1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2005, Intec Automation Inc. 4 * Copyright (C) 2014, Freescale Semiconductor, Inc. 5 */ 6 7 #include <linux/bitfield.h> 8 #include <linux/mtd/spi-nor.h> 9 #include <linux/slab.h> 10 #include <linux/sort.h> 11 12 #include "core.h" 13 14 #define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb) 15 #define SFDP_PARAM_HEADER_PTP(p) \ 16 (((p)->parameter_table_pointer[2] << 16) | \ 17 ((p)->parameter_table_pointer[1] << 8) | \ 18 ((p)->parameter_table_pointer[0] << 0)) 19 #define SFDP_PARAM_HEADER_PARAM_LEN(p) ((p)->length * 4) 20 21 #define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */ 22 #define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */ 23 #define SFDP_4BAIT_ID 0xff84 /* 4-byte Address Instruction Table */ 24 #define SFDP_PROFILE1_ID 0xff05 /* xSPI Profile 1.0 table. */ 25 #define SFDP_SCCR_MAP_ID 0xff87 /* 26 * Status, Control and Configuration 27 * Register Map. 28 */ 29 #define SFDP_SCCR_MAP_MC_ID 0xff88 /* 30 * Status, Control and Configuration 31 * Register Map Offsets for Multi-Chip 32 * SPI Memory Devices. 33 */ 34 35 #define SFDP_SIGNATURE 0x50444653U 36 37 struct sfdp_header { 38 u32 signature; /* Ox50444653U <=> "SFDP" */ 39 u8 minor; 40 u8 major; 41 u8 nph; /* 0-base number of parameter headers */ 42 u8 unused; 43 44 /* Basic Flash Parameter Table. */ 45 struct sfdp_parameter_header bfpt_header; 46 }; 47 48 /* Fast Read settings. */ 49 struct sfdp_bfpt_read { 50 /* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */ 51 u32 hwcaps; 52 53 /* 54 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us 55 * whether the Fast Read x-y-z command is supported. 56 */ 57 u32 supported_dword; 58 u32 supported_bit; 59 60 /* 61 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD 62 * encodes the op code, the number of mode clocks and the number of wait 63 * states to be used by Fast Read x-y-z command. 64 */ 65 u32 settings_dword; 66 u32 settings_shift; 67 68 /* The SPI protocol for this Fast Read x-y-z command. */ 69 enum spi_nor_protocol proto; 70 }; 71 72 struct sfdp_bfpt_erase { 73 /* 74 * The half-word at offset <shift> in DWORD <dword> encodes the 75 * op code and erase sector size to be used by Sector Erase commands. 76 */ 77 u32 dword; 78 u32 shift; 79 }; 80 81 #define SMPT_CMD_ADDRESS_LEN_MASK GENMASK(23, 22) 82 #define SMPT_CMD_ADDRESS_LEN_0 (0x0UL << 22) 83 #define SMPT_CMD_ADDRESS_LEN_3 (0x1UL << 22) 84 #define SMPT_CMD_ADDRESS_LEN_4 (0x2UL << 22) 85 #define SMPT_CMD_ADDRESS_LEN_USE_CURRENT (0x3UL << 22) 86 87 #define SMPT_CMD_READ_DUMMY_MASK GENMASK(19, 16) 88 #define SMPT_CMD_READ_DUMMY_SHIFT 16 89 #define SMPT_CMD_READ_DUMMY(_cmd) \ 90 (((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT) 91 #define SMPT_CMD_READ_DUMMY_IS_VARIABLE 0xfUL 92 93 #define SMPT_CMD_READ_DATA_MASK GENMASK(31, 24) 94 #define SMPT_CMD_READ_DATA_SHIFT 24 95 #define SMPT_CMD_READ_DATA(_cmd) \ 96 (((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT) 97 98 #define SMPT_CMD_OPCODE_MASK GENMASK(15, 8) 99 #define SMPT_CMD_OPCODE_SHIFT 8 100 #define SMPT_CMD_OPCODE(_cmd) \ 101 (((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT) 102 103 #define SMPT_MAP_REGION_COUNT_MASK GENMASK(23, 16) 104 #define SMPT_MAP_REGION_COUNT_SHIFT 16 105 #define SMPT_MAP_REGION_COUNT(_header) \ 106 ((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \ 107 SMPT_MAP_REGION_COUNT_SHIFT) + 1) 108 109 #define SMPT_MAP_ID_MASK GENMASK(15, 8) 110 #define SMPT_MAP_ID_SHIFT 8 111 #define SMPT_MAP_ID(_header) \ 112 (((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT) 113 114 #define SMPT_MAP_REGION_SIZE_MASK GENMASK(31, 8) 115 #define SMPT_MAP_REGION_SIZE_SHIFT 8 116 #define SMPT_MAP_REGION_SIZE(_region) \ 117 (((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \ 118 SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256) 119 120 #define SMPT_MAP_REGION_ERASE_TYPE_MASK GENMASK(3, 0) 121 #define SMPT_MAP_REGION_ERASE_TYPE(_region) \ 122 ((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK) 123 124 #define SMPT_DESC_TYPE_MAP BIT(1) 125 #define SMPT_DESC_END BIT(0) 126 127 #define SFDP_4BAIT_DWORD_MAX 2 128 129 struct sfdp_4bait { 130 /* The hardware capability. */ 131 u32 hwcaps; 132 133 /* 134 * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether 135 * the associated 4-byte address op code is supported. 136 */ 137 u32 supported_bit; 138 }; 139 140 /** 141 * spi_nor_read_raw() - raw read of serial flash memory. read_opcode, 142 * addr_nbytes and read_dummy members of the struct spi_nor 143 * should be previously set. 144 * @nor: pointer to a 'struct spi_nor' 145 * @addr: offset in the serial flash memory 146 * @len: number of bytes to read 147 * @buf: buffer where the data is copied into (dma-safe memory) 148 * 149 * Return: 0 on success, -errno otherwise. 150 */ 151 static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf) 152 { 153 ssize_t ret; 154 155 while (len) { 156 ret = spi_nor_read_data(nor, addr, len, buf); 157 if (ret < 0) 158 return ret; 159 if (!ret || ret > len) 160 return -EIO; 161 162 buf += ret; 163 addr += ret; 164 len -= ret; 165 } 166 return 0; 167 } 168 169 /** 170 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters. 171 * @nor: pointer to a 'struct spi_nor' 172 * @addr: offset in the SFDP area to start reading data from 173 * @len: number of bytes to read 174 * @buf: buffer where the SFDP data are copied into (dma-safe memory) 175 * 176 * Whatever the actual numbers of bytes for address and dummy cycles are 177 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always 178 * followed by a 3-byte address and 8 dummy clock cycles. 179 * 180 * Return: 0 on success, -errno otherwise. 181 */ 182 static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr, 183 size_t len, void *buf) 184 { 185 u8 addr_nbytes, read_opcode, read_dummy; 186 int ret; 187 188 read_opcode = nor->read_opcode; 189 addr_nbytes = nor->addr_nbytes; 190 read_dummy = nor->read_dummy; 191 192 nor->read_opcode = SPINOR_OP_RDSFDP; 193 nor->addr_nbytes = 3; 194 nor->read_dummy = 8; 195 196 ret = spi_nor_read_raw(nor, addr, len, buf); 197 198 nor->read_opcode = read_opcode; 199 nor->addr_nbytes = addr_nbytes; 200 nor->read_dummy = read_dummy; 201 202 return ret; 203 } 204 205 /** 206 * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters. 207 * @nor: pointer to a 'struct spi_nor' 208 * @addr: offset in the SFDP area to start reading data from 209 * @len: number of bytes to read 210 * @buf: buffer where the SFDP data are copied into 211 * 212 * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not 213 * guaranteed to be dma-safe. 214 * 215 * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp() 216 * otherwise. 