xref: /linux/mm/shmem.c (revision da23ea194db94257123f1534d487f3cdc9b5626d)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include <linux/unicode.h>
44 #include "swap.h"
45 
46 static struct vfsmount *shm_mnt __ro_after_init;
47 
48 #ifdef CONFIG_SHMEM
49 /*
50  * This virtual memory filesystem is heavily based on the ramfs. It
51  * extends ramfs by the ability to use swap and honor resource limits
52  * which makes it a completely usable filesystem.
53  */
54 
55 #include <linux/xattr.h>
56 #include <linux/exportfs.h>
57 #include <linux/posix_acl.h>
58 #include <linux/posix_acl_xattr.h>
59 #include <linux/mman.h>
60 #include <linux/string.h>
61 #include <linux/slab.h>
62 #include <linux/backing-dev.h>
63 #include <linux/writeback.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 #include <linux/quotaops.h>
83 #include <linux/rcupdate_wait.h>
84 
85 #include <linux/uaccess.h>
86 
87 #include "internal.h"
88 
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Pretend that one inode + its dentry occupy this much memory */
95 #define BOGO_INODE_SIZE 1024
96 
97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
98 #define SHORT_SYMLINK_LEN 128
99 
100 /*
101  * shmem_fallocate communicates with shmem_fault or shmem_writeout via
102  * inode->i_private (with i_rwsem making sure that it has only one user at
103  * a time): we would prefer not to enlarge the shmem inode just for that.
104  */
105 struct shmem_falloc {
106 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
107 	pgoff_t start;		/* start of range currently being fallocated */
108 	pgoff_t next;		/* the next page offset to be fallocated */
109 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
110 	pgoff_t nr_unswapped;	/* how often writeout refused to swap out */
111 };
112 
113 struct shmem_options {
114 	unsigned long long blocks;
115 	unsigned long long inodes;
116 	struct mempolicy *mpol;
117 	kuid_t uid;
118 	kgid_t gid;
119 	umode_t mode;
120 	bool full_inums;
121 	int huge;
122 	int seen;
123 	bool noswap;
124 	unsigned short quota_types;
125 	struct shmem_quota_limits qlimits;
126 #if IS_ENABLED(CONFIG_UNICODE)
127 	struct unicode_map *encoding;
128 	bool strict_encoding;
129 #endif
130 #define SHMEM_SEEN_BLOCKS 1
131 #define SHMEM_SEEN_INODES 2
132 #define SHMEM_SEEN_HUGE 4
133 #define SHMEM_SEEN_INUMS 8
134 #define SHMEM_SEEN_NOSWAP 16
135 #define SHMEM_SEEN_QUOTA 32
136 };
137 
138 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
139 static unsigned long huge_shmem_orders_always __read_mostly;
140 static unsigned long huge_shmem_orders_madvise __read_mostly;
141 static unsigned long huge_shmem_orders_inherit __read_mostly;
142 static unsigned long huge_shmem_orders_within_size __read_mostly;
143 static bool shmem_orders_configured __initdata;
144 #endif
145 
146 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)147 static unsigned long shmem_default_max_blocks(void)
148 {
149 	return totalram_pages() / 2;
150 }
151 
shmem_default_max_inodes(void)152 static unsigned long shmem_default_max_inodes(void)
153 {
154 	unsigned long nr_pages = totalram_pages();
155 
156 	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
157 			ULONG_MAX / BOGO_INODE_SIZE);
158 }
159 #endif
160 
161 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
162 			struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
163 			struct vm_area_struct *vma, vm_fault_t *fault_type);
164 
SHMEM_SB(struct super_block * sb)165 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
166 {
167 	return sb->s_fs_info;
168 }
169 
170 /*
171  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
172  * for shared memory and for shared anonymous (/dev/zero) mappings
173  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
174  * consistent with the pre-accounting of private mappings ...
175  */
shmem_acct_size(unsigned long flags,loff_t size)176 static inline int shmem_acct_size(unsigned long flags, loff_t size)
177 {
178 	return (flags & VM_NORESERVE) ?
179 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
180 }
181 
shmem_unacct_size(unsigned long flags,loff_t size)182 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
183 {
184 	if (!(flags & VM_NORESERVE))
185 		vm_unacct_memory(VM_ACCT(size));
186 }
187 
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)188 static inline int shmem_reacct_size(unsigned long flags,
189 		loff_t oldsize, loff_t newsize)
190 {
191 	if (!(flags & VM_NORESERVE)) {
192 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
193 			return security_vm_enough_memory_mm(current->mm,
194 					VM_ACCT(newsize) - VM_ACCT(oldsize));
195 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
196 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
197 	}
198 	return 0;
199 }
200 
201 /*
202  * ... whereas tmpfs objects are accounted incrementally as
203  * pages are allocated, in order to allow large sparse files.
204  * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
205  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
206  */
shmem_acct_blocks(unsigned long flags,long pages)207 static inline int shmem_acct_blocks(unsigned long flags, long pages)
208 {
209 	if (!(flags & VM_NORESERVE))
210 		return 0;
211 
212 	return security_vm_enough_memory_mm(current->mm,
213 			pages * VM_ACCT(PAGE_SIZE));
214 }
215 
shmem_unacct_blocks(unsigned long flags,long pages)216 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
217 {
218 	if (flags & VM_NORESERVE)
219 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
220 }
221 
shmem_inode_acct_blocks(struct inode * inode,long pages)222 static int shmem_inode_acct_blocks(struct inode *inode, long pages)
223 {
224 	struct shmem_inode_info *info = SHMEM_I(inode);
225 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
226 	int err = -ENOSPC;
227 
228 	if (shmem_acct_blocks(info->flags, pages))
229 		return err;
230 
231 	might_sleep();	/* when quotas */
232 	if (sbinfo->max_blocks) {
233 		if (!percpu_counter_limited_add(&sbinfo->used_blocks,
234 						sbinfo->max_blocks, pages))
235 			goto unacct;
236 
237 		err = dquot_alloc_block_nodirty(inode, pages);
238 		if (err) {
239 			percpu_counter_sub(&sbinfo->used_blocks, pages);
240 			goto unacct;
241 		}
242 	} else {
243 		err = dquot_alloc_block_nodirty(inode, pages);
244 		if (err)
245 			goto unacct;
246 	}
247 
248 	return 0;
249 
250 unacct:
251 	shmem_unacct_blocks(info->flags, pages);
252 	return err;
253 }
254 
shmem_inode_unacct_blocks(struct inode * inode,long pages)255 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
256 {
257 	struct shmem_inode_info *info = SHMEM_I(inode);
258 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
259 
260 	might_sleep();	/* when quotas */
261 	dquot_free_block_nodirty(inode, pages);
262 
263 	if (sbinfo->max_blocks)
264 		percpu_counter_sub(&sbinfo->used_blocks, pages);
265 	shmem_unacct_blocks(info->flags, pages);
266 }
267 
268 static const struct super_operations shmem_ops;
269 static const struct address_space_operations shmem_aops;
270 static const struct file_operations shmem_file_operations;
271 static const struct inode_operations shmem_inode_operations;
272 static const struct inode_operations shmem_dir_inode_operations;
273 static const struct inode_operations shmem_special_inode_operations;
274 static const struct vm_operations_struct shmem_vm_ops;
275 static const struct vm_operations_struct shmem_anon_vm_ops;
276 static struct file_system_type shmem_fs_type;
277 
shmem_mapping(struct address_space * mapping)278 bool shmem_mapping(struct address_space *mapping)
279 {
280 	return mapping->a_ops == &shmem_aops;
281 }
282 EXPORT_SYMBOL_GPL(shmem_mapping);
283 
vma_is_anon_shmem(struct vm_area_struct * vma)284 bool vma_is_anon_shmem(struct vm_area_struct *vma)
285 {
286 	return vma->vm_ops == &shmem_anon_vm_ops;
287 }
288 
vma_is_shmem(struct vm_area_struct * vma)289 bool vma_is_shmem(struct vm_area_struct *vma)
290 {
291 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
292 }
293 
294 static LIST_HEAD(shmem_swaplist);
295 static DEFINE_SPINLOCK(shmem_swaplist_lock);
296 
297 #ifdef CONFIG_TMPFS_QUOTA
298 
shmem_enable_quotas(struct super_block * sb,unsigned short quota_types)299 static int shmem_enable_quotas(struct super_block *sb,
300 			       unsigned short quota_types)
301 {
302 	int type, err = 0;
303 
304 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
305 	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
306 		if (!(quota_types & (1 << type)))
307 			continue;
308 		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
309 					  DQUOT_USAGE_ENABLED |
310 					  DQUOT_LIMITS_ENABLED);
311 		if (err)
312 			goto out_err;
313 	}
314 	return 0;
315 
316 out_err:
317 	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
318 		type, err);
319 	for (type--; type >= 0; type--)
320 		dquot_quota_off(sb, type);
321 	return err;
322 }
323 
shmem_disable_quotas(struct super_block * sb)324 static void shmem_disable_quotas(struct super_block *sb)
325 {
326 	int type;
327 
328 	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
329 		dquot_quota_off(sb, type);
330 }
331 
shmem_get_dquots(struct inode * inode)332 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
333 {
334 	return SHMEM_I(inode)->i_dquot;
335 }
336 #endif /* CONFIG_TMPFS_QUOTA */
337 
338 /*
339  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
340  * produces a novel ino for the newly allocated inode.
341  *
342  * It may also be called when making a hard link to permit the space needed by
343  * each dentry. However, in that case, no new inode number is needed since that
344  * internally draws from another pool of inode numbers (currently global
345  * get_next_ino()). This case is indicated by passing NULL as inop.
346  */
347 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)348 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
349 {
350 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
351 	ino_t ino;
352 
353 	if (!(sb->s_flags & SB_KERNMOUNT)) {
354 		raw_spin_lock(&sbinfo->stat_lock);
355 		if (sbinfo->max_inodes) {
356 			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
357 				raw_spin_unlock(&sbinfo->stat_lock);
358 				return -ENOSPC;
359 			}
360 			sbinfo->free_ispace -= BOGO_INODE_SIZE;
361 		}
362 		if (inop) {
363 			ino = sbinfo->next_ino++;
364 			if (unlikely(is_zero_ino(ino)))
365 				ino = sbinfo->next_ino++;
366 			if (unlikely(!sbinfo->full_inums &&
367 				     ino > UINT_MAX)) {
368 				/*
369 				 * Emulate get_next_ino uint wraparound for
370 				 * compatibility
371 				 */
372 				if (IS_ENABLED(CONFIG_64BIT))
373 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
374 						__func__, MINOR(sb->s_dev));
375 				sbinfo->next_ino = 1;
376 				ino = sbinfo->next_ino++;
377 			}
378 			*inop = ino;
379 		}
380 		raw_spin_unlock(&sbinfo->stat_lock);
381 	} else if (inop) {
382 		/*
383 		 * __shmem_file_setup, one of our callers, is lock-free: it
384 		 * doesn't hold stat_lock in shmem_reserve_inode since
385 		 * max_inodes is always 0, and is called from potentially
386 		 * unknown contexts. As such, use a per-cpu batched allocator
387 		 * which doesn't require the per-sb stat_lock unless we are at
388 		 * the batch boundary.
389 		 *
390 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
391 		 * shmem mounts are not exposed to userspace, so we don't need
392 		 * to worry about things like glibc compatibility.
393 		 */
394 		ino_t *next_ino;
395 
396 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
397 		ino = *next_ino;
398 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
399 			raw_spin_lock(&sbinfo->stat_lock);
400 			ino = sbinfo->next_ino;
401 			sbinfo->next_ino += SHMEM_INO_BATCH;
402 			raw_spin_unlock(&sbinfo->stat_lock);
403 			if (unlikely(is_zero_ino(ino)))
404 				ino++;
405 		}
406 		*inop = ino;
407 		*next_ino = ++ino;
408 		put_cpu();
409 	}
410 
411 	return 0;
412 }
413 
shmem_free_inode(struct super_block * sb,size_t freed_ispace)414 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
415 {
416 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
417 	if (sbinfo->max_inodes) {
418 		raw_spin_lock(&sbinfo->stat_lock);
419 		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
420 		raw_spin_unlock(&sbinfo->stat_lock);
421 	}
422 }
423 
424 /**
425  * shmem_recalc_inode - recalculate the block usage of an inode
426  * @inode: inode to recalc
427  * @alloced: the change in number of pages allocated to inode
428  * @swapped: the change in number of pages swapped from inode
429  *
430  * We have to calculate the free blocks since the mm can drop
431  * undirtied hole pages behind our back.
432  *
433  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
434  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
435  *
436  * Return: true if swapped was incremented from 0, for shmem_writeout().
437  */
shmem_recalc_inode(struct inode * inode,long alloced,long swapped)438 static bool shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
439 {
440 	struct shmem_inode_info *info = SHMEM_I(inode);
441 	bool first_swapped = false;
442 	long freed;
443 
444 	spin_lock(&info->lock);
445 	info->alloced += alloced;
446 	info->swapped += swapped;
447 	freed = info->alloced - info->swapped -
448 		READ_ONCE(inode->i_mapping->nrpages);
449 	/*
450 	 * Special case: whereas normally shmem_recalc_inode() is called
451 	 * after i_mapping->nrpages has already been adjusted (up or down),
452 	 * shmem_writeout() has to raise swapped before nrpages is lowered -
453 	 * to stop a racing shmem_recalc_inode() from thinking that a page has
454 	 * been freed.  Compensate here, to avoid the need for a followup call.
455 	 */
456 	if (swapped > 0) {
457 		if (info->swapped == swapped)
458 			first_swapped = true;
459 		freed += swapped;
460 	}
461 	if (freed > 0)
462 		info->alloced -= freed;
463 	spin_unlock(&info->lock);
464 
465 	/* The quota case may block */
466 	if (freed > 0)
467 		shmem_inode_unacct_blocks(inode, freed);
468 	return first_swapped;
469 }
470 
shmem_charge(struct inode * inode,long pages)471 bool shmem_charge(struct inode *inode, long pages)
472 {
473 	struct address_space *mapping = inode->i_mapping;
474 
475 	if (shmem_inode_acct_blocks(inode, pages))
476 		return false;
477 
478 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
479 	xa_lock_irq(&mapping->i_pages);
480 	mapping->nrpages += pages;
481 	xa_unlock_irq(&mapping->i_pages);
482 
483 	shmem_recalc_inode(inode, pages, 0);
484 	return true;
485 }
486 
shmem_uncharge(struct inode * inode,long pages)487 void shmem_uncharge(struct inode *inode, long pages)
488 {
489 	/* pages argument is currently unused: keep it to help debugging */
490 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
491 
492 	shmem_recalc_inode(inode, 0, 0);
493 }
494 
495 /*
496  * Replace item expected in xarray by a new item, while holding xa_lock.
497  */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)498 static int shmem_replace_entry(struct address_space *mapping,
499 			pgoff_t index, void *expected, void *replacement)
500 {
501 	XA_STATE(xas, &mapping->i_pages, index);
502 	void *item;
503 
504 	VM_BUG_ON(!expected);
505 	VM_BUG_ON(!replacement);
506 	item = xas_load(&xas);
507 	if (item != expected)
508 		return -ENOENT;
509 	xas_store(&xas, replacement);
510 	return 0;
511 }
512 
513 /*
514  * Sometimes, before we decide whether to proceed or to fail, we must check
515  * that an entry was not already brought back or split by a racing thread.
516  *
517  * Checking folio is not enough: by the time a swapcache folio is locked, it
518  * might be reused, and again be swapcache, using the same swap as before.
519  * Returns the swap entry's order if it still presents, else returns -1.
520  */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)521 static int shmem_confirm_swap(struct address_space *mapping, pgoff_t index,
522 			      swp_entry_t swap)
523 {
524 	XA_STATE(xas, &mapping->i_pages, index);
525 	int ret = -1;
526 	void *entry;
527 
528 	rcu_read_lock();
529 	do {
530 		entry = xas_load(&xas);
531 		if (entry == swp_to_radix_entry(swap))
532 			ret = xas_get_order(&xas);
533 	} while (xas_retry(&xas, entry));
534 	rcu_read_unlock();
535 	return ret;
536 }
537 
538 /*
539  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
540  *
541  * SHMEM_HUGE_NEVER:
542  *	disables huge pages for the mount;
543  * SHMEM_HUGE_ALWAYS:
544  *	enables huge pages for the mount;
545  * SHMEM_HUGE_WITHIN_SIZE:
546  *	only allocate huge pages if the page will be fully within i_size,
547  *	also respect madvise() hints;
548  * SHMEM_HUGE_ADVISE:
549  *	only allocate huge pages if requested with madvise();
550  */
551 
552 #define SHMEM_HUGE_NEVER	0
553 #define SHMEM_HUGE_ALWAYS	1
554 #define SHMEM_HUGE_WITHIN_SIZE	2
555 #define SHMEM_HUGE_ADVISE	3
556 
557 /*
558  * Special values.
559  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
560  *
561  * SHMEM_HUGE_DENY:
562  *	disables huge on shm_mnt and all mounts, for emergency use;
563  * SHMEM_HUGE_FORCE:
564  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
565  *
566  */
567 #define SHMEM_HUGE_DENY		(-1)
568 #define SHMEM_HUGE_FORCE	(-2)
569 
570 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
571 /* ifdef here to avoid bloating shmem.o when not necessary */
572 
573 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
574 static int tmpfs_huge __read_mostly = SHMEM_HUGE_NEVER;
575 
576 /**
577  * shmem_mapping_size_orders - Get allowable folio orders for the given file size.
578  * @mapping: Target address_space.
579  * @index: The page index.
580  * @write_end: end of a write, could extend inode size.
581  *
582  * This returns huge orders for folios (when supported) based on the file size
583  * which the mapping currently allows at the given index. The index is relevant
584  * due to alignment considerations the mapping might have. The returned order
585  * may be less than the size passed.
586  *
587  * Return: The orders.
588  */
589 static inline unsigned int
shmem_mapping_size_orders(struct address_space * mapping,pgoff_t index,loff_t write_end)590 shmem_mapping_size_orders(struct address_space *mapping, pgoff_t index, loff_t write_end)
591 {
592 	unsigned int order;
593 	size_t size;
594 
595 	if (!mapping_large_folio_support(mapping) || !write_end)
596 		return 0;
597 
598 	/* Calculate the write size based on the write_end */
599 	size = write_end - (index << PAGE_SHIFT);
600 	order = filemap_get_order(size);
601 	if (!order)
602 		return 0;
603 
604 	/* If we're not aligned, allocate a smaller folio */
605 	if (index & ((1UL << order) - 1))
606 		order = __ffs(index);
607 
608 	order = min_t(size_t, order, MAX_PAGECACHE_ORDER);
609 	return order > 0 ? BIT(order + 1) - 1 : 0;
610 }
611 
shmem_get_orders_within_size(struct inode * inode,unsigned long within_size_orders,pgoff_t index,loff_t write_end)612 static unsigned int shmem_get_orders_within_size(struct inode *inode,
613 		unsigned long within_size_orders, pgoff_t index,
614 		loff_t write_end)
615 {
616 	pgoff_t aligned_index;
617 	unsigned long order;
618 	loff_t i_size;
619 
620 	order = highest_order(within_size_orders);
621 	while (within_size_orders) {
622 		aligned_index = round_up(index + 1, 1 << order);
623 		i_size = max(write_end, i_size_read(inode));
624 		i_size = round_up(i_size, PAGE_SIZE);
625 		if (i_size >> PAGE_SHIFT >= aligned_index)
626 			return within_size_orders;
627 
628 		order = next_order(&within_size_orders, order);
629 	}
630 
631 	return 0;
632 }
633 
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,vm_flags_t vm_flags)634 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
635 					      loff_t write_end, bool shmem_huge_force,
636 					      struct vm_area_struct *vma,
637 					      vm_flags_t vm_flags)
638 {
639 	unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ?
640 		0 : BIT(HPAGE_PMD_ORDER);
641 	unsigned long within_size_orders;
642 
643 	if (!S_ISREG(inode->i_mode))
644 		return 0;
645 	if (shmem_huge == SHMEM_HUGE_DENY)
646 		return 0;
647 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
648 		return maybe_pmd_order;
649 
650 	/*
651 	 * The huge order allocation for anon shmem is controlled through
652 	 * the mTHP interface, so we still use PMD-sized huge order to
653 	 * check whether global control is enabled.
654 	 *
655 	 * For tmpfs mmap()'s huge order, we still use PMD-sized order to
656 	 * allocate huge pages due to lack of a write size hint.
657 	 *
658 	 * Otherwise, tmpfs will allow getting a highest order hint based on
659 	 * the size of write and fallocate paths, then will try each allowable
660 	 * huge orders.
661 	 */
662 	switch (SHMEM_SB(inode->i_sb)->huge) {
663 	case SHMEM_HUGE_ALWAYS:
664 		if (vma)
665 			return maybe_pmd_order;
666 
667 		return shmem_mapping_size_orders(inode->i_mapping, index, write_end);
668 	case SHMEM_HUGE_WITHIN_SIZE:
669 		if (vma)
670 			within_size_orders = maybe_pmd_order;
671 		else
672 			within_size_orders = shmem_mapping_size_orders(inode->i_mapping,
673 								       index, write_end);
674 
675 		within_size_orders = shmem_get_orders_within_size(inode, within_size_orders,
676 								  index, write_end);
677 		if (within_size_orders > 0)
678 			return within_size_orders;
679 
680 		fallthrough;
681 	case SHMEM_HUGE_ADVISE:
682 		if (vm_flags & VM_HUGEPAGE)
683 			return maybe_pmd_order;
684 		fallthrough;
685 	default:
686 		return 0;
687 	}
688 }
689 
shmem_parse_huge(const char * str)690 static int shmem_parse_huge(const char *str)
691 {
692 	int huge;
693 
694 	if (!str)
695 		return -EINVAL;
696 
697 	if (!strcmp(str, "never"))
698 		huge = SHMEM_HUGE_NEVER;
699 	else if (!strcmp(str, "always"))
700 		huge = SHMEM_HUGE_ALWAYS;
701 	else if (!strcmp(str, "within_size"))
702 		huge = SHMEM_HUGE_WITHIN_SIZE;
703 	else if (!strcmp(str, "advise"))
704 		huge = SHMEM_HUGE_ADVISE;
705 	else if (!strcmp(str, "deny"))
706 		huge = SHMEM_HUGE_DENY;
707 	else if (!strcmp(str, "force"))
708 		huge = SHMEM_HUGE_FORCE;
709 	else
710 		return -EINVAL;
711 
712 	if (!has_transparent_hugepage() &&
713 	    huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
714 		return -EINVAL;
715 
716 	/* Do not override huge allocation policy with non-PMD sized mTHP */
717 	if (huge == SHMEM_HUGE_FORCE &&
718 	    huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
719 		return -EINVAL;
720 
721 	return huge;
722 }
723 
724 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)725 static const char *shmem_format_huge(int huge)
726 {
727 	switch (huge) {
728 	case SHMEM_HUGE_NEVER:
729 		return "never";
730 	case SHMEM_HUGE_ALWAYS:
731 		return "always";
732 	case SHMEM_HUGE_WITHIN_SIZE:
733 		return "within_size";
734 	case SHMEM_HUGE_ADVISE:
735 		return "advise";
736 	case SHMEM_HUGE_DENY:
737 		return "deny";
738 	case SHMEM_HUGE_FORCE:
739 		return "force";
740 	default:
741 		VM_BUG_ON(1);
742 		return "bad_val";
743 	}
744 }
745 #endif
746 
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)747 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
748 		struct shrink_control *sc, unsigned long nr_to_free)
749 {
750 	LIST_HEAD(list), *pos, *next;
751 	struct inode *inode;
752 	struct shmem_inode_info *info;
753 	struct folio *folio;
754 	unsigned long batch = sc ? sc->nr_to_scan : 128;
755 	unsigned long split = 0, freed = 0;
756 
757 	if (list_empty(&sbinfo->shrinklist))
758 		return SHRINK_STOP;
759 
760 	spin_lock(&sbinfo->shrinklist_lock);
761 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
762 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
763 
764 		/* pin the inode */
765 		inode = igrab(&info->vfs_inode);
766 
767 		/* inode is about to be evicted */
768 		if (!inode) {
769 			list_del_init(&info->shrinklist);
770 			goto next;
771 		}
772 
773 		list_move(&info->shrinklist, &list);
774 next:
775 		sbinfo->shrinklist_len--;
776 		if (!--batch)
777 			break;
778 	}
779 	spin_unlock(&sbinfo->shrinklist_lock);
780 
781 	list_for_each_safe(pos, next, &list) {
782 		pgoff_t next, end;
783 		loff_t i_size;
784 		int ret;
785 
786 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
787 		inode = &info->vfs_inode;
788 
789 		if (nr_to_free && freed >= nr_to_free)
790 			goto move_back;
791 
792 		i_size = i_size_read(inode);
793 		folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
794 		if (!folio || xa_is_value(folio))
795 			goto drop;
796 
797 		/* No large folio at the end of the file: nothing to split */
798 		if (!folio_test_large(folio)) {
799 			folio_put(folio);
800 			goto drop;
801 		}
802 
803 		/* Check if there is anything to gain from splitting */
804 		next = folio_next_index(folio);
805 		end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
806 		if (end <= folio->index || end >= next) {
807 			folio_put(folio);
808 			goto drop;
809 		}
810 
811 		/*
812 		 * Move the inode on the list back to shrinklist if we failed
813 		 * to lock the page at this time.
814 		 *
815 		 * Waiting for the lock may lead to deadlock in the
816 		 * reclaim path.
