16
105 #define SMPT_MAP_REGION_COUNT(_header) \
106 	((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \
107 	  SMPT_MAP_REGION_COUNT_SHIFT) + 1)
108 
109 #define SMPT_MAP_ID_MASK			GENMASK(15, 8)
110 #define SMPT_MAP_ID_SHIFT			8
111 #define SMPT_MAP_ID(_header) \
112 	(((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT)
113 
114 #define SMPT_MAP_REGION_SIZE_MASK		GENMASK(31, 8)
115 #define SMPT_MAP_REGION_SIZE_SHIFT		8
116 #define SMPT_MAP_REGION_SIZE(_region) \
117 	(((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \
118 	   SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256)
119 
120 #define SMPT_MAP_REGION_ERASE_TYPE_MASK		GENMASK(3, 0)
121 #define SMPT_MAP_REGION_ERASE_TYPE(_region) \
122 	((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK)
123 
124 #define SMPT_DESC_TYPE_MAP			BIT(1)
125 #define SMPT_DESC_END				BIT(0)
126 
127 #define SFDP_4BAIT_DWORD_MAX	2
128 
129 struct sfdp_4bait {
130 	/* The hardware capability. */
131 	u32		hwcaps;
132 
133 	/*
134 	 * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether
135 	 * the associated 4-byte address op code is supported.
136 	 */
137 	u32		supported_bit;
138 };
139 
140 /**
141  * spi_nor_read_raw() - raw read of serial flash memory. read_opcode,
142  *			addr_nbytes and read_dummy members of the struct spi_nor
143  *			should be previously set.
144  * @nor:	pointer to a 'struct spi_nor'
145  * @addr:	offset in the serial flash memory
146  * @len:	number of bytes to read
147  * @buf:	buffer where the data is copied into (dma-safe memory)
148  *
149  * Return: 0 on success, -errno otherwise.
150  */
151 static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf)
152 {
153 	ssize_t ret;
154 
155 	while (len) {
156 		ret = spi_nor_read_data(nor, addr, len, buf);
157 		if (ret < 0)
158 			return ret;
159 		if (!ret || ret > len)
160 			return -EIO;
161 
162 		buf += ret;
163 		addr += ret;
164 		len -= ret;
165 	}
166 	return 0;
167 }
168 
169 /**
170  * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
171  * @nor:	pointer to a 'struct spi_nor'
172  * @addr:	offset in the SFDP area to start reading data from
173  * @len:	number of bytes to read
174  * @buf:	buffer where the SFDP data are copied into (dma-safe memory)
175  *
176  * Whatever the actual numbers of bytes for address and dummy cycles are
177  * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
178  * followed by a 3-byte address and 8 dummy clock cycles.
179  *
180  * Return: 0 on success, -errno otherwise.
181  */
182 static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
183 			     size_t len, void *buf)
184 {
185 	u8 addr_nbytes, read_opcode, read_dummy;
186 	int ret;
187 
188 	read_opcode = nor->read_opcode;
189 	addr_nbytes = nor->addr_nbytes;
190 	read_dummy = nor->read_dummy;
191 
192 	nor->read_opcode = SPINOR_OP_RDSFDP;
193 	nor->addr_nbytes = 3;
194 	nor->read_dummy = 8;
195 
196 	ret = spi_nor_read_raw(nor, addr, len, buf);
197 
198 	nor->read_opcode = read_opcode;
199 	nor->addr_nbytes = addr_nbytes;
200 	nor->read_dummy = read_dummy;
201 
202 	return ret;
203 }
204 
205 /**
206  * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
207  * @nor:	pointer to a 'struct spi_nor'
208  * @addr:	offset in the SFDP area to start reading data from
209  * @len:	number of bytes to read
210  * @buf:	buffer where the SFDP data are copied into
211  *
212  * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
213  * guaranteed to be dma-safe.
214  *
215  * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
216  *          otherwise.
217  */
218 static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr,
219 					size_t len, void *buf)
220 {
221 	void *dma_safe_buf;
222 	int ret;
223 
224 	dma_safe_buf = kmalloc(len, GFP_KERNEL);
225 	if (!dma_safe_buf)
226 		return -ENOMEM;
227 
228 	ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf);
229 	memcpy(buf, dma_safe_buf, len);
230 	kfree(dma_safe_buf);
231 
232 	return ret;
233 }
234 
235 static void
236 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
237 				    u16 half,
238 				    enum spi_nor_protocol proto)
239 {
240 	read->num_mode_clocks = (half >> 5) & 0x07;
241 	read->num_wait_states = (half >> 0) & 0x1f;
242 	read->opcode = (half >> 8) & 0xff;
243 	read->proto = proto;
244 }
245 
246 static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
247 	/* Fast Read 1-1-2 */
248 	{
249 		SNOR_HWCAPS_READ_1_1_2,
250 		SFDP_DWORD(1), BIT(16),	/* Supported bit */
251 		SFDP_DWORD(4), 0,	/* Settings */
252 		SNOR_PROTO_1_1_2,
253 	},
254 
255 	/* Fast Read 1-2-2 */
256 	{
257 		SNOR_HWCAPS_READ_1_2_2,
258 		SFDP_DWORD(1), BIT(20),	/* Supported bit */
259 		SFDP_DWORD(4), 16,	/* Settings */
260 		SNOR_PROTO_1_2_2,
261 	},
262 
263 	/* Fast Read 2-2-2 */
264 	{
265 		SNOR_HWCAPS_READ_2_2_2,
266 		SFDP_DWORD(5),  BIT(0),	/* Supported bit */
267 		SFDP_DWORD(6), 16,	/* Settings */
268 		SNOR_PROTO_2_2_2,
269 	},
270 
271 	/* Fast Read 1-1-4 */
272 	{
273 		SNOR_HWCAPS_READ_1_1_4,
274 		SFDP_DWORD(1), BIT(22),	/* Supported bit */
275 		SFDP_DWORD(3), 16,	/* Settings */
276 		SNOR_PROTO_1_1_4,
277 	},
278 
279 	/* Fast Read 1-4-4 */
280 	{
281 		SNOR_HWCAPS_READ_1_4_4,
282 		SFDP_DWORD(1), BIT(21),	/* Supported bit */
283 		SFDP_DWORD(3), 0,	/* Settings */
284 		SNOR_PROTO_1_4_4,
285 	},
286 
287 	/* Fast Read 4-4-4 */
288 	{
289 		SNOR_HWCAPS_READ_4_4_4,
290 		SFDP_DWORD(5), BIT(4),	/* Supported bit */
291 		SFDP_DWORD(7), 16,	/* Settings */
292 		SNOR_PROTO_4_4_4,
293 	},
294 };
295 
296 static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
297 	/* Erase Type 1 in DWORD8 bits[15:0] */
298 	{SFDP_DWORD(8), 0},
299 
300 	/* Erase Type 2 in DWORD8 bits[31:16] */
301 	{SFDP_DWORD(8), 16},
302 
303 	/* Erase Type 3 in DWORD9 bits[15:0] */
304 	{SFDP_DWORD(9), 0},
305 
306 	/* Erase Type 4 in DWORD9 bits[31:16] */
307 	{SFDP_DWORD(9), 16},
308 };
309 
310 /**
311  * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT
312  * @erase:	pointer to a structure that describes a SPI NOR erase type
313  * @size:	the size of the sector/block erased by the erase type
314  * @opcode:	the SPI command op code to erase the sector/block
315  * @i:		erase type index as sorted in the Basic Flash Parameter Table
316  *
317  * The supported Erase Types will be sorted at init in ascending order, with
318  * the smallest Erase Type size being the first member in the erase_type array
319  * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in
320  * the Basic Flash Parameter Table since it will be used later on to
321  * synchronize with the supported Erase Types defined in SFDP optional tables.