217 */ 218 static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr, 219 size_t len, void *buf) 220 { 221 void *dma_safe_buf; 222 int ret; 223 224 dma_safe_buf = kmalloc(len, GFP_KERNEL); 225 if (!dma_safe_buf) 226 return -ENOMEM; 227 228 ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf); 229 memcpy(buf, dma_safe_buf, len); 230 kfree(dma_safe_buf); 231 232 return ret; 233 } 234 235 static void 236 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read, 237 u16 half, 238 enum spi_nor_protocol proto) 239 { 240 read->num_mode_clocks = (half >> 5) & 0x07; 241 read->num_wait_states = (half >> 0) & 0x1f; 242 read->opcode = (half >> 8) & 0xff; 243 read->proto = proto; 244 } 245 246 static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = { 247 /* Fast Read 1-1-2 */ 248 { 249 SNOR_HWCAPS_READ_1_1_2, 250 SFDP_DWORD(1), BIT(16), /* Supported bit */ 251 SFDP_DWORD(4), 0, /* Settings */ 252 SNOR_PROTO_1_1_2, 253 }, 254 255 /* Fast Read 1-2-2 */ 256 { 257 SNOR_HWCAPS_READ_1_2_2, 258 SFDP_DWORD(1), BIT(20), /* Supported bit */ 259 SFDP_DWORD(4), 16, /* Settings */ 260 SNOR_PROTO_1_2_2, 261 }, 262 263 /* Fast Read 2-2-2 */ 264 { 265 SNOR_HWCAPS_READ_2_2_2, 266 SFDP_DWORD(5), BIT(0), /* Supported bit */ 267 SFDP_DWORD(6), 16, /* Settings */ 268 SNOR_PROTO_2_2_2, 269 }, 270 271 /* Fast Read 1-1-4 */ 272 { 273 SNOR_HWCAPS_READ_1_1_4, 274 SFDP_DWORD(1), BIT(22), /* Supported bit */ 275 SFDP_DWORD(3), 16, /* Settings */ 276 SNOR_PROTO_1_1_4, 277 }, 278 279 /* Fast Read 1-4-4 */ 280 { 281 SNOR_HWCAPS_READ_1_4_4, 282 SFDP_DWORD(1), BIT(21), /* Supported bit */ 283 SFDP_DWORD(3), 0, /* Settings */ 284 SNOR_PROTO_1_4_4, 285 }, 286 287 /* Fast Read 4-4-4 */ 288 { 289 SNOR_HWCAPS_READ_4_4_4, 290 SFDP_DWORD(5), BIT(4), /* Supported bit */ 291 SFDP_DWORD(7), 16, /* Settings */ 292 SNOR_PROTO_4_4_4, 293 }, 294 }; 295 296 static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = { 297 /* Erase Type 1 in DWORD8 bits[15:0] */ 298 {SFDP_DWORD(8), 0}, 299 300 /* Erase Type 2 in DWORD8 bits[31:16] */ 301 {SFDP_DWORD(8), 16}, 302 303 /* Erase Type 3 in DWORD9 bits[15:0] */ 304 {SFDP_DWORD(9), 0}, 305 306 /* Erase Type 4 in DWORD9 bits[31:16] */ 307 {SFDP_DWORD(9), 16}, 308 }; 309 310 /** 311 * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT 312 * @erase: pointer to a structure that describes a SPI NOR erase type 313 * @size: the size of the sector/block erased by the erase type 314 * @opcode: the SPI command op code to erase the sector/block 315 * @i: erase type index as sorted in the Basic Flash Parameter Table 316 * 317 * The supported Erase Types will be sorted at init in ascending order, with 318 * the smallest Erase Type size being the first member in the erase_type array 319 * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in 320 * the Basic Flash Parameter Table since it will be used later on to 321 * synchronize with the supported Erase Types defined in SFDP optional tables. 322 */ 323 static void 324 spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase, 325 u32 size, u8 opcode, u8 i) 326 { 327 erase->idx = i; 328 spi_nor_set_erase_type(erase, size, opcode); 329 } 330 331 /** 332 * spi_nor_map_cmp_erase_type() - compare the map's erase types by size 333 * @l: member in the left half of the map's erase_type array 334 * @r: member in the right half of the map's erase_type array 335 * 336 * Comparison function used in the sort() call to sort in ascending order the 337 * map's erase types, the smallest erase type size being the first member in the 338 * sorted erase_type array. 339 * 340 * Return: the result of @l->size - @r->size 341 */ 342 static int spi_nor_map_cmp_erase_type(const void *l, const void *r) 343 { 344 const struct spi_nor_erase_type *left = l, *right = r; 345 346 return left->size - right->size; 347 } 348 349 /** 350 * spi_nor_sort_erase_mask() - sort erase mask 351 * @map: the erase map of the SPI NOR 352 * @erase_mask: the erase type mask to be sorted 353 * 354 * Replicate the sort done for the map's erase types in BFPT: sort the erase 355 * mask in ascending order with the smallest erase type size starting from 356 * BIT(0) in the sorted erase mask. 357 * 358 * Return: sorted erase mask. 359 */ 360 static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask) 361 { 362 struct spi_nor_erase_type *erase_type = map->erase_type; 363 int i; 364 u8 sorted_erase_mask = 0; 365 366 if (!erase_mask) 367 return 0; 368 369 /* Replicate the sort done for the map's erase types. */ 370 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) 371 if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx)) 372 sorted_erase_mask |= BIT(i); 373 374 return sorted_erase_mask; 375 } 376 377 /** 378 * spi_nor_regions_sort_erase_types() - sort erase types in each region 379 * @map: the erase map of the SPI NOR 380 * 381 * Function assumes that the erase types defined in the erase map are already 382 * sorted in ascending order, with the smallest erase type size being the first 383 * member in the erase_type array. It replicates the sort done for the map's 384 * erase types. Each region's erase bitmask will indicate which erase types are 385 * supported from the sorted erase types defined in the erase map. 386 * Sort the all region's erase type at init in order to speed up the process of 387 * finding the best erase command at runtime. 388 */ 389 static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map) 390 { 391 struct spi_nor_erase_region *region = map->regions; 392 u8 sorted_erase_mask; 393 unsigned int i; 394 395 for (i = 0; i < map->n_regions; i++) { 396 sorted_erase_mask = 397 spi_nor_sort_erase_mask(map, region[i].erase_mask); 398 399 /* Overwrite erase mask. */ 400 region[i].erase_mask = sorted_erase_mask; 401 } 402 } 403 404 /** 405 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table. 406 * @nor: pointer to a 'struct spi_nor' 407 * @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing 408 * the Basic Flash Parameter Table length and version 409 * 410 * The Basic Flash Parameter Table is the main and only mandatory table as 411 * defined by the SFDP (JESD216) specification. 412 * It provides us with the total size (memory density) of the data array and 413 * the number of address bytes for Fast Read, Page Program and Sector Erase 414 * commands. 