1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Per core/cpu state
4 *
5 * Used to coordinate shared registers between HT threads or
6 * among events on a single PMU.
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17 #include <linux/kvm_host.h>
18
19 #include <asm/cpufeature.h>
20 #include <asm/debugreg.h>
21 #include <asm/hardirq.h>
22 #include <asm/intel-family.h>
23 #include <asm/intel_pt.h>
24 #include <asm/apic.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/msr.h>
27
28 #include "../perf_event.h"
29
30 /*
31 * Intel PerfMon, used on Core and later.
32 */
33 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
34 {
35 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
36 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
37 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
38 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
39 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
40 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
41 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
42 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
43 };
44
45 static struct event_constraint intel_core_event_constraints[] __read_mostly =
46 {
47 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
48 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
49 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
50 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
51 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
52 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
53 EVENT_CONSTRAINT_END
54 };
55
56 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
57 {
58 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
59 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
60 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
61 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
62 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
63 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
64 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
65 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
66 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
67 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
68 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
69 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
70 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
71 EVENT_CONSTRAINT_END
72 };
73
74 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
75 {
76 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
77 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
78 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
79 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
80 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
81 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
82 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
83 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
84 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
85 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
86 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
87 EVENT_CONSTRAINT_END
88 };
89
90 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
91 {
92 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
93 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
94 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
95 EVENT_EXTRA_END
96 };
97
98 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
99 {
100 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
101 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
102 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
103 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
104 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
105 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
106 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
107 EVENT_CONSTRAINT_END
108 };
109
110 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
111 {
112 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
113 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
114 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
115 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
116 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
117 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
118 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
119 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
120 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
121 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
122 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
123 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
124
125 /*
126 * When HT is off these events can only run on the bottom 4 counters
127 * When HT is on, they are impacted by the HT bug and require EXCL access
128 */
129 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
130 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
131 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
132 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
133
134 EVENT_CONSTRAINT_END
135 };
136
137 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
138 {
139 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
140 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
141 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
142 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
143 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
144 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
145 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
146 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
147 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
148 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
149 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
150 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
151 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
152
153 /*
154 * When HT is off these events can only run on the bottom 4 counters
155 * When HT is on, they are impacted by the HT bug and require EXCL access
156 */
157 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
158 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
159 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
160 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
161
162 EVENT_CONSTRAINT_END
163 };
164
165 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
166 {
167 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
168 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
169 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
170 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
171 EVENT_EXTRA_END
172 };
173
174 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
175 {
176 EVENT_CONSTRAINT_END
177 };
178
179 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
180 {
181 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
182 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
183 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
184 EVENT_CONSTRAINT_END
185 };
186
187 static struct event_constraint intel_v5_gen_event_constraints[] __read_mostly =
188 {
189 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
190 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
191 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
192 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
193 FIXED_EVENT_CONSTRAINT(0x0500, 4),
194 FIXED_EVENT_CONSTRAINT(0x0600, 5),
195 FIXED_EVENT_CONSTRAINT(0x0700, 6),
196 FIXED_EVENT_CONSTRAINT(0x0800, 7),
197 FIXED_EVENT_CONSTRAINT(0x0900, 8),
198 FIXED_EVENT_CONSTRAINT(0x0a00, 9),
199 FIXED_EVENT_CONSTRAINT(0x0b00, 10),
200 FIXED_EVENT_CONSTRAINT(0x0c00, 11),
201 FIXED_EVENT_CONSTRAINT(0x0d00, 12),
202 FIXED_EVENT_CONSTRAINT(0x0e00, 13),
203 FIXED_EVENT_CONSTRAINT(0x0f00, 14),
204 FIXED_EVENT_CONSTRAINT(0x1000, 15),
205 EVENT_CONSTRAINT_END
206 };
207
208 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
209 {
210 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
211 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
212 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
213 EVENT_CONSTRAINT_END
214 };
215
216 static struct event_constraint intel_grt_event_constraints[] __read_mostly = {
217 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
218 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
219 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
220 FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
221 EVENT_CONSTRAINT_END
222 };
223
224 static struct event_constraint intel_skt_event_constraints[] __read_mostly = {
225 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
226 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
227 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
228 FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
229 FIXED_EVENT_CONSTRAINT(0x0073, 4), /* TOPDOWN_BAD_SPECULATION.ALL */
230 FIXED_EVENT_CONSTRAINT(0x019c, 5), /* TOPDOWN_FE_BOUND.ALL */
231 FIXED_EVENT_CONSTRAINT(0x02c2, 6), /* TOPDOWN_RETIRING.ALL */
232 EVENT_CONSTRAINT_END
233 };
234
235 static struct event_constraint intel_skl_event_constraints[] = {
236 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
237 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
238 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
239 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
240
241 /*
242 * when HT is off, these can only run on the bottom 4 counters
243 */
244 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
245 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
246 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
247 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
248 INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */
249
250 EVENT_CONSTRAINT_END
251 };
252
253 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
254 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
255 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
256 EVENT_EXTRA_END
257 };
258
259 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
260 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
261 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
262 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
263 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
264 EVENT_EXTRA_END
265 };
266
267 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
268 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
269 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
270 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
271 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
272 EVENT_EXTRA_END
273 };
274
275 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
276 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
277 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
278 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
279 /*
280 * Note the low 8 bits eventsel code is not a continuous field, containing
281 * some #GPing bits. These are masked out.
282 */
283 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
284 EVENT_EXTRA_END
285 };
286
287 static struct event_constraint intel_icl_event_constraints[] = {
288 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
289 FIXED_EVENT_CONSTRAINT(0x01c0, 0), /* old INST_RETIRED.PREC_DIST */
290 FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
291 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
292 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
293 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
294 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
295 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
296 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
297 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
298 INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
299 INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
300 INTEL_EVENT_CONSTRAINT(0x32, 0xf), /* SW_PREFETCH_ACCESS.* */
301 INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf),
302 INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
303 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff), /* CYCLE_ACTIVITY.STALLS_TOTAL */
304 INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff), /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
305 INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff), /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
306 INTEL_EVENT_CONSTRAINT(0xa3, 0xf), /* CYCLE_ACTIVITY.* */
307 INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
308 INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
309 INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
310 INTEL_EVENT_CONSTRAINT(0xef, 0xf),
311 INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
312 EVENT_CONSTRAINT_END
313 };
314
315 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
316 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
317 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
318 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
319 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
320 EVENT_EXTRA_END
321 };
322
323 static struct extra_reg intel_glc_extra_regs[] __read_mostly = {
324 INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
325 INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
326 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
327 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
328 INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
329 INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
330 EVENT_EXTRA_END
331 };
332
333 static struct event_constraint intel_glc_event_constraints[] = {
334 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
335 FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
336 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
337 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
338 FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
339 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
340 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
341 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
342 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
343 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
344 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
345 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
346 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
347 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
348
349 INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
350 INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
351 /*
352 * Generally event codes < 0x90 are restricted to counters 0-3.
353 * The 0x2E and 0x3C are exception, which has no restriction.
354 */
355 INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
356
357 INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
358 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
359 INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
360 INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
361 INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
362 INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
363 INTEL_EVENT_CONSTRAINT(0xce, 0x1),
364 INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
365 /*
366 * Generally event codes >= 0x90 are likely to have no restrictions.
367 * The exception are defined as above.
368 */
369 INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
370
371 EVENT_CONSTRAINT_END
372 };
373
374 static struct extra_reg intel_rwc_extra_regs[] __read_mostly = {
375 INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
376 INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
377 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
378 INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE),
379 INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
380 INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
381 INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
382 EVENT_EXTRA_END
383 };
384
385 static struct event_constraint intel_lnc_event_constraints[] = {
386 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
387 FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
388 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
389 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
390 FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
391 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
392 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
393 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
394 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
395 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
396 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
397 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
398 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
399 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
400
401 INTEL_EVENT_CONSTRAINT(0x20, 0xf),
402
403 INTEL_UEVENT_CONSTRAINT(0x012a, 0xf),
404 INTEL_UEVENT_CONSTRAINT(0x012b, 0xf),
405 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4),
406 INTEL_UEVENT_CONSTRAINT(0x0175, 0x4),
407
408 INTEL_EVENT_CONSTRAINT(0x2e, 0x3ff),
409 INTEL_EVENT_CONSTRAINT(0x3c, 0x3ff),
410
411 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
412 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
413 INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
414 INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
415 INTEL_UEVENT_CONSTRAINT(0x10a4, 0x1),
416 INTEL_UEVENT_CONSTRAINT(0x01b1, 0x8),
417 INTEL_UEVENT_CONSTRAINT(0x01cd, 0x3fc),
418 INTEL_UEVENT_CONSTRAINT(0x02cd, 0x3),
419
420 INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
421
422 INTEL_UEVENT_CONSTRAINT(0x00e0, 0xf),
423
424 EVENT_CONSTRAINT_END
425 };
426
427 static struct extra_reg intel_lnc_extra_regs[] __read_mostly = {
428 INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0xfffffffffffull, RSP_0),
429 INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0xfffffffffffull, RSP_1),
430 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
431 INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE),
432 INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
433 INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0xf, FE),
434 INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
435 EVENT_EXTRA_END
436 };
437
438 EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
439 EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
440 EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
441
442 static struct attribute *nhm_mem_events_attrs[] = {
443 EVENT_PTR(mem_ld_nhm),
444 NULL,
445 };
446
447 /*
448 * topdown events for Intel Core CPUs.
449 *
450 * The events are all in slots, which is a free slot in a 4 wide
451 * pipeline. Some events are already reported in slots, for cycle
452 * events we multiply by the pipeline width (4).
453 *
454 * With Hyper Threading on, topdown metrics are either summed or averaged
455 * between the threads of a core: (count_t0 + count_t1).
456 *
457 * For the average case the metric is always scaled to pipeline width,
458 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
459 */
460
461 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
462 "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */
463 "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */
464 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
465 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
466 "event=0xe,umask=0x1"); /* uops_issued.any */
467 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
468 "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */
469 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
470 "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */
471 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
472 "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */
473 "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */
474 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
475 "4", "2");
476
477 EVENT_ATTR_STR(slots, slots, "event=0x00,umask=0x4");
478 EVENT_ATTR_STR(topdown-retiring, td_retiring, "event=0x00,umask=0x80");
479 EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec, "event=0x00,umask=0x81");
480 EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound, "event=0x00,umask=0x82");
481 EVENT_ATTR_STR(topdown-be-bound, td_be_bound, "event=0x00,umask=0x83");
482 EVENT_ATTR_STR(topdown-heavy-ops, td_heavy_ops, "event=0x00,umask=0x84");
483 EVENT_ATTR_STR(topdown-br-mispredict, td_br_mispredict, "event=0x00,umask=0x85");
484 EVENT_ATTR_STR(topdown-fetch-lat, td_fetch_lat, "event=0x00,umask=0x86");
485 EVENT_ATTR_STR(topdown-mem-bound, td_mem_bound, "event=0x00,umask=0x87");
486
487 static struct attribute *snb_events_attrs[] = {
488 EVENT_PTR(td_slots_issued),
489 EVENT_PTR(td_slots_retired),
490 EVENT_PTR(td_fetch_bubbles),
491 EVENT_PTR(td_total_slots),
492 EVENT_PTR(td_total_slots_scale),
493 EVENT_PTR(td_recovery_bubbles),
494 EVENT_PTR(td_recovery_bubbles_scale),
495 NULL,
496 };
497
498 static struct attribute *snb_mem_events_attrs[] = {
499 EVENT_PTR(mem_ld_snb),
500 EVENT_PTR(mem_st_snb),
501 NULL,
502 };
503
504 static struct event_constraint intel_hsw_event_constraints[] = {
505 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
506 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
507 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
508 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
509 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
510 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
511 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
512 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
513 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
514 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
515 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
516 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
517
518 /*
519 * When HT is off these events can only run on the bottom 4 counters
520 * When HT is on, they are impacted by the HT bug and require EXCL access
521 */
522 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
523 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
524 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
525 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
526
527 EVENT_CONSTRAINT_END
528 };
529
530 static struct event_constraint intel_bdw_event_constraints[] = {
531 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
532 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
533 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
534 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
535 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
536 /*
537 * when HT is off, these can only run on the bottom 4 counters
538 */
539 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
540 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
541 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
542 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
543 EVENT_CONSTRAINT_END
544 };
545
intel_pmu_event_map(int hw_event)546 static u64 intel_pmu_event_map(int hw_event)
547 {
548 return intel_perfmon_event_map[hw_event];
549 }
550
551 static __initconst const u64 glc_hw_cache_event_ids
552 [PERF_COUNT_HW_CACHE_MAX]
553 [PERF_COUNT_HW_CACHE_OP_MAX]
554 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
555 {
556 [ C(L1D ) ] = {
557 [ C(OP_READ) ] = {
558 [ C(RESULT_ACCESS) ] = 0x81d0,
559 [ C(RESULT_MISS) ] = 0xe124,
560 },
561 [ C(OP_WRITE) ] = {
562 [ C(RESULT_ACCESS) ] = 0x82d0,
563 },
564 },
565 [ C(L1I ) ] = {
566 [ C(OP_READ) ] = {
567 [ C(RESULT_MISS) ] = 0xe424,
568 },
569 [ C(OP_WRITE) ] = {
570 [ C(RESULT_ACCESS) ] = -1,
571 [ C(RESULT_MISS) ] = -1,
572 },
573 },
574 [ C(LL ) ] = {
575 [ C(OP_READ) ] = {
576 [ C(RESULT_ACCESS) ] = 0x12a,
577 [ C(RESULT_MISS) ] = 0x12a,
578 },
579 [ C(OP_WRITE) ] = {
580 [ C(RESULT_ACCESS) ] = 0x12a,
581 [ C(RESULT_MISS) ] = 0x12a,
582 },
583 },
584 [ C(DTLB) ] = {
585 [ C(OP_READ) ] = {
586 [ C(RESULT_ACCESS) ] = 0x81d0,
587 [ C(RESULT_MISS) ] = 0xe12,
588 },
589 [ C(OP_WRITE) ] = {
590 [ C(RESULT_ACCESS) ] = 0x82d0,
591 [ C(RESULT_MISS) ] = 0xe13,
592 },
593 },
594 [ C(ITLB) ] = {
595 [ C(OP_READ) ] = {
596 [ C(RESULT_ACCESS) ] = -1,
597 [ C(RESULT_MISS) ] = 0xe11,
598 },
599 [ C(OP_WRITE) ] = {
600 [ C(RESULT_ACCESS) ] = -1,
601 [ C(RESULT_MISS) ] = -1,
602 },
603 [ C(OP_PREFETCH) ] = {
604 [ C(RESULT_ACCESS) ] = -1,
605 [ C(RESULT_MISS) ] = -1,
606 },
607 },
608 [ C(BPU ) ] = {
609 [ C(OP_READ) ] = {
610 [ C(RESULT_ACCESS) ] = 0x4c4,
611 [ C(RESULT_MISS) ] = 0x4c5,
612 },
613 [ C(OP_WRITE) ] = {
614 [ C(RESULT_ACCESS) ] = -1,
615 [ C(RESULT_MISS) ] = -1,
616 },
617 [ C(OP_PREFETCH) ] = {
618 [ C(RESULT_ACCESS) ] = -1,
619 [ C(RESULT_MISS) ] = -1,
620 },
621 },
622 [ C(NODE) ] = {
623 [ C(OP_READ) ] = {
624 [ C(RESULT_ACCESS) ] = 0x12a,
625 [ C(RESULT_MISS) ] = 0x12a,
626 },
627 },
628 };
629
630 static __initconst const u64 glc_hw_cache_extra_regs
631 [PERF_COUNT_HW_CACHE_MAX]
632 [PERF_COUNT_HW_CACHE_OP_MAX]
633 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
634 {
635 [ C(LL ) ] = {
636 [ C(OP_READ) ] = {
637 [ C(RESULT_ACCESS) ] = 0x10001,
638 [ C(RESULT_MISS) ] = 0x3fbfc00001,
639 },
640 [ C(OP_WRITE) ] = {
641 [ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
642 [ C(RESULT_MISS) ] = 0x3f3fc00002,
643 },
644 },
645 [ C(NODE) ] = {
646 [ C(OP_READ) ] = {
647 [ C(RESULT_ACCESS) ] = 0x10c000001,
648 [ C(RESULT_MISS) ] = 0x3fb3000001,
649 },
650 },
651 };
652
653 /*
654 * Notes on the events:
655 * - data reads do not include code reads (comparable to earlier tables)
656 * - data counts include speculative execution (except L1 write, dtlb, bpu)
657 * - remote node access includes remote memory, remote cache, remote mmio.
658 * - prefetches are not included in the counts.
659 * - icache miss does not include decoded icache
660 */
661
662 #define SKL_DEMAND_DATA_RD BIT_ULL(0)
663 #define SKL_DEMAND_RFO BIT_ULL(1)
664 #define SKL_ANY_RESPONSE BIT_ULL(16)
665 #define SKL_SUPPLIER_NONE BIT_ULL(17)
666 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
667 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
668 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
669 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
670 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
671 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
672 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
673 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
674 #define SKL_SPL_HIT BIT_ULL(30)
675 #define SKL_SNOOP_NONE BIT_ULL(31)
676 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
677 #define SKL_SNOOP_MISS BIT_ULL(33)
678 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
679 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
680 #define SKL_SNOOP_HITM BIT_ULL(36)
681 #define SKL_SNOOP_NON_DRAM BIT_ULL(37)
682 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
683 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
684 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
685 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
686 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
687 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
688 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
689 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
690 SKL_SNOOP_HITM|SKL_SPL_HIT)
691 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO
692 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE
693 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
694 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
695 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
696
697 static __initconst const u64 skl_hw_cache_event_ids
698 [PERF_COUNT_HW_CACHE_MAX]
699 [PERF_COUNT_HW_CACHE_OP_MAX]
700 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
701 {
702 [ C(L1D ) ] = {
703 [ C(OP_READ) ] = {
704 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
705 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
706 },
707 [ C(OP_WRITE) ] = {
708 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
709 [ C(RESULT_MISS) ] = 0x0,
710 },
711 [ C(OP_PREFETCH) ] = {
712 [ C(RESULT_ACCESS) ] = 0x0,
713 [ C(RESULT_MISS) ] = 0x0,
714 },
715 },
716 [ C(L1I ) ] = {
717 [ C(OP_READ) ] = {
718 [ C(RESULT_ACCESS) ] = 0x0,
719 [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
720 },
721 [ C(OP_WRITE) ] = {
722 [ C(RESULT_ACCESS) ] = -1,
723 [ C(RESULT_MISS) ] = -1,
724 },
725 [ C(OP_PREFETCH) ] = {
726 [ C(RESULT_ACCESS) ] = 0x0,
727 [ C(RESULT_MISS) ] = 0x0,
728 },
729 },
730 [ C(LL ) ] = {
731 [ C(OP_READ) ] = {
732 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
733 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
734 },
735 [ C(OP_WRITE) ] = {
736 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
737 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
738 },
739 [ C(OP_PREFETCH) ] = {
740 [ C(RESULT_ACCESS) ] = 0x0,
741 [ C(RESULT_MISS) ] = 0x0,
742 },
743 },
744 [ C(DTLB) ] = {
745 [ C(OP_READ) ] = {
746 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
747 [ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
748 },
749 [ C(OP_WRITE) ] = {
750 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
751 [ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
752 },
753 [ C(OP_PREFETCH) ] = {
754 [ C(RESULT_ACCESS) ] = 0x0,
755 [ C(RESULT_MISS) ] = 0x0,
756 },
757 },
758 [ C(ITLB) ] = {
759 [ C(OP_READ) ] = {
760 [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
761 [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
762 },
763 [ C(OP_WRITE) ] = {
764 [ C(RESULT_ACCESS) ] = -1,
765 [ C(RESULT_MISS) ] = -1,
766 },
767 [ C(OP_PREFETCH) ] = {
768 [ C(RESULT_ACCESS) ] = -1,
769 [ C(RESULT_MISS) ] = -1,
770 },
771 },
772 [ C(BPU ) ] = {
773 [ C(OP_READ) ] = {
774 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
775 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
776 },
777 [ C(OP_WRITE) ] = {
778 [ C(RESULT_ACCESS) ] = -1,
779 [ C(RESULT_MISS) ] = -1,
780 },
781 [ C(OP_PREFETCH) ] = {
782 [ C(RESULT_ACCESS) ] = -1,
783 [ C(RESULT_MISS) ] = -1,
784 },
785 },
786 [ C(NODE) ] = {
787 [ C(OP_READ) ] = {
788 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
789 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
790 },
791 [ C(OP_WRITE) ] = {
792 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
793 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
794 },
795 [ C(OP_PREFETCH) ] = {
796 [ C(RESULT_ACCESS) ] = 0x0,
797 [ C(RESULT_MISS) ] = 0x0,
798 },
799 },
800 };
801
802 static __initconst const u64 skl_hw_cache_extra_regs
803 [PERF_COUNT_HW_CACHE_MAX]
804 [PERF_COUNT_HW_CACHE_OP_MAX]
805 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
806 {
807 [ C(LL ) ] = {
808 [ C(OP_READ) ] = {
809 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
810 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
811 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
812 SKL_L3_MISS|SKL_ANY_SNOOP|
813 SKL_SUPPLIER_NONE,
814 },
815 [ C(OP_WRITE) ] = {
816 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
817 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
818 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
819 SKL_L3_MISS|SKL_ANY_SNOOP|
820 SKL_SUPPLIER_NONE,
821 },
822 [ C(OP_PREFETCH) ] = {
823 [ C(RESULT_ACCESS) ] = 0x0,
824 [ C(RESULT_MISS) ] = 0x0,
825 },
826 },
827 [ C(NODE) ] = {
828 [ C(OP_READ) ] = {
829 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
830 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
831 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
832 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
833 },
834 [ C(OP_WRITE) ] = {
835 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
836 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
837 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
838 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
839 },
840 [ C(OP_PREFETCH) ] = {
841 [ C(RESULT_ACCESS) ] = 0x0,
842 [ C(RESULT_MISS) ] = 0x0,
843 },
844 },
845 };
846
847 #define SNB_DMND_DATA_RD (1ULL << 0)
848 #define SNB_DMND_RFO (1ULL << 1)
849 #define SNB_DMND_IFETCH (1ULL << 2)
850 #define SNB_DMND_WB (1ULL << 3)
851 #define SNB_PF_DATA_RD (1ULL << 4)
852 #define SNB_PF_RFO (1ULL << 5)
853 #define SNB_PF_IFETCH (1ULL << 6)
854 #define SNB_LLC_DATA_RD (1ULL << 7)
855 #define SNB_LLC_RFO (1ULL << 8)
856 #define SNB_LLC_IFETCH (1ULL << 9)
857 #define SNB_BUS_LOCKS (1ULL << 10)
858 #define SNB_STRM_ST (1ULL << 11)
859 #define SNB_OTHER (1ULL << 15)
860 #define SNB_RESP_ANY (1ULL << 16)
861 #define SNB_NO_SUPP (1ULL << 17)
862 #define SNB_LLC_HITM (1ULL << 18)
863 #define SNB_LLC_HITE (1ULL << 19)
864 #define SNB_LLC_HITS (1ULL << 20)
865 #define SNB_LLC_HITF (1ULL << 21)
866 #define SNB_LOCAL (1ULL << 22)
867 #define SNB_REMOTE (0xffULL << 23)
868 #define SNB_SNP_NONE (1ULL << 31)
869 #define SNB_SNP_NOT_NEEDED (1ULL << 32)
870 #define SNB_SNP_MISS (1ULL << 33)
871 #define SNB_NO_FWD (1ULL << 34)
872 #define SNB_SNP_FWD (1ULL << 35)
873 #define SNB_HITM (1ULL << 36)
874 #define SNB_NON_DRAM (1ULL << 37)
875
876 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
877 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
878 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
879
880 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
881 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
882 SNB_HITM)
883
884 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
885 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
886
887 #define SNB_L3_ACCESS SNB_RESP_ANY
888 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
889
890 static __initconst const u64 snb_hw_cache_extra_regs
891 [PERF_COUNT_HW_CACHE_MAX]
892 [PERF_COUNT_HW_CACHE_OP_MAX]
893 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
894 {
895 [ C(LL ) ] = {
896 [ C(OP_READ) ] = {
897 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
898 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
899 },
900 [ C(OP_WRITE) ] = {
901 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
902 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
903 },
904 [ C(OP_PREFETCH) ] = {
905 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
906 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
907 },
908 },
909 [ C(NODE) ] = {
910 [ C(OP_READ) ] = {
911 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
912 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
913 },
914 [ C(OP_WRITE) ] = {
915 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
916 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
917 },
918 [ C(OP_PREFETCH) ] = {
919 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
920 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
921 },
922 },
923 };
924
925 static __initconst const u64 snb_hw_cache_event_ids
926 [PERF_COUNT_HW_CACHE_MAX]
927 [PERF_COUNT_HW_CACHE_OP_MAX]
928 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
929 {
930 [ C(L1D) ] = {
931 [ C(OP_READ) ] = {
932 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
933 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
934 },
935 [ C(OP_WRITE) ] = {
936 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
937 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
938 },
939 [ C(OP_PREFETCH) ] = {
940 [ C(RESULT_ACCESS) ] = 0x0,
941 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
942 },
943 },
944 [ C(L1I ) ] = {
945 [ C(OP_READ) ] = {
946 [ C(RESULT_ACCESS) ] = 0x0,
947 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
948 },
949 [ C(OP_WRITE) ] = {
950 [ C(RESULT_ACCESS) ] = -1,
951 [ C(RESULT_MISS) ] = -1,
952 },
953 [ C(OP_PREFETCH) ] = {
954 [ C(RESULT_ACCESS) ] = 0x0,
955 [ C(RESULT_MISS) ] = 0x0,
956 },
957 },
958 [ C(LL ) ] = {
959 [ C(OP_READ) ] = {
960 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
961 [ C(RESULT_ACCESS) ] = 0x01b7,
962 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
963 [ C(RESULT_MISS) ] = 0x01b7,
964 },
965 [ C(OP_WRITE) ] = {
966 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
967 [ C(RESULT_ACCESS) ] = 0x01b7,
968 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
969 [ C(RESULT_MISS) ] = 0x01b7,
970 },
971 [ C(OP_PREFETCH) ] = {
972 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
973 [ C(RESULT_ACCESS) ] = 0x01b7,
974 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
975 [ C(RESULT_MISS) ] = 0x01b7,
976 },
977 },
978 [ C(DTLB) ] = {
979 [ C(OP_READ) ] = {
980 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
981 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
982 },
983 [ C(OP_WRITE) ] = {
984 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
985 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
986 },
987 [ C(OP_PREFETCH) ] = {
988 [ C(RESULT_ACCESS) ] = 0x0,
989 [ C(RESULT_MISS) ] = 0x0,
990 },
991 },
992 [ C(ITLB) ] = {
993 [ C(OP_READ) ] = {
994 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
995 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
996 },
997 [ C(OP_WRITE) ] = {
998 [ C(RESULT_ACCESS) ] = -1,
999 [ C(RESULT_MISS) ] = -1,
1000 },
1001 [ C(OP_PREFETCH) ] = {
1002 [ C(RESULT_ACCESS) ] = -1,
1003 [ C(RESULT_MISS) ] = -1,
1004 },
1005 },
1006 [ C(BPU ) ] = {
1007 [ C(OP_READ) ] = {
1008 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1009 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1010 },
1011 [ C(OP_WRITE) ] = {
1012 [ C(RESULT_ACCESS) ] = -1,
1013 [ C(RESULT_MISS) ] = -1,
1014 },
1015 [ C(OP_PREFETCH) ] = {
1016 [ C(RESULT_ACCESS) ] = -1,
1017 [ C(RESULT_MISS) ] = -1,
1018 },
1019 },
1020 [ C(NODE) ] = {
1021 [ C(OP_READ) ] = {
1022 [ C(RESULT_ACCESS) ] = 0x01b7,
1023 [ C(RESULT_MISS) ] = 0x01b7,
1024 },
1025 [ C(OP_WRITE) ] = {
1026 [ C(RESULT_ACCESS) ] = 0x01b7,
1027 [ C(RESULT_MISS) ] = 0x01b7,
1028 },
1029 [ C(OP_PREFETCH) ] = {
1030 [ C(RESULT_ACCESS) ] = 0x01b7,
1031 [ C(RESULT_MISS) ] = 0x01b7,
1032 },
1033 },
1034
1035 };
1036
1037 /*
1038 * Notes on the events:
1039 * - data reads do not include code reads (comparable to earlier tables)
1040 * - data counts include speculative execution (except L1 write, dtlb, bpu)
1041 * - remote node access includes remote memory, remote cache, remote mmio.
1042 * - prefetches are not included in the counts because they are not
1043 * reliably counted.
1044 */
1045
1046 #define HSW_DEMAND_DATA_RD BIT_ULL(0)
1047 #define HSW_DEMAND_RFO BIT_ULL(1)
1048 #define HSW_ANY_RESPONSE BIT_ULL(16)
1049 #define HSW_SUPPLIER_NONE BIT_ULL(17)
1050 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
1051 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
1052 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
1053 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
1054 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
1055 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
1056 HSW_L3_MISS_REMOTE_HOP2P)
1057 #define HSW_SNOOP_NONE BIT_ULL(31)
1058 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
1059 #define HSW_SNOOP_MISS BIT_ULL(33)
1060 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
1061 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
1062 #define HSW_SNOOP_HITM BIT_ULL(36)
1063 #define HSW_SNOOP_NON_DRAM BIT_ULL(37)
1064 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
1065 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
1066 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
1067 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
1068 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
1069 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
1070 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO
1071 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
1072 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
1073 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE
1074
1075 #define BDW_L3_MISS_LOCAL BIT(26)
1076 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
1077 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
1078 HSW_L3_MISS_REMOTE_HOP2P)
1079
1080
1081 static __initconst const u64 hsw_hw_cache_event_ids
1082 [PERF_COUNT_HW_CACHE_MAX]
1083 [PERF_COUNT_HW_CACHE_OP_MAX]
1084 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1085 {
1086 [ C(L1D ) ] = {
1087 [ C(OP_READ) ] = {
1088 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1089 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
1090 },
1091 [ C(OP_WRITE) ] = {
1092 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1093 [ C(RESULT_MISS) ] = 0x0,
1094 },
1095 [ C(OP_PREFETCH) ] = {
1096 [ C(RESULT_ACCESS) ] = 0x0,
1097 [ C(RESULT_MISS) ] = 0x0,
1098 },
1099 },
1100 [ C(L1I ) ] = {
1101 [ C(OP_READ) ] = {
1102 [ C(RESULT_ACCESS) ] = 0x0,
1103 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
1104 },
1105 [ C(OP_WRITE) ] = {
1106 [ C(RESULT_ACCESS) ] = -1,
1107 [ C(RESULT_MISS) ] = -1,
1108 },
1109 [ C(OP_PREFETCH) ] = {
1110 [ C(RESULT_ACCESS) ] = 0x0,
1111 [ C(RESULT_MISS) ] = 0x0,
1112 },
1113 },
1114 [ C(LL ) ] = {
1115 [ C(OP_READ) ] = {
1116 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1117 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1118 },
1119 [ C(OP_WRITE) ] = {
1120 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1121 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1122 },
1123 [ C(OP_PREFETCH) ] = {
1124 [ C(RESULT_ACCESS) ] = 0x0,
1125 [ C(RESULT_MISS) ] = 0x0,
1126 },
1127 },
1128 [ C(DTLB) ] = {
1129 [ C(OP_READ) ] = {
1130 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1131 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1132 },
1133 [ C(OP_WRITE) ] = {
1134 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1135 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1136 },
1137 [ C(OP_PREFETCH) ] = {
1138 [ C(RESULT_ACCESS) ] = 0x0,
1139 [ C(RESULT_MISS) ] = 0x0,
1140 },
1141 },
1142 [ C(ITLB) ] = {
1143 [ C(OP_READ) ] = {
1144 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
1145 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
1146 },
1147 [ C(OP_WRITE) ] = {
1148 [ C(RESULT_ACCESS) ] = -1,
1149 [ C(RESULT_MISS) ] = -1,
1150 },
1151 [ C(OP_PREFETCH) ] = {
1152 [ C(RESULT_ACCESS) ] = -1,
1153 [ C(RESULT_MISS) ] = -1,
1154 },
1155 },
1156 [ C(BPU ) ] = {
1157 [ C(OP_READ) ] = {
1158 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
1159 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1160 },
1161 [ C(OP_WRITE) ] = {
1162 [ C(RESULT_ACCESS) ] = -1,
1163 [ C(RESULT_MISS) ] = -1,
1164 },
1165 [ C(OP_PREFETCH) ] = {
1166 [ C(RESULT_ACCESS) ] = -1,
1167 [ C(RESULT_MISS) ] = -1,
1168 },
1169 },
1170 [ C(NODE) ] = {
1171 [ C(OP_READ) ] = {
1172 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1173 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1174 },
1175 [ C(OP_WRITE) ] = {
1176 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1177 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1178 },
1179 [ C(OP_PREFETCH) ] = {
1180 [ C(RESULT_ACCESS) ] = 0x0,
1181 [ C(RESULT_MISS) ] = 0x0,
1182 },
1183 },
1184 };
1185
1186 static __initconst const u64 hsw_hw_cache_extra_regs
1187 [PERF_COUNT_HW_CACHE_MAX]
1188 [PERF_COUNT_HW_CACHE_OP_MAX]
1189 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1190 {
1191 [ C(LL ) ] = {
1192 [ C(OP_READ) ] = {
1193 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1194 HSW_LLC_ACCESS,
1195 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
1196 HSW_L3_MISS|HSW_ANY_SNOOP,
1197 },
1198 [ C(OP_WRITE) ] = {
1199 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1200 HSW_LLC_ACCESS,
1201 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
1202 HSW_L3_MISS|HSW_ANY_SNOOP,
1203 },
1204 [ C(OP_PREFETCH) ] = {
1205 [ C(RESULT_ACCESS) ] = 0x0,
1206 [ C(RESULT_MISS) ] = 0x0,
1207 },
1208 },
1209 [ C(NODE) ] = {
1210 [ C(OP_READ) ] = {
1211 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1212 HSW_L3_MISS_LOCAL_DRAM|
1213 HSW_SNOOP_DRAM,
1214 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
1215 HSW_L3_MISS_REMOTE|
1216 HSW_SNOOP_DRAM,
1217 },
1218 [ C(OP_WRITE) ] = {
1219 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1220 HSW_L3_MISS_LOCAL_DRAM|
1221 HSW_SNOOP_DRAM,
1222 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
1223 HSW_L3_MISS_REMOTE|
1224 HSW_SNOOP_DRAM,
1225 },
1226 [ C(OP_PREFETCH) ] = {
1227 [ C(RESULT_ACCESS) ] = 0x0,
1228 [ C(RESULT_MISS) ] = 0x0,
1229 },
1230 },
1231 };
1232
1233 static __initconst const u64 westmere_hw_cache_event_ids
1234 [PERF_COUNT_HW_CACHE_MAX]
1235 [PERF_COUNT_HW_CACHE_OP_MAX]
1236 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1237 {
1238 [ C(L1D) ] = {
1239 [ C(OP_READ) ] = {
1240 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1241 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1242 },
1243 [ C(OP_WRITE) ] = {
1244 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1245 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1246 },
1247 [ C(OP_PREFETCH) ] = {
1248 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1249 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1250 },
1251 },
1252 [ C(L1I ) ] = {
1253 [ C(OP_READ) ] = {
1254 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1255 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1256 },
1257 [ C(OP_WRITE) ] = {
1258 [ C(RESULT_ACCESS) ] = -1,
1259 [ C(RESULT_MISS) ] = -1,
1260 },
1261 [ C(OP_PREFETCH) ] = {
1262 [ C(RESULT_ACCESS) ] = 0x0,
1263 [ C(RESULT_MISS) ] = 0x0,
1264 },
1265 },
1266 [ C(LL ) ] = {
1267 [ C(OP_READ) ] = {
1268 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1269 [ C(RESULT_ACCESS) ] = 0x01b7,
1270 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1271 [ C(RESULT_MISS) ] = 0x01b7,
1272 },
1273 /*
1274 * Use RFO, not WRITEBACK, because a write miss would typically occur
1275 * on RFO.
