xref: /linux/arch/um/os-Linux/signal.c (revision 656be28321e2262dd645128e22ec7625f27a6f9d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
4  * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
5  * Copyright (C) 2004 PathScale, Inc
6  * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
7  */
8 
9 #include <stdlib.h>
10 #include <stdarg.h>
11 #include <stdbool.h>
12 #include <errno.h>
13 #include <signal.h>
14 #include <string.h>
15 #include <strings.h>
16 #include <as-layout.h>
17 #include <kern_util.h>
18 #include <os.h>
19 #include <skas.h>
20 #include <sysdep/mcontext.h>
21 #include <um_malloc.h>
22 #include <sys/ucontext.h>
23 #include <timetravel.h>
24 #include "internal.h"
25 
26 void (*sig_info[NSIG])(int, struct siginfo *, struct uml_pt_regs *, void *mc) = {
27 	[SIGTRAP]	= relay_signal,
28 	[SIGFPE]	= relay_signal,
29 	[SIGILL]	= relay_signal,
30 	[SIGWINCH]	= winch,
31 	[SIGBUS]	= relay_signal,
32 	[SIGSEGV]	= segv_handler,
33 	[SIGIO]		= sigio_handler,
34 	[SIGCHLD]	= sigchld_handler,
35 };
36 
37 static void sig_handler_common(int sig, struct siginfo *si, mcontext_t *mc)
38 {
39 	struct uml_pt_regs r;
40 
41 	r.is_user = 0;
42 	if (sig == SIGSEGV) {
43 		/* For segfaults, we want the data from the sigcontext. */
44 		get_regs_from_mc(&r, mc);
45 		GET_FAULTINFO_FROM_MC(r.faultinfo, mc);
46 	}
47 
48 	/* enable signals if sig isn't IRQ signal */
49 	if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGCHLD))
50 		unblock_signals_trace();
51 
52 	(*sig_info[sig])(sig, si, &r, mc);
53 }
54 
55 /*
56  * These are the asynchronous signals.  SIGPROF is excluded because we want to
57  * be able to profile all of UML, not just the non-critical sections.  If
58  * profiling is not thread-safe, then that is not my problem.  We can disable
59  * profiling when SMP is enabled in that case.
60  */
61 #define SIGIO_BIT 0
62 #define SIGIO_MASK (1 << SIGIO_BIT)
63 
64 #define SIGALRM_BIT 1
65 #define SIGALRM_MASK (1 << SIGALRM_BIT)
66 
67 #define SIGCHLD_BIT 2
68 #define SIGCHLD_MASK (1 << SIGCHLD_BIT)
69 
70 __thread int signals_enabled;
71 #if IS_ENABLED(CONFIG_UML_TIME_TRAVEL_SUPPORT)
72 static int signals_blocked, signals_blocked_pending;
73 #endif
74 static __thread unsigned int signals_pending;
75 static __thread unsigned int signals_active;
76 
77 static void sig_handler(int sig, struct siginfo *si, mcontext_t *mc)
78 {
79 	int enabled = signals_enabled;
80 
81 #if IS_ENABLED(CONFIG_UML_TIME_TRAVEL_SUPPORT)
82 	if ((signals_blocked ||
83 	     __atomic_load_n(&signals_blocked_pending, __ATOMIC_SEQ_CST)) &&
84 	    (sig == SIGIO)) {
85 		/* increment so unblock will do another round */
86 		__atomic_add_fetch(&signals_blocked_pending, 1,
87 				   __ATOMIC_SEQ_CST);
88 		return;
89 	}
90 #endif
91 
92 	if (!enabled && (sig == SIGIO)) {
93 		/*
94 		 * In TT_MODE_EXTERNAL, need to still call time-travel
95 		 * handlers. This will mark signals_pending by itself
96 		 * (only if necessary.)
97 		 * Note we won't get here if signals are hard-blocked
98 		 * (which is handled above), in that case the hard-
99 		 * unblock will handle things.