415 * For Fast READ commands, it also gives the number of mode clock cycles and 416 * wait states (regrouped in the number of dummy clock cycles) for each 417 * supported instruction op code. 418 * For Page Program, the page size is now available since JESD216 rev A, however 419 * the supported instruction op codes are still not provided. 420 * For Sector Erase commands, this table stores the supported instruction op 421 * codes and the associated sector sizes. 422 * Finally, the Quad Enable Requirements (QER) are also available since JESD216 423 * rev A. The QER bits encode the manufacturer dependent procedure to be 424 * executed to set the Quad Enable (QE) bit in some internal register of the 425 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before 426 * sending any Quad SPI command to the memory. Actually, setting the QE bit 427 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2 428 * and IO3 hence enabling 4 (Quad) I/O lines. 429 * 430 * Return: 0 on success, -errno otherwise. 431 */ 432 static int spi_nor_parse_bfpt(struct spi_nor *nor, 433 const struct sfdp_parameter_header *bfpt_header) 434 { 435 struct spi_nor_flash_parameter *params = nor->params; 436 struct spi_nor_erase_map *map = ¶ms->erase_map; 437 struct spi_nor_erase_type *erase_type = map->erase_type; 438 struct sfdp_bfpt bfpt; 439 size_t len; 440 int i, cmd, err; 441 u32 addr, val; 442 u32 dword; 443 u16 half; 444 u8 erase_mask; 445 u8 wait_states, mode_clocks, opcode; 446 447 /* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */ 448 if (bfpt_header->length < BFPT_DWORD_MAX_JESD216) 449 return -EINVAL; 450 451 /* Read the Basic Flash Parameter Table. */ 452 len = min_t(size_t, sizeof(bfpt), 453 bfpt_header->length * sizeof(u32)); 454 addr = SFDP_PARAM_HEADER_PTP(bfpt_header); 455 memset(&bfpt, 0, sizeof(bfpt)); 456 err = spi_nor_read_sfdp_dma_unsafe(nor, addr, len, &bfpt); 457 if (err < 0) 458 return err; 459 460 /* Fix endianness of the BFPT DWORDs. */ 461 le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX); 462 463 /* Number of address bytes. */ 464 switch (bfpt.dwords[SFDP_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) { 465 case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY: 466 case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4: 467 params->addr_nbytes = 3; 468 params->addr_mode_nbytes = 3; 469 break; 470 471 case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY: 472 params->addr_nbytes = 4; 473 params->addr_mode_nbytes = 4; 474 break; 475 476 default: 477 break; 478 } 479 480 /* Flash Memory Density (in bits). */ 481 val = bfpt.dwords[SFDP_DWORD(2)]; 482 if (val & BIT(31)) { 483 val &= ~BIT(31); 484 485 /* 486 * Prevent overflows on params->size. Anyway, a NOR of 2^64 487 * bits is unlikely to exist so this error probably means 488 * the BFPT we are reading is corrupted/wrong. 489 */ 490 if (val > 63) 491 return -EINVAL; 492 493 params->size = 1ULL << val; 494 } else { 495 params->size = val + 1; 496 } 497 params->size >>= 3; /* Convert to bytes. */ 498 499 /* Fast Read settings. */ 500 for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) { 501 const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i]; 502 struct spi_nor_read_command *read; 503 504 if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) { 505 params->hwcaps.mask &= ~rd->hwcaps; 506 continue; 507 } 508 509 params->hwcaps.mask |= rd->hwcaps; 510 cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps); 511 read = ¶ms->reads[cmd]; 512 half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift; 513 spi_nor_set_read_settings_from_bfpt(read, half, rd->proto); 514 } 515 516 /* 517 * Sector Erase settings. Reinitialize the uniform erase map using the 518 * Erase Types defined in the bfpt table. 519 */ 520 erase_mask = 0; 521 memset(¶ms->erase_map, 0, sizeof(params->erase_map)); 522 for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) { 523 const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i]; 524 u32 erasesize; 525 u8 opcode; 526 527 half = bfpt.dwords[er->dword] >> er->shift; 528 erasesize = half & 0xff; 529 530 /* erasesize == 0 means this Erase Type is not supported. */ 531 if (!erasesize) 532 continue; 533 534 erasesize = 1U << erasesize; 535 opcode = (half >> 8) & 0xff; 536 erase_mask |= BIT(i); 537 spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize, 538 opcode, i); 539 } 540 spi_nor_init_uniform_erase_map(map, erase_mask, params->size); 541 /* 542 * Sort all the map's Erase Types in ascending order with the smallest 543 * erase size being the first member in the erase_type array. 544 */ 545 sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]), 546 spi_nor_map_cmp_erase_type, NULL); 547 /* 548 * Sort the erase types in the uniform region in order to update the 549 * uniform_erase_type bitmask. The bitmask will be used later on when 550 * selecting the uniform erase. 551 */ 552 spi_nor_regions_sort_erase_types(map); 553 554 /* Stop here if not JESD216 rev A or later. */ 555 if (bfpt_header->length == BFPT_DWORD_MAX_JESD216) 556 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); 557 558 /* Page size: this field specifies 'N' so the page size = 2^N bytes. */ 559 val = bfpt.dwords[SFDP_DWORD(11)]; 560 val &= BFPT_DWORD11_PAGE_SIZE_MASK; 561 val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT; 562 params->page_size = 1U << val; 563 564 /* Quad Enable Requirements. */ 565 switch (bfpt.dwords[SFDP_DWORD(15)] & BFPT_DWORD15_QER_MASK) { 566 case BFPT_DWORD15_QER_NONE: 567 params->quad_enable = NULL; 568 break; 569 570 case BFPT_DWORD15_QER_SR2_BIT1_BUGGY: 571 /* 572 * Writing only one byte to the Status Register has the 573 * side-effect of clearing Status Register 2. 574 */ 575 case BFPT_DWORD15_QER_SR2_BIT1_NO_RD: 576 /* 577 * Read Configuration Register (35h) instruction is not 578 * supported. 579 */ 580 nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR; 581 params->quad_enable = spi_nor_sr2_bit1_quad_enable; 582 break; 583 584 case BFPT_DWORD15_QER_SR1_BIT6: 585 nor->flags &= ~SNOR_F_HAS_16BIT_SR; 586 params->quad_enable = spi_nor_sr1_bit6_quad_enable; 587 break; 588 589 case BFPT_DWORD15_QER_SR2_BIT7: 590 nor->flags &= ~SNOR_F_HAS_16BIT_SR; 591 params->quad_enable = spi_nor_sr2_bit7_quad_enable; 592 break; 593 594 case BFPT_DWORD15_QER_SR2_BIT1: 595 /* 596 * JESD216 rev B or later does not specify if writing only one 597 * byte to the Status Register clears or not the Status 598 * Register 2, so let's be cautious and keep the default 599 * assumption of a 16-bit Write Status (01h) command. 