322  */
323 static void
324 spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase,
325 				     u32 size, u8 opcode, u8 i)
326 {
327 	erase->idx = i;
328 	spi_nor_set_erase_type(erase, size, opcode);
329 }
330 
331 /**
332  * spi_nor_map_cmp_erase_type() - compare the map's erase types by size
333  * @l:	member in the left half of the map's erase_type array
334  * @r:	member in the right half of the map's erase_type array
335  *
336  * Comparison function used in the sort() call to sort in ascending order the
337  * map's erase types, the smallest erase type size being the first member in the
338  * sorted erase_type array.
339  *
340  * Return: the result of @l->size - @r->size
341  */
342 static int spi_nor_map_cmp_erase_type(const void *l, const void *r)
343 {
344 	const struct spi_nor_erase_type *left = l, *right = r;
345 
346 	return left->size - right->size;
347 }
348 
349 /**
350  * spi_nor_sort_erase_mask() - sort erase mask
351  * @map:	the erase map of the SPI NOR
352  * @erase_mask:	the erase type mask to be sorted
353  *
354  * Replicate the sort done for the map's erase types in BFPT: sort the erase
355  * mask in ascending order with the smallest erase type size starting from
356  * BIT(0) in the sorted erase mask.
357  *
358  * Return: sorted erase mask.
359  */
360 static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask)
361 {
362 	struct spi_nor_erase_type *erase_type = map->erase_type;
363 	int i;
364 	u8 sorted_erase_mask = 0;
365 
366 	if (!erase_mask)
367 		return 0;
368 
369 	/* Replicate the sort done for the map's erase types. */
370 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
371 		if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx))
372 			sorted_erase_mask |= BIT(i);
373 
374 	return sorted_erase_mask;
375 }
376 
377 /**
378  * spi_nor_regions_sort_erase_types() - sort erase types in each region
379  * @map:	the erase map of the SPI NOR
380  *
381  * Function assumes that the erase types defined in the erase map are already
382  * sorted in ascending order, with the smallest erase type size being the first
383  * member in the erase_type array. It replicates the sort done for the map's
384  * erase types. Each region's erase bitmask will indicate which erase types are
385  * supported from the sorted erase types defined in the erase map.
386  * Sort the all region's erase type at init in order to speed up the process of
387  * finding the best erase command at runtime.
388  */
389 static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map)
390 {
391 	struct spi_nor_erase_region *region = map->regions;
392 	u8 sorted_erase_mask;
393 	unsigned int i;
394 
395 	for (i = 0; i < map->n_regions; i++) {
396 		sorted_erase_mask =
397 			spi_nor_sort_erase_mask(map, region[i].erase_mask);
398 
399 		/* Overwrite erase mask. */
400 		region[i].erase_mask = sorted_erase_mask;
401 	}
402 }
403 
404 /**
405  * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
406  * @nor:		pointer to a 'struct spi_nor'
407  * @bfpt_header:	pointer to the 'struct sfdp_parameter_header' describing
408  *			the Basic Flash Parameter Table length and version
409  *
410  * The Basic Flash Parameter Table is the main and only mandatory table as
411  * defined by the SFDP (JESD216) specification.
412  * It provides us with the total size (memory density) of the data array and
413  * the number of address bytes for Fast Read, Page Program and Sector Erase
414  * commands.
415  * For Fast READ commands, it also gives the number of mode clock cycles and
416  * wait states (regrouped in the number of dummy clock cycles) for each
417  * supported instruction op code.
418  * For Page Program, the page size is now available since JESD216 rev A, however
419  * the supported instruction op codes are still not provided.
420  * For Sector Erase commands, this table stores the supported instruction op
421  * codes and the associated sector sizes.
422  * Finally, the Quad Enable Requirements (QER) are also available since JESD216
423  * rev A. The QER bits encode the manufacturer dependent procedure to be
424  * executed to set the Quad Enable (QE) bit in some internal register of the
425  * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
426  * sending any Quad SPI command to the memory. Actually, setting the QE bit
427  * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
428  * and IO3 hence enabling 4 (Quad) I/O lines.
429  *
430  * Return: 0 on success, -errno otherwise.
431  */
432 static int spi_nor_parse_bfpt(struct spi_nor *nor,
433 			      const struct sfdp_parameter_header *bfpt_header)
434 {
435 	struct spi_nor_flash_parameter *params = nor->params;
436 	struct spi_nor_erase_map *map = &params->erase_map;
437 	struct spi_nor_erase_type *erase_type = map->erase_type;
438 	struct sfdp_bfpt bfpt;
439 	size_t len;
440 	int i, cmd, err;
441 	u32 addr, val;
442 	u32 dword;
443 	u16 half;
444 	u8 erase_mask;
445 	u8 wait_states, mode_clocks, opcode;
446 
447 	/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
448 	if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
449 		return -EINVAL;
450 
451 	/* Read the Basic Flash Parameter Table. */
452 	len = min_t(size_t, sizeof(bfpt),
453 		    bfpt_header->length * sizeof(u32));
454 	addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
455 	memset(&bfpt, 0, sizeof(bfpt));
456 	err = spi_nor_read_sfdp_dma_unsafe(nor,  addr, len, &bfpt);
457 	if (err < 0)
458 		return err;
459 
460 	/* Fix endianness of the BFPT DWORDs. */
461 	le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX);
462 
463 	/* Number of address bytes. */
464 	switch (bfpt.dwords[SFDP_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
465 	case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
466 	case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4:
467 		params->addr_nbytes = 3;
468 		params->addr_mode_nbytes = 3;
469 		break;
470 
471 	case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
472 		params->addr_nbytes = 4;
473 		params->addr_mode_nbytes = 4;
474 		break;
475 
476 	default:
477 		break;
478 	}
479 
480 	/* Flash Memory Density (in bits). */
481 	val = bfpt.dwords[SFDP_DWORD(2)];
482 	if (val & BIT(31)) {
483 		val &= ~BIT(31);
484 
485 		/*
486 		 * Prevent overflows on params->size. Anyway, a NOR of 2^64
487 		 * bits is unlikely to exist so this error probably means
488 		 * the BFPT we are reading is corrupted/wrong.