817 		 */
818 		if (!folio_trylock(folio)) {
819 			folio_put(folio);
820 			goto move_back;
821 		}
822 
823 		ret = split_folio(folio);
824 		folio_unlock(folio);
825 		folio_put(folio);
826 
827 		/* If split failed move the inode on the list back to shrinklist */
828 		if (ret)
829 			goto move_back;
830 
831 		freed += next - end;
832 		split++;
833 drop:
834 		list_del_init(&info->shrinklist);
835 		goto put;
836 move_back:
837 		/*
838 		 * Make sure the inode is either on the global list or deleted
839 		 * from any local list before iput() since it could be deleted
840 		 * in another thread once we put the inode (then the local list
841 		 * is corrupted).
842 		 */
843 		spin_lock(&sbinfo->shrinklist_lock);
844 		list_move(&info->shrinklist, &sbinfo->shrinklist);
845 		sbinfo->shrinklist_len++;
846 		spin_unlock(&sbinfo->shrinklist_lock);
847 put:
848 		iput(inode);
849 	}
850 
851 	return split;
852 }
853 
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)854 static long shmem_unused_huge_scan(struct super_block *sb,
855 		struct shrink_control *sc)
856 {
857 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
858 
859 	if (!READ_ONCE(sbinfo->shrinklist_len))
860 		return SHRINK_STOP;
861 
862 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
863 }
864 
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)865 static long shmem_unused_huge_count(struct super_block *sb,
866 		struct shrink_control *sc)
867 {
868 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
869 	return READ_ONCE(sbinfo->shrinklist_len);
870 }
871 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
872 
873 #define shmem_huge SHMEM_HUGE_DENY
874 
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)875 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
876 		struct shrink_control *sc, unsigned long nr_to_free)
877 {
878 	return 0;
879 }
880 
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,vm_flags_t vm_flags)881 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
882 					      loff_t write_end, bool shmem_huge_force,
883 					      struct vm_area_struct *vma,
884 					      vm_flags_t vm_flags)
885 {
886 	return 0;
887 }
888 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
889 
shmem_update_stats(struct folio * folio,int nr_pages)890 static void shmem_update_stats(struct folio *folio, int nr_pages)
891 {
892 	if (folio_test_pmd_mappable(folio))
893 		__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages);
894 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages);
895 	__lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages);
896 }
897 
898 /*
899  * Somewhat like filemap_add_folio, but error if expected item has gone.
900  */
shmem_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp)901 static int shmem_add_to_page_cache(struct folio *folio,
902 				   struct address_space *mapping,
903 				   pgoff_t index, void *expected, gfp_t gfp)
904 {
905 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
906 	unsigned long nr = folio_nr_pages(folio);
907 	swp_entry_t iter, swap;
908 	void *entry;
909 
910 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
911 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
912 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
913 
914 	folio_ref_add(folio, nr);
915 	folio->mapping = mapping;
916 	folio->index = index;
917 
918 	gfp &= GFP_RECLAIM_MASK;
919 	folio_throttle_swaprate(folio, gfp);
920 	swap = radix_to_swp_entry(expected);
921 
922 	do {
923 		iter = swap;
924 		xas_lock_irq(&xas);
925 		xas_for_each_conflict(&xas, entry) {
926 			/*
927 			 * The range must either be empty, or filled with
928 			 * expected swap entries. Shmem swap entries are never
929 			 * partially freed without split of both entry and
930 			 * folio, so there shouldn't be any holes.
931 			 */
932 			if (!expected || entry != swp_to_radix_entry(iter)) {
933 				xas_set_err(&xas, -EEXIST);
934 				goto unlock;
935 			}
936 			iter.val += 1 << xas_get_order(&xas);
937 		}
938 		if (expected && iter.val - nr != swap.val) {
939 			xas_set_err(&xas, -EEXIST);
940 			goto unlock;
941 		}
942 		xas_store(&xas, folio);
943 		if (xas_error(&xas))
944 			goto unlock;
945 		shmem_update_stats(folio, nr);
946 		mapping->nrpages += nr;
947 unlock:
948 		xas_unlock_irq(&xas);
949 	} while (xas_nomem(&xas, gfp));
950 
951 	if (xas_error(&xas)) {
952 		folio->mapping = NULL;
953 		folio_ref_sub(folio, nr);
954 		return xas_error(&xas);
955 	}
956 
957 	return 0;
958 }
959 
960 /*
961  * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
962  */
shmem_delete_from_page_cache(struct folio * folio,void * radswap)963 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
964 {
965 	struct address_space *mapping = folio->mapping;
966 	long nr = folio_nr_pages(folio);
967 	int error;
968 
969 	xa_lock_irq(&mapping->i_pages);
970 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
971 	folio->mapping = NULL;
972 	mapping->nrpages -= nr;
973 	shmem_update_stats(folio, -nr);
974 	xa_unlock_irq(&mapping->i_pages);
975 	folio_put_refs(folio, nr);
976 	BUG_ON(error);
977 }
978 
979 /*
980  * Remove swap entry from page cache, free the swap and its page cache. Returns
981  * the number of pages being freed. 0 means entry not found in XArray (0 pages
982  * being freed).
983  */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)984 static long shmem_free_swap(struct address_space *mapping,
985 			    pgoff_t index, void *radswap)
986 {
987 	int order = xa_get_order(&mapping->i_pages, index);
988 	void *old;
989 
990 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
991 	if (old != radswap)
992 		return 0;
993 	free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order);
994 
995 	return 1 << order;
996 }
997 
998 /*
999  * Determine (in bytes) how many of the shmem object's pages mapped by the
1000  * given offsets are swapped out.
1001  *
1002  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
1003  * as long as the inode doesn't go away and racy results are not a problem.
1004  */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)1005 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
1006 						pgoff_t start, pgoff_t end)
1007 {
1008 	XA_STATE(xas, &mapping->i_pages, start);
1009 	struct page *page;
1010 	unsigned long swapped = 0;
1011 	unsigned long max = end - 1;
1012 
1013 	rcu_read_lock();
1014 	xas_for_each(&xas, page, max) {
1015 		if (xas_retry(&xas, page))
1016 			continue;
1017 		if (xa_is_value(page))
1018 			swapped += 1 << xas_get_order(&xas);
1019 		if (xas.xa_index == max)
1020 			break;
1021 		if (need_resched()) {
1022 			xas_pause(&xas);
1023 			cond_resched_rcu();
1024 		}
1025 	}
1026 	rcu_read_unlock();
1027 
1028 	return swapped << PAGE_SHIFT;
1029 }
1030 
1031 /*
1032  * Determine (in bytes) how many of the shmem object's pages mapped by the
1033  * given vma is swapped out.
1034  *
1035  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
1036  * as long as the inode doesn't go away and racy results are not a problem.
1037  */
shmem_swap_usage(struct vm_area_struct * vma)1038 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
1039 {
1040 	struct inode *inode = file_inode(vma->vm_file);
1041 	struct shmem_inode_info *info = SHMEM_I(inode);
1042 	struct address_space *mapping = inode->i_mapping;
1043 	unsigned long swapped;
1044 
1045 	/* Be careful as we don't hold info->lock */
1046 	swapped = READ_ONCE(info->swapped);
1047 
1048 	/*
1049 	 * The easier cases are when the shmem object has nothing in swap, or
1050 	 * the vma maps it whole. Then we can simply use the stats that we
1051 	 * already track.
1052 	 */
1053 	if (!swapped)
1054 		return 0;
1055 
1056 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
1057 		return swapped << PAGE_SHIFT;
1058 
1059 	/* Here comes the more involved part */
1060 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
1061 					vma->vm_pgoff + vma_pages(vma));
1062 }
1063 
1064 /*
1065  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
1066  */
shmem_unlock_mapping(struct address_space * mapping)1067 void shmem_unlock_mapping(struct address_space *mapping)
1068 {
1069 	struct folio_batch fbatch;
1070 	pgoff_t index = 0;
1071 
1072 	folio_batch_init(&fbatch);
1073 	/*
1074 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
1075 	 */
1076 	while (!mapping_unevictable(mapping) &&
1077 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
1078 		check_move_unevictable_folios(&fbatch);
1079 		folio_batch_release(&fbatch);
1080 		cond_resched();
1081 	}
1082 }
1083 
shmem_get_partial_folio(struct inode * inode,pgoff_t index)1084 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
1085 {
1086 	struct folio *folio;
1087 
1088 	/*
1089 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
1090 	 * beyond i_size, and reports fallocated folios as holes.
1091 	 */
1092 	folio = filemap_get_entry(inode->i_mapping, index);
1093 	if (!folio)
1094 		return folio;
1095 	if (!xa_is_value(folio)) {
1096 		folio_lock(folio);
1097 		if (folio->mapping == inode->i_mapping)
1098 			return folio;
1099 		/* The folio has been swapped out */
1100 		folio_unlock(folio);
1101 		folio_put(folio);
1102 	}
1103 	/*
1104 	 * But read a folio back from swap if any of it is within i_size
1105 	 * (although in some cases this is just a waste of time).
1106 	 */
1107 	folio = NULL;
1108 	shmem_get_folio(inode, index, 0, &folio, SGP_READ);
1109 	return folio;
1110 }
1111 
1112 /*
1113  * Remove range of pages and swap entries from page cache, and free them.
1114  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
1115  */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)1116 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
1117 								 bool unfalloc)
1118 {
1119 	struct address_space *mapping = inode->i_mapping;
1120 	struct shmem_inode_info *info = SHMEM_I(inode);
1121 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
1122 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
1123 	struct folio_batch fbatch;
1124 	pgoff_t indices[PAGEVEC_SIZE];
1125 	struct folio *folio;
1126 	bool same_folio;
1127 	long nr_swaps_freed = 0;
1128 	pgoff_t index;
1129 	int i;
1130 
1131 	if (lend == -1)
1132 		end = -1;	/* unsigned, so actually very big */
1133 
1134 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1135 		info->fallocend = start;
1136 
1137 	folio_batch_init(&fbatch);
1138 	index = start;
1139 	while (index < end && find_lock_entries(mapping, &index, end - 1,
1140 			&fbatch, indices)) {
1141 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1142 			folio = fbatch.folios[i];
1143 
1144 			if (xa_is_value(folio)) {
1145 				if (unfalloc)
1146 					continue;
1147 				nr_swaps_freed += shmem_free_swap(mapping,
1148 							indices[i], folio);
1149 				continue;
1150 			}
1151 
1152 			if (!unfalloc || !folio_test_uptodate(folio))
1153 				truncate_inode_folio(mapping, folio);
1154 			folio_unlock(folio);
1155 		}
1156 		folio_batch_remove_exceptionals(&fbatch);
1157 		folio_batch_release(&fbatch);
1158 		cond_resched();
1159 	}
1160 
1161 	/*
1162 	 * When undoing a failed fallocate, we want none of the partial folio
1163 	 * zeroing and splitting below, but shall want to truncate the whole
1164 	 * folio when !uptodate indicates that it was added by this fallocate,
1165 	 * even when [lstart, lend] covers only a part of the folio.
1166 	 */
1167 	if (unfalloc)
1168 		goto whole_folios;
1169 
1170 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1171 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1172 	if (folio) {
1173 		same_folio = lend < folio_pos(folio) + folio_size(folio);
1174 		folio_mark_dirty(folio);
1175 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1176 			start = folio_next_index(folio);
1177 			if (same_folio)
1178 				end = folio->index;
1179 		}
1180 		folio_unlock(folio);
1181 		folio_put(folio);
1182 		folio = NULL;
1183 	}
1184 
1185 	if (!same_folio)
1186 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1187 	if (folio) {
1188 		folio_mark_dirty(folio);
1189 		if (!truncate_inode_partial_folio(folio, lstart, lend))
1190 			end = folio->index;
1191 		folio_unlock(folio);
1192 		folio_put(folio);
1193 	}
1194 
1195 whole_folios:
1196 
1197 	index = start;
1198 	while (index < end) {
1199 		cond_resched();
1200 
1201 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1202 				indices)) {
1203 			/* If all gone or hole-punch or unfalloc, we're done */
1204 			if (index == start || end != -1)
1205 				break;
1206 			/* But if truncating, restart to make sure all gone */
1207 			index = start;
1208 			continue;
1209 		}
1210 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1211 			folio = fbatch.folios[i];
1212 
1213 			if (xa_is_value(folio)) {
1214 				long swaps_freed;
1215 
1216 				if (unfalloc)
1217 					continue;
1218 				swaps_freed = shmem_free_swap(mapping, indices[i], folio);
1219 				if (!swaps_freed) {
1220 					/* Swap was replaced by page: retry */
1221 					index = indices[i];
1222 					break;
1223 				}
1224 				nr_swaps_freed += swaps_freed;
1225 				continue;
1226 			}
1227 
1228 			folio_lock(folio);
1229 
1230 			if (!unfalloc || !folio_test_uptodate(folio)) {
1231 				if (folio_mapping(folio) != mapping) {
1232 					/* Page was replaced by swap: retry */
1233 					folio_unlock(folio);
1234 					index = indices[i];
1235 					break;
1236 				}
1237 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1238 						folio);
1239 
1240 				if (!folio_test_large(folio)) {
1241 					truncate_inode_folio(mapping, folio);
1242 				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1243 					/*
1244 					 * If we split a page, reset the loop so
1245 					 * that we pick up the new sub pages.
1246 					 * Otherwise the THP was entirely
1247 					 * dropped or the target range was
1248 					 * zeroed, so just continue the loop as
1249 					 * is.
1250 					 */
1251 					if (!folio_test_large(folio)) {
1252 						folio_unlock(folio);
1253 						index = start;
1254 						break;
1255 					}
1256 				}
1257 			}
1258 			folio_unlock(folio);
1259 		}
1260 		folio_batch_remove_exceptionals(&fbatch);
1261 		folio_batch_release(&fbatch);
1262 	}
1263 
1264 	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1265 }
1266 
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)1267 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1268 {
1269 	shmem_undo_range(inode, lstart, lend, false);
1270 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1271 	inode_inc_iversion(inode);
1272 }
1273 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1274 
shmem_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1275 static int shmem_getattr(struct mnt_idmap *idmap,
1276 			 const struct path *path, struct kstat *stat,
1277 			 u32 request_mask, unsigned int query_flags)
1278 {
1279 	struct inode *inode = path->dentry->d_inode;
1280 	struct shmem_inode_info *info = SHMEM_I(inode);
1281 
1282 	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1283 		shmem_recalc_inode(inode, 0, 0);
1284 
1285 	if (info->fsflags & FS_APPEND_FL)
1286 		stat->attributes |= STATX_ATTR_APPEND;
1287 	if (info->fsflags & FS_IMMUTABLE_FL)
1288 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1289 	if (info->fsflags & FS_NODUMP_FL)
1290 		stat->attributes |= STATX_ATTR_NODUMP;
1291 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1292 			STATX_ATTR_IMMUTABLE |
1293 			STATX_ATTR_NODUMP);
1294 	generic_fillattr(idmap, request_mask, inode, stat);
1295 
1296 	if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0))
1297 		stat->blksize = HPAGE_PMD_SIZE;
1298 
1299 	if (request_mask & STATX_BTIME) {
1300 		stat->result_mask |= STATX_BTIME;
1301 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1302 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1303 	}
1304 
1305 	return 0;
1306 }
1307 
shmem_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1308 static int shmem_setattr(struct mnt_idmap *idmap,
1309 			 struct dentry *dentry, struct iattr *attr)
1310 {
1311 	struct inode *inode = d_inode(dentry);
1312 	struct shmem_inode_info *info = SHMEM_I(inode);
1313 	int error;
1314 	bool update_mtime = false;
1315 	bool update_ctime = true;
1316 
1317 	error = setattr_prepare(idmap, dentry, attr);
1318 	if (error)
1319 		return error;
1320 
1321 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1322 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1323 			return -EPERM;
1324 		}
1325 	}
1326 
1327 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1328 		loff_t oldsize = inode->i_size;
1329 		loff_t newsize = attr->ia_size;
1330 
1331 		/* protected by i_rwsem */
1332 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1333 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1334 			return -EPERM;
1335 
1336 		if (newsize != oldsize) {
1337 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1338 					oldsize, newsize);
1339 			if (error)
1340 				return error;
1341 			i_size_write(inode, newsize);
1342 			update_mtime = true;
1343 		} else {
1344 			update_ctime = false;
1345 		}
1346 		if (newsize <= oldsize) {
1347 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1348 			if (oldsize > holebegin)
1349 				unmap_mapping_range(inode->i_mapping,
1350 							holebegin, 0, 1);
1351 			if (info->alloced)
1352 				shmem_truncate_range(inode,
1353 							newsize, (loff_t)-1);
1354 			/* unmap again to remove racily COWed private pages */
1355 			if (oldsize > holebegin)
1356 				unmap_mapping_range(inode->i_mapping,
1357 							holebegin, 0, 1);
1358 		}
1359 	}
1360 
1361 	if (is_quota_modification(idmap, inode, attr)) {
1362 		error = dquot_initialize(inode);
1363 		if (error)
1364 			return error;
1365 	}
1366 
1367 	/* Transfer quota accounting */
1368 	if (i_uid_needs_update(idmap, attr, inode) ||
1369 	    i_gid_needs_update(idmap, attr, inode)) {
1370 		error = dquot_transfer(idmap, inode, attr);
1371 		if (error)
1372 			return error;
1373 	}
1374 
1375 	setattr_copy(idmap, inode, attr);
1376 	if (attr->ia_valid & ATTR_MODE)
1377 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1378 	if (!error && update_ctime) {
1379 		inode_set_ctime_current(inode);
1380 		if (update_mtime)
1381 			inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1382 		inode_inc_iversion(inode);
1383 	}
1384 	return error;
1385 }
1386 
shmem_evict_inode(struct inode * inode)1387 static void shmem_evict_inode(struct inode *inode)
1388 {
1389 	struct shmem_inode_info *info = SHMEM_I(inode);
1390 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1391 	size_t freed = 0;
1392 
1393 	if (shmem_mapping(inode->i_mapping)) {
1394 		shmem_unacct_size(info->flags, inode->i_size);
1395 		inode->i_size = 0;
1396 		mapping_set_exiting(inode->i_mapping);
1397 		shmem_truncate_range(inode, 0, (loff_t)-1);
1398 		if (!list_empty(&info->shrinklist)) {
1399 			spin_lock(&sbinfo->shrinklist_lock);
1400 			if (!list_empty(&info->shrinklist)) {
1401 				list_del_init(&info->shrinklist);
1402 				sbinfo->shrinklist_len--;
1403 			}
1404 			spin_unlock(&sbinfo->shrinklist_lock);
1405 		}
1406 		while (!list_empty(&info->swaplist)) {
1407 			/* Wait while shmem_unuse() is scanning this inode... */
1408 			wait_var_event(&info->stop_eviction,
1409 				       !atomic_read(&info->stop_eviction));
1410 			spin_lock(&shmem_swaplist_lock);
1411 			/* ...but beware of the race if we peeked too early */
1412 			if (!atomic_read(&info->stop_eviction))
1413 				list_del_init(&info->swaplist);
1414 			spin_unlock(&shmem_swaplist_lock);
1415 		}
1416 	}
1417 
1418 	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1419 	shmem_free_inode(inode->i_sb, freed);
1420 	WARN_ON(inode->i_blocks);
1421 	clear_inode(inode);
1422 #ifdef CONFIG_TMPFS_QUOTA
1423 	dquot_free_inode(inode);
1424 	dquot_drop(inode);
1425 #endif
1426 }
1427 
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,struct folio_batch * fbatch,pgoff_t * indices,unsigned int type)1428 static unsigned int shmem_find_swap_entries(struct address_space *mapping,
1429 				pgoff_t start, struct folio_batch *fbatch,
1430 				pgoff_t *indices, unsigned int type)
1431 {
1432 	XA_STATE(xas, &mapping->i_pages, start);
1433 	struct folio *folio;
1434 	swp_entry_t entry;
1435 
1436 	rcu_read_lock();
1437 	xas_for_each(&xas, folio, ULONG_MAX) {
1438 		if (xas_retry(&xas, folio))
1439 			continue;
1440 
1441 		if (!xa_is_value(folio))
1442 			continue;
1443 
1444 		entry = radix_to_swp_entry(folio);
1445 		/*
1446 		 * swapin error entries can be found in the mapping. But they're
1447 		 * deliberately ignored here as we've done everything we can do.
1448 		 */
1449 		if (swp_type(entry) != type)
1450 			continue;
1451 
1452 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1453 		if (!folio_batch_add(fbatch, folio))
1454 			break;
1455 
1456 		if (need_resched()) {
1457 			xas_pause(&xas);
1458 			cond_resched_rcu();
1459 		}
1460 	}
1461 	rcu_read_unlock();
1462 
1463 	return folio_batch_count(fbatch);
1464 }
1465 
1466 /*
1467  * Move the swapped pages for an inode to page cache. Returns the count
1468  * of pages swapped in, or the error in case of failure.
1469  */
shmem_unuse_swap_entries(struct inode * inode,struct folio_batch * fbatch,pgoff_t * indices)1470 static int shmem_unuse_swap_entries(struct inode *inode,
1471 		struct folio_batch *fbatch, pgoff_t *indices)
1472 {
1473 	int i = 0;
1474 	int ret = 0;
1475 	int error = 0;
1476 	struct address_space *mapping = inode->i_mapping;
1477 
1478 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1479 		struct folio *folio = fbatch->folios[i];
1480 
1481 		error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1482 					mapping_gfp_mask(mapping), NULL, NULL);
1483 		if (error == 0) {
1484 			folio_unlock(folio);
1485 			folio_put(folio);
1486 			ret++;
1487 		}
1488 		if (error == -ENOMEM)
1489 			break;
1490 		error = 0;
1491 	}
1492 	return error ? error : ret;
1493 }
1494 
1495 /*
1496  * If swap found in inode, free it and move page from swapcache to filecache.
1497  */
shmem_unuse_inode(struct inode * inode,unsigned int type)1498 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1499 {
1500 	struct address_space *mapping = inode->i_mapping;
1501 	pgoff_t start = 0;
1502 	struct folio_batch fbatch;
1503 	pgoff_t indices[PAGEVEC_SIZE];
1504 	int ret = 0;
1505 
1506 	do {
1507 		folio_batch_init(&fbatch);
1508 		if (!shmem_find_swap_entries(mapping, start, &fbatch,
1509 					     indices, type)) {
1510 			ret = 0;
1511 			break;
1512 		}
1513 
1514 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1515 		if (ret < 0)
1516 			break;
1517 
1518 		start = indices[folio_batch_count(&fbatch) - 1];
1519 	} while (true);
1520 
1521 	return ret;
1522 }
1523 
1524 /*
1525  * Read all the shared memory data that resides in the swap
1526  * device 'type' back into memory, so the swap device can be
1527  * unused.
1528  */
shmem_unuse(unsigned int type)1529 int shmem_unuse(unsigned int type)
1530 {
1531 	struct shmem_inode_info *info, *next;
1532 	int error = 0;
1533 
1534 	if (list_empty(&shmem_swaplist))
1535 		return 0;
1536 
1537 	spin_lock(&shmem_swaplist_lock);
1538 start_over:
1539 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1540 		if (!info->swapped) {
1541 			list_del_init(&info->swaplist);
1542 			continue;
1543 		}
1544 		/*
1545 		 * Drop the swaplist mutex while searching the inode for swap;
1546 		 * but before doing so, make sure shmem_evict_inode() will not
1547 		 * remove placeholder inode from swaplist, nor let it be freed
1548 		 * (igrab() would protect from unlink, but not from unmount).
1549 		 */
1550 		atomic_inc(&info->stop_eviction);
1551 		spin_unlock(&shmem_swaplist_lock);
1552 
1553 		error = shmem_unuse_inode(&info->vfs_inode, type);
1554 		cond_resched();
1555 
1556 		spin_lock(&shmem_swaplist_lock);
1557 		if (atomic_dec_and_test(&info->stop_eviction))
1558 			wake_up_var(&info->stop_eviction);
1559 		if (error)
1560 			break;
1561 		if (list_empty(&info->swaplist))
1562 			goto start_over;
1563 		next = list_next_entry(info, swaplist);
1564 		if (!info->swapped)
1565 			list_del_init(&info->swaplist);
1566 	}
1567 	spin_unlock(&shmem_swaplist_lock);
1568 
1569 	return error;
1570 }
1571 
1572 /**
1573  * shmem_writeout - Write the folio to swap
1574  * @folio: The folio to write
1575  * @plug: swap plug
1576  * @folio_list: list to put back folios on split
1577  *
1578  * Move the folio from the page cache to the swap cache.
1579  */
shmem_writeout(struct folio * folio,struct swap_iocb ** plug,struct list_head * folio_list)1580 int shmem_writeout(struct folio *folio, struct swap_iocb **plug,
1581 		struct list_head *folio_list)
1582 {
1583 	struct address_space *mapping = folio->mapping;
1584 	struct inode *inode = mapping->host;
1585 	struct shmem_inode_info *info = SHMEM_I(inode);
1586 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1587 	pgoff_t index;
1588 	int nr_pages;
1589 	bool split = false;
1590 
1591 	if ((info->flags & VM_LOCKED) || sbinfo->noswap)
1592 		goto redirty;
1593 
1594 	if (!total_swap_pages)
1595 		goto redirty;
1596 
1597 	/*
1598 	 * If CONFIG_THP_SWAP is not enabled, the large folio should be
1599 	 * split when swapping.
1600 	 *
1601 	 * And shrinkage of pages beyond i_size does not split swap, so
1602 	 * swapout of a large folio crossing i_size needs to split too
1603 	 * (unless fallocate has been used to preallocate beyond EOF).