1276 */
1277 [ C(OP_WRITE) ] = {
1278 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1279 [ C(RESULT_ACCESS) ] = 0x01b7,
1280 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1281 [ C(RESULT_MISS) ] = 0x01b7,
1282 },
1283 [ C(OP_PREFETCH) ] = {
1284 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1285 [ C(RESULT_ACCESS) ] = 0x01b7,
1286 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1287 [ C(RESULT_MISS) ] = 0x01b7,
1288 },
1289 },
1290 [ C(DTLB) ] = {
1291 [ C(OP_READ) ] = {
1292 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1293 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1294 },
1295 [ C(OP_WRITE) ] = {
1296 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1297 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1298 },
1299 [ C(OP_PREFETCH) ] = {
1300 [ C(RESULT_ACCESS) ] = 0x0,
1301 [ C(RESULT_MISS) ] = 0x0,
1302 },
1303 },
1304 [ C(ITLB) ] = {
1305 [ C(OP_READ) ] = {
1306 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1307 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
1308 },
1309 [ C(OP_WRITE) ] = {
1310 [ C(RESULT_ACCESS) ] = -1,
1311 [ C(RESULT_MISS) ] = -1,
1312 },
1313 [ C(OP_PREFETCH) ] = {
1314 [ C(RESULT_ACCESS) ] = -1,
1315 [ C(RESULT_MISS) ] = -1,
1316 },
1317 },
1318 [ C(BPU ) ] = {
1319 [ C(OP_READ) ] = {
1320 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1321 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1322 },
1323 [ C(OP_WRITE) ] = {
1324 [ C(RESULT_ACCESS) ] = -1,
1325 [ C(RESULT_MISS) ] = -1,
1326 },
1327 [ C(OP_PREFETCH) ] = {
1328 [ C(RESULT_ACCESS) ] = -1,
1329 [ C(RESULT_MISS) ] = -1,
1330 },
1331 },
1332 [ C(NODE) ] = {
1333 [ C(OP_READ) ] = {
1334 [ C(RESULT_ACCESS) ] = 0x01b7,
1335 [ C(RESULT_MISS) ] = 0x01b7,
1336 },
1337 [ C(OP_WRITE) ] = {
1338 [ C(RESULT_ACCESS) ] = 0x01b7,
1339 [ C(RESULT_MISS) ] = 0x01b7,
1340 },
1341 [ C(OP_PREFETCH) ] = {
1342 [ C(RESULT_ACCESS) ] = 0x01b7,
1343 [ C(RESULT_MISS) ] = 0x01b7,
1344 },
1345 },
1346 };
1347
1348 /*
1349 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1350 * See IA32 SDM Vol 3B 30.6.1.3
1351 */
1352
1353 #define NHM_DMND_DATA_RD (1 << 0)
1354 #define NHM_DMND_RFO (1 << 1)
1355 #define NHM_DMND_IFETCH (1 << 2)
1356 #define NHM_DMND_WB (1 << 3)
1357 #define NHM_PF_DATA_RD (1 << 4)
1358 #define NHM_PF_DATA_RFO (1 << 5)
1359 #define NHM_PF_IFETCH (1 << 6)
1360 #define NHM_OFFCORE_OTHER (1 << 7)
1361 #define NHM_UNCORE_HIT (1 << 8)
1362 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
1363 #define NHM_OTHER_CORE_HITM (1 << 10)
1364 /* reserved */
1365 #define NHM_REMOTE_CACHE_FWD (1 << 12)
1366 #define NHM_REMOTE_DRAM (1 << 13)
1367 #define NHM_LOCAL_DRAM (1 << 14)
1368 #define NHM_NON_DRAM (1 << 15)
1369
1370 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1371 #define NHM_REMOTE (NHM_REMOTE_DRAM)
1372
1373 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
1374 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
1375 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1376
1377 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1378 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1379 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
1380
1381 static __initconst const u64 nehalem_hw_cache_extra_regs
1382 [PERF_COUNT_HW_CACHE_MAX]
1383 [PERF_COUNT_HW_CACHE_OP_MAX]
1384 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1385 {
1386 [ C(LL ) ] = {
1387 [ C(OP_READ) ] = {
1388 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1389 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
1390 },
1391 [ C(OP_WRITE) ] = {
1392 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1393 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
1394 },
1395 [ C(OP_PREFETCH) ] = {
1396 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1397 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1398 },
1399 },
1400 [ C(NODE) ] = {
1401 [ C(OP_READ) ] = {
1402 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1403 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
1404 },
1405 [ C(OP_WRITE) ] = {
1406 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1407 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
1408 },
1409 [ C(OP_PREFETCH) ] = {
1410 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1411 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1412 },
1413 },
1414 };
1415
1416 static __initconst const u64 nehalem_hw_cache_event_ids
1417 [PERF_COUNT_HW_CACHE_MAX]
1418 [PERF_COUNT_HW_CACHE_OP_MAX]
1419 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1420 {
1421 [ C(L1D) ] = {
1422 [ C(OP_READ) ] = {
1423 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1424 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1425 },
1426 [ C(OP_WRITE) ] = {
1427 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1428 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1429 },
1430 [ C(OP_PREFETCH) ] = {
1431 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1432 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1433 },
1434 },
1435 [ C(L1I ) ] = {
1436 [ C(OP_READ) ] = {
1437 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1438 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1439 },
1440 [ C(OP_WRITE) ] = {
1441 [ C(RESULT_ACCESS) ] = -1,
1442 [ C(RESULT_MISS) ] = -1,
1443 },
1444 [ C(OP_PREFETCH) ] = {
1445 [ C(RESULT_ACCESS) ] = 0x0,
1446 [ C(RESULT_MISS) ] = 0x0,
1447 },
1448 },
1449 [ C(LL ) ] = {
1450 [ C(OP_READ) ] = {
1451 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1452 [ C(RESULT_ACCESS) ] = 0x01b7,
1453 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1454 [ C(RESULT_MISS) ] = 0x01b7,
1455 },
1456 /*
1457 * Use RFO, not WRITEBACK, because a write miss would typically occur
1458 * on RFO.
1459 */
1460 [ C(OP_WRITE) ] = {
1461 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1462 [ C(RESULT_ACCESS) ] = 0x01b7,
1463 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1464 [ C(RESULT_MISS) ] = 0x01b7,
1465 },
1466 [ C(OP_PREFETCH) ] = {
1467 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1468 [ C(RESULT_ACCESS) ] = 0x01b7,
1469 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1470 [ C(RESULT_MISS) ] = 0x01b7,
1471 },
1472 },
1473 [ C(DTLB) ] = {
1474 [ C(OP_READ) ] = {
1475 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1476 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1477 },
1478 [ C(OP_WRITE) ] = {
1479 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1480 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1481 },
1482 [ C(OP_PREFETCH) ] = {
1483 [ C(RESULT_ACCESS) ] = 0x0,
1484 [ C(RESULT_MISS) ] = 0x0,
1485 },
1486 },
1487 [ C(ITLB) ] = {
1488 [ C(OP_READ) ] = {
1489 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1490 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
1491 },
1492 [ C(OP_WRITE) ] = {
1493 [ C(RESULT_ACCESS) ] = -1,
1494 [ C(RESULT_MISS) ] = -1,
1495 },
1496 [ C(OP_PREFETCH) ] = {
1497 [ C(RESULT_ACCESS) ] = -1,
1498 [ C(RESULT_MISS) ] = -1,
1499 },
1500 },
1501 [ C(BPU ) ] = {
1502 [ C(OP_READ) ] = {
1503 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1504 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1505 },
1506 [ C(OP_WRITE) ] = {
1507 [ C(RESULT_ACCESS) ] = -1,
1508 [ C(RESULT_MISS) ] = -1,
1509 },
1510 [ C(OP_PREFETCH) ] = {
1511 [ C(RESULT_ACCESS) ] = -1,
1512 [ C(RESULT_MISS) ] = -1,
1513 },
1514 },
1515 [ C(NODE) ] = {
1516 [ C(OP_READ) ] = {
1517 [ C(RESULT_ACCESS) ] = 0x01b7,
1518 [ C(RESULT_MISS) ] = 0x01b7,
1519 },
1520 [ C(OP_WRITE) ] = {
1521 [ C(RESULT_ACCESS) ] = 0x01b7,
1522 [ C(RESULT_MISS) ] = 0x01b7,
1523 },
1524 [ C(OP_PREFETCH) ] = {
1525 [ C(RESULT_ACCESS) ] = 0x01b7,
1526 [ C(RESULT_MISS) ] = 0x01b7,
1527 },
1528 },
1529 };
1530
1531 static __initconst const u64 core2_hw_cache_event_ids
1532 [PERF_COUNT_HW_CACHE_MAX]
1533 [PERF_COUNT_HW_CACHE_OP_MAX]
1534 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1535 {
1536 [ C(L1D) ] = {
1537 [ C(OP_READ) ] = {
1538 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
1539 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
1540 },
1541 [ C(OP_WRITE) ] = {
1542 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
1543 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
1544 },
1545 [ C(OP_PREFETCH) ] = {
1546 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
1547 [ C(RESULT_MISS) ] = 0,
1548 },
1549 },
1550 [ C(L1I ) ] = {
1551 [ C(OP_READ) ] = {
1552 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
1553 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
1554 },
1555 [ C(OP_WRITE) ] = {
1556 [ C(RESULT_ACCESS) ] = -1,
1557 [ C(RESULT_MISS) ] = -1,
1558 },
1559 [ C(OP_PREFETCH) ] = {
1560 [ C(RESULT_ACCESS) ] = 0,
1561 [ C(RESULT_MISS) ] = 0,
1562 },
1563 },
1564 [ C(LL ) ] = {
1565 [ C(OP_READ) ] = {
1566 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1567 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1568 },
1569 [ C(OP_WRITE) ] = {
1570 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1571 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1572 },
1573 [ C(OP_PREFETCH) ] = {
1574 [ C(RESULT_ACCESS) ] = 0,
1575 [ C(RESULT_MISS) ] = 0,
1576 },
1577 },
1578 [ C(DTLB) ] = {
1579 [ C(OP_READ) ] = {
1580 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1581 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
1582 },
1583 [ C(OP_WRITE) ] = {
1584 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1585 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
1586 },
1587 [ C(OP_PREFETCH) ] = {
1588 [ C(RESULT_ACCESS) ] = 0,
1589 [ C(RESULT_MISS) ] = 0,
1590 },
1591 },
1592 [ C(ITLB) ] = {
1593 [ C(OP_READ) ] = {
1594 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1595 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
1596 },
1597 [ C(OP_WRITE) ] = {
1598 [ C(RESULT_ACCESS) ] = -1,
1599 [ C(RESULT_MISS) ] = -1,
1600 },
1601 [ C(OP_PREFETCH) ] = {
1602 [ C(RESULT_ACCESS) ] = -1,
1603 [ C(RESULT_MISS) ] = -1,
1604 },
1605 },
1606 [ C(BPU ) ] = {
1607 [ C(OP_READ) ] = {
1608 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1609 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1610 },
1611 [ C(OP_WRITE) ] = {
1612 [ C(RESULT_ACCESS) ] = -1,
1613 [ C(RESULT_MISS) ] = -1,
1614 },
1615 [ C(OP_PREFETCH) ] = {
1616 [ C(RESULT_ACCESS) ] = -1,
1617 [ C(RESULT_MISS) ] = -1,
1618 },
1619 },
1620 };
1621
1622 static __initconst const u64 atom_hw_cache_event_ids
1623 [PERF_COUNT_HW_CACHE_MAX]
1624 [PERF_COUNT_HW_CACHE_OP_MAX]
1625 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1626 {
1627 [ C(L1D) ] = {
1628 [ C(OP_READ) ] = {
1629 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
1630 [ C(RESULT_MISS) ] = 0,
1631 },
1632 [ C(OP_WRITE) ] = {
1633 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
1634 [ C(RESULT_MISS) ] = 0,
1635 },
1636 [ C(OP_PREFETCH) ] = {
1637 [ C(RESULT_ACCESS) ] = 0x0,
1638 [ C(RESULT_MISS) ] = 0,
1639 },
1640 },
1641 [ C(L1I ) ] = {
1642 [ C(OP_READ) ] = {
1643 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1644 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1645 },
1646 [ C(OP_WRITE) ] = {
1647 [ C(RESULT_ACCESS) ] = -1,
1648 [ C(RESULT_MISS) ] = -1,
1649 },
1650 [ C(OP_PREFETCH) ] = {
1651 [ C(RESULT_ACCESS) ] = 0,
1652 [ C(RESULT_MISS) ] = 0,
1653 },
1654 },
1655 [ C(LL ) ] = {
1656 [ C(OP_READ) ] = {
1657 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1658 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1659 },
1660 [ C(OP_WRITE) ] = {
1661 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1662 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1663 },
1664 [ C(OP_PREFETCH) ] = {
1665 [ C(RESULT_ACCESS) ] = 0,
1666 [ C(RESULT_MISS) ] = 0,
1667 },
1668 },
1669 [ C(DTLB) ] = {
1670 [ C(OP_READ) ] = {
1671 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1672 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1673 },
1674 [ C(OP_WRITE) ] = {
1675 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1676 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1677 },
1678 [ C(OP_PREFETCH) ] = {
1679 [ C(RESULT_ACCESS) ] = 0,
1680 [ C(RESULT_MISS) ] = 0,
1681 },
1682 },
1683 [ C(ITLB) ] = {
1684 [ C(OP_READ) ] = {
1685 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1686 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1687 },
1688 [ C(OP_WRITE) ] = {
1689 [ C(RESULT_ACCESS) ] = -1,
1690 [ C(RESULT_MISS) ] = -1,
1691 },
1692 [ C(OP_PREFETCH) ] = {
1693 [ C(RESULT_ACCESS) ] = -1,
1694 [ C(RESULT_MISS) ] = -1,
1695 },
1696 },
1697 [ C(BPU ) ] = {
1698 [ C(OP_READ) ] = {
1699 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1700 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1701 },
1702 [ C(OP_WRITE) ] = {
1703 [ C(RESULT_ACCESS) ] = -1,
1704 [ C(RESULT_MISS) ] = -1,
1705 },
1706 [ C(OP_PREFETCH) ] = {
1707 [ C(RESULT_ACCESS) ] = -1,
1708 [ C(RESULT_MISS) ] = -1,
1709 },
1710 },
1711 };
1712
1713 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1714 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1715 /* no_alloc_cycles.not_delivered */
1716 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1717 "event=0xca,umask=0x50");
1718 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1719 /* uops_retired.all */
1720 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1721 "event=0xc2,umask=0x10");
1722 /* uops_retired.all */
1723 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1724 "event=0xc2,umask=0x10");
1725
1726 static struct attribute *slm_events_attrs[] = {
1727 EVENT_PTR(td_total_slots_slm),
1728 EVENT_PTR(td_total_slots_scale_slm),
1729 EVENT_PTR(td_fetch_bubbles_slm),
1730 EVENT_PTR(td_fetch_bubbles_scale_slm),
1731 EVENT_PTR(td_slots_issued_slm),
1732 EVENT_PTR(td_slots_retired_slm),
1733 NULL
1734 };
1735
1736 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1737 {
1738 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1739 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1740 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1741 EVENT_EXTRA_END
1742 };
1743
1744 #define SLM_DMND_READ SNB_DMND_DATA_RD
1745 #define SLM_DMND_WRITE SNB_DMND_RFO
1746 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1747
1748 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1749 #define SLM_LLC_ACCESS SNB_RESP_ANY
1750 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1751
1752 static __initconst const u64 slm_hw_cache_extra_regs
1753 [PERF_COUNT_HW_CACHE_MAX]
1754 [PERF_COUNT_HW_CACHE_OP_MAX]
1755 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1756 {
1757 [ C(LL ) ] = {
1758 [ C(OP_READ) ] = {
1759 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1760 [ C(RESULT_MISS) ] = 0,
1761 },
1762 [ C(OP_WRITE) ] = {
1763 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1764 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1765 },
1766 [ C(OP_PREFETCH) ] = {
1767 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1768 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1769 },
1770 },
1771 };
1772
1773 static __initconst const u64 slm_hw_cache_event_ids
1774 [PERF_COUNT_HW_CACHE_MAX]
1775 [PERF_COUNT_HW_CACHE_OP_MAX]
1776 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1777 {
1778 [ C(L1D) ] = {
1779 [ C(OP_READ) ] = {
1780 [ C(RESULT_ACCESS) ] = 0,
1781 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
1782 },
1783 [ C(OP_WRITE) ] = {
1784 [ C(RESULT_ACCESS) ] = 0,
1785 [ C(RESULT_MISS) ] = 0,
1786 },
1787 [ C(OP_PREFETCH) ] = {
1788 [ C(RESULT_ACCESS) ] = 0,
1789 [ C(RESULT_MISS) ] = 0,
1790 },
1791 },
1792 [ C(L1I ) ] = {
1793 [ C(OP_READ) ] = {
1794 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1795 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
1796 },
1797 [ C(OP_WRITE) ] = {
1798 [ C(RESULT_ACCESS) ] = -1,
1799 [ C(RESULT_MISS) ] = -1,
1800 },
1801 [ C(OP_PREFETCH) ] = {
1802 [ C(RESULT_ACCESS) ] = 0,
1803 [ C(RESULT_MISS) ] = 0,
1804 },
1805 },
1806 [ C(LL ) ] = {
1807 [ C(OP_READ) ] = {
1808 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1809 [ C(RESULT_ACCESS) ] = 0x01b7,
1810 [ C(RESULT_MISS) ] = 0,
1811 },
1812 [ C(OP_WRITE) ] = {
1813 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1814 [ C(RESULT_ACCESS) ] = 0x01b7,
1815 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1816 [ C(RESULT_MISS) ] = 0x01b7,
1817 },
1818 [ C(OP_PREFETCH) ] = {
1819 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1820 [ C(RESULT_ACCESS) ] = 0x01b7,
1821 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1822 [ C(RESULT_MISS) ] = 0x01b7,
1823 },
1824 },
1825 [ C(DTLB) ] = {
1826 [ C(OP_READ) ] = {
1827 [ C(RESULT_ACCESS) ] = 0,
1828 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
1829 },
1830 [ C(OP_WRITE) ] = {
1831 [ C(RESULT_ACCESS) ] = 0,
1832 [ C(RESULT_MISS) ] = 0,
1833 },
1834 [ C(OP_PREFETCH) ] = {
1835 [ C(RESULT_ACCESS) ] = 0,
1836 [ C(RESULT_MISS) ] = 0,
1837 },
1838 },
1839 [ C(ITLB) ] = {
1840 [ C(OP_READ) ] = {
1841 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1842 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1843 },
1844 [ C(OP_WRITE) ] = {
1845 [ C(RESULT_ACCESS) ] = -1,
1846 [ C(RESULT_MISS) ] = -1,
1847 },
1848 [ C(OP_PREFETCH) ] = {
1849 [ C(RESULT_ACCESS) ] = -1,
1850 [ C(RESULT_MISS) ] = -1,
1851 },
1852 },
1853 [ C(BPU ) ] = {
1854 [ C(OP_READ) ] = {
1855 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1856 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1857 },
1858 [ C(OP_WRITE) ] = {
1859 [ C(RESULT_ACCESS) ] = -1,
1860 [ C(RESULT_MISS) ] = -1,
1861 },
1862 [ C(OP_PREFETCH) ] = {
1863 [ C(RESULT_ACCESS) ] = -1,
1864 [ C(RESULT_MISS) ] = -1,
1865 },
1866 },
1867 };
1868
1869 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1870 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1871 /* UOPS_NOT_DELIVERED.ANY */
1872 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1873 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1874 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1875 /* UOPS_RETIRED.ANY */
1876 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1877 /* UOPS_ISSUED.ANY */
1878 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1879
1880 static struct attribute *glm_events_attrs[] = {
1881 EVENT_PTR(td_total_slots_glm),
1882 EVENT_PTR(td_total_slots_scale_glm),
1883 EVENT_PTR(td_fetch_bubbles_glm),
1884 EVENT_PTR(td_recovery_bubbles_glm),
1885 EVENT_PTR(td_slots_issued_glm),
1886 EVENT_PTR(td_slots_retired_glm),
1887 NULL
1888 };
1889
1890 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1891 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1892 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1893 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1894 EVENT_EXTRA_END
1895 };
1896
1897 #define GLM_DEMAND_DATA_RD BIT_ULL(0)
1898 #define GLM_DEMAND_RFO BIT_ULL(1)
1899 #define GLM_ANY_RESPONSE BIT_ULL(16)
1900 #define GLM_SNP_NONE_OR_MISS BIT_ULL(33)
1901 #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD
1902 #define GLM_DEMAND_WRITE GLM_DEMAND_RFO
1903 #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1904 #define GLM_LLC_ACCESS GLM_ANY_RESPONSE
1905 #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1906 #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM)
1907
1908 static __initconst const u64 glm_hw_cache_event_ids
1909 [PERF_COUNT_HW_CACHE_MAX]
1910 [PERF_COUNT_HW_CACHE_OP_MAX]
1911 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1912 [C(L1D)] = {
1913 [C(OP_READ)] = {
1914 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1915 [C(RESULT_MISS)] = 0x0,
1916 },
1917 [C(OP_WRITE)] = {
1918 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1919 [C(RESULT_MISS)] = 0x0,
1920 },
1921 [C(OP_PREFETCH)] = {
1922 [C(RESULT_ACCESS)] = 0x0,
1923 [C(RESULT_MISS)] = 0x0,
1924 },
1925 },
1926 [C(L1I)] = {
1927 [C(OP_READ)] = {
1928 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
1929 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
1930 },
1931 [C(OP_WRITE)] = {
1932 [C(RESULT_ACCESS)] = -1,
1933 [C(RESULT_MISS)] = -1,
1934 },
1935 [C(OP_PREFETCH)] = {
1936 [C(RESULT_ACCESS)] = 0x0,
1937 [C(RESULT_MISS)] = 0x0,
1938 },
1939 },
1940 [C(LL)] = {
1941 [C(OP_READ)] = {
1942 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1943 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1944 },
1945 [C(OP_WRITE)] = {
1946 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1947 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1948 },
1949 [C(OP_PREFETCH)] = {
1950 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1951 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1952 },
1953 },
1954 [C(DTLB)] = {
1955 [C(OP_READ)] = {
1956 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1957 [C(RESULT_MISS)] = 0x0,
1958 },
1959 [C(OP_WRITE)] = {
1960 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1961 [C(RESULT_MISS)] = 0x0,
1962 },
1963 [C(OP_PREFETCH)] = {
1964 [C(RESULT_ACCESS)] = 0x0,
1965 [C(RESULT_MISS)] = 0x0,
1966 },
1967 },
1968 [C(ITLB)] = {
1969 [C(OP_READ)] = {
1970 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
1971 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
1972 },
1973 [C(OP_WRITE)] = {
1974 [C(RESULT_ACCESS)] = -1,
1975 [C(RESULT_MISS)] = -1,
1976 },
1977 [C(OP_PREFETCH)] = {
1978 [C(RESULT_ACCESS)] = -1,
1979 [C(RESULT_MISS)] = -1,
1980 },
1981 },
1982 [C(BPU)] = {
1983 [C(OP_READ)] = {
1984 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1985 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1986 },
1987 [C(OP_WRITE)] = {
1988 [C(RESULT_ACCESS)] = -1,
1989 [C(RESULT_MISS)] = -1,
1990 },
1991 [C(OP_PREFETCH)] = {
1992 [C(RESULT_ACCESS)] = -1,
1993 [C(RESULT_MISS)] = -1,
1994 },
1995 },
1996 };
1997
1998 static __initconst const u64 glm_hw_cache_extra_regs
1999 [PERF_COUNT_HW_CACHE_MAX]
2000 [PERF_COUNT_HW_CACHE_OP_MAX]
2001 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2002 [C(LL)] = {
2003 [C(OP_READ)] = {
2004 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
2005 GLM_LLC_ACCESS,
2006 [C(RESULT_MISS)] = GLM_DEMAND_READ|
2007 GLM_LLC_MISS,
2008 },
2009 [C(OP_WRITE)] = {
2010 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
2011 GLM_LLC_ACCESS,
2012 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
2013 GLM_LLC_MISS,
2014 },
2015 [C(OP_PREFETCH)] = {
2016 [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH|
2017 GLM_LLC_ACCESS,
2018 [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH|
2019 GLM_LLC_MISS,
2020 },
2021 },
2022 };
2023
2024 static __initconst const u64 glp_hw_cache_event_ids
2025 [PERF_COUNT_HW_CACHE_MAX]
2026 [PERF_COUNT_HW_CACHE_OP_MAX]
2027 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2028 [C(L1D)] = {
2029 [C(OP_READ)] = {
2030 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
2031 [C(RESULT_MISS)] = 0x0,
2032 },
2033 [C(OP_WRITE)] = {
2034 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
2035 [C(RESULT_MISS)] = 0x0,
2036 },
2037 [C(OP_PREFETCH)] = {
2038 [C(RESULT_ACCESS)] = 0x0,
2039 [C(RESULT_MISS)] = 0x0,
2040 },
2041 },
2042 [C(L1I)] = {
2043 [C(OP_READ)] = {
2044 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
2045 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
2046 },
2047 [C(OP_WRITE)] = {
2048 [C(RESULT_ACCESS)] = -1,
2049 [C(RESULT_MISS)] = -1,
2050 },
2051 [C(OP_PREFETCH)] = {
2052 [C(RESULT_ACCESS)] = 0x0,
2053 [C(RESULT_MISS)] = 0x0,
2054 },
2055 },
2056 [C(LL)] = {
2057 [C(OP_READ)] = {
2058 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
2059 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
2060 },
2061 [C(OP_WRITE)] = {
2062 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
2063 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
2064 },
2065 [C(OP_PREFETCH)] = {
2066 [C(RESULT_ACCESS)] = 0x0,
2067 [C(RESULT_MISS)] = 0x0,
2068 },
2069 },
2070 [C(DTLB)] = {
2071 [C(OP_READ)] = {
2072 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
2073 [C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
2074 },
2075 [C(OP_WRITE)] = {
2076 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
2077 [C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
2078 },
2079 [C(OP_PREFETCH)] = {
2080 [C(RESULT_ACCESS)] = 0x0,
2081 [C(RESULT_MISS)] = 0x0,
2082 },
2083 },
2084 [C(ITLB)] = {
2085 [C(OP_READ)] = {
2086 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
2087 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
2088 },
2089 [C(OP_WRITE)] = {
2090 [C(RESULT_ACCESS)] = -1,
2091 [C(RESULT_MISS)] = -1,
2092 },
2093 [C(OP_PREFETCH)] = {
2094 [C(RESULT_ACCESS)] = -1,
2095 [C(RESULT_MISS)] = -1,
2096 },
2097 },
2098 [C(BPU)] = {
2099 [C(OP_READ)] = {
2100 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
2101 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
2102 },
2103 [C(OP_WRITE)] = {
2104 [C(RESULT_ACCESS)] = -1,
2105 [C(RESULT_MISS)] = -1,
2106 },
2107 [C(OP_PREFETCH)] = {
2108 [C(RESULT_ACCESS)] = -1,
2109 [C(RESULT_MISS)] = -1,
2110 },
2111 },
2112 };
2113
2114 static __initconst const u64 glp_hw_cache_extra_regs
2115 [PERF_COUNT_HW_CACHE_MAX]
2116 [PERF_COUNT_HW_CACHE_OP_MAX]
2117 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2118 [C(LL)] = {
2119 [C(OP_READ)] = {
2120 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
2121 GLM_LLC_ACCESS,
2122 [C(RESULT_MISS)] = GLM_DEMAND_READ|
2123 GLM_LLC_MISS,
2124 },
2125 [C(OP_WRITE)] = {
2126 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
2127 GLM_LLC_ACCESS,
2128 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
2129 GLM_LLC_MISS,
2130 },
2131 [C(OP_PREFETCH)] = {
2132 [C(RESULT_ACCESS)] = 0x0,
2133 [C(RESULT_MISS)] = 0x0,
2134 },
2135 },
2136 };
2137
2138 #define TNT_LOCAL_DRAM BIT_ULL(26)
2139 #define TNT_DEMAND_READ GLM_DEMAND_DATA_RD
2140 #define TNT_DEMAND_WRITE GLM_DEMAND_RFO
2141 #define TNT_LLC_ACCESS GLM_ANY_RESPONSE
2142 #define TNT_SNP_ANY (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2143 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2144 #define TNT_LLC_MISS (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2145
2146 static __initconst const u64 tnt_hw_cache_extra_regs
2147 [PERF_COUNT_HW_CACHE_MAX]
2148 [PERF_COUNT_HW_CACHE_OP_MAX]
2149 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2150 [C(LL)] = {
2151 [C(OP_READ)] = {
2152 [C(RESULT_ACCESS)] = TNT_DEMAND_READ|
2153 TNT_LLC_ACCESS,
2154 [C(RESULT_MISS)] = TNT_DEMAND_READ|
2155 TNT_LLC_MISS,
2156 },
2157 [C(OP_WRITE)] = {
2158 [C(RESULT_ACCESS)] = TNT_DEMAND_WRITE|
2159 TNT_LLC_ACCESS,
2160 [C(RESULT_MISS)] = TNT_DEMAND_WRITE|
2161 TNT_LLC_MISS,
2162 },
2163 [C(OP_PREFETCH)] = {
2164 [C(RESULT_ACCESS)] = 0x0,
2165 [C(RESULT_MISS)] = 0x0,
2166 },
2167 },
2168 };
2169
2170 EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound_tnt, "event=0x71,umask=0x0");
2171 EVENT_ATTR_STR(topdown-retiring, td_retiring_tnt, "event=0xc2,umask=0x0");
2172 EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec_tnt, "event=0x73,umask=0x6");
2173 EVENT_ATTR_STR(topdown-be-bound, td_be_bound_tnt, "event=0x74,umask=0x0");
2174
2175 static struct attribute *tnt_events_attrs[] = {
2176 EVENT_PTR(td_fe_bound_tnt),
2177 EVENT_PTR(td_retiring_tnt),
2178 EVENT_PTR(td_bad_spec_tnt),
2179 EVENT_PTR(td_be_bound_tnt),
2180 NULL,
2181 };
2182
2183 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2184 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2185 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2186 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2187 EVENT_EXTRA_END
2188 };
2189
2190 EVENT_ATTR_STR(mem-loads, mem_ld_grt, "event=0xd0,umask=0x5,ldlat=3");
2191 EVENT_ATTR_STR(mem-stores, mem_st_grt, "event=0xd0,umask=0x6");
2192
2193 static struct attribute *grt_mem_attrs[] = {
2194 EVENT_PTR(mem_ld_grt),
2195 EVENT_PTR(mem_st_grt),
2196 NULL
2197 };
2198
2199 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2200 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2201 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2202 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2203 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2204 EVENT_EXTRA_END
2205 };
2206
2207 EVENT_ATTR_STR(topdown-retiring, td_retiring_cmt, "event=0x72,umask=0x0");
2208 EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec_cmt, "event=0x73,umask=0x0");
2209
2210 static struct attribute *cmt_events_attrs[] = {
2211 EVENT_PTR(td_fe_bound_tnt),
2212 EVENT_PTR(td_retiring_cmt),
2213 EVENT_PTR(td_bad_spec_cmt),
2214 EVENT_PTR(td_be_bound_tnt),
2215 NULL
2216 };
2217
2218 static struct extra_reg intel_cmt_extra_regs[] __read_mostly = {
2219 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2220 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff3ffffffffffull, RSP_0),
2221 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff3ffffffffffull, RSP_1),
2222 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2223 INTEL_UEVENT_EXTRA_REG(0x0127, MSR_SNOOP_RSP_0, 0xffffffffffffffffull, SNOOP_0),
2224 INTEL_UEVENT_EXTRA_REG(0x0227, MSR_SNOOP_RSP_1, 0xffffffffffffffffull, SNOOP_1),
2225 EVENT_EXTRA_END
2226 };
2227
2228 EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound_skt, "event=0x9c,umask=0x01");
2229 EVENT_ATTR_STR(topdown-retiring, td_retiring_skt, "event=0xc2,umask=0x02");
2230 EVENT_ATTR_STR(topdown-be-bound, td_be_bound_skt, "event=0xa4,umask=0x02");
2231
2232 static struct attribute *skt_events_attrs[] = {
2233 EVENT_PTR(td_fe_bound_skt),
2234 EVENT_PTR(td_retiring_skt),
2235 EVENT_PTR(td_bad_spec_cmt),
2236 EVENT_PTR(td_be_bound_skt),
2237 NULL,
2238 };
2239
2240 #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
2241 #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
2242 #define KNL_MCDRAM_LOCAL BIT_ULL(21)
2243 #define KNL_MCDRAM_FAR BIT_ULL(22)
2244 #define KNL_DDR_LOCAL BIT_ULL(23)
2245 #define KNL_DDR_FAR BIT_ULL(24)
2246 #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2247 KNL_DDR_LOCAL | KNL_DDR_FAR)
2248 #define KNL_L2_READ SLM_DMND_READ
2249 #define KNL_L2_WRITE SLM_DMND_WRITE
2250 #define KNL_L2_PREFETCH SLM_DMND_PREFETCH
2251 #define KNL_L2_ACCESS SLM_LLC_ACCESS
2252 #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2253 KNL_DRAM_ANY | SNB_SNP_ANY | \
2254 SNB_NON_DRAM)
2255
2256 static __initconst const u64 knl_hw_cache_extra_regs
2257 [PERF_COUNT_HW_CACHE_MAX]
2258 [PERF_COUNT_HW_CACHE_OP_MAX]
2259 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2260 [C(LL)] = {
2261 [C(OP_READ)] = {
2262 [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2263 [C(RESULT_MISS)] = 0,
2264 },
2265 [C(OP_WRITE)] = {
2266 [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2267 [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS,
2268 },
2269 [C(OP_PREFETCH)] = {
2270 [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2271 [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS,
2272 },
2273 },
2274 };
2275
2276 /*
2277 * Used from PMIs where the LBRs are already disabled.