600 */ 601 nor->flags |= SNOR_F_HAS_16BIT_SR; 602 603 params->quad_enable = spi_nor_sr2_bit1_quad_enable; 604 break; 605 606 default: 607 dev_dbg(nor->dev, "BFPT QER reserved value used\n"); 608 break; 609 } 610 611 dword = bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_4B_ADDR_MODE_MASK; 612 if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_BRWR)) 613 params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_brwr; 614 else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_WREN_EN4B_EX4B)) 615 params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_wren_en4b_ex4b; 616 else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_EN4B_EX4B)) 617 params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_en4b_ex4b; 618 else 619 dev_dbg(nor->dev, "BFPT: 4-Byte Address Mode method is not recognized or not implemented\n"); 620 621 /* Soft Reset support. */ 622 if (bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_SWRST_EN_RST) 623 nor->flags |= SNOR_F_SOFT_RESET; 624 625 /* Stop here if not JESD216 rev C or later. */ 626 if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B) 627 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); 628 629 /* Parse 1-1-8 read instruction */ 630 opcode = FIELD_GET(BFPT_DWORD17_RD_1_1_8_CMD, bfpt.dwords[SFDP_DWORD(17)]); 631 if (opcode) { 632 mode_clocks = FIELD_GET(BFPT_DWORD17_RD_1_1_8_MODE_CLOCKS, 633 bfpt.dwords[SFDP_DWORD(17)]); 634 wait_states = FIELD_GET(BFPT_DWORD17_RD_1_1_8_WAIT_STATES, 635 bfpt.dwords[SFDP_DWORD(17)]); 636 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8; 637 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8], 638 mode_clocks, wait_states, opcode, 639 SNOR_PROTO_1_1_8); 640 } 641 642 /* Parse 1-8-8 read instruction */ 643 opcode = FIELD_GET(BFPT_DWORD17_RD_1_8_8_CMD, bfpt.dwords[SFDP_DWORD(17)]); 644 if (opcode) { 645 mode_clocks = FIELD_GET(BFPT_DWORD17_RD_1_8_8_MODE_CLOCKS, 646 bfpt.dwords[SFDP_DWORD(17)]); 647 wait_states = FIELD_GET(BFPT_DWORD17_RD_1_8_8_WAIT_STATES, 648 bfpt.dwords[SFDP_DWORD(17)]); 649 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_8_8; 650 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_8_8], 651 mode_clocks, wait_states, opcode, 652 SNOR_PROTO_1_8_8); 653 } 654 655 /* 8D-8D-8D command extension. */ 656 switch (bfpt.dwords[SFDP_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) { 657 case BFPT_DWORD18_CMD_EXT_REP: 658 nor->cmd_ext_type = SPI_NOR_EXT_REPEAT; 659 break; 660 661 case BFPT_DWORD18_CMD_EXT_INV: 662 nor->cmd_ext_type = SPI_NOR_EXT_INVERT; 663 break; 664 665 case BFPT_DWORD18_CMD_EXT_RES: 666 dev_dbg(nor->dev, "Reserved command extension used\n"); 667 break; 668 669 case BFPT_DWORD18_CMD_EXT_16B: 670 dev_dbg(nor->dev, "16-bit opcodes not supported\n"); 671 return -EOPNOTSUPP; 672 } 673 674 /* Byte order in 8D-8D-8D mode */ 675 if (bfpt.dwords[SFDP_DWORD(18)] & BFPT_DWORD18_BYTE_ORDER_SWAPPED) 676 nor->flags |= SNOR_F_SWAP16; 677 678 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); 679 } 680 681 /** 682 * spi_nor_smpt_addr_nbytes() - return the number of address bytes used in the 683 * configuration detection command. 684 * @nor: pointer to a 'struct spi_nor' 685 * @settings: configuration detection command descriptor, dword1 686 */ 687 static u8 spi_nor_smpt_addr_nbytes(const struct spi_nor *nor, const u32 settings) 688 { 689 switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) { 690 case SMPT_CMD_ADDRESS_LEN_0: 691 return 0; 692 case SMPT_CMD_ADDRESS_LEN_3: 693 return 3; 694 case SMPT_CMD_ADDRESS_LEN_4: 695 return 4; 696 case SMPT_CMD_ADDRESS_LEN_USE_CURRENT: 697 default: 698 return nor->params->addr_mode_nbytes; 699 } 700 } 701 702 static void spi_nor_smpt_read_dummy_fixups(const struct spi_nor *nor, 703 u8 *read_dummy) 704 { 705 if (nor->manufacturer && nor->manufacturer->fixups && 706 nor->manufacturer->fixups->smpt_read_dummy) 707 nor->manufacturer->fixups->smpt_read_dummy(nor, read_dummy); 708 709 if (nor->info->fixups && nor->info->fixups->smpt_read_dummy) 710 nor->info->fixups->smpt_read_dummy(nor, read_dummy); 711 } 712 713 /** 714 * spi_nor_smpt_read_dummy() - return the configuration detection command read 715 * latency, in clock cycles. 716 * @nor: pointer to a 'struct spi_nor' 717 * @settings: configuration detection command descriptor, dword1 718 * 719 * Return: the number of dummy cycles for an SMPT read 720 */ 721 static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings) 722 { 723 u8 read_dummy = SMPT_CMD_READ_DUMMY(settings); 724 725 if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE) { 726 read_dummy = nor->read_dummy; 727 spi_nor_smpt_read_dummy_fixups(nor, &read_dummy); 728 } 729 730 return read_dummy; 731 } 732 733 static void spi_nor_smpt_map_id_fixups(const struct spi_nor *nor, u8 *map_id) 734 { 735 if (nor->manufacturer && nor->manufacturer->fixups && 736 nor->manufacturer->fixups->smpt_map_id) 737 nor->manufacturer->fixups->smpt_map_id(nor, map_id); 738 739 if (nor->info->fixups && nor->info->fixups->smpt_map_id) 740 nor->info->fixups->smpt_map_id(nor, map_id); 741 } 742 743 /** 744 * spi_nor_get_map_in_use() - get the configuration map in use 745 * @nor: pointer to a 'struct spi_nor' 746 * @smpt: pointer to the sector map parameter table 747 * @smpt_len: sector map parameter table length 748 * 749 * Return: pointer to the map in use, ERR_PTR(-errno) otherwise. 750 */ 751 static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt, 752 u8 smpt_len) 753 { 754 const u32 *ret; 755 u8 *buf; 756 u32 addr; 757 int err; 758 u8 i; 759 u8 addr_nbytes, read_opcode, read_dummy; 760 u8 read_data_mask, map_id; 761 762 /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */ 763 buf = kmalloc(sizeof(*buf), GFP_KERNEL); 764 if (!buf) 765 return ERR_PTR(-ENOMEM); 766 767 addr_nbytes = nor->addr_nbytes; 768 read_dummy = nor->read_dummy; 769 read_opcode = nor->read_opcode; 770 771 map_id = 0; 772 /* Determine if there are any optional Detection Command Descriptors */ 773 for (i = 0; i < smpt_len; i += 2) { 774 if (smpt[i] & SMPT_DESC_TYPE_MAP) 775 break; 776 777 read_data_mask = SMPT_CMD_READ_DATA(smpt[i]); 778 nor->addr_nbytes = spi_nor_smpt_addr_nbytes(nor, smpt[i]); 779 nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]); 780 nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]); 781 addr = smpt[i + 1]; 782 783 err = spi_nor_read_raw(nor, addr, 1, buf); 784 if (err) { 785 ret = ERR_PTR(err); 786 goto out; 787 } 788 789 /* 790 * Build an index value that is used to select the Sector Map 791 * Configuration that is currently in use. 792 */ 793 map_id = map_id << 1 | !!