1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
4 *
5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
7 * Copyright (c) 2022 David Vernet <dvernet@meta.com>
8 */
9 #define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void)))
10
11 enum scx_consts {
12 SCX_DSP_DFL_MAX_BATCH = 32,
13 SCX_DSP_MAX_LOOPS = 32,
14 SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ,
15
16 SCX_EXIT_BT_LEN = 64,
17 SCX_EXIT_MSG_LEN = 1024,
18 SCX_EXIT_DUMP_DFL_LEN = 32768,
19
20 SCX_CPUPERF_ONE = SCHED_CAPACITY_SCALE,
21
22 /*
23 * Iterating all tasks may take a while. Periodically drop
24 * scx_tasks_lock to avoid causing e.g. CSD and RCU stalls.
25 */
26 SCX_OPS_TASK_ITER_BATCH = 32,
27 };
28
29 enum scx_exit_kind {
30 SCX_EXIT_NONE,
31 SCX_EXIT_DONE,
32
33 SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */
34 SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */
35 SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */
36 SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */
37
38 SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */
39 SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */
40 SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */
41 };
42
43 /*
44 * An exit code can be specified when exiting with scx_bpf_exit() or
45 * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN
46 * respectively. The codes are 64bit of the format:
47 *
48 * Bits: [63 .. 48 47 .. 32 31 .. 0]
49 * [ SYS ACT ] [ SYS RSN ] [ USR ]
50 *
51 * SYS ACT: System-defined exit actions
52 * SYS RSN: System-defined exit reasons
53 * USR : User-defined exit codes and reasons
54 *
55 * Using the above, users may communicate intention and context by ORing system
56 * actions and/or system reasons with a user-defined exit code.
57 */
58 enum scx_exit_code {
59 /* Reasons */
60 SCX_ECODE_RSN_HOTPLUG = 1LLU << 32,
61
62 /* Actions */
63 SCX_ECODE_ACT_RESTART = 1LLU << 48,
64 };
65
66 /*
67 * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is
68 * being disabled.
69 */
70 struct scx_exit_info {
71 /* %SCX_EXIT_* - broad category of the exit reason */
72 enum scx_exit_kind kind;
73
74 /* exit code if gracefully exiting */
75 s64 exit_code;
76
77 /* textual representation of the above */
78 const char *reason;
79
80 /* backtrace if exiting due to an error */
81 unsigned long *bt;
82 u32 bt_len;
83
84 /* informational message */
85 char *msg;
86
87 /* debug dump */
88 char *dump;
89 };
90
91 /* sched_ext_ops.flags */
92 enum scx_ops_flags {
93 /*
94 * Keep built-in idle tracking even if ops.update_idle() is implemented.
95 */
96 SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0,
97
98 /*
99 * By default, if there are no other task to run on the CPU, ext core
100 * keeps running the current task even after its slice expires. If this
101 * flag is specified, such tasks are passed to ops.enqueue() with
102 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info.
103 */
104 SCX_OPS_ENQ_LAST = 1LLU << 1,
105
106 /*
107 * An exiting task may schedule after PF_EXITING is set. In such cases,
108 * bpf_task_from_pid() may not be able to find the task and if the BPF
109 * scheduler depends on pid lookup for dispatching, the task will be
110 * lost leading to various issues including RCU grace period stalls.
111 *
112 * To mask this problem, by default, unhashed tasks are automatically
113 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't
114 * depend on pid lookups and wants to handle these tasks directly, the
115 * following flag can be used.
116 */
117 SCX_OPS_ENQ_EXITING = 1LLU << 2,
118
119 /*
120 * If set, only tasks with policy set to SCHED_EXT are attached to
121 * sched_ext. If clear, SCHED_NORMAL tasks are also included.