2278 *
2279 * This function could be called consecutively. It is required to remain in
2280 * disabled state if called consecutively.
2281 *
2282 * During consecutive calls, the same disable value will be written to related
2283 * registers, so the PMU state remains unchanged.
2284 *
2285 * intel_bts events don't coexist with intel PMU's BTS events because of
2286 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2287 * disabled around intel PMU's event batching etc, only inside the PMI handler.
2288 *
2289 * Avoid PEBS_ENABLE MSR access in PMIs.
2290 * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2291 * It doesn't matter if the PEBS is enabled or not.
2292 * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2293 * access PEBS_ENABLE MSR in disable_all()/enable_all().
2294 * However, there are some cases which may change PEBS status, e.g. PMI
2295 * throttle. The PEBS_ENABLE should be updated where the status changes.
2296 */
__intel_pmu_disable_all(bool bts)2297 static __always_inline void __intel_pmu_disable_all(bool bts)
2298 {
2299 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2300
2301 wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2302
2303 if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2304 intel_pmu_disable_bts();
2305 }
2306
intel_pmu_disable_all(void)2307 static __always_inline void intel_pmu_disable_all(void)
2308 {
2309 __intel_pmu_disable_all(true);
2310 static_call_cond(x86_pmu_pebs_disable_all)();
2311 intel_pmu_lbr_disable_all();
2312 }
2313
__intel_pmu_enable_all(int added,bool pmi)2314 static void __intel_pmu_enable_all(int added, bool pmi)
2315 {
2316 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2317 u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2318
2319 intel_pmu_lbr_enable_all(pmi);
2320
2321 if (cpuc->fixed_ctrl_val != cpuc->active_fixed_ctrl_val) {
2322 wrmsrq(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, cpuc->fixed_ctrl_val);
2323 cpuc->active_fixed_ctrl_val = cpuc->fixed_ctrl_val;
2324 }
2325
2326 wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL,
2327 intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2328
2329 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2330 struct perf_event *event =
2331 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2332
2333 if (WARN_ON_ONCE(!event))
2334 return;
2335
2336 intel_pmu_enable_bts(event->hw.config);
2337 }
2338 }
2339
intel_pmu_enable_all(int added)2340 static void intel_pmu_enable_all(int added)
2341 {
2342 static_call_cond(x86_pmu_pebs_enable_all)();
2343 __intel_pmu_enable_all(added, false);
2344 }
2345
2346 static noinline int
__intel_pmu_snapshot_branch_stack(struct perf_branch_entry * entries,unsigned int cnt,unsigned long flags)2347 __intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
2348 unsigned int cnt, unsigned long flags)
2349 {
2350 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2351
2352 intel_pmu_lbr_read();
2353 cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);
2354
2355 memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
2356 intel_pmu_enable_all(0);
2357 local_irq_restore(flags);
2358 return cnt;
2359 }
2360
2361 static int
intel_pmu_snapshot_branch_stack(struct perf_branch_entry * entries,unsigned int cnt)2362 intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2363 {
2364 unsigned long flags;
2365
2366 /* must not have branches... */
2367 local_irq_save(flags);
2368 __intel_pmu_disable_all(false); /* we don't care about BTS */
2369 __intel_pmu_lbr_disable();
2370 /* ... until here */
2371 return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2372 }
2373
2374 static int
intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry * entries,unsigned int cnt)2375 intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2376 {
2377 unsigned long flags;
2378
2379 /* must not have branches... */
2380 local_irq_save(flags);
2381 __intel_pmu_disable_all(false); /* we don't care about BTS */
2382 __intel_pmu_arch_lbr_disable();
2383 /* ... until here */
2384 return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2385 }
2386
2387 /*
2388 * Workaround for:
2389 * Intel Errata AAK100 (model 26)
2390 * Intel Errata AAP53 (model 30)
2391 * Intel Errata BD53 (model 44)
2392 *
2393 * The official story:
2394 * These chips need to be 'reset' when adding counters by programming the
2395 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2396 * in sequence on the same PMC or on different PMCs.
2397 *
2398 * In practice it appears some of these events do in fact count, and
2399 * we need to program all 4 events.
2400 */
intel_pmu_nhm_workaround(void)2401 static void intel_pmu_nhm_workaround(void)
2402 {
2403 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2404 static const unsigned long nhm_magic[4] = {
2405 0x4300B5,
2406 0x4300D2,
2407 0x4300B1,
2408 0x4300B1
2409 };
2410 struct perf_event *event;
2411 int i;
2412
2413 /*
2414 * The Errata requires below steps:
2415 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2416 * 2) Configure 4 PERFEVTSELx with the magic events and clear
2417 * the corresponding PMCx;
2418 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2419 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2420 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2421 */
2422
2423 /*
2424 * The real steps we choose are a little different from above.
2425 * A) To reduce MSR operations, we don't run step 1) as they
2426 * are already cleared before this function is called;
2427 * B) Call x86_perf_event_update to save PMCx before configuring
2428 * PERFEVTSELx with magic number;
2429 * C) With step 5), we do clear only when the PERFEVTSELx is
2430 * not used currently.
2431 * D) Call x86_perf_event_set_period to restore PMCx;
2432 */
2433
2434 /* We always operate 4 pairs of PERF Counters */
2435 for (i = 0; i < 4; i++) {
2436 event = cpuc->events[i];
2437 if (event)
2438 static_call(x86_pmu_update)(event);
2439 }
2440
2441 for (i = 0; i < 4; i++) {
2442 wrmsrq(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2443 wrmsrq(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2444 }
2445
2446 wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2447 wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2448
2449 for (i = 0; i < 4; i++) {
2450 event = cpuc->events[i];
2451
2452 if (event) {
2453 static_call(x86_pmu_set_period)(event);
2454 __x86_pmu_enable_event(&event->hw,
2455 ARCH_PERFMON_EVENTSEL_ENABLE);
2456 } else
2457 wrmsrq(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2458 }
2459 }
2460
intel_pmu_nhm_enable_all(int added)2461 static void intel_pmu_nhm_enable_all(int added)
2462 {
2463 if (added)
2464 intel_pmu_nhm_workaround();
2465 intel_pmu_enable_all(added);
2466 }
2467
intel_set_tfa(struct cpu_hw_events * cpuc,bool on)2468 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2469 {
2470 u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2471
2472 if (cpuc->tfa_shadow != val) {
2473 cpuc->tfa_shadow = val;
2474 wrmsrq(MSR_TSX_FORCE_ABORT, val);
2475 }
2476 }
2477
intel_tfa_commit_scheduling(struct cpu_hw_events * cpuc,int idx,int cntr)2478 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2479 {
2480 /*
2481 * We're going to use PMC3, make sure TFA is set before we touch it.
2482 */
2483 if (cntr == 3)
2484 intel_set_tfa(cpuc, true);
2485 }
2486
intel_tfa_pmu_enable_all(int added)2487 static void intel_tfa_pmu_enable_all(int added)
2488 {
2489 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2490
2491 /*
2492 * If we find PMC3 is no longer used when we enable the PMU, we can
2493 * clear TFA.
2494 */
2495 if (!test_bit(3, cpuc->active_mask))
2496 intel_set_tfa(cpuc, false);
2497
2498 intel_pmu_enable_all(added);
2499 }
2500
intel_pmu_get_status(void)2501 static inline u64 intel_pmu_get_status(void)
2502 {
2503 u64 status;
2504
2505 rdmsrq(MSR_CORE_PERF_GLOBAL_STATUS, status);
2506
2507 return status;
2508 }
2509
intel_pmu_ack_status(u64 ack)2510 static inline void intel_pmu_ack_status(u64 ack)
2511 {
2512 wrmsrq(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2513 }
2514
event_is_checkpointed(struct perf_event * event)2515 static inline bool event_is_checkpointed(struct perf_event *event)
2516 {
2517 return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2518 }
2519
intel_set_masks(struct perf_event * event,int idx)2520 static inline void intel_set_masks(struct perf_event *event, int idx)
2521 {
2522 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2523
2524 if (event->attr.exclude_host)
2525 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2526 if (event->attr.exclude_guest)
2527 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2528 if (event_is_checkpointed(event))
2529 __set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2530 }
2531
intel_clear_masks(struct perf_event * event,int idx)2532 static inline void intel_clear_masks(struct perf_event *event, int idx)
2533 {
2534 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2535
2536 __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2537 __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2538 __clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2539 }
2540
intel_pmu_disable_fixed(struct perf_event * event)2541 static void intel_pmu_disable_fixed(struct perf_event *event)
2542 {
2543 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2544 struct hw_perf_event *hwc = &event->hw;
2545 int idx = hwc->idx;
2546 u64 mask;
2547
2548 if (is_topdown_idx(idx)) {
2549 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2550
2551 /*
2552 * When there are other active TopDown events,
2553 * don't disable the fixed counter 3.
2554 */
2555 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2556 return;
2557 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2558 }
2559
2560 intel_clear_masks(event, idx);
2561
2562 mask = intel_fixed_bits_by_idx(idx - INTEL_PMC_IDX_FIXED, INTEL_FIXED_BITS_MASK);
2563 cpuc->fixed_ctrl_val &= ~mask;
2564 }
2565
intel_pmu_disable_event(struct perf_event * event)2566 static void intel_pmu_disable_event(struct perf_event *event)
2567 {
2568 struct hw_perf_event *hwc = &event->hw;
2569 int idx = hwc->idx;
2570
2571 switch (idx) {
2572 case 0 ... INTEL_PMC_IDX_FIXED - 1:
2573 intel_clear_masks(event, idx);
2574 x86_pmu_disable_event(event);
2575 break;
2576 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2577 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2578 intel_pmu_disable_fixed(event);
2579 break;
2580 case INTEL_PMC_IDX_FIXED_BTS:
2581 intel_pmu_disable_bts();
2582 intel_pmu_drain_bts_buffer();
2583 return;
2584 case INTEL_PMC_IDX_FIXED_VLBR:
2585 intel_clear_masks(event, idx);
2586 break;
2587 default:
2588 intel_clear_masks(event, idx);
2589 pr_warn("Failed to disable the event with invalid index %d\n",
2590 idx);
2591 return;
2592 }
2593
2594 /*
2595 * Needs to be called after x86_pmu_disable_event,
2596 * so we don't trigger the event without PEBS bit set.
2597 */
2598 if (unlikely(event->attr.precise_ip))
2599 static_call(x86_pmu_pebs_disable)(event);
2600 }
2601
intel_pmu_assign_event(struct perf_event * event,int idx)2602 static void intel_pmu_assign_event(struct perf_event *event, int idx)
2603 {
2604 if (is_pebs_pt(event))
2605 perf_report_aux_output_id(event, idx);
2606 }
2607
intel_pmu_needs_branch_stack(struct perf_event * event)2608 static __always_inline bool intel_pmu_needs_branch_stack(struct perf_event *event)
2609 {
2610 return event->hw.flags & PERF_X86_EVENT_NEEDS_BRANCH_STACK;
2611 }
2612
intel_pmu_del_event(struct perf_event * event)2613 static void intel_pmu_del_event(struct perf_event *event)
2614 {
2615 if (intel_pmu_needs_branch_stack(event))
2616 intel_pmu_lbr_del(event);
2617 if (event->attr.precise_ip)
2618 intel_pmu_pebs_del(event);
2619 if (is_pebs_counter_event_group(event) ||
2620 is_acr_event_group(event))
2621 this_cpu_ptr(&cpu_hw_events)->n_late_setup--;
2622 }
2623
icl_set_topdown_event_period(struct perf_event * event)2624 static int icl_set_topdown_event_period(struct perf_event *event)
2625 {
2626 struct hw_perf_event *hwc = &event->hw;
2627 s64 left = local64_read(&hwc->period_left);
2628
2629 /*
2630 * The values in PERF_METRICS MSR are derived from fixed counter 3.
2631 * Software should start both registers, PERF_METRICS and fixed
2632 * counter 3, from zero.
2633 * Clear PERF_METRICS and Fixed counter 3 in initialization.
2634 * After that, both MSRs will be cleared for each read.
2635 * Don't need to clear them again.
2636 */
2637 if (left == x86_pmu.max_period) {
2638 wrmsrq(MSR_CORE_PERF_FIXED_CTR3, 0);
2639 wrmsrq(MSR_PERF_METRICS, 0);
2640 hwc->saved_slots = 0;
2641 hwc->saved_metric = 0;
2642 }
2643
2644 if ((hwc->saved_slots) && is_slots_event(event)) {
2645 wrmsrq(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2646 wrmsrq(MSR_PERF_METRICS, hwc->saved_metric);
2647 }
2648
2649 perf_event_update_userpage(event);
2650
2651 return 0;
2652 }
2653
2654 DEFINE_STATIC_CALL(intel_pmu_set_topdown_event_period, x86_perf_event_set_period);
2655
icl_get_metrics_event_value(u64 metric,u64 slots,int idx)2656 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2657 {
2658 u32 val;
2659
2660 /*
2661 * The metric is reported as an 8bit integer fraction
2662 * summing up to 0xff.
2663 * slots-in-metric = (Metric / 0xff) * slots
2664 */
2665 val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2666 return mul_u64_u32_div(slots, val, 0xff);
2667 }
2668
icl_get_topdown_value(struct perf_event * event,u64 slots,u64 metrics)2669 static u64 icl_get_topdown_value(struct perf_event *event,
2670 u64 slots, u64 metrics)
2671 {
2672 int idx = event->hw.idx;
2673 u64 delta;
2674
2675 if (is_metric_idx(idx))
2676 delta = icl_get_metrics_event_value(metrics, slots, idx);
2677 else
2678 delta = slots;
2679
2680 return delta;
2681 }
2682
__icl_update_topdown_event(struct perf_event * event,u64 slots,u64 metrics,u64 last_slots,u64 last_metrics)2683 static void __icl_update_topdown_event(struct perf_event *event,
2684 u64 slots, u64 metrics,
2685 u64 last_slots, u64 last_metrics)
2686 {
2687 u64 delta, last = 0;
2688
2689 delta = icl_get_topdown_value(event, slots, metrics);
2690 if (last_slots)
2691 last = icl_get_topdown_value(event, last_slots, last_metrics);
2692
2693 /*
2694 * The 8bit integer fraction of metric may be not accurate,
2695 * especially when the changes is very small.
2696 * For example, if only a few bad_spec happens, the fraction
2697 * may be reduced from 1 to 0. If so, the bad_spec event value
2698 * will be 0 which is definitely less than the last value.
2699 * Avoid update event->count for this case.
2700 */
2701 if (delta > last) {
2702 delta -= last;
2703 local64_add(delta, &event->count);
2704 }
2705 }
2706
update_saved_topdown_regs(struct perf_event * event,u64 slots,u64 metrics,int metric_end)2707 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2708 u64 metrics, int metric_end)
2709 {
2710 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2711 struct perf_event *other;
2712 int idx;
2713
2714 event->hw.saved_slots = slots;
2715 event->hw.saved_metric = metrics;
2716
2717 for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2718 if (!is_topdown_idx(idx))
2719 continue;
2720 other = cpuc->events[idx];
2721 other->hw.saved_slots = slots;
2722 other->hw.saved_metric = metrics;
2723 }
2724 }
2725
2726 /*
2727 * Update all active Topdown events.
2728 *
2729 * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2730 * modify by a NMI. PMU has to be disabled before calling this function.
2731 */
2732
intel_update_topdown_event(struct perf_event * event,int metric_end,u64 * val)2733 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end, u64 *val)
2734 {
2735 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2736 struct perf_event *other;
2737 u64 slots, metrics;
2738 bool reset = true;
2739 int idx;
2740
2741 if (!val) {
2742 /* read Fixed counter 3 */
2743 slots = rdpmc(3 | INTEL_PMC_FIXED_RDPMC_BASE);
2744 if (!slots)
2745 return 0;
2746
2747 /* read PERF_METRICS */
2748 metrics = rdpmc(INTEL_PMC_FIXED_RDPMC_METRICS);
2749 } else {
2750 slots = val[0];
2751 metrics = val[1];
2752 /*
2753 * Don't reset the PERF_METRICS and Fixed counter 3
2754 * for each PEBS record read. Utilize the RDPMC metrics
2755 * clear mode.
2756 */
2757 reset = false;
2758 }
2759
2760 for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2761 if (!is_topdown_idx(idx))
2762 continue;
2763 other = cpuc->events[idx];
2764 __icl_update_topdown_event(other, slots, metrics,
2765 event ? event->hw.saved_slots : 0,
2766 event ? event->hw.saved_metric : 0);
2767 }
2768
2769 /*
2770 * Check and update this event, which may have been cleared
2771 * in active_mask e.g. x86_pmu_stop()
2772 */
2773 if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2774 __icl_update_topdown_event(event, slots, metrics,
2775 event->hw.saved_slots,
2776 event->hw.saved_metric);
2777
2778 /*
2779 * In x86_pmu_stop(), the event is cleared in active_mask first,
2780 * then drain the delta, which indicates context switch for
2781 * counting.
2782 * Save metric and slots for context switch.
2783 * Don't need to reset the PERF_METRICS and Fixed counter 3.
2784 * Because the values will be restored in next schedule in.
2785 */
2786 update_saved_topdown_regs(event, slots, metrics, metric_end);
2787 reset = false;
2788 }
2789
2790 if (reset) {
2791 /* The fixed counter 3 has to be written before the PERF_METRICS. */
2792 wrmsrq(MSR_CORE_PERF_FIXED_CTR3, 0);
2793 wrmsrq(MSR_PERF_METRICS, 0);
2794 if (event)
2795 update_saved_topdown_regs(event, 0, 0, metric_end);
2796 }
2797
2798 return slots;
2799 }
2800
icl_update_topdown_event(struct perf_event * event,u64 * val)2801 static u64 icl_update_topdown_event(struct perf_event *event, u64 *val)
2802 {
2803 return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2804 x86_pmu.num_topdown_events - 1,
2805 val);
2806 }
2807
2808 DEFINE_STATIC_CALL(intel_pmu_update_topdown_event, intel_pmu_topdown_event_update);
2809
intel_pmu_read_event(struct perf_event * event)2810 static void intel_pmu_read_event(struct perf_event *event)
2811 {
2812 if (event->hw.flags & (PERF_X86_EVENT_AUTO_RELOAD | PERF_X86_EVENT_TOPDOWN) ||
2813 is_pebs_counter_event_group(event)) {
2814 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2815 bool pmu_enabled = cpuc->enabled;
2816
2817 /* Only need to call update_topdown_event() once for group read. */
2818 if (is_metric_event(event) && (cpuc->txn_flags & PERF_PMU_TXN_READ))
2819 return;
2820
2821 cpuc->enabled = 0;
2822 if (pmu_enabled)
2823 intel_pmu_disable_all();
2824
2825 /*
2826 * If the PEBS counters snapshotting is enabled,
2827 * the topdown event is available in PEBS records.
2828 */
2829 if (is_topdown_count(event) && !is_pebs_counter_event_group(event))
2830 static_call(intel_pmu_update_topdown_event)(event, NULL);
2831 else
2832 intel_pmu_drain_pebs_buffer();
2833
2834 cpuc->enabled = pmu_enabled;
2835 if (pmu_enabled)
2836 intel_pmu_enable_all(0);
2837
2838 return;
2839 }
2840
2841 x86_perf_event_update(event);
2842 }
2843
intel_pmu_enable_fixed(struct perf_event * event)2844 static void intel_pmu_enable_fixed(struct perf_event *event)
2845 {
2846 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2847 struct hw_perf_event *hwc = &event->hw;
2848 int idx = hwc->idx;
2849 u64 bits = 0;
2850
2851 if (is_topdown_idx(idx)) {
2852 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2853 /*
2854 * When there are other active TopDown events,
2855 * don't enable the fixed counter 3 again.
2856 */
2857 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2858 return;
2859
2860 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2861
2862 if (event->attr.config1 & INTEL_TD_CFG_METRIC_CLEAR)
2863 bits |= INTEL_FIXED_3_METRICS_CLEAR;
2864 }
2865
2866 intel_set_masks(event, idx);
2867
2868 /*
2869 * Enable IRQ generation (0x8), if not PEBS,
2870 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2871 * if requested:
2872 */
2873 if (!event->attr.precise_ip)
2874 bits |= INTEL_FIXED_0_ENABLE_PMI;
2875 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2876 bits |= INTEL_FIXED_0_USER;
2877 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2878 bits |= INTEL_FIXED_0_KERNEL;
2879
2880 /*
2881 * ANY bit is supported in v3 and up
2882 */
2883 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2884 bits |= INTEL_FIXED_0_ANYTHREAD;
2885
2886 idx -= INTEL_PMC_IDX_FIXED;
2887 bits = intel_fixed_bits_by_idx(idx, bits);
2888 if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip)
2889 bits |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE);
2890
2891 cpuc->fixed_ctrl_val &= ~intel_fixed_bits_by_idx(idx, INTEL_FIXED_BITS_MASK);
2892 cpuc->fixed_ctrl_val |= bits;
2893 }
2894
intel_pmu_config_acr(int idx,u64 mask,u32 reload)2895 static void intel_pmu_config_acr(int idx, u64 mask, u32 reload)
2896 {
2897 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2898 int msr_b, msr_c;
2899 int msr_offset;
2900
2901 if (!mask && !cpuc->acr_cfg_b[idx])
2902 return;
2903
2904 if (idx < INTEL_PMC_IDX_FIXED) {
2905 msr_b = MSR_IA32_PMC_V6_GP0_CFG_B;
2906 msr_c = MSR_IA32_PMC_V6_GP0_CFG_C;
2907 msr_offset = x86_pmu.addr_offset(idx, false);
2908 } else {
2909 msr_b = MSR_IA32_PMC_V6_FX0_CFG_B;
2910 msr_c = MSR_IA32_PMC_V6_FX0_CFG_C;
2911 msr_offset = x86_pmu.addr_offset(idx - INTEL_PMC_IDX_FIXED, false);
2912 }
2913
2914 if (cpuc->acr_cfg_b[idx] != mask) {
2915 wrmsrl(msr_b + msr_offset, mask);
2916 cpuc->acr_cfg_b[idx] = mask;
2917 }
2918 /* Only need to update the reload value when there is a valid config value. */
2919 if (mask && cpuc->acr_cfg_c[idx] != reload) {
2920 wrmsrl(msr_c + msr_offset, reload);
2921 cpuc->acr_cfg_c[idx] = reload;
2922 }
2923 }
2924
intel_pmu_enable_acr(struct perf_event * event)2925 static void intel_pmu_enable_acr(struct perf_event *event)
2926 {
2927 struct hw_perf_event *hwc = &event->hw;
2928
2929 if (!is_acr_event_group(event) || !event->attr.config2) {
2930 /*
2931 * The disable doesn't clear the ACR CFG register.
2932 * Check and clear the ACR CFG register.
2933 */
2934 intel_pmu_config_acr(hwc->idx, 0, 0);
2935 return;
2936 }
2937
2938 intel_pmu_config_acr(hwc->idx, hwc->config1, -hwc->sample_period);
2939 }
2940
2941 DEFINE_STATIC_CALL_NULL(intel_pmu_enable_acr_event, intel_pmu_enable_acr);
2942
intel_pmu_enable_event(struct perf_event * event)2943 static void intel_pmu_enable_event(struct perf_event *event)
2944 {
2945 u64 enable_mask = ARCH_PERFMON_EVENTSEL_ENABLE;
2946 struct hw_perf_event *hwc = &event->hw;
2947 int idx = hwc->idx;
2948
2949 if (unlikely(event->attr.precise_ip))
2950 static_call(x86_pmu_pebs_enable)(event);
2951
2952 switch (idx) {
2953 case 0 ... INTEL_PMC_IDX_FIXED - 1:
2954 if (branch_sample_counters(event))
2955 enable_mask |= ARCH_PERFMON_EVENTSEL_BR_CNTR;
2956 intel_set_masks(event, idx);
2957 static_call_cond(intel_pmu_enable_acr_event)(event);
2958 __x86_pmu_enable_event(hwc, enable_mask);
2959 break;
2960 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2961 static_call_cond(intel_pmu_enable_acr_event)(event);
2962 fallthrough;
2963 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2964 intel_pmu_enable_fixed(event);
2965 break;
2966 case INTEL_PMC_IDX_FIXED_BTS:
2967 if (!__this_cpu_read(cpu_hw_events.enabled))
2968 return;
2969 intel_pmu_enable_bts(hwc->config);
2970 break;
2971 case INTEL_PMC_IDX_FIXED_VLBR:
2972 intel_set_masks(event, idx);
2973 break;
2974 default:
2975 pr_warn("Failed to enable the event with invalid index %d\n",
2976 idx);
2977 }
2978 }
2979
intel_pmu_acr_late_setup(struct cpu_hw_events * cpuc)2980 static void intel_pmu_acr_late_setup(struct cpu_hw_events *cpuc)
2981 {
2982 struct perf_event *event, *leader;
2983 int i, j, idx;
2984
2985 for (i = 0; i < cpuc->n_events; i++) {
2986 leader = cpuc->event_list[i];
2987 if (!is_acr_event_group(leader))
2988 continue;
2989
2990 /* The ACR events must be contiguous. */
2991 for (j = i; j < cpuc->n_events; j++) {
2992 event = cpuc->event_list[j];
2993 if (event->group_leader != leader->group_leader)
2994 break;
2995 for_each_set_bit(idx, (unsigned long *)&event->attr.config2, X86_PMC_IDX_MAX) {
2996 if (i + idx >= cpuc->n_events ||
2997 !is_acr_event_group(cpuc->event_list[i + idx]))
2998 return;
2999 __set_bit(cpuc->assign[i + idx], (unsigned long *)&event->hw.config1);
3000 }
3001 }
3002 i = j - 1;
3003 }
3004 }
3005
intel_pmu_late_setup(void)3006 void intel_pmu_late_setup(void)
3007 {
3008 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3009
3010 if (!cpuc->n_late_setup)
3011 return;
3012
3013 intel_pmu_pebs_late_setup(cpuc);
3014 intel_pmu_acr_late_setup(cpuc);
3015 }
3016
intel_pmu_add_event(struct perf_event * event)3017 static void intel_pmu_add_event(struct perf_event *event)
3018 {
3019 if (event->attr.precise_ip)
3020 intel_pmu_pebs_add(event);
3021 if (intel_pmu_needs_branch_stack(event))
3022 intel_pmu_lbr_add(event);
3023 if (is_pebs_counter_event_group(event) ||
3024 is_acr_event_group(event))
3025 this_cpu_ptr(&cpu_hw_events)->n_late_setup++;
3026 }
3027
3028 /*
3029 * Save and restart an expired event. Called by NMI contexts,
3030 * so it has to be careful about preempting normal event ops:
3031 */
intel_pmu_save_and_restart(struct perf_event * event)3032 int intel_pmu_save_and_restart(struct perf_event *event)
3033 {
3034 static_call(x86_pmu_update)(event);
3035 /*
3036 * For a checkpointed counter always reset back to 0. This
3037 * avoids a situation where the counter overflows, aborts the
3038 * transaction and is then set back to shortly before the
3039 * overflow, and overflows and aborts again.
3040 */
3041 if (unlikely(event_is_checkpointed(event))) {
3042 /* No race with NMIs because the counter should not be armed */
3043 wrmsrq(event->hw.event_base, 0);
3044 local64_set(&event->hw.prev_count, 0);
3045 }
3046 return static_call(x86_pmu_set_period)(event);
3047 }
3048
intel_pmu_set_period(struct perf_event * event)3049 static int intel_pmu_set_period(struct perf_event *event)
3050 {
3051 if (unlikely(is_topdown_count(event)))
3052 return static_call(intel_pmu_set_topdown_event_period)(event);
3053
3054 return x86_perf_event_set_period(event);
3055 }
3056
intel_pmu_update(struct perf_event * event)3057 static u64 intel_pmu_update(struct perf_event *event)
3058 {
3059 if (unlikely(is_topdown_count(event)))
3060 return static_call(intel_pmu_update_topdown_event)(event, NULL);
3061
3062 return x86_perf_event_update(event);
3063 }
3064
intel_pmu_reset(void)3065 static void intel_pmu_reset(void)
3066 {
3067 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
3068 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3069 unsigned long *cntr_mask = hybrid(cpuc->pmu, cntr_mask);
3070 unsigned long *fixed_cntr_mask = hybrid(cpuc->pmu, fixed_cntr_mask);
3071 unsigned long flags;
3072 int idx;
3073
3074 if (!*(u64 *)cntr_mask)
3075 return;
3076
3077 local_irq_save(flags);
3078
3079 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
3080
3081 for_each_set_bit(idx, cntr_mask, INTEL_PMC_MAX_GENERIC) {
3082 wrmsrq_safe(x86_pmu_config_addr(idx), 0ull);
3083 wrmsrq_safe(x86_pmu_event_addr(idx), 0ull);
3084 }
3085 for_each_set_bit(idx, fixed_cntr_mask, INTEL_PMC_MAX_FIXED) {
3086 if (fixed_counter_disabled(idx, cpuc->pmu))
3087 continue;
3088 wrmsrq_safe(x86_pmu_fixed_ctr_addr(idx), 0ull);
3089 }
3090
3091 if (ds)
3092 ds->bts_index = ds->bts_buffer_base;
3093
3094 /* Ack all overflows and disable fixed counters */
3095 if (x86_pmu.version >= 2) {
3096 intel_pmu_ack_status(intel_pmu_get_status());
3097 wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL, 0);
3098 }
3099
3100 /* Reset LBRs and LBR freezing */
3101 if (x86_pmu.lbr_nr) {
3102 update_debugctlmsr(get_debugctlmsr() &
3103 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
3104 }
3105
3106 local_irq_restore(flags);
3107 }
3108
3109 /*
3110 * We may be running with guest PEBS events created by KVM, and the
3111 * PEBS records are logged into the guest's DS and invisible to host.
3112 *
3113 * In the case of guest PEBS overflow, we only trigger a fake event
3114 * to emulate the PEBS overflow PMI for guest PEBS counters in KVM.
3115 * The guest will then vm-entry and check the guest DS area to read
3116 * the guest PEBS records.
3117 *
3118 * The contents and other behavior of the guest event do not matter.
3119 */
x86_pmu_handle_guest_pebs(struct pt_regs * regs,struct perf_sample_data * data)3120 static void x86_pmu_handle_guest_pebs(struct pt_regs *regs,
3121 struct perf_sample_data *data)
3122 {
3123 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3124 u64 guest_pebs_idxs = cpuc->pebs_enabled & ~cpuc->intel_ctrl_host_mask;
3125 struct perf_event *event = NULL;
3126 int bit;
3127
3128 if (!unlikely(perf_guest_state()))
3129 return;
3130
3131 if (!x86_pmu.pebs_ept || !x86_pmu.pebs_active ||
3132 !guest_pebs_idxs)
3133 return;
3134
3135 for_each_set_bit(bit, (unsigned long *)&guest_pebs_idxs, X86_PMC_IDX_MAX) {
3136 event = cpuc->events[bit];
3137 if (!event->attr.precise_ip)
3138 continue;
3139
3140 perf_sample_data_init(data, 0, event->hw.last_period);
3141 perf_event_overflow(event, data, regs);
3142
3143 /* Inject one fake event is enough. */
3144 break;
3145 }
3146 }
3147
handle_pmi_common(struct pt_regs * regs,u64 status)3148 static int handle_pmi_common(struct pt_regs *regs, u64 status)
3149 {
3150 struct perf_sample_data data;
3151 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3152 int bit;
3153 int handled = 0;
3154
3155 inc_irq_stat(apic_perf_irqs);
3156
3157 /*
3158 * Ignore a range of extra bits in status that do not indicate
3159 * overflow by themselves.
3160 */
3161 status &= ~(GLOBAL_STATUS_COND_CHG |
3162 GLOBAL_STATUS_ASIF |
3163 GLOBAL_STATUS_LBRS_FROZEN);
3164 if (!status)
3165 return 0;
3166 /*
3167 * In case multiple PEBS events are sampled at the same time,
3168 * it is possible to have GLOBAL_STATUS bit 62 set indicating
3169 * PEBS buffer overflow and also seeing at most 3 PEBS counters
3170 * having their bits set in the status register. This is a sign
3171 * that there was at least one PEBS record pending at the time
3172 * of the PMU interrupt. PEBS counters must only be processed
3173 * via the drain_pebs() calls and not via the regular sample
3174 * processing loop coming after that the function, otherwise
3175 * phony regular samples may be generated in the sampling buffer
3176 * not marked with the EXACT tag. Another possibility is to have
3177 * one PEBS event and at least one non-PEBS event which overflows
3178 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
3179 * not be set, yet the overflow status bit for the PEBS counter will
3180 * be on Skylake.