(*buf & read_data_mask); 794 } 795 796 spi_nor_smpt_map_id_fixups(nor, &map_id); 797 798 /* 799 * If command descriptors are provided, they always precede map 800 * descriptors in the table. There is no need to start the iteration 801 * over smpt array all over again. 802 * 803 * Find the matching configuration map. 804 */ 805 ret = ERR_PTR(-EINVAL); 806 while (i < smpt_len) { 807 if (SMPT_MAP_ID(smpt[i]) == map_id) { 808 ret = smpt + i; 809 break; 810 } 811 812 /* 813 * If there are no more configuration map descriptors and no 814 * configuration ID matched the configuration identifier, the 815 * sector address map is unknown. 816 */ 817 if (smpt[i] & SMPT_DESC_END) 818 break; 819 820 /* increment the table index to the next map */ 821 i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1; 822 } 823 824 /* fall through */ 825 out: 826 kfree(buf); 827 nor->addr_nbytes = addr_nbytes; 828 nor->read_dummy = read_dummy; 829 nor->read_opcode = read_opcode; 830 return ret; 831 } 832 833 /** 834 * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid 835 * @region: pointer to a structure that describes a SPI NOR erase region 836 * @erase: pointer to a structure that describes a SPI NOR erase type 837 * @erase_type: erase type bitmask 838 */ 839 static void 840 spi_nor_region_check_overlay(struct spi_nor_erase_region *region, 841 const struct spi_nor_erase_type *erase, 842 const u8 erase_type) 843 { 844 int i; 845 846 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { 847 if (!(erase[i].size && erase_type & BIT(erase[i].idx))) 848 continue; 849 if (region->size & erase[i].size_mask) { 850 region->overlaid = true; 851 return; 852 } 853 } 854 } 855 856 /** 857 * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map 858 * @nor: pointer to a 'struct spi_nor' 859 * @smpt: pointer to the sector map parameter table 860 * 861 * Return: 0 on success, -errno otherwise. 862 */ 863 static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor, 864 const u32 *smpt) 865 { 866 struct spi_nor_erase_map *map = &nor->params->erase_map; 867 struct spi_nor_erase_type *erase = map->erase_type; 868 struct spi_nor_erase_region *region; 869 u64 offset; 870 u32 region_count; 871 int i, j; 872 u8 uniform_erase_type, save_uniform_erase_type; 873 u8 erase_type, regions_erase_type; 874 875 region_count = SMPT_MAP_REGION_COUNT(*smpt); 876 /* 877 * The regions will be freed when the driver detaches from the 878 * device. 879 */ 880 region = devm_kcalloc(nor->dev, region_count, sizeof(*region), 881 GFP_KERNEL); 882 if (!region) 883 return -ENOMEM; 884 map->regions = region; 885 map->n_regions = region_count; 886 887 uniform_erase_type = 0xff; 888 regions_erase_type = 0; 889 offset = 0; 890 /* Populate regions. */ 891 for (i = 0; i < region_count; i++) { 892 j = i + 1; /* index for the region dword */ 893 region[i].offset = offset; 894 region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]); 895 erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]); 896 region[i].erase_mask = erase_type; 897 898 spi_nor_region_check_overlay(®ion[i], erase, erase_type); 899 900 /* 901 * Save the erase types that are supported in all regions and 902 * can erase the entire flash memory. 903 */ 904 uniform_erase_type &= erase_type; 905 906 /* 907 * regions_erase_type mask will indicate all the erase types 908 * supported in this configuration map. 909 */ 910 regions_erase_type |= erase_type; 911 912 offset = region[i].offset + region[i].size; 913 } 914 915 save_uniform_erase_type = map->uniform_region.erase_mask; 916 map->uniform_region.erase_mask = 917 spi_nor_sort_erase_mask(map, 918 uniform_erase_type); 919 920 if (!regions_erase_type) { 921 /* 922 * Roll back to the previous uniform_erase_type mask, SMPT is 923 * broken. 924 */ 925 map->uniform_region.erase_mask = save_uniform_erase_type; 926 return -EINVAL; 927 } 928 929 /* 930 * BFPT advertises all the erase types supported by all the possible 931 * map configurations. Mask out the erase types that are not supported 932 * by the current map configuration. 933 */ 934 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) 935 if (!(regions_erase_type & BIT(erase[i].idx))) 936 spi_nor_mask_erase_type(&erase[i]); 937 938 return 0; 939 } 940 941 /** 942 * spi_nor_parse_smpt() - parse Sector Map Parameter Table 943 * @nor: pointer to a 'struct spi_nor' 944 * @smpt_header: sector map parameter table header 945 * 946 * This table is optional, but when available, we parse it to identify the 947 * location and size of sectors within the main data array of the flash memory 948 * device and to identify which Erase Types are supported by each sector. 949 * 950 * Return: 0 on success, -errno otherwise. 951 */ 952 static int spi_nor_parse_smpt(struct spi_nor *nor, 953 const struct sfdp_parameter_header *smpt_header) 954 { 955 const u32 *sector_map; 956 u32 *smpt; 957 size_t len; 958 u32 addr; 959 int ret; 960 961 /* Read the Sector Map Parameter Table. */ 962 len = smpt_header->length * sizeof(*smpt); 963 smpt = kmalloc(len, GFP_KERNEL); 964 if (!smpt) 965 return -ENOMEM; 966 967 addr = SFDP_PARAM_HEADER_PTP(smpt_header); 968 ret = spi_nor_read_sfdp(nor, addr, len, smpt); 969 if (ret) 970 goto out; 971 972 /* Fix endianness of the SMPT DWORDs. */ 973 le32_to_cpu_array(smpt, smpt_header->length); 974 975 sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length); 976 if (IS_ERR(sector_map)) { 977 ret = PTR_ERR(sector_map); 978 goto out; 979 } 980 981 ret = spi_nor_init_non_uniform_erase_map(nor, sector_map); 982 if (ret) 983 goto out; 984 985 spi_nor_regions_sort_erase_types(&nor->params->erase_map); 986 /* fall through */ 987 out: 988 kfree(smpt); 989 return ret; 990 } 991 992 /** 993 * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table 994 * @nor: pointer to a 'struct spi_nor'. 995 * @param_header: pointer to the 'struct sfdp_parameter_header' describing 996 * the 4-Byte Address Instruction Table length and version. 997 * 998 * Return: 0 on success, -errno otherwise. 