1604 	 */
1605 	if (folio_test_large(folio)) {
1606 		index = shmem_fallocend(inode,
1607 			DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
1608 		if ((index > folio->index && index < folio_next_index(folio)) ||
1609 		    !IS_ENABLED(CONFIG_THP_SWAP))
1610 			split = true;
1611 	}
1612 
1613 	if (split) {
1614 try_split:
1615 		/* Ensure the subpages are still dirty */
1616 		folio_test_set_dirty(folio);
1617 		if (split_folio_to_list(folio, folio_list))
1618 			goto redirty;
1619 		folio_clear_dirty(folio);
1620 	}
1621 
1622 	index = folio->index;
1623 	nr_pages = folio_nr_pages(folio);
1624 
1625 	/*
1626 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1627 	 * value into swapfile.c, the only way we can correctly account for a
1628 	 * fallocated folio arriving here is now to initialize it and write it.
1629 	 *
1630 	 * That's okay for a folio already fallocated earlier, but if we have
1631 	 * not yet completed the fallocation, then (a) we want to keep track
1632 	 * of this folio in case we have to undo it, and (b) it may not be a
1633 	 * good idea to continue anyway, once we're pushing into swap.  So
1634 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1635 	 */
1636 	if (!folio_test_uptodate(folio)) {
1637 		if (inode->i_private) {
1638 			struct shmem_falloc *shmem_falloc;
1639 			spin_lock(&inode->i_lock);
1640 			shmem_falloc = inode->i_private;
1641 			if (shmem_falloc &&
1642 			    !shmem_falloc->waitq &&
1643 			    index >= shmem_falloc->start &&
1644 			    index < shmem_falloc->next)
1645 				shmem_falloc->nr_unswapped += nr_pages;
1646 			else
1647 				shmem_falloc = NULL;
1648 			spin_unlock(&inode->i_lock);
1649 			if (shmem_falloc)
1650 				goto redirty;
1651 		}
1652 		folio_zero_range(folio, 0, folio_size(folio));
1653 		flush_dcache_folio(folio);
1654 		folio_mark_uptodate(folio);
1655 	}
1656 
1657 	if (!folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN)) {
1658 		bool first_swapped = shmem_recalc_inode(inode, 0, nr_pages);
1659 		int error;
1660 
1661 		/*
1662 		 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1663 		 * if it's not already there.  Do it now before the folio is
1664 		 * removed from page cache, when its pagelock no longer
1665 		 * protects the inode from eviction.  And do it now, after
1666 		 * we've incremented swapped, because shmem_unuse() will
1667 		 * prune a !swapped inode from the swaplist.
1668 		 */
1669 		if (first_swapped) {
1670 			spin_lock(&shmem_swaplist_lock);
1671 			if (list_empty(&info->swaplist))
1672 				list_add(&info->swaplist, &shmem_swaplist);
1673 			spin_unlock(&shmem_swaplist_lock);
1674 		}
1675 
1676 		swap_shmem_alloc(folio->swap, nr_pages);
1677 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap));
1678 
1679 		BUG_ON(folio_mapped(folio));
1680 		error = swap_writeout(folio, plug);
1681 		if (error != AOP_WRITEPAGE_ACTIVATE) {
1682 			/* folio has been unlocked */
1683 			return error;
1684 		}
1685 
1686 		/*
1687 		 * The intention here is to avoid holding on to the swap when
1688 		 * zswap was unable to compress and unable to writeback; but
1689 		 * it will be appropriate if other reactivate cases are added.
1690 		 */
1691 		error = shmem_add_to_page_cache(folio, mapping, index,
1692 				swp_to_radix_entry(folio->swap),
1693 				__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
1694 		/* Swap entry might be erased by racing shmem_free_swap() */
1695 		if (!error) {
1696 			shmem_recalc_inode(inode, 0, -nr_pages);
1697 			swap_free_nr(folio->swap, nr_pages);
1698 		}
1699 
1700 		/*
1701 		 * The delete_from_swap_cache() below could be left for
1702 		 * shrink_folio_list()'s folio_free_swap() to dispose of;
1703 		 * but I'm a little nervous about letting this folio out of
1704 		 * shmem_writeout() in a hybrid half-tmpfs-half-swap state
1705 		 * e.g. folio_mapping(folio) might give an unexpected answer.
1706 		 */
1707 		delete_from_swap_cache(folio);
1708 		goto redirty;
1709 	}
1710 	if (nr_pages > 1)
1711 		goto try_split;
1712 redirty:
1713 	folio_mark_dirty(folio);
1714 	return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1715 }
1716 EXPORT_SYMBOL_GPL(shmem_writeout);
1717 
1718 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1719 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1720 {
1721 	char buffer[64];
1722 
1723 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1724 		return;		/* show nothing */
1725 
1726 	mpol_to_str(buffer, sizeof(buffer), mpol);
1727 
1728 	seq_printf(seq, ",mpol=%s", buffer);
1729 }
1730 
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1731 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1732 {
1733 	struct mempolicy *mpol = NULL;
1734 	if (sbinfo->mpol) {
1735 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1736 		mpol = sbinfo->mpol;
1737 		mpol_get(mpol);
1738 		raw_spin_unlock(&sbinfo->stat_lock);
1739 	}
1740 	return mpol;
1741 }
1742 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1743 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1744 {
1745 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1746 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1747 {
1748 	return NULL;
1749 }
1750 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1751 
1752 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1753 			pgoff_t index, unsigned int order, pgoff_t *ilx);
1754 
shmem_swapin_cluster(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1755 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1756 			struct shmem_inode_info *info, pgoff_t index)
1757 {
1758 	struct mempolicy *mpol;
1759 	pgoff_t ilx;
1760 	struct folio *folio;
1761 
1762 	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1763 	folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1764 	mpol_cond_put(mpol);
1765 
1766 	return folio;
1767 }
1768 
1769 /*
1770  * Make sure huge_gfp is always more limited than limit_gfp.
1771  * Some of the flags set permissions, while others set limitations.
1772  */
limit_gfp_mask(gfp_t huge_gfp,gfp_t limit_gfp)1773 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1774 {
1775 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1776 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1777 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1778 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1779 
1780 	/* Allow allocations only from the originally specified zones. */
1781 	result |= zoneflags;
1782 
1783 	/*
1784 	 * Minimize the result gfp by taking the union with the deny flags,
1785 	 * and the intersection of the allow flags.
1786 	 */
1787 	result |= (limit_gfp & denyflags);
1788 	result |= (huge_gfp & limit_gfp) & allowflags;
1789 
1790 	return result;
1791 }
1792 
1793 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
shmem_hpage_pmd_enabled(void)1794 bool shmem_hpage_pmd_enabled(void)
1795 {
1796 	if (shmem_huge == SHMEM_HUGE_DENY)
1797 		return false;
1798 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always))
1799 		return true;
1800 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise))
1801 		return true;
1802 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size))
1803 		return true;
1804 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) &&
1805 	    shmem_huge != SHMEM_HUGE_NEVER)
1806 		return true;
1807 
1808 	return false;
1809 }
1810 
shmem_allowable_huge_orders(struct inode * inode,struct vm_area_struct * vma,pgoff_t index,loff_t write_end,bool shmem_huge_force)1811 unsigned long shmem_allowable_huge_orders(struct inode *inode,
1812 				struct vm_area_struct *vma, pgoff_t index,
1813 				loff_t write_end, bool shmem_huge_force)
1814 {
1815 	unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1816 	unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1817 	vm_flags_t vm_flags = vma ? vma->vm_flags : 0;
1818 	unsigned int global_orders;
1819 
1820 	if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags)))
1821 		return 0;
1822 
1823 	global_orders = shmem_huge_global_enabled(inode, index, write_end,
1824 						  shmem_huge_force, vma, vm_flags);
1825 	/* Tmpfs huge pages allocation */
1826 	if (!vma || !vma_is_anon_shmem(vma))
1827 		return global_orders;
1828 
1829 	/*
1830 	 * Following the 'deny' semantics of the top level, force the huge
1831 	 * option off from all mounts.
1832 	 */
1833 	if (shmem_huge == SHMEM_HUGE_DENY)
1834 		return 0;
1835 
1836 	/*
1837 	 * Only allow inherit orders if the top-level value is 'force', which
1838 	 * means non-PMD sized THP can not override 'huge' mount option now.
1839 	 */
1840 	if (shmem_huge == SHMEM_HUGE_FORCE)
1841 		return READ_ONCE(huge_shmem_orders_inherit);
1842 
1843 	/* Allow mTHP that will be fully within i_size. */
1844 	mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0);
1845 
1846 	if (vm_flags & VM_HUGEPAGE)
1847 		mask |= READ_ONCE(huge_shmem_orders_madvise);
1848 
1849 	if (global_orders > 0)
1850 		mask |= READ_ONCE(huge_shmem_orders_inherit);
1851 
1852 	return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1853 }
1854 
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1855 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1856 					   struct address_space *mapping, pgoff_t index,
1857 					   unsigned long orders)
1858 {
1859 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1860 	pgoff_t aligned_index;
1861 	unsigned long pages;
1862 	int order;
1863 
1864 	if (vma) {
1865 		orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1866 		if (!orders)
1867 			return 0;
1868 	}
1869 
1870 	/* Find the highest order that can add into the page cache */
1871 	order = highest_order(orders);
1872 	while (orders) {
1873 		pages = 1UL << order;
1874 		aligned_index = round_down(index, pages);
1875 		/*
1876 		 * Check for conflict before waiting on a huge allocation.
1877 		 * Conflict might be that a huge page has just been allocated
1878 		 * and added to page cache by a racing thread, or that there
1879 		 * is already at least one small page in the huge extent.
1880 		 * Be careful to retry when appropriate, but not forever!
1881 		 * Elsewhere -EEXIST would be the right code, but not here.
1882 		 */
1883 		if (!xa_find(&mapping->i_pages, &aligned_index,
1884 			     aligned_index + pages - 1, XA_PRESENT))
1885 			break;
1886 		order = next_order(&orders, order);
1887 	}
1888 
1889 	return orders;
1890 }
1891 #else
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1892 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1893 					   struct address_space *mapping, pgoff_t index,
1894 					   unsigned long orders)
1895 {
1896 	return 0;
1897 }
1898 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1899 
shmem_alloc_folio(gfp_t gfp,int order,struct shmem_inode_info * info,pgoff_t index)1900 static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1901 		struct shmem_inode_info *info, pgoff_t index)
1902 {
1903 	struct mempolicy *mpol;
1904 	pgoff_t ilx;
1905 	struct folio *folio;
1906 
1907 	mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1908 	folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1909 	mpol_cond_put(mpol);
1910 
1911 	return folio;
1912 }
1913 
shmem_alloc_and_add_folio(struct vm_fault * vmf,gfp_t gfp,struct inode * inode,pgoff_t index,struct mm_struct * fault_mm,unsigned long orders)1914 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1915 		gfp_t gfp, struct inode *inode, pgoff_t index,
1916 		struct mm_struct *fault_mm, unsigned long orders)
1917 {
1918 	struct address_space *mapping = inode->i_mapping;
1919 	struct shmem_inode_info *info = SHMEM_I(inode);
1920 	unsigned long suitable_orders = 0;
1921 	struct folio *folio = NULL;
1922 	long pages;
1923 	int error, order;
1924 
1925 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1926 		orders = 0;
1927 
1928 	if (orders > 0) {
1929 		suitable_orders = shmem_suitable_orders(inode, vmf,
1930 							mapping, index, orders);
1931 
1932 		order = highest_order(suitable_orders);
1933 		while (suitable_orders) {
1934 			pages = 1UL << order;
1935 			index = round_down(index, pages);
1936 			folio = shmem_alloc_folio(gfp, order, info, index);
1937 			if (folio)
1938 				goto allocated;
1939 
1940 			if (pages == HPAGE_PMD_NR)
1941 				count_vm_event(THP_FILE_FALLBACK);
1942 			count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1943 			order = next_order(&suitable_orders, order);
1944 		}
1945 	} else {
1946 		pages = 1;
1947 		folio = shmem_alloc_folio(gfp, 0, info, index);
1948 	}
1949 	if (!folio)
1950 		return ERR_PTR(-ENOMEM);
1951 
1952 allocated:
1953 	__folio_set_locked(folio);
1954 	__folio_set_swapbacked(folio);
1955 
1956 	gfp &= GFP_RECLAIM_MASK;
1957 	error = mem_cgroup_charge(folio, fault_mm, gfp);
1958 	if (error) {
1959 		if (xa_find(&mapping->i_pages, &index,
1960 				index + pages - 1, XA_PRESENT)) {
1961 			error = -EEXIST;
1962 		} else if (pages > 1) {
1963 			if (pages == HPAGE_PMD_NR) {
1964 				count_vm_event(THP_FILE_FALLBACK);
1965 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
1966 			}
1967 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1968 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1969 		}
1970 		goto unlock;
1971 	}
1972 
1973 	error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1974 	if (error)
1975 		goto unlock;
1976 
1977 	error = shmem_inode_acct_blocks(inode, pages);
1978 	if (error) {
1979 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1980 		long freed;
1981 		/*
1982 		 * Try to reclaim some space by splitting a few
1983 		 * large folios beyond i_size on the filesystem.
1984 		 */
1985 		shmem_unused_huge_shrink(sbinfo, NULL, pages);
1986 		/*
1987 		 * And do a shmem_recalc_inode() to account for freed pages:
1988 		 * except our folio is there in cache, so not quite balanced.
1989 		 */
1990 		spin_lock(&info->lock);
1991 		freed = pages + info->alloced - info->swapped -
1992 			READ_ONCE(mapping->nrpages);
1993 		if (freed > 0)
1994 			info->alloced -= freed;
1995 		spin_unlock(&info->lock);
1996 		if (freed > 0)
1997 			shmem_inode_unacct_blocks(inode, freed);
1998 		error = shmem_inode_acct_blocks(inode, pages);
1999 		if (error) {
2000 			filemap_remove_folio(folio);
2001 			goto unlock;
2002 		}
2003 	}
2004 
2005 	shmem_recalc_inode(inode, pages, 0);
2006 	folio_add_lru(folio);
2007 	return folio;
2008 
2009 unlock:
2010 	folio_unlock(folio);
2011 	folio_put(folio);
2012 	return ERR_PTR(error);
2013 }
2014 
shmem_swap_alloc_folio(struct inode * inode,struct vm_area_struct * vma,pgoff_t index,swp_entry_t entry,int order,gfp_t gfp)2015 static struct folio *shmem_swap_alloc_folio(struct inode *inode,
2016 		struct vm_area_struct *vma, pgoff_t index,
2017 		swp_entry_t entry, int order, gfp_t gfp)
2018 {
2019 	struct shmem_inode_info *info = SHMEM_I(inode);
2020 	int nr_pages = 1 << order;
2021 	struct folio *new;
2022 	gfp_t alloc_gfp;
2023 	void *shadow;
2024 
2025 	/*
2026 	 * We have arrived here because our zones are constrained, so don't
2027 	 * limit chance of success with further cpuset and node constraints.
2028 	 */
2029 	gfp &= ~GFP_CONSTRAINT_MASK;
2030 	alloc_gfp = gfp;
2031 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
2032 		if (WARN_ON_ONCE(order))
2033 			return ERR_PTR(-EINVAL);
2034 	} else if (order) {
2035 		/*
2036 		 * If uffd is active for the vma, we need per-page fault
2037 		 * fidelity to maintain the uffd semantics, then fallback
2038 		 * to swapin order-0 folio, as well as for zswap case.
2039 		 * Any existing sub folio in the swap cache also blocks
2040 		 * mTHP swapin.
2041 		 */
2042 		if ((vma && unlikely(userfaultfd_armed(vma))) ||
2043 		     !zswap_never_enabled() ||
2044 		     non_swapcache_batch(entry, nr_pages) != nr_pages)
2045 			goto fallback;
2046 
2047 		alloc_gfp = limit_gfp_mask(vma_thp_gfp_mask(vma), gfp);
2048 	}
2049 retry:
2050 	new = shmem_alloc_folio(alloc_gfp, order, info, index);
2051 	if (!new) {
2052 		new = ERR_PTR(-ENOMEM);
2053 		goto fallback;
2054 	}
2055 
2056 	if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL,
2057 					   alloc_gfp, entry)) {
2058 		folio_put(new);
2059 		new = ERR_PTR(-ENOMEM);
2060 		goto fallback;
2061 	}
2062 
2063 	/*
2064 	 * Prevent parallel swapin from proceeding with the swap cache flag.
2065 	 *
2066 	 * Of course there is another possible concurrent scenario as well,
2067 	 * that is to say, the swap cache flag of a large folio has already
2068 	 * been set by swapcache_prepare(), while another thread may have
2069 	 * already split the large swap entry stored in the shmem mapping.
2070 	 * In this case, shmem_add_to_page_cache() will help identify the
2071 	 * concurrent swapin and return -EEXIST.
2072 	 */
2073 	if (swapcache_prepare(entry, nr_pages)) {
2074 		folio_put(new);
2075 		new = ERR_PTR(-EEXIST);
2076 		/* Try smaller folio to avoid cache conflict */
2077 		goto fallback;
2078 	}
2079 
2080 	__folio_set_locked(new);
2081 	__folio_set_swapbacked(new);
2082 	new->swap = entry;
2083 
2084 	memcg1_swapin(entry, nr_pages);
2085 	shadow = get_shadow_from_swap_cache(entry);
2086 	if (shadow)
2087 		workingset_refault(new, shadow);
2088 	folio_add_lru(new);
2089 	swap_read_folio(new, NULL);
2090 	return new;
2091 fallback:
2092 	/* Order 0 swapin failed, nothing to fallback to, abort */
2093 	if (!order)
2094 		return new;
2095 	entry.val += index - round_down(index, nr_pages);
2096 	alloc_gfp = gfp;
2097 	nr_pages = 1;
2098 	order = 0;
2099 	goto retry;
2100 }
2101 
2102 /*
2103  * When a page is moved from swapcache to shmem filecache (either by the
2104  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
2105  * shmem_unuse_inode()), it may have been read in earlier from swap, in
2106  * ignorance of the mapping it belongs to.  If that mapping has special
2107  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
2108  * we may need to copy to a suitable page before moving to filecache.
2109  *
2110  * In a future release, this may well be extended to respect cpuset and
2111  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
2112  * but for now it is a simple matter of zone.
2113  */
shmem_should_replace_folio(struct folio * folio,gfp_t gfp)2114 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
2115 {
2116 	return folio_zonenum(folio) > gfp_zone(gfp);
2117 }
2118 
shmem_replace_folio(struct folio ** foliop,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index,struct vm_area_struct * vma)2119 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
2120 				struct shmem_inode_info *info, pgoff_t index,
2121 				struct vm_area_struct *vma)
2122 {
2123 	struct folio *new, *old = *foliop;
2124 	swp_entry_t entry = old->swap;
2125 	struct address_space *swap_mapping = swap_address_space(entry);
2126 	pgoff_t swap_index = swap_cache_index(entry);
2127 	XA_STATE(xas, &swap_mapping->i_pages, swap_index);
2128 	int nr_pages = folio_nr_pages(old);
2129 	int error = 0, i;
2130 
2131 	/*
2132 	 * We have arrived here because our zones are constrained, so don't
2133 	 * limit chance of success by further cpuset and node constraints.
2134 	 */
2135 	gfp &= ~GFP_CONSTRAINT_MASK;
2136 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2137 	if (nr_pages > 1) {
2138 		gfp_t huge_gfp = vma_thp_gfp_mask(vma);
2139 
2140 		gfp = limit_gfp_mask(huge_gfp, gfp);
2141 	}
2142 #endif
2143 
2144 	new = shmem_alloc_folio(gfp, folio_order(old), info, index);
2145 	if (!new)
2146 		return -ENOMEM;
2147 
2148 	folio_ref_add(new, nr_pages);
2149 	folio_copy(new, old);
2150 	flush_dcache_folio(new);
2151 
2152 	__folio_set_locked(new);
2153 	__folio_set_swapbacked(new);
2154 	folio_mark_uptodate(new);
2155 	new->swap = entry;
2156 	folio_set_swapcache(new);
2157 
2158 	/* Swap cache still stores N entries instead of a high-order entry */
2159 	xa_lock_irq(&swap_mapping->i_pages);
2160 	for (i = 0; i < nr_pages; i++) {
2161 		void *item = xas_load(&xas);
2162 
2163 		if (item != old) {
2164 			error = -ENOENT;
2165 			break;
2166 		}
2167 
2168 		xas_store(&xas, new);
2169 		xas_next(&xas);
2170 	}
2171 	if (!error) {
2172 		mem_cgroup_replace_folio(old, new);
2173 		shmem_update_stats(new, nr_pages);
2174 		shmem_update_stats(old, -nr_pages);
2175 	}
2176 	xa_unlock_irq(&swap_mapping->i_pages);
2177 
2178 	if (unlikely(error)) {
2179 		/*
2180 		 * Is this possible?  I think not, now that our callers
2181 		 * check both the swapcache flag and folio->private
2182 		 * after getting the folio lock; but be defensive.
2183 		 * Reverse old to newpage for clear and free.
2184 		 */
2185 		old = new;
2186 	} else {
2187 		folio_add_lru(new);
2188 		*foliop = new;
2189 	}
2190 
2191 	folio_clear_swapcache(old);
2192 	old->private = NULL;
2193 
2194 	folio_unlock(old);
2195 	/*
2196 	 * The old folio are removed from swap cache, drop the 'nr_pages'
2197 	 * reference, as well as one temporary reference getting from swap
2198 	 * cache.
2199 	 */
2200 	folio_put_refs(old, nr_pages + 1);
2201 	return error;
2202 }
2203 
shmem_set_folio_swapin_error(struct inode * inode,pgoff_t index,struct folio * folio,swp_entry_t swap,bool skip_swapcache)2204 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
2205 					 struct folio *folio, swp_entry_t swap,
2206 					 bool skip_swapcache)
2207 {
2208 	struct address_space *mapping = inode->i_mapping;
2209 	swp_entry_t swapin_error;
2210 	void *old;
2211 	int nr_pages;
2212 
2213 	swapin_error = make_poisoned_swp_entry();
2214 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
2215 			     swp_to_radix_entry(swap),
2216 			     swp_to_radix_entry(swapin_error), 0);
2217 	if (old != swp_to_radix_entry(swap))
2218 		return;
2219 
2220 	nr_pages = folio_nr_pages(folio);
2221 	folio_wait_writeback(folio);
2222 	if (!skip_swapcache)
2223 		delete_from_swap_cache(folio);
2224 	/*
2225 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
2226 	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
2227 	 * in shmem_evict_inode().
2228 	 */
2229 	shmem_recalc_inode(inode, -nr_pages, -nr_pages);
2230 	swap_free_nr(swap, nr_pages);
2231 }
2232 
shmem_split_large_entry(struct inode * inode,pgoff_t index,swp_entry_t swap,gfp_t gfp)2233 static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
2234 				   swp_entry_t swap, gfp_t gfp)
2235 {
2236 	struct address_space *mapping = inode->i_mapping;
2237 	XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
2238 	int split_order = 0, entry_order;
2239 	int i;
2240 
2241 	/* Convert user data gfp flags to xarray node gfp flags */
2242 	gfp &= GFP_RECLAIM_MASK;
2243 
2244 	for (;;) {
2245 		void *old = NULL;
2246 		int cur_order;
2247 		pgoff_t swap_index;
2248 
2249 		xas_lock_irq(&xas);
2250 		old = xas_load(&xas);
2251 		if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
2252 			xas_set_err(&xas, -EEXIST);
2253 			goto unlock;
2254 		}
2255 
2256 		entry_order = xas_get_order(&xas);
2257 
2258 		if (!entry_order)
2259 			goto unlock;
2260 
2261 		/* Try to split large swap entry in pagecache */
2262 		cur_order = entry_order;
2263 		swap_index = round_down(index, 1 << entry_order);
2264 
2265 		split_order = xas_try_split_min_order(cur_order);
2266 
2267 		while (cur_order > 0) {
2268 			pgoff_t aligned_index =
2269 				round_down(index, 1 << cur_order);
2270 			pgoff_t swap_offset = aligned_index - swap_index;
2271 
2272 			xas_set_order(&xas, index, split_order);
2273 			xas_try_split(&xas, old, cur_order);
2274 			if (xas_error(&xas))
2275 				goto unlock;
2276 
2277 			/*
2278 			 * Re-set the swap entry after splitting, and the swap
2279 			 * offset of the original large entry must be continuous.
2280 			 */
2281 			for (i = 0; i < 1 << cur_order;
2282 			     i += (1 << split_order)) {
2283 				swp_entry_t tmp;
2284 
2285 				tmp = swp_entry(swp_type(swap),
2286 						swp_offset(swap) + swap_offset +
2287 							i);
2288 				__xa_store(&mapping->i_pages, aligned_index + i,
2289 					   swp_to_radix_entry(tmp), 0);
2290 			}
2291 			cur_order = split_order;
2292 			split_order = xas_try_split_min_order(split_order);
2293 		}
2294 
2295 unlock:
2296 		xas_unlock_irq(&xas);
2297 
2298 		if (!xas_nomem(&xas, gfp))
2299 			break;
2300 	}
2301 
2302 	if (xas_error(&xas))
2303 		return xas_error(&xas);
2304 
2305 	return 0;
2306 }
2307 
2308 /*
2309  * Swap in the folio pointed to by *foliop.
2310  * Caller has to make sure that *foliop contains a valid swapped folio.
2311  * Returns 0 and the folio in foliop if success. On failure, returns the
2312  * error code and NULL in *foliop.