122 */
123 SCX_OPS_SWITCH_PARTIAL = 1LLU << 3,
124
125 /*
126 * CPU cgroup support flags
127 */
128 SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16, /* cpu.weight */
129
130 SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE |
131 SCX_OPS_ENQ_LAST |
132 SCX_OPS_ENQ_EXITING |
133 SCX_OPS_SWITCH_PARTIAL |
134 SCX_OPS_HAS_CGROUP_WEIGHT,
135 };
136
137 /* argument container for ops.init_task() */
138 struct scx_init_task_args {
139 /*
140 * Set if ops.init_task() is being invoked on the fork path, as opposed
141 * to the scheduler transition path.
142 */
143 bool fork;
144 #ifdef CONFIG_EXT_GROUP_SCHED
145 /* the cgroup the task is joining */
146 struct cgroup *cgroup;
147 #endif
148 };
149
150 /* argument container for ops.exit_task() */
151 struct scx_exit_task_args {
152 /* Whether the task exited before running on sched_ext. */
153 bool cancelled;
154 };
155
156 /* argument container for ops->cgroup_init() */
157 struct scx_cgroup_init_args {
158 /* the weight of the cgroup [1..10000] */
159 u32 weight;
160 };
161
162 enum scx_cpu_preempt_reason {
163 /* next task is being scheduled by &sched_class_rt */
164 SCX_CPU_PREEMPT_RT,
165 /* next task is being scheduled by &sched_class_dl */
166 SCX_CPU_PREEMPT_DL,
167 /* next task is being scheduled by &sched_class_stop */
168 SCX_CPU_PREEMPT_STOP,
169 /* unknown reason for SCX being preempted */
170 SCX_CPU_PREEMPT_UNKNOWN,
171 };
172
173 /*
174 * Argument container for ops->cpu_acquire(). Currently empty, but may be
175 * expanded in the future.
176 */
177 struct scx_cpu_acquire_args {};
178
179 /* argument container for ops->cpu_release() */
180 struct scx_cpu_release_args {
181 /* the reason the CPU was preempted */
182 enum scx_cpu_preempt_reason reason;
183
184 /* the task that's going to be scheduled on the CPU */
185 struct task_struct *task;
186 };
187
188 /*
189 * Informational context provided to dump operations.
190 */
191 struct scx_dump_ctx {
192 enum scx_exit_kind kind;
193 s64 exit_code;
194 const char *reason;
195 u64 at_ns;
196 u64 at_jiffies;
197 };
198
199 /**
200 * struct sched_ext_ops - Operation table for BPF scheduler implementation
201 *
202 * A BPF scheduler can implement an arbitrary scheduling policy by
203 * implementing and loading operations in this table. Note that a userland
204 * scheduling policy can also be implemented using the BPF scheduler
205 * as a shim layer.
206 */
207 struct sched_ext_ops {
208 /**
209 * select_cpu - Pick the target CPU for a task which is being woken up
210 * @p: task being woken up
211 * @prev_cpu: the cpu @p was on before sleeping
212 * @wake_flags: SCX_WAKE_*
213 *
214 * Decision made here isn't final. @p may be moved to any CPU while it
215 * is getting dispatched for execution later. However, as @p is not on
216 * the rq at this point, getting the eventual execution CPU right here
217 * saves a small bit of overhead down the line.
218 *
219 * If an idle CPU is returned, the CPU is kicked and will try to
220 * dispatch. While an explicit custom mechanism can be added,
221 * select_cpu() serves as the default way to wake up idle CPUs.
222 *
223 * @p may be inserted into a DSQ directly by calling
224 * scx_bpf_dsq_insert(). If so, the ops.enqueue() will be skipped.
225 * Directly inserting into %SCX_DSQ_LOCAL will put @p in the local DSQ
226 * of the CPU returned by this operation.
227 *
228 * Note that select_cpu() is never called for tasks that can only run
229 * on a single CPU or tasks with migration disabled, as they don't have
230 * the option to select a different CPU. See select_task_rq() for
231 * details.