3181 *
3182 * To avoid this problem, we systematically ignore the PEBS-enabled
3183 * counters from the GLOBAL_STATUS mask and we always process PEBS
3184 * events via drain_pebs().
3185 */
3186 status &= ~(cpuc->pebs_enabled & x86_pmu.pebs_capable);
3187
3188 /*
3189 * PEBS overflow sets bit 62 in the global status register
3190 */
3191 if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
3192 u64 pebs_enabled = cpuc->pebs_enabled;
3193
3194 handled++;
3195 x86_pmu_handle_guest_pebs(regs, &data);
3196 static_call(x86_pmu_drain_pebs)(regs, &data);
3197
3198 /*
3199 * PMI throttle may be triggered, which stops the PEBS event.
3200 * Although cpuc->pebs_enabled is updated accordingly, the
3201 * MSR_IA32_PEBS_ENABLE is not updated. Because the
3202 * cpuc->enabled has been forced to 0 in PMI.
3203 * Update the MSR if pebs_enabled is changed.
3204 */
3205 if (pebs_enabled != cpuc->pebs_enabled)
3206 wrmsrq(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
3207
3208 /*
3209 * Above PEBS handler (PEBS counters snapshotting) has updated fixed
3210 * counter 3 and perf metrics counts if they are in counter group,
3211 * unnecessary to update again.
3212 */
3213 if (cpuc->events[INTEL_PMC_IDX_FIXED_SLOTS] &&
3214 is_pebs_counter_event_group(cpuc->events[INTEL_PMC_IDX_FIXED_SLOTS]))
3215 status &= ~GLOBAL_STATUS_PERF_METRICS_OVF_BIT;
3216 }
3217
3218 /*
3219 * Intel PT
3220 */
3221 if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
3222 handled++;
3223 if (!perf_guest_handle_intel_pt_intr())
3224 intel_pt_interrupt();
3225 }
3226
3227 /*
3228 * Intel Perf metrics
3229 */
3230 if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
3231 handled++;
3232 static_call(intel_pmu_update_topdown_event)(NULL, NULL);
3233 }
3234
3235 status &= hybrid(cpuc->pmu, intel_ctrl);
3236
3237 /*
3238 * Checkpointed counters can lead to 'spurious' PMIs because the
3239 * rollback caused by the PMI will have cleared the overflow status
3240 * bit. Therefore always force probe these counters.
3241 */
3242 status |= cpuc->intel_cp_status;
3243
3244 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
3245 struct perf_event *event = cpuc->events[bit];
3246 u64 last_period;
3247
3248 handled++;
3249
3250 if (!test_bit(bit, cpuc->active_mask))
3251 continue;
3252
3253 /*
3254 * There may be unprocessed PEBS records in the PEBS buffer,
3255 * which still stores the previous values.
3256 * Process those records first before handling the latest value.
3257 * For example,
3258 * A is a regular counter
3259 * B is a PEBS event which reads A
3260 * C is a PEBS event
3261 *
3262 * The following can happen:
3263 * B-assist A=1
3264 * C A=2
3265 * B-assist A=3
3266 * A-overflow-PMI A=4
3267 * C-assist-PMI (PEBS buffer) A=5
3268 *
3269 * The PEBS buffer has to be drained before handling the A-PMI
3270 */
3271 if (is_pebs_counter_event_group(event))
3272 x86_pmu.drain_pebs(regs, &data);
3273
3274 last_period = event->hw.last_period;
3275
3276 if (!intel_pmu_save_and_restart(event))
3277 continue;
3278
3279 perf_sample_data_init(&data, 0, last_period);
3280
3281 if (has_branch_stack(event))
3282 intel_pmu_lbr_save_brstack(&data, cpuc, event);
3283
3284 perf_event_overflow(event, &data, regs);
3285 }
3286
3287 return handled;
3288 }
3289
3290 /*
3291 * This handler is triggered by the local APIC, so the APIC IRQ handling
3292 * rules apply:
3293 */
intel_pmu_handle_irq(struct pt_regs * regs)3294 static int intel_pmu_handle_irq(struct pt_regs *regs)
3295 {
3296 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3297 bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
3298 bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
3299 int loops;
3300 u64 status;
3301 int handled;
3302 int pmu_enabled;
3303
3304 /*
3305 * Save the PMU state.
3306 * It needs to be restored when leaving the handler.
3307 */
3308 pmu_enabled = cpuc->enabled;
3309 /*
3310 * In general, the early ACK is only applied for old platforms.
3311 * For the big core starts from Haswell, the late ACK should be
3312 * applied.
3313 * For the small core after Tremont, we have to do the ACK right
3314 * before re-enabling counters, which is in the middle of the
3315 * NMI handler.
3316 */
3317 if (!late_ack && !mid_ack)
3318 apic_write(APIC_LVTPC, APIC_DM_NMI);
3319 intel_bts_disable_local();
3320 cpuc->enabled = 0;
3321 __intel_pmu_disable_all(true);
3322 handled = intel_pmu_drain_bts_buffer();
3323 handled += intel_bts_interrupt();
3324 status = intel_pmu_get_status();
3325 if (!status)
3326 goto done;
3327
3328 loops = 0;
3329 again:
3330 intel_pmu_lbr_read();
3331 intel_pmu_ack_status(status);
3332 if (++loops > 100) {
3333 static bool warned;
3334
3335 if (!warned) {
3336 WARN(1, "perfevents: irq loop stuck!\n");
3337 perf_event_print_debug();
3338 warned = true;
3339 }
3340 intel_pmu_reset();
3341 goto done;
3342 }
3343
3344 handled += handle_pmi_common(regs, status);
3345
3346 /*
3347 * Repeat if there is more work to be done:
3348 */
3349 status = intel_pmu_get_status();
3350 if (status)
3351 goto again;
3352
3353 done:
3354 if (mid_ack)
3355 apic_write(APIC_LVTPC, APIC_DM_NMI);
3356 /* Only restore PMU state when it's active. See x86_pmu_disable(). */
3357 cpuc->enabled = pmu_enabled;
3358 if (pmu_enabled)
3359 __intel_pmu_enable_all(0, true);
3360 intel_bts_enable_local();
3361
3362 /*
3363 * Only unmask the NMI after the overflow counters
3364 * have been reset. This avoids spurious NMIs on
3365 * Haswell CPUs.
3366 */
3367 if (late_ack)
3368 apic_write(APIC_LVTPC, APIC_DM_NMI);
3369 return handled;
3370 }
3371
3372 static struct event_constraint *
intel_bts_constraints(struct perf_event * event)3373 intel_bts_constraints(struct perf_event *event)
3374 {
3375 if (unlikely(intel_pmu_has_bts(event)))
3376 return &bts_constraint;
3377
3378 return NULL;
3379 }
3380
3381 /*
3382 * Note: matches a fake event, like Fixed2.
3383 */
3384 static struct event_constraint *
intel_vlbr_constraints(struct perf_event * event)3385 intel_vlbr_constraints(struct perf_event *event)
3386 {
3387 struct event_constraint *c = &vlbr_constraint;
3388
3389 if (unlikely(constraint_match(c, event->hw.config))) {
3390 event->hw.flags |= c->flags;
3391 return c;
3392 }
3393
3394 return NULL;
3395 }
3396
intel_alt_er(struct cpu_hw_events * cpuc,int idx,u64 config)3397 static int intel_alt_er(struct cpu_hw_events *cpuc,
3398 int idx, u64 config)
3399 {
3400 struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3401 int alt_idx = idx;
3402
3403 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3404 return idx;
3405
3406 if (idx == EXTRA_REG_RSP_0)
3407 alt_idx = EXTRA_REG_RSP_1;
3408
3409 if (idx == EXTRA_REG_RSP_1)
3410 alt_idx = EXTRA_REG_RSP_0;
3411
3412 if (config & ~extra_regs[alt_idx].valid_mask)
3413 return idx;
3414
3415 return alt_idx;
3416 }
3417
intel_fixup_er(struct perf_event * event,int idx)3418 static void intel_fixup_er(struct perf_event *event, int idx)
3419 {
3420 struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3421 event->hw.extra_reg.idx = idx;
3422
3423 if (idx == EXTRA_REG_RSP_0) {
3424 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3425 event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3426 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3427 } else if (idx == EXTRA_REG_RSP_1) {
3428 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3429 event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3430 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3431 }
3432 }
3433
3434 /*
3435 * manage allocation of shared extra msr for certain events
3436 *
3437 * sharing can be:
3438 * per-cpu: to be shared between the various events on a single PMU
3439 * per-core: per-cpu + shared by HT threads
3440 */
3441 static struct event_constraint *
__intel_shared_reg_get_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,struct hw_perf_event_extra * reg)3442 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3443 struct perf_event *event,
3444 struct hw_perf_event_extra *reg)
3445 {
3446 struct event_constraint *c = &emptyconstraint;
3447 struct er_account *era;
3448 unsigned long flags;
3449 int idx = reg->idx;
3450
3451 /*
3452 * reg->alloc can be set due to existing state, so for fake cpuc we
3453 * need to ignore this, otherwise we might fail to allocate proper fake
3454 * state for this extra reg constraint. Also see the comment below.
3455 */
3456 if (reg->alloc && !cpuc->is_fake)
3457 return NULL; /* call x86_get_event_constraint() */
3458
3459 again:
3460 era = &cpuc->shared_regs->regs[idx];
3461 /*
3462 * we use spin_lock_irqsave() to avoid lockdep issues when
3463 * passing a fake cpuc
3464 */
3465 raw_spin_lock_irqsave(&era->lock, flags);
3466
3467 if (!atomic_read(&era->ref) || era->config == reg->config) {
3468
3469 /*
3470 * If its a fake cpuc -- as per validate_{group,event}() we
3471 * shouldn't touch event state and we can avoid doing so
3472 * since both will only call get_event_constraints() once
3473 * on each event, this avoids the need for reg->alloc.
3474 *
3475 * Not doing the ER fixup will only result in era->reg being
3476 * wrong, but since we won't actually try and program hardware
3477 * this isn't a problem either.
3478 */
3479 if (!cpuc->is_fake) {
3480 if (idx != reg->idx)
3481 intel_fixup_er(event, idx);
3482
3483 /*
3484 * x86_schedule_events() can call get_event_constraints()
3485 * multiple times on events in the case of incremental
3486 * scheduling(). reg->alloc ensures we only do the ER
3487 * allocation once.
3488 */
3489 reg->alloc = 1;
3490 }
3491
3492 /* lock in msr value */
3493 era->config = reg->config;
3494 era->reg = reg->reg;
3495
3496 /* one more user */
3497 atomic_inc(&era->ref);
3498
3499 /*
3500 * need to call x86_get_event_constraint()
3501 * to check if associated event has constraints
3502 */
3503 c = NULL;
3504 } else {
3505 idx = intel_alt_er(cpuc, idx, reg->config);
3506 if (idx != reg->idx) {
3507 raw_spin_unlock_irqrestore(&era->lock, flags);
3508 goto again;
3509 }
3510 }
3511 raw_spin_unlock_irqrestore(&era->lock, flags);
3512
3513 return c;
3514 }
3515
3516 static void
__intel_shared_reg_put_constraints(struct cpu_hw_events * cpuc,struct hw_perf_event_extra * reg)3517 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3518 struct hw_perf_event_extra *reg)
3519 {
3520 struct er_account *era;
3521
3522 /*
3523 * Only put constraint if extra reg was actually allocated. Also takes
3524 * care of event which do not use an extra shared reg.
3525 *
3526 * Also, if this is a fake cpuc we shouldn't touch any event state
3527 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3528 * either since it'll be thrown out.
3529 */
3530 if (!reg->alloc || cpuc->is_fake)
3531 return;
3532
3533 era = &cpuc->shared_regs->regs[reg->idx];
3534
3535 /* one fewer user */
3536 atomic_dec(&era->ref);
3537
3538 /* allocate again next time */
3539 reg->alloc = 0;
3540 }
3541
3542 static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3543 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3544 struct perf_event *event)
3545 {
3546 struct event_constraint *c = NULL, *d;
3547 struct hw_perf_event_extra *xreg, *breg;
3548
3549 xreg = &event->hw.extra_reg;
3550 if (xreg->idx != EXTRA_REG_NONE) {
3551 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3552 if (c == &emptyconstraint)
3553 return c;
3554 }
3555 breg = &event->hw.branch_reg;
3556 if (breg->idx != EXTRA_REG_NONE) {
3557 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3558 if (d == &emptyconstraint) {
3559 __intel_shared_reg_put_constraints(cpuc, xreg);
3560 c = d;
3561 }
3562 }
3563 return c;
3564 }
3565
3566 struct event_constraint *
x86_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3567 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3568 struct perf_event *event)
3569 {
3570 struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3571 struct event_constraint *c;
3572
3573 if (event_constraints) {
3574 for_each_event_constraint(c, event_constraints) {
3575 if (constraint_match(c, event->hw.config)) {
3576 event->hw.flags |= c->flags;
3577 return c;
3578 }
3579 }
3580 }
3581
3582 return &hybrid_var(cpuc->pmu, unconstrained);
3583 }
3584
3585 static struct event_constraint *
__intel_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3586 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3587 struct perf_event *event)
3588 {
3589 struct event_constraint *c;
3590
3591 c = intel_vlbr_constraints(event);
3592 if (c)
3593 return c;
3594
3595 c = intel_bts_constraints(event);
3596 if (c)
3597 return c;
3598
3599 c = intel_shared_regs_constraints(cpuc, event);
3600 if (c)
3601 return c;
3602
3603 c = intel_pebs_constraints(event);
3604 if (c)
3605 return c;
3606
3607 return x86_get_event_constraints(cpuc, idx, event);
3608 }
3609
3610 static void
intel_start_scheduling(struct cpu_hw_events * cpuc)3611 intel_start_scheduling(struct cpu_hw_events *cpuc)
3612 {
3613 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3614 struct intel_excl_states *xl;
3615 int tid = cpuc->excl_thread_id;
3616
3617 /*
3618 * nothing needed if in group validation mode
3619 */
3620 if (cpuc->is_fake || !is_ht_workaround_enabled())
3621 return;
3622
3623 /*
3624 * no exclusion needed
3625 */
3626 if (WARN_ON_ONCE(!excl_cntrs))
3627 return;
3628
3629 xl = &excl_cntrs->states[tid];
3630
3631 xl->sched_started = true;
3632 /*
3633 * lock shared state until we are done scheduling
3634 * in stop_event_scheduling()
3635 * makes scheduling appear as a transaction
3636 */
3637 raw_spin_lock(&excl_cntrs->lock);
3638 }
3639
intel_commit_scheduling(struct cpu_hw_events * cpuc,int idx,int cntr)3640 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3641 {
3642 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3643 struct event_constraint *c = cpuc->event_constraint[idx];
3644 struct intel_excl_states *xl;
3645 int tid = cpuc->excl_thread_id;
3646
3647 if (cpuc->is_fake || !is_ht_workaround_enabled())
3648 return;
3649
3650 if (WARN_ON_ONCE(!excl_cntrs))
3651 return;
3652
3653 if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3654 return;
3655
3656 xl = &excl_cntrs->states[tid];
3657
3658 lockdep_assert_held(&excl_cntrs->lock);
3659
3660 if (c->flags & PERF_X86_EVENT_EXCL)
3661 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3662 else
3663 xl->state[cntr] = INTEL_EXCL_SHARED;
3664 }
3665
3666 static void
intel_stop_scheduling(struct cpu_hw_events * cpuc)3667 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3668 {
3669 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3670 struct intel_excl_states *xl;
3671 int tid = cpuc->excl_thread_id;
3672
3673 /*
3674 * nothing needed if in group validation mode
3675 */
3676 if (cpuc->is_fake || !is_ht_workaround_enabled())
3677 return;
3678 /*
3679 * no exclusion needed
3680 */
3681 if (WARN_ON_ONCE(!excl_cntrs))
3682 return;
3683
3684 xl = &excl_cntrs->states[tid];
3685
3686 xl->sched_started = false;
3687 /*
3688 * release shared state lock (acquired in intel_start_scheduling())
3689 */
3690 raw_spin_unlock(&excl_cntrs->lock);
3691 }
3692
3693 static struct event_constraint *
dyn_constraint(struct cpu_hw_events * cpuc,struct event_constraint * c,int idx)3694 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3695 {
3696 WARN_ON_ONCE(!cpuc->constraint_list);
3697
3698 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3699 struct event_constraint *cx;
3700
3701 /*
3702 * grab pre-allocated constraint entry
3703 */
3704 cx = &cpuc->constraint_list[idx];
3705
3706 /*
3707 * initialize dynamic constraint
3708 * with static constraint
3709 */
3710 *cx = *c;
3711
3712 /*
3713 * mark constraint as dynamic
3714 */
3715 cx->flags |= PERF_X86_EVENT_DYNAMIC;
3716 c = cx;
3717 }
3718
3719 return c;
3720 }
3721
3722 static struct event_constraint *
intel_get_excl_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,int idx,struct event_constraint * c)3723 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3724 int idx, struct event_constraint *c)
3725 {
3726 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3727 struct intel_excl_states *xlo;
3728 int tid = cpuc->excl_thread_id;
3729 int is_excl, i, w;
3730
3731 /*
3732 * validating a group does not require
3733 * enforcing cross-thread exclusion
3734 */
3735 if (cpuc->is_fake || !is_ht_workaround_enabled())
3736 return c;
3737
3738 /*
3739 * no exclusion needed
3740 */
3741 if (WARN_ON_ONCE(!excl_cntrs))
3742 return c;
3743
3744 /*
3745 * because we modify the constraint, we need
3746 * to make a copy. Static constraints come
3747 * from static const tables.
3748 *
3749 * only needed when constraint has not yet
3750 * been cloned (marked dynamic)
3751 */
3752 c = dyn_constraint(cpuc, c, idx);
3753
3754 /*
3755 * From here on, the constraint is dynamic.
3756 * Either it was just allocated above, or it
3757 * was allocated during a earlier invocation
3758 * of this function
3759 */
3760
3761 /*
3762 * state of sibling HT
3763 */
3764 xlo = &excl_cntrs->states[tid ^ 1];
3765
3766 /*
3767 * event requires exclusive counter access
3768 * across HT threads
3769 */
3770 is_excl = c->flags & PERF_X86_EVENT_EXCL;
3771 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3772 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3773 if (!cpuc->n_excl++)
3774 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3775 }
3776
3777 /*
3778 * Modify static constraint with current dynamic
3779 * state of thread
3780 *
3781 * EXCLUSIVE: sibling counter measuring exclusive event
3782 * SHARED : sibling counter measuring non-exclusive event
3783 * UNUSED : sibling counter unused
3784 */
3785 w = c->weight;
3786 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3787 /*
3788 * exclusive event in sibling counter
3789 * our corresponding counter cannot be used
3790 * regardless of our event
3791 */
3792 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3793 __clear_bit(i, c->idxmsk);
3794 w--;
3795 continue;
3796 }
3797 /*
3798 * if measuring an exclusive event, sibling
3799 * measuring non-exclusive, then counter cannot
3800 * be used
3801 */
3802 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3803 __clear_bit(i, c->idxmsk);
3804 w--;
3805 continue;
3806 }
3807 }
3808
3809 /*
3810 * if we return an empty mask, then switch
3811 * back to static empty constraint to avoid
3812 * the cost of freeing later on
3813 */
3814 if (!w)
3815 c = &emptyconstraint;
3816
3817 c->weight = w;
3818
3819 return c;
3820 }
3821
3822 static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3823 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3824 struct perf_event *event)
3825 {
3826 struct event_constraint *c1, *c2;
3827
3828 c1 = cpuc->event_constraint[idx];
3829
3830 /*
3831 * first time only
3832 * - static constraint: no change across incremental scheduling calls
3833 * - dynamic constraint: handled by intel_get_excl_constraints()
3834 */
3835 c2 = __intel_get_event_constraints(cpuc, idx, event);
3836 if (c1) {
3837 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3838 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3839 c1->weight = c2->weight;
3840 c2 = c1;
3841 }
3842
3843 if (cpuc->excl_cntrs)
3844 return intel_get_excl_constraints(cpuc, event, idx, c2);
3845
3846 if (event->hw.dyn_constraint != ~0ULL) {
3847 c2 = dyn_constraint(cpuc, c2, idx);
3848 c2->idxmsk64 &= event->hw.dyn_constraint;
3849 c2->weight = hweight64(c2->idxmsk64);
3850 }
3851
3852 return c2;
3853 }
3854
intel_put_excl_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3855 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3856 struct perf_event *event)
3857 {
3858 struct hw_perf_event *hwc = &event->hw;
3859 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3860 int tid = cpuc->excl_thread_id;
3861 struct intel_excl_states *xl;
3862
3863 /*
3864 * nothing needed if in group validation mode
3865 */
3866 if (cpuc->is_fake)
3867 return;
3868
3869 if (WARN_ON_ONCE(!excl_cntrs))
3870 return;
3871
3872 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3873 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3874 if (!--cpuc->n_excl)
3875 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3876 }
3877
3878 /*
3879 * If event was actually assigned, then mark the counter state as
3880 * unused now.
3881 */
3882 if (hwc->idx >= 0) {
3883 xl = &excl_cntrs->states[tid];
3884
3885 /*
3886 * put_constraint may be called from x86_schedule_events()
3887 * which already has the lock held so here make locking
3888 * conditional.
3889 */
3890 if (!xl->sched_started)
3891 raw_spin_lock(&excl_cntrs->lock);
3892
3893 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3894
3895 if (!xl->sched_started)
3896 raw_spin_unlock(&excl_cntrs->lock);
3897 }
3898 }
3899
3900 static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3901 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3902 struct perf_event *event)
3903 {
3904 struct hw_perf_event_extra *reg;
3905
3906 reg = &event->hw.extra_reg;
3907 if (reg->idx != EXTRA_REG_NONE)
3908 __intel_shared_reg_put_constraints(cpuc, reg);
3909
3910 reg = &event->hw.branch_reg;
3911 if (reg->idx != EXTRA_REG_NONE)
3912 __intel_shared_reg_put_constraints(cpuc, reg);
3913 }
3914
intel_put_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3915 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3916 struct perf_event *event)
3917 {
3918 intel_put_shared_regs_event_constraints(cpuc, event);
3919
3920 /*
3921 * is PMU has exclusive counter restrictions, then
3922 * all events are subject to and must call the
3923 * put_excl_constraints() routine
3924 */
3925 if (cpuc->excl_cntrs)
3926 intel_put_excl_constraints(cpuc, event);
3927 }
3928
intel_pebs_aliases_core2(struct perf_event * event)3929 static void intel_pebs_aliases_core2(struct perf_event *event)
3930 {
3931 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3932 /*
3933 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3934 * (0x003c) so that we can use it with PEBS.
3935 *
3936 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3937 * PEBS capable. However we can use INST_RETIRED.ANY_P
3938 * (0x00c0), which is a PEBS capable event, to get the same
3939 * count.
3940 *
3941 * INST_RETIRED.ANY_P counts the number of cycles that retires
3942 * CNTMASK instructions. By setting CNTMASK to a value (16)
3943 * larger than the maximum number of instructions that can be
3944 * retired per cycle (4) and then inverting the condition, we
3945 * count all cycles that retire 16 or less instructions, which
3946 * is every cycle.
3947 *
3948 * Thereby we gain a PEBS capable cycle counter.
3949 */
3950 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3951
3952 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3953 event->hw.config = alt_config;
3954 }
3955 }
3956
intel_pebs_aliases_snb(struct perf_event * event)3957 static void intel_pebs_aliases_snb(struct perf_event *event)
3958 {
3959 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3960 /*
3961 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3962 * (0x003c) so that we can use it with PEBS.
3963 *
3964 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3965 * PEBS capable. However we can use UOPS_RETIRED.ALL
3966 * (0x01c2), which is a PEBS capable event, to get the same
3967 * count.
3968 *
3969 * UOPS_RETIRED.ALL counts the number of cycles that retires
3970 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3971 * larger than the maximum number of micro-ops that can be
3972 * retired per cycle (4) and then inverting the condition, we
3973 * count all cycles that retire 16 or less micro-ops, which
3974 * is every cycle.
3975 *
3976 * Thereby we gain a PEBS capable cycle counter.
3977 */
3978 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3979
3980 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3981 event->hw.config = alt_config;
3982 }
3983 }
3984
intel_pebs_aliases_precdist(struct perf_event * event)3985 static void intel_pebs_aliases_precdist(struct perf_event *event)
3986 {
3987 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3988 /*
3989 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3990 * (0x003c) so that we can use it with PEBS.
3991 *
3992 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3993 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3994 * (0x01c0), which is a PEBS capable event, to get the same
3995 * count.
3996 *
3997 * The PREC_DIST event has special support to minimize sample
3998 * shadowing effects. One drawback is that it can be
3999 * only programmed on counter 1, but that seems like an
4000 * acceptable trade off.
4001 */
4002 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
4003
4004 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
4005 event->hw.config = alt_config;
4006 }
4007 }
4008
intel_pebs_aliases_ivb(struct perf_event * event)4009 static void intel_pebs_aliases_ivb(struct perf_event *event)
4010 {
4011 if (event->attr.precise_ip < 3)
4012 return intel_pebs_aliases_snb(event);
4013 return intel_pebs_aliases_precdist(event);
4014 }
4015
intel_pebs_aliases_skl(struct perf_event * event)4016 static void intel_pebs_aliases_skl(struct perf_event *event)
4017 {
4018 if (event->attr.precise_ip < 3)
4019 return intel_pebs_aliases_core2(event);
4020 return intel_pebs_aliases_precdist(event);
4021 }
4022
intel_pmu_large_pebs_flags(struct perf_event * event)4023 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
4024 {
4025 unsigned long flags = x86_pmu.large_pebs_flags;
4026
4027 if (event->attr.use_clockid)
4028 flags &= ~PERF_SAMPLE_TIME;
4029 if (!event->attr.exclude_kernel)
4030 flags &= ~PERF_SAMPLE_REGS_USER;
4031 if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
4032 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
4033 return flags;
4034 }
4035
intel_pmu_bts_config(struct perf_event * event)4036 static int intel_pmu_bts_config(struct perf_event *event)
4037 {
4038 struct perf_event_attr *attr = &event->attr;
4039
4040 if (unlikely(intel_pmu_has_bts(event))) {
4041 /* BTS is not supported by this architecture. */
4042 if (!x86_pmu.bts_active)
4043 return -EOPNOTSUPP;
4044
4045 /* BTS is currently only allowed for user-mode. */
4046 if (!attr->exclude_kernel)
4047 return -EOPNOTSUPP;
4048
4049 /* BTS is not allowed for precise events. */
4050 if (attr->precise_ip)
4051 return -EOPNOTSUPP;
4052
4053 /* disallow bts if conflicting events are present */
4054 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
4055 return -EBUSY;
4056
4057 event->destroy = hw_perf_lbr_event_destroy;
4058 }
4059
4060 return 0;
4061 }
4062
core_pmu_hw_config(struct perf_event * event)4063 static int core_pmu_hw_config(struct perf_event *event)
4064 {
4065 int ret = x86_pmu_hw_config(event);
4066
4067 if (ret)
4068 return ret;
4069
4070 return intel_pmu_bts_config(event);
4071 }
4072
4073 #define INTEL_TD_METRIC_AVAILABLE_MAX (INTEL_TD_METRIC_RETIRING + \
4074 ((x86_pmu.num_topdown_events - 1) << 8))
4075
is_available_metric_event(struct perf_event * event)4076 static bool is_available_metric_event(struct perf_event *event)
4077 {
4078 return is_metric_event(event) &&
4079 event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
4080 }
4081
is_mem_loads_event(struct perf_event * event)4082 static inline bool is_mem_loads_event(struct perf_event *event)
4083 {
4084 return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
4085 }
4086
is_mem_loads_aux_event(struct perf_event * event)4087 static inline bool is_mem_loads_aux_event(struct perf_event *event)
4088 {
4089 return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
4090 }
4091
require_mem_loads_aux_event(struct perf_event * event)4092 static inline bool require_mem_loads_aux_event(struct perf_event *event)
4093 {
4094 if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
4095 return false;
4096
4097 if (is_hybrid())
4098 return hybrid_pmu(event->pmu)->pmu_type == hybrid_big;
4099
4100 return true;
4101 }
4102
intel_pmu_has_cap(struct perf_event * event,int idx)4103 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
4104 {
4105 union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
4106
4107 return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
4108 }
4109
intel_pmu_freq_start_period(struct perf_event * event)4110 static u64 intel_pmu_freq_start_period(struct perf_event *event)
4111 {
4112 int type = event->attr.type;
4113 u64 config, factor;
4114 s64 start;
4115
4116 /*
4117 * The 127 is the lowest possible recommended SAV (sample after value)
4118 * for a 4000 freq (default freq), according to the event list JSON file.
4119 * Also, assume the workload is idle 50% time.
4120 */
4121 factor = 64 * 4000;
4122 if (type != PERF_TYPE_HARDWARE && type != PERF_TYPE_HW_CACHE)
4123 goto end;
4124
4125 /*
4126 * The estimation of the start period in the freq mode is
4127 * based on the below assumption.
4128 *
4129 * For a cycles or an instructions event, 1GHZ of the
4130 * underlying platform, 1 IPC. The workload is idle 50% time.
4131 * The start period = 1,000,000,000 * 1 / freq / 2.
4132 * = 500,000,000 / freq
4133 *
4134 * Usually, the branch-related events occur less than the
4135 * instructions event. According to the Intel event list JSON
4136 * file, the SAV (sample after value) of a branch-related event
4137 * is usually 1/4 of an instruction event.
4138 * The start period of branch-related events = 125,000,000 / freq.
4139 *
4140 * The cache-related events occurs even less. The SAV is usually
4141 * 1/20 of an instruction event.
4142 * The start period of cache-related events = 25,000,000 / freq.
4143 */
4144 config = event->attr.config & PERF_HW_EVENT_MASK;
4145 if (type == PERF_TYPE_HARDWARE) {
4146 switch (config) {
4147 case PERF_COUNT_HW_CPU_CYCLES:
4148 case PERF_COUNT_HW_INSTRUCTIONS:
4149 case PERF_COUNT_HW_BUS_CYCLES:
4150 case PERF_COUNT_HW_STALLED_CYCLES_FRONTEND:
4151 case PERF_COUNT_HW_STALLED_CYCLES_BACKEND:
4152 case PERF_COUNT_HW_REF_CPU_CYCLES:
4153 factor = 500000000;
4154 break;
4155 case PERF_COUNT_HW_BRANCH_INSTRUCTIONS:
4156 case PERF_COUNT_HW_BRANCH_MISSES:
4157 factor = 125000000;
4158 break;
4159 case PERF_COUNT_HW_CACHE_REFERENCES:
4160 case PERF_COUNT_HW_CACHE_MISSES:
4161 factor = 25000000;
4162 break;
4163 default:
4164 goto end;
4165 }
4166 }
4167
4168 if (type == PERF_TYPE_HW_CACHE)
4169 factor = 25000000;
4170 end:
4171 /*
4172 * Usually, a prime or a number with less factors (close to prime)
4173 * is chosen as an SAV, which makes it less likely that the sampling
4174 * period synchronizes with some periodic event in the workload.
4175 * Minus 1 to make it at least avoiding values near power of twos
4176 * for the default freq.
4177 */
4178 start = DIV_ROUND_UP_ULL(factor, event->attr.sample_freq) - 1;
4179
4180 if (start > x86_pmu.max_period)
4181 start = x86_pmu.max_period;
4182
4183 if (x86_pmu.limit_period)
4184 x86_pmu.limit_period(event, &start);
4185
4186 return start;
4187 }
4188
intel_pmu_has_acr(struct pmu * pmu)4189 static inline bool intel_pmu_has_acr(struct pmu *pmu)
4190 {
4191 return !!hybrid(pmu, acr_cause_mask64);
4192 }
4193
intel_pmu_is_acr_group(struct perf_event * event)4194 static bool intel_pmu_is_acr_group(struct perf_event *event)
4195 {
4196 /* The group leader has the ACR flag set */
4197 if (is_acr_event_group(event))
4198 return true;
4199
4200 /* The acr_mask is set */
4201 if (event->attr.config2)
4202 return true;
4203
4204 return false;
4205 }
4206
intel_pmu_set_acr_cntr_constr(struct perf_event * event,u64 * cause_mask,int * num)4207 static inline void intel_pmu_set_acr_cntr_constr(struct perf_event *event,
4208 u64 *cause_mask, int *num)
4209 {
4210 event->hw.dyn_constraint &= hybrid(event->pmu, acr_cntr_mask64);
4211 *cause_mask |= event->attr.config2;
4212 *num += 1;
4213 }
4214
intel_pmu_set_acr_caused_constr(struct perf_event * event,int idx,u64 cause_mask)4215 static inline void intel_pmu_set_acr_caused_constr(struct perf_event *event,
4216 int idx, u64 cause_mask)
4217 {
4218 if (test_bit(idx, (unsigned long *)&cause_mask))
4219 event->hw.dyn_constraint &= hybrid(event->pmu, acr_cause_mask64);
4220 }
4221
intel_pmu_hw_config(struct perf_event * event)4222 static int intel_pmu_hw_config(struct perf_event *event)
4223 {
4224 int ret = x86_pmu_hw_config(event);
4225
4226 if (ret)
4227 return ret;
4228
4229 ret = intel_pmu_bts_config(event);
4230 if (ret)
4231 return ret;
4232
4233 if (event->attr.freq && event->attr.sample_freq) {
4234 event->hw.sample_period = intel_pmu_freq_start_period(event);
4235 event->hw.last_period = event->hw.sample_period;
4236 local64_set(&event->hw.period_left, event->hw.sample_period);
4237 }
4238
4239 if (event->attr.precise_ip) {
4240 if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
4241 return -EINVAL;
4242
4243 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
4244 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
4245 if (!(event->attr.sample_type & ~intel_pmu_large_pebs_flags(event)) &&
4246 !has_aux_action(event)) {
4247 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
4248 event->attach_state |= PERF_ATTACH_SCHED_CB;
4249 }
4250 }
4251 if (x86_pmu.pebs_aliases)
4252 x86_pmu.pebs_aliases(event);
4253 }
4254
4255 if (needs_branch_stack(event)) {
4256 /* Avoid branch stack setup for counting events in SAMPLE READ */
4257 if (is_sampling_event(event) ||
4258 !(event->attr.sample_type & PERF_SAMPLE_READ))
4259 event->hw.flags |= PERF_X86_EVENT_NEEDS_BRANCH_STACK;
4260 }
4261
4262 if (branch_sample_counters(event)) {
4263 struct perf_event *leader, *sibling;
4264 int num = 0;
4265
4266 if (!(x86_pmu.flags & PMU_FL_BR_CNTR) ||
4267 (event->attr.config & ~INTEL_ARCH_EVENT_MASK))
4268 return -EINVAL;
4269
4270 /*
4271 * The branch counter logging is not supported in the call stack
4272 * mode yet, since we cannot simply flush the LBR during e.g.,
4273 * multiplexing. Also, there is no obvious usage with the call
4274 * stack mode. Simply forbids it for now.