2313  */
shmem_swapin_folio(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)2314 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
2315 			     struct folio **foliop, enum sgp_type sgp,
2316 			     gfp_t gfp, struct vm_area_struct *vma,
2317 			     vm_fault_t *fault_type)
2318 {
2319 	struct address_space *mapping = inode->i_mapping;
2320 	struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
2321 	struct shmem_inode_info *info = SHMEM_I(inode);
2322 	swp_entry_t swap, index_entry;
2323 	struct swap_info_struct *si;
2324 	struct folio *folio = NULL;
2325 	bool skip_swapcache = false;
2326 	int error, nr_pages, order;
2327 	pgoff_t offset;
2328 
2329 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
2330 	index_entry = radix_to_swp_entry(*foliop);
2331 	swap = index_entry;
2332 	*foliop = NULL;
2333 
2334 	if (is_poisoned_swp_entry(index_entry))
2335 		return -EIO;
2336 
2337 	si = get_swap_device(index_entry);
2338 	order = shmem_confirm_swap(mapping, index, index_entry);
2339 	if (unlikely(!si)) {
2340 		if (order < 0)
2341 			return -EEXIST;
2342 		else
2343 			return -EINVAL;
2344 	}
2345 	if (unlikely(order < 0)) {
2346 		put_swap_device(si);
2347 		return -EEXIST;
2348 	}
2349 
2350 	/* index may point to the middle of a large entry, get the sub entry */
2351 	if (order) {
2352 		offset = index - round_down(index, 1 << order);
2353 		swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2354 	}
2355 
2356 	/* Look it up and read it in.. */
2357 	folio = swap_cache_get_folio(swap, NULL, 0);
2358 	if (!folio) {
2359 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO)) {
2360 			/* Direct swapin skipping swap cache & readahead */
2361 			folio = shmem_swap_alloc_folio(inode, vma, index,
2362 						       index_entry, order, gfp);
2363 			if (IS_ERR(folio)) {
2364 				error = PTR_ERR(folio);
2365 				folio = NULL;
2366 				goto failed;
2367 			}
2368 			skip_swapcache = true;
2369 		} else {
2370 			/* Cached swapin only supports order 0 folio */
2371 			folio = shmem_swapin_cluster(swap, gfp, info, index);
2372 			if (!folio) {
2373 				error = -ENOMEM;
2374 				goto failed;
2375 			}
2376 		}
2377 		if (fault_type) {
2378 			*fault_type |= VM_FAULT_MAJOR;
2379 			count_vm_event(PGMAJFAULT);
2380 			count_memcg_event_mm(fault_mm, PGMAJFAULT);
2381 		}
2382 	}
2383 
2384 	if (order > folio_order(folio)) {
2385 		/*
2386 		 * Swapin may get smaller folios due to various reasons:
2387 		 * It may fallback to order 0 due to memory pressure or race,
2388 		 * swap readahead may swap in order 0 folios into swapcache
2389 		 * asynchronously, while the shmem mapping can still stores
2390 		 * large swap entries. In such cases, we should split the
2391 		 * large swap entry to prevent possible data corruption.
2392 		 */
2393 		error = shmem_split_large_entry(inode, index, index_entry, gfp);
2394 		if (error)
2395 			goto failed_nolock;
2396 	}
2397 
2398 	/*
2399 	 * If the folio is large, round down swap and index by folio size.
2400 	 * No matter what race occurs, the swap layer ensures we either get
2401 	 * a valid folio that has its swap entry aligned by size, or a
2402 	 * temporarily invalid one which we'll abort very soon and retry.
2403 	 *
2404 	 * shmem_add_to_page_cache ensures the whole range contains expected
2405 	 * entries and prevents any corruption, so any race split is fine
2406 	 * too, it will succeed as long as the entries are still there.
2407 	 */
2408 	nr_pages = folio_nr_pages(folio);
2409 	if (nr_pages > 1) {
2410 		swap.val = round_down(swap.val, nr_pages);
2411 		index = round_down(index, nr_pages);
2412 	}
2413 
2414 	/*
2415 	 * We have to do this with the folio locked to prevent races.
2416 	 * The shmem_confirm_swap below only checks if the first swap
2417 	 * entry matches the folio, that's enough to ensure the folio
2418 	 * is not used outside of shmem, as shmem swap entries
2419 	 * and swap cache folios are never partially freed.
2420 	 */
2421 	folio_lock(folio);
2422 	if ((!skip_swapcache && !folio_test_swapcache(folio)) ||
2423 	    shmem_confirm_swap(mapping, index, swap) < 0 ||
2424 	    folio->swap.val != swap.val) {
2425 		error = -EEXIST;
2426 		goto unlock;
2427 	}
2428 	if (!folio_test_uptodate(folio)) {
2429 		error = -EIO;
2430 		goto failed;
2431 	}
2432 	folio_wait_writeback(folio);
2433 	nr_pages = folio_nr_pages(folio);
2434 
2435 	/*
2436 	 * Some architectures may have to restore extra metadata to the
2437 	 * folio after reading from swap.
2438 	 */
2439 	arch_swap_restore(folio_swap(swap, folio), folio);
2440 
2441 	if (shmem_should_replace_folio(folio, gfp)) {
2442 		error = shmem_replace_folio(&folio, gfp, info, index, vma);
2443 		if (error)
2444 			goto failed;
2445 	}
2446 
2447 	error = shmem_add_to_page_cache(folio, mapping, index,
2448 					swp_to_radix_entry(swap), gfp);
2449 	if (error)
2450 		goto failed;
2451 
2452 	shmem_recalc_inode(inode, 0, -nr_pages);
2453 
2454 	if (sgp == SGP_WRITE)
2455 		folio_mark_accessed(folio);
2456 
2457 	if (skip_swapcache) {
2458 		folio->swap.val = 0;
2459 		swapcache_clear(si, swap, nr_pages);
2460 	} else {
2461 		delete_from_swap_cache(folio);
2462 	}
2463 	folio_mark_dirty(folio);
2464 	swap_free_nr(swap, nr_pages);
2465 	put_swap_device(si);
2466 
2467 	*foliop = folio;
2468 	return 0;
2469 failed:
2470 	if (shmem_confirm_swap(mapping, index, swap) < 0)
2471 		error = -EEXIST;
2472 	if (error == -EIO)
2473 		shmem_set_folio_swapin_error(inode, index, folio, swap,
2474 					     skip_swapcache);
2475 unlock:
2476 	if (folio)
2477 		folio_unlock(folio);
2478 failed_nolock:
2479 	if (skip_swapcache)
2480 		swapcache_clear(si, folio->swap, folio_nr_pages(folio));
2481 	if (folio)
2482 		folio_put(folio);
2483 	put_swap_device(si);
2484 
2485 	return error;
2486 }
2487 
2488 /*
2489  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2490  *
2491  * If we allocate a new one we do not mark it dirty. That's up to the
2492  * vm. If we swap it in we mark it dirty since we also free the swap
2493  * entry since a page cannot live in both the swap and page cache.
2494  *
2495  * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2496  */
shmem_get_folio_gfp(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_fault * vmf,vm_fault_t * fault_type)2497 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2498 		loff_t write_end, struct folio **foliop, enum sgp_type sgp,
2499 		gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
2500 {
2501 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2502 	struct mm_struct *fault_mm;
2503 	struct folio *folio;
2504 	int error;
2505 	bool alloced;
2506 	unsigned long orders = 0;
2507 
2508 	if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2509 		return -EINVAL;
2510 
2511 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2512 		return -EFBIG;
2513 repeat:
2514 	if (sgp <= SGP_CACHE &&
2515 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2516 		return -EINVAL;
2517 
2518 	alloced = false;
2519 	fault_mm = vma ? vma->vm_mm : NULL;
2520 
2521 	folio = filemap_get_entry(inode->i_mapping, index);
2522 	if (folio && vma && userfaultfd_minor(vma)) {
2523 		if (!xa_is_value(folio))
2524 			folio_put(folio);
2525 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2526 		return 0;
2527 	}
2528 
2529 	if (xa_is_value(folio)) {
2530 		error = shmem_swapin_folio(inode, index, &folio,
2531 					   sgp, gfp, vma, fault_type);
2532 		if (error == -EEXIST)
2533 			goto repeat;
2534 
2535 		*foliop = folio;
2536 		return error;
2537 	}
2538 
2539 	if (folio) {
2540 		folio_lock(folio);
2541 
2542 		/* Has the folio been truncated or swapped out? */
2543 		if (unlikely(folio->mapping != inode->i_mapping)) {
2544 			folio_unlock(folio);
2545 			folio_put(folio);
2546 			goto repeat;
2547 		}
2548 		if (sgp == SGP_WRITE)
2549 			folio_mark_accessed(folio);
2550 		if (folio_test_uptodate(folio))
2551 			goto out;
2552 		/* fallocated folio */
2553 		if (sgp != SGP_READ)
2554 			goto clear;
2555 		folio_unlock(folio);
2556 		folio_put(folio);
2557 	}
2558 
2559 	/*
2560 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2561 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2562 	 */
2563 	*foliop = NULL;
2564 	if (sgp == SGP_READ)
2565 		return 0;
2566 	if (sgp == SGP_NOALLOC)
2567 		return -ENOENT;
2568 
2569 	/*
2570 	 * Fast cache lookup and swap lookup did not find it: allocate.
2571 	 */
2572 
2573 	if (vma && userfaultfd_missing(vma)) {
2574 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2575 		return 0;
2576 	}
2577 
2578 	/* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
2579 	orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
2580 	if (orders > 0) {
2581 		gfp_t huge_gfp;
2582 
2583 		huge_gfp = vma_thp_gfp_mask(vma);
2584 		huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2585 		folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2586 				inode, index, fault_mm, orders);
2587 		if (!IS_ERR(folio)) {
2588 			if (folio_test_pmd_mappable(folio))
2589 				count_vm_event(THP_FILE_ALLOC);
2590 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2591 			goto alloced;
2592 		}
2593 		if (PTR_ERR(folio) == -EEXIST)
2594 			goto repeat;
2595 	}
2596 
2597 	folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2598 	if (IS_ERR(folio)) {
2599 		error = PTR_ERR(folio);
2600 		if (error == -EEXIST)
2601 			goto repeat;
2602 		folio = NULL;
2603 		goto unlock;
2604 	}
2605 
2606 alloced:
2607 	alloced = true;
2608 	if (folio_test_large(folio) &&
2609 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2610 					folio_next_index(folio)) {
2611 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2612 		struct shmem_inode_info *info = SHMEM_I(inode);
2613 		/*
2614 		 * Part of the large folio is beyond i_size: subject
2615 		 * to shrink under memory pressure.
2616 		 */
2617 		spin_lock(&sbinfo->shrinklist_lock);
2618 		/*
2619 		 * _careful to defend against unlocked access to
2620 		 * ->shrink_list in shmem_unused_huge_shrink()
2621 		 */
2622 		if (list_empty_careful(&info->shrinklist)) {
2623 			list_add_tail(&info->shrinklist,
2624 				      &sbinfo->shrinklist);
2625 			sbinfo->shrinklist_len++;
2626 		}
2627 		spin_unlock(&sbinfo->shrinklist_lock);
2628 	}
2629 
2630 	if (sgp == SGP_WRITE)
2631 		folio_set_referenced(folio);
2632 	/*
2633 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2634 	 */
2635 	if (sgp == SGP_FALLOC)
2636 		sgp = SGP_WRITE;
2637 clear:
2638 	/*
2639 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2640 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2641 	 * it now, lest undo on failure cancel our earlier guarantee.
2642 	 */
2643 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2644 		long i, n = folio_nr_pages(folio);
2645 
2646 		for (i = 0; i < n; i++)
2647 			clear_highpage(folio_page(folio, i));
2648 		flush_dcache_folio(folio);
2649 		folio_mark_uptodate(folio);
2650 	}
2651 
2652 	/* Perhaps the file has been truncated since we checked */
2653 	if (sgp <= SGP_CACHE &&
2654 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2655 		error = -EINVAL;
2656 		goto unlock;
2657 	}
2658 out:
2659 	*foliop = folio;
2660 	return 0;
2661 
2662 	/*
2663 	 * Error recovery.
2664 	 */
2665 unlock:
2666 	if (alloced)
2667 		filemap_remove_folio(folio);
2668 	shmem_recalc_inode(inode, 0, 0);
2669 	if (folio) {
2670 		folio_unlock(folio);
2671 		folio_put(folio);
2672 	}
2673 	return error;
2674 }
2675 
2676 /**
2677  * shmem_get_folio - find, and lock a shmem folio.
2678  * @inode:	inode to search
2679  * @index:	the page index.
2680  * @write_end:	end of a write, could extend inode size
2681  * @foliop:	pointer to the folio if found
2682  * @sgp:	SGP_* flags to control behavior
2683  *
2684  * Looks up the page cache entry at @inode & @index.  If a folio is
2685  * present, it is returned locked with an increased refcount.
2686  *
2687  * If the caller modifies data in the folio, it must call folio_mark_dirty()
2688  * before unlocking the folio to ensure that the folio is not reclaimed.
2689  * There is no need to reserve space before calling folio_mark_dirty().
2690  *
2691  * When no folio is found, the behavior depends on @sgp:
2692  *  - for SGP_READ, *@foliop is %NULL and 0 is returned
2693  *  - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2694  *  - for all other flags a new folio is allocated, inserted into the
2695  *    page cache and returned locked in @foliop.
2696  *
2697  * Context: May sleep.
2698  * Return: 0 if successful, else a negative error code.
2699  */
shmem_get_folio(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp)2700 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
2701 		    struct folio **foliop, enum sgp_type sgp)
2702 {
2703 	return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
2704 			mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2705 }
2706 EXPORT_SYMBOL_GPL(shmem_get_folio);
2707 
2708 /*
2709  * This is like autoremove_wake_function, but it removes the wait queue
2710  * entry unconditionally - even if something else had already woken the
2711  * target.
2712  */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned int mode,int sync,void * key)2713 static int synchronous_wake_function(wait_queue_entry_t *wait,
2714 			unsigned int mode, int sync, void *key)
2715 {
2716 	int ret = default_wake_function(wait, mode, sync, key);
2717 	list_del_init(&wait->entry);
2718 	return ret;
2719 }
2720 
2721 /*
2722  * Trinity finds that probing a hole which tmpfs is punching can
2723  * prevent the hole-punch from ever completing: which in turn
2724  * locks writers out with its hold on i_rwsem.  So refrain from
2725  * faulting pages into the hole while it's being punched.  Although
2726  * shmem_undo_range() does remove the additions, it may be unable to
2727  * keep up, as each new page needs its own unmap_mapping_range() call,
2728  * and the i_mmap tree grows ever slower to scan if new vmas are added.
2729  *
2730  * It does not matter if we sometimes reach this check just before the
2731  * hole-punch begins, so that one fault then races with the punch:
2732  * we just need to make racing faults a rare case.
2733  *
2734  * The implementation below would be much simpler if we just used a
2735  * standard mutex or completion: but we cannot take i_rwsem in fault,
2736  * and bloating every shmem inode for this unlikely case would be sad.
2737  */
shmem_falloc_wait(struct vm_fault * vmf,struct inode * inode)2738 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2739 {
2740 	struct shmem_falloc *shmem_falloc;
2741 	struct file *fpin = NULL;
2742 	vm_fault_t ret = 0;
2743 
2744 	spin_lock(&inode->i_lock);
2745 	shmem_falloc = inode->i_private;
2746 	if (shmem_falloc &&
2747 	    shmem_falloc->waitq &&
2748 	    vmf->pgoff >= shmem_falloc->start &&
2749 	    vmf->pgoff < shmem_falloc->next) {
2750 		wait_queue_head_t *shmem_falloc_waitq;
2751 		DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2752 
2753 		ret = VM_FAULT_NOPAGE;
2754 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2755 		shmem_falloc_waitq = shmem_falloc->waitq;
2756 		prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2757 				TASK_UNINTERRUPTIBLE);
2758 		spin_unlock(&inode->i_lock);
2759 		schedule();
2760 
2761 		/*
2762 		 * shmem_falloc_waitq points into the shmem_fallocate()
2763 		 * stack of the hole-punching task: shmem_falloc_waitq
2764 		 * is usually invalid by the time we reach here, but
2765 		 * finish_wait() does not dereference it in that case;
2766 		 * though i_lock needed lest racing with wake_up_all().
2767 		 */
2768 		spin_lock(&inode->i_lock);
2769 		finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2770 	}
2771 	spin_unlock(&inode->i_lock);
2772 	if (fpin) {
2773 		fput(fpin);
2774 		ret = VM_FAULT_RETRY;
2775 	}
2776 	return ret;
2777 }
2778 
shmem_fault(struct vm_fault * vmf)2779 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2780 {
2781 	struct inode *inode = file_inode(vmf->vma->vm_file);
2782 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2783 	struct folio *folio = NULL;
2784 	vm_fault_t ret = 0;
2785 	int err;
2786 
2787 	/*
2788 	 * Trinity finds that probing a hole which tmpfs is punching can
2789 	 * prevent the hole-punch from ever completing: noted in i_private.
2790 	 */
2791 	if (unlikely(inode->i_private)) {
2792 		ret = shmem_falloc_wait(vmf, inode);
2793 		if (ret)
2794 			return ret;
2795 	}
2796 
2797 	WARN_ON_ONCE(vmf->page != NULL);
2798 	err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
2799 				  gfp, vmf, &ret);
2800 	if (err)
2801 		return vmf_error(err);
2802 	if (folio) {
2803 		vmf->page = folio_file_page(folio, vmf->pgoff);
2804 		ret |= VM_FAULT_LOCKED;
2805 	}
2806 	return ret;
2807 }
2808 
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2809 unsigned long shmem_get_unmapped_area(struct file *file,
2810 				      unsigned long uaddr, unsigned long len,
2811 				      unsigned long pgoff, unsigned long flags)
2812 {
2813 	unsigned long addr;
2814 	unsigned long offset;
2815 	unsigned long inflated_len;
2816 	unsigned long inflated_addr;
2817 	unsigned long inflated_offset;
2818 	unsigned long hpage_size;
2819 
2820 	if (len > TASK_SIZE)
2821 		return -ENOMEM;
2822 
2823 	addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff,
2824 				    flags);
2825 
2826 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2827 		return addr;
2828 	if (IS_ERR_VALUE(addr))
2829 		return addr;
2830 	if (addr & ~PAGE_MASK)
2831 		return addr;
2832 	if (addr > TASK_SIZE - len)
2833 		return addr;
2834 
2835 	if (shmem_huge == SHMEM_HUGE_DENY)
2836 		return addr;
2837 	if (flags & MAP_FIXED)
2838 		return addr;
2839 	/*
2840 	 * Our priority is to support MAP_SHARED mapped hugely;
2841 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2842 	 * But if caller specified an address hint and we allocated area there
2843 	 * successfully, respect that as before.
2844 	 */
2845 	if (uaddr == addr)
2846 		return addr;
2847 
2848 	hpage_size = HPAGE_PMD_SIZE;
2849 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2850 		struct super_block *sb;
2851 		unsigned long __maybe_unused hpage_orders;
2852 		int order = 0;
2853 
2854 		if (file) {
2855 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2856 			sb = file_inode(file)->i_sb;
2857 		} else {
2858 			/*
2859 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2860 			 * for "/dev/zero", to create a shared anonymous object.
2861 			 */
2862 			if (IS_ERR(shm_mnt))
2863 				return addr;
2864 			sb = shm_mnt->mnt_sb;
2865 
2866 			/*
2867 			 * Find the highest mTHP order used for anonymous shmem to
2868 			 * provide a suitable alignment address.
2869 			 */
2870 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2871 			hpage_orders = READ_ONCE(huge_shmem_orders_always);
2872 			hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2873 			hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2874 			if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2875 				hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2876 
2877 			if (hpage_orders > 0) {
2878 				order = highest_order(hpage_orders);
2879 				hpage_size = PAGE_SIZE << order;
2880 			}
2881 #endif
2882 		}
2883 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2884 			return addr;
2885 	}
2886 
2887 	if (len < hpage_size)
2888 		return addr;
2889 
2890 	offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2891 	if (offset && offset + len < 2 * hpage_size)
2892 		return addr;
2893 	if ((addr & (hpage_size - 1)) == offset)
2894 		return addr;
2895 
2896 	inflated_len = len + hpage_size - PAGE_SIZE;
2897 	if (inflated_len > TASK_SIZE)
2898 		return addr;
2899 	if (inflated_len < len)
2900 		return addr;
2901 
2902 	inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr,
2903 					     inflated_len, 0, flags);
2904 	if (IS_ERR_VALUE(inflated_addr))
2905 		return addr;
2906 	if (inflated_addr & ~PAGE_MASK)
2907 		return addr;
2908 
2909 	inflated_offset = inflated_addr & (hpage_size - 1);
2910 	inflated_addr += offset - inflated_offset;
2911 	if (inflated_offset > offset)
2912 		inflated_addr += hpage_size;
2913 
2914 	if (inflated_addr > TASK_SIZE - len)
2915 		return addr;
2916 	return inflated_addr;
2917 }
2918 
2919 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2920 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2921 {
2922 	struct inode *inode = file_inode(vma->vm_file);
2923 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2924 }
2925 
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr,pgoff_t * ilx)2926 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2927 					  unsigned long addr, pgoff_t *ilx)
2928 {
2929 	struct inode *inode = file_inode(vma->vm_file);
2930 	pgoff_t index;
2931 
2932 	/*
2933 	 * Bias interleave by inode number to distribute better across nodes;
2934 	 * but this interface is independent of which page order is used, so
2935 	 * supplies only that bias, letting caller apply the offset (adjusted
2936 	 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2937 	 */
2938 	*ilx = inode->i_ino;
2939 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2940 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2941 }
2942 
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2943 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2944 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2945 {
2946 	struct mempolicy *mpol;
2947 
2948 	/* Bias interleave by inode number to distribute better across nodes */
2949 	*ilx = info->vfs_inode.i_ino + (index >> order);
2950 
2951 	mpol = mpol_shared_policy_lookup(&info->policy, index);
2952 	return mpol ? mpol : get_task_policy(current);
2953 }
2954 #else
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2955 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2956 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2957 {
2958 	*ilx = 0;
2959 	return NULL;
2960 }
2961 #endif /* CONFIG_NUMA */
2962 
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)2963 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2964 {
2965 	struct inode *inode = file_inode(file);
2966 	struct shmem_inode_info *info = SHMEM_I(inode);
2967 	int retval = -ENOMEM;
2968 
2969 	/*
2970 	 * What serializes the accesses to info->flags?
2971 	 * ipc_lock_object() when called from shmctl_do_lock(),
2972 	 * no serialization needed when called from shm_destroy().
2973 	 */
2974 	if (lock && !(info->flags & VM_LOCKED)) {
2975 		if (!user_shm_lock(inode->i_size, ucounts))
2976 			goto out_nomem;
2977 		info->flags |= VM_LOCKED;
2978 		mapping_set_unevictable(file->f_mapping);
2979 	}
2980 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2981 		user_shm_unlock(inode->i_size, ucounts);
2982 		info->flags &= ~VM_LOCKED;
2983 		mapping_clear_unevictable(file->f_mapping);
2984 	}
2985 	retval = 0;
2986 
2987 out_nomem:
2988 	return retval;
2989 }
2990 
shmem_mmap(struct file * file,struct vm_area_struct * vma)2991 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2992 {
2993 	struct inode *inode = file_inode(file);
2994 
2995 	file_accessed(file);
2996 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2997 	if (inode->i_nlink)
2998 		vma->vm_ops = &shmem_vm_ops;
2999 	else
3000 		vma->vm_ops = &shmem_anon_vm_ops;
3001 	return 0;
3002 }
3003 
shmem_file_open(struct inode * inode,struct file * file)3004 static int shmem_file_open(struct inode *inode, struct file *file)
3005 {
3006 	file->f_mode |= FMODE_CAN_ODIRECT;
3007 	return generic_file_open(inode, file);
3008 }
3009 
3010 #ifdef CONFIG_TMPFS_XATTR
3011 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
3012 
3013 #if IS_ENABLED(CONFIG_UNICODE)
3014 /*
3015  * shmem_inode_casefold_flags - Deal with casefold file attribute flag
3016  *
3017  * The casefold file attribute needs some special checks. I can just be added to
3018  * an empty dir, and can't be removed from a non-empty dir.
3019  */
shmem_inode_casefold_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry,unsigned int * i_flags)3020 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
3021 				      struct dentry *dentry, unsigned int *i_flags)
3022 {
3023 	unsigned int old = inode->i_flags;
3024 	struct super_block *sb = inode->i_sb;
3025 
3026 	if (fsflags & FS_CASEFOLD_FL) {
3027 		if (!(old & S_CASEFOLD)) {
3028 			if (!sb->s_encoding)
3029 				return -EOPNOTSUPP;
3030 
3031 			if (!S_ISDIR(inode->i_mode))
3032 				return -ENOTDIR;
3033 
3034 			if (dentry && !simple_empty(dentry))
3035 				return -ENOTEMPTY;
3036 		}
3037 
3038 		*i_flags = *i_flags | S_CASEFOLD;
3039 	} else if (old & S_CASEFOLD) {
3040 		if (dentry && !simple_empty(dentry))
3041 			return -ENOTEMPTY;
3042 	}
3043 
3044 	return 0;
3045 }
3046 #else
shmem_inode_casefold_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry,unsigned int * i_flags)3047 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
3048 				      struct dentry *dentry, unsigned int *i_flags)
3049 {
3050 	if (fsflags & FS_CASEFOLD_FL)
3051 		return -EOPNOTSUPP;
3052 
3053 	return 0;
3054 }
3055 #endif
3056 
3057 /*
3058  * chattr's fsflags are unrelated to extended attributes,
3059  * but tmpfs has chosen to enable them under the same config option.
3060  */
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry)3061 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3062 {
3063 	unsigned int i_flags = 0;
3064 	int ret;
3065 
3066 	ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags);
3067 	if (ret)
3068 		return ret;
3069 
3070 	if (fsflags & FS_NOATIME_FL)
3071 		i_flags |= S_NOATIME;
3072 	if (fsflags & FS_APPEND_FL)
3073 		i_flags |= S_APPEND;
3074 	if (fsflags & FS_IMMUTABLE_FL)
3075 		i_flags |= S_IMMUTABLE;
3076 	/*
3077 	 * But FS_NODUMP_FL does not require any action in i_flags.