100 		 */
101 		if (time_travel_mode == TT_MODE_EXTERNAL)
102 			sigio_run_timetravel_handlers();
103 		else
104 			signals_pending |= SIGIO_MASK;
105 		return;
106 	}
107 
108 	if (!enabled && (sig == SIGCHLD)) {
109 		signals_pending |= SIGCHLD_MASK;
110 		return;
111 	}
112 
113 	block_signals_trace();
114 
115 	sig_handler_common(sig, si, mc);
116 
117 	um_set_signals_trace(enabled);
118 }
119 
120 static void timer_real_alarm_handler(mcontext_t *mc)
121 {
122 	struct uml_pt_regs regs;
123 
124 	if (mc != NULL)
125 		get_regs_from_mc(&regs, mc);
126 	else
127 		memset(&regs, 0, sizeof(regs));
128 	timer_handler(SIGALRM, NULL, &regs);
129 }
130 
131 static void timer_alarm_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
132 {
133 	int enabled;
134 
135 	enabled = signals_enabled;
136 	if (!signals_enabled) {
137 		signals_pending |= SIGALRM_MASK;
138 		return;
139 	}
140 
141 	block_signals_trace();
142 
143 	signals_active |= SIGALRM_MASK;
144 
145 	timer_real_alarm_handler(mc);
146 
147 	signals_active &= ~SIGALRM_MASK;
148 
149 	um_set_signals_trace(enabled);
150 }
151 
152 void deliver_alarm(void) {
153     timer_alarm_handler(SIGALRM, NULL, NULL);
154 }
155 
156 void timer_set_signal_handler(void)
157 {
158 	set_handler(SIGALRM);
159 }
160 
161 int timer_alarm_pending(void)
162 {
163 	return !!(signals_pending & SIGALRM_MASK);
164 }
165 
166 void set_sigstack(void *sig_stack, int size)
167 {
168 	stack_t stack = {
169 		.ss_flags = 0,
170 		.ss_sp = sig_stack,
171 		.ss_size = size
172 	};
173 
174 	if (sigaltstack(&stack, NULL) != 0)
175 		panic("enabling signal stack failed, errno = %d\n", errno);
176 }
177 
178 static void sigusr1_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
179 {
180 	uml_pm_wake();
181 }
182 
183 void register_pm_wake_signal(void)
184 {
185 	set_handler(SIGUSR1);
186 }
187 
188 static void (*handlers[_NSIG])(int sig, struct siginfo *si, mcontext_t *mc) = {
189 	[SIGSEGV] = sig_handler,
190 	[SIGBUS] = sig_handler,
191 	[SIGILL] = sig_handler,
192 	[SIGFPE] = sig_handler,
193 	[SIGTRAP] = sig_handler,
194 
195 	[SIGIO] = sig_handler,
196 	[SIGWINCH] = sig_handler,
197 	/* SIGCHLD is only actually registered in seccomp mode. */
198 	[SIGCHLD] = sig_handler,
199 	[SIGALRM] = timer_alarm_handler,
200 
201 	[SIGUSR1] = sigusr1_handler,
202 };
203 
204 static void hard_handler(int sig, siginfo_t *si, void *p)
205 {
206 	ucontext_t *uc = p;
207 	mcontext_t *mc = &uc->uc_mcontext;
208 	int save_errno = errno;
209 
210 	(*handlers[sig])(sig, (struct siginfo *)si, mc);
211 
212 	errno = save_errno;
213 }
214 
215 void set_handler(int sig)
216 {
217 	struct sigaction action;
218 	int flags = SA_SIGINFO | SA_ONSTACK;
219 	sigset_t sig_mask;
220 
221 	action.sa_sigaction = hard_handler;
222 
223 	/* block irq ones */
224 	sigemptyset(&action.sa_mask);
225 	sigaddset(&action.sa_mask, SIGIO);
226 	sigaddset(&action.sa_mask, SIGWINCH);
227 	sigaddset(&action.sa_mask, SIGALRM);
228 	if (using_seccomp)
229 		sigaddset(&action.sa_mask, SIGCHLD);
230 
231 	if (sig == SIGSEGV)
232 		flags |= SA_NODEFER;
233 
234 	if (sigismember(&action.sa_mask, sig))
235 		flags |= SA_RESTART; /* if it's an irq signal */
236 
237 	action.sa_flags = flags;
238 	action.sa_restorer = NULL;
239 	if (sigaction(sig, &action, NULL) < 0)
240 		panic("sigaction failed - errno = %d\n", errno);
241 
242 	sigemptyset(&sig_mask);
243 	sigaddset(&sig_mask, sig);
244 	if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
245 		panic("sigprocmask failed - errno = %d\n", errno);
246 }
247 
248 void send_sigio_to_self(void)
249 {
250 	kill(os_getpid(), SIGIO);
251 }
252 
253 int change_sig(int signal, int on)
254 {
255 	sigset_t sigset;
256 
257 	sigemptyset(&sigset);
258 	sigaddset(&sigset, signal);
259 	if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
260 		return -errno;
261 
262 	return 0;
263 }
264 
265 static inline void __block_signals(void)
266 {
267 	if (!signals_enabled)
268 		return;
269 
270 	os_local_ipi_disable();
271 	barrier();
272 	signals_enabled = 0;
273 }
274 
275 static inline void __unblock_signals(void)
276 {
277 	if (signals_enabled)
278 		return;
279 
280 	signals_enabled = 1;
281 	barrier();
282 	os_local_ipi_enable();
283 }
284 
285 void block_signals(void)
286 {
287 	__block_signals();
288 	/*
289 	 * This must return with signals disabled, so this barrier
290 	 * ensures that writes are flushed out before the return.