232 */
233 s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags);
234
235 /**
236 * enqueue - Enqueue a task on the BPF scheduler
237 * @p: task being enqueued
238 * @enq_flags: %SCX_ENQ_*
239 *
240 * @p is ready to run. Insert directly into a DSQ by calling
241 * scx_bpf_dsq_insert() or enqueue on the BPF scheduler. If not directly
242 * inserted, the bpf scheduler owns @p and if it fails to dispatch @p,
243 * the task will stall.
244 *
245 * If @p was inserted into a DSQ from ops.select_cpu(), this callback is
246 * skipped.
247 */
248 void (*enqueue)(struct task_struct *p, u64 enq_flags);
249
250 /**
251 * dequeue - Remove a task from the BPF scheduler
252 * @p: task being dequeued
253 * @deq_flags: %SCX_DEQ_*
254 *
255 * Remove @p from the BPF scheduler. This is usually called to isolate
256 * the task while updating its scheduling properties (e.g. priority).
257 *
258 * The ext core keeps track of whether the BPF side owns a given task or
259 * not and can gracefully ignore spurious dispatches from BPF side,
260 * which makes it safe to not implement this method. However, depending
261 * on the scheduling logic, this can lead to confusing behaviors - e.g.
262 * scheduling position not being updated across a priority change.
263 */
264 void (*dequeue)(struct task_struct *p, u64 deq_flags);
265
266 /**
267 * dispatch - Dispatch tasks from the BPF scheduler and/or user DSQs
268 * @cpu: CPU to dispatch tasks for
269 * @prev: previous task being switched out
270 *
271 * Called when a CPU's local dsq is empty. The operation should dispatch
272 * one or more tasks from the BPF scheduler into the DSQs using
273 * scx_bpf_dsq_insert() and/or move from user DSQs into the local DSQ
274 * using scx_bpf_dsq_move_to_local().
275 *
276 * The maximum number of times scx_bpf_dsq_insert() can be called
277 * without an intervening scx_bpf_dsq_move_to_local() is specified by
278 * ops.dispatch_max_batch. See the comments on top of the two functions
279 * for more details.
280 *
281 * When not %NULL, @prev is an SCX task with its slice depleted. If
282 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in
283 * @prev->scx.flags, it is not enqueued yet and will be enqueued after
284 * ops.dispatch() returns. To keep executing @prev, return without
285 * dispatching or moving any tasks. Also see %SCX_OPS_ENQ_LAST.
286 */
287 void (*dispatch)(s32 cpu, struct task_struct *prev);
288
289 /**
290 * tick - Periodic tick
291 * @p: task running currently
292 *
293 * This operation is called every 1/HZ seconds on CPUs which are
294 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an
295 * immediate dispatch cycle on the CPU.
296 */
297 void (*tick)(struct task_struct *p);
298
299 /**
300 * runnable - A task is becoming runnable on its associated CPU
301 * @p: task becoming runnable
302 * @enq_flags: %SCX_ENQ_*
303 *
304 * This and the following three functions can be used to track a task's
305 * execution state transitions. A task becomes ->runnable() on a CPU,
306 * and then goes through one or more ->running() and ->stopping() pairs
307 * as it runs on the CPU, and eventually becomes ->quiescent() when it's
308 * done running on the CPU.
309 *
310 * @p is becoming runnable on the CPU because it's
311 *
312 * - waking up (%SCX_ENQ_WAKEUP)
313 * - being moved from another CPU
314 * - being restored after temporarily taken off the queue for an
315 * attribute change.
316 *
317 * This and ->enqueue() are related but not coupled. This operation
318 * notifies @p's state transition and may not be followed by ->enqueue()
319 * e.g. when @p is being dispatched to a remote CPU, or when @p is
320 * being enqueued on a CPU experiencing a hotplug event. Likewise, a
321 * task may be ->enqueue()'d without being preceded by this operation
322 * e.g. after exhausting its slice.