3078 	 */
3079 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD);
3080 
3081 	return 0;
3082 }
3083 #else
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry)3084 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3085 {
3086 }
3087 #define shmem_initxattrs NULL
3088 #endif
3089 
shmem_get_offset_ctx(struct inode * inode)3090 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
3091 {
3092 	return &SHMEM_I(inode)->dir_offsets;
3093 }
3094 
__shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3095 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
3096 					     struct super_block *sb,
3097 					     struct inode *dir, umode_t mode,
3098 					     dev_t dev, unsigned long flags)
3099 {
3100 	struct inode *inode;
3101 	struct shmem_inode_info *info;
3102 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3103 	ino_t ino;
3104 	int err;
3105 
3106 	err = shmem_reserve_inode(sb, &ino);
3107 	if (err)
3108 		return ERR_PTR(err);
3109 
3110 	inode = new_inode(sb);
3111 	if (!inode) {
3112 		shmem_free_inode(sb, 0);
3113 		return ERR_PTR(-ENOSPC);
3114 	}
3115 
3116 	inode->i_ino = ino;
3117 	inode_init_owner(idmap, inode, dir, mode);
3118 	inode->i_blocks = 0;
3119 	simple_inode_init_ts(inode);
3120 	inode->i_generation = get_random_u32();
3121 	info = SHMEM_I(inode);
3122 	memset(info, 0, (char *)inode - (char *)info);
3123 	spin_lock_init(&info->lock);
3124 	atomic_set(&info->stop_eviction, 0);
3125 	info->seals = F_SEAL_SEAL;
3126 	info->flags = flags & VM_NORESERVE;
3127 	info->i_crtime = inode_get_mtime(inode);
3128 	info->fsflags = (dir == NULL) ? 0 :
3129 		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
3130 	if (info->fsflags)
3131 		shmem_set_inode_flags(inode, info->fsflags, NULL);
3132 	INIT_LIST_HEAD(&info->shrinklist);
3133 	INIT_LIST_HEAD(&info->swaplist);
3134 	simple_xattrs_init(&info->xattrs);
3135 	cache_no_acl(inode);
3136 	if (sbinfo->noswap)
3137 		mapping_set_unevictable(inode->i_mapping);
3138 
3139 	/* Don't consider 'deny' for emergencies and 'force' for testing */
3140 	if (sbinfo->huge)
3141 		mapping_set_large_folios(inode->i_mapping);
3142 
3143 	switch (mode & S_IFMT) {
3144 	default:
3145 		inode->i_op = &shmem_special_inode_operations;
3146 		init_special_inode(inode, mode, dev);
3147 		break;
3148 	case S_IFREG:
3149 		inode->i_mapping->a_ops = &shmem_aops;
3150 		inode->i_op = &shmem_inode_operations;
3151 		inode->i_fop = &shmem_file_operations;
3152 		mpol_shared_policy_init(&info->policy,
3153 					 shmem_get_sbmpol(sbinfo));
3154 		break;
3155 	case S_IFDIR:
3156 		inc_nlink(inode);
3157 		/* Some things misbehave if size == 0 on a directory */
3158 		inode->i_size = 2 * BOGO_DIRENT_SIZE;
3159 		inode->i_op = &shmem_dir_inode_operations;
3160 		inode->i_fop = &simple_offset_dir_operations;
3161 		simple_offset_init(shmem_get_offset_ctx(inode));
3162 		break;
3163 	case S_IFLNK:
3164 		/*
3165 		 * Must not load anything in the rbtree,
3166 		 * mpol_free_shared_policy will not be called.
3167 		 */
3168 		mpol_shared_policy_init(&info->policy, NULL);
3169 		break;
3170 	}
3171 
3172 	lockdep_annotate_inode_mutex_key(inode);
3173 	return inode;
3174 }
3175 
3176 #ifdef CONFIG_TMPFS_QUOTA
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3177 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3178 				     struct super_block *sb, struct inode *dir,
3179 				     umode_t mode, dev_t dev, unsigned long flags)
3180 {
3181 	int err;
3182 	struct inode *inode;
3183 
3184 	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3185 	if (IS_ERR(inode))
3186 		return inode;
3187 
3188 	err = dquot_initialize(inode);
3189 	if (err)
3190 		goto errout;
3191 
3192 	err = dquot_alloc_inode(inode);
3193 	if (err) {
3194 		dquot_drop(inode);
3195 		goto errout;
3196 	}
3197 	return inode;
3198 
3199 errout:
3200 	inode->i_flags |= S_NOQUOTA;
3201 	iput(inode);
3202 	return ERR_PTR(err);
3203 }
3204 #else
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3205 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3206 				     struct super_block *sb, struct inode *dir,
3207 				     umode_t mode, dev_t dev, unsigned long flags)
3208 {
3209 	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3210 }
3211 #endif /* CONFIG_TMPFS_QUOTA */
3212 
3213 #ifdef CONFIG_USERFAULTFD
shmem_mfill_atomic_pte(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)3214 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
3215 			   struct vm_area_struct *dst_vma,
3216 			   unsigned long dst_addr,
3217 			   unsigned long src_addr,
3218 			   uffd_flags_t flags,
3219 			   struct folio **foliop)
3220 {
3221 	struct inode *inode = file_inode(dst_vma->vm_file);
3222 	struct shmem_inode_info *info = SHMEM_I(inode);
3223 	struct address_space *mapping = inode->i_mapping;
3224 	gfp_t gfp = mapping_gfp_mask(mapping);
3225 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
3226 	void *page_kaddr;
3227 	struct folio *folio;
3228 	int ret;
3229 	pgoff_t max_off;
3230 
3231 	if (shmem_inode_acct_blocks(inode, 1)) {
3232 		/*
3233 		 * We may have got a page, returned -ENOENT triggering a retry,
3234 		 * and now we find ourselves with -ENOMEM. Release the page, to
3235 		 * avoid a BUG_ON in our caller.
3236 		 */
3237 		if (unlikely(*foliop)) {
3238 			folio_put(*foliop);
3239 			*foliop = NULL;
3240 		}
3241 		return -ENOMEM;
3242 	}
3243 
3244 	if (!*foliop) {
3245 		ret = -ENOMEM;
3246 		folio = shmem_alloc_folio(gfp, 0, info, pgoff);
3247 		if (!folio)
3248 			goto out_unacct_blocks;
3249 
3250 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
3251 			page_kaddr = kmap_local_folio(folio, 0);
3252 			/*
3253 			 * The read mmap_lock is held here.  Despite the
3254 			 * mmap_lock being read recursive a deadlock is still
3255 			 * possible if a writer has taken a lock.  For example:
3256 			 *
3257 			 * process A thread 1 takes read lock on own mmap_lock
3258 			 * process A thread 2 calls mmap, blocks taking write lock
3259 			 * process B thread 1 takes page fault, read lock on own mmap lock
3260 			 * process B thread 2 calls mmap, blocks taking write lock
3261 			 * process A thread 1 blocks taking read lock on process B
3262 			 * process B thread 1 blocks taking read lock on process A
3263 			 *
3264 			 * Disable page faults to prevent potential deadlock
3265 			 * and retry the copy outside the mmap_lock.
3266 			 */
3267 			pagefault_disable();
3268 			ret = copy_from_user(page_kaddr,
3269 					     (const void __user *)src_addr,
3270 					     PAGE_SIZE);
3271 			pagefault_enable();
3272 			kunmap_local(page_kaddr);
3273 
3274 			/* fallback to copy_from_user outside mmap_lock */
3275 			if (unlikely(ret)) {
3276 				*foliop = folio;
3277 				ret = -ENOENT;
3278 				/* don't free the page */
3279 				goto out_unacct_blocks;
3280 			}
3281 
3282 			flush_dcache_folio(folio);
3283 		} else {		/* ZEROPAGE */
3284 			clear_user_highpage(&folio->page, dst_addr);
3285 		}
3286 	} else {
3287 		folio = *foliop;
3288 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
3289 		*foliop = NULL;
3290 	}
3291 
3292 	VM_BUG_ON(folio_test_locked(folio));
3293 	VM_BUG_ON(folio_test_swapbacked(folio));
3294 	__folio_set_locked(folio);
3295 	__folio_set_swapbacked(folio);
3296 	__folio_mark_uptodate(folio);
3297 
3298 	ret = -EFAULT;
3299 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3300 	if (unlikely(pgoff >= max_off))
3301 		goto out_release;
3302 
3303 	ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
3304 	if (ret)
3305 		goto out_release;
3306 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
3307 	if (ret)
3308 		goto out_release;
3309 
3310 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
3311 				       &folio->page, true, flags);
3312 	if (ret)
3313 		goto out_delete_from_cache;
3314 
3315 	shmem_recalc_inode(inode, 1, 0);
3316 	folio_unlock(folio);
3317 	return 0;
3318 out_delete_from_cache:
3319 	filemap_remove_folio(folio);
3320 out_release:
3321 	folio_unlock(folio);
3322 	folio_put(folio);
3323 out_unacct_blocks:
3324 	shmem_inode_unacct_blocks(inode, 1);
3325 	return ret;
3326 }
3327 #endif /* CONFIG_USERFAULTFD */
3328 
3329 #ifdef CONFIG_TMPFS
3330 static const struct inode_operations shmem_symlink_inode_operations;
3331 static const struct inode_operations shmem_short_symlink_operations;
3332 
3333 static int
shmem_write_begin(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)3334 shmem_write_begin(const struct kiocb *iocb, struct address_space *mapping,
3335 		  loff_t pos, unsigned len,
3336 		  struct folio **foliop, void **fsdata)
3337 {
3338 	struct inode *inode = mapping->host;
3339 	struct shmem_inode_info *info = SHMEM_I(inode);
3340 	pgoff_t index = pos >> PAGE_SHIFT;
3341 	struct folio *folio;
3342 	int ret = 0;
3343 
3344 	/* i_rwsem is held by caller */
3345 	if (unlikely(info->seals & (F_SEAL_GROW |
3346 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
3347 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
3348 			return -EPERM;
3349 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
3350 			return -EPERM;
3351 	}
3352 
3353 	ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
3354 	if (ret)
3355 		return ret;
3356 
3357 	if (folio_contain_hwpoisoned_page(folio)) {
3358 		folio_unlock(folio);
3359 		folio_put(folio);
3360 		return -EIO;
3361 	}
3362 
3363 	*foliop = folio;
3364 	return 0;
3365 }
3366 
3367 static int
shmem_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3368 shmem_write_end(const struct kiocb *iocb, struct address_space *mapping,
3369 		loff_t pos, unsigned len, unsigned copied,
3370 		struct folio *folio, void *fsdata)
3371 {
3372 	struct inode *inode = mapping->host;
3373 
3374 	if (pos + copied > inode->i_size)
3375 		i_size_write(inode, pos + copied);
3376 
3377 	if (!folio_test_uptodate(folio)) {
3378 		if (copied < folio_size(folio)) {
3379 			size_t from = offset_in_folio(folio, pos);
3380 			folio_zero_segments(folio, 0, from,
3381 					from + copied, folio_size(folio));
3382 		}
3383 		folio_mark_uptodate(folio);
3384 	}
3385 	folio_mark_dirty(folio);
3386 	folio_unlock(folio);
3387 	folio_put(folio);
3388 
3389 	return copied;
3390 }
3391 
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3392 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3393 {
3394 	struct file *file = iocb->ki_filp;
3395 	struct inode *inode = file_inode(file);
3396 	struct address_space *mapping = inode->i_mapping;
3397 	pgoff_t index;
3398 	unsigned long offset;
3399 	int error = 0;
3400 	ssize_t retval = 0;
3401 
3402 	for (;;) {
3403 		struct folio *folio = NULL;
3404 		struct page *page = NULL;
3405 		unsigned long nr, ret;
3406 		loff_t end_offset, i_size = i_size_read(inode);
3407 		bool fallback_page_copy = false;
3408 		size_t fsize;
3409 
3410 		if (unlikely(iocb->ki_pos >= i_size))
3411 			break;
3412 
3413 		index = iocb->ki_pos >> PAGE_SHIFT;
3414 		error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3415 		if (error) {
3416 			if (error == -EINVAL)
3417 				error = 0;
3418 			break;
3419 		}
3420 		if (folio) {
3421 			folio_unlock(folio);
3422 
3423 			page = folio_file_page(folio, index);
3424 			if (PageHWPoison(page)) {
3425 				folio_put(folio);
3426 				error = -EIO;
3427 				break;
3428 			}
3429 
3430 			if (folio_test_large(folio) &&
3431 			    folio_test_has_hwpoisoned(folio))
3432 				fallback_page_copy = true;
3433 		}
3434 
3435 		/*
3436 		 * We must evaluate after, since reads (unlike writes)
3437 		 * are called without i_rwsem protection against truncate
3438 		 */
3439 		i_size = i_size_read(inode);
3440 		if (unlikely(iocb->ki_pos >= i_size)) {
3441 			if (folio)
3442 				folio_put(folio);
3443 			break;
3444 		}
3445 		end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count);
3446 		if (folio && likely(!fallback_page_copy))
3447 			fsize = folio_size(folio);
3448 		else
3449 			fsize = PAGE_SIZE;
3450 		offset = iocb->ki_pos & (fsize - 1);
3451 		nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset);
3452 
3453 		if (folio) {
3454 			/*
3455 			 * If users can be writing to this page using arbitrary
3456 			 * virtual addresses, take care about potential aliasing
3457 			 * before reading the page on the kernel side.
3458 			 */
3459 			if (mapping_writably_mapped(mapping)) {
3460 				if (likely(!fallback_page_copy))
3461 					flush_dcache_folio(folio);
3462 				else
3463 					flush_dcache_page(page);
3464 			}
3465 
3466 			/*
3467 			 * Mark the folio accessed if we read the beginning.
3468 			 */
3469 			if (!offset)
3470 				folio_mark_accessed(folio);
3471 			/*
3472 			 * Ok, we have the page, and it's up-to-date, so
3473 			 * now we can copy it to user space...
3474 			 */
3475 			if (likely(!fallback_page_copy))
3476 				ret = copy_folio_to_iter(folio, offset, nr, to);
3477 			else
3478 				ret = copy_page_to_iter(page, offset, nr, to);
3479 			folio_put(folio);
3480 		} else if (user_backed_iter(to)) {
3481 			/*
3482 			 * Copy to user tends to be so well optimized, but
3483 			 * clear_user() not so much, that it is noticeably
3484 			 * faster to copy the zero page instead of clearing.
3485 			 */
3486 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3487 		} else {
3488 			/*
3489 			 * But submitting the same page twice in a row to
3490 			 * splice() - or others? - can result in confusion:
3491 			 * so don't attempt that optimization on pipes etc.
3492 			 */
3493 			ret = iov_iter_zero(nr, to);
3494 		}
3495 
3496 		retval += ret;
3497 		iocb->ki_pos += ret;
3498 
3499 		if (!iov_iter_count(to))
3500 			break;
3501 		if (ret < nr) {
3502 			error = -EFAULT;
3503 			break;
3504 		}
3505 		cond_resched();
3506 	}
3507 
3508 	file_accessed(file);
3509 	return retval ? retval : error;
3510 }
3511 
shmem_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3512 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3513 {
3514 	struct file *file = iocb->ki_filp;
3515 	struct inode *inode = file->f_mapping->host;
3516 	ssize_t ret;
3517 
3518 	inode_lock(inode);
3519 	ret = generic_write_checks(iocb, from);
3520 	if (ret <= 0)
3521 		goto unlock;
3522 	ret = file_remove_privs(file);
3523 	if (ret)
3524 		goto unlock;
3525 	ret = file_update_time(file);
3526 	if (ret)
3527 		goto unlock;
3528 	ret = generic_perform_write(iocb, from);
3529 unlock:
3530 	inode_unlock(inode);
3531 	return ret;
3532 }
3533 
zero_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3534 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3535 			      struct pipe_buffer *buf)
3536 {
3537 	return true;
3538 }
3539 
zero_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3540 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3541 				  struct pipe_buffer *buf)
3542 {
3543 }
3544 
zero_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3545 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3546 				    struct pipe_buffer *buf)
3547 {
3548 	return false;
3549 }
3550 
3551 static const struct pipe_buf_operations zero_pipe_buf_ops = {
3552 	.release	= zero_pipe_buf_release,
3553 	.try_steal	= zero_pipe_buf_try_steal,
3554 	.get		= zero_pipe_buf_get,
3555 };
3556 
splice_zeropage_into_pipe(struct pipe_inode_info * pipe,loff_t fpos,size_t size)3557 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3558 					loff_t fpos, size_t size)
3559 {
3560 	size_t offset = fpos & ~PAGE_MASK;
3561 
3562 	size = min_t(size_t, size, PAGE_SIZE - offset);
3563 
3564 	if (!pipe_is_full(pipe)) {
3565 		struct pipe_buffer *buf = pipe_head_buf(pipe);
3566 
3567 		*buf = (struct pipe_buffer) {
3568 			.ops	= &zero_pipe_buf_ops,
3569 			.page	= ZERO_PAGE(0),
3570 			.offset	= offset,
3571 			.len	= size,
3572 		};
3573 		pipe->head++;
3574 	}
3575 
3576 	return size;
3577 }
3578 
shmem_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)3579 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3580 				      struct pipe_inode_info *pipe,
3581 				      size_t len, unsigned int flags)
3582 {
3583 	struct inode *inode = file_inode(in);
3584 	struct address_space *mapping = inode->i_mapping;
3585 	struct folio *folio = NULL;
3586 	size_t total_spliced = 0, used, npages, n, part;
3587 	loff_t isize;
3588 	int error = 0;
3589 
3590 	/* Work out how much data we can actually add into the pipe */
3591 	used = pipe_buf_usage(pipe);
3592 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
3593 	len = min_t(size_t, len, npages * PAGE_SIZE);
3594 
3595 	do {
3596 		bool fallback_page_splice = false;
3597 		struct page *page = NULL;
3598 		pgoff_t index;
3599 		size_t size;
3600 
3601 		if (*ppos >= i_size_read(inode))
3602 			break;
3603 
3604 		index = *ppos >> PAGE_SHIFT;
3605 		error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3606 		if (error) {
3607 			if (error == -EINVAL)
3608 				error = 0;
3609 			break;
3610 		}
3611 		if (folio) {
3612 			folio_unlock(folio);
3613 
3614 			page = folio_file_page(folio, index);
3615 			if (PageHWPoison(page)) {
3616 				error = -EIO;
3617 				break;
3618 			}
3619 
3620 			if (folio_test_large(folio) &&
3621 			    folio_test_has_hwpoisoned(folio))
3622 				fallback_page_splice = true;
3623 		}
3624 
3625 		/*
3626 		 * i_size must be checked after we know the pages are Uptodate.
3627 		 *
3628 		 * Checking i_size after the check allows us to calculate
3629 		 * the correct value for "nr", which means the zero-filled
3630 		 * part of the page is not copied back to userspace (unless
3631 		 * another truncate extends the file - this is desired though).
3632 		 */
3633 		isize = i_size_read(inode);
3634 		if (unlikely(*ppos >= isize))
3635 			break;
3636 		/*
3637 		 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned
3638 		 * pages.
3639 		 */
3640 		size = len;
3641 		if (unlikely(fallback_page_splice)) {
3642 			size_t offset = *ppos & ~PAGE_MASK;
3643 
3644 			size = umin(size, PAGE_SIZE - offset);
3645 		}
3646 		part = min_t(loff_t, isize - *ppos, size);
3647 
3648 		if (folio) {
3649 			/*
3650 			 * If users can be writing to this page using arbitrary
3651 			 * virtual addresses, take care about potential aliasing
3652 			 * before reading the page on the kernel side.
3653 			 */
3654 			if (mapping_writably_mapped(mapping)) {
3655 				if (likely(!fallback_page_splice))
3656 					flush_dcache_folio(folio);
3657 				else
3658 					flush_dcache_page(page);
3659 			}
3660 			folio_mark_accessed(folio);
3661 			/*
3662 			 * Ok, we have the page, and it's up-to-date, so we can
3663 			 * now splice it into the pipe.
3664 			 */
3665 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3666 			folio_put(folio);
3667 			folio = NULL;
3668 		} else {
3669 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3670 		}
3671 
3672 		if (!n)
3673 			break;
3674 		len -= n;
3675 		total_spliced += n;
3676 		*ppos += n;
3677 		in->f_ra.prev_pos = *ppos;
3678 		if (pipe_is_full(pipe))
3679 			break;
3680 
3681 		cond_resched();
3682 	} while (len);
3683 
3684 	if (folio)
3685 		folio_put(folio);
3686 
3687 	file_accessed(in);
3688 	return total_spliced ? total_spliced : error;
3689 }
3690 
shmem_file_llseek(struct file * file,loff_t offset,int whence)3691 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3692 {
3693 	struct address_space *mapping = file->f_mapping;
3694 	struct inode *inode = mapping->host;
3695 
3696 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3697 		return generic_file_llseek_size(file, offset, whence,
3698 					MAX_LFS_FILESIZE, i_size_read(inode));
3699 	if (offset < 0)
3700 		return -ENXIO;
3701 
3702 	inode_lock(inode);
3703 	/* We're holding i_rwsem so we can access i_size directly */
3704 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3705 	if (offset >= 0)
3706 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3707 	inode_unlock(inode);
3708 	return offset;
3709 }
3710 
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3711 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3712 							 loff_t len)
3713 {
3714 	struct inode *inode = file_inode(file);
3715 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3716 	struct shmem_inode_info *info = SHMEM_I(inode);
3717 	struct shmem_falloc shmem_falloc;
3718 	pgoff_t start, index, end, undo_fallocend;
3719 	int error;
3720 
3721 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3722 		return -EOPNOTSUPP;
3723 
3724 	inode_lock(inode);
3725 
3726 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3727 		struct address_space *mapping = file->f_mapping;
3728 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3729 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3730 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3731 
3732 		/* protected by i_rwsem */
3733 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3734 			error = -EPERM;
3735 			goto out;
3736 		}
3737 
3738 		shmem_falloc.waitq = &shmem_falloc_waitq;
3739 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3740 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3741 		spin_lock(&inode->i_lock);
3742 		inode->i_private = &shmem_falloc;
3743 		spin_unlock(&inode->i_lock);
3744 
3745 		if ((u64)unmap_end > (u64)unmap_start)
3746 			unmap_mapping_range(mapping, unmap_start,
3747 					    1 + unmap_end - unmap_start, 0);
3748 		shmem_truncate_range(inode, offset, offset + len - 1);
3749 		/* No need to unmap again: hole-punching leaves COWed pages */
3750 
3751 		spin_lock(&inode->i_lock);
3752 		inode->i_private = NULL;
3753 		wake_up_all(&shmem_falloc_waitq);
3754 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3755 		spin_unlock(&inode->i_lock);
3756 		error = 0;
3757 		goto out;
3758 	}
3759 
3760 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3761 	error = inode_newsize_ok(inode, offset + len);
3762 	if (error)
3763 		goto out;
3764 
3765 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3766 		error = -EPERM;
3767 		goto out;
3768 	}
3769 
3770 	start = offset >> PAGE_SHIFT;
3771 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3772 	/* Try to avoid a swapstorm if len is impossible to satisfy */
3773 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3774 		error = -ENOSPC;
3775 		goto out;
3776 	}
3777 
3778 	shmem_falloc.waitq = NULL;
3779 	shmem_falloc.start = start;
3780 	shmem_falloc.next  = start;
3781 	shmem_falloc.nr_falloced = 0;
3782 	shmem_falloc.nr_unswapped = 0;
3783 	spin_lock(&inode->i_lock);
3784 	inode->i_private = &shmem_falloc;
3785 	spin_unlock(&inode->i_lock);
3786 
3787 	/*
3788 	 * info->fallocend is only relevant when huge pages might be
3789 	 * involved: to prevent split_huge_page() freeing fallocated
3790 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3791 	 */
3792 	undo_fallocend = info->fallocend;
3793 	if (info->fallocend < end)
3794 		info->fallocend = end;
3795 
3796 	for (index = start; index < end; ) {
3797 		struct folio *folio;
3798 
3799 		/*
3800 		 * Check for fatal signal so that we abort early in OOM
3801 		 * situations. We don't want to abort in case of non-fatal
3802 		 * signals as large fallocate can take noticeable time and
3803 		 * e.g. periodic timers may result in fallocate constantly
3804 		 * restarting.
3805 		 */
3806 		if (fatal_signal_pending(current))
3807 			error = -EINTR;
3808 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3809 			error = -ENOMEM;
3810 		else
3811 			error = shmem_get_folio(inode, index, offset + len,
3812 						&folio, SGP_FALLOC);
3813 		if (error) {
3814 			info->fallocend = undo_fallocend;
3815 			/* Remove the !uptodate folios we added */
3816 			if (index > start) {
3817 				shmem_undo_range(inode,
3818 				    (loff_t)start << PAGE_SHIFT,
3819 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3820 			}
3821 			goto undone;
3822 		}
3823 
3824 		/*
3825 		 * Here is a more important optimization than it appears:
3826 		 * a second SGP_FALLOC on the same large folio will clear it,
3827 		 * making it uptodate and un-undoable if we fail later.
3828 		 */
3829 		index = folio_next_index(folio);
3830 		/* Beware 32-bit wraparound */
3831 		if (!index)
3832 			index--;
3833 
3834 		/*
3835 		 * Inform shmem_writeout() how far we have reached.
3836 		 * No need for lock or barrier: we have the page lock.