291 	 * This might matter if gcc figures out how to inline this and
292 	 * decides to shuffle this code into the caller.
293 	 */
294 	barrier();
295 }
296 
297 void unblock_signals(void)
298 {
299 	int save_pending;
300 
301 	if (signals_enabled == 1)
302 		return;
303 
304 	__unblock_signals();
305 
306 #if IS_ENABLED(CONFIG_UML_TIME_TRAVEL_SUPPORT)
307 	deliver_time_travel_irqs();
308 #endif
309 
310 	/*
311 	 * We loop because the IRQ handler returns with interrupts off.  So,
312 	 * interrupts may have arrived and we need to re-enable them and
313 	 * recheck signals_pending.
314 	 */
315 	while (1) {
316 		/*
317 		 * Save and reset save_pending after enabling signals.  This
318 		 * way, signals_pending won't be changed while we're reading it.
319 		 *
320 		 * Setting signals_enabled and reading signals_pending must
321 		 * happen in this order, so have the barrier here.
322 		 */
323 		barrier();
324 
325 		save_pending = signals_pending;
326 		if (save_pending == 0)
327 			return;
328 
329 		signals_pending = 0;
330 
331 		/*
332 		 * We have pending interrupts, so disable signals, as the
333 		 * handlers expect them off when they are called.  They will
334 		 * be enabled again above. We need to trace this, as we're
335 		 * expected to be enabling interrupts already, but any more
336 		 * tracing that happens inside the handlers we call for the
337 		 * pending signals will mess up the tracing state.
338 		 */
339 		__block_signals();
340 		um_trace_signals_off();
341 
342 		/*
343 		 * Deal with SIGIO first because the alarm handler might
344 		 * schedule, leaving the pending SIGIO stranded until we come
345 		 * back here.
346 		 *
347 		 * SIGIO's handler doesn't use siginfo or mcontext,
348 		 * so they can be NULL.
349 		 */
350 		if (save_pending & SIGIO_MASK)
351 			sig_handler_common(SIGIO, NULL, NULL);
352 
353 		if (save_pending & SIGCHLD_MASK) {
354 			struct uml_pt_regs regs = {};
355 
356 			sigchld_handler(SIGCHLD, NULL, &regs, NULL);
357 		}
358 
359 		/* Do not reenter the handler */
360 
361 		if ((save_pending & SIGALRM_MASK) && (!(signals_active & SIGALRM_MASK)))
362 			timer_real_alarm_handler(NULL);
363 
364 		/* Rerun the loop only if there is still pending SIGIO and not in TIMER handler */
365 
366 		if (!(signals_pending & SIGIO_MASK) && (signals_active & SIGALRM_MASK))
367 			return;
368 
369 		/* Re-enable signals and trace that we're doing so. */
370 		um_trace_signals_on();
371 		__unblock_signals();
372 	}
373 }
374 
375 int um_get_signals(void)
376 {
377 	return signals_enabled;
378 }
379 
380 int um_set_signals(int enable)
381 {
382 	int ret;
383 	if (signals_enabled == enable)
384 		return enable;
385 
386 	ret = signals_enabled;
387 	if (enable)
388 		unblock_signals();
389 	else block_signals();
390 
391 	return ret;
392 }
393 
394 int um_set_signals_trace(int enable)
395 {
396 	int ret;
397 	if (signals_enabled == enable)
398 		return enable;
399 
400 	ret = signals_enabled;
401 	if (enable)
402 		unblock_signals_trace();
403 	else
404 		block_signals_trace();
405 
406 	return ret;
407 }
408 
409 #if IS_ENABLED(CONFIG_UML_TIME_TRAVEL_SUPPORT)
410 void mark_sigio_pending(void)
411 {
412 	/*
413 	 * It would seem that this should be atomic so
414 	 * it isn't a read-modify-write with a signal
415 	 * that could happen in the middle, losing the
416 	 * value set by the signal.