323 */
324 void (*runnable)(struct task_struct *p, u64 enq_flags);
325
326 /**
327 * running - A task is starting to run on its associated CPU
328 * @p: task starting to run
329 *
330 * See ->runnable() for explanation on the task state notifiers.
331 */
332 void (*running)(struct task_struct *p);
333
334 /**
335 * stopping - A task is stopping execution
336 * @p: task stopping to run
337 * @runnable: is task @p still runnable?
338 *
339 * See ->runnable() for explanation on the task state notifiers. If
340 * !@runnable, ->quiescent() will be invoked after this operation
341 * returns.
342 */
343 void (*stopping)(struct task_struct *p, bool runnable);
344
345 /**
346 * quiescent - A task is becoming not runnable on its associated CPU
347 * @p: task becoming not runnable
348 * @deq_flags: %SCX_DEQ_*
349 *
350 * See ->runnable() for explanation on the task state notifiers.
351 *
352 * @p is becoming quiescent on the CPU because it's
353 *
354 * - sleeping (%SCX_DEQ_SLEEP)
355 * - being moved to another CPU
356 * - being temporarily taken off the queue for an attribute change
357 * (%SCX_DEQ_SAVE)
358 *
359 * This and ->dequeue() are related but not coupled. This operation
360 * notifies @p's state transition and may not be preceded by ->dequeue()
361 * e.g. when @p is being dispatched to a remote CPU.
362 */
363 void (*quiescent)(struct task_struct *p, u64 deq_flags);
364
365 /**
366 * yield - Yield CPU
367 * @from: yielding task
368 * @to: optional yield target task
369 *
370 * If @to is NULL, @from is yielding the CPU to other runnable tasks.
371 * The BPF scheduler should ensure that other available tasks are
372 * dispatched before the yielding task. Return value is ignored in this
373 * case.
374 *
375 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf
376 * scheduler can implement the request, return %true; otherwise, %false.
377 */
378 bool (*yield)(struct task_struct *from, struct task_struct *to);
379
380 /**
381 * core_sched_before - Task ordering for core-sched
382 * @a: task A
383 * @b: task B
384 *
385 * Used by core-sched to determine the ordering between two tasks. See
386 * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on
387 * core-sched.
388 *
389 * Both @a and @b are runnable and may or may not currently be queued on
390 * the BPF scheduler. Should return %true if @a should run before @b.
391 * %false if there's no required ordering or @b should run before @a.
392 *
393 * If not specified, the default is ordering them according to when they
394 * became runnable.
395 */
396 bool (*core_sched_before)(struct task_struct *a, struct task_struct *b);
397
398 /**
399 * set_weight - Set task weight
400 * @p: task to set weight for
401 * @weight: new weight [1..10000]
402 *
403 * Update @p's weight to @weight.
404 */
405 void (*set_weight)(struct task_struct *p, u32 weight);
406
407 /**
408 * set_cpumask - Set CPU affinity
409 * @p: task to set CPU affinity for
410 * @cpumask: cpumask of cpus that @p can run on
411 *
412 * Update @p's CPU affinity to @cpumask.
413 */
414 void (*set_cpumask)(struct task_struct *p,
415 const struct cpumask *cpumask);
416
417 /**
418 * update_idle - Update the idle state of a CPU
419 * @cpu: CPU to udpate the idle state for
420 * @idle: whether entering or exiting the idle state
421 *
422 * This operation is called when @rq's CPU goes or leaves the idle
423 * state. By default, implementing this operation disables the built-in
424 * idle CPU tracking and the following helpers become unavailable:
425 *
426 * - scx_bpf_select_cpu_dfl()
427 * - scx_bpf_test_and_clear_cpu_idle()
428 * - scx_bpf_pick_idle_cpu()
429 *
430 * The user also must implement ops.select_cpu() as the default
431 * implementation relies on scx_bpf_select_cpu_dfl().
432 *
433 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle
434 * tracking.