3837 		 */
3838 		if (!folio_test_uptodate(folio))
3839 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3840 		shmem_falloc.next = index;
3841 
3842 		/*
3843 		 * If !uptodate, leave it that way so that freeable folios
3844 		 * can be recognized if we need to rollback on error later.
3845 		 * But mark it dirty so that memory pressure will swap rather
3846 		 * than free the folios we are allocating (and SGP_CACHE folios
3847 		 * might still be clean: we now need to mark those dirty too).
3848 		 */
3849 		folio_mark_dirty(folio);
3850 		folio_unlock(folio);
3851 		folio_put(folio);
3852 		cond_resched();
3853 	}
3854 
3855 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3856 		i_size_write(inode, offset + len);
3857 undone:
3858 	spin_lock(&inode->i_lock);
3859 	inode->i_private = NULL;
3860 	spin_unlock(&inode->i_lock);
3861 out:
3862 	if (!error)
3863 		file_modified(file);
3864 	inode_unlock(inode);
3865 	return error;
3866 }
3867 
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)3868 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3869 {
3870 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3871 
3872 	buf->f_type = TMPFS_MAGIC;
3873 	buf->f_bsize = PAGE_SIZE;
3874 	buf->f_namelen = NAME_MAX;
3875 	if (sbinfo->max_blocks) {
3876 		buf->f_blocks = sbinfo->max_blocks;
3877 		buf->f_bavail =
3878 		buf->f_bfree  = sbinfo->max_blocks -
3879 				percpu_counter_sum(&sbinfo->used_blocks);
3880 	}
3881 	if (sbinfo->max_inodes) {
3882 		buf->f_files = sbinfo->max_inodes;
3883 		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3884 	}
3885 	/* else leave those fields 0 like simple_statfs */
3886 
3887 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3888 
3889 	return 0;
3890 }
3891 
3892 /*
3893  * File creation. Allocate an inode, and we're done..
3894  */
3895 static int
shmem_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3896 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3897 	    struct dentry *dentry, umode_t mode, dev_t dev)
3898 {
3899 	struct inode *inode;
3900 	int error;
3901 
3902 	if (!generic_ci_validate_strict_name(dir, &dentry->d_name))
3903 		return -EINVAL;
3904 
3905 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3906 	if (IS_ERR(inode))
3907 		return PTR_ERR(inode);
3908 
3909 	error = simple_acl_create(dir, inode);
3910 	if (error)
3911 		goto out_iput;
3912 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3913 					     shmem_initxattrs, NULL);
3914 	if (error && error != -EOPNOTSUPP)
3915 		goto out_iput;
3916 
3917 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3918 	if (error)
3919 		goto out_iput;
3920 
3921 	dir->i_size += BOGO_DIRENT_SIZE;
3922 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3923 	inode_inc_iversion(dir);
3924 
3925 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3926 		d_add(dentry, inode);
3927 	else
3928 		d_instantiate(dentry, inode);
3929 
3930 	dget(dentry); /* Extra count - pin the dentry in core */
3931 	return error;
3932 
3933 out_iput:
3934 	iput(inode);
3935 	return error;
3936 }
3937 
3938 static int
shmem_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)3939 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3940 	      struct file *file, umode_t mode)
3941 {
3942 	struct inode *inode;
3943 	int error;
3944 
3945 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3946 	if (IS_ERR(inode)) {
3947 		error = PTR_ERR(inode);
3948 		goto err_out;
3949 	}
3950 	error = security_inode_init_security(inode, dir, NULL,
3951 					     shmem_initxattrs, NULL);
3952 	if (error && error != -EOPNOTSUPP)
3953 		goto out_iput;
3954 	error = simple_acl_create(dir, inode);
3955 	if (error)
3956 		goto out_iput;
3957 	d_tmpfile(file, inode);
3958 
3959 err_out:
3960 	return finish_open_simple(file, error);
3961 out_iput:
3962 	iput(inode);
3963 	return error;
3964 }
3965 
shmem_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)3966 static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3967 				  struct dentry *dentry, umode_t mode)
3968 {
3969 	int error;
3970 
3971 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3972 	if (error)
3973 		return ERR_PTR(error);
3974 	inc_nlink(dir);
3975 	return NULL;
3976 }
3977 
shmem_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)3978 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3979 			struct dentry *dentry, umode_t mode, bool excl)
3980 {
3981 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3982 }
3983 
3984 /*
3985  * Link a file..
3986  */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)3987 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3988 		      struct dentry *dentry)
3989 {
3990 	struct inode *inode = d_inode(old_dentry);
3991 	int ret = 0;
3992 
3993 	/*
3994 	 * No ordinary (disk based) filesystem counts links as inodes;
3995 	 * but each new link needs a new dentry, pinning lowmem, and
3996 	 * tmpfs dentries cannot be pruned until they are unlinked.
3997 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3998 	 * first link must skip that, to get the accounting right.
3999 	 */
4000 	if (inode->i_nlink) {
4001 		ret = shmem_reserve_inode(inode->i_sb, NULL);
4002 		if (ret)
4003 			goto out;
4004 	}
4005 
4006 	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
4007 	if (ret) {
4008 		if (inode->i_nlink)
4009 			shmem_free_inode(inode->i_sb, 0);
4010 		goto out;
4011 	}
4012 
4013 	dir->i_size += BOGO_DIRENT_SIZE;
4014 	inode_set_mtime_to_ts(dir,
4015 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
4016 	inode_inc_iversion(dir);
4017 	inc_nlink(inode);
4018 	ihold(inode);	/* New dentry reference */
4019 	dget(dentry);	/* Extra pinning count for the created dentry */
4020 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
4021 		d_add(dentry, inode);
4022 	else
4023 		d_instantiate(dentry, inode);
4024 out:
4025 	return ret;
4026 }
4027 
shmem_unlink(struct inode * dir,struct dentry * dentry)4028 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
4029 {
4030 	struct inode *inode = d_inode(dentry);
4031 
4032 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
4033 		shmem_free_inode(inode->i_sb, 0);
4034 
4035 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
4036 
4037 	dir->i_size -= BOGO_DIRENT_SIZE;
4038 	inode_set_mtime_to_ts(dir,
4039 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
4040 	inode_inc_iversion(dir);
4041 	drop_nlink(inode);
4042 	dput(dentry);	/* Undo the count from "create" - does all the work */
4043 
4044 	/*
4045 	 * For now, VFS can't deal with case-insensitive negative dentries, so
4046 	 * we invalidate them
4047 	 */
4048 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
4049 		d_invalidate(dentry);
4050 
4051 	return 0;
4052 }
4053 
shmem_rmdir(struct inode * dir,struct dentry * dentry)4054 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
4055 {
4056 	if (!simple_empty(dentry))
4057 		return -ENOTEMPTY;
4058 
4059 	drop_nlink(d_inode(dentry));
4060 	drop_nlink(dir);
4061 	return shmem_unlink(dir, dentry);
4062 }
4063 
shmem_whiteout(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry)4064 static int shmem_whiteout(struct mnt_idmap *idmap,
4065 			  struct inode *old_dir, struct dentry *old_dentry)
4066 {
4067 	struct dentry *whiteout;
4068 	int error;
4069 
4070 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
4071 	if (!whiteout)
4072 		return -ENOMEM;
4073 
4074 	error = shmem_mknod(idmap, old_dir, whiteout,
4075 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4076 	dput(whiteout);
4077 	if (error)
4078 		return error;
4079 
4080 	/*
4081 	 * Cheat and hash the whiteout while the old dentry is still in
4082 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
4083 	 *
4084 	 * d_lookup() will consistently find one of them at this point,
4085 	 * not sure which one, but that isn't even important.
4086 	 */
4087 	d_rehash(whiteout);
4088 	return 0;
4089 }
4090 
4091 /*
4092  * The VFS layer already does all the dentry stuff for rename,
4093  * we just have to decrement the usage count for the target if
4094  * it exists so that the VFS layer correctly free's it when it
4095  * gets overwritten.
4096  */
shmem_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)4097 static int shmem_rename2(struct mnt_idmap *idmap,
4098 			 struct inode *old_dir, struct dentry *old_dentry,
4099 			 struct inode *new_dir, struct dentry *new_dentry,
4100 			 unsigned int flags)
4101 {
4102 	struct inode *inode = d_inode(old_dentry);
4103 	int they_are_dirs = S_ISDIR(inode->i_mode);
4104 	int error;
4105 
4106 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4107 		return -EINVAL;
4108 
4109 	if (flags & RENAME_EXCHANGE)
4110 		return simple_offset_rename_exchange(old_dir, old_dentry,
4111 						     new_dir, new_dentry);
4112 
4113 	if (!simple_empty(new_dentry))
4114 		return -ENOTEMPTY;
4115 
4116 	if (flags & RENAME_WHITEOUT) {
4117 		error = shmem_whiteout(idmap, old_dir, old_dentry);
4118 		if (error)
4119 			return error;
4120 	}
4121 
4122 	error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
4123 	if (error)
4124 		return error;
4125 
4126 	if (d_really_is_positive(new_dentry)) {
4127 		(void) shmem_unlink(new_dir, new_dentry);
4128 		if (they_are_dirs) {
4129 			drop_nlink(d_inode(new_dentry));
4130 			drop_nlink(old_dir);
4131 		}
4132 	} else if (they_are_dirs) {
4133 		drop_nlink(old_dir);
4134 		inc_nlink(new_dir);
4135 	}
4136 
4137 	old_dir->i_size -= BOGO_DIRENT_SIZE;
4138 	new_dir->i_size += BOGO_DIRENT_SIZE;
4139 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
4140 	inode_inc_iversion(old_dir);
4141 	inode_inc_iversion(new_dir);
4142 	return 0;
4143 }
4144 
shmem_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)4145 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
4146 			 struct dentry *dentry, const char *symname)
4147 {
4148 	int error;
4149 	int len;
4150 	struct inode *inode;
4151 	struct folio *folio;
4152 	char *link;
4153 
4154 	len = strlen(symname) + 1;
4155 	if (len > PAGE_SIZE)
4156 		return -ENAMETOOLONG;
4157 
4158 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
4159 				VM_NORESERVE);
4160 	if (IS_ERR(inode))
4161 		return PTR_ERR(inode);
4162 
4163 	error = security_inode_init_security(inode, dir, &dentry->d_name,
4164 					     shmem_initxattrs, NULL);
4165 	if (error && error != -EOPNOTSUPP)
4166 		goto out_iput;
4167 
4168 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
4169 	if (error)
4170 		goto out_iput;
4171 
4172 	inode->i_size = len-1;
4173 	if (len <= SHORT_SYMLINK_LEN) {
4174 		link = kmemdup(symname, len, GFP_KERNEL);
4175 		if (!link) {
4176 			error = -ENOMEM;
4177 			goto out_remove_offset;
4178 		}
4179 		inode->i_op = &shmem_short_symlink_operations;
4180 		inode_set_cached_link(inode, link, len - 1);
4181 	} else {
4182 		inode_nohighmem(inode);
4183 		inode->i_mapping->a_ops = &shmem_aops;
4184 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
4185 		if (error)
4186 			goto out_remove_offset;
4187 		inode->i_op = &shmem_symlink_inode_operations;
4188 		memcpy(folio_address(folio), symname, len);
4189 		folio_mark_uptodate(folio);
4190 		folio_mark_dirty(folio);
4191 		folio_unlock(folio);
4192 		folio_put(folio);
4193 	}
4194 	dir->i_size += BOGO_DIRENT_SIZE;
4195 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
4196 	inode_inc_iversion(dir);
4197 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
4198 		d_add(dentry, inode);
4199 	else
4200 		d_instantiate(dentry, inode);
4201 	dget(dentry);
4202 	return 0;
4203 
4204 out_remove_offset:
4205 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
4206 out_iput:
4207 	iput(inode);
4208 	return error;
4209 }
4210 
shmem_put_link(void * arg)4211 static void shmem_put_link(void *arg)
4212 {
4213 	folio_mark_accessed(arg);
4214 	folio_put(arg);
4215 }
4216 
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)4217 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
4218 				  struct delayed_call *done)
4219 {
4220 	struct folio *folio = NULL;
4221 	int error;
4222 
4223 	if (!dentry) {
4224 		folio = filemap_get_folio(inode->i_mapping, 0);
4225 		if (IS_ERR(folio))
4226 			return ERR_PTR(-ECHILD);
4227 		if (PageHWPoison(folio_page(folio, 0)) ||
4228 		    !folio_test_uptodate(folio)) {
4229 			folio_put(folio);
4230 			return ERR_PTR(-ECHILD);
4231 		}
4232 	} else {
4233 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
4234 		if (error)
4235 			return ERR_PTR(error);
4236 		if (!folio)
4237 			return ERR_PTR(-ECHILD);
4238 		if (PageHWPoison(folio_page(folio, 0))) {
4239 			folio_unlock(folio);
4240 			folio_put(folio);
4241 			return ERR_PTR(-ECHILD);
4242 		}
4243 		folio_unlock(folio);
4244 	}
4245 	set_delayed_call(done, shmem_put_link, folio);
4246 	return folio_address(folio);
4247 }
4248 
4249 #ifdef CONFIG_TMPFS_XATTR
4250 
shmem_fileattr_get(struct dentry * dentry,struct file_kattr * fa)4251 static int shmem_fileattr_get(struct dentry *dentry, struct file_kattr *fa)
4252 {
4253 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4254 
4255 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
4256 
4257 	return 0;
4258 }
4259 
shmem_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct file_kattr * fa)4260 static int shmem_fileattr_set(struct mnt_idmap *idmap,
4261 			      struct dentry *dentry, struct file_kattr *fa)
4262 {
4263 	struct inode *inode = d_inode(dentry);
4264 	struct shmem_inode_info *info = SHMEM_I(inode);
4265 	int ret, flags;
4266 
4267 	if (fileattr_has_fsx(fa))
4268 		return -EOPNOTSUPP;
4269 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
4270 		return -EOPNOTSUPP;
4271 
4272 	flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
4273 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
4274 
4275 	ret = shmem_set_inode_flags(inode, flags, dentry);
4276 
4277 	if (ret)
4278 		return ret;
4279 
4280 	info->fsflags = flags;
4281 
4282 	inode_set_ctime_current(inode);
4283 	inode_inc_iversion(inode);
4284 	return 0;
4285 }
4286 
4287 /*
4288  * Superblocks without xattr inode operations may get some security.* xattr
4289  * support from the LSM "for free". As soon as we have any other xattrs
4290  * like ACLs, we also need to implement the security.* handlers at
4291  * filesystem level, though.
4292  */
4293 
4294 /*
4295  * Callback for security_inode_init_security() for acquiring xattrs.
4296  */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)4297 static int shmem_initxattrs(struct inode *inode,
4298 			    const struct xattr *xattr_array, void *fs_info)
4299 {
4300 	struct shmem_inode_info *info = SHMEM_I(inode);
4301 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4302 	const struct xattr *xattr;
4303 	struct simple_xattr *new_xattr;
4304 	size_t ispace = 0;
4305 	size_t len;
4306 
4307 	if (sbinfo->max_inodes) {
4308 		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4309 			ispace += simple_xattr_space(xattr->name,
4310 				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
4311 		}
4312 		if (ispace) {
4313 			raw_spin_lock(&sbinfo->stat_lock);
4314 			if (sbinfo->free_ispace < ispace)
4315 				ispace = 0;
4316 			else
4317 				sbinfo->free_ispace -= ispace;
4318 			raw_spin_unlock(&sbinfo->stat_lock);
4319 			if (!ispace)
4320 				return -ENOSPC;
4321 		}
4322 	}
4323 
4324 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4325 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
4326 		if (!new_xattr)
4327 			break;
4328 
4329 		len = strlen(xattr->name) + 1;
4330 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
4331 					  GFP_KERNEL_ACCOUNT);
4332 		if (!new_xattr->name) {
4333 			kvfree(new_xattr);
4334 			break;
4335 		}
4336 
4337 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
4338 		       XATTR_SECURITY_PREFIX_LEN);
4339 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
4340 		       xattr->name, len);
4341 
4342 		simple_xattr_add(&info->xattrs, new_xattr);
4343 	}
4344 
4345 	if (xattr->name != NULL) {
4346 		if (ispace) {
4347 			raw_spin_lock(&sbinfo->stat_lock);
4348 			sbinfo->free_ispace += ispace;
4349 			raw_spin_unlock(&sbinfo->stat_lock);
4350 		}
4351 		simple_xattrs_free(&info->xattrs, NULL);
4352 		return -ENOMEM;
4353 	}
4354 
4355 	return 0;
4356 }
4357 
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)4358 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
4359 				   struct dentry *unused, struct inode *inode,
4360 				   const char *name, void *buffer, size_t size)
4361 {
4362 	struct shmem_inode_info *info = SHMEM_I(inode);
4363 
4364 	name = xattr_full_name(handler, name);
4365 	return simple_xattr_get(&info->xattrs, name, buffer, size);
4366 }
4367 
shmem_xattr_handler_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)4368 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
4369 				   struct mnt_idmap *idmap,
4370 				   struct dentry *unused, struct inode *inode,
4371 				   const char *name, const void *value,
4372 				   size_t size, int flags)
4373 {
4374 	struct shmem_inode_info *info = SHMEM_I(inode);
4375 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4376 	struct simple_xattr *old_xattr;
4377 	size_t ispace = 0;
4378 
4379 	name = xattr_full_name(handler, name);
4380 	if (value && sbinfo->max_inodes) {
4381 		ispace = simple_xattr_space(name, size);
4382 		raw_spin_lock(&sbinfo->stat_lock);
4383 		if (sbinfo->free_ispace < ispace)
4384 			ispace = 0;
4385 		else
4386 			sbinfo->free_ispace -= ispace;
4387 		raw_spin_unlock(&sbinfo->stat_lock);
4388 		if (!ispace)
4389 			return -ENOSPC;
4390 	}
4391 
4392 	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
4393 	if (!IS_ERR(old_xattr)) {
4394 		ispace = 0;
4395 		if (old_xattr && sbinfo->max_inodes)
4396 			ispace = simple_xattr_space(old_xattr->name,
4397 						    old_xattr->size);
4398 		simple_xattr_free(old_xattr);
4399 		old_xattr = NULL;
4400 		inode_set_ctime_current(inode);
4401 		inode_inc_iversion(inode);
4402 	}
4403 	if (ispace) {
4404 		raw_spin_lock(&sbinfo->stat_lock);
4405 		sbinfo->free_ispace += ispace;
4406 		raw_spin_unlock(&sbinfo->stat_lock);
4407 	}
4408 	return PTR_ERR(old_xattr);
4409 }
4410 
4411 static const struct xattr_handler shmem_security_xattr_handler = {
4412 	.prefix = XATTR_SECURITY_PREFIX,
4413 	.get = shmem_xattr_handler_get,
4414 	.set = shmem_xattr_handler_set,
4415 };
4416 
4417 static const struct xattr_handler shmem_trusted_xattr_handler = {
4418 	.prefix = XATTR_TRUSTED_PREFIX,
4419 	.get = shmem_xattr_handler_get,
4420 	.set = shmem_xattr_handler_set,
4421 };
4422 
4423 static const struct xattr_handler shmem_user_xattr_handler = {
4424 	.prefix = XATTR_USER_PREFIX,
4425 	.get = shmem_xattr_handler_get,
4426 	.set = shmem_xattr_handler_set,
4427 };
4428 
4429 static const struct xattr_handler * const shmem_xattr_handlers[] = {
4430 	&shmem_security_xattr_handler,
4431 	&shmem_trusted_xattr_handler,
4432 	&shmem_user_xattr_handler,
4433 	NULL
4434 };
4435 
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)4436 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
4437 {
4438 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4439 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
4440 }
4441 #endif /* CONFIG_TMPFS_XATTR */
4442 
4443 static const struct inode_operations shmem_short_symlink_operations = {
4444 	.getattr	= shmem_getattr,
4445 	.setattr	= shmem_setattr,
4446 	.get_link	= simple_get_link,
4447 #ifdef CONFIG_TMPFS_XATTR
4448 	.listxattr	= shmem_listxattr,
4449 #endif
4450 };
4451 
4452 static const struct inode_operations shmem_symlink_inode_operations = {
4453 	.getattr	= shmem_getattr,
4454 	.setattr	= shmem_setattr,
4455 	.get_link	= shmem_get_link,
4456 #ifdef CONFIG_TMPFS_XATTR
4457 	.listxattr	= shmem_listxattr,
4458 #endif
4459 };
4460 
shmem_get_parent(struct dentry * child)4461 static struct dentry *shmem_get_parent(struct dentry *child)
4462 {
4463 	return ERR_PTR(-ESTALE);
4464 }
4465 
shmem_match(struct inode * ino,void * vfh)4466 static int shmem_match(struct inode *ino, void *vfh)
4467 {
4468 	__u32 *fh = vfh;
4469 	__u64 inum = fh[2];
4470 	inum = (inum << 32) | fh[1];
4471 	return ino->i_ino == inum && fh[0] == ino->i_generation;
4472 }
4473 
4474 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)4475 static struct dentry *shmem_find_alias(struct inode *inode)
4476 {
4477 	struct dentry *alias = d_find_alias(inode);
4478 
4479 	return alias ?: d_find_any_alias(inode);
4480 }
4481 
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)4482 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
4483 		struct fid *fid, int fh_len, int fh_type)
4484 {
4485 	struct inode *inode;
4486 	struct dentry *dentry = NULL;
4487 	u64 inum;
4488 
4489 	if (fh_len < 3)
4490 		return NULL;
4491 
4492 	inum = fid->raw[2];
4493 	inum = (inum << 32) | fid->raw[1];
4494 
4495 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
4496 			shmem_match, fid->raw);
4497 	if (inode) {
4498 		dentry = shmem_find_alias(inode);
4499 		iput(inode);
4500 	}
4501 
4502 	return dentry;
4503 }
4504 
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)4505 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4506 				struct inode *parent)
4507 {
4508 	if (*len < 3) {
4509 		*len = 3;
4510 		return FILEID_INVALID;
4511 	}
4512 
4513 	if (inode_unhashed(inode)) {
4514 		/* Unfortunately insert_inode_hash is not idempotent,
4515 		 * so as we hash inodes here rather than at creation
4516 		 * time, we need a lock to ensure we only try
4517 		 * to do it once
4518 		 */
4519 		static DEFINE_SPINLOCK(lock);
4520 		spin_lock(&lock);
4521 		if (inode_unhashed(inode))
4522 			__insert_inode_hash(inode,
4523 					    inode->i_ino + inode->i_generation);
4524 		spin_unlock(&lock);
4525 	}
4526 
4527 	fh[0] = inode->i_generation;
4528 	fh[1] = inode->i_ino;
4529 	fh[2] = ((__u64)inode->i_ino) >> 32;
4530 
4531 	*len = 3;
4532 	return 1;
4533 }
4534 
4535 static const struct export_operations shmem_export_ops = {
4536 	.get_parent     = shmem_get_parent,
4537 	.encode_fh      = shmem_encode_fh,
4538 	.fh_to_dentry	= shmem_fh_to_dentry,
4539 };
4540 
4541 enum shmem_param {
4542 	Opt_gid,
4543 	Opt_huge,
4544 	Opt_mode,
4545 	Opt_mpol,
4546 	Opt_nr_blocks,
4547 	Opt_nr_inodes,
4548 	Opt_size,
4549 	Opt_uid,
4550 	Opt_inode32,
4551 	Opt_inode64,
4552 	Opt_noswap,
4553 	Opt_quota,
4554 	Opt_usrquota,
4555 	Opt_grpquota,
4556 	Opt_usrquota_block_hardlimit,
4557 	Opt_usrquota_inode_hardlimit,
4558 	Opt_grpquota_block_hardlimit,
4559 	Opt_grpquota_inode_hardlimit,
4560 	Opt_casefold_version,
4561 	Opt_casefold,
4562 	Opt_strict_encoding,
4563 };
4564 
4565 static const struct constant_table shmem_param_enums_huge[] = {
4566 	{"never",	SHMEM_HUGE_NEVER },
4567 	{"always",	SHMEM_HUGE_ALWAYS },
4568 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
4569 	{"advise",	SHMEM_HUGE_ADVISE },
4570 	{}
4571 };
4572 
4573 const struct fs_parameter_spec shmem_fs_parameters[] = {
4574 	fsparam_gid   ("gid",		Opt_gid),
4575 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
4576 	fsparam_u32oct("mode",		Opt_mode),
4577 	fsparam_string("mpol",		Opt_mpol),
4578 	fsparam_string("nr_blocks",	Opt_nr_blocks),
4579 	fsparam_string("nr_inodes",	Opt_nr_inodes),
4580 	fsparam_string("size",		Opt_size),
4581 	fsparam_uid   ("uid",		Opt_uid),
4582 	fsparam_flag  ("inode32",	Opt_inode32),
4583 	fsparam_flag  ("inode64",	Opt_inode64),
4584 	fsparam_flag  ("noswap",	Opt_noswap),
4585 #ifdef CONFIG_TMPFS_QUOTA
4586 	fsparam_flag  ("quota",		Opt_quota),
4587 	fsparam_flag  ("usrquota",	Opt_usrquota),
4588 	fsparam_flag  ("grpquota",	Opt_grpquota),
4589 	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4590 	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4591 	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4592 	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4593 #endif
4594 	fsparam_string("casefold",	Opt_casefold_version),
4595 	fsparam_flag  ("casefold",	Opt_casefold),
4596 	fsparam_flag  ("strict_encoding", Opt_strict_encoding),
4597 	{}
4598 };
4599 
4600 #if IS_ENABLED(CONFIG_UNICODE)
shmem_parse_opt_casefold(struct fs_context * fc,struct fs_parameter * param,bool latest_version)4601 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4602 				    bool latest_version)
4603 {
4604 	struct shmem_options *ctx = fc->fs_private;
4605 	int version = UTF8_LATEST;
4606 	struct unicode_map *encoding;
4607 	char *version_str = param->string + 5;
4608 
4609 	if (!latest_version) {
4610 		if (strncmp(param->string, "utf8-", 5))
4611 			return invalfc(fc, "Only UTF-8 encodings are supported "
4612 				       "in the format: utf8-<version number>");
4613 
4614 		version = utf8_parse_version(version_str);
4615 		if (version < 0)
4616 			return invalfc(fc, "Invalid UTF-8 version: %s", version_str);
4617 	}
4618 
4619 	encoding = utf8_load(version);
4620 
4621 	if (IS_ERR(encoding)) {
4622 		return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n",
4623 			       unicode_major(version), unicode_minor(version),
4624 			       unicode_rev(version));
4625 	}
4626 
4627 	pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n",
4628 		unicode_major(version), unicode_minor(version), unicode_rev(version));
4629 
4630 	ctx->encoding = encoding;
4631 
4632 	return 0;
4633 }
4634 #else
shmem_parse_opt_casefold(struct fs_context * fc,struct fs_parameter * param,bool latest_version)4635 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4636 				    bool latest_version)
4637 {
4638 	return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4639 }
4640 #endif
4641 
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)4642 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4643 {
4644 	struct shmem_options *ctx = fc->fs_private;
4645 	struct fs_parse_result result;
4646 	unsigned long long size;
4647 	char *rest;
4648 	int opt;
4649 	kuid_t kuid;
4650 	kgid_t kgid;
4651 
4652 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4653 	if (opt < 0)
4654 		return opt;
4655 
4656 	switch (opt) {
4657 	case Opt_size:
4658 		size = memparse(param->string, &rest);
4659 		if (*rest == '%') {
4660 			size <<= PAGE_SHIFT;
4661 			size *= totalram_pages();
4662 			do_div(size, 100);
4663 			rest++;
4664 		}
4665 		if (*rest)
4666 			goto bad_value;
4667 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4668 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4669 		break;
4670 	case Opt_nr_blocks:
4671 		ctx->blocks = memparse(param->string, &rest);
4672 		if (*rest || ctx->blocks > LONG_MAX)
4673 			goto bad_value;
4674 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4675 		break;
4676 	case Opt_nr_inodes:
4677 		ctx->inodes = memparse(param->string, &rest);
4678 		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4679 			goto bad_value;
4680 		ctx->seen |= SHMEM_SEEN_INODES;
4681 		break;
4682 	case Opt_mode:
4683 		ctx->mode = result.uint_32 & 07777;
4684 		break;
4685 	case Opt_uid:
4686 		kuid = result.uid;
4687 
4688 		/*
4689 		 * The requested uid must be representable in the
4690 		 * filesystem's idmapping.