999 */ 1000 static int spi_nor_parse_4bait(struct spi_nor *nor, 1001 const struct sfdp_parameter_header *param_header) 1002 { 1003 static const struct sfdp_4bait reads[] = { 1004 { SNOR_HWCAPS_READ, BIT(0) }, 1005 { SNOR_HWCAPS_READ_FAST, BIT(1) }, 1006 { SNOR_HWCAPS_READ_1_1_2, BIT(2) }, 1007 { SNOR_HWCAPS_READ_1_2_2, BIT(3) }, 1008 { SNOR_HWCAPS_READ_1_1_4, BIT(4) }, 1009 { SNOR_HWCAPS_READ_1_4_4, BIT(5) }, 1010 { SNOR_HWCAPS_READ_1_1_1_DTR, BIT(13) }, 1011 { SNOR_HWCAPS_READ_1_2_2_DTR, BIT(14) }, 1012 { SNOR_HWCAPS_READ_1_4_4_DTR, BIT(15) }, 1013 { SNOR_HWCAPS_READ_1_1_8, BIT(20) }, 1014 { SNOR_HWCAPS_READ_1_8_8, BIT(21) }, 1015 }; 1016 static const struct sfdp_4bait programs[] = { 1017 { SNOR_HWCAPS_PP, BIT(6) }, 1018 { SNOR_HWCAPS_PP_1_1_4, BIT(7) }, 1019 { SNOR_HWCAPS_PP_1_4_4, BIT(8) }, 1020 }; 1021 static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = { 1022 { 0u /* not used */, BIT(9) }, 1023 { 0u /* not used */, BIT(10) }, 1024 { 0u /* not used */, BIT(11) }, 1025 { 0u /* not used */, BIT(12) }, 1026 }; 1027 struct spi_nor_flash_parameter *params = nor->params; 1028 struct spi_nor_pp_command *params_pp = params->page_programs; 1029 struct spi_nor_erase_map *map = ¶ms->erase_map; 1030 struct spi_nor_erase_type *erase_type = map->erase_type; 1031 u32 *dwords; 1032 size_t len; 1033 u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask; 1034 int i, ret; 1035 1036 if (param_header->major != SFDP_JESD216_MAJOR || 1037 param_header->length < SFDP_4BAIT_DWORD_MAX) 1038 return -EINVAL; 1039 1040 /* Read the 4-byte Address Instruction Table. */ 1041 len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX; 1042 1043 /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */ 1044 dwords = kmalloc(len, GFP_KERNEL); 1045 if (!dwords) 1046 return -ENOMEM; 1047 1048 addr = SFDP_PARAM_HEADER_PTP(param_header); 1049 ret = spi_nor_read_sfdp(nor, addr, len, dwords); 1050 if (ret) 1051 goto out; 1052 1053 /* Fix endianness of the 4BAIT DWORDs. */ 1054 le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX); 1055 1056 /* 1057 * Compute the subset of (Fast) Read commands for which the 4-byte 1058 * version is supported. 1059 */ 1060 discard_hwcaps = 0; 1061 read_hwcaps = 0; 1062 for (i = 0; i < ARRAY_SIZE(reads); i++) { 1063 const struct sfdp_4bait *read = &reads[i]; 1064 1065 discard_hwcaps |= read->hwcaps; 1066 if ((params->hwcaps.mask & read->hwcaps) && 1067 (dwords[SFDP_DWORD(1)] & read->supported_bit)) 1068 read_hwcaps |= read->hwcaps; 1069 } 1070 1071 /* 1072 * Compute the subset of Page Program commands for which the 4-byte 1073 * version is supported. 1074 */ 1075 pp_hwcaps = 0; 1076 for (i = 0; i < ARRAY_SIZE(programs); i++) { 1077 const struct sfdp_4bait *program = &programs[i]; 1078 1079 /* 1080 * The 4 Byte Address Instruction (Optional) Table is the only 1081 * SFDP table that indicates support for Page Program Commands. 1082 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest 1083 * authority for specifying Page Program support. 1084 */ 1085 discard_hwcaps |= program->hwcaps; 1086 if (dwords[SFDP_DWORD(1)] & program->supported_bit) 1087 pp_hwcaps |= program->hwcaps; 1088 } 1089 1090 /* 1091 * Compute the subset of Sector Erase commands for which the 4-byte 1092 * version is supported. 1093 */ 1094 erase_mask = 0; 1095 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { 1096 const struct sfdp_4bait *erase = &erases[i]; 1097 1098 if (dwords[SFDP_DWORD(1)] & erase->supported_bit) 1099 erase_mask |= BIT(i); 1100 } 1101 1102 /* Replicate the sort done for the map's erase types in BFPT. */ 1103 erase_mask = spi_nor_sort_erase_mask(map, erase_mask); 1104 1105 /* 1106 * We need at least one 4-byte op code per read, program and erase 1107 * operation; the .read(), .write() and .erase() hooks share the 1108 * nor->addr_nbytes value. 1109 */ 1110 if (!read_hwcaps || !pp_hwcaps || !erase_mask) 1111 goto out; 1112 1113 /* 1114 * Discard all operations from the 4-byte instruction set which are 1115 * not supported by this memory. 1116 */ 1117 params->hwcaps.mask &= ~discard_hwcaps; 1118 params->hwcaps.mask |= (read_hwcaps | pp_hwcaps); 1119 1120 /* Use the 4-byte address instruction set. */ 1121 for (i = 0; i < SNOR_CMD_READ_MAX; i++) { 1122 struct spi_nor_read_command *read_cmd = ¶ms->reads[i]; 1123 1124 read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode); 1125 } 1126 1127 /* 4BAIT is the only SFDP table that indicates page program support. */ 1128 if (pp_hwcaps & SNOR_HWCAPS_PP) { 1129 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP], 1130 SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1); 1131 /* 1132 * Since xSPI Page Program opcode is backward compatible with 1133 * Legacy SPI, use Legacy SPI opcode there as well. 1134 */ 1135 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_8_8_8_DTR], 1136 SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR); 1137 } 1138 if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4) 1139 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_1_4], 1140 SPINOR_OP_PP_1_1_4_4B, 1141 SNOR_PROTO_1_1_4); 1142 if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4) 1143 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_4_4], 1144 SPINOR_OP_PP_1_4_4_4B, 1145 SNOR_PROTO_1_4_4); 1146 1147 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { 1148 if (erase_mask & BIT(i)) 1149 erase_type[i].opcode = (dwords[SFDP_DWORD(2)] >> 1150 erase_type[i].idx * 8) & 0xFF; 1151 else 1152 spi_nor_mask_erase_type(&erase_type[i]); 1153 } 1154 1155 /* 1156 * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes() 1157 * later because we already did the conversion to 4byte opcodes. Also, 1158 * this latest function implements a legacy quirk for the erase size of 1159 * Spansion memory. However this quirk is no longer needed with new 1160 * SFDP compliant memories. 1161 */ 1162 params->addr_nbytes = 4; 1163 nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT; 1164 1165 /* fall through */ 1166 out: 1167 kfree(dwords); 1168 return ret; 1169 } 1170 1171 #define PROFILE1_DWORD1_RDSR_ADDR_BYTES BIT(29) 1172 #define PROFILE1_DWORD1_RDSR_DUMMY BIT(28) 1173 #define PROFILE1_DWORD1_RD_FAST_CMD GENMASK(15, 8) 1174 #define PROFILE1_DWORD4_DUMMY_200MHZ GENMASK(11, 7) 1175 #define PROFILE1_DWORD5_DUMMY_166MHZ GENMASK(31, 27) 1176 #define PROFILE1_DWORD5_DUMMY_133MHZ GENMASK(21, 17) 1177 #define PROFILE1_DWORD5_DUMMY_100MHZ GENMASK(11, 7) 1178 1179 /** 1180 * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table 1181 * @nor: pointer to a 'struct spi_nor' 1182 * @profile1_header: pointer to the 'struct sfdp_parameter_header' describing 1183 * the Profile 1.0 Table length and version. 1184 * 1185 * Return: 0 on success, -errno otherwise. 