435 */
436 void (*update_idle)(s32 cpu, bool idle);
437
438 /**
439 * cpu_acquire - A CPU is becoming available to the BPF scheduler
440 * @cpu: The CPU being acquired by the BPF scheduler.
441 * @args: Acquire arguments, see the struct definition.
442 *
443 * A CPU that was previously released from the BPF scheduler is now once
444 * again under its control.
445 */
446 void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args);
447
448 /**
449 * cpu_release - A CPU is taken away from the BPF scheduler
450 * @cpu: The CPU being released by the BPF scheduler.
451 * @args: Release arguments, see the struct definition.
452 *
453 * The specified CPU is no longer under the control of the BPF
454 * scheduler. This could be because it was preempted by a higher
455 * priority sched_class, though there may be other reasons as well. The
456 * caller should consult @args->reason to determine the cause.
457 */
458 void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args);
459
460 /**
461 * init_task - Initialize a task to run in a BPF scheduler
462 * @p: task to initialize for BPF scheduling
463 * @args: init arguments, see the struct definition
464 *
465 * Either we're loading a BPF scheduler or a new task is being forked.
466 * Initialize @p for BPF scheduling. This operation may block and can
467 * be used for allocations, and is called exactly once for a task.
468 *
469 * Return 0 for success, -errno for failure. An error return while
470 * loading will abort loading of the BPF scheduler. During a fork, it
471 * will abort that specific fork.
472 */
473 s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args);
474
475 /**
476 * exit_task - Exit a previously-running task from the system
477 * @p: task to exit
478 *
479 * @p is exiting or the BPF scheduler is being unloaded. Perform any
480 * necessary cleanup for @p.
481 */
482 void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args);
483
484 /**
485 * enable - Enable BPF scheduling for a task
486 * @p: task to enable BPF scheduling for
487 *
488 * Enable @p for BPF scheduling. enable() is called on @p any time it
489 * enters SCX, and is always paired with a matching disable().
490 */
491 void (*enable)(struct task_struct *p);
492
493 /**
494 * disable - Disable BPF scheduling for a task
495 * @p: task to disable BPF scheduling for
496 *
497 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded.
498 * Disable BPF scheduling for @p. A disable() call is always matched
499 * with a prior enable() call.
500 */
501 void (*disable)(struct task_struct *p);
502
503 /**
504 * dump - Dump BPF scheduler state on error
505 * @ctx: debug dump context
506 *
507 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump.
508 */
509 void (*dump)(struct scx_dump_ctx *ctx);
510
511 /**
512 * dump_cpu - Dump BPF scheduler state for a CPU on error
513 * @ctx: debug dump context
514 * @cpu: CPU to generate debug dump for
515 * @idle: @cpu is currently idle without any runnable tasks
516 *
517 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
518 * @cpu. If @idle is %true and this operation doesn't produce any
519 * output, @cpu is skipped for dump.
520 */
521 void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle);
522
523 /**
524 * dump_task - Dump BPF scheduler state for a runnable task on error
525 * @ctx: debug dump context
526 * @p: runnable task to generate debug dump for
527 *
528 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
529 * @p.
530 */
531 void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p);
532
533 #ifdef CONFIG_EXT_GROUP_SCHED
534 /**
535 * cgroup_init - Initialize a cgroup
536 * @cgrp: cgroup being initialized
537 * @args: init arguments, see the struct definition
538 *
539 * Either the BPF scheduler is being loaded or @cgrp created, initialize
540 * @cgrp for sched_ext. This operation may block.
541 *
542 * Return 0 for success, -errno for failure. An error return while
543 * loading will abort loading of the BPF scheduler. During cgroup
544 * creation, it will abort the specific cgroup creation.
545 */
546 s32 (*cgroup_init)(struct cgroup *cgrp,
547 struct scx_cgroup_init_args *args);
548
549 /**
550 * cgroup_exit - Exit a cgroup
551 * @cgrp: cgroup being exited
552 *
553 * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit
554 * @cgrp for sched_ext. This operation my block.