489 		 */
490 		if (val > 63)
491 			return -EINVAL;
492 
493 		params->size = 1ULL << val;
494 	} else {
495 		params->size = val + 1;
496 	}
497 	params->size >>= 3; /* Convert to bytes. */
498 
499 	/* Fast Read settings. */
500 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
501 		const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
502 		struct spi_nor_read_command *read;
503 
504 		if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
505 			params->hwcaps.mask &= ~rd->hwcaps;
506 			continue;
507 		}
508 
509 		params->hwcaps.mask |= rd->hwcaps;
510 		cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
511 		read = &params->reads[cmd];
512 		half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
513 		spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
514 	}
515 
516 	/*
517 	 * Sector Erase settings. Reinitialize the uniform erase map using the
518 	 * Erase Types defined in the bfpt table.
519 	 */
520 	erase_mask = 0;
521 	memset(&params->erase_map, 0, sizeof(params->erase_map));
522 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
523 		const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
524 		u32 erasesize;
525 		u8 opcode;
526 
527 		half = bfpt.dwords[er->dword] >> er->shift;
528 		erasesize = half & 0xff;
529 
530 		/* erasesize == 0 means this Erase Type is not supported. */
531 		if (!erasesize)
532 			continue;
533 
534 		erasesize = 1U << erasesize;
535 		opcode = (half >> 8) & 0xff;
536 		erase_mask |= BIT(i);
537 		spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize,
538 						     opcode, i);
539 	}
540 	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
541 	/*
542 	 * Sort all the map's Erase Types in ascending order with the smallest
543 	 * erase size being the first member in the erase_type array.
544 	 */
545 	sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]),
546 	     spi_nor_map_cmp_erase_type, NULL);
547 	/*
548 	 * Sort the erase types in the uniform region in order to update the
549 	 * uniform_erase_type bitmask. The bitmask will be used later on when
550 	 * selecting the uniform erase.
551 	 */
552 	spi_nor_regions_sort_erase_types(map);
553 
554 	/* Stop here if not JESD216 rev A or later. */
555 	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216)
556 		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
557 
558 	/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
559 	val = bfpt.dwords[SFDP_DWORD(11)];
560 	val &= BFPT_DWORD11_PAGE_SIZE_MASK;
561 	val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
562 	params->page_size = 1U << val;
563 
564 	/* Quad Enable Requirements. */
565 	switch (bfpt.dwords[SFDP_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
566 	case BFPT_DWORD15_QER_NONE:
567 		params->quad_enable = NULL;
568 		break;
569 
570 	case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
571 		/*
572 		 * Writing only one byte to the Status Register has the
573 		 * side-effect of clearing Status Register 2.
574 		 */
575 	case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
576 		/*
577 		 * Read Configuration Register (35h) instruction is not
578 		 * supported.
579 		 */
580 		nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR;
581 		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
582 		break;
583 
584 	case BFPT_DWORD15_QER_SR1_BIT6:
585 		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
586 		params->quad_enable = spi_nor_sr1_bit6_quad_enable;
587 		break;
588 
589 	case BFPT_DWORD15_QER_SR2_BIT7:
590 		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
591 		params->quad_enable = spi_nor_sr2_bit7_quad_enable;
592 		break;
593 
594 	case BFPT_DWORD15_QER_SR2_BIT1:
595 		/*
596 		 * JESD216 rev B or later does not specify if writing only one
597 		 * byte to the Status Register clears or not the Status
598 		 * Register 2, so let's be cautious and keep the default
599 		 * assumption of a 16-bit Write Status (01h) command.
600 		 */
601 		nor->flags |= SNOR_F_HAS_16BIT_SR;
602 
603 		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
604 		break;
605 
606 	default:
607 		dev_dbg(nor->dev, "BFPT QER reserved value used\n");
608 		break;
609 	}
610 
611 	dword = bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_4B_ADDR_MODE_MASK;
612 	if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_BRWR))
613 		params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_brwr;
614 	else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_WREN_EN4B_EX4B))
615 		params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_wren_en4b_ex4b;
616 	else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_EN4B_EX4B))
617 		params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_en4b_ex4b;
618 	else
619 		dev_dbg(nor->dev, "BFPT: 4-Byte Address Mode method is not recognized or not implemented\n");
620 
621 	/* Soft Reset support. */
622 	if (bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_SWRST_EN_RST)
623 		nor->flags |= SNOR_F_SOFT_RESET;
624 
625 	/* Stop here if not JESD216 rev C or later. */
626 	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B)
627 		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
628 
629 	/* Parse 1-1-8 read instruction */
630 	opcode = FIELD_GET(BFPT_DWORD17_RD_1_1_8_CMD, bfpt.dwords[SFDP_DWORD(17)]);
631 	if (opcode) {
632 		mode_clocks = FIELD_GET(BFPT_DWORD17_RD_1_1_8_MODE_CLOCKS,
633 					bfpt.dwords[SFDP_DWORD(17)]);
634 		wait_states = FIELD_GET(BFPT_DWORD17_RD_1_1_8_WAIT_STATES,
635 					bfpt.dwords[SFDP_DWORD(17)]);
636 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
637 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
638 					  mode_clocks, wait_states, opcode,
639 					  SNOR_PROTO_1_1_8);
640 	}
641 
642 	/* Parse 1-8-8 read instruction */
643 	opcode = FIELD_GET(BFPT_DWORD17_RD_1_8_8_CMD, bfpt.dwords[SFDP_DWORD(17)]);
644 	if (opcode) {
645 		mode_clocks = FIELD_GET(BFPT_DWORD17_RD_1_8_8_MODE_CLOCKS,
646 					bfpt.dwords[SFDP_DWORD(17)]);
647 		wait_states = FIELD_GET(BFPT_DWORD17_RD_1_8_8_WAIT_STATES,
648 					bfpt.dwords[SFDP_DWORD(17)]);
649 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_8_8;
650 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_8_8],
651 					  mode_clocks, wait_states, opcode,
652 					  SNOR_PROTO_1_8_8);
653 	}
654 
655 	/* 8D-8D-8D command extension. */
656 	switch (bfpt.dwords[SFDP_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) {
657 	case BFPT_DWORD18_CMD_EXT_REP:
658 		nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
659 		break;
660 
661 	case BFPT_DWORD18_CMD_EXT_INV:
662 		nor->cmd_ext_type = SPI_NOR_EXT_INVERT;
663 		break;
664 
665 	case BFPT_DWORD18_CMD_EXT_RES:
666 		dev_dbg(nor->dev, "Reserved command extension used\n");
667 		break;
668 
669 	case BFPT_DWORD18_CMD_EXT_16B:
670 		dev_dbg(nor->dev, "16-bit opcodes not supported\n");
671 		return -EOPNOTSUPP;
672 	}
673 
674 	/* Byte order in 8D-8D-8D mode */
675 	if (bfpt.dwords[SFDP_DWORD(18)] & BFPT_DWORD18_BYTE_ORDER_SWAPPED)
676 		nor->flags |= SNOR_F_SWAP16;
677 
678 	return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
679 }
680 
681 /**
682  * spi_nor_smpt_addr_nbytes() - return the number of address bytes used in the
683  *			       configuration detection command.