4275 *
4276 * If any events in the group enable the branch counter logging
4277 * feature, the group is treated as a branch counter logging
4278 * group, which requires the extra space to store the counters.
4279 */
4280 leader = event->group_leader;
4281 if (branch_sample_call_stack(leader))
4282 return -EINVAL;
4283 if (branch_sample_counters(leader)) {
4284 num++;
4285 leader->hw.dyn_constraint &= x86_pmu.lbr_counters;
4286 }
4287 leader->hw.flags |= PERF_X86_EVENT_BRANCH_COUNTERS;
4288
4289 for_each_sibling_event(sibling, leader) {
4290 if (branch_sample_call_stack(sibling))
4291 return -EINVAL;
4292 if (branch_sample_counters(sibling)) {
4293 num++;
4294 sibling->hw.dyn_constraint &= x86_pmu.lbr_counters;
4295 }
4296 }
4297
4298 if (num > fls(x86_pmu.lbr_counters))
4299 return -EINVAL;
4300 /*
4301 * Only applying the PERF_SAMPLE_BRANCH_COUNTERS doesn't
4302 * require any branch stack setup.
4303 * Clear the bit to avoid unnecessary branch stack setup.
4304 */
4305 if (0 == (event->attr.branch_sample_type &
4306 ~(PERF_SAMPLE_BRANCH_PLM_ALL |
4307 PERF_SAMPLE_BRANCH_COUNTERS)))
4308 event->hw.flags &= ~PERF_X86_EVENT_NEEDS_BRANCH_STACK;
4309
4310 /*
4311 * Force the leader to be a LBR event. So LBRs can be reset
4312 * with the leader event. See intel_pmu_lbr_del() for details.
4313 */
4314 if (!intel_pmu_needs_branch_stack(leader))
4315 return -EINVAL;
4316 }
4317
4318 if (intel_pmu_needs_branch_stack(event)) {
4319 ret = intel_pmu_setup_lbr_filter(event);
4320 if (ret)
4321 return ret;
4322 event->attach_state |= PERF_ATTACH_SCHED_CB;
4323
4324 /*
4325 * BTS is set up earlier in this path, so don't account twice
4326 */
4327 if (!unlikely(intel_pmu_has_bts(event))) {
4328 /* disallow lbr if conflicting events are present */
4329 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
4330 return -EBUSY;
4331
4332 event->destroy = hw_perf_lbr_event_destroy;
4333 }
4334 }
4335
4336 if (event->attr.aux_output) {
4337 if (!event->attr.precise_ip)
4338 return -EINVAL;
4339
4340 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
4341 }
4342
4343 if ((event->attr.sample_type & PERF_SAMPLE_READ) &&
4344 (x86_pmu.intel_cap.pebs_format >= 6) &&
4345 x86_pmu.intel_cap.pebs_baseline &&
4346 is_sampling_event(event) &&
4347 event->attr.precise_ip)
4348 event->group_leader->hw.flags |= PERF_X86_EVENT_PEBS_CNTR;
4349
4350 if (intel_pmu_has_acr(event->pmu) && intel_pmu_is_acr_group(event)) {
4351 struct perf_event *sibling, *leader = event->group_leader;
4352 struct pmu *pmu = event->pmu;
4353 bool has_sw_event = false;
4354 int num = 0, idx = 0;
4355 u64 cause_mask = 0;
4356
4357 /* Not support perf metrics */
4358 if (is_metric_event(event))
4359 return -EINVAL;
4360
4361 /* Not support freq mode */
4362 if (event->attr.freq)
4363 return -EINVAL;
4364
4365 /* PDist is not supported */
4366 if (event->attr.config2 && event->attr.precise_ip > 2)
4367 return -EINVAL;
4368
4369 /* The reload value cannot exceeds the max period */
4370 if (event->attr.sample_period > x86_pmu.max_period)
4371 return -EINVAL;
4372 /*
4373 * The counter-constraints of each event cannot be finalized
4374 * unless the whole group is scanned. However, it's hard
4375 * to know whether the event is the last one of the group.
4376 * Recalculate the counter-constraints for each event when
4377 * adding a new event.
4378 *
4379 * The group is traversed twice, which may be optimized later.
4380 * In the first round,
4381 * - Find all events which do reload when other events
4382 * overflow and set the corresponding counter-constraints
4383 * - Add all events, which can cause other events reload,
4384 * in the cause_mask
4385 * - Error out if the number of events exceeds the HW limit
4386 * - The ACR events must be contiguous.
4387 * Error out if there are non-X86 events between ACR events.
4388 * This is not a HW limit, but a SW limit.
4389 * With the assumption, the intel_pmu_acr_late_setup() can
4390 * easily convert the event idx to counter idx without
4391 * traversing the whole event list.
4392 */
4393 if (!is_x86_event(leader))
4394 return -EINVAL;
4395
4396 if (leader->attr.config2)
4397 intel_pmu_set_acr_cntr_constr(leader, &cause_mask, &num);
4398
4399 if (leader->nr_siblings) {
4400 for_each_sibling_event(sibling, leader) {
4401 if (!is_x86_event(sibling)) {
4402 has_sw_event = true;
4403 continue;
4404 }
4405 if (!sibling->attr.config2)
4406 continue;
4407 if (has_sw_event)
4408 return -EINVAL;
4409 intel_pmu_set_acr_cntr_constr(sibling, &cause_mask, &num);
4410 }
4411 }
4412 if (leader != event && event->attr.config2) {
4413 if (has_sw_event)
4414 return -EINVAL;
4415 intel_pmu_set_acr_cntr_constr(event, &cause_mask, &num);
4416 }
4417
4418 if (hweight64(cause_mask) > hweight64(hybrid(pmu, acr_cause_mask64)) ||
4419 num > hweight64(hybrid(event->pmu, acr_cntr_mask64)))
4420 return -EINVAL;
4421 /*
4422 * In the second round, apply the counter-constraints for
4423 * the events which can cause other events reload.
4424 */
4425 intel_pmu_set_acr_caused_constr(leader, idx++, cause_mask);
4426
4427 if (leader->nr_siblings) {
4428 for_each_sibling_event(sibling, leader)
4429 intel_pmu_set_acr_caused_constr(sibling, idx++, cause_mask);
4430 }
4431
4432 if (leader != event)
4433 intel_pmu_set_acr_caused_constr(event, idx, cause_mask);
4434
4435 leader->hw.flags |= PERF_X86_EVENT_ACR;
4436 }
4437
4438 if ((event->attr.type == PERF_TYPE_HARDWARE) ||
4439 (event->attr.type == PERF_TYPE_HW_CACHE))
4440 return 0;
4441
4442 /*
4443 * Config Topdown slots and metric events
4444 *
4445 * The slots event on Fixed Counter 3 can support sampling,
4446 * which will be handled normally in x86_perf_event_update().
4447 *
4448 * Metric events don't support sampling and require being paired
4449 * with a slots event as group leader. When the slots event
4450 * is used in a metrics group, it too cannot support sampling.
4451 */
4452 if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
4453 /* The metrics_clear can only be set for the slots event */
4454 if (event->attr.config1 &&
4455 (!is_slots_event(event) || (event->attr.config1 & ~INTEL_TD_CFG_METRIC_CLEAR)))
4456 return -EINVAL;
4457
4458 if (event->attr.config2)
4459 return -EINVAL;
4460
4461 /*
4462 * The TopDown metrics events and slots event don't
4463 * support any filters.
4464 */
4465 if (event->attr.config & X86_ALL_EVENT_FLAGS)
4466 return -EINVAL;
4467
4468 if (is_available_metric_event(event)) {
4469 struct perf_event *leader = event->group_leader;
4470
4471 /* The metric events don't support sampling. */
4472 if (is_sampling_event(event))
4473 return -EINVAL;
4474
4475 /* The metric events require a slots group leader. */
4476 if (!is_slots_event(leader))
4477 return -EINVAL;
4478
4479 /*
4480 * The leader/SLOTS must not be a sampling event for
4481 * metric use; hardware requires it starts at 0 when used
4482 * in conjunction with MSR_PERF_METRICS.
4483 */
4484 if (is_sampling_event(leader))
4485 return -EINVAL;
4486
4487 event->event_caps |= PERF_EV_CAP_SIBLING;
4488 /*
4489 * Only once we have a METRICs sibling do we
4490 * need TopDown magic.
4491 */
4492 leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
4493 event->hw.flags |= PERF_X86_EVENT_TOPDOWN;
4494 }
4495 }
4496
4497 /*
4498 * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
4499 * doesn't function quite right. As a work-around it needs to always be
4500 * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
4501 * The actual count of this second event is irrelevant it just needs
4502 * to be active to make the first event function correctly.
4503 *
4504 * In a group, the auxiliary event must be in front of the load latency
4505 * event. The rule is to simplify the implementation of the check.
4506 * That's because perf cannot have a complete group at the moment.
4507 */
4508 if (require_mem_loads_aux_event(event) &&
4509 (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
4510 is_mem_loads_event(event)) {
4511 struct perf_event *leader = event->group_leader;
4512 struct perf_event *sibling = NULL;
4513
4514 /*
4515 * When this memload event is also the first event (no group
4516 * exists yet), then there is no aux event before it.
4517 */
4518 if (leader == event)
4519 return -ENODATA;
4520
4521 if (!is_mem_loads_aux_event(leader)) {
4522 for_each_sibling_event(sibling, leader) {
4523 if (is_mem_loads_aux_event(sibling))
4524 break;
4525 }
4526 if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
4527 return -ENODATA;
4528 }
4529 }
4530
4531 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
4532 return 0;
4533
4534 if (x86_pmu.version < 3)
4535 return -EINVAL;
4536
4537 ret = perf_allow_cpu();
4538 if (ret)
4539 return ret;
4540
4541 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
4542
4543 return 0;
4544 }
4545
4546 /*
4547 * Currently, the only caller of this function is the atomic_switch_perf_msrs().
4548 * The host perf context helps to prepare the values of the real hardware for
4549 * a set of msrs that need to be switched atomically in a vmx transaction.
4550 *
4551 * For example, the pseudocode needed to add a new msr should look like:
4552 *
4553 * arr[(*nr)++] = (struct perf_guest_switch_msr){
4554 * .msr = the hardware msr address,
4555 * .host = the value the hardware has when it doesn't run a guest,
4556 * .guest = the value the hardware has when it runs a guest,
4557 * };
4558 *
4559 * These values have nothing to do with the emulated values the guest sees
4560 * when it uses {RD,WR}MSR, which should be handled by the KVM context,
4561 * specifically in the intel_pmu_{get,set}_msr().
4562 */
intel_guest_get_msrs(int * nr,void * data)4563 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr, void *data)
4564 {
4565 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4566 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4567 struct kvm_pmu *kvm_pmu = (struct kvm_pmu *)data;
4568 u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
4569 u64 pebs_mask = cpuc->pebs_enabled & x86_pmu.pebs_capable;
4570 int global_ctrl, pebs_enable;
4571
4572 /*
4573 * In addition to obeying exclude_guest/exclude_host, remove bits being
4574 * used for PEBS when running a guest, because PEBS writes to virtual
4575 * addresses (not physical addresses).
4576 */
4577 *nr = 0;
4578 global_ctrl = (*nr)++;
4579 arr[global_ctrl] = (struct perf_guest_switch_msr){
4580 .msr = MSR_CORE_PERF_GLOBAL_CTRL,
4581 .host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask,
4582 .guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask & ~pebs_mask,
4583 };
4584
4585 if (!x86_pmu.ds_pebs)
4586 return arr;
4587
4588 /*
4589 * If PMU counter has PEBS enabled it is not enough to
4590 * disable counter on a guest entry since PEBS memory
4591 * write can overshoot guest entry and corrupt guest
4592 * memory. Disabling PEBS solves the problem.
4593 *
4594 * Don't do this if the CPU already enforces it.
4595 */
4596 if (x86_pmu.pebs_no_isolation) {
4597 arr[(*nr)++] = (struct perf_guest_switch_msr){
4598 .msr = MSR_IA32_PEBS_ENABLE,
4599 .host = cpuc->pebs_enabled,
4600 .guest = 0,
4601 };
4602 return arr;
4603 }
4604
4605 if (!kvm_pmu || !x86_pmu.pebs_ept)
4606 return arr;
4607
4608 arr[(*nr)++] = (struct perf_guest_switch_msr){
4609 .msr = MSR_IA32_DS_AREA,
4610 .host = (unsigned long)cpuc->ds,
4611 .guest = kvm_pmu->ds_area,
4612 };
4613
4614 if (x86_pmu.intel_cap.pebs_baseline) {
4615 arr[(*nr)++] = (struct perf_guest_switch_msr){
4616 .msr = MSR_PEBS_DATA_CFG,
4617 .host = cpuc->active_pebs_data_cfg,
4618 .guest = kvm_pmu->pebs_data_cfg,
4619 };
4620 }
4621
4622 pebs_enable = (*nr)++;
4623 arr[pebs_enable] = (struct perf_guest_switch_msr){
4624 .msr = MSR_IA32_PEBS_ENABLE,
4625 .host = cpuc->pebs_enabled & ~cpuc->intel_ctrl_guest_mask,
4626 .guest = pebs_mask & ~cpuc->intel_ctrl_host_mask & kvm_pmu->pebs_enable,
4627 };
4628
4629 if (arr[pebs_enable].host) {
4630 /* Disable guest PEBS if host PEBS is enabled. */
4631 arr[pebs_enable].guest = 0;
4632 } else {
4633 /* Disable guest PEBS thoroughly for cross-mapped PEBS counters. */
4634 arr[pebs_enable].guest &= ~kvm_pmu->host_cross_mapped_mask;
4635 arr[global_ctrl].guest &= ~kvm_pmu->host_cross_mapped_mask;
4636 /* Set hw GLOBAL_CTRL bits for PEBS counter when it runs for guest */
4637 arr[global_ctrl].guest |= arr[pebs_enable].guest;
4638 }
4639
4640 return arr;
4641 }
4642
core_guest_get_msrs(int * nr,void * data)4643 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr, void *data)
4644 {
4645 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4646 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4647 int idx;
4648
4649 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
4650 struct perf_event *event = cpuc->events[idx];
4651
4652 arr[idx].msr = x86_pmu_config_addr(idx);
4653 arr[idx].host = arr[idx].guest = 0;
4654
4655 if (!test_bit(idx, cpuc->active_mask))
4656 continue;
4657
4658 arr[idx].host = arr[idx].guest =
4659 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
4660
4661 if (event->attr.exclude_host)
4662 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4663 else if (event->attr.exclude_guest)
4664 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4665 }
4666
4667 *nr = x86_pmu_max_num_counters(cpuc->pmu);
4668 return arr;
4669 }
4670
core_pmu_enable_event(struct perf_event * event)4671 static void core_pmu_enable_event(struct perf_event *event)
4672 {
4673 if (!event->attr.exclude_host)
4674 x86_pmu_enable_event(event);
4675 }
4676
core_pmu_enable_all(int added)4677 static void core_pmu_enable_all(int added)
4678 {
4679 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4680 int idx;
4681
4682 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
4683 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
4684
4685 if (!test_bit(idx, cpuc->active_mask) ||
4686 cpuc->events[idx]->attr.exclude_host)
4687 continue;
4688
4689 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
4690 }
4691 }
4692
hsw_hw_config(struct perf_event * event)4693 static int hsw_hw_config(struct perf_event *event)
4694 {
4695 int ret = intel_pmu_hw_config(event);
4696
4697 if (ret)
4698 return ret;
4699 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
4700 return 0;
4701 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
4702
4703 /*
4704 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
4705 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
4706 * this combination.
4707 */
4708 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
4709 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
4710 event->attr.precise_ip > 0))
4711 return -EOPNOTSUPP;
4712
4713 if (event_is_checkpointed(event)) {
4714 /*
4715 * Sampling of checkpointed events can cause situations where
4716 * the CPU constantly aborts because of a overflow, which is
4717 * then checkpointed back and ignored. Forbid checkpointing
4718 * for sampling.
4719 *
4720 * But still allow a long sampling period, so that perf stat
4721 * from KVM works.
4722 */
4723 if (event->attr.sample_period > 0 &&
4724 event->attr.sample_period < 0x7fffffff)
4725 return -EOPNOTSUPP;
4726 }
4727 return 0;
4728 }
4729
4730 static struct event_constraint counter0_constraint =
4731 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
4732
4733 static struct event_constraint counter1_constraint =
4734 INTEL_ALL_EVENT_CONSTRAINT(0, 0x2);
4735
4736 static struct event_constraint counter0_1_constraint =
4737 INTEL_ALL_EVENT_CONSTRAINT(0, 0x3);
4738
4739 static struct event_constraint counter2_constraint =
4740 EVENT_CONSTRAINT(0, 0x4, 0);
4741
4742 static struct event_constraint fixed0_constraint =
4743 FIXED_EVENT_CONSTRAINT(0x00c0, 0);
4744
4745 static struct event_constraint fixed0_counter0_constraint =
4746 INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
4747
4748 static struct event_constraint fixed0_counter0_1_constraint =
4749 INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000003ULL);
4750
4751 static struct event_constraint counters_1_7_constraint =
4752 INTEL_ALL_EVENT_CONSTRAINT(0, 0xfeULL);
4753
4754 static struct event_constraint *
hsw_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4755 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4756 struct perf_event *event)
4757 {
4758 struct event_constraint *c;
4759
4760 c = intel_get_event_constraints(cpuc, idx, event);
4761
4762 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
4763 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4764 if (c->idxmsk64 & (1U << 2))
4765 return &counter2_constraint;
4766 return &emptyconstraint;
4767 }
4768
4769 return c;
4770 }
4771
4772 static struct event_constraint *
icl_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4773 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4774 struct perf_event *event)
4775 {
4776 /*
4777 * Fixed counter 0 has less skid.
4778 * Force instruction:ppp in Fixed counter 0
4779 */
4780 if ((event->attr.precise_ip == 3) &&
4781 constraint_match(&fixed0_constraint, event->hw.config))
4782 return &fixed0_constraint;
4783
4784 return hsw_get_event_constraints(cpuc, idx, event);
4785 }
4786
4787 static struct event_constraint *
glc_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4788 glc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4789 struct perf_event *event)
4790 {
4791 struct event_constraint *c;
4792
4793 c = icl_get_event_constraints(cpuc, idx, event);
4794
4795 /*
4796 * The :ppp indicates the Precise Distribution (PDist) facility, which
4797 * is only supported on the GP counter 0. If a :ppp event which is not
4798 * available on the GP counter 0, error out.
4799 * Exception: Instruction PDIR is only available on the fixed counter 0.
4800 */
4801 if ((event->attr.precise_ip == 3) &&
4802 !constraint_match(&fixed0_constraint, event->hw.config)) {
4803 if (c->idxmsk64 & BIT_ULL(0))
4804 return &counter0_constraint;
4805
4806 return &emptyconstraint;
4807 }
4808
4809 return c;
4810 }
4811
4812 static struct event_constraint *
glp_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4813 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4814 struct perf_event *event)
4815 {
4816 struct event_constraint *c;
4817
4818 /* :ppp means to do reduced skid PEBS which is PMC0 only. */
4819 if (event->attr.precise_ip == 3)
4820 return &counter0_constraint;
4821
4822 c = intel_get_event_constraints(cpuc, idx, event);
4823
4824 return c;
4825 }
4826
4827 static struct event_constraint *
tnt_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4828 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4829 struct perf_event *event)
4830 {
4831 struct event_constraint *c;
4832
4833 c = intel_get_event_constraints(cpuc, idx, event);
4834
4835 /*
4836 * :ppp means to do reduced skid PEBS,
4837 * which is available on PMC0 and fixed counter 0.
4838 */
4839 if (event->attr.precise_ip == 3) {
4840 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
4841 if (constraint_match(&fixed0_constraint, event->hw.config))
4842 return &fixed0_counter0_constraint;
4843
4844 return &counter0_constraint;
4845 }
4846
4847 return c;
4848 }
4849
4850 static bool allow_tsx_force_abort = true;
4851
4852 static struct event_constraint *
tfa_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4853 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4854 struct perf_event *event)
4855 {
4856 struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4857
4858 /*
4859 * Without TFA we must not use PMC3.
4860 */
4861 if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4862 c = dyn_constraint(cpuc, c, idx);
4863 c->idxmsk64 &= ~(1ULL << 3);
4864 c->weight--;
4865 }
4866
4867 return c;
4868 }
4869
4870 static struct event_constraint *
adl_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4871 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4872 struct perf_event *event)
4873 {
4874 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4875
4876 if (pmu->pmu_type == hybrid_big)
4877 return glc_get_event_constraints(cpuc, idx, event);
4878 else if (pmu->pmu_type == hybrid_small)
4879 return tnt_get_event_constraints(cpuc, idx, event);
4880
4881 WARN_ON(1);
4882 return &emptyconstraint;
4883 }
4884
4885 static struct event_constraint *
cmt_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4886 cmt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4887 struct perf_event *event)
4888 {
4889 struct event_constraint *c;
4890
4891 c = intel_get_event_constraints(cpuc, idx, event);
4892
4893 /*
4894 * The :ppp indicates the Precise Distribution (PDist) facility, which
4895 * is only supported on the GP counter 0 & 1 and Fixed counter 0.
4896 * If a :ppp event which is not available on the above eligible counters,
4897 * error out.
4898 */
4899 if (event->attr.precise_ip == 3) {
4900 /* Force instruction:ppp on PMC0, 1 and Fixed counter 0 */
4901 if (constraint_match(&fixed0_constraint, event->hw.config)) {
4902 /* The fixed counter 0 doesn't support LBR event logging. */
4903 if (branch_sample_counters(event))
4904 return &counter0_1_constraint;
4905 else
4906 return &fixed0_counter0_1_constraint;
4907 }
4908
4909 switch (c->idxmsk64 & 0x3ull) {
4910 case 0x1:
4911 return &counter0_constraint;
4912 case 0x2:
4913 return &counter1_constraint;
4914 case 0x3:
4915 return &counter0_1_constraint;
4916 }
4917 return &emptyconstraint;
4918 }
4919
4920 return c;
4921 }
4922
4923 static struct event_constraint *
rwc_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4924 rwc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4925 struct perf_event *event)
4926 {
4927 struct event_constraint *c;
4928
4929 c = glc_get_event_constraints(cpuc, idx, event);
4930
4931 /* The Retire Latency is not supported by the fixed counter 0. */
4932 if (event->attr.precise_ip &&
4933 (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
4934 constraint_match(&fixed0_constraint, event->hw.config)) {
4935 /*
4936 * The Instruction PDIR is only available
4937 * on the fixed counter 0. Error out for this case.
4938 */
4939 if (event->attr.precise_ip == 3)
4940 return &emptyconstraint;
4941 return &counters_1_7_constraint;
4942 }
4943
4944 return c;
4945 }
4946
4947 static struct event_constraint *
mtl_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4948 mtl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4949 struct perf_event *event)
4950 {
4951 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4952
4953 if (pmu->pmu_type == hybrid_big)
4954 return rwc_get_event_constraints(cpuc, idx, event);
4955 if (pmu->pmu_type == hybrid_small)
4956 return cmt_get_event_constraints(cpuc, idx, event);
4957
4958 WARN_ON(1);
4959 return &emptyconstraint;
4960 }
4961
adl_hw_config(struct perf_event * event)4962 static int adl_hw_config(struct perf_event *event)
4963 {
4964 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4965
4966 if (pmu->pmu_type == hybrid_big)
4967 return hsw_hw_config(event);
4968 else if (pmu->pmu_type == hybrid_small)
4969 return intel_pmu_hw_config(event);
4970
4971 WARN_ON(1);
4972 return -EOPNOTSUPP;
4973 }
4974
adl_get_hybrid_cpu_type(void)4975 static enum intel_cpu_type adl_get_hybrid_cpu_type(void)
4976 {
4977 return INTEL_CPU_TYPE_CORE;
4978 }
4979
erratum_hsw11(struct perf_event * event)4980 static inline bool erratum_hsw11(struct perf_event *event)
4981 {
4982 return (event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4983 X86_CONFIG(.event=0xc0, .umask=0x01);
4984 }
4985
4986 static struct event_constraint *
arl_h_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4987 arl_h_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4988 struct perf_event *event)
4989 {
4990 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4991
4992 if (pmu->pmu_type == hybrid_tiny)
4993 return cmt_get_event_constraints(cpuc, idx, event);
4994
4995 return mtl_get_event_constraints(cpuc, idx, event);
4996 }
4997
arl_h_hw_config(struct perf_event * event)4998 static int arl_h_hw_config(struct perf_event *event)
4999 {
5000 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
5001
5002 if (pmu->pmu_type == hybrid_tiny)
5003 return intel_pmu_hw_config(event);
5004
5005 return adl_hw_config(event);
5006 }
5007
5008 /*
5009 * The HSW11 requires a period larger than 100 which is the same as the BDM11.
5010 * A minimum period of 128 is enforced as well for the INST_RETIRED.ALL.
5011 *
5012 * The message 'interrupt took too long' can be observed on any counter which
5013 * was armed with a period < 32 and two events expired in the same NMI.
5014 * A minimum period of 32 is enforced for the rest of the events.
5015 */
hsw_limit_period(struct perf_event * event,s64 * left)5016 static void hsw_limit_period(struct perf_event *event, s64 *left)
5017 {
5018 *left = max(*left, erratum_hsw11(event) ? 128 : 32);
5019 }
5020
5021 /*
5022 * Broadwell:
5023 *
5024 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
5025 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
5026 * the two to enforce a minimum period of 128 (the smallest value that has bits
5027 * 0-5 cleared and >= 100).
5028 *
5029 * Because of how the code in x86_perf_event_set_period() works, the truncation
5030 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
5031 * to make up for the 'lost' events due to carrying the 'error' in period_left.
5032 *
5033 * Therefore the effective (average) period matches the requested period,
5034 * despite coarser hardware granularity.
5035 */
bdw_limit_period(struct perf_event * event,s64 * left)5036 static void bdw_limit_period(struct perf_event *event, s64 *left)
5037 {
5038 if (erratum_hsw11(event)) {
5039 if (*left < 128)
5040 *left = 128;
5041 *left &= ~0x3fULL;
5042 }
5043 }
5044
nhm_limit_period(struct perf_event * event,s64 * left)5045 static void nhm_limit_period(struct perf_event *event, s64 *left)
5046 {
5047 *left = max(*left, 32LL);
5048 }
5049
glc_limit_period(struct perf_event * event,s64 * left)5050 static void glc_limit_period(struct perf_event *event, s64 *left)
5051 {
5052 if (event->attr.precise_ip == 3)
5053 *left = max(*left, 128LL);
5054 }
5055
5056 PMU_FORMAT_ATTR(event, "config:0-7" );
5057 PMU_FORMAT_ATTR(umask, "config:8-15" );
5058 PMU_FORMAT_ATTR(edge, "config:18" );
5059 PMU_FORMAT_ATTR(pc, "config:19" );
5060 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
5061 PMU_FORMAT_ATTR(inv, "config:23" );
5062 PMU_FORMAT_ATTR(cmask, "config:24-31" );
5063 PMU_FORMAT_ATTR(in_tx, "config:32" );
5064 PMU_FORMAT_ATTR(in_tx_cp, "config:33" );
5065 PMU_FORMAT_ATTR(eq, "config:36" ); /* v6 + */
5066
5067 PMU_FORMAT_ATTR(metrics_clear, "config1:0"); /* PERF_CAPABILITIES.RDPMC_METRICS_CLEAR */
5068
umask2_show(struct device * dev,struct device_attribute * attr,char * page)5069 static ssize_t umask2_show(struct device *dev,
5070 struct device_attribute *attr,
5071 char *page)
5072 {
5073 u64 mask = hybrid(dev_get_drvdata(dev), config_mask) & ARCH_PERFMON_EVENTSEL_UMASK2;
5074
5075 if (mask == ARCH_PERFMON_EVENTSEL_UMASK2)
5076 return sprintf(page, "config:8-15,40-47\n");
5077
5078 /* Roll back to the old format if umask2 is not supported. */
5079 return sprintf(page, "config:8-15\n");
5080 }
5081
5082 static struct device_attribute format_attr_umask2 =
5083 __ATTR(umask, 0444, umask2_show, NULL);
5084
5085 static struct attribute *format_evtsel_ext_attrs[] = {
5086 &format_attr_umask2.attr,
5087 &format_attr_eq.attr,
5088 &format_attr_metrics_clear.attr,
5089 NULL
5090 };
5091
5092 static umode_t
evtsel_ext_is_visible(struct kobject * kobj,struct attribute * attr,int i)5093 evtsel_ext_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5094 {
5095 struct device *dev = kobj_to_dev(kobj);
5096 u64 mask;
5097
5098 /*
5099 * The umask and umask2 have different formats but share the
5100 * same attr name. In update mode, the previous value of the
5101 * umask is unconditionally removed before is_visible. If
5102 * umask2 format is not enumerated, it's impossible to roll
5103 * back to the old format.
5104 * Does the check in umask2_show rather than is_visible.