555 */
556 void (*cgroup_exit)(struct cgroup *cgrp);
557
558 /**
559 * cgroup_prep_move - Prepare a task to be moved to a different cgroup
560 * @p: task being moved
561 * @from: cgroup @p is being moved from
562 * @to: cgroup @p is being moved to
563 *
564 * Prepare @p for move from cgroup @from to @to. This operation may
565 * block and can be used for allocations.
566 *
567 * Return 0 for success, -errno for failure. An error return aborts the
568 * migration.
569 */
570 s32 (*cgroup_prep_move)(struct task_struct *p,
571 struct cgroup *from, struct cgroup *to);
572
573 /**
574 * cgroup_move - Commit cgroup move
575 * @p: task being moved
576 * @from: cgroup @p is being moved from
577 * @to: cgroup @p is being moved to
578 *
579 * Commit the move. @p is dequeued during this operation.
580 */
581 void (*cgroup_move)(struct task_struct *p,
582 struct cgroup *from, struct cgroup *to);
583
584 /**
585 * cgroup_cancel_move - Cancel cgroup move
586 * @p: task whose cgroup move is being canceled
587 * @from: cgroup @p was being moved from
588 * @to: cgroup @p was being moved to
589 *
590 * @p was cgroup_prep_move()'d but failed before reaching cgroup_move().
591 * Undo the preparation.
592 */
593 void (*cgroup_cancel_move)(struct task_struct *p,
594 struct cgroup *from, struct cgroup *to);
595
596 /**
597 * cgroup_set_weight - A cgroup's weight is being changed
598 * @cgrp: cgroup whose weight is being updated
599 * @weight: new weight [1..10000]
600 *
601 * Update @tg's weight to @weight.
602 */
603 void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight);
604 #endif /* CONFIG_EXT_GROUP_SCHED */
605
606 /*
607 * All online ops must come before ops.cpu_online().
608 */
609
610 /**
611 * cpu_online - A CPU became online
612 * @cpu: CPU which just came up
613 *
614 * @cpu just came online. @cpu will not call ops.enqueue() or
615 * ops.dispatch(), nor run tasks associated with other CPUs beforehand.
616 */
617 void (*cpu_online)(s32 cpu);
618
619 /**
620 * cpu_offline - A CPU is going offline
621 * @cpu: CPU which is going offline
622 *
623 * @cpu is going offline. @cpu will not call ops.enqueue() or
624 * ops.dispatch(), nor run tasks associated with other CPUs afterwards.
625 */
626 void (*cpu_offline)(s32 cpu);
627
628 /*
629 * All CPU hotplug ops must come before ops.init().
630 */
631
632 /**
633 * init - Initialize the BPF scheduler
634 */
635 s32 (*init)(void);
636
637 /**
638 * exit - Clean up after the BPF scheduler
639 * @info: Exit info
640 *
641 * ops.exit() is also called on ops.init() failure, which is a bit
642 * unusual. This is to allow rich reporting through @info on how
643 * ops.init() failed.
644 */
645 void (*exit)(struct scx_exit_info *info);
646
647 /**
648 * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch
649 */
650 u32 dispatch_max_batch;
651
652 /**
653 * flags - %SCX_OPS_* flags
654 */
655 u64 flags;
656
657 /**
658 * timeout_ms - The maximum amount of time, in milliseconds, that a
659 * runnable task should be able to wait before being scheduled. The
660 * maximum timeout may not exceed the default timeout of 30 seconds.
661 *
662 * Defaults to the maximum allowed timeout value of 30 seconds.
663 */
664 u32 timeout_ms;
665
666 /**
667 * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default
668 * value of 32768 is used.
669 */
670 u32 exit_dump_len;
671
672 /**
673 * hotplug_seq - A sequence number that may be set by the scheduler to
674 * detect when a hotplug event has occurred during the loading process.