684  * @nor:	pointer to a 'struct spi_nor'
685  * @settings:	configuration detection command descriptor, dword1
686  */
687 static u8 spi_nor_smpt_addr_nbytes(const struct spi_nor *nor, const u32 settings)
688 {
689 	switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) {
690 	case SMPT_CMD_ADDRESS_LEN_0:
691 		return 0;
692 	case SMPT_CMD_ADDRESS_LEN_3:
693 		return 3;
694 	case SMPT_CMD_ADDRESS_LEN_4:
695 		return 4;
696 	case SMPT_CMD_ADDRESS_LEN_USE_CURRENT:
697 	default:
698 		return nor->params->addr_mode_nbytes;
699 	}
700 }
701 
702 static void spi_nor_smpt_read_dummy_fixups(const struct spi_nor *nor,
703 					   u8 *read_dummy)
704 {
705 	if (nor->manufacturer && nor->manufacturer->fixups &&
706 	    nor->manufacturer->fixups->smpt_read_dummy)
707 		nor->manufacturer->fixups->smpt_read_dummy(nor, read_dummy);
708 
709 	if (nor->info->fixups && nor->info->fixups->smpt_read_dummy)
710 		nor->info->fixups->smpt_read_dummy(nor, read_dummy);
711 }
712 
713 /**
714  * spi_nor_smpt_read_dummy() - return the configuration detection command read
715  *			       latency, in clock cycles.
716  * @nor:	pointer to a 'struct spi_nor'
717  * @settings:	configuration detection command descriptor, dword1
718  *
719  * Return: the number of dummy cycles for an SMPT read
720  */
721 static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings)
722 {
723 	u8 read_dummy = SMPT_CMD_READ_DUMMY(settings);
724 
725 	if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE) {
726 		read_dummy = nor->read_dummy;
727 		spi_nor_smpt_read_dummy_fixups(nor, &read_dummy);
728 	}
729 
730 	return read_dummy;
731 }
732 
733 static void spi_nor_smpt_map_id_fixups(const struct spi_nor *nor, u8 *map_id)
734 {
735 	if (nor->manufacturer && nor->manufacturer->fixups &&
736 	    nor->manufacturer->fixups->smpt_map_id)
737 		nor->manufacturer->fixups->smpt_map_id(nor, map_id);
738 
739 	if (nor->info->fixups && nor->info->fixups->smpt_map_id)
740 		nor->info->fixups->smpt_map_id(nor, map_id);
741 }
742 
743 /**
744  * spi_nor_get_map_in_use() - get the configuration map in use
745  * @nor:	pointer to a 'struct spi_nor'
746  * @smpt:	pointer to the sector map parameter table
747  * @smpt_len:	sector map parameter table length
748  *
749  * Return: pointer to the map in use, ERR_PTR(-errno) otherwise.
750  */
751 static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt,
752 					 u8 smpt_len)
753 {
754 	const u32 *ret;
755 	u8 *buf;
756 	u32 addr;
757 	int err;
758 	u8 i;
759 	u8 addr_nbytes, read_opcode, read_dummy;
760 	u8 read_data_mask, map_id;
761 
762 	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
763 	buf = kmalloc(sizeof(*buf), GFP_KERNEL);
764 	if (!buf)
765 		return ERR_PTR(-ENOMEM);
766 
767 	addr_nbytes = nor->addr_nbytes;
768 	read_dummy = nor->read_dummy;
769 	read_opcode = nor->read_opcode;
770 
771 	map_id = 0;
772 	/* Determine if there are any optional Detection Command Descriptors */
773 	for (i = 0; i < smpt_len; i += 2) {
774 		if (smpt[i] & SMPT_DESC_TYPE_MAP)
775 			break;
776 
777 		read_data_mask = SMPT_CMD_READ_DATA(smpt[i]);
778 		nor->addr_nbytes = spi_nor_smpt_addr_nbytes(nor, smpt[i]);
779 		nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]);
780 		nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]);
781 		addr = smpt[i + 1];
782 
783 		err = spi_nor_read_raw(nor, addr, 1, buf);
784 		if (err) {
785 			ret = ERR_PTR(err);
786 			goto out;
787 		}
788 
789 		/*
790 		 * Build an index value that is used to select the Sector Map
791 		 * Configuration that is currently in use.
792 		 */
793 		map_id = map_id << 1 | !!(*buf & read_data_mask);
794 	}
795 
796 	spi_nor_smpt_map_id_fixups(nor, &map_id);
797 
798 	/*
799 	 * If command descriptors are provided, they always precede map
800 	 * descriptors in the table. There is no need to start the iteration
801 	 * over smpt array all over again.
802 	 *
803 	 * Find the matching configuration map.
804 	 */
805 	ret = ERR_PTR(-EINVAL);
806 	while (i < smpt_len) {
807 		if (SMPT_MAP_ID(smpt[i]) == map_id) {
808 			ret = smpt + i;
809 			break;
810 		}
811 
812 		/*
813 		 * If there are no more configuration map descriptors and no
814 		 * configuration ID matched the configuration identifier, the
815 		 * sector address map is unknown.
816 		 */
817 		if (smpt[i] & SMPT_DESC_END)
818 			break;
819 
820 		/* increment the table index to the next map */
821 		i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1;
822 	}
823 
824 	/* fall through */
825 out:
826 	kfree(buf);
827 	nor->addr_nbytes = addr_nbytes;
828 	nor->read_dummy = read_dummy;
829 	nor->read_opcode = read_opcode;
830 	return ret;
831 }
832 
833 /**
834  * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid
835  * @region:	pointer to a structure that describes a SPI NOR erase region
836  * @erase:	pointer to a structure that describes a SPI NOR erase type
837  * @erase_type:	erase type bitmask
838  */
839 static void
840 spi_nor_region_check_overlay(struct spi_nor_erase_region *region,
841 			     const struct spi_nor_erase_type *erase,
842 			     const u8 erase_type)
843 {
844 	int i;
845 
846 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
847 		if (!(erase[i].size && erase_type & BIT(erase[i].idx)))
848 			continue;
849 		if (region->size & erase[i].size_mask) {
850 			region->overlaid = true;
851 			return;
852 		}
853 	}
854 }
855 
856 /**
857  * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map
858  * @nor:	pointer to a 'struct spi_nor'
859  * @smpt:	pointer to the sector map parameter table
860  *
861  * Return: 0 on success, -errno otherwise.
862  */
863 static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
864 					      const u32 *smpt)
865 {
866 	struct spi_nor_erase_map *map = &nor->params->erase_map;
867 	struct spi_nor_erase_type *erase = map->erase_type;
868 	struct spi_nor_erase_region *region;
869 	u64 offset;
870 	u32 region_count;
871 	int i, j;
872 	u8 uniform_erase_type, save_uniform_erase_type;
873 	u8 erase_type, regions_erase_type;
874 
875 	region_count = SMPT_MAP_REGION_COUNT(*smpt);
876 	/*
877 	 * The regions will be freed when the driver detaches from the
878 	 * device.
879 	 */
880 	region = devm_kcalloc(nor->dev, region_count, sizeof(*region),
881 			      GFP_KERNEL);
882 	if (!region)
883 		return -ENOMEM;
884 	map->regions = region;
885 	map->n_regions = region_count;
886 
887 	uniform_erase_type = 0xff;
888 	regions_erase_type = 0;
889 	offset = 0;
890 	/* Populate regions. */
891 	for (i = 0; i < region_count; i++) {
892 		j = i + 1; /* index for the region dword */
893 		region[i].offset = offset;
894 		region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]);
895 		erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]);
896 		region[i].erase_mask = erase_type;
897 
898 		spi_nor_region_check_overlay(&region[i], erase, erase_type);
899 
900 		/*
901 		 * Save the erase types that are supported in all regions and
902 		 * can erase the entire flash memory.