5105 */
5106 if (i == 0)
5107 return attr->mode;
5108
5109 mask = hybrid(dev_get_drvdata(dev), config_mask);
5110 if (i == 1)
5111 return (mask & ARCH_PERFMON_EVENTSEL_EQ) ? attr->mode : 0;
5112
5113 /* PERF_CAPABILITIES.RDPMC_METRICS_CLEAR */
5114 if (i == 2) {
5115 union perf_capabilities intel_cap = hybrid(dev_get_drvdata(dev), intel_cap);
5116
5117 return intel_cap.rdpmc_metrics_clear ? attr->mode : 0;
5118 }
5119
5120 return 0;
5121 }
5122
5123 static struct attribute *intel_arch_formats_attr[] = {
5124 &format_attr_event.attr,
5125 &format_attr_umask.attr,
5126 &format_attr_edge.attr,
5127 &format_attr_pc.attr,
5128 &format_attr_inv.attr,
5129 &format_attr_cmask.attr,
5130 NULL,
5131 };
5132
intel_event_sysfs_show(char * page,u64 config)5133 ssize_t intel_event_sysfs_show(char *page, u64 config)
5134 {
5135 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
5136
5137 return x86_event_sysfs_show(page, config, event);
5138 }
5139
allocate_shared_regs(int cpu)5140 static struct intel_shared_regs *allocate_shared_regs(int cpu)
5141 {
5142 struct intel_shared_regs *regs;
5143 int i;
5144
5145 regs = kzalloc_node(sizeof(struct intel_shared_regs),
5146 GFP_KERNEL, cpu_to_node(cpu));
5147 if (regs) {
5148 /*
5149 * initialize the locks to keep lockdep happy
5150 */
5151 for (i = 0; i < EXTRA_REG_MAX; i++)
5152 raw_spin_lock_init(®s->regs[i].lock);
5153
5154 regs->core_id = -1;
5155 }
5156 return regs;
5157 }
5158
allocate_excl_cntrs(int cpu)5159 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
5160 {
5161 struct intel_excl_cntrs *c;
5162
5163 c = kzalloc_node(sizeof(struct intel_excl_cntrs),
5164 GFP_KERNEL, cpu_to_node(cpu));
5165 if (c) {
5166 raw_spin_lock_init(&c->lock);
5167 c->core_id = -1;
5168 }
5169 return c;
5170 }
5171
5172
intel_cpuc_prepare(struct cpu_hw_events * cpuc,int cpu)5173 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
5174 {
5175 cpuc->pebs_record_size = x86_pmu.pebs_record_size;
5176
5177 if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
5178 cpuc->shared_regs = allocate_shared_regs(cpu);
5179 if (!cpuc->shared_regs)
5180 goto err;
5181 }
5182
5183 if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA | PMU_FL_DYN_CONSTRAINT)) {
5184 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
5185
5186 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
5187 if (!cpuc->constraint_list)
5188 goto err_shared_regs;
5189 }
5190
5191 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
5192 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
5193 if (!cpuc->excl_cntrs)
5194 goto err_constraint_list;
5195
5196 cpuc->excl_thread_id = 0;
5197 }
5198
5199 return 0;
5200
5201 err_constraint_list:
5202 kfree(cpuc->constraint_list);
5203 cpuc->constraint_list = NULL;
5204
5205 err_shared_regs:
5206 kfree(cpuc->shared_regs);
5207 cpuc->shared_regs = NULL;
5208
5209 err:
5210 return -ENOMEM;
5211 }
5212
intel_pmu_cpu_prepare(int cpu)5213 static int intel_pmu_cpu_prepare(int cpu)
5214 {
5215 return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
5216 }
5217
flip_smm_bit(void * data)5218 static void flip_smm_bit(void *data)
5219 {
5220 unsigned long set = *(unsigned long *)data;
5221
5222 if (set > 0) {
5223 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
5224 DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
5225 } else {
5226 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
5227 DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
5228 }
5229 }
5230
intel_pmu_check_counters_mask(u64 * cntr_mask,u64 * fixed_cntr_mask,u64 * intel_ctrl)5231 static void intel_pmu_check_counters_mask(u64 *cntr_mask,
5232 u64 *fixed_cntr_mask,
5233 u64 *intel_ctrl)
5234 {
5235 unsigned int bit;
5236
5237 bit = fls64(*cntr_mask);
5238 if (bit > INTEL_PMC_MAX_GENERIC) {
5239 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5240 bit, INTEL_PMC_MAX_GENERIC);
5241 *cntr_mask &= GENMASK_ULL(INTEL_PMC_MAX_GENERIC - 1, 0);
5242 }
5243 *intel_ctrl = *cntr_mask;
5244
5245 bit = fls64(*fixed_cntr_mask);
5246 if (bit > INTEL_PMC_MAX_FIXED) {
5247 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5248 bit, INTEL_PMC_MAX_FIXED);
5249 *fixed_cntr_mask &= GENMASK_ULL(INTEL_PMC_MAX_FIXED - 1, 0);
5250 }
5251
5252 *intel_ctrl |= *fixed_cntr_mask << INTEL_PMC_IDX_FIXED;
5253 }
5254
5255 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5256 u64 cntr_mask,
5257 u64 fixed_cntr_mask,
5258 u64 intel_ctrl);
5259
5260 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs);
5261
intel_pmu_broken_perf_cap(void)5262 static inline bool intel_pmu_broken_perf_cap(void)
5263 {
5264 /* The Perf Metric (Bit 15) is always cleared */
5265 if (boot_cpu_data.x86_vfm == INTEL_METEORLAKE ||
5266 boot_cpu_data.x86_vfm == INTEL_METEORLAKE_L)
5267 return true;
5268
5269 return false;
5270 }
5271
update_pmu_cap(struct pmu * pmu)5272 static void update_pmu_cap(struct pmu *pmu)
5273 {
5274 unsigned int cntr, fixed_cntr, ecx, edx;
5275 union cpuid35_eax eax;
5276 union cpuid35_ebx ebx;
5277
5278 cpuid(ARCH_PERFMON_EXT_LEAF, &eax.full, &ebx.full, &ecx, &edx);
5279
5280 if (ebx.split.umask2)
5281 hybrid(pmu, config_mask) |= ARCH_PERFMON_EVENTSEL_UMASK2;
5282 if (ebx.split.eq)
5283 hybrid(pmu, config_mask) |= ARCH_PERFMON_EVENTSEL_EQ;
5284
5285 if (eax.split.cntr_subleaf) {
5286 cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_NUM_COUNTER_LEAF,
5287 &cntr, &fixed_cntr, &ecx, &edx);
5288 hybrid(pmu, cntr_mask64) = cntr;
5289 hybrid(pmu, fixed_cntr_mask64) = fixed_cntr;
5290 }
5291
5292 if (eax.split.acr_subleaf) {
5293 cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_ACR_LEAF,
5294 &cntr, &fixed_cntr, &ecx, &edx);
5295 /* The mask of the counters which can be reloaded */
5296 hybrid(pmu, acr_cntr_mask64) = cntr | ((u64)fixed_cntr << INTEL_PMC_IDX_FIXED);
5297
5298 /* The mask of the counters which can cause a reload of reloadable counters */
5299 hybrid(pmu, acr_cause_mask64) = ecx | ((u64)edx << INTEL_PMC_IDX_FIXED);
5300 }
5301
5302 if (!intel_pmu_broken_perf_cap()) {
5303 /* Perf Metric (Bit 15) and PEBS via PT (Bit 16) are hybrid enumeration */
5304 rdmsrq(MSR_IA32_PERF_CAPABILITIES, hybrid(pmu, intel_cap).capabilities);
5305 }
5306 }
5307
intel_pmu_check_hybrid_pmus(struct x86_hybrid_pmu * pmu)5308 static void intel_pmu_check_hybrid_pmus(struct x86_hybrid_pmu *pmu)
5309 {
5310 intel_pmu_check_counters_mask(&pmu->cntr_mask64, &pmu->fixed_cntr_mask64,
5311 &pmu->intel_ctrl);
5312 pmu->pebs_events_mask = intel_pmu_pebs_mask(pmu->cntr_mask64);
5313 pmu->unconstrained = (struct event_constraint)
5314 __EVENT_CONSTRAINT(0, pmu->cntr_mask64,
5315 0, x86_pmu_num_counters(&pmu->pmu), 0, 0);
5316
5317 if (pmu->intel_cap.perf_metrics)
5318 pmu->intel_ctrl |= GLOBAL_CTRL_EN_PERF_METRICS;
5319 else
5320 pmu->intel_ctrl &= ~GLOBAL_CTRL_EN_PERF_METRICS;
5321
5322 intel_pmu_check_event_constraints(pmu->event_constraints,
5323 pmu->cntr_mask64,
5324 pmu->fixed_cntr_mask64,
5325 pmu->intel_ctrl);
5326
5327 intel_pmu_check_extra_regs(pmu->extra_regs);
5328 }
5329
find_hybrid_pmu_for_cpu(void)5330 static struct x86_hybrid_pmu *find_hybrid_pmu_for_cpu(void)
5331 {
5332 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
5333 enum intel_cpu_type cpu_type = c->topo.intel_type;
5334 int i;
5335
5336 /*
5337 * This is running on a CPU model that is known to have hybrid
5338 * configurations. But the CPU told us it is not hybrid, shame
5339 * on it. There should be a fixup function provided for these
5340 * troublesome CPUs (->get_hybrid_cpu_type).
5341 */
5342 if (cpu_type == INTEL_CPU_TYPE_UNKNOWN) {
5343 if (x86_pmu.get_hybrid_cpu_type)
5344 cpu_type = x86_pmu.get_hybrid_cpu_type();
5345 else
5346 return NULL;
5347 }
5348
5349 /*
5350 * This essentially just maps between the 'hybrid_cpu_type'
5351 * and 'hybrid_pmu_type' enums except for ARL-H processor
5352 * which needs to compare atom uarch native id since ARL-H
5353 * contains two different atom uarchs.
5354 */
5355 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
5356 enum hybrid_pmu_type pmu_type = x86_pmu.hybrid_pmu[i].pmu_type;
5357 u32 native_id;
5358
5359 if (cpu_type == INTEL_CPU_TYPE_CORE && pmu_type == hybrid_big)
5360 return &x86_pmu.hybrid_pmu[i];
5361 if (cpu_type == INTEL_CPU_TYPE_ATOM) {
5362 if (x86_pmu.num_hybrid_pmus == 2 && pmu_type == hybrid_small)
5363 return &x86_pmu.hybrid_pmu[i];
5364
5365 native_id = c->topo.intel_native_model_id;
5366 if (native_id == INTEL_ATOM_SKT_NATIVE_ID && pmu_type == hybrid_small)
5367 return &x86_pmu.hybrid_pmu[i];
5368 if (native_id == INTEL_ATOM_CMT_NATIVE_ID && pmu_type == hybrid_tiny)
5369 return &x86_pmu.hybrid_pmu[i];
5370 }
5371 }
5372
5373 return NULL;
5374 }
5375
init_hybrid_pmu(int cpu)5376 static bool init_hybrid_pmu(int cpu)
5377 {
5378 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
5379 struct x86_hybrid_pmu *pmu = find_hybrid_pmu_for_cpu();
5380
5381 if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
5382 cpuc->pmu = NULL;
5383 return false;
5384 }
5385
5386 /* Only check and dump the PMU information for the first CPU */
5387 if (!cpumask_empty(&pmu->supported_cpus))
5388 goto end;
5389
5390 if (this_cpu_has(X86_FEATURE_ARCH_PERFMON_EXT))
5391 update_pmu_cap(&pmu->pmu);
5392
5393 intel_pmu_check_hybrid_pmus(pmu);
5394
5395 if (!check_hw_exists(&pmu->pmu, pmu->cntr_mask, pmu->fixed_cntr_mask))
5396 return false;
5397
5398 pr_info("%s PMU driver: ", pmu->name);
5399
5400 pr_cont("\n");
5401
5402 x86_pmu_show_pmu_cap(&pmu->pmu);
5403
5404 end:
5405 cpumask_set_cpu(cpu, &pmu->supported_cpus);
5406 cpuc->pmu = &pmu->pmu;
5407
5408 return true;
5409 }
5410
intel_pmu_cpu_starting(int cpu)5411 static void intel_pmu_cpu_starting(int cpu)
5412 {
5413 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
5414 int core_id = topology_core_id(cpu);
5415 int i;
5416
5417 if (is_hybrid() && !init_hybrid_pmu(cpu))
5418 return;
5419
5420 init_debug_store_on_cpu(cpu);
5421 /*
5422 * Deal with CPUs that don't clear their LBRs on power-up, and that may
5423 * even boot with LBRs enabled.
5424 */
5425 if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && x86_pmu.lbr_nr)
5426 msr_clear_bit(MSR_IA32_DEBUGCTLMSR, DEBUGCTLMSR_LBR_BIT);
5427 intel_pmu_lbr_reset();
5428
5429 cpuc->lbr_sel = NULL;
5430
5431 if (x86_pmu.flags & PMU_FL_TFA) {
5432 WARN_ON_ONCE(cpuc->tfa_shadow);
5433 cpuc->tfa_shadow = ~0ULL;
5434 intel_set_tfa(cpuc, false);
5435 }
5436
5437 if (x86_pmu.version > 1)
5438 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
5439
5440 /*
5441 * Disable perf metrics if any added CPU doesn't support it.
5442 *
5443 * Turn off the check for a hybrid architecture, because the
5444 * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
5445 * the architecture features. The perf metrics is a model-specific
5446 * feature for now. The corresponding bit should always be 0 on
5447 * a hybrid platform, e.g., Alder Lake.
5448 */
5449 if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
5450 union perf_capabilities perf_cap;
5451
5452 rdmsrq(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
5453 if (!perf_cap.perf_metrics) {
5454 x86_pmu.intel_cap.perf_metrics = 0;
5455 x86_pmu.intel_ctrl &= ~GLOBAL_CTRL_EN_PERF_METRICS;
5456 }
5457 }
5458
5459 if (!cpuc->shared_regs)
5460 return;
5461
5462 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
5463 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
5464 struct intel_shared_regs *pc;
5465
5466 pc = per_cpu(cpu_hw_events, i).shared_regs;
5467 if (pc && pc->core_id == core_id) {
5468 cpuc->kfree_on_online[0] = cpuc->shared_regs;
5469 cpuc->shared_regs = pc;
5470 break;
5471 }
5472 }
5473 cpuc->shared_regs->core_id = core_id;
5474 cpuc->shared_regs->refcnt++;
5475 }
5476
5477 if (x86_pmu.lbr_sel_map)
5478 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
5479
5480 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
5481 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
5482 struct cpu_hw_events *sibling;
5483 struct intel_excl_cntrs *c;
5484
5485 sibling = &per_cpu(cpu_hw_events, i);
5486 c = sibling->excl_cntrs;
5487 if (c && c->core_id == core_id) {
5488 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
5489 cpuc->excl_cntrs = c;
5490 if (!sibling->excl_thread_id)
5491 cpuc->excl_thread_id = 1;
5492 break;
5493 }
5494 }
5495 cpuc->excl_cntrs->core_id = core_id;
5496 cpuc->excl_cntrs->refcnt++;
5497 }
5498 }
5499
free_excl_cntrs(struct cpu_hw_events * cpuc)5500 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
5501 {
5502 struct intel_excl_cntrs *c;
5503
5504 c = cpuc->excl_cntrs;
5505 if (c) {
5506 if (c->core_id == -1 || --c->refcnt == 0)
5507 kfree(c);
5508 cpuc->excl_cntrs = NULL;
5509 }
5510
5511 kfree(cpuc->constraint_list);
5512 cpuc->constraint_list = NULL;
5513 }
5514
intel_pmu_cpu_dying(int cpu)5515 static void intel_pmu_cpu_dying(int cpu)
5516 {
5517 fini_debug_store_on_cpu(cpu);
5518 }
5519
intel_cpuc_finish(struct cpu_hw_events * cpuc)5520 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
5521 {
5522 struct intel_shared_regs *pc;
5523
5524 pc = cpuc->shared_regs;
5525 if (pc) {
5526 if (pc->core_id == -1 || --pc->refcnt == 0)
5527 kfree(pc);
5528 cpuc->shared_regs = NULL;
5529 }
5530
5531 free_excl_cntrs(cpuc);
5532 }
5533
intel_pmu_cpu_dead(int cpu)5534 static void intel_pmu_cpu_dead(int cpu)
5535 {
5536 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
5537
5538 intel_cpuc_finish(cpuc);
5539
5540 if (is_hybrid() && cpuc->pmu)
5541 cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
5542 }
5543
intel_pmu_sched_task(struct perf_event_pmu_context * pmu_ctx,struct task_struct * task,bool sched_in)5544 static void intel_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
5545 struct task_struct *task, bool sched_in)
5546 {
5547 intel_pmu_pebs_sched_task(pmu_ctx, sched_in);
5548 intel_pmu_lbr_sched_task(pmu_ctx, task, sched_in);
5549 }
5550
intel_pmu_check_period(struct perf_event * event,u64 value)5551 static int intel_pmu_check_period(struct perf_event *event, u64 value)
5552 {
5553 return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
5554 }
5555
intel_aux_output_init(void)5556 static void intel_aux_output_init(void)
5557 {
5558 /* Refer also intel_pmu_aux_output_match() */
5559 if (x86_pmu.intel_cap.pebs_output_pt_available)
5560 x86_pmu.assign = intel_pmu_assign_event;
5561 }
5562
intel_pmu_aux_output_match(struct perf_event * event)5563 static int intel_pmu_aux_output_match(struct perf_event *event)
5564 {
5565 /* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */
5566 if (!x86_pmu.intel_cap.pebs_output_pt_available)
5567 return 0;
5568
5569 return is_intel_pt_event(event);
5570 }
5571
intel_pmu_filter(struct pmu * pmu,int cpu,bool * ret)5572 static void intel_pmu_filter(struct pmu *pmu, int cpu, bool *ret)
5573 {
5574 struct x86_hybrid_pmu *hpmu = hybrid_pmu(pmu);
5575
5576 *ret = !cpumask_test_cpu(cpu, &hpmu->supported_cpus);
5577 }
5578
5579 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
5580
5581 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
5582
5583 PMU_FORMAT_ATTR(frontend, "config1:0-23");
5584
5585 PMU_FORMAT_ATTR(snoop_rsp, "config1:0-63");
5586
5587 static struct attribute *intel_arch3_formats_attr[] = {
5588 &format_attr_event.attr,
5589 &format_attr_umask.attr,
5590 &format_attr_edge.attr,
5591 &format_attr_pc.attr,
5592 &format_attr_any.attr,
5593 &format_attr_inv.attr,
5594 &format_attr_cmask.attr,
5595 NULL,
5596 };
5597
5598 static struct attribute *hsw_format_attr[] = {
5599 &format_attr_in_tx.attr,
5600 &format_attr_in_tx_cp.attr,
5601 &format_attr_offcore_rsp.attr,
5602 &format_attr_ldlat.attr,
5603 NULL
5604 };
5605
5606 static struct attribute *nhm_format_attr[] = {
5607 &format_attr_offcore_rsp.attr,
5608 &format_attr_ldlat.attr,
5609 NULL
5610 };
5611
5612 static struct attribute *slm_format_attr[] = {
5613 &format_attr_offcore_rsp.attr,
5614 NULL
5615 };
5616
5617 static struct attribute *cmt_format_attr[] = {
5618 &format_attr_offcore_rsp.attr,
5619 &format_attr_ldlat.attr,
5620 &format_attr_snoop_rsp.attr,
5621 NULL
5622 };
5623
5624 static struct attribute *skl_format_attr[] = {
5625 &format_attr_frontend.attr,
5626 NULL,
5627 };
5628
5629 static __initconst const struct x86_pmu core_pmu = {
5630 .name = "core",
5631 .handle_irq = x86_pmu_handle_irq,
5632 .disable_all = x86_pmu_disable_all,
5633 .enable_all = core_pmu_enable_all,
5634 .enable = core_pmu_enable_event,
5635 .disable = x86_pmu_disable_event,
5636 .hw_config = core_pmu_hw_config,
5637 .schedule_events = x86_schedule_events,
5638 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
5639 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
5640 .fixedctr = MSR_ARCH_PERFMON_FIXED_CTR0,
5641 .event_map = intel_pmu_event_map,
5642 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
5643 .apic = 1,
5644 .large_pebs_flags = LARGE_PEBS_FLAGS,
5645
5646 /*
5647 * Intel PMCs cannot be accessed sanely above 32-bit width,
5648 * so we install an artificial 1<<31 period regardless of
5649 * the generic event period:
5650 */
5651 .max_period = (1ULL<<31) - 1,
5652 .get_event_constraints = intel_get_event_constraints,
5653 .put_event_constraints = intel_put_event_constraints,
5654 .event_constraints = intel_core_event_constraints,
5655 .guest_get_msrs = core_guest_get_msrs,
5656 .format_attrs = intel_arch_formats_attr,
5657 .events_sysfs_show = intel_event_sysfs_show,
5658
5659 /*
5660 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
5661 * together with PMU version 1 and thus be using core_pmu with
5662 * shared_regs. We need following callbacks here to allocate
5663 * it properly.
5664 */
5665 .cpu_prepare = intel_pmu_cpu_prepare,
5666 .cpu_starting = intel_pmu_cpu_starting,
5667 .cpu_dying = intel_pmu_cpu_dying,
5668 .cpu_dead = intel_pmu_cpu_dead,
5669
5670 .check_period = intel_pmu_check_period,
5671
5672 .lbr_reset = intel_pmu_lbr_reset_64,
5673 .lbr_read = intel_pmu_lbr_read_64,
5674 .lbr_save = intel_pmu_lbr_save,
5675 .lbr_restore = intel_pmu_lbr_restore,
5676 };
5677
5678 static __initconst const struct x86_pmu intel_pmu = {
5679 .name = "Intel",
5680 .handle_irq = intel_pmu_handle_irq,
5681 .disable_all = intel_pmu_disable_all,
5682 .enable_all = intel_pmu_enable_all,
5683 .enable = intel_pmu_enable_event,
5684 .disable = intel_pmu_disable_event,
5685 .add = intel_pmu_add_event,
5686 .del = intel_pmu_del_event,
5687 .read = intel_pmu_read_event,
5688 .set_period = intel_pmu_set_period,
5689 .update = intel_pmu_update,
5690 .hw_config = intel_pmu_hw_config,
5691 .schedule_events = x86_schedule_events,
5692 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
5693 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
5694 .fixedctr = MSR_ARCH_PERFMON_FIXED_CTR0,
5695 .event_map = intel_pmu_event_map,
5696 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
5697 .apic = 1,
5698 .large_pebs_flags = LARGE_PEBS_FLAGS,
5699 /*
5700 * Intel PMCs cannot be accessed sanely above 32 bit width,
5701 * so we install an artificial 1<<31 period regardless of
5702 * the generic event period:
5703 */
5704 .max_period = (1ULL << 31) - 1,
5705 .get_event_constraints = intel_get_event_constraints,
5706 .put_event_constraints = intel_put_event_constraints,
5707 .pebs_aliases = intel_pebs_aliases_core2,
5708
5709 .format_attrs = intel_arch3_formats_attr,
5710 .events_sysfs_show = intel_event_sysfs_show,
5711
5712 .cpu_prepare = intel_pmu_cpu_prepare,
5713 .cpu_starting = intel_pmu_cpu_starting,
5714 .cpu_dying = intel_pmu_cpu_dying,
5715 .cpu_dead = intel_pmu_cpu_dead,
5716
5717 .guest_get_msrs = intel_guest_get_msrs,
5718 .sched_task = intel_pmu_sched_task,
5719
5720 .check_period = intel_pmu_check_period,
5721
5722 .aux_output_match = intel_pmu_aux_output_match,
5723
5724 .lbr_reset = intel_pmu_lbr_reset_64,
5725 .lbr_read = intel_pmu_lbr_read_64,
5726 .lbr_save = intel_pmu_lbr_save,
5727 .lbr_restore = intel_pmu_lbr_restore,
5728
5729 /*
5730 * SMM has access to all 4 rings and while traditionally SMM code only
5731 * ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
5732 *
5733 * Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
5734 * between SMM or not, this results in what should be pure userspace
5735 * counters including SMM data.
5736 *
5737 * This is a clear privilege issue, therefore globally disable
5738 * counting SMM by default.
5739 */
5740 .attr_freeze_on_smi = 1,
5741 };
5742
intel_clovertown_quirk(void)5743 static __init void intel_clovertown_quirk(void)
5744 {
5745 /*
5746 * PEBS is unreliable due to:
5747 *
5748 * AJ67 - PEBS may experience CPL leaks
5749 * AJ68 - PEBS PMI may be delayed by one event
5750 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
5751 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
5752 *
5753 * AJ67 could be worked around by restricting the OS/USR flags.
5754 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
5755 *
5756 * AJ106 could possibly be worked around by not allowing LBR
5757 * usage from PEBS, including the fixup.
5758 * AJ68 could possibly be worked around by always programming
5759 * a pebs_event_reset[0] value and coping with the lost events.
5760 *
5761 * But taken together it might just make sense to not enable PEBS on
5762 * these chips.
5763 */
5764 pr_warn("PEBS disabled due to CPU errata\n");
5765 x86_pmu.ds_pebs = 0;
5766 x86_pmu.pebs_constraints = NULL;
5767 }
5768
5769 static const struct x86_cpu_id isolation_ucodes[] = {
5770 X86_MATCH_VFM_STEPS(INTEL_HASWELL, 3, 3, 0x0000001f),
5771 X86_MATCH_VFM_STEPS(INTEL_HASWELL_L, 1, 1, 0x0000001e),
5772 X86_MATCH_VFM_STEPS(INTEL_HASWELL_G, 1, 1, 0x00000015),
5773 X86_MATCH_VFM_STEPS(INTEL_HASWELL_X, 2, 2, 0x00000037),
5774 X86_MATCH_VFM_STEPS(INTEL_HASWELL_X, 4, 4, 0x0000000a),
5775 X86_MATCH_VFM_STEPS(INTEL_BROADWELL, 4, 4, 0x00000023),
5776 X86_MATCH_VFM_STEPS(INTEL_BROADWELL_G, 1, 1, 0x00000014),
5777 X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 2, 2, 0x00000010),
5778 X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 3, 3, 0x07000009),
5779 X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 4, 4, 0x0f000009),
5780 X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 5, 5, 0x0e000002),
5781 X86_MATCH_VFM_STEPS(INTEL_BROADWELL_X, 1, 1, 0x0b000014),
5782 X86_MATCH_VFM_STEPS(INTEL_SKYLAKE_X, 3, 3, 0x00000021),
5783 X86_MATCH_VFM_STEPS(INTEL_SKYLAKE_X, 4, 7, 0x00000000),
5784 X86_MATCH_VFM_STEPS(INTEL_SKYLAKE_X, 11, 11, 0x00000000),
5785 X86_MATCH_VFM_STEPS(INTEL_SKYLAKE_L, 3, 3, 0x0000007c),
5786 X86_MATCH_VFM_STEPS(INTEL_SKYLAKE, 3, 3, 0x0000007c),
5787 X86_MATCH_VFM_STEPS(INTEL_KABYLAKE, 9, 13, 0x0000004e),
5788 X86_MATCH_VFM_STEPS(INTEL_KABYLAKE_L, 9, 12, 0x0000004e),
5789 {}
5790 };
5791
intel_check_pebs_isolation(void)5792 static void intel_check_pebs_isolation(void)
5793 {
5794 x86_pmu.pebs_no_isolation = !x86_match_min_microcode_rev(isolation_ucodes);
5795 }
5796
intel_pebs_isolation_quirk(void)5797 static __init void intel_pebs_isolation_quirk(void)
5798 {
5799 WARN_ON_ONCE(x86_pmu.check_microcode);
5800 x86_pmu.check_microcode = intel_check_pebs_isolation;
5801 intel_check_pebs_isolation();
5802 }
5803
5804 static const struct x86_cpu_id pebs_ucodes[] = {
5805 X86_MATCH_VFM_STEPS(INTEL_SANDYBRIDGE, 7, 7, 0x00000028),
5806 X86_MATCH_VFM_STEPS(INTEL_SANDYBRIDGE_X, 6, 6, 0x00000618),
5807 X86_MATCH_VFM_STEPS(INTEL_SANDYBRIDGE_X, 7, 7, 0x0000070c),
5808 {}
5809 };
5810
intel_snb_pebs_broken(void)5811 static bool intel_snb_pebs_broken(void)
5812 {
5813 return !x86_match_min_microcode_rev(pebs_ucodes);
5814 }
5815
intel_snb_check_microcode(void)5816 static void intel_snb_check_microcode(void)
5817 {
5818 if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
5819 return;
5820
5821 /*
5822 * Serialized by the microcode lock..
5823 */
5824 if (x86_pmu.pebs_broken) {
5825 pr_info("PEBS enabled due to microcode update\n");
5826 x86_pmu.pebs_broken = 0;
5827 } else {
5828 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
5829 x86_pmu.pebs_broken = 1;
5830 }
5831 }
5832
is_lbr_from(unsigned long msr)5833 static bool is_lbr_from(unsigned long msr)
5834 {
5835 unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
5836
5837 return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
5838 }
5839
5840 /*
5841 * Under certain circumstances, access certain MSR may cause #GP.
5842 * The function tests if the input MSR can be safely accessed.
5843 */
check_msr(unsigned long msr,u64 mask)5844 static bool check_msr(unsigned long msr, u64 mask)
5845 {
5846 u64 val_old, val_new, val_tmp;
5847
5848 /*
5849 * Disable the check for real HW, so we don't
5850 * mess with potentially enabled registers:
5851 */
5852 if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
5853 return true;
5854
5855 /*
5856 * Read the current value, change it and read it back to see if it
5857 * matches, this is needed to detect certain hardware emulators
5858 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
5859 */
5860 if (rdmsrq_safe(msr, &val_old))
5861 return false;
5862
5863 /*
5864 * Only change the bits which can be updated by wrmsrq.
5865 */
5866 val_tmp = val_old ^ mask;
5867
5868 if (is_lbr_from(msr))
5869 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
5870
5871 if (wrmsrq_safe(msr, val_tmp) ||
5872 rdmsrq_safe(msr, &val_new))
5873 return false;
5874
5875 /*
5876 * Quirk only affects validation in wrmsr(), so wrmsrq()'s value
5877 * should equal rdmsrq()'s even with the quirk.
5878 */
5879 if (val_new != val_tmp)
5880 return false;
5881
5882 if (is_lbr_from(msr))
5883 val_old = lbr_from_signext_quirk_wr(val_old);
5884
5885 /* Here it's sure that the MSR can be safely accessed.
5886 * Restore the old value and return.
5887 */
5888 wrmsrq(msr, val_old);
5889
5890 return true;
5891 }
5892
intel_sandybridge_quirk(void)5893 static __init void intel_sandybridge_quirk(void)
5894 {
5895 x86_pmu.check_microcode = intel_snb_check_microcode;
5896 cpus_read_lock();
5897 intel_snb_check_microcode();
5898 cpus_read_unlock();
5899 }
5900
5901 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
5902 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
5903 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
5904 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
5905 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
5906 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
5907 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
5908 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
5909 };
5910
intel_arch_events_quirk(void)5911 static __init void intel_arch_events_quirk(void)
5912 {
5913 int bit;
5914
5915 /* disable event that reported as not present by cpuid */
5916 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
5917 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
5918 pr_warn("CPUID marked event: \'%s\' unavailable\n",
5919 intel_arch_events_map[bit].name);
5920 }
5921 }
5922
intel_nehalem_quirk(void)5923 static __init void intel_nehalem_quirk(void)
5924 {
5925 union cpuid10_ebx ebx;
5926
5927 ebx.full = x86_pmu.events_maskl;
5928 if (ebx.split.no_branch_misses_retired) {
5929 /*
5930 * Erratum AAJ80 detected, we work it around by using
5931 * the BR_MISP_EXEC.ANY event. This will over-count
5932 * branch-misses, but it's still much better than the
5933 * architectural event which is often completely bogus:
5934 */
5935 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
5936 ebx.split.no_branch_misses_retired = 0;
5937 x86_pmu.events_maskl = ebx.full;
5938 pr_info("CPU erratum AAJ80 worked around\n");
5939 }
5940 }
5941
5942 /*
5943 * enable software workaround for errata:
5944 * SNB: BJ122
5945 * IVB: BV98
5946 * HSW: HSD29
5947 *
5948 * Only needed when HT is enabled. However detecting
5949 * if HT is enabled is difficult (model specific). So instead,
5950 * we enable the workaround in the early boot, and verify if
5951 * it is needed in a later initcall phase once we have valid
5952 * topology information to check if HT is actually enabled
5953 */
intel_ht_bug(void)5954 static __init void intel_ht_bug(void)
5955 {
5956 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
5957
5958 x86_pmu.start_scheduling = intel_start_scheduling;
5959 x86_pmu.commit_scheduling = intel_commit_scheduling;
5960 x86_pmu.stop_scheduling = intel_stop_scheduling;
5961 }
5962
5963 EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
5964 EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
5965
5966 /* Haswell special events */
5967 EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
5968 EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
5969 EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
5970 EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
5971 EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
5972 EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
5973 EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
5974 EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
5975 EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
5976 EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
5977 EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
5978 EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
5979
5980 static struct attribute *hsw_events_attrs[] = {
5981 EVENT_PTR(td_slots_issued),
5982 EVENT_PTR(td_slots_retired),
5983 EVENT_PTR(td_fetch_bubbles),
5984 EVENT_PTR(td_total_slots),
5985 EVENT_PTR(td_total_slots_scale),
5986 EVENT_PTR(td_recovery_bubbles),
5987 EVENT_PTR(td_recovery_bubbles_scale),
5988 NULL
5989 };
5990
5991 static struct attribute *hsw_mem_events_attrs[] = {
5992 EVENT_PTR(mem_ld_hsw),
5993 EVENT_PTR(mem_st_hsw),
5994 NULL,
5995 };
5996
5997 static struct attribute *hsw_tsx_events_attrs[] = {
5998 EVENT_PTR(tx_start),
5999 EVENT_PTR(tx_commit),
6000 EVENT_PTR(tx_abort),
6001 EVENT_PTR(tx_capacity),
6002 EVENT_PTR(tx_conflict),
6003 EVENT_PTR(el_start),
6004 EVENT_PTR(el_commit),
6005 EVENT_PTR(el_abort),
6006 EVENT_PTR(el_capacity),
6007 EVENT_PTR(el_conflict),
6008 EVENT_PTR(cycles_t),
6009 EVENT_PTR(cycles_ct),
6010 NULL
6011 };
6012
6013 EVENT_ATTR_STR(tx-capacity-read, tx_capacity_read, "event=0x54,umask=0x80");
6014 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
6015 EVENT_ATTR_STR(el-capacity-read, el_capacity_read, "event=0x54,umask=0x80");
6016 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
6017
6018 static struct attribute *icl_events_attrs[] = {
6019 EVENT_PTR(mem_ld_hsw),
6020 EVENT_PTR(mem_st_hsw),
6021 NULL,
6022 };
6023
6024 static struct attribute *icl_td_events_attrs[] = {
6025 EVENT_PTR(slots),
6026 EVENT_PTR(td_retiring),
6027 EVENT_PTR(td_bad_spec),
6028 EVENT_PTR(td_fe_bound),
6029 EVENT_PTR(td_be_bound),
6030 NULL,
6031 };
6032
6033 static struct attribute *icl_tsx_events_attrs[] = {
6034 EVENT_PTR(tx_start),
6035 EVENT_PTR(tx_abort),
6036 EVENT_PTR(tx_commit),
6037 EVENT_PTR(tx_capacity_read),
6038 EVENT_PTR(tx_capacity_write),
6039 EVENT_PTR(tx_conflict),
6040 EVENT_PTR(el_start),
6041 EVENT_PTR(el_abort),
6042 EVENT_PTR(el_commit),
6043 EVENT_PTR(el_capacity_read),
6044 EVENT_PTR(el_capacity_write),
6045 EVENT_PTR(el_conflict),
6046 EVENT_PTR(cycles_t),
6047 EVENT_PTR(cycles_ct),
6048 NULL,
6049 };
6050
6051
6052 EVENT_ATTR_STR(mem-stores, mem_st_spr, "event=0xcd,umask=0x2");
6053 EVENT_ATTR_STR(mem-loads-aux, mem_ld_aux, "event=0x03,umask=0x82");
6054
6055 static struct attribute *glc_events_attrs[] = {
6056 EVENT_PTR(mem_ld_hsw),
6057 EVENT_PTR(mem_st_spr),
6058 EVENT_PTR(mem_ld_aux),
6059 NULL,
6060 };
6061
6062 static struct attribute *glc_td_events_attrs[] = {
6063 EVENT_PTR(slots),
6064 EVENT_PTR(td_retiring),
6065 EVENT_PTR(td_bad_spec),
6066 EVENT_PTR(td_fe_bound),
6067 EVENT_PTR(td_be_bound),
6068 EVENT_PTR(td_heavy_ops),
6069 EVENT_PTR(td_br_mispredict),
6070 EVENT_PTR(td_fetch_lat),
6071 EVENT_PTR(td_mem_bound),
6072 NULL,
6073 };
6074
6075 static struct attribute *glc_tsx_events_attrs[] = {
6076 EVENT_PTR(tx_start),
6077 EVENT_PTR(tx_abort),
6078 EVENT_PTR(tx_commit),
6079 EVENT_PTR(tx_capacity_read),
6080 EVENT_PTR(tx_capacity_write),
6081 EVENT_PTR(tx_conflict),
6082 EVENT_PTR(cycles_t),
6083 EVENT_PTR(cycles_ct),
6084 NULL,
6085 };
6086
freeze_on_smi_show(struct device * cdev,struct device_attribute * attr,char * buf)6087 static ssize_t freeze_on_smi_show(struct device *cdev,
6088 struct device_attribute *attr,
6089 char *buf)
6090 {
6091 return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
6092 }
6093
6094 static DEFINE_MUTEX(freeze_on_smi_mutex);
6095
freeze_on_smi_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)6096 static ssize_t freeze_on_smi_store(struct device *cdev,
6097 struct device_attribute *attr,
6098 const char *buf, size_t count)
6099 {
6100 unsigned long val;
6101 ssize_t ret;
6102
6103 ret = kstrtoul(buf, 0, &val);
6104 if (ret)
6105 return ret;
6106
6107 if (val > 1)
6108 return -EINVAL;
6109
6110 mutex_lock(&freeze_on_smi_mutex);
6111
6112 if (x86_pmu.attr_freeze_on_smi == val)
6113 goto done;
6114
6115 x86_pmu.attr_freeze_on_smi = val;
6116
6117 cpus_read_lock();
6118 on_each_cpu(flip_smm_bit, &val, 1);
6119 cpus_read_unlock();
6120 done:
6121 mutex_unlock(&freeze_on_smi_mutex);
6122
6123 return count;
6124 }
6125
update_tfa_sched(void * ignored)6126 static void update_tfa_sched(void *ignored)
6127 {
6128 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
6129
6130 /*
6131 * check if PMC3 is used
6132 * and if so force schedule out for all event types all contexts
6133 */
6134 if (test_bit(3, cpuc->active_mask))
6135 perf_pmu_resched(x86_get_pmu(smp_processor_id()));
6136 }
6137
show_sysctl_tfa(struct device * cdev,struct device_attribute * attr,char * buf)6138 static ssize_t show_sysctl_tfa(struct device *cdev,
6139 struct device_attribute *attr,
6140 char *buf)
6141 {
6142 return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
6143 }
6144
set_sysctl_tfa(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)6145 static ssize_t set_sysctl_tfa(struct device *cdev,
6146 struct device_attribute *attr,
6147 const char *buf, size_t count)
6148 {
6149 bool val;
6150 ssize_t ret;
6151
6152 ret = kstrtobool(buf, &val);
6153 if (ret)
6154 return ret;
6155
6156 /* no change */
6157 if (val == allow_tsx_force_abort)
6158 return count;
6159
6160 allow_tsx_force_abort = val;
6161
6162 cpus_read_lock();
6163 on_each_cpu(update_tfa_sched, NULL, 1);
6164 cpus_read_unlock();
6165
6166 return count;
6167 }
6168
6169
6170 static DEVICE_ATTR_RW(freeze_on_smi);
6171
branches_show(struct device * cdev,struct device_attribute * attr,char * buf)6172 static ssize_t branches_show(struct device *cdev,
6173 struct device_attribute *attr,
6174 char *buf)
6175 {
6176 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
6177 }
6178
6179 static DEVICE_ATTR_RO(branches);
6180
branch_counter_nr_show(struct device * cdev,struct device_attribute * attr,char * buf)6181 static ssize_t branch_counter_nr_show(struct device *cdev,
6182 struct device_attribute *attr,
6183 char *buf)
6184 {
6185 return snprintf(buf, PAGE_SIZE, "%d\n", fls(x86_pmu.lbr_counters));
6186 }
6187
6188 static DEVICE_ATTR_RO(branch_counter_nr);
6189
branch_counter_width_show(struct device * cdev,struct device_attribute * attr,char * buf)6190 static ssize_t branch_counter_width_show(struct device *cdev,
6191 struct device_attribute *attr,
6192 char *buf)
6193 {
6194 return snprintf(buf, PAGE_SIZE, "%d\n", LBR_INFO_BR_CNTR_BITS);
6195 }
6196
6197 static DEVICE_ATTR_RO(branch_counter_width);
6198
6199 static struct attribute *lbr_attrs[] = {
6200 &dev_attr_branches.attr,
6201 &dev_attr_branch_counter_nr.attr,
6202 &dev_attr_branch_counter_width.attr,
6203 NULL
6204 };
6205
6206 static umode_t
lbr_is_visible(struct kobject * kobj,struct attribute * attr,int i)6207 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6208 {
6209 /* branches */
6210 if (i == 0)
6211 return x86_pmu.lbr_nr ? attr->mode : 0;
6212
6213 return (x86_pmu.flags & PMU_FL_BR_CNTR) ? attr->mode : 0;
6214 }
6215
6216 static char pmu_name_str[30];
6217
6218 static DEVICE_STRING_ATTR_RO(pmu_name, 0444, pmu_name_str);
6219
6220 static struct attribute *intel_pmu_caps_attrs[] = {
6221 &dev_attr_pmu_name.attr.attr,
6222 NULL
6223 };
6224
6225 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
6226 show_sysctl_tfa,
6227 set_sysctl_tfa);
6228
6229 static struct attribute *intel_pmu_attrs[] = {
6230 &dev_attr_freeze_on_smi.attr,
6231 &dev_attr_allow_tsx_force_abort.attr,
6232 NULL,
6233 };
6234
6235 static umode_t
default_is_visible(struct kobject * kobj,struct attribute * attr,int i)6236 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6237 {
6238 if (attr == &dev_attr_allow_tsx_force_abort.attr)
6239 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
6240
6241 return attr->mode;
6242 }
6243
6244 static umode_t
tsx_is_visible(struct kobject * kobj,struct attribute * attr,int i)6245 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6246 {
6247 return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
6248 }
6249
6250 static umode_t
pebs_is_visible(struct kobject * kobj,struct attribute * attr,int i)6251 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6252 {
6253 return x86_pmu.ds_pebs ? attr->mode : 0;
6254 }
6255
6256 static umode_t
mem_is_visible(struct kobject * kobj,struct attribute * attr,int i)6257 mem_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6258 {
6259 if (attr == &event_attr_mem_ld_aux.attr.attr)
6260 return x86_pmu.flags & PMU_FL_MEM_LOADS_AUX ? attr->mode : 0;
6261
6262 return pebs_is_visible(kobj, attr, i);
6263 }
6264
6265 static umode_t
exra_is_visible(struct kobject * kobj,struct attribute * attr,int i)6266 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6267 {
6268 return x86_pmu.version >= 2 ? attr->mode : 0;
6269 }
6270
6271 static umode_t
td_is_visible(struct kobject * kobj,struct attribute * attr,int i)6272 td_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6273 {
6274 /*
6275 * Hide the perf metrics topdown events
6276 * if the feature is not enumerated.