417 	 *
418 	 * However, this function is only called when in
419 	 * time-travel=ext simulation mode, in which case
420 	 * the only signal ever pending is SIGIO, which
421 	 * is blocked while this can be called, and the
422 	 * timer signal (SIGALRM) cannot happen.
423 	 */
424 	signals_pending |= SIGIO_MASK;
425 }
426 
427 void block_signals_hard(void)
428 {
429 	signals_blocked++;
430 	barrier();
431 }
432 
433 void unblock_signals_hard(void)
434 {
435 	static bool unblocking;
436 
437 	if (!signals_blocked)
438 		panic("unblocking signals while not blocked");
439 
440 	if (--signals_blocked)
441 		return;
442 	/*
443 	 * Must be set to 0 before we check pending so the
444 	 * SIGIO handler will run as normal unless we're still
445 	 * going to process signals_blocked_pending.
446 	 */
447 	barrier();
448 
449 	/*
450 	 * Note that block_signals_hard()/unblock_signals_hard() can be called
451 	 * within the unblock_signals()/sigio_run_timetravel_handlers() below.
452 	 * This would still be prone to race conditions since it's actually a
453 	 * call _within_ e.g. vu_req_read_message(), where we observed this
454 	 * issue, which loops. Thus, if the inner call handles the recorded
455 	 * pending signals, we can get out of the inner call with the real
456 	 * signal hander no longer blocked, and still have a race. Thus don't
457 	 * handle unblocking in the inner call, if it happens, but only in
458 	 * the outermost call - 'unblocking' serves as an ownership for the
459 	 * signals_blocked_pending decrement.
460 	 */
461 	if (unblocking)
462 		return;
463 	unblocking = true;
464 
465 	while (__atomic_load_n(&signals_blocked_pending, __ATOMIC_SEQ_CST)) {
466 		if (signals_enabled) {
467 			/* signals are enabled so we can touch this */
468 			signals_pending |= SIGIO_MASK;
469 			/*
470 			 * this is a bit inefficient, but that's
471 			 * not really important
472 			 */
473 			block_signals();
474 			unblock_signals();
475 		} else {
476 			/*
477 			 * we need to run time-travel handlers even
478 			 * if not enabled
479 			 */
480 			sigio_run_timetravel_handlers();
481 		}
482 
483 		/*
484 		 * The decrement of signals_blocked_pending must be atomic so
485 		 * that the signal handler will either happen before or after
486 		 * the decrement, not during a read-modify-write:
487 		 *  - If it happens before, it can increment it and we'll
488 		 *    decrement it and do another round in the loop.
489 		 *  - If it happens after it'll see 0 for both signals_blocked
490 		 *    and signals_blocked_pending and thus run the handler as
491 		 *    usual (subject to signals_enabled, but that's unrelated.)
492 		 *
493 		 * Note that a call to unblock_signals_hard() within the calls
494 		 * to unblock_signals() or sigio_run_timetravel_handlers() above
495 		 * will do nothing due to the 'unblocking' state, so this cannot
496 		 * underflow as the only one decrementing will be the outermost
497 		 * one.
498 		 */
499 		if (__atomic_sub_fetch(&signals_blocked_pending, 1,
500 				       __ATOMIC_SEQ_CST) < 0)
501 			panic("signals_blocked_pending underflow");
502 	}
503 
504 	unblocking = false;
505 }
506 #endif
507