903 		 */
904 		uniform_erase_type &= erase_type;
905 
906 		/*
907 		 * regions_erase_type mask will indicate all the erase types
908 		 * supported in this configuration map.
909 		 */
910 		regions_erase_type |= erase_type;
911 
912 		offset = region[i].offset + region[i].size;
913 	}
914 
915 	save_uniform_erase_type = map->uniform_region.erase_mask;
916 	map->uniform_region.erase_mask =
917 				spi_nor_sort_erase_mask(map,
918 							uniform_erase_type);
919 
920 	if (!regions_erase_type) {
921 		/*
922 		 * Roll back to the previous uniform_erase_type mask, SMPT is
923 		 * broken.
924 		 */
925 		map->uniform_region.erase_mask = save_uniform_erase_type;
926 		return -EINVAL;
927 	}
928 
929 	/*
930 	 * BFPT advertises all the erase types supported by all the possible
931 	 * map configurations. Mask out the erase types that are not supported
932 	 * by the current map configuration.
933 	 */
934 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
935 		if (!(regions_erase_type & BIT(erase[i].idx)))
936 			spi_nor_mask_erase_type(&erase[i]);
937 
938 	return 0;
939 }
940 
941 /**
942  * spi_nor_parse_smpt() - parse Sector Map Parameter Table
943  * @nor:		pointer to a 'struct spi_nor'
944  * @smpt_header:	sector map parameter table header
945  *
946  * This table is optional, but when available, we parse it to identify the
947  * location and size of sectors within the main data array of the flash memory
948  * device and to identify which Erase Types are supported by each sector.
949  *
950  * Return: 0 on success, -errno otherwise.
951  */
952 static int spi_nor_parse_smpt(struct spi_nor *nor,
953 			      const struct sfdp_parameter_header *smpt_header)
954 {
955 	const u32 *sector_map;
956 	u32 *smpt;
957 	size_t len;
958 	u32 addr;
959 	int ret;
960 
961 	/* Read the Sector Map Parameter Table. */
962 	len = smpt_header->length * sizeof(*smpt);
963 	smpt = kmalloc(len, GFP_KERNEL);
964 	if (!smpt)
965 		return -ENOMEM;
966 
967 	addr = SFDP_PARAM_HEADER_PTP(smpt_header);
968 	ret = spi_nor_read_sfdp(nor, addr, len, smpt);
969 	if (ret)
970 		goto out;
971 
972 	/* Fix endianness of the SMPT DWORDs. */
973 	le32_to_cpu_array(smpt, smpt_header->length);
974 
975 	sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length);
976 	if (IS_ERR(sector_map)) {
977 		ret = PTR_ERR(sector_map);
978 		goto out;
979 	}
980 
981 	ret = spi_nor_init_non_uniform_erase_map(nor, sector_map);
982 	if (ret)
983 		goto out;
984 
985 	spi_nor_regions_sort_erase_types(&nor->params->erase_map);
986 	/* fall through */
987 out:
988 	kfree(smpt);
989 	return ret;
990 }
991 
992 /**
993  * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table
994  * @nor:		pointer to a 'struct spi_nor'.
995  * @param_header:	pointer to the 'struct sfdp_parameter_header' describing
996  *			the 4-Byte Address Instruction Table length and version.
997  *
998  * Return: 0 on success, -errno otherwise.
999  */
1000 static int spi_nor_parse_4bait(struct spi_nor *nor,
1001 			       const struct sfdp_parameter_header *param_header)
1002 {
1003 	static const struct sfdp_4bait reads[] = {
1004 		{ SNOR_HWCAPS_READ,		BIT(0) },
1005 		{ SNOR_HWCAPS_READ_FAST,	BIT(1) },
1006 		{ SNOR_HWCAPS_READ_1_1_2,	BIT(2) },
1007 		{ SNOR_HWCAPS_READ_1_2_2,	BIT(3) },
1008 		{ SNOR_HWCAPS_READ_1_1_4,	BIT(4) },
1009 		{ SNOR_HWCAPS_READ_1_4_4,	BIT(5) },
1010 		{ SNOR_HWCAPS_READ_1_1_1_DTR,	BIT(13) },
1011 		{ SNOR_HWCAPS_READ_1_2_2_DTR,	BIT(14) },
1012 		{ SNOR_HWCAPS_READ_1_4_4_DTR,	BIT(15) },
1013 		{ SNOR_HWCAPS_READ_1_1_8,	BIT(20) },
1014 		{ SNOR_HWCAPS_READ_1_8_8,	BIT(21) },
1015 	};
1016 	static const struct sfdp_4bait programs[] = {
1017 		{ SNOR_HWCAPS_PP,		BIT(6) },
1018 		{ SNOR_HWCAPS_PP_1_1_4,		BIT(7) },
1019 		{ SNOR_HWCAPS_PP_1_4_4,		BIT(8) },
1020 	};
1021 	static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = {
1022 		{ 0u /* not used */,		BIT(9) },
1023 		{ 0u /* not used */,		BIT(10) },
1024 		{ 0u /* not used */,		BIT(11) },
1025 		{ 0u /* not used */,		BIT(12) },
1026 	};
1027 	struct spi_nor_flash_parameter *params = nor->params;
1028 	struct spi_nor_pp_command *params_pp = params->page_programs;
1029 	struct spi_nor_erase_map *map = &params->erase_map;
1030 	struct spi_nor_erase_type *erase_type = map->erase_type;
1031 	u32 *dwords;
1032 	size_t len;
1033 	u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask;
1034 	int i, ret;
1035 
1036 	if (param_header->major != SFDP_JESD216_MAJOR ||
1037 	    param_header->length < SFDP_4BAIT_DWORD_MAX)
1038 		return -EINVAL;
1039 
1040 	/* Read the 4-byte Address Instruction Table. */
1041 	len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX;
1042 
1043 	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
1044 	dwords = kmalloc(len, GFP_KERNEL);
1045 	if (!dwords)
1046 		return -ENOMEM;
1047 
1048 	addr = SFDP_PARAM_HEADER_PTP(param_header);
1049 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1050 	if (ret)
1051 		goto out;
1052 
1053 	/* Fix endianness of the 4BAIT DWORDs. */
1054 	le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX);
1055 
1056 	/*
1057 	 * Compute the subset of (Fast) Read commands for which the 4-byte
1058 	 * version is supported.
1059 	 */
1060 	discard_hwcaps = 0;
1061 	read_hwcaps = 0;
1062 	for (i = 0; i < ARRAY_SIZE(reads); i++) {
1063 		const struct sfdp_4bait *read = &reads[i];
1064 
1065 		discard_hwcaps |= read->hwcaps;
1066 		if ((params->hwcaps.mask & read->hwcaps) &&
1067 		    (dwords[SFDP_DWORD(1)] & read->supported_bit))
1068 			read_hwcaps |= read->hwcaps;
1069 	}
1070 
1071 	/*
1072 	 * Compute the subset of Page Program commands for which the 4-byte
1073 	 * version is supported.