6277 */
6278 if (x86_pmu.num_topdown_events)
6279 return x86_pmu.intel_cap.perf_metrics ? attr->mode : 0;
6280
6281 return attr->mode;
6282 }
6283
6284 PMU_FORMAT_ATTR(acr_mask, "config2:0-63");
6285
6286 static struct attribute *format_acr_attrs[] = {
6287 &format_attr_acr_mask.attr,
6288 NULL
6289 };
6290
6291 static umode_t
acr_is_visible(struct kobject * kobj,struct attribute * attr,int i)6292 acr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6293 {
6294 struct device *dev = kobj_to_dev(kobj);
6295
6296 return intel_pmu_has_acr(dev_get_drvdata(dev)) ? attr->mode : 0;
6297 }
6298
6299 static struct attribute_group group_events_td = {
6300 .name = "events",
6301 .is_visible = td_is_visible,
6302 };
6303
6304 static struct attribute_group group_events_mem = {
6305 .name = "events",
6306 .is_visible = mem_is_visible,
6307 };
6308
6309 static struct attribute_group group_events_tsx = {
6310 .name = "events",
6311 .is_visible = tsx_is_visible,
6312 };
6313
6314 static struct attribute_group group_caps_gen = {
6315 .name = "caps",
6316 .attrs = intel_pmu_caps_attrs,
6317 };
6318
6319 static struct attribute_group group_caps_lbr = {
6320 .name = "caps",
6321 .attrs = lbr_attrs,
6322 .is_visible = lbr_is_visible,
6323 };
6324
6325 static struct attribute_group group_format_extra = {
6326 .name = "format",
6327 .is_visible = exra_is_visible,
6328 };
6329
6330 static struct attribute_group group_format_extra_skl = {
6331 .name = "format",
6332 .is_visible = exra_is_visible,
6333 };
6334
6335 static struct attribute_group group_format_evtsel_ext = {
6336 .name = "format",
6337 .attrs = format_evtsel_ext_attrs,
6338 .is_visible = evtsel_ext_is_visible,
6339 };
6340
6341 static struct attribute_group group_format_acr = {
6342 .name = "format",
6343 .attrs = format_acr_attrs,
6344 .is_visible = acr_is_visible,
6345 };
6346
6347 static struct attribute_group group_default = {
6348 .attrs = intel_pmu_attrs,
6349 .is_visible = default_is_visible,
6350 };
6351
6352 static const struct attribute_group *attr_update[] = {
6353 &group_events_td,
6354 &group_events_mem,
6355 &group_events_tsx,
6356 &group_caps_gen,
6357 &group_caps_lbr,
6358 &group_format_extra,
6359 &group_format_extra_skl,
6360 &group_format_evtsel_ext,
6361 &group_format_acr,
6362 &group_default,
6363 NULL,
6364 };
6365
6366 EVENT_ATTR_STR_HYBRID(slots, slots_adl, "event=0x00,umask=0x4", hybrid_big);
6367 EVENT_ATTR_STR_HYBRID(topdown-retiring, td_retiring_adl, "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
6368 EVENT_ATTR_STR_HYBRID(topdown-bad-spec, td_bad_spec_adl, "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
6369 EVENT_ATTR_STR_HYBRID(topdown-fe-bound, td_fe_bound_adl, "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
6370 EVENT_ATTR_STR_HYBRID(topdown-be-bound, td_be_bound_adl, "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
6371 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops, td_heavy_ops_adl, "event=0x00,umask=0x84", hybrid_big);
6372 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl, "event=0x00,umask=0x85", hybrid_big);
6373 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat, td_fetch_lat_adl, "event=0x00,umask=0x86", hybrid_big);
6374 EVENT_ATTR_STR_HYBRID(topdown-mem-bound, td_mem_bound_adl, "event=0x00,umask=0x87", hybrid_big);
6375
6376 static struct attribute *adl_hybrid_events_attrs[] = {
6377 EVENT_PTR(slots_adl),
6378 EVENT_PTR(td_retiring_adl),
6379 EVENT_PTR(td_bad_spec_adl),
6380 EVENT_PTR(td_fe_bound_adl),
6381 EVENT_PTR(td_be_bound_adl),
6382 EVENT_PTR(td_heavy_ops_adl),
6383 EVENT_PTR(td_br_mis_adl),
6384 EVENT_PTR(td_fetch_lat_adl),
6385 EVENT_PTR(td_mem_bound_adl),
6386 NULL,
6387 };
6388
6389 EVENT_ATTR_STR_HYBRID(topdown-retiring, td_retiring_lnl, "event=0xc2,umask=0x02;event=0x00,umask=0x80", hybrid_big_small);
6390 EVENT_ATTR_STR_HYBRID(topdown-fe-bound, td_fe_bound_lnl, "event=0x9c,umask=0x01;event=0x00,umask=0x82", hybrid_big_small);
6391 EVENT_ATTR_STR_HYBRID(topdown-be-bound, td_be_bound_lnl, "event=0xa4,umask=0x02;event=0x00,umask=0x83", hybrid_big_small);
6392
6393 static struct attribute *lnl_hybrid_events_attrs[] = {
6394 EVENT_PTR(slots_adl),
6395 EVENT_PTR(td_retiring_lnl),
6396 EVENT_PTR(td_bad_spec_adl),
6397 EVENT_PTR(td_fe_bound_lnl),
6398 EVENT_PTR(td_be_bound_lnl),
6399 EVENT_PTR(td_heavy_ops_adl),
6400 EVENT_PTR(td_br_mis_adl),
6401 EVENT_PTR(td_fetch_lat_adl),
6402 EVENT_PTR(td_mem_bound_adl),
6403 NULL
6404 };
6405
6406 /* The event string must be in PMU IDX order. */
6407 EVENT_ATTR_STR_HYBRID(topdown-retiring,
6408 td_retiring_arl_h,
6409 "event=0xc2,umask=0x02;event=0x00,umask=0x80;event=0xc2,umask=0x0",
6410 hybrid_big_small_tiny);
6411 EVENT_ATTR_STR_HYBRID(topdown-bad-spec,
6412 td_bad_spec_arl_h,
6413 "event=0x73,umask=0x0;event=0x00,umask=0x81;event=0x73,umask=0x0",
6414 hybrid_big_small_tiny);
6415 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,
6416 td_fe_bound_arl_h,
6417 "event=0x9c,umask=0x01;event=0x00,umask=0x82;event=0x71,umask=0x0",
6418 hybrid_big_small_tiny);
6419 EVENT_ATTR_STR_HYBRID(topdown-be-bound,
6420 td_be_bound_arl_h,
6421 "event=0xa4,umask=0x02;event=0x00,umask=0x83;event=0x74,umask=0x0",
6422 hybrid_big_small_tiny);
6423
6424 static struct attribute *arl_h_hybrid_events_attrs[] = {
6425 EVENT_PTR(slots_adl),
6426 EVENT_PTR(td_retiring_arl_h),
6427 EVENT_PTR(td_bad_spec_arl_h),
6428 EVENT_PTR(td_fe_bound_arl_h),
6429 EVENT_PTR(td_be_bound_arl_h),
6430 EVENT_PTR(td_heavy_ops_adl),
6431 EVENT_PTR(td_br_mis_adl),
6432 EVENT_PTR(td_fetch_lat_adl),
6433 EVENT_PTR(td_mem_bound_adl),
6434 NULL,
6435 };
6436
6437 /* Must be in IDX order */
6438 EVENT_ATTR_STR_HYBRID(mem-loads, mem_ld_adl, "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
6439 EVENT_ATTR_STR_HYBRID(mem-stores, mem_st_adl, "event=0xd0,umask=0x6;event=0xcd,umask=0x2", hybrid_big_small);
6440 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82", hybrid_big);
6441
6442 static struct attribute *adl_hybrid_mem_attrs[] = {
6443 EVENT_PTR(mem_ld_adl),
6444 EVENT_PTR(mem_st_adl),
6445 EVENT_PTR(mem_ld_aux_adl),
6446 NULL,
6447 };
6448
6449 static struct attribute *mtl_hybrid_mem_attrs[] = {
6450 EVENT_PTR(mem_ld_adl),
6451 EVENT_PTR(mem_st_adl),
6452 NULL
6453 };
6454
6455 EVENT_ATTR_STR_HYBRID(mem-loads,
6456 mem_ld_arl_h,
6457 "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3;event=0xd0,umask=0x5,ldlat=3",
6458 hybrid_big_small_tiny);
6459 EVENT_ATTR_STR_HYBRID(mem-stores,
6460 mem_st_arl_h,
6461 "event=0xd0,umask=0x6;event=0xcd,umask=0x2;event=0xd0,umask=0x6",
6462 hybrid_big_small_tiny);
6463
6464 static struct attribute *arl_h_hybrid_mem_attrs[] = {
6465 EVENT_PTR(mem_ld_arl_h),
6466 EVENT_PTR(mem_st_arl_h),
6467 NULL,
6468 };
6469
6470 EVENT_ATTR_STR_HYBRID(tx-start, tx_start_adl, "event=0xc9,umask=0x1", hybrid_big);
6471 EVENT_ATTR_STR_HYBRID(tx-commit, tx_commit_adl, "event=0xc9,umask=0x2", hybrid_big);
6472 EVENT_ATTR_STR_HYBRID(tx-abort, tx_abort_adl, "event=0xc9,umask=0x4", hybrid_big);
6473 EVENT_ATTR_STR_HYBRID(tx-conflict, tx_conflict_adl, "event=0x54,umask=0x1", hybrid_big);
6474 EVENT_ATTR_STR_HYBRID(cycles-t, cycles_t_adl, "event=0x3c,in_tx=1", hybrid_big);
6475 EVENT_ATTR_STR_HYBRID(cycles-ct, cycles_ct_adl, "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
6476 EVENT_ATTR_STR_HYBRID(tx-capacity-read, tx_capacity_read_adl, "event=0x54,umask=0x80", hybrid_big);
6477 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2", hybrid_big);
6478
6479 static struct attribute *adl_hybrid_tsx_attrs[] = {
6480 EVENT_PTR(tx_start_adl),
6481 EVENT_PTR(tx_abort_adl),
6482 EVENT_PTR(tx_commit_adl),
6483 EVENT_PTR(tx_capacity_read_adl),
6484 EVENT_PTR(tx_capacity_write_adl),
6485 EVENT_PTR(tx_conflict_adl),
6486 EVENT_PTR(cycles_t_adl),
6487 EVENT_PTR(cycles_ct_adl),
6488 NULL,
6489 };
6490
6491 FORMAT_ATTR_HYBRID(in_tx, hybrid_big);
6492 FORMAT_ATTR_HYBRID(in_tx_cp, hybrid_big);
6493 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small_tiny);
6494 FORMAT_ATTR_HYBRID(ldlat, hybrid_big_small_tiny);
6495 FORMAT_ATTR_HYBRID(frontend, hybrid_big);
6496
6497 #define ADL_HYBRID_RTM_FORMAT_ATTR \
6498 FORMAT_HYBRID_PTR(in_tx), \
6499 FORMAT_HYBRID_PTR(in_tx_cp)
6500
6501 #define ADL_HYBRID_FORMAT_ATTR \
6502 FORMAT_HYBRID_PTR(offcore_rsp), \
6503 FORMAT_HYBRID_PTR(ldlat), \
6504 FORMAT_HYBRID_PTR(frontend)
6505
6506 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
6507 ADL_HYBRID_RTM_FORMAT_ATTR,
6508 ADL_HYBRID_FORMAT_ATTR,
6509 NULL
6510 };
6511
6512 static struct attribute *adl_hybrid_extra_attr[] = {
6513 ADL_HYBRID_FORMAT_ATTR,
6514 NULL
6515 };
6516
6517 FORMAT_ATTR_HYBRID(snoop_rsp, hybrid_small_tiny);
6518
6519 static struct attribute *mtl_hybrid_extra_attr_rtm[] = {
6520 ADL_HYBRID_RTM_FORMAT_ATTR,
6521 ADL_HYBRID_FORMAT_ATTR,
6522 FORMAT_HYBRID_PTR(snoop_rsp),
6523 NULL
6524 };
6525
6526 static struct attribute *mtl_hybrid_extra_attr[] = {
6527 ADL_HYBRID_FORMAT_ATTR,
6528 FORMAT_HYBRID_PTR(snoop_rsp),
6529 NULL
6530 };
6531
is_attr_for_this_pmu(struct kobject * kobj,struct attribute * attr)6532 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
6533 {
6534 struct device *dev = kobj_to_dev(kobj);
6535 struct x86_hybrid_pmu *pmu =
6536 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6537 struct perf_pmu_events_hybrid_attr *pmu_attr =
6538 container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
6539
6540 return pmu->pmu_type & pmu_attr->pmu_type;
6541 }
6542
hybrid_events_is_visible(struct kobject * kobj,struct attribute * attr,int i)6543 static umode_t hybrid_events_is_visible(struct kobject *kobj,
6544 struct attribute *attr, int i)
6545 {
6546 return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
6547 }
6548
hybrid_find_supported_cpu(struct x86_hybrid_pmu * pmu)6549 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
6550 {
6551 int cpu = cpumask_first(&pmu->supported_cpus);
6552
6553 return (cpu >= nr_cpu_ids) ? -1 : cpu;
6554 }
6555
hybrid_tsx_is_visible(struct kobject * kobj,struct attribute * attr,int i)6556 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
6557 struct attribute *attr, int i)
6558 {
6559 struct device *dev = kobj_to_dev(kobj);
6560 struct x86_hybrid_pmu *pmu =
6561 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6562 int cpu = hybrid_find_supported_cpu(pmu);
6563
6564 return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
6565 }
6566
hybrid_format_is_visible(struct kobject * kobj,struct attribute * attr,int i)6567 static umode_t hybrid_format_is_visible(struct kobject *kobj,
6568 struct attribute *attr, int i)
6569 {
6570 struct device *dev = kobj_to_dev(kobj);
6571 struct x86_hybrid_pmu *pmu =
6572 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6573 struct perf_pmu_format_hybrid_attr *pmu_attr =
6574 container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
6575 int cpu = hybrid_find_supported_cpu(pmu);
6576
6577 return (cpu >= 0) && (pmu->pmu_type & pmu_attr->pmu_type) ? attr->mode : 0;
6578 }
6579
hybrid_td_is_visible(struct kobject * kobj,struct attribute * attr,int i)6580 static umode_t hybrid_td_is_visible(struct kobject *kobj,
6581 struct attribute *attr, int i)
6582 {
6583 struct device *dev = kobj_to_dev(kobj);
6584 struct x86_hybrid_pmu *pmu =
6585 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6586
6587 if (!is_attr_for_this_pmu(kobj, attr))
6588 return 0;
6589
6590
6591 /* Only the big core supports perf metrics */
6592 if (pmu->pmu_type == hybrid_big)
6593 return pmu->intel_cap.perf_metrics ? attr->mode : 0;
6594
6595 return attr->mode;
6596 }
6597
6598 static struct attribute_group hybrid_group_events_td = {
6599 .name = "events",
6600 .is_visible = hybrid_td_is_visible,
6601 };
6602
6603 static struct attribute_group hybrid_group_events_mem = {
6604 .name = "events",
6605 .is_visible = hybrid_events_is_visible,
6606 };
6607
6608 static struct attribute_group hybrid_group_events_tsx = {
6609 .name = "events",
6610 .is_visible = hybrid_tsx_is_visible,
6611 };
6612
6613 static struct attribute_group hybrid_group_format_extra = {
6614 .name = "format",
6615 .is_visible = hybrid_format_is_visible,
6616 };
6617
intel_hybrid_get_attr_cpus(struct device * dev,struct device_attribute * attr,char * buf)6618 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
6619 struct device_attribute *attr,
6620 char *buf)
6621 {
6622 struct x86_hybrid_pmu *pmu =
6623 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6624
6625 return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
6626 }
6627
6628 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
6629 static struct attribute *intel_hybrid_cpus_attrs[] = {
6630 &dev_attr_cpus.attr,
6631 NULL,
6632 };
6633
6634 static struct attribute_group hybrid_group_cpus = {
6635 .attrs = intel_hybrid_cpus_attrs,
6636 };
6637
6638 static const struct attribute_group *hybrid_attr_update[] = {
6639 &hybrid_group_events_td,
6640 &hybrid_group_events_mem,
6641 &hybrid_group_events_tsx,
6642 &group_caps_gen,
6643 &group_caps_lbr,
6644 &hybrid_group_format_extra,
6645 &group_format_evtsel_ext,
6646 &group_format_acr,
6647 &group_default,
6648 &hybrid_group_cpus,
6649 NULL,
6650 };
6651
6652 static struct attribute *empty_attrs;
6653
intel_pmu_check_event_constraints(struct event_constraint * event_constraints,u64 cntr_mask,u64 fixed_cntr_mask,u64 intel_ctrl)6654 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
6655 u64 cntr_mask,
6656 u64 fixed_cntr_mask,
6657 u64 intel_ctrl)
6658 {
6659 struct event_constraint *c;
6660
6661 if (!event_constraints)
6662 return;
6663
6664 /*
6665 * event on fixed counter2 (REF_CYCLES) only works on this
6666 * counter, so do not extend mask to generic counters
6667 */
6668 for_each_event_constraint(c, event_constraints) {
6669 /*
6670 * Don't extend the topdown slots and metrics
6671 * events to the generic counters.
6672 */
6673 if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
6674 /*
6675 * Disable topdown slots and metrics events,
6676 * if slots event is not in CPUID.
6677 */
6678 if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
6679 c->idxmsk64 = 0;
6680 c->weight = hweight64(c->idxmsk64);
6681 continue;
6682 }
6683
6684 if (c->cmask == FIXED_EVENT_FLAGS) {
6685 /* Disabled fixed counters which are not in CPUID */
6686 c->idxmsk64 &= intel_ctrl;
6687
6688 /*
6689 * Don't extend the pseudo-encoding to the
6690 * generic counters
6691 */
6692 if (!use_fixed_pseudo_encoding(c->code))
6693 c->idxmsk64 |= cntr_mask;
6694 }
6695 c->idxmsk64 &= cntr_mask | (fixed_cntr_mask << INTEL_PMC_IDX_FIXED);
6696 c->weight = hweight64(c->idxmsk64);
6697 }
6698 }
6699
intel_pmu_check_extra_regs(struct extra_reg * extra_regs)6700 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
6701 {
6702 struct extra_reg *er;
6703
6704 /*
6705 * Access extra MSR may cause #GP under certain circumstances.
6706 * E.g. KVM doesn't support offcore event
6707 * Check all extra_regs here.
6708 */
6709 if (!extra_regs)
6710 return;
6711
6712 for (er = extra_regs; er->msr; er++) {
6713 er->extra_msr_access = check_msr(er->msr, 0x11UL);
6714 /* Disable LBR select mapping */
6715 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
6716 x86_pmu.lbr_sel_map = NULL;
6717 }
6718 }
6719
intel_pmu_v6_addr_offset(int index,bool eventsel)6720 static inline int intel_pmu_v6_addr_offset(int index, bool eventsel)
6721 {
6722 return MSR_IA32_PMC_V6_STEP * index;
6723 }
6724
6725 static const struct { enum hybrid_pmu_type id; char *name; } intel_hybrid_pmu_type_map[] __initconst = {
6726 { hybrid_small, "cpu_atom" },
6727 { hybrid_big, "cpu_core" },
6728 { hybrid_tiny, "cpu_lowpower" },
6729 };
6730
intel_pmu_init_hybrid(enum hybrid_pmu_type pmus)6731 static __always_inline int intel_pmu_init_hybrid(enum hybrid_pmu_type pmus)
6732 {
6733 unsigned long pmus_mask = pmus;
6734 struct x86_hybrid_pmu *pmu;
6735 int idx = 0, bit;
6736
6737 x86_pmu.num_hybrid_pmus = hweight_long(pmus_mask);
6738 x86_pmu.hybrid_pmu = kcalloc(x86_pmu.num_hybrid_pmus,
6739 sizeof(struct x86_hybrid_pmu),
6740 GFP_KERNEL);
6741 if (!x86_pmu.hybrid_pmu)
6742 return -ENOMEM;
6743
6744 static_branch_enable(&perf_is_hybrid);
6745 x86_pmu.filter = intel_pmu_filter;
6746
6747 for_each_set_bit(bit, &pmus_mask, ARRAY_SIZE(intel_hybrid_pmu_type_map)) {
6748 pmu = &x86_pmu.hybrid_pmu[idx++];
6749 pmu->pmu_type = intel_hybrid_pmu_type_map[bit].id;
6750 pmu->name = intel_hybrid_pmu_type_map[bit].name;
6751
6752 pmu->cntr_mask64 = x86_pmu.cntr_mask64;
6753 pmu->fixed_cntr_mask64 = x86_pmu.fixed_cntr_mask64;
6754 pmu->pebs_events_mask = intel_pmu_pebs_mask(pmu->cntr_mask64);
6755 pmu->config_mask = X86_RAW_EVENT_MASK;
6756 pmu->unconstrained = (struct event_constraint)
6757 __EVENT_CONSTRAINT(0, pmu->cntr_mask64,
6758 0, x86_pmu_num_counters(&pmu->pmu), 0, 0);
6759
6760 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6761 if (pmu->pmu_type & hybrid_small_tiny) {
6762 pmu->intel_cap.perf_metrics = 0;
6763 pmu->mid_ack = true;
6764 } else if (pmu->pmu_type & hybrid_big) {
6765 pmu->intel_cap.perf_metrics = 1;
6766 pmu->late_ack = true;
6767 }
6768 }
6769
6770 return 0;
6771 }
6772
intel_pmu_ref_cycles_ext(void)6773 static __always_inline void intel_pmu_ref_cycles_ext(void)
6774 {
6775 if (!(x86_pmu.events_maskl & (INTEL_PMC_MSK_FIXED_REF_CYCLES >> INTEL_PMC_IDX_FIXED)))
6776 intel_perfmon_event_map[PERF_COUNT_HW_REF_CPU_CYCLES] = 0x013c;
6777 }
6778
intel_pmu_init_glc(struct pmu * pmu)6779 static __always_inline void intel_pmu_init_glc(struct pmu *pmu)
6780 {
6781 x86_pmu.late_ack = true;
6782 x86_pmu.limit_period = glc_limit_period;
6783 x86_pmu.pebs_aliases = NULL;
6784 x86_pmu.pebs_prec_dist = true;
6785 x86_pmu.pebs_block = true;
6786 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6787 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6788 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6789 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6790 x86_pmu.lbr_pt_coexist = true;
6791 x86_pmu.num_topdown_events = 8;
6792 static_call_update(intel_pmu_update_topdown_event,
6793 &icl_update_topdown_event);
6794 static_call_update(intel_pmu_set_topdown_event_period,
6795 &icl_set_topdown_event_period);
6796
6797 memcpy(hybrid_var(pmu, hw_cache_event_ids), glc_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6798 memcpy(hybrid_var(pmu, hw_cache_extra_regs), glc_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6799 hybrid(pmu, event_constraints) = intel_glc_event_constraints;
6800 hybrid(pmu, pebs_constraints) = intel_glc_pebs_event_constraints;
6801
6802 intel_pmu_ref_cycles_ext();
6803 }
6804
intel_pmu_init_grt(struct pmu * pmu)6805 static __always_inline void intel_pmu_init_grt(struct pmu *pmu)
6806 {
6807 x86_pmu.mid_ack = true;
6808 x86_pmu.limit_period = glc_limit_period;
6809 x86_pmu.pebs_aliases = NULL;
6810 x86_pmu.pebs_prec_dist = true;
6811 x86_pmu.pebs_block = true;
6812 x86_pmu.lbr_pt_coexist = true;
6813 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6814 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6815
6816 memcpy(hybrid_var(pmu, hw_cache_event_ids), glp_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6817 memcpy(hybrid_var(pmu, hw_cache_extra_regs), tnt_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6818 hybrid_var(pmu, hw_cache_event_ids)[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6819 hybrid(pmu, event_constraints) = intel_grt_event_constraints;
6820 hybrid(pmu, pebs_constraints) = intel_grt_pebs_event_constraints;
6821 hybrid(pmu, extra_regs) = intel_grt_extra_regs;
6822
6823 intel_pmu_ref_cycles_ext();
6824 }
6825
intel_pmu_init_lnc(struct pmu * pmu)6826 static __always_inline void intel_pmu_init_lnc(struct pmu *pmu)
6827 {
6828 intel_pmu_init_glc(pmu);
6829 hybrid(pmu, event_constraints) = intel_lnc_event_constraints;
6830 hybrid(pmu, pebs_constraints) = intel_lnc_pebs_event_constraints;
6831 hybrid(pmu, extra_regs) = intel_lnc_extra_regs;
6832 }
6833
intel_pmu_init_skt(struct pmu * pmu)6834 static __always_inline void intel_pmu_init_skt(struct pmu *pmu)
6835 {
6836 intel_pmu_init_grt(pmu);
6837 hybrid(pmu, event_constraints) = intel_skt_event_constraints;
6838 hybrid(pmu, extra_regs) = intel_cmt_extra_regs;
6839 static_call_update(intel_pmu_enable_acr_event, intel_pmu_enable_acr);
6840 }
6841
intel_pmu_init(void)6842 __init int intel_pmu_init(void)
6843 {
6844 struct attribute **extra_skl_attr = &empty_attrs;
6845 struct attribute **extra_attr = &empty_attrs;
6846 struct attribute **td_attr = &empty_attrs;
6847 struct attribute **mem_attr = &empty_attrs;
6848 struct attribute **tsx_attr = &empty_attrs;
6849 union cpuid10_edx edx;
6850 union cpuid10_eax eax;
6851 union cpuid10_ebx ebx;
6852 unsigned int fixed_mask;
6853 bool pmem = false;
6854 int version, i;
6855 char *name;
6856 struct x86_hybrid_pmu *pmu;
6857
6858 /* Architectural Perfmon was introduced starting with Core "Yonah" */
6859 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
6860 switch (boot_cpu_data.x86) {
6861 case 6:
6862 if (boot_cpu_data.x86_vfm < INTEL_CORE_YONAH)
6863 return p6_pmu_init();
6864 break;
6865 case 11:
6866 return knc_pmu_init();
6867 case 15:
6868 return p4_pmu_init();
6869 }
6870
6871 pr_cont("unsupported CPU family %d model %d ",
6872 boot_cpu_data.x86, boot_cpu_data.x86_model);
6873 return -ENODEV;
6874 }
6875
6876 /*
6877 * Check whether the Architectural PerfMon supports
6878 * Branch Misses Retired hw_event or not.
6879 */
6880 cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
6881 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
6882 return -ENODEV;
6883
6884 version = eax.split.version_id;
6885 if (version < 2)
6886 x86_pmu = core_pmu;
6887 else
6888 x86_pmu = intel_pmu;
6889
6890 x86_pmu.version = version;
6891 x86_pmu.cntr_mask64 = GENMASK_ULL(eax.split.num_counters - 1, 0);
6892 x86_pmu.cntval_bits = eax.split.bit_width;
6893 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
6894
6895 x86_pmu.events_maskl = ebx.full;
6896 x86_pmu.events_mask_len = eax.split.mask_length;
6897
6898 x86_pmu.pebs_events_mask = intel_pmu_pebs_mask(x86_pmu.cntr_mask64);
6899 x86_pmu.pebs_capable = PEBS_COUNTER_MASK;
6900 x86_pmu.config_mask = X86_RAW_EVENT_MASK;
6901
6902 /*
6903 * Quirk: v2 perfmon does not report fixed-purpose events, so
6904 * assume at least 3 events, when not running in a hypervisor:
6905 */
6906 if (version > 1 && version < 5) {
6907 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
6908
6909 x86_pmu.fixed_cntr_mask64 =
6910 GENMASK_ULL(max((int)edx.split.num_counters_fixed, assume) - 1, 0);
6911 } else if (version >= 5)
6912 x86_pmu.fixed_cntr_mask64 = fixed_mask;
6913
6914 if (boot_cpu_has(X86_FEATURE_PDCM)) {
6915 u64 capabilities;
6916
6917 rdmsrq(MSR_IA32_PERF_CAPABILITIES, capabilities);
6918 x86_pmu.intel_cap.capabilities = capabilities;
6919 }
6920
6921 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
6922 x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
6923 x86_pmu.lbr_read = intel_pmu_lbr_read_32;
6924 }
6925
6926 if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
6927 intel_pmu_arch_lbr_init();
6928
6929 intel_pebs_init();
6930
6931 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
6932
6933 if (version >= 5) {
6934 x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
6935 if (x86_pmu.intel_cap.anythread_deprecated)
6936 pr_cont(" AnyThread deprecated, ");
6937 }
6938
6939 /*
6940 * Many features on and after V6 require dynamic constraint,
6941 * e.g., Arch PEBS, ACR.