1186 */ 1187 static int spi_nor_parse_profile1(struct spi_nor *nor, 1188 const struct sfdp_parameter_header *profile1_header) 1189 { 1190 u32 *dwords, addr; 1191 size_t len; 1192 int ret; 1193 u8 dummy, opcode; 1194 1195 len = profile1_header->length * sizeof(*dwords); 1196 dwords = kmalloc(len, GFP_KERNEL); 1197 if (!dwords) 1198 return -ENOMEM; 1199 1200 addr = SFDP_PARAM_HEADER_PTP(profile1_header); 1201 ret = spi_nor_read_sfdp(nor, addr, len, dwords); 1202 if (ret) 1203 goto out; 1204 1205 le32_to_cpu_array(dwords, profile1_header->length); 1206 1207 /* Get 8D-8D-8D fast read opcode and dummy cycles. */ 1208 opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, dwords[SFDP_DWORD(1)]); 1209 1210 /* Set the Read Status Register dummy cycles and dummy address bytes. */ 1211 if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_DUMMY) 1212 nor->params->rdsr_dummy = 8; 1213 else 1214 nor->params->rdsr_dummy = 4; 1215 1216 if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_ADDR_BYTES) 1217 nor->params->rdsr_addr_nbytes = 4; 1218 else 1219 nor->params->rdsr_addr_nbytes = 0; 1220 1221 /* 1222 * We don't know what speed the controller is running at. Find the 1223 * dummy cycles for the fastest frequency the flash can run at to be 1224 * sure we are never short of dummy cycles. A value of 0 means the 1225 * frequency is not supported. 1226 * 1227 * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let 1228 * flashes set the correct value if needed in their fixup hooks. 1229 */ 1230 dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, dwords[SFDP_DWORD(4)]); 1231 if (!dummy) 1232 dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ, 1233 dwords[SFDP_DWORD(5)]); 1234 if (!dummy) 1235 dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ, 1236 dwords[SFDP_DWORD(5)]); 1237 if (!dummy) 1238 dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ, 1239 dwords[SFDP_DWORD(5)]); 1240 if (!dummy) 1241 dev_dbg(nor->dev, 1242 "Can't find dummy cycles from Profile 1.0 table\n"); 1243 1244 /* Round up to an even value to avoid tripping controllers up. */ 1245 dummy = round_up(dummy, 2); 1246 1247 /* Update the fast read settings. */ 1248 nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR; 1249 spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR], 1250 0, dummy, opcode, 1251 SNOR_PROTO_8_8_8_DTR); 1252 1253 /* 1254 * Page Program is "Required Command" in the xSPI Profile 1.0. Update 1255 * the params->hwcaps.mask here. 1256 */ 1257 nor->params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR; 1258 1259 out: 1260 kfree(dwords); 1261 return ret; 1262 } 1263 1264 #define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE BIT(31) 1265 1266 /** 1267 * spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register 1268 * Map. 1269 * @nor: pointer to a 'struct spi_nor' 1270 * @sccr_header: pointer to the 'struct sfdp_parameter_header' describing 1271 * the SCCR Map table length and version. 1272 * 1273 * Return: 0 on success, -errno otherwise. 1274 */ 1275 static int spi_nor_parse_sccr(struct spi_nor *nor, 1276 const struct sfdp_parameter_header *sccr_header) 1277 { 1278 struct spi_nor_flash_parameter *params = nor->params; 1279 u32 *dwords, addr; 1280 size_t len; 1281 int ret; 1282 1283 len = sccr_header->length * sizeof(*dwords); 1284 dwords = kmalloc(len, GFP_KERNEL); 1285 if (!dwords) 1286 return -ENOMEM; 1287 1288 addr = SFDP_PARAM_HEADER_PTP(sccr_header); 1289 ret = spi_nor_read_sfdp(nor, addr, len, dwords); 1290 if (ret) 1291 goto out; 1292 1293 le32_to_cpu_array(dwords, sccr_header->length); 1294 1295 /* Address offset for volatile registers (die 0) */ 1296 if (!params->vreg_offset) { 1297 params->vreg_offset = devm_kmalloc(nor->dev, sizeof(*dwords), 1298 GFP_KERNEL); 1299 if (!params->vreg_offset) { 1300 ret = -ENOMEM; 1301 goto out; 1302 } 1303 } 1304 params->vreg_offset[0] = dwords[SFDP_DWORD(1)]; 1305 params->n_dice = 1; 1306 1307 if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE, 1308 dwords[SFDP_DWORD(22)])) 1309 nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE; 1310 1311 out: 1312 kfree(dwords); 1313 return ret; 1314 } 1315 1316 /** 1317 * spi_nor_parse_sccr_mc() - Parse the Status, Control and Configuration 1318 * Register Map Offsets for Multi-Chip SPI Memory 1319 * Devices. 1320 * @nor: pointer to a 'struct spi_nor' 1321 * @sccr_mc_header: pointer to the 'struct sfdp_parameter_header' describing 1322 * the SCCR Map offsets table length and version. 1323 * 1324 * Return: 0 on success, -errno otherwise. 1325 */ 1326 static int spi_nor_parse_sccr_mc(struct spi_nor *nor, 1327 const struct sfdp_parameter_header *sccr_mc_header) 1328 { 1329 struct spi_nor_flash_parameter *params = nor->params; 1330 u32 *dwords, addr; 1331 u8 i, n_dice; 1332 size_t len; 1333 int ret; 1334 1335 len = sccr_mc_header->length * sizeof(*dwords); 1336 dwords = kmalloc(len, GFP_KERNEL); 1337 if (!dwords) 1338 return -ENOMEM; 1339 1340 addr = SFDP_PARAM_HEADER_PTP(sccr_mc_header); 1341 ret = spi_nor_read_sfdp(nor, addr, len, dwords); 1342 if (ret) 1343 goto out; 1344 1345 le32_to_cpu_array(dwords, sccr_mc_header->length); 1346 1347 /* 1348 * Pair of DOWRDs (volatile and non-volatile register offsets) per 1349 * additional die. Hence, length = 2 * (number of additional dice). 1350 */ 1351 n_dice = 1 + sccr_mc_header->length / 2; 1352 1353 /* Address offset for volatile registers of additional dice */ 1354 params->vreg_offset = 1355 devm_krealloc(nor->dev, params->vreg_offset, 1356 n_dice * sizeof(*dwords), 1357 GFP_KERNEL); 1358 if (!params->vreg_offset) { 1359 ret = -ENOMEM; 1360 goto out; 1361 } 1362 1363 for (i = 1; i < n_dice; i++) 1364 params->vreg_offset[i] = dwords[SFDP_DWORD(i) * 2]; 1365 1366 params->n_dice = n_dice; 1367 1368 out: 1369 kfree(dwords); 1370 return ret; 1371 } 1372 1373 /** 1374 * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings 1375 * after SFDP has been parsed. Called only for flashes that define JESD216 SFDP 1376 * tables. 1377 * @nor: pointer to a 'struct spi_nor' 1378 * 1379 * Used to tweak various flash parameters when information provided by the SFDP 1380 * tables are wrong. 1381 */ 1382 static int spi_nor_post_sfdp_fixups(struct spi_nor *nor) 1383 { 1384 int ret; 1385 1386 if (nor->manufacturer && nor->manufacturer->fixups && 1387 nor->manufacturer->fixups->post_sfdp) { 1388 ret = nor->manufacturer->fixups->post_sfdp(nor); 1389 if (ret) 1390 return ret; 1391 } 1392 1393 if (nor->info->fixups && nor->info->fixups->post_sfdp) 1394 return nor->info->fixups->post_sfdp(nor); 1395 1396 return 0; 1397 } 1398 1399 /** 1400 * spi_nor_check_sfdp_signature() - check for a valid SFDP signature 1401 * @nor: pointer to a 'struct spi_nor' 1402 * 1403 * Used to detect if the flash supports the RDSFDP command as well as the 1404 * presence of a valid SFDP table. 