1074 	 */
1075 	pp_hwcaps = 0;
1076 	for (i = 0; i < ARRAY_SIZE(programs); i++) {
1077 		const struct sfdp_4bait *program = &programs[i];
1078 
1079 		/*
1080 		 * The 4 Byte Address Instruction (Optional) Table is the only
1081 		 * SFDP table that indicates support for Page Program Commands.
1082 		 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest
1083 		 * authority for specifying Page Program support.
1084 		 */
1085 		discard_hwcaps |= program->hwcaps;
1086 		if (dwords[SFDP_DWORD(1)] & program->supported_bit)
1087 			pp_hwcaps |= program->hwcaps;
1088 	}
1089 
1090 	/*
1091 	 * Compute the subset of Sector Erase commands for which the 4-byte
1092 	 * version is supported.
1093 	 */
1094 	erase_mask = 0;
1095 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1096 		const struct sfdp_4bait *erase = &erases[i];
1097 
1098 		if (dwords[SFDP_DWORD(1)] & erase->supported_bit)
1099 			erase_mask |= BIT(i);
1100 	}
1101 
1102 	/* Replicate the sort done for the map's erase types in BFPT. */
1103 	erase_mask = spi_nor_sort_erase_mask(map, erase_mask);
1104 
1105 	/*
1106 	 * We need at least one 4-byte op code per read, program and erase
1107 	 * operation; the .read(), .write() and .erase() hooks share the
1108 	 * nor->addr_nbytes value.
1109 	 */
1110 	if (!read_hwcaps || !pp_hwcaps || !erase_mask)
1111 		goto out;
1112 
1113 	/*
1114 	 * Discard all operations from the 4-byte instruction set which are
1115 	 * not supported by this memory.
1116 	 */
1117 	params->hwcaps.mask &= ~discard_hwcaps;
1118 	params->hwcaps.mask |= (read_hwcaps | pp_hwcaps);
1119 
1120 	/* Use the 4-byte address instruction set. */
1121 	for (i = 0; i < SNOR_CMD_READ_MAX; i++) {
1122 		struct spi_nor_read_command *read_cmd = &params->reads[i];
1123 
1124 		read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode);
1125 	}
1126 
1127 	/* 4BAIT is the only SFDP table that indicates page program support. */
1128 	if (pp_hwcaps & SNOR_HWCAPS_PP) {
1129 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP],
1130 					SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
1131 		/*
1132 		 * Since xSPI Page Program opcode is backward compatible with
1133 		 * Legacy SPI, use Legacy SPI opcode there as well.
1134 		 */
1135 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_8_8_8_DTR],
1136 					SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
1137 	}
1138 	if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4)
1139 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_1_4],
1140 					SPINOR_OP_PP_1_1_4_4B,
1141 					SNOR_PROTO_1_1_4);
1142 	if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4)
1143 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_4_4],
1144 					SPINOR_OP_PP_1_4_4_4B,
1145 					SNOR_PROTO_1_4_4);
1146 
1147 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1148 		if (erase_mask & BIT(i))
1149 			erase_type[i].opcode = (dwords[SFDP_DWORD(2)] >>
1150 						erase_type[i].idx * 8) & 0xFF;
1151 		else
1152 			spi_nor_mask_erase_type(&erase_type[i]);
1153 	}
1154 
1155 	/*
1156 	 * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes()
1157 	 * later because we already did the conversion to 4byte opcodes. Also,
1158 	 * this latest function implements a legacy quirk for the erase size of
1159 	 * Spansion memory. However this quirk is no longer needed with new
1160 	 * SFDP compliant memories.
1161 	 */
1162 	params->addr_nbytes = 4;
1163 	nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT;
1164 
1165 	/* fall through */
1166 out:
1167 	kfree(dwords);
1168 	return ret;
1169 }
1170 
1171 #define PROFILE1_DWORD1_RDSR_ADDR_BYTES		BIT(29)
1172 #define PROFILE1_DWORD1_RDSR_DUMMY		BIT(28)
1173 #define PROFILE1_DWORD1_RD_FAST_CMD		GENMASK(15, 8)
1174 #define PROFILE1_DWORD4_DUMMY_200MHZ		GENMASK(11, 7)
1175 #define PROFILE1_DWORD5_DUMMY_166MHZ		GENMASK(31, 27)
1176 #define PROFILE1_DWORD5_DUMMY_133MHZ		GENMASK(21, 17)
1177 #define PROFILE1_DWORD5_DUMMY_100MHZ		GENMASK(11, 7)
1178 
1179 /**
1180  * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table
1181  * @nor:		pointer to a 'struct spi_nor'
1182  * @profile1_header:	pointer to the 'struct sfdp_parameter_header' describing
1183  *			the Profile 1.0 Table length and version.
1184  *
1185  * Return: 0 on success, -errno otherwise.
1186  */
1187 static int spi_nor_parse_profile1(struct spi_nor *nor,
1188 				  const struct sfdp_parameter_header *profile1_header)
1189 {
1190 	u32 *dwords, addr;
1191 	size_t len;
1192 	int ret;
1193 	u8 dummy, opcode;
1194 
1195 	len = profile1_header->length * sizeof(*dwords);
1196 	dwords = kmalloc(len, GFP_KERNEL);
1197 	if (!dwords)
1198 		return -ENOMEM;
1199 
1200 	addr = SFDP_PARAM_HEADER_PTP(profile1_header);
1201 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1202 	if (ret)
1203 		goto out;
1204 
1205 	le32_to_cpu_array(dwords, profile1_header->length);
1206 
1207 	/* Get 8D-8D-8D fast read opcode and dummy cycles. */
1208 	opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, dwords[SFDP_DWORD(1)]);
1209 
1210 	 /* Set the Read Status Register dummy cycles and dummy address bytes. */
1211 	if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_DUMMY)
1212 		nor->params->rdsr_dummy = 8;
1213 	else
1214 		nor->params->rdsr_dummy = 4;
1215 
1216 	if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_ADDR_BYTES)
1217 		nor->params->rdsr_addr_nbytes = 4;
1218 	else
1219 		nor->params->rdsr_addr_nbytes = 0;
1220 
1221 	/*
1222 	 * We don't know what speed the controller is running at. Find the
1223 	 * dummy cycles for the fastest frequency the flash can run at to be
1224 	 * sure we are never short of dummy cycles. A value of 0 means the
1225 	 * frequency is not supported.
1226 	 *
1227 	 * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let
1228 	 * flashes set the correct value if needed in their fixup hooks.