6942 */
6943 if (version >= 6)
6944 x86_pmu.flags |= PMU_FL_DYN_CONSTRAINT;
6945 /*
6946 * Install the hw-cache-events table:
6947 */
6948 switch (boot_cpu_data.x86_vfm) {
6949 case INTEL_CORE_YONAH:
6950 pr_cont("Core events, ");
6951 name = "core";
6952 break;
6953
6954 case INTEL_CORE2_MEROM:
6955 x86_add_quirk(intel_clovertown_quirk);
6956 fallthrough;
6957
6958 case INTEL_CORE2_MEROM_L:
6959 case INTEL_CORE2_PENRYN:
6960 case INTEL_CORE2_DUNNINGTON:
6961 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
6962 sizeof(hw_cache_event_ids));
6963
6964 intel_pmu_lbr_init_core();
6965
6966 x86_pmu.event_constraints = intel_core2_event_constraints;
6967 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
6968 pr_cont("Core2 events, ");
6969 name = "core2";
6970 break;
6971
6972 case INTEL_NEHALEM:
6973 case INTEL_NEHALEM_EP:
6974 case INTEL_NEHALEM_EX:
6975 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
6976 sizeof(hw_cache_event_ids));
6977 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
6978 sizeof(hw_cache_extra_regs));
6979
6980 intel_pmu_lbr_init_nhm();
6981
6982 x86_pmu.event_constraints = intel_nehalem_event_constraints;
6983 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
6984 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
6985 x86_pmu.extra_regs = intel_nehalem_extra_regs;
6986 x86_pmu.limit_period = nhm_limit_period;
6987
6988 mem_attr = nhm_mem_events_attrs;
6989
6990 /* UOPS_ISSUED.STALLED_CYCLES */
6991 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6992 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6993 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
6994 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6995 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
6996
6997 intel_pmu_pebs_data_source_nhm();
6998 x86_add_quirk(intel_nehalem_quirk);
6999 x86_pmu.pebs_no_tlb = 1;
7000 extra_attr = nhm_format_attr;
7001
7002 pr_cont("Nehalem events, ");
7003 name = "nehalem";
7004 break;
7005
7006 case INTEL_ATOM_BONNELL:
7007 case INTEL_ATOM_BONNELL_MID:
7008 case INTEL_ATOM_SALTWELL:
7009 case INTEL_ATOM_SALTWELL_MID:
7010 case INTEL_ATOM_SALTWELL_TABLET:
7011 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
7012 sizeof(hw_cache_event_ids));
7013
7014 intel_pmu_lbr_init_atom();
7015
7016 x86_pmu.event_constraints = intel_gen_event_constraints;
7017 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
7018 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
7019 pr_cont("Atom events, ");
7020 name = "bonnell";
7021 break;
7022
7023 case INTEL_ATOM_SILVERMONT:
7024 case INTEL_ATOM_SILVERMONT_D:
7025 case INTEL_ATOM_SILVERMONT_MID:
7026 case INTEL_ATOM_AIRMONT:
7027 case INTEL_ATOM_SILVERMONT_MID2:
7028 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
7029 sizeof(hw_cache_event_ids));
7030 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
7031 sizeof(hw_cache_extra_regs));
7032
7033 intel_pmu_lbr_init_slm();
7034
7035 x86_pmu.event_constraints = intel_slm_event_constraints;
7036 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
7037 x86_pmu.extra_regs = intel_slm_extra_regs;
7038 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7039 td_attr = slm_events_attrs;
7040 extra_attr = slm_format_attr;
7041 pr_cont("Silvermont events, ");
7042 name = "silvermont";
7043 break;
7044
7045 case INTEL_ATOM_GOLDMONT:
7046 case INTEL_ATOM_GOLDMONT_D:
7047 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
7048 sizeof(hw_cache_event_ids));
7049 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
7050 sizeof(hw_cache_extra_regs));
7051
7052 intel_pmu_lbr_init_skl();
7053
7054 x86_pmu.event_constraints = intel_slm_event_constraints;
7055 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
7056 x86_pmu.extra_regs = intel_glm_extra_regs;
7057 /*
7058 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
7059 * for precise cycles.
7060 * :pp is identical to :ppp
7061 */
7062 x86_pmu.pebs_aliases = NULL;
7063 x86_pmu.pebs_prec_dist = true;
7064 x86_pmu.lbr_pt_coexist = true;
7065 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7066 td_attr = glm_events_attrs;
7067 extra_attr = slm_format_attr;
7068 pr_cont("Goldmont events, ");
7069 name = "goldmont";
7070 break;
7071
7072 case INTEL_ATOM_GOLDMONT_PLUS:
7073 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
7074 sizeof(hw_cache_event_ids));
7075 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
7076 sizeof(hw_cache_extra_regs));
7077
7078 intel_pmu_lbr_init_skl();
7079
7080 x86_pmu.event_constraints = intel_slm_event_constraints;
7081 x86_pmu.extra_regs = intel_glm_extra_regs;
7082 /*
7083 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
7084 * for precise cycles.
7085 */
7086 x86_pmu.pebs_aliases = NULL;
7087 x86_pmu.pebs_prec_dist = true;
7088 x86_pmu.lbr_pt_coexist = true;
7089 x86_pmu.pebs_capable = ~0ULL;
7090 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7091 x86_pmu.flags |= PMU_FL_PEBS_ALL;
7092 x86_pmu.get_event_constraints = glp_get_event_constraints;
7093 td_attr = glm_events_attrs;
7094 /* Goldmont Plus has 4-wide pipeline */
7095 event_attr_td_total_slots_scale_glm.event_str = "4";
7096 extra_attr = slm_format_attr;
7097 pr_cont("Goldmont plus events, ");
7098 name = "goldmont_plus";
7099 break;
7100
7101 case INTEL_ATOM_TREMONT_D:
7102 case INTEL_ATOM_TREMONT:
7103 case INTEL_ATOM_TREMONT_L:
7104 x86_pmu.late_ack = true;
7105 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
7106 sizeof(hw_cache_event_ids));
7107 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
7108 sizeof(hw_cache_extra_regs));
7109 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
7110
7111 intel_pmu_lbr_init_skl();
7112
7113 x86_pmu.event_constraints = intel_slm_event_constraints;
7114 x86_pmu.extra_regs = intel_tnt_extra_regs;
7115 /*
7116 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
7117 * for precise cycles.
7118 */
7119 x86_pmu.pebs_aliases = NULL;
7120 x86_pmu.pebs_prec_dist = true;
7121 x86_pmu.lbr_pt_coexist = true;
7122 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7123 x86_pmu.get_event_constraints = tnt_get_event_constraints;
7124 td_attr = tnt_events_attrs;
7125 extra_attr = slm_format_attr;
7126 pr_cont("Tremont events, ");
7127 name = "Tremont";
7128 break;
7129
7130 case INTEL_ATOM_GRACEMONT:
7131 intel_pmu_init_grt(NULL);
7132 intel_pmu_pebs_data_source_grt();
7133 x86_pmu.pebs_latency_data = grt_latency_data;
7134 x86_pmu.get_event_constraints = tnt_get_event_constraints;
7135 td_attr = tnt_events_attrs;
7136 mem_attr = grt_mem_attrs;
7137 extra_attr = nhm_format_attr;
7138 pr_cont("Gracemont events, ");
7139 name = "gracemont";
7140 break;
7141
7142 case INTEL_ATOM_CRESTMONT:
7143 case INTEL_ATOM_CRESTMONT_X:
7144 intel_pmu_init_grt(NULL);
7145 x86_pmu.extra_regs = intel_cmt_extra_regs;
7146 intel_pmu_pebs_data_source_cmt();
7147 x86_pmu.pebs_latency_data = cmt_latency_data;
7148 x86_pmu.get_event_constraints = cmt_get_event_constraints;
7149 td_attr = cmt_events_attrs;
7150 mem_attr = grt_mem_attrs;
7151 extra_attr = cmt_format_attr;
7152 pr_cont("Crestmont events, ");
7153 name = "crestmont";
7154 break;
7155
7156 case INTEL_ATOM_DARKMONT_X:
7157 intel_pmu_init_skt(NULL);
7158 intel_pmu_pebs_data_source_cmt();
7159 x86_pmu.pebs_latency_data = cmt_latency_data;
7160 x86_pmu.get_event_constraints = cmt_get_event_constraints;
7161 td_attr = skt_events_attrs;
7162 mem_attr = grt_mem_attrs;
7163 extra_attr = cmt_format_attr;
7164 pr_cont("Darkmont events, ");
7165 name = "darkmont";
7166 break;
7167
7168 case INTEL_WESTMERE:
7169 case INTEL_WESTMERE_EP:
7170 case INTEL_WESTMERE_EX:
7171 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
7172 sizeof(hw_cache_event_ids));
7173 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
7174 sizeof(hw_cache_extra_regs));
7175
7176 intel_pmu_lbr_init_nhm();
7177
7178 x86_pmu.event_constraints = intel_westmere_event_constraints;
7179 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
7180 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
7181 x86_pmu.extra_regs = intel_westmere_extra_regs;
7182 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7183
7184 mem_attr = nhm_mem_events_attrs;
7185
7186 /* UOPS_ISSUED.STALLED_CYCLES */
7187 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
7188 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
7189 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
7190 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
7191 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
7192
7193 intel_pmu_pebs_data_source_nhm();
7194 extra_attr = nhm_format_attr;
7195 pr_cont("Westmere events, ");
7196 name = "westmere";
7197 break;
7198
7199 case INTEL_SANDYBRIDGE:
7200 case INTEL_SANDYBRIDGE_X:
7201 x86_add_quirk(intel_sandybridge_quirk);
7202 x86_add_quirk(intel_ht_bug);
7203 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
7204 sizeof(hw_cache_event_ids));
7205 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
7206 sizeof(hw_cache_extra_regs));
7207
7208 intel_pmu_lbr_init_snb();
7209
7210 x86_pmu.event_constraints = intel_snb_event_constraints;
7211 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
7212 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
7213 if (boot_cpu_data.x86_vfm == INTEL_SANDYBRIDGE_X)
7214 x86_pmu.extra_regs = intel_snbep_extra_regs;
7215 else
7216 x86_pmu.extra_regs = intel_snb_extra_regs;
7217
7218
7219 /* all extra regs are per-cpu when HT is on */
7220 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7221 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7222
7223 td_attr = snb_events_attrs;
7224 mem_attr = snb_mem_events_attrs;
7225
7226 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
7227 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
7228 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
7229 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
7230 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
7231 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
7232
7233 extra_attr = nhm_format_attr;
7234
7235 pr_cont("SandyBridge events, ");
7236 name = "sandybridge";
7237 break;
7238
7239 case INTEL_IVYBRIDGE:
7240 case INTEL_IVYBRIDGE_X:
7241 x86_add_quirk(intel_ht_bug);
7242 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
7243 sizeof(hw_cache_event_ids));
7244 /* dTLB-load-misses on IVB is different than SNB */
7245 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
7246
7247 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
7248 sizeof(hw_cache_extra_regs));
7249
7250 intel_pmu_lbr_init_snb();
7251
7252 x86_pmu.event_constraints = intel_ivb_event_constraints;
7253 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
7254 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
7255 x86_pmu.pebs_prec_dist = true;
7256 if (boot_cpu_data.x86_vfm == INTEL_IVYBRIDGE_X)
7257 x86_pmu.extra_regs = intel_snbep_extra_regs;
7258 else
7259 x86_pmu.extra_regs = intel_snb_extra_regs;
7260 /* all extra regs are per-cpu when HT is on */
7261 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7262 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7263
7264 td_attr = snb_events_attrs;
7265 mem_attr = snb_mem_events_attrs;
7266
7267 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
7268 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
7269 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
7270
7271 extra_attr = nhm_format_attr;
7272
7273 pr_cont("IvyBridge events, ");
7274 name = "ivybridge";
7275 break;
7276
7277
7278 case INTEL_HASWELL:
7279 case INTEL_HASWELL_X:
7280 case INTEL_HASWELL_L:
7281 case INTEL_HASWELL_G:
7282 x86_add_quirk(intel_ht_bug);
7283 x86_add_quirk(intel_pebs_isolation_quirk);
7284 x86_pmu.late_ack = true;
7285 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7286 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7287
7288 intel_pmu_lbr_init_hsw();
7289
7290 x86_pmu.event_constraints = intel_hsw_event_constraints;
7291 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
7292 x86_pmu.extra_regs = intel_snbep_extra_regs;
7293 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
7294 x86_pmu.pebs_prec_dist = true;
7295 /* all extra regs are per-cpu when HT is on */
7296 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7297 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7298
7299 x86_pmu.hw_config = hsw_hw_config;
7300 x86_pmu.get_event_constraints = hsw_get_event_constraints;
7301 x86_pmu.limit_period = hsw_limit_period;
7302 x86_pmu.lbr_double_abort = true;
7303 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7304 hsw_format_attr : nhm_format_attr;
7305 td_attr = hsw_events_attrs;
7306 mem_attr = hsw_mem_events_attrs;
7307 tsx_attr = hsw_tsx_events_attrs;
7308 pr_cont("Haswell events, ");
7309 name = "haswell";
7310 break;
7311
7312 case INTEL_BROADWELL:
7313 case INTEL_BROADWELL_D:
7314 case INTEL_BROADWELL_G:
7315 case INTEL_BROADWELL_X:
7316 x86_add_quirk(intel_pebs_isolation_quirk);
7317 x86_pmu.late_ack = true;
7318 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7319 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7320
7321 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
7322 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
7323 BDW_L3_MISS|HSW_SNOOP_DRAM;
7324 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
7325 HSW_SNOOP_DRAM;
7326 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
7327 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
7328 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
7329 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
7330
7331 intel_pmu_lbr_init_hsw();
7332
7333 x86_pmu.event_constraints = intel_bdw_event_constraints;
7334 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
7335 x86_pmu.extra_regs = intel_snbep_extra_regs;
7336 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
7337 x86_pmu.pebs_prec_dist = true;
7338 /* all extra regs are per-cpu when HT is on */
7339 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7340 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7341
7342 x86_pmu.hw_config = hsw_hw_config;
7343 x86_pmu.get_event_constraints = hsw_get_event_constraints;
7344 x86_pmu.limit_period = bdw_limit_period;
7345 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7346 hsw_format_attr : nhm_format_attr;
7347 td_attr = hsw_events_attrs;
7348 mem_attr = hsw_mem_events_attrs;
7349 tsx_attr = hsw_tsx_events_attrs;
7350 pr_cont("Broadwell events, ");
7351 name = "broadwell";
7352 break;
7353
7354 case INTEL_XEON_PHI_KNL:
7355 case INTEL_XEON_PHI_KNM:
7356 memcpy(hw_cache_event_ids,
7357 slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7358 memcpy(hw_cache_extra_regs,
7359 knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7360 intel_pmu_lbr_init_knl();
7361
7362 x86_pmu.event_constraints = intel_slm_event_constraints;
7363 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
7364 x86_pmu.extra_regs = intel_knl_extra_regs;
7365
7366 /* all extra regs are per-cpu when HT is on */
7367 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7368 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7369 extra_attr = slm_format_attr;
7370 pr_cont("Knights Landing/Mill events, ");
7371 name = "knights-landing";
7372 break;
7373
7374 case INTEL_SKYLAKE_X:
7375 pmem = true;
7376 fallthrough;
7377 case INTEL_SKYLAKE_L:
7378 case INTEL_SKYLAKE:
7379 case INTEL_KABYLAKE_L:
7380 case INTEL_KABYLAKE:
7381 case INTEL_COMETLAKE_L:
7382 case INTEL_COMETLAKE:
7383 x86_add_quirk(intel_pebs_isolation_quirk);
7384 x86_pmu.late_ack = true;
7385 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7386 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7387 intel_pmu_lbr_init_skl();
7388
7389 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
7390 event_attr_td_recovery_bubbles.event_str_noht =
7391 "event=0xd,umask=0x1,cmask=1";
7392 event_attr_td_recovery_bubbles.event_str_ht =
7393 "event=0xd,umask=0x1,cmask=1,any=1";
7394
7395 x86_pmu.event_constraints = intel_skl_event_constraints;
7396 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
7397 x86_pmu.extra_regs = intel_skl_extra_regs;
7398 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
7399 x86_pmu.pebs_prec_dist = true;
7400 /* all extra regs are per-cpu when HT is on */
7401 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7402 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7403
7404 x86_pmu.hw_config = hsw_hw_config;
7405 x86_pmu.get_event_constraints = hsw_get_event_constraints;
7406 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7407 hsw_format_attr : nhm_format_attr;
7408 extra_skl_attr = skl_format_attr;
7409 td_attr = hsw_events_attrs;
7410 mem_attr = hsw_mem_events_attrs;
7411 tsx_attr = hsw_tsx_events_attrs;
7412 intel_pmu_pebs_data_source_skl(pmem);
7413
7414 /*
7415 * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
7416 * TSX force abort hooks are not required on these systems. Only deploy
7417 * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
7418 */
7419 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
7420 !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
7421 x86_pmu.flags |= PMU_FL_TFA;
7422 x86_pmu.get_event_constraints = tfa_get_event_constraints;
7423 x86_pmu.enable_all = intel_tfa_pmu_enable_all;
7424 x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
7425 }
7426
7427 pr_cont("Skylake events, ");
7428 name = "skylake";
7429 break;
7430
7431 case INTEL_ICELAKE_X:
7432 case INTEL_ICELAKE_D:
7433 x86_pmu.pebs_ept = 1;
7434 pmem = true;
7435 fallthrough;
7436 case INTEL_ICELAKE_L:
7437 case INTEL_ICELAKE:
7438 case INTEL_TIGERLAKE_L:
7439 case INTEL_TIGERLAKE:
7440 case INTEL_ROCKETLAKE:
7441 x86_pmu.late_ack = true;
7442 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7443 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7444 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
7445 intel_pmu_lbr_init_skl();
7446
7447 x86_pmu.event_constraints = intel_icl_event_constraints;
7448 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
7449 x86_pmu.extra_regs = intel_icl_extra_regs;
7450 x86_pmu.pebs_aliases = NULL;
7451 x86_pmu.pebs_prec_dist = true;
7452 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7453 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7454
7455 x86_pmu.hw_config = hsw_hw_config;
7456 x86_pmu.get_event_constraints = icl_get_event_constraints;
7457 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7458 hsw_format_attr : nhm_format_attr;
7459 extra_skl_attr = skl_format_attr;
7460 mem_attr = icl_events_attrs;
7461 td_attr = icl_td_events_attrs;
7462 tsx_attr = icl_tsx_events_attrs;
7463 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
7464 x86_pmu.lbr_pt_coexist = true;
7465 intel_pmu_pebs_data_source_skl(pmem);
7466 x86_pmu.num_topdown_events = 4;
7467 static_call_update(intel_pmu_update_topdown_event,
7468 &icl_update_topdown_event);
7469 static_call_update(intel_pmu_set_topdown_event_period,
7470 &icl_set_topdown_event_period);
7471 pr_cont("Icelake events, ");
7472 name = "icelake";
7473 break;
7474
7475 case INTEL_SAPPHIRERAPIDS_X:
7476 case INTEL_EMERALDRAPIDS_X:
7477 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
7478 x86_pmu.extra_regs = intel_glc_extra_regs;
7479 pr_cont("Sapphire Rapids events, ");
7480 name = "sapphire_rapids";
7481 goto glc_common;
7482
7483 case INTEL_GRANITERAPIDS_X:
7484 case INTEL_GRANITERAPIDS_D:
7485 x86_pmu.extra_regs = intel_rwc_extra_regs;
7486 pr_cont("Granite Rapids events, ");
7487 name = "granite_rapids";
7488
7489 glc_common:
7490 intel_pmu_init_glc(NULL);
7491 x86_pmu.pebs_ept = 1;
7492 x86_pmu.hw_config = hsw_hw_config;
7493 x86_pmu.get_event_constraints = glc_get_event_constraints;
7494 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7495 hsw_format_attr : nhm_format_attr;
7496 extra_skl_attr = skl_format_attr;
7497 mem_attr = glc_events_attrs;
7498 td_attr = glc_td_events_attrs;
7499 tsx_attr = glc_tsx_events_attrs;
7500 intel_pmu_pebs_data_source_skl(true);
7501 break;
7502
7503 case INTEL_ALDERLAKE:
7504 case INTEL_ALDERLAKE_L:
7505 case INTEL_RAPTORLAKE:
7506 case INTEL_RAPTORLAKE_P:
7507 case INTEL_RAPTORLAKE_S:
7508 /*
7509 * Alder Lake has 2 types of CPU, core and atom.
7510 *
7511 * Initialize the common PerfMon capabilities here.
7512 */
7513 intel_pmu_init_hybrid(hybrid_big_small);
7514
7515 x86_pmu.pebs_latency_data = grt_latency_data;
7516 x86_pmu.get_event_constraints = adl_get_event_constraints;
7517 x86_pmu.hw_config = adl_hw_config;
7518 x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
7519
7520 td_attr = adl_hybrid_events_attrs;
7521 mem_attr = adl_hybrid_mem_attrs;
7522 tsx_attr = adl_hybrid_tsx_attrs;
7523 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7524 adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
7525
7526 /* Initialize big core specific PerfMon capabilities.*/
7527 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
7528 intel_pmu_init_glc(&pmu->pmu);
7529 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
7530 pmu->cntr_mask64 <<= 2;
7531 pmu->cntr_mask64 |= 0x3;
7532 pmu->fixed_cntr_mask64 <<= 1;
7533 pmu->fixed_cntr_mask64 |= 0x1;
7534 } else {
7535 pmu->cntr_mask64 = x86_pmu.cntr_mask64;
7536 pmu->fixed_cntr_mask64 = x86_pmu.fixed_cntr_mask64;
7537 }
7538
7539 /*
7540 * Quirk: For some Alder Lake machine, when all E-cores are disabled in
7541 * a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
7542 * the X86_FEATURE_HYBRID_CPU is still set. The above codes will
7543 * mistakenly add extra counters for P-cores. Correct the number of
7544 * counters here.
7545 */
7546 if ((x86_pmu_num_counters(&pmu->pmu) > 8) || (x86_pmu_num_counters_fixed(&pmu->pmu) > 4)) {
7547 pmu->cntr_mask64 = x86_pmu.cntr_mask64;
7548 pmu->fixed_cntr_mask64 = x86_pmu.fixed_cntr_mask64;
7549 }
7550
7551 pmu->pebs_events_mask = intel_pmu_pebs_mask(pmu->cntr_mask64);
7552 pmu->unconstrained = (struct event_constraint)
7553 __EVENT_CONSTRAINT(0, pmu->cntr_mask64,
7554 0, x86_pmu_num_counters(&pmu->pmu), 0, 0);
7555
7556 pmu->extra_regs = intel_glc_extra_regs;
7557
7558 /* Initialize Atom core specific PerfMon capabilities.*/
7559 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
7560 intel_pmu_init_grt(&pmu->pmu);
7561
7562 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
7563 intel_pmu_pebs_data_source_adl();
7564 pr_cont("Alderlake Hybrid events, ");
7565 name = "alderlake_hybrid";
7566 break;
7567
7568 case INTEL_METEORLAKE:
7569 case INTEL_METEORLAKE_L:
7570 case INTEL_ARROWLAKE_U:
7571 intel_pmu_init_hybrid(hybrid_big_small);
7572
7573 x86_pmu.pebs_latency_data = cmt_latency_data;
7574 x86_pmu.get_event_constraints = mtl_get_event_constraints;
7575 x86_pmu.hw_config = adl_hw_config;
7576
7577 td_attr = adl_hybrid_events_attrs;
7578 mem_attr = mtl_hybrid_mem_attrs;
7579 tsx_attr = adl_hybrid_tsx_attrs;
7580 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7581 mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
7582
7583 /* Initialize big core specific PerfMon capabilities.*/
7584 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
7585 intel_pmu_init_glc(&pmu->pmu);
7586 pmu->extra_regs = intel_rwc_extra_regs;
7587
7588 /* Initialize Atom core specific PerfMon capabilities.*/
7589 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
7590 intel_pmu_init_grt(&pmu->pmu);
7591 pmu->extra_regs = intel_cmt_extra_regs;
7592
7593 intel_pmu_pebs_data_source_mtl();
7594 pr_cont("Meteorlake Hybrid events, ");
7595 name = "meteorlake_hybrid";
7596 break;
7597
7598 case INTEL_PANTHERLAKE_L:
7599 pr_cont("Pantherlake Hybrid events, ");
7600 name = "pantherlake_hybrid";
7601 goto lnl_common;
7602
7603 case INTEL_LUNARLAKE_M:
7604 case INTEL_ARROWLAKE:
7605 pr_cont("Lunarlake Hybrid events, ");
7606 name = "lunarlake_hybrid";
7607
7608 lnl_common:
7609 intel_pmu_init_hybrid(hybrid_big_small);
7610
7611 x86_pmu.pebs_latency_data = lnl_latency_data;
7612 x86_pmu.get_event_constraints = mtl_get_event_constraints;
7613 x86_pmu.hw_config = adl_hw_config;
7614
7615 td_attr = lnl_hybrid_events_attrs;
7616 mem_attr = mtl_hybrid_mem_attrs;
7617 tsx_attr = adl_hybrid_tsx_attrs;
7618 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7619 mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
7620
7621 /* Initialize big core specific PerfMon capabilities.*/
7622 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
7623 intel_pmu_init_lnc(&pmu->pmu);
7624
7625 /* Initialize Atom core specific PerfMon capabilities.*/
7626 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
7627 intel_pmu_init_skt(&pmu->pmu);
7628
7629 intel_pmu_pebs_data_source_lnl();
7630 break;
7631
7632 case INTEL_ARROWLAKE_H:
7633 intel_pmu_init_hybrid(hybrid_big_small_tiny);
7634
7635 x86_pmu.pebs_latency_data = arl_h_latency_data;
7636 x86_pmu.get_event_constraints = arl_h_get_event_constraints;
7637 x86_pmu.hw_config = arl_h_hw_config;
7638
7639 td_attr = arl_h_hybrid_events_attrs;
7640 mem_attr = arl_h_hybrid_mem_attrs;
7641 tsx_attr = adl_hybrid_tsx_attrs;
7642 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7643 mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
7644
7645 /* Initialize big core specific PerfMon capabilities. */
7646 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
7647 intel_pmu_init_lnc(&pmu->pmu);
7648
7649 /* Initialize Atom core specific PerfMon capabilities. */
7650 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
7651 intel_pmu_init_skt(&pmu->pmu);
7652
7653 /* Initialize Lower Power Atom specific PerfMon capabilities. */
7654 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_TINY_IDX];
7655 intel_pmu_init_grt(&pmu->pmu);
7656 pmu->extra_regs = intel_cmt_extra_regs;
7657
7658 intel_pmu_pebs_data_source_arl_h();
7659 pr_cont("ArrowLake-H Hybrid events, ");
7660 name = "arrowlake_h_hybrid";
7661 break;
7662
7663 default:
7664 switch (x86_pmu.version) {
7665 case 1:
7666 x86_pmu.event_constraints = intel_v1_event_constraints;
7667 pr_cont("generic architected perfmon v1, ");
7668 name = "generic_arch_v1";
7669 break;
7670 case 2:
7671 case 3:
7672 case 4:
7673 /*
7674 * default constraints for v2 and up
7675 */
7676 x86_pmu.event_constraints = intel_gen_event_constraints;
7677 pr_cont("generic architected perfmon, ");
7678 name = "generic_arch_v2+";
7679 break;
7680 default:
7681 /*
7682 * The default constraints for v5 and up can support up to
7683 * 16 fixed counters. For the fixed counters 4 and later,
7684 * the pseudo-encoding is applied.
7685 * The constraints may be cut according to the CPUID enumeration
7686 * by inserting the EVENT_CONSTRAINT_END.
7687 */
7688 if (fls64(x86_pmu.fixed_cntr_mask64) > INTEL_PMC_MAX_FIXED)
7689 x86_pmu.fixed_cntr_mask64 &= GENMASK_ULL(INTEL_PMC_MAX_FIXED - 1, 0);
7690 intel_v5_gen_event_constraints[fls64(x86_pmu.fixed_cntr_mask64)].weight = -1;
7691 x86_pmu.event_constraints = intel_v5_gen_event_constraints;
7692 pr_cont("generic architected perfmon, ");
7693 name = "generic_arch_v5+";
7694 break;
7695 }
7696 }
7697
7698 snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
7699
7700 if (!is_hybrid()) {
7701 group_events_td.attrs = td_attr;
7702 group_events_mem.attrs = mem_attr;
7703 group_events_tsx.attrs = tsx_attr;
7704 group_format_extra.attrs = extra_attr;
7705 group_format_extra_skl.attrs = extra_skl_attr;
7706
7707 x86_pmu.attr_update = attr_update;
7708 } else {
7709 hybrid_group_events_td.attrs = td_attr;
7710 hybrid_group_events_mem.attrs = mem_attr;
7711 hybrid_group_events_tsx.attrs = tsx_attr;
7712 hybrid_group_format_extra.attrs = extra_attr;
7713
7714 x86_pmu.attr_update = hybrid_attr_update;
7715 }
7716
7717 /*
7718 * The archPerfmonExt (0x23) includes an enhanced enumeration of
7719 * PMU architectural features with a per-core view. For non-hybrid,
7720 * each core has the same PMU capabilities. It's good enough to
7721 * update the x86_pmu from the booting CPU. For hybrid, the x86_pmu
7722 * is used to keep the common capabilities. Still keep the values
7723 * from the leaf 0xa. The core specific update will be done later
7724 * when a new type is online.
7725 */
7726 if (!is_hybrid() && boot_cpu_has(X86_FEATURE_ARCH_PERFMON_EXT))
7727 update_pmu_cap(NULL);
7728
7729 intel_pmu_check_counters_mask(&x86_pmu.cntr_mask64,
7730 &x86_pmu.fixed_cntr_mask64,
7731 &x86_pmu.intel_ctrl);
7732
7733 /* AnyThread may be deprecated on arch perfmon v5 or later */
7734 if (x86_pmu.intel_cap.anythread_deprecated)
7735 x86_pmu.format_attrs = intel_arch_formats_attr;
7736
7737 intel_pmu_check_event_constraints(x86_pmu.event_constraints,
7738 x86_pmu.cntr_mask64,
7739 x86_pmu.fixed_cntr_mask64,
7740 x86_pmu.intel_ctrl);
7741 /*
7742 * Access LBR MSR may cause #GP under certain circumstances.
7743 * Check all LBR MSR here.
7744 * Disable LBR access if any LBR MSRs can not be accessed.
7745 */
7746 if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
7747 x86_pmu.lbr_nr = 0;
7748 for (i = 0; i < x86_pmu.lbr_nr; i++) {
7749 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
7750 check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
7751 x86_pmu.lbr_nr = 0;
7752 }
7753
7754 if (x86_pmu.lbr_nr) {
7755 intel_pmu_lbr_init();
7756
7757 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
7758
7759 /* only support branch_stack snapshot for perfmon >= v2 */
7760 if (x86_pmu.disable_all == intel_pmu_disable_all) {
7761 if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
7762 static_call_update(perf_snapshot_branch_stack,
7763 intel_pmu_snapshot_arch_branch_stack);
7764 } else {
7765 static_call_update(perf_snapshot_branch_stack,
7766 intel_pmu_snapshot_branch_stack);
7767 }
7768 }
7769 }
7770
7771 intel_pmu_check_extra_regs(x86_pmu.extra_regs);
7772
7773 /* Support full width counters using alternative MSR range */
7774 if (x86_pmu.intel_cap.full_width_write) {
7775 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
7776 x86_pmu.perfctr = MSR_IA32_PMC0;
7777 pr_cont("full-width counters, ");
7778 }
7779
7780 /* Support V6+ MSR Aliasing */
7781 if (x86_pmu.version >= 6) {
7782 x86_pmu.perfctr = MSR_IA32_PMC_V6_GP0_CTR;
7783 x86_pmu.eventsel = MSR_IA32_PMC_V6_GP0_CFG_A;
7784 x86_pmu.fixedctr = MSR_IA32_PMC_V6_FX0_CTR;
7785 x86_pmu.addr_offset = intel_pmu_v6_addr_offset;
7786 }
7787
7788 if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
7789 x86_pmu.intel_ctrl |= GLOBAL_CTRL_EN_PERF_METRICS;
7790
7791 if (x86_pmu.intel_cap.pebs_timing_info)
7792 x86_pmu.flags |= PMU_FL_RETIRE_LATENCY;
7793
7794 intel_aux_output_init();
7795
7796 return 0;
7797 }
7798
7799 /*
7800 * HT bug: phase 2 init
7801 * Called once we have valid topology information to check
7802 * whether or not HT is enabled
7803 * If HT is off, then we disable the workaround
7804 */
fixup_ht_bug(void)7805 static __init int fixup_ht_bug(void)
7806 {
7807 int c;
7808 /*
7809 * problem not present on this CPU model, nothing to do
7810 */
7811 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
7812 return 0;
7813
7814 if (topology_max_smt_threads() > 1) {
7815 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
7816 return 0;
7817 }
7818
7819 cpus_read_lock();
7820
7821 hardlockup_detector_perf_stop();
7822
7823 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
7824
7825 x86_pmu.start_scheduling = NULL;
7826 x86_pmu.commit_scheduling = NULL;
7827 x86_pmu.stop_scheduling = NULL;
7828
7829 hardlockup_detector_perf_restart();
7830
7831 for_each_online_cpu(c)
7832 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
7833
7834 cpus_read_unlock();
7835 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
7836 return 0;
7837 }
7838 subsys_initcall(fixup_ht_bug)
7839