4691 		 */
4692 		if (!kuid_has_mapping(fc->user_ns, kuid))
4693 			goto bad_value;
4694 
4695 		ctx->uid = kuid;
4696 		break;
4697 	case Opt_gid:
4698 		kgid = result.gid;
4699 
4700 		/*
4701 		 * The requested gid must be representable in the
4702 		 * filesystem's idmapping.
4703 		 */
4704 		if (!kgid_has_mapping(fc->user_ns, kgid))
4705 			goto bad_value;
4706 
4707 		ctx->gid = kgid;
4708 		break;
4709 	case Opt_huge:
4710 		ctx->huge = result.uint_32;
4711 		if (ctx->huge != SHMEM_HUGE_NEVER &&
4712 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4713 		      has_transparent_hugepage()))
4714 			goto unsupported_parameter;
4715 		ctx->seen |= SHMEM_SEEN_HUGE;
4716 		break;
4717 	case Opt_mpol:
4718 		if (IS_ENABLED(CONFIG_NUMA)) {
4719 			mpol_put(ctx->mpol);
4720 			ctx->mpol = NULL;
4721 			if (mpol_parse_str(param->string, &ctx->mpol))
4722 				goto bad_value;
4723 			break;
4724 		}
4725 		goto unsupported_parameter;
4726 	case Opt_inode32:
4727 		ctx->full_inums = false;
4728 		ctx->seen |= SHMEM_SEEN_INUMS;
4729 		break;
4730 	case Opt_inode64:
4731 		if (sizeof(ino_t) < 8) {
4732 			return invalfc(fc,
4733 				       "Cannot use inode64 with <64bit inums in kernel\n");
4734 		}
4735 		ctx->full_inums = true;
4736 		ctx->seen |= SHMEM_SEEN_INUMS;
4737 		break;
4738 	case Opt_noswap:
4739 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4740 			return invalfc(fc,
4741 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4742 		}
4743 		ctx->noswap = true;
4744 		ctx->seen |= SHMEM_SEEN_NOSWAP;
4745 		break;
4746 	case Opt_quota:
4747 		if (fc->user_ns != &init_user_ns)
4748 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4749 		ctx->seen |= SHMEM_SEEN_QUOTA;
4750 		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4751 		break;
4752 	case Opt_usrquota:
4753 		if (fc->user_ns != &init_user_ns)
4754 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4755 		ctx->seen |= SHMEM_SEEN_QUOTA;
4756 		ctx->quota_types |= QTYPE_MASK_USR;
4757 		break;
4758 	case Opt_grpquota:
4759 		if (fc->user_ns != &init_user_ns)
4760 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4761 		ctx->seen |= SHMEM_SEEN_QUOTA;
4762 		ctx->quota_types |= QTYPE_MASK_GRP;
4763 		break;
4764 	case Opt_usrquota_block_hardlimit:
4765 		size = memparse(param->string, &rest);
4766 		if (*rest || !size)
4767 			goto bad_value;
4768 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4769 			return invalfc(fc,
4770 				       "User quota block hardlimit too large.");
4771 		ctx->qlimits.usrquota_bhardlimit = size;
4772 		break;
4773 	case Opt_grpquota_block_hardlimit:
4774 		size = memparse(param->string, &rest);
4775 		if (*rest || !size)
4776 			goto bad_value;
4777 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4778 			return invalfc(fc,
4779 				       "Group quota block hardlimit too large.");
4780 		ctx->qlimits.grpquota_bhardlimit = size;
4781 		break;
4782 	case Opt_usrquota_inode_hardlimit:
4783 		size = memparse(param->string, &rest);
4784 		if (*rest || !size)
4785 			goto bad_value;
4786 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4787 			return invalfc(fc,
4788 				       "User quota inode hardlimit too large.");
4789 		ctx->qlimits.usrquota_ihardlimit = size;
4790 		break;
4791 	case Opt_grpquota_inode_hardlimit:
4792 		size = memparse(param->string, &rest);
4793 		if (*rest || !size)
4794 			goto bad_value;
4795 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4796 			return invalfc(fc,
4797 				       "Group quota inode hardlimit too large.");
4798 		ctx->qlimits.grpquota_ihardlimit = size;
4799 		break;
4800 	case Opt_casefold_version:
4801 		return shmem_parse_opt_casefold(fc, param, false);
4802 	case Opt_casefold:
4803 		return shmem_parse_opt_casefold(fc, param, true);
4804 	case Opt_strict_encoding:
4805 #if IS_ENABLED(CONFIG_UNICODE)
4806 		ctx->strict_encoding = true;
4807 		break;
4808 #else
4809 		return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4810 #endif
4811 	}
4812 	return 0;
4813 
4814 unsupported_parameter:
4815 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4816 bad_value:
4817 	return invalfc(fc, "Bad value for '%s'", param->key);
4818 }
4819 
shmem_next_opt(char ** s)4820 static char *shmem_next_opt(char **s)
4821 {
4822 	char *sbegin = *s;
4823 	char *p;
4824 
4825 	if (sbegin == NULL)
4826 		return NULL;
4827 
4828 	/*
4829 	 * NUL-terminate this option: unfortunately,
4830 	 * mount options form a comma-separated list,
4831 	 * but mpol's nodelist may also contain commas.
4832 	 */
4833 	for (;;) {
4834 		p = strchr(*s, ',');
4835 		if (p == NULL)
4836 			break;
4837 		*s = p + 1;
4838 		if (!isdigit(*(p+1))) {
4839 			*p = '\0';
4840 			return sbegin;
4841 		}
4842 	}
4843 
4844 	*s = NULL;
4845 	return sbegin;
4846 }
4847 
shmem_parse_monolithic(struct fs_context * fc,void * data)4848 static int shmem_parse_monolithic(struct fs_context *fc, void *data)
4849 {
4850 	return vfs_parse_monolithic_sep(fc, data, shmem_next_opt);
4851 }
4852 
4853 /*
4854  * Reconfigure a shmem filesystem.
4855  */
shmem_reconfigure(struct fs_context * fc)4856 static int shmem_reconfigure(struct fs_context *fc)
4857 {
4858 	struct shmem_options *ctx = fc->fs_private;
4859 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4860 	unsigned long used_isp;
4861 	struct mempolicy *mpol = NULL;
4862 	const char *err;
4863 
4864 	raw_spin_lock(&sbinfo->stat_lock);
4865 	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4866 
4867 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4868 		if (!sbinfo->max_blocks) {
4869 			err = "Cannot retroactively limit size";
4870 			goto out;
4871 		}
4872 		if (percpu_counter_compare(&sbinfo->used_blocks,
4873 					   ctx->blocks) > 0) {
4874 			err = "Too small a size for current use";
4875 			goto out;
4876 		}
4877 	}
4878 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4879 		if (!sbinfo->max_inodes) {
4880 			err = "Cannot retroactively limit inodes";
4881 			goto out;
4882 		}
4883 		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4884 			err = "Too few inodes for current use";
4885 			goto out;
4886 		}
4887 	}
4888 
4889 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4890 	    sbinfo->next_ino > UINT_MAX) {
4891 		err = "Current inum too high to switch to 32-bit inums";
4892 		goto out;
4893 	}
4894 	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4895 		err = "Cannot disable swap on remount";
4896 		goto out;
4897 	}
4898 	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4899 		err = "Cannot enable swap on remount if it was disabled on first mount";
4900 		goto out;
4901 	}
4902 
4903 	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4904 	    !sb_any_quota_loaded(fc->root->d_sb)) {
4905 		err = "Cannot enable quota on remount";
4906 		goto out;
4907 	}
4908 
4909 #ifdef CONFIG_TMPFS_QUOTA
4910 #define CHANGED_LIMIT(name)						\
4911 	(ctx->qlimits.name## hardlimit &&				\
4912 	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4913 
4914 	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4915 	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4916 		err = "Cannot change global quota limit on remount";
4917 		goto out;
4918 	}
4919 #endif /* CONFIG_TMPFS_QUOTA */
4920 
4921 	if (ctx->seen & SHMEM_SEEN_HUGE)
4922 		sbinfo->huge = ctx->huge;
4923 	if (ctx->seen & SHMEM_SEEN_INUMS)
4924 		sbinfo->full_inums = ctx->full_inums;
4925 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4926 		sbinfo->max_blocks  = ctx->blocks;
4927 	if (ctx->seen & SHMEM_SEEN_INODES) {
4928 		sbinfo->max_inodes  = ctx->inodes;
4929 		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4930 	}
4931 
4932 	/*
4933 	 * Preserve previous mempolicy unless mpol remount option was specified.
4934 	 */
4935 	if (ctx->mpol) {
4936 		mpol = sbinfo->mpol;
4937 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4938 		ctx->mpol = NULL;
4939 	}
4940 
4941 	if (ctx->noswap)
4942 		sbinfo->noswap = true;
4943 
4944 	raw_spin_unlock(&sbinfo->stat_lock);
4945 	mpol_put(mpol);
4946 	return 0;
4947 out:
4948 	raw_spin_unlock(&sbinfo->stat_lock);
4949 	return invalfc(fc, "%s", err);
4950 }
4951 
shmem_show_options(struct seq_file * seq,struct dentry * root)4952 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4953 {
4954 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4955 	struct mempolicy *mpol;
4956 
4957 	if (sbinfo->max_blocks != shmem_default_max_blocks())
4958 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4959 	if (sbinfo->max_inodes != shmem_default_max_inodes())
4960 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4961 	if (sbinfo->mode != (0777 | S_ISVTX))
4962 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4963 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4964 		seq_printf(seq, ",uid=%u",
4965 				from_kuid_munged(&init_user_ns, sbinfo->uid));
4966 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4967 		seq_printf(seq, ",gid=%u",
4968 				from_kgid_munged(&init_user_ns, sbinfo->gid));
4969 
4970 	/*
4971 	 * Showing inode{64,32} might be useful even if it's the system default,
4972 	 * since then people don't have to resort to checking both here and
4973 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4974 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4975 	 *
4976 	 * We hide it when inode64 isn't the default and we are using 32-bit
4977 	 * inodes, since that probably just means the feature isn't even under
4978 	 * consideration.
4979 	 *
4980 	 * As such:
4981 	 *
4982 	 *                     +-----------------+-----------------+
4983 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4984 	 *  +------------------+-----------------+-----------------+
4985 	 *  | full_inums=true  | show            | show            |
4986 	 *  | full_inums=false | show            | hide            |
4987 	 *  +------------------+-----------------+-----------------+
4988 	 *
4989 	 */
4990 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4991 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4992 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4993 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4994 	if (sbinfo->huge)
4995 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4996 #endif
4997 	mpol = shmem_get_sbmpol(sbinfo);
4998 	shmem_show_mpol(seq, mpol);
4999 	mpol_put(mpol);
5000 	if (sbinfo->noswap)
5001 		seq_printf(seq, ",noswap");
5002 #ifdef CONFIG_TMPFS_QUOTA
5003 	if (sb_has_quota_active(root->d_sb, USRQUOTA))
5004 		seq_printf(seq, ",usrquota");
5005 	if (sb_has_quota_active(root->d_sb, GRPQUOTA))
5006 		seq_printf(seq, ",grpquota");
5007 	if (sbinfo->qlimits.usrquota_bhardlimit)
5008 		seq_printf(seq, ",usrquota_block_hardlimit=%lld",
5009 			   sbinfo->qlimits.usrquota_bhardlimit);
5010 	if (sbinfo->qlimits.grpquota_bhardlimit)
5011 		seq_printf(seq, ",grpquota_block_hardlimit=%lld",
5012 			   sbinfo->qlimits.grpquota_bhardlimit);
5013 	if (sbinfo->qlimits.usrquota_ihardlimit)
5014 		seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
5015 			   sbinfo->qlimits.usrquota_ihardlimit);
5016 	if (sbinfo->qlimits.grpquota_ihardlimit)
5017 		seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
5018 			   sbinfo->qlimits.grpquota_ihardlimit);
5019 #endif
5020 	return 0;
5021 }
5022 
5023 #endif /* CONFIG_TMPFS */
5024 
shmem_put_super(struct super_block * sb)5025 static void shmem_put_super(struct super_block *sb)
5026 {
5027 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
5028 
5029 #if IS_ENABLED(CONFIG_UNICODE)
5030 	if (sb->s_encoding)
5031 		utf8_unload(sb->s_encoding);
5032 #endif
5033 
5034 #ifdef CONFIG_TMPFS_QUOTA
5035 	shmem_disable_quotas(sb);
5036 #endif
5037 	free_percpu(sbinfo->ino_batch);
5038 	percpu_counter_destroy(&sbinfo->used_blocks);
5039 	mpol_put(sbinfo->mpol);
5040 	kfree(sbinfo);
5041 	sb->s_fs_info = NULL;
5042 }
5043 
5044 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS)
5045 static const struct dentry_operations shmem_ci_dentry_ops = {
5046 	.d_hash = generic_ci_d_hash,
5047 	.d_compare = generic_ci_d_compare,
5048 };
5049 #endif
5050 
shmem_fill_super(struct super_block * sb,struct fs_context * fc)5051 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
5052 {
5053 	struct shmem_options *ctx = fc->fs_private;
5054 	struct inode *inode;
5055 	struct shmem_sb_info *sbinfo;
5056 	int error = -ENOMEM;
5057 
5058 	/* Round up to L1_CACHE_BYTES to resist false sharing */
5059 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
5060 				L1_CACHE_BYTES), GFP_KERNEL);
5061 	if (!sbinfo)
5062 		return error;
5063 
5064 	sb->s_fs_info = sbinfo;
5065 
5066 #ifdef CONFIG_TMPFS
5067 	/*
5068 	 * Per default we only allow half of the physical ram per
5069 	 * tmpfs instance, limiting inodes to one per page of lowmem;
5070 	 * but the internal instance is left unlimited.
5071 	 */
5072 	if (!(sb->s_flags & SB_KERNMOUNT)) {
5073 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
5074 			ctx->blocks = shmem_default_max_blocks();
5075 		if (!(ctx->seen & SHMEM_SEEN_INODES))
5076 			ctx->inodes = shmem_default_max_inodes();
5077 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
5078 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
5079 		sbinfo->noswap = ctx->noswap;
5080 	} else {
5081 		sb->s_flags |= SB_NOUSER;
5082 	}
5083 	sb->s_export_op = &shmem_export_ops;
5084 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
5085 
5086 #if IS_ENABLED(CONFIG_UNICODE)
5087 	if (!ctx->encoding && ctx->strict_encoding) {
5088 		pr_err("tmpfs: strict_encoding option without encoding is forbidden\n");
5089 		error = -EINVAL;
5090 		goto failed;
5091 	}
5092 
5093 	if (ctx->encoding) {
5094 		sb->s_encoding = ctx->encoding;
5095 		set_default_d_op(sb, &shmem_ci_dentry_ops);
5096 		if (ctx->strict_encoding)
5097 			sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL;
5098 	}
5099 #endif
5100 
5101 #else
5102 	sb->s_flags |= SB_NOUSER;
5103 #endif /* CONFIG_TMPFS */
5104 	sb->s_d_flags |= DCACHE_DONTCACHE;
5105 	sbinfo->max_blocks = ctx->blocks;
5106 	sbinfo->max_inodes = ctx->inodes;
5107 	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
5108 	if (sb->s_flags & SB_KERNMOUNT) {
5109 		sbinfo->ino_batch = alloc_percpu(ino_t);
5110 		if (!sbinfo->ino_batch)
5111 			goto failed;
5112 	}
5113 	sbinfo->uid = ctx->uid;
5114 	sbinfo->gid = ctx->gid;
5115 	sbinfo->full_inums = ctx->full_inums;
5116 	sbinfo->mode = ctx->mode;
5117 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5118 	if (ctx->seen & SHMEM_SEEN_HUGE)
5119 		sbinfo->huge = ctx->huge;
5120 	else
5121 		sbinfo->huge = tmpfs_huge;
5122 #endif
5123 	sbinfo->mpol = ctx->mpol;
5124 	ctx->mpol = NULL;
5125 
5126 	raw_spin_lock_init(&sbinfo->stat_lock);
5127 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
5128 		goto failed;
5129 	spin_lock_init(&sbinfo->shrinklist_lock);
5130 	INIT_LIST_HEAD(&sbinfo->shrinklist);
5131 
5132 	sb->s_maxbytes = MAX_LFS_FILESIZE;
5133 	sb->s_blocksize = PAGE_SIZE;
5134 	sb->s_blocksize_bits = PAGE_SHIFT;
5135 	sb->s_magic = TMPFS_MAGIC;
5136 	sb->s_op = &shmem_ops;
5137 	sb->s_time_gran = 1;
5138 #ifdef CONFIG_TMPFS_XATTR
5139 	sb->s_xattr = shmem_xattr_handlers;
5140 #endif
5141 #ifdef CONFIG_TMPFS_POSIX_ACL
5142 	sb->s_flags |= SB_POSIXACL;
5143 #endif
5144 	uuid_t uuid;
5145 	uuid_gen(&uuid);
5146 	super_set_uuid(sb, uuid.b, sizeof(uuid));
5147 
5148 #ifdef CONFIG_TMPFS_QUOTA
5149 	if (ctx->seen & SHMEM_SEEN_QUOTA) {
5150 		sb->dq_op = &shmem_quota_operations;
5151 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5152 		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
5153 
5154 		/* Copy the default limits from ctx into sbinfo */
5155 		memcpy(&sbinfo->qlimits, &ctx->qlimits,
5156 		       sizeof(struct shmem_quota_limits));
5157 
5158 		if (shmem_enable_quotas(sb, ctx->quota_types))
5159 			goto failed;
5160 	}
5161 #endif /* CONFIG_TMPFS_QUOTA */
5162 
5163 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
5164 				S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
5165 	if (IS_ERR(inode)) {
5166 		error = PTR_ERR(inode);
5167 		goto failed;
5168 	}
5169 	inode->i_uid = sbinfo->uid;
5170 	inode->i_gid = sbinfo->gid;
5171 	sb->s_root = d_make_root(inode);
5172 	if (!sb->s_root)
5173 		goto failed;
5174 	return 0;
5175 
5176 failed:
5177 	shmem_put_super(sb);
5178 	return error;
5179 }
5180 
shmem_get_tree(struct fs_context * fc)5181 static int shmem_get_tree(struct fs_context *fc)
5182 {
5183 	return get_tree_nodev(fc, shmem_fill_super);
5184 }
5185 
shmem_free_fc(struct fs_context * fc)5186 static void shmem_free_fc(struct fs_context *fc)
5187 {
5188 	struct shmem_options *ctx = fc->fs_private;
5189 
5190 	if (ctx) {
5191 		mpol_put(ctx->mpol);
5192 		kfree(ctx);
5193 	}
5194 }
5195 
5196 static const struct fs_context_operations shmem_fs_context_ops = {
5197 	.free			= shmem_free_fc,
5198 	.get_tree		= shmem_get_tree,
5199 #ifdef CONFIG_TMPFS
5200 	.parse_monolithic	= shmem_parse_monolithic,
5201 	.parse_param		= shmem_parse_one,
5202 	.reconfigure		= shmem_reconfigure,
5203 #endif
5204 };
5205 
5206 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
5207 
shmem_alloc_inode(struct super_block * sb)5208 static struct inode *shmem_alloc_inode(struct super_block *sb)
5209 {
5210 	struct shmem_inode_info *info;
5211 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
5212 	if (!info)
5213 		return NULL;
5214 	return &info->vfs_inode;
5215 }
5216 
shmem_free_in_core_inode(struct inode * inode)5217 static void shmem_free_in_core_inode(struct inode *inode)
5218 {
5219 	if (S_ISLNK(inode->i_mode))
5220 		kfree(inode->i_link);
5221 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
5222 }
5223 
shmem_destroy_inode(struct inode * inode)5224 static void shmem_destroy_inode(struct inode *inode)
5225 {
5226 	if (S_ISREG(inode->i_mode))
5227 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
5228 	if (S_ISDIR(inode->i_mode))
5229 		simple_offset_destroy(shmem_get_offset_ctx(inode));
5230 }
5231 
shmem_init_inode(void * foo)5232 static void shmem_init_inode(void *foo)
5233 {
5234 	struct shmem_inode_info *info = foo;
5235 	inode_init_once(&info->vfs_inode);
5236 }
5237 
shmem_init_inodecache(void)5238 static void __init shmem_init_inodecache(void)
5239 {
5240 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
5241 				sizeof(struct shmem_inode_info),
5242 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
5243 }
5244 
shmem_destroy_inodecache(void)5245 static void __init shmem_destroy_inodecache(void)
5246 {
5247 	kmem_cache_destroy(shmem_inode_cachep);
5248 }
5249 
5250 /* Keep the page in page cache instead of truncating it */
shmem_error_remove_folio(struct address_space * mapping,struct folio * folio)5251 static int shmem_error_remove_folio(struct address_space *mapping,
5252 				   struct folio *folio)
5253 {
5254 	return 0;
5255 }
5256 
5257 static const struct address_space_operations shmem_aops = {
5258 	.dirty_folio	= noop_dirty_folio,
5259 #ifdef CONFIG_TMPFS
5260 	.write_begin	= shmem_write_begin,
5261 	.write_end	= shmem_write_end,
5262 #endif
5263 #ifdef CONFIG_MIGRATION
5264 	.migrate_folio	= migrate_folio,
5265 #endif
5266 	.error_remove_folio = shmem_error_remove_folio,
5267 };
5268 
5269 static const struct file_operations shmem_file_operations = {
5270 	.mmap		= shmem_mmap,
5271 	.open		= shmem_file_open,
5272 	.get_unmapped_area = shmem_get_unmapped_area,
5273 #ifdef CONFIG_TMPFS
5274 	.llseek		= shmem_file_llseek,
5275 	.read_iter	= shmem_file_read_iter,
5276 	.write_iter	= shmem_file_write_iter,
5277 	.fsync		= noop_fsync,
5278 	.splice_read	= shmem_file_splice_read,
5279 	.splice_write	= iter_file_splice_write,
5280 	.fallocate	= shmem_fallocate,
5281 #endif
5282 };
5283 
5284 static const struct inode_operations shmem_inode_operations = {
5285 	.getattr	= shmem_getattr,
5286 	.setattr	= shmem_setattr,
5287 #ifdef CONFIG_TMPFS_XATTR
5288 	.listxattr	= shmem_listxattr,
5289 	.set_acl	= simple_set_acl,
5290 	.fileattr_get	= shmem_fileattr_get,
5291 	.fileattr_set	= shmem_fileattr_set,
5292 #endif
5293 };
5294 
5295 static const struct inode_operations shmem_dir_inode_operations = {
5296 #ifdef CONFIG_TMPFS
5297 	.getattr	= shmem_getattr,
5298 	.create		= shmem_create,
5299 	.lookup		= simple_lookup,
5300 	.link		= shmem_link,
5301 	.unlink		= shmem_unlink,
5302 	.symlink	= shmem_symlink,
5303 	.mkdir		= shmem_mkdir,
5304 	.rmdir		= shmem_rmdir,
5305 	.mknod		= shmem_mknod,
5306 	.rename		= shmem_rename2,
5307 	.tmpfile	= shmem_tmpfile,
5308 	.get_offset_ctx	= shmem_get_offset_ctx,
5309 #endif
5310 #ifdef CONFIG_TMPFS_XATTR
5311 	.listxattr	= shmem_listxattr,
5312 	.fileattr_get	= shmem_fileattr_get,
5313 	.fileattr_set	= shmem_fileattr_set,
5314 #endif
5315 #ifdef CONFIG_TMPFS_POSIX_ACL
5316 	.setattr	= shmem_setattr,
5317 	.set_acl	= simple_set_acl,
5318 #endif
5319 };
5320 
5321 static const struct inode_operations shmem_special_inode_operations = {
5322 	.getattr	= shmem_getattr,
5323 #ifdef CONFIG_TMPFS_XATTR
5324 	.listxattr	= shmem_listxattr,
5325 #endif
5326 #ifdef CONFIG_TMPFS_POSIX_ACL
5327 	.setattr	= shmem_setattr,
5328 	.set_acl	= simple_set_acl,
5329 #endif
5330 };
5331 
5332 static const struct super_operations shmem_ops = {
5333 	.alloc_inode	= shmem_alloc_inode,
5334 	.free_inode	= shmem_free_in_core_inode,
5335 	.destroy_inode	= shmem_destroy_inode,
5336 #ifdef CONFIG_TMPFS
5337 	.statfs		= shmem_statfs,
5338 	.show_options	= shmem_show_options,
5339 #endif
5340 #ifdef CONFIG_TMPFS_QUOTA
5341 	.get_dquots	= shmem_get_dquots,
5342 #endif
5343 	.evict_inode	= shmem_evict_inode,
5344 	.drop_inode	= generic_delete_inode,
5345 	.put_super	= shmem_put_super,
5346 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5347 	.nr_cached_objects	= shmem_unused_huge_count,
5348 	.free_cached_objects	= shmem_unused_huge_scan,
5349 #endif
5350 };
5351 
5352 static const struct vm_operations_struct shmem_vm_ops = {
5353 	.fault		= shmem_fault,
5354 	.map_pages	= filemap_map_pages,
5355 #ifdef CONFIG_NUMA
5356 	.set_policy     = shmem_set_policy,
5357 	.get_policy     = shmem_get_policy,
5358 #endif
5359 };
5360 
5361 static const struct vm_operations_struct shmem_anon_vm_ops = {
5362 	.fault		= shmem_fault,
5363 	.map_pages	= filemap_map_pages,
5364 #ifdef CONFIG_NUMA
5365 	.set_policy     = shmem_set_policy,
5366 	.get_policy     = shmem_get_policy,
5367 #endif
5368 };
5369 
shmem_init_fs_context(struct fs_context * fc)5370 int shmem_init_fs_context(struct fs_context *fc)
5371 {
5372 	struct shmem_options *ctx;
5373 
5374 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
5375 	if (!ctx)
5376 		return -ENOMEM;
5377 
5378 	ctx->mode = 0777 | S_ISVTX;
5379 	ctx->uid = current_fsuid();
5380 	ctx->gid = current_fsgid();
5381 
5382 #if IS_ENABLED(CONFIG_UNICODE)
5383 	ctx->encoding = NULL;
5384 #endif
5385 
5386 	fc->fs_private = ctx;
5387 	fc->ops = &shmem_fs_context_ops;
5388 	return 0;
5389 }
5390 
5391 static struct file_system_type shmem_fs_type = {
5392 	.owner		= THIS_MODULE,
5393 	.name		= "tmpfs",
5394 	.init_fs_context = shmem_init_fs_context,
5395 #ifdef CONFIG_TMPFS
5396 	.parameters	= shmem_fs_parameters,
5397 #endif
5398 	.kill_sb	= kill_litter_super,
5399 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME,
5400 };
5401 
5402 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5403 
5404 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store)			\
5405 {									\
5406 	.attr	= { .name = __stringify(_name), .mode = _mode },	\
5407 	.show	= _show,						\
5408 	.store	= _store,						\
5409 }
5410 
5411 #define TMPFS_ATTR_W(_name, _store)				\
5412 	static struct kobj_attribute tmpfs_attr_##_name =	\
5413 			__INIT_KOBJ_ATTR(_name, 0200, NULL, _store)
5414 
5415 #define TMPFS_ATTR_RW(_name, _show, _store)			\
5416 	static struct kobj_attribute tmpfs_attr_##_name =	\
5417 			__INIT_KOBJ_ATTR(_name, 0644, _show, _store)
5418 
5419 #define TMPFS_ATTR_RO(_name, _show)				\
5420 	static struct kobj_attribute tmpfs_attr_##_name =	\
5421 			__INIT_KOBJ_ATTR(_name, 0444, _show, NULL)
5422 
5423 #if IS_ENABLED(CONFIG_UNICODE)
casefold_show(struct kobject * kobj,struct kobj_attribute * a,char * buf)5424 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a,
5425 			char *buf)
5426 {
5427 		return sysfs_emit(buf, "supported\n");
5428 }
5429 TMPFS_ATTR_RO(casefold, casefold_show);
5430 #endif
5431 
5432 static struct attribute *tmpfs_attributes[] = {
5433 #if IS_ENABLED(CONFIG_UNICODE)
5434 	&tmpfs_attr_casefold.attr,
5435 #endif
5436 	NULL
5437 };
5438 
5439 static const struct attribute_group tmpfs_attribute_group = {
5440 	.attrs = tmpfs_attributes,
5441 	.name = "features"
5442 };
5443 
5444 static struct kobject *tmpfs_kobj;
5445 
tmpfs_sysfs_init(void)5446 static int __init tmpfs_sysfs_init(void)
5447 {
5448 	int ret;
5449 
5450 	tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj);
5451 	if (!tmpfs_kobj)
5452 		return -ENOMEM;
5453 
5454 	ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group);
5455 	if (ret)
5456 		kobject_put(tmpfs_kobj);
5457 
5458 	return ret;
5459 }
5460 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */
5461 
shmem_init(void)5462 void __init shmem_init(void)
5463 {
5464 	int error;
5465 
5466 	shmem_init_inodecache();
5467 
5468 #ifdef CONFIG_TMPFS_QUOTA
5469 	register_quota_format(&shmem_quota_format);
5470 #endif
5471 
5472 	error = register_filesystem(&shmem_fs_type);
5473 	if (error) {
5474 		pr_err("Could not register tmpfs\n");
5475 		goto out2;
5476 	}
5477 
5478 	shm_mnt = kern_mount(&shmem_fs_type);
5479 	if (IS_ERR(shm_mnt)) {
5480 		error = PTR_ERR(shm_mnt);
5481 		pr_err("Could not kern_mount tmpfs\n");
5482 		goto out1;
5483 	}
5484 
5485 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5486 	error = tmpfs_sysfs_init();
5487 	if (error) {
5488 		pr_err("Could not init tmpfs sysfs\n");
5489 		goto out1;
5490 	}
5491 #endif
5492 
5493 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5494 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5495 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5496 	else
5497 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5498 
5499 	/*
5500 	 * Default to setting PMD-sized THP to inherit the global setting and
5501 	 * disable all other multi-size THPs.