1229 	 */
1230 	dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, dwords[SFDP_DWORD(4)]);
1231 	if (!dummy)
1232 		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ,
1233 				  dwords[SFDP_DWORD(5)]);
1234 	if (!dummy)
1235 		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ,
1236 				  dwords[SFDP_DWORD(5)]);
1237 	if (!dummy)
1238 		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ,
1239 				  dwords[SFDP_DWORD(5)]);
1240 	if (!dummy)
1241 		dev_dbg(nor->dev,
1242 			"Can't find dummy cycles from Profile 1.0 table\n");
1243 
1244 	/* Round up to an even value to avoid tripping controllers up. */
1245 	dummy = round_up(dummy, 2);
1246 
1247 	/* Update the fast read settings. */
1248 	nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
1249 	spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],
1250 				  0, dummy, opcode,
1251 				  SNOR_PROTO_8_8_8_DTR);
1252 
1253 	/*
1254 	 * Page Program is "Required Command" in the xSPI Profile 1.0. Update
1255 	 * the params->hwcaps.mask here.
1256 	 */
1257 	nor->params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
1258 
1259 out:
1260 	kfree(dwords);
1261 	return ret;
1262 }
1263 
1264 #define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE		BIT(31)
1265 
1266 /**
1267  * spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register
1268  *                        Map.
1269  * @nor:		pointer to a 'struct spi_nor'
1270  * @sccr_header:	pointer to the 'struct sfdp_parameter_header' describing
1271  *			the SCCR Map table length and version.
1272  *
1273  * Return: 0 on success, -errno otherwise.
1274  */
1275 static int spi_nor_parse_sccr(struct spi_nor *nor,
1276 			      const struct sfdp_parameter_header *sccr_header)
1277 {
1278 	struct spi_nor_flash_parameter *params = nor->params;
1279 	u32 *dwords, addr;
1280 	size_t len;
1281 	int ret;
1282 
1283 	len = sccr_header->length * sizeof(*dwords);
1284 	dwords = kmalloc(len, GFP_KERNEL);
1285 	if (!dwords)
1286 		return -ENOMEM;
1287 
1288 	addr = SFDP_PARAM_HEADER_PTP(sccr_header);
1289 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1290 	if (ret)
1291 		goto out;
1292 
1293 	le32_to_cpu_array(dwords, sccr_header->length);
1294 
1295 	/* Address offset for volatile registers (die 0) */
1296 	if (!params->vreg_offset) {
1297 		params->vreg_offset = devm_kmalloc(nor->dev, sizeof(*dwords),
1298 						   GFP_KERNEL);
1299 		if (!params->vreg_offset) {
1300 			ret = -ENOMEM;
1301 			goto out;
1302 		}
1303 	}
1304 	params->vreg_offset[0] = dwords[SFDP_DWORD(1)];
1305 	params->n_dice = 1;
1306 
1307 	if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE,
1308 		      dwords[SFDP_DWORD(22)]))
1309 		nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
1310 
1311 out:
1312 	kfree(dwords);
1313 	return ret;
1314 }
1315 
1316 /**
1317  * spi_nor_parse_sccr_mc() - Parse the Status, Control and Configuration
1318  *                           Register Map Offsets for Multi-Chip SPI Memory
1319  *                           Devices.
1320  * @nor:		pointer to a 'struct spi_nor'
1321  * @sccr_mc_header:	pointer to the 'struct sfdp_parameter_header' describing
1322  *			the SCCR Map offsets table length and version.
1323  *
1324  * Return: 0 on success, -errno otherwise.
1325  */
1326 static int spi_nor_parse_sccr_mc(struct spi_nor *nor,
1327 				 const struct sfdp_parameter_header *sccr_mc_header)
1328 {
1329 	struct spi_nor_flash_parameter *params = nor->params;
1330 	u32 *dwords, addr;
1331 	u8 i, n_dice;
1332 	size_t len;
1333 	int ret;
1334 
1335 	len = sccr_mc_header->length * sizeof(*dwords);
1336 	dwords = kmalloc(len, GFP_KERNEL);
1337 	if (!dwords)
1338 		return -ENOMEM;
1339 
1340 	addr = SFDP_PARAM_HEADER_PTP(sccr_mc_header);
1341 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1342 	if (ret)
1343 		goto out;
1344 
1345 	le32_to_cpu_array(dwords, sccr_mc_header->length);
1346 
1347 	/*
1348 	 * Pair of DOWRDs (volatile and non-volatile register offsets) per
1349 	 * additional die. Hence, length = 2 * (number of additional dice).
1350 	 */
1351 	n_dice = 1 + sccr_mc_header->length / 2;
1352 
1353 	/* Address offset for volatile registers of additional dice */
1354 	params->vreg_offset =
1355 			devm_krealloc(nor->dev, params->vreg_offset,
1356 				      n_dice * sizeof(*dwords),
1357 				      GFP_KERNEL);
1358 	if (!params->vreg_offset) {
1359 		ret = -ENOMEM;
1360 		goto out;
1361 	}
1362 
1363 	for (i = 1; i < n_dice; i++)
1364 		params->vreg_offset[i] = dwords[SFDP_DWORD(i) * 2];
1365 
1366 	params->n_dice = n_dice;
1367 
1368 out:
1369 	kfree(dwords);
1370 	return ret;
1371 }
1372 
1373 /**
1374  * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
1375  * after SFDP has been parsed. Called only for flashes that define JESD216 SFDP
1376  * tables.
1377  * @nor:	pointer to a 'struct spi_nor'
1378  *
1379  * Used to tweak various flash parameters when information provided by the SFDP
1380  * tables are wrong.
1381  */
1382 static int spi_nor_post_sfdp_fixups(struct spi_nor *nor)
1383 {
1384 	int ret;
1385 
1386 	if (nor->manufacturer && nor->manufacturer->fixups &&
1387 	    nor->manufacturer->fixups->post_sfdp) {
1388 		ret = nor->manufacturer->fixups->post_sfdp(nor);
1389 		if (ret)
1390 			return ret;
1391 	}
1392 
1393 	if (nor->info->fixups && nor->info->fixups->post_sfdp)
1394 		return nor->info->fixups->post_sfdp(nor);
1395 
1396 	return 0;
1397 }
1398 
1399 /**
1400  * spi_nor_check_sfdp_signature() - check for a valid SFDP signature
1401  * @nor:	pointer to a 'struct spi_nor'
1402  *
1403  * Used to detect if the flash supports the RDSFDP command as well as the
1404  * presence of a valid SFDP table.
1405  *
1406  * Return: 0 on success, -errno otherwise.
1407  */
1408 int spi_nor_check_sfdp_signature(struct spi_nor *nor)
1409 {
1410 	u32 signature;
1411 	int err;
1412 
1413 	/* Get the SFDP header. */
1414 	err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(signature),
1415 					   &signature);
1416 	if (err < 0)
1417 		return err;
1418 
1419 	/* Check the SFDP signature. */
1420 	if (le32_to_cpu(signature) != SFDP_SIGNATURE)
1421 		return -EINVAL;
1422 
1423 	return 0;
1424 }
1425 
1426 /**
1427  * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
1428  * @nor:		pointer to a 'struct spi_nor'
1429  *
1430  * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
1431  * specification. This is a standard which tends to supported by almost all
1432  * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
1433  * runtime the main parameters needed to perform basic SPI flash operations such
1434  * as Fast Read, Page Program or Sector Erase commands.
1435  *
1436  * Return: 0 on success, -errno otherwise.