1405 * 1406 * Return: 0 on success, -errno otherwise. 1407 */ 1408 int spi_nor_check_sfdp_signature(struct spi_nor *nor) 1409 { 1410 u32 signature; 1411 int err; 1412 1413 /* Get the SFDP header. */ 1414 err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(signature), 1415 &signature); 1416 if (err < 0) 1417 return err; 1418 1419 /* Check the SFDP signature. */ 1420 if (le32_to_cpu(signature) != SFDP_SIGNATURE) 1421 return -EINVAL; 1422 1423 return 0; 1424 } 1425 1426 /** 1427 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters. 1428 * @nor: pointer to a 'struct spi_nor' 1429 * 1430 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216 1431 * specification. This is a standard which tends to supported by almost all 1432 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at 1433 * runtime the main parameters needed to perform basic SPI flash operations such 1434 * as Fast Read, Page Program or Sector Erase commands. 1435 * 1436 * Return: 0 on success, -errno otherwise. 1437 */ 1438 int spi_nor_parse_sfdp(struct spi_nor *nor) 1439 { 1440 const struct sfdp_parameter_header *param_header, *bfpt_header; 1441 struct sfdp_parameter_header *param_headers = NULL; 1442 struct sfdp_header header; 1443 struct device *dev = nor->dev; 1444 struct sfdp *sfdp; 1445 size_t sfdp_size; 1446 size_t psize; 1447 int i, err; 1448 1449 /* Get the SFDP header. */ 1450 err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header); 1451 if (err < 0) 1452 return err; 1453 1454 /* Check the SFDP header version. */ 1455 if (le32_to_cpu(header.signature) != SFDP_SIGNATURE || 1456 header.major != SFDP_JESD216_MAJOR) 1457 return -EINVAL; 1458 1459 /* 1460 * Verify that the first and only mandatory parameter header is a 1461 * Basic Flash Parameter Table header as specified in JESD216. 1462 */ 1463 bfpt_header = &header.bfpt_header; 1464 if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID || 1465 bfpt_header->major != SFDP_JESD216_MAJOR) 1466 return -EINVAL; 1467 1468 sfdp_size = SFDP_PARAM_HEADER_PTP(bfpt_header) + 1469 SFDP_PARAM_HEADER_PARAM_LEN(bfpt_header); 1470 1471 /* 1472 * Allocate memory then read all parameter headers with a single 1473 * Read SFDP command. These parameter headers will actually be parsed 1474 * twice: a first time to get the latest revision of the basic flash 1475 * parameter table, then a second time to handle the supported optional 1476 * tables. 1477 * Hence we read the parameter headers once for all to reduce the 1478 * processing time. Also we use kmalloc() instead of devm_kmalloc() 1479 * because we don't need to keep these parameter headers: the allocated 1480 * memory is always released with kfree() before exiting this function. 1481 */ 1482 if (header.nph) { 1483 psize = header.nph * sizeof(*param_headers); 1484 1485 param_headers = kmalloc(psize, GFP_KERNEL); 1486 if (!param_headers) 1487 return -ENOMEM; 1488 1489 err = spi_nor_read_sfdp(nor, sizeof(header), 1490 psize, param_headers); 1491 if (err < 0) { 1492 dev_dbg(dev, "failed to read SFDP parameter headers\n"); 1493 goto exit; 1494 } 1495 } 1496 1497 /* 1498 * Cache the complete SFDP data. It is not (easily) possible to fetch 1499 * SFDP after probe time and we need it for the sysfs access. 1500 */ 1501 for (i = 0; i < header.nph; i++) { 1502 param_header = ¶m_headers[i]; 1503 sfdp_size = max_t(size_t, sfdp_size, 1504 SFDP_PARAM_HEADER_PTP(param_header) + 1505 SFDP_PARAM_HEADER_PARAM_LEN(param_header)); 1506 } 1507 1508 /* 1509 * Limit the total size to a reasonable value to avoid allocating too 1510 * much memory just of because the flash returned some insane values. 1511 */ 1512 if (sfdp_size > PAGE_SIZE) { 1513 dev_dbg(dev, "SFDP data (%zu) too big, truncating\n", 1514 sfdp_size); 1515 sfdp_size = PAGE_SIZE; 1516 } 1517 1518 sfdp = devm_kzalloc(dev, sizeof(*sfdp), GFP_KERNEL); 1519 if (!sfdp) { 1520 err = -ENOMEM; 1521 goto exit; 1522 } 1523 1524 /* 1525 * The SFDP is organized in chunks of DWORDs. Thus, in theory, the 1526 * sfdp_size should be a multiple of DWORDs. But in case a flash 1527 * is not spec compliant, make sure that we have enough space to store 1528 * the complete SFDP data. 1529 */ 1530 sfdp->num_dwords = DIV_ROUND_UP(sfdp_size, sizeof(*sfdp->dwords)); 1531 sfdp->dwords = devm_kcalloc(dev, sfdp->num_dwords, 1532 sizeof(*sfdp->dwords), GFP_KERNEL); 1533 if (!sfdp->dwords) { 1534 err = -ENOMEM; 1535 devm_kfree(dev, sfdp); 1536 goto exit; 1537 } 1538 1539 err = spi_nor_read_sfdp(nor, 0, sfdp_size, sfdp->dwords); 1540 if (err < 0) { 1541 dev_dbg(dev, "failed to read SFDP data\n"); 1542 devm_kfree(dev, sfdp->dwords); 1543 devm_kfree(dev, sfdp); 1544 goto exit; 1545 } 1546 1547 nor->sfdp = sfdp; 1548 1549 /* 1550 * Check other parameter headers to get the latest revision of 1551 * the basic flash parameter table. 1552 */ 1553 for (i = 0; i < header.nph; i++) { 1554 param_header = ¶m_headers[i]; 1555 1556 if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID && 1557 param_header->major == SFDP_JESD216_MAJOR && 1558 (param_header->minor > bfpt_header->minor || 1559 (param_header->minor == bfpt_header->minor && 1560 param_header->length > bfpt_header->length))) 1561 bfpt_header = param_header; 1562 } 1563 1564 err = spi_nor_parse_bfpt(nor, bfpt_header); 1565 if (err) 1566 goto exit; 1567 1568 /* Parse optional parameter tables. */ 1569 for (i = 0; i < header.nph; i++) { 1570 param_header = ¶m_headers[i]; 1571 1572 switch (SFDP_PARAM_HEADER_ID(param_header)) { 1573 case SFDP_SECTOR_MAP_ID: 1574 err = spi_nor_parse_smpt(nor, param_header); 1575 break; 1576 1577 case SFDP_4BAIT_ID: 1578 err = spi_nor_parse_4bait(nor, param_header); 1579 break; 1580 1581 case SFDP_PROFILE1_ID: 1582 err = spi_nor_parse_profile1(nor, param_header); 1583 break; 1584 1585 case SFDP_SCCR_MAP_ID: 1586 err = spi_nor_parse_sccr(nor, param_header); 1587 break; 1588 1589 case SFDP_SCCR_MAP_MC_ID: 1590 err = spi_nor_parse_sccr_mc(nor, param_header); 1591 break; 1592 1593 default: 1594 break; 1595 } 1596 1597 if (err) { 1598 dev_warn(dev, "Failed to parse optional parameter table: %04x\n", 1599 SFDP_PARAM_HEADER_ID(param_header)); 1600 /* 1601 * Let's not drop all information we extracted so far 1602 * if optional table parsers fail. In case of failing, 1603 * each optional parser is responsible to roll back to 1604 * the previously known spi_nor data. 1605 */ 1606 err = 0; 1607 } 1608 } 1609 1610 err = spi_nor_post_sfdp_fixups(nor); 1611 exit: 1612 kfree(param_headers); 1613 return err; 1614 } 1615