5502 	 */
5503 	if (!shmem_orders_configured)
5504 		huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
5505 #endif
5506 	return;
5507 
5508 out1:
5509 	unregister_filesystem(&shmem_fs_type);
5510 out2:
5511 #ifdef CONFIG_TMPFS_QUOTA
5512 	unregister_quota_format(&shmem_quota_format);
5513 #endif
5514 	shmem_destroy_inodecache();
5515 	shm_mnt = ERR_PTR(error);
5516 }
5517 
5518 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5519 static ssize_t shmem_enabled_show(struct kobject *kobj,
5520 				  struct kobj_attribute *attr, char *buf)
5521 {
5522 	static const int values[] = {
5523 		SHMEM_HUGE_ALWAYS,
5524 		SHMEM_HUGE_WITHIN_SIZE,
5525 		SHMEM_HUGE_ADVISE,
5526 		SHMEM_HUGE_NEVER,
5527 		SHMEM_HUGE_DENY,
5528 		SHMEM_HUGE_FORCE,
5529 	};
5530 	int len = 0;
5531 	int i;
5532 
5533 	for (i = 0; i < ARRAY_SIZE(values); i++) {
5534 		len += sysfs_emit_at(buf, len,
5535 				shmem_huge == values[i] ? "%s[%s]" : "%s%s",
5536 				i ? " " : "", shmem_format_huge(values[i]));
5537 	}
5538 	len += sysfs_emit_at(buf, len, "\n");
5539 
5540 	return len;
5541 }
5542 
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5543 static ssize_t shmem_enabled_store(struct kobject *kobj,
5544 		struct kobj_attribute *attr, const char *buf, size_t count)
5545 {
5546 	char tmp[16];
5547 	int huge, err;
5548 
5549 	if (count + 1 > sizeof(tmp))
5550 		return -EINVAL;
5551 	memcpy(tmp, buf, count);
5552 	tmp[count] = '\0';
5553 	if (count && tmp[count - 1] == '\n')
5554 		tmp[count - 1] = '\0';
5555 
5556 	huge = shmem_parse_huge(tmp);
5557 	if (huge == -EINVAL)
5558 		return huge;
5559 
5560 	shmem_huge = huge;
5561 	if (shmem_huge > SHMEM_HUGE_DENY)
5562 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5563 
5564 	err = start_stop_khugepaged();
5565 	return err ? err : count;
5566 }
5567 
5568 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
5569 static DEFINE_SPINLOCK(huge_shmem_orders_lock);
5570 
thpsize_shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5571 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
5572 					  struct kobj_attribute *attr, char *buf)
5573 {
5574 	int order = to_thpsize(kobj)->order;
5575 	const char *output;
5576 
5577 	if (test_bit(order, &huge_shmem_orders_always))
5578 		output = "[always] inherit within_size advise never";
5579 	else if (test_bit(order, &huge_shmem_orders_inherit))
5580 		output = "always [inherit] within_size advise never";
5581 	else if (test_bit(order, &huge_shmem_orders_within_size))
5582 		output = "always inherit [within_size] advise never";
5583 	else if (test_bit(order, &huge_shmem_orders_madvise))
5584 		output = "always inherit within_size [advise] never";
5585 	else
5586 		output = "always inherit within_size advise [never]";
5587 
5588 	return sysfs_emit(buf, "%s\n", output);
5589 }
5590 
thpsize_shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5591 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
5592 					   struct kobj_attribute *attr,
5593 					   const char *buf, size_t count)
5594 {
5595 	int order = to_thpsize(kobj)->order;
5596 	ssize_t ret = count;
5597 
5598 	if (sysfs_streq(buf, "always")) {
5599 		spin_lock(&huge_shmem_orders_lock);
5600 		clear_bit(order, &huge_shmem_orders_inherit);
5601 		clear_bit(order, &huge_shmem_orders_madvise);
5602 		clear_bit(order, &huge_shmem_orders_within_size);
5603 		set_bit(order, &huge_shmem_orders_always);
5604 		spin_unlock(&huge_shmem_orders_lock);
5605 	} else if (sysfs_streq(buf, "inherit")) {
5606 		/* Do not override huge allocation policy with non-PMD sized mTHP */
5607 		if (shmem_huge == SHMEM_HUGE_FORCE &&
5608 		    order != HPAGE_PMD_ORDER)
5609 			return -EINVAL;
5610 
5611 		spin_lock(&huge_shmem_orders_lock);
5612 		clear_bit(order, &huge_shmem_orders_always);
5613 		clear_bit(order, &huge_shmem_orders_madvise);
5614 		clear_bit(order, &huge_shmem_orders_within_size);
5615 		set_bit(order, &huge_shmem_orders_inherit);
5616 		spin_unlock(&huge_shmem_orders_lock);
5617 	} else if (sysfs_streq(buf, "within_size")) {
5618 		spin_lock(&huge_shmem_orders_lock);
5619 		clear_bit(order, &huge_shmem_orders_always);
5620 		clear_bit(order, &huge_shmem_orders_inherit);
5621 		clear_bit(order, &huge_shmem_orders_madvise);
5622 		set_bit(order, &huge_shmem_orders_within_size);
5623 		spin_unlock(&huge_shmem_orders_lock);
5624 	} else if (sysfs_streq(buf, "advise")) {
5625 		spin_lock(&huge_shmem_orders_lock);
5626 		clear_bit(order, &huge_shmem_orders_always);
5627 		clear_bit(order, &huge_shmem_orders_inherit);
5628 		clear_bit(order, &huge_shmem_orders_within_size);
5629 		set_bit(order, &huge_shmem_orders_madvise);
5630 		spin_unlock(&huge_shmem_orders_lock);
5631 	} else if (sysfs_streq(buf, "never")) {
5632 		spin_lock(&huge_shmem_orders_lock);
5633 		clear_bit(order, &huge_shmem_orders_always);
5634 		clear_bit(order, &huge_shmem_orders_inherit);
5635 		clear_bit(order, &huge_shmem_orders_within_size);
5636 		clear_bit(order, &huge_shmem_orders_madvise);
5637 		spin_unlock(&huge_shmem_orders_lock);
5638 	} else {
5639 		ret = -EINVAL;
5640 	}
5641 
5642 	if (ret > 0) {
5643 		int err = start_stop_khugepaged();
5644 
5645 		if (err)
5646 			ret = err;
5647 	}
5648 	return ret;
5649 }
5650 
5651 struct kobj_attribute thpsize_shmem_enabled_attr =
5652 	__ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5654 
5655 #if defined(CONFIG_TRANSPARENT_HUGEPAGE)
5656 
setup_transparent_hugepage_shmem(char * str)5657 static int __init setup_transparent_hugepage_shmem(char *str)
5658 {
5659 	int huge;
5660 
5661 	huge = shmem_parse_huge(str);
5662 	if (huge == -EINVAL) {
5663 		pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n");
5664 		return huge;
5665 	}
5666 
5667 	shmem_huge = huge;
5668 	return 1;
5669 }
5670 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem);
5671 
setup_transparent_hugepage_tmpfs(char * str)5672 static int __init setup_transparent_hugepage_tmpfs(char *str)
5673 {
5674 	int huge;
5675 
5676 	huge = shmem_parse_huge(str);
5677 	if (huge < 0) {
5678 		pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n");
5679 		return huge;
5680 	}
5681 
5682 	tmpfs_huge = huge;
5683 	return 1;
5684 }
5685 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs);
5686 
5687 static char str_dup[PAGE_SIZE] __initdata;
setup_thp_shmem(char * str)5688 static int __init setup_thp_shmem(char *str)
5689 {
5690 	char *token, *range, *policy, *subtoken;
5691 	unsigned long always, inherit, madvise, within_size;
5692 	char *start_size, *end_size;
5693 	int start, end, nr;
5694 	char *p;
5695 
5696 	if (!str || strlen(str) + 1 > PAGE_SIZE)
5697 		goto err;
5698 	strscpy(str_dup, str);
5699 
5700 	always = huge_shmem_orders_always;
5701 	inherit = huge_shmem_orders_inherit;
5702 	madvise = huge_shmem_orders_madvise;
5703 	within_size = huge_shmem_orders_within_size;
5704 	p = str_dup;
5705 	while ((token = strsep(&p, ";")) != NULL) {
5706 		range = strsep(&token, ":");
5707 		policy = token;
5708 
5709 		if (!policy)
5710 			goto err;
5711 
5712 		while ((subtoken = strsep(&range, ",")) != NULL) {
5713 			if (strchr(subtoken, '-')) {
5714 				start_size = strsep(&subtoken, "-");
5715 				end_size = subtoken;
5716 
5717 				start = get_order_from_str(start_size,
5718 							   THP_ORDERS_ALL_FILE_DEFAULT);
5719 				end = get_order_from_str(end_size,
5720 							 THP_ORDERS_ALL_FILE_DEFAULT);
5721 			} else {
5722 				start_size = end_size = subtoken;
5723 				start = end = get_order_from_str(subtoken,
5724 								 THP_ORDERS_ALL_FILE_DEFAULT);
5725 			}
5726 
5727 			if (start < 0) {
5728 				pr_err("invalid size %s in thp_shmem boot parameter\n",
5729 				       start_size);
5730 				goto err;
5731 			}
5732 
5733 			if (end < 0) {
5734 				pr_err("invalid size %s in thp_shmem boot parameter\n",
5735 				       end_size);
5736 				goto err;
5737 			}
5738 
5739 			if (start > end)
5740 				goto err;
5741 
5742 			nr = end - start + 1;
5743 			if (!strcmp(policy, "always")) {
5744 				bitmap_set(&always, start, nr);
5745 				bitmap_clear(&inherit, start, nr);
5746 				bitmap_clear(&madvise, start, nr);
5747 				bitmap_clear(&within_size, start, nr);
5748 			} else if (!strcmp(policy, "advise")) {
5749 				bitmap_set(&madvise, start, nr);
5750 				bitmap_clear(&inherit, start, nr);
5751 				bitmap_clear(&always, start, nr);
5752 				bitmap_clear(&within_size, start, nr);
5753 			} else if (!strcmp(policy, "inherit")) {
5754 				bitmap_set(&inherit, start, nr);
5755 				bitmap_clear(&madvise, start, nr);
5756 				bitmap_clear(&always, start, nr);
5757 				bitmap_clear(&within_size, start, nr);
5758 			} else if (!strcmp(policy, "within_size")) {
5759 				bitmap_set(&within_size, start, nr);
5760 				bitmap_clear(&inherit, start, nr);
5761 				bitmap_clear(&madvise, start, nr);
5762 				bitmap_clear(&always, start, nr);
5763 			} else if (!strcmp(policy, "never")) {
5764 				bitmap_clear(&inherit, start, nr);
5765 				bitmap_clear(&madvise, start, nr);
5766 				bitmap_clear(&always, start, nr);
5767 				bitmap_clear(&within_size, start, nr);
5768 			} else {
5769 				pr_err("invalid policy %s in thp_shmem boot parameter\n", policy);
5770 				goto err;
5771 			}
5772 		}
5773 	}
5774 
5775 	huge_shmem_orders_always = always;
5776 	huge_shmem_orders_madvise = madvise;
5777 	huge_shmem_orders_inherit = inherit;
5778 	huge_shmem_orders_within_size = within_size;
5779 	shmem_orders_configured = true;
5780 	return 1;
5781 
5782 err:
5783 	pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str);
5784 	return 0;
5785 }
5786 __setup("thp_shmem=", setup_thp_shmem);
5787 
5788 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5789 
5790 #else /* !CONFIG_SHMEM */
5791 
5792 /*
5793  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5794  *
5795  * This is intended for small system where the benefits of the full
5796  * shmem code (swap-backed and resource-limited) are outweighed by
5797  * their complexity. On systems without swap this code should be
5798  * effectively equivalent, but much lighter weight.
5799  */
5800 
5801 static struct file_system_type shmem_fs_type = {
5802 	.name		= "tmpfs",
5803 	.init_fs_context = ramfs_init_fs_context,
5804 	.parameters	= ramfs_fs_parameters,
5805 	.kill_sb	= ramfs_kill_sb,
5806 	.fs_flags	= FS_USERNS_MOUNT,
5807 };
5808 
shmem_init(void)5809 void __init shmem_init(void)
5810 {
5811 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5812 
5813 	shm_mnt = kern_mount(&shmem_fs_type);
5814 	BUG_ON(IS_ERR(shm_mnt));
5815 }
5816 
shmem_unuse(unsigned int type)5817 int shmem_unuse(unsigned int type)
5818 {
5819 	return 0;
5820 }
5821 
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)5822 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5823 {
5824 	return 0;
5825 }
5826 
shmem_unlock_mapping(struct address_space * mapping)5827 void shmem_unlock_mapping(struct address_space *mapping)
5828 {
5829 }
5830 
5831 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)5832 unsigned long shmem_get_unmapped_area(struct file *file,
5833 				      unsigned long addr, unsigned long len,
5834 				      unsigned long pgoff, unsigned long flags)
5835 {
5836 	return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags);
5837 }
5838 #endif
5839 
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)5840 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
5841 {
5842 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5843 }
5844 EXPORT_SYMBOL_GPL(shmem_truncate_range);
5845 
5846 #define shmem_vm_ops				generic_file_vm_ops
5847 #define shmem_anon_vm_ops			generic_file_vm_ops
5848 #define shmem_file_operations			ramfs_file_operations
5849 #define shmem_acct_size(flags, size)		0
5850 #define shmem_unacct_size(flags, size)		do {} while (0)
5851 
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)5852 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5853 				struct super_block *sb, struct inode *dir,
5854 				umode_t mode, dev_t dev, unsigned long flags)
5855 {
5856 	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5857 	return inode ? inode : ERR_PTR(-ENOSPC);
5858 }
5859 
5860 #endif /* CONFIG_SHMEM */
5861 
5862 /* common code */
5863 
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)5864 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5865 			loff_t size, unsigned long flags, unsigned int i_flags)
5866 {
5867 	struct inode *inode;
5868 	struct file *res;
5869 
5870 	if (IS_ERR(mnt))
5871 		return ERR_CAST(mnt);
5872 
5873 	if (size < 0 || size > MAX_LFS_FILESIZE)
5874 		return ERR_PTR(-EINVAL);
5875 
5876 	if (is_idmapped_mnt(mnt))
5877 		return ERR_PTR(-EINVAL);
5878 
5879 	if (shmem_acct_size(flags, size))
5880 		return ERR_PTR(-ENOMEM);
5881 
5882 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5883 				S_IFREG | S_IRWXUGO, 0, flags);
5884 	if (IS_ERR(inode)) {
5885 		shmem_unacct_size(flags, size);
5886 		return ERR_CAST(inode);
5887 	}
5888 	inode->i_flags |= i_flags;
5889 	inode->i_size = size;
5890 	clear_nlink(inode);	/* It is unlinked */
5891 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5892 	if (!IS_ERR(res))
5893 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5894 				&shmem_file_operations);
5895 	if (IS_ERR(res))
5896 		iput(inode);
5897 	return res;
5898 }
5899 
5900 /**
5901  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5902  * 	kernel internal.  There will be NO LSM permission checks against the
5903  * 	underlying inode.  So users of this interface must do LSM checks at a
5904  *	higher layer.  The users are the big_key and shm implementations.  LSM
5905  *	checks are provided at the key or shm level rather than the inode.
5906  * @name: name for dentry (to be seen in /proc/<pid>/maps)
5907  * @size: size to be set for the file
5908  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5909  */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)5910 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5911 {
5912 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5913 }
5914 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5915 
5916 /**
5917  * shmem_file_setup - get an unlinked file living in tmpfs
5918  * @name: name for dentry (to be seen in /proc/<pid>/maps)
5919  * @size: size to be set for the file
5920  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5921  */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)5922 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5923 {
5924 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5925 }
5926 EXPORT_SYMBOL_GPL(shmem_file_setup);
5927 
5928 /**
5929  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5930  * @mnt: the tmpfs mount where the file will be created
5931  * @name: name for dentry (to be seen in /proc/<pid>/maps)
5932  * @size: size to be set for the file
5933  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5934  */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)5935 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5936 				       loff_t size, unsigned long flags)
5937 {
5938 	return __shmem_file_setup(mnt, name, size, flags, 0);
5939 }
5940 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5941 
5942 /**
5943  * shmem_zero_setup - setup a shared anonymous mapping
5944  * @vma: the vma to be mmapped is prepared by do_mmap
5945  */
shmem_zero_setup(struct vm_area_struct * vma)5946 int shmem_zero_setup(struct vm_area_struct *vma)
5947 {
5948 	struct file *file;
5949 	loff_t size = vma->vm_end - vma->vm_start;
5950 
5951 	/*
5952 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5953 	 * between XFS directory reading and selinux: since this file is only
5954 	 * accessible to the user through its mapping, use S_PRIVATE flag to
5955 	 * bypass file security, in the same way as shmem_kernel_file_setup().
5956 	 */
5957 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
5958 	if (IS_ERR(file))
5959 		return PTR_ERR(file);
5960 
5961 	if (vma->vm_file)
5962 		fput(vma->vm_file);
5963 	vma->vm_file = file;
5964 	vma->vm_ops = &shmem_anon_vm_ops;
5965 
5966 	return 0;
5967 }
5968 
5969 /**
5970  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5971  * @mapping:	the folio's address_space
5972  * @index:	the folio index
5973  * @gfp:	the page allocator flags to use if allocating
5974  *
5975  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5976  * with any new page allocations done using the specified allocation flags.
5977  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5978  * suit tmpfs, since it may have pages in swapcache, and needs to find those
5979  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5980  *
5981  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5982  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5983  */
shmem_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)5984 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5985 		pgoff_t index, gfp_t gfp)
5986 {
5987 #ifdef CONFIG_SHMEM
5988 	struct inode *inode = mapping->host;
5989 	struct folio *folio;
5990 	int error;
5991 
5992 	error = shmem_get_folio_gfp(inode, index, i_size_read(inode),
5993 				    &folio, SGP_CACHE, gfp, NULL, NULL);
5994 	if (error)
5995 		return ERR_PTR(error);
5996 
5997 	folio_unlock(folio);
5998 	return folio;
5999 #else
6000 	/*
6001 	 * The tiny !SHMEM case uses ramfs without swap
6002 	 */
6003 	return mapping_read_folio_gfp(mapping, index, gfp);
6004 #endif
6005 }
6006 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
6007 
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)6008 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
6009 					 pgoff_t index, gfp_t gfp)
6010 {
6011 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
6012 	struct page *page;
6013 
6014 	if (IS_ERR(folio))
6015 		return &folio->page;
6016 
6017 	page = folio_file_page(folio, index);
6018 	if (PageHWPoison(page)) {
6019 		folio_put(folio);
6020 		return ERR_PTR(-EIO);
6021 	}
6022 
6023 	return page;
6024 }
6025 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
6026