1437  */
1438 int spi_nor_parse_sfdp(struct spi_nor *nor)
1439 {
1440 	const struct sfdp_parameter_header *param_header, *bfpt_header;
1441 	struct sfdp_parameter_header *param_headers = NULL;
1442 	struct sfdp_header header;
1443 	struct device *dev = nor->dev;
1444 	struct sfdp *sfdp;
1445 	size_t sfdp_size;
1446 	size_t psize;
1447 	int i, err;
1448 
1449 	/* Get the SFDP header. */
1450 	err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header);
1451 	if (err < 0)
1452 		return err;
1453 
1454 	/* Check the SFDP header version. */
1455 	if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
1456 	    header.major != SFDP_JESD216_MAJOR)
1457 		return -EINVAL;
1458 
1459 	/*
1460 	 * Verify that the first and only mandatory parameter header is a
1461 	 * Basic Flash Parameter Table header as specified in JESD216.
1462 	 */
1463 	bfpt_header = &header.bfpt_header;
1464 	if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
1465 	    bfpt_header->major != SFDP_JESD216_MAJOR)
1466 		return -EINVAL;
1467 
1468 	sfdp_size = SFDP_PARAM_HEADER_PTP(bfpt_header) +
1469 		    SFDP_PARAM_HEADER_PARAM_LEN(bfpt_header);
1470 
1471 	/*
1472 	 * Allocate memory then read all parameter headers with a single
1473 	 * Read SFDP command. These parameter headers will actually be parsed
1474 	 * twice: a first time to get the latest revision of the basic flash
1475 	 * parameter table, then a second time to handle the supported optional
1476 	 * tables.
1477 	 * Hence we read the parameter headers once for all to reduce the
1478 	 * processing time. Also we use kmalloc() instead of devm_kmalloc()
1479 	 * because we don't need to keep these parameter headers: the allocated
1480 	 * memory is always released with kfree() before exiting this function.
1481 	 */
1482 	if (header.nph) {
1483 		psize = header.nph * sizeof(*param_headers);
1484 
1485 		param_headers = kmalloc(psize, GFP_KERNEL);
1486 		if (!param_headers)
1487 			return -ENOMEM;
1488 
1489 		err = spi_nor_read_sfdp(nor, sizeof(header),
1490 					psize, param_headers);
1491 		if (err < 0) {
1492 			dev_dbg(dev, "failed to read SFDP parameter headers\n");
1493 			goto exit;
1494 		}
1495 	}
1496 
1497 	/*
1498 	 * Cache the complete SFDP data. It is not (easily) possible to fetch
1499 	 * SFDP after probe time and we need it for the sysfs access.
1500 	 */
1501 	for (i = 0; i < header.nph; i++) {
1502 		param_header = &param_headers[i];
1503 		sfdp_size = max_t(size_t, sfdp_size,
1504 				  SFDP_PARAM_HEADER_PTP(param_header) +
1505 				  SFDP_PARAM_HEADER_PARAM_LEN(param_header));
1506 	}
1507 
1508 	/*
1509 	 * Limit the total size to a reasonable value to avoid allocating too
1510 	 * much memory just of because the flash returned some insane values.
1511 	 */
1512 	if (sfdp_size > PAGE_SIZE) {
1513 		dev_dbg(dev, "SFDP data (%zu) too big, truncating\n",
1514 			sfdp_size);
1515 		sfdp_size = PAGE_SIZE;
1516 	}
1517 
1518 	sfdp = devm_kzalloc(dev, sizeof(*sfdp), GFP_KERNEL);
1519 	if (!sfdp) {
1520 		err = -ENOMEM;
1521 		goto exit;
1522 	}
1523 
1524 	/*
1525 	 * The SFDP is organized in chunks of DWORDs. Thus, in theory, the
1526 	 * sfdp_size should be a multiple of DWORDs. But in case a flash
1527 	 * is not spec compliant, make sure that we have enough space to store
1528 	 * the complete SFDP data.
1529 	 */
1530 	sfdp->num_dwords = DIV_ROUND_UP(sfdp_size, sizeof(*sfdp->dwords));
1531 	sfdp->dwords = devm_kcalloc(dev, sfdp->num_dwords,
1532 				    sizeof(*sfdp->dwords), GFP_KERNEL);
1533 	if (!sfdp->dwords) {
1534 		err = -ENOMEM;
1535 		devm_kfree(dev, sfdp);
1536 		goto exit;
1537 	}
1538 
1539 	err = spi_nor_read_sfdp(nor, 0, sfdp_size, sfdp->dwords);
1540 	if (err < 0) {
1541 		dev_dbg(dev, "failed to read SFDP data\n");
1542 		devm_kfree(dev, sfdp->dwords);
1543 		devm_kfree(dev, sfdp);
1544 		goto exit;
1545 	}
1546 
1547 	nor->sfdp = sfdp;
1548 
1549 	/*
1550 	 * Check other parameter headers to get the latest revision of
1551 	 * the basic flash parameter table.
1552 	 */
1553 	for (i = 0; i < header.nph; i++) {
1554 		param_header = &param_headers[i];
1555 
1556 		if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
1557 		    param_header->major == SFDP_JESD216_MAJOR &&
1558 		    (param_header->minor > bfpt_header->minor ||
1559 		     (param_header->minor == bfpt_header->minor &&
1560 		      param_header->length > bfpt_header->length)))
1561 			bfpt_header = param_header;
1562 	}
1563 
1564 	err = spi_nor_parse_bfpt(nor, bfpt_header);
1565 	if (err)
1566 		goto exit;
1567 
1568 	/* Parse optional parameter tables. */
1569 	for (i = 0; i < header.nph; i++) {
1570 		param_header = &param_headers[i];
1571 
1572 		switch (SFDP_PARAM_HEADER_ID(param_header)) {
1573 		case SFDP_SECTOR_MAP_ID:
1574 			err = spi_nor_parse_smpt(nor, param_header);
1575 			break;
1576 
1577 		case SFDP_4BAIT_ID:
1578 			err = spi_nor_parse_4bait(nor, param_header);
1579 			break;
1580 
1581 		case SFDP_PROFILE1_ID:
1582 			err = spi_nor_parse_profile1(nor, param_header);
1583 			break;
1584 
1585 		case SFDP_SCCR_MAP_ID:
1586 			err = spi_nor_parse_sccr(nor, param_header);
1587 			break;
1588 
1589 		case SFDP_SCCR_MAP_MC_ID:
1590 			err = spi_nor_parse_sccr_mc(nor, param_header);
1591 			break;
1592 
1593 		default:
1594 			break;
1595 		}
1596 
1597 		if (err) {
1598 			dev_warn(dev, "Failed to parse optional parameter table: %04x\n",
1599 				 SFDP_PARAM_HEADER_ID(param_header));
1600 			/*
1601 			 * Let's not drop all information we extracted so far
1602 			 * if optional table parsers fail. In case of failing,
1603 			 * each optional parser is responsible to roll back to
1604 			 * the previously known spi_nor data.
1605 			 */
1606 			err = 0;
1607 		}
1608 	}
1609 
1610 	err = spi_nor_post_sfdp_fixups(nor);
1611 exit:
1612 	kfree(param_headers);
1613 	return err;
1614 }
1615