675 * If 0, no detection occurs. Otherwise, the scheduler will fail to
676 * load if the sequence number does not match @scx_hotplug_seq on the
677 * enable path.
678 */
679 u64 hotplug_seq;
680
681 /**
682 * name - BPF scheduler's name
683 *
684 * Must be a non-zero valid BPF object name including only isalnum(),
685 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the
686 * BPF scheduler is enabled.
687 */
688 char name[SCX_OPS_NAME_LEN];
689 };
690
691 enum scx_opi {
692 SCX_OPI_BEGIN = 0,
693 SCX_OPI_NORMAL_BEGIN = 0,
694 SCX_OPI_NORMAL_END = SCX_OP_IDX(cpu_online),
695 SCX_OPI_CPU_HOTPLUG_BEGIN = SCX_OP_IDX(cpu_online),
696 SCX_OPI_CPU_HOTPLUG_END = SCX_OP_IDX(init),
697 SCX_OPI_END = SCX_OP_IDX(init),
698 };
699
700 enum scx_wake_flags {
701 /* expose select WF_* flags as enums */
702 SCX_WAKE_FORK = WF_FORK,
703 SCX_WAKE_TTWU = WF_TTWU,
704 SCX_WAKE_SYNC = WF_SYNC,
705 };
706
707 enum scx_enq_flags {
708 /* expose select ENQUEUE_* flags as enums */
709 SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP,
710 SCX_ENQ_HEAD = ENQUEUE_HEAD,
711 SCX_ENQ_CPU_SELECTED = ENQUEUE_RQ_SELECTED,
712
713 /* high 32bits are SCX specific */
714
715 /*
716 * Set the following to trigger preemption when calling
717 * scx_bpf_dsq_insert() with a local dsq as the target. The slice of the
718 * current task is cleared to zero and the CPU is kicked into the
719 * scheduling path. Implies %SCX_ENQ_HEAD.
720 */
721 SCX_ENQ_PREEMPT = 1LLU << 32,
722
723 /*
724 * The task being enqueued was previously enqueued on the current CPU's
725 * %SCX_DSQ_LOCAL, but was removed from it in a call to the
726 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was
727 * invoked in a ->cpu_release() callback, and the task is again
728 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the
729 * task will not be scheduled on the CPU until at least the next invocation
730 * of the ->cpu_acquire() callback.
731 */
732 SCX_ENQ_REENQ = 1LLU << 40,
733
734 /*
735 * The task being enqueued is the only task available for the cpu. By
736 * default, ext core keeps executing such tasks but when
737 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the
738 * %SCX_ENQ_LAST flag set.
739 *
740 * The BPF scheduler is responsible for triggering a follow-up
741 * scheduling event. Otherwise, Execution may stall.
742 */
743 SCX_ENQ_LAST = 1LLU << 41,
744
745 /* high 8 bits are internal */
746 __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56,
747
748 SCX_ENQ_CLEAR_OPSS = 1LLU << 56,
749 SCX_ENQ_DSQ_PRIQ = 1LLU << 57,
750 };
751
752 enum scx_deq_flags {
753 /* expose select DEQUEUE_* flags as enums */
754 SCX_DEQ_SLEEP = DEQUEUE_SLEEP,
755
756 /* high 32bits are SCX specific */
757
758 /*
759 * The generic core-sched layer decided to execute the task even though
760 * it hasn't been dispatched yet. Dequeue from the BPF side.
761 */
762 SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32,
763 };
764
765 enum scx_pick_idle_cpu_flags {
766 SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */
767 };
768
769 enum scx_kick_flags {
770 /*
771 * Kick the target CPU if idle. Guarantees that the target CPU goes
772 * through at least one full scheduling cycle before going idle. If the
773 * target CPU can be determined to be currently not idle and going to go
774 * through a scheduling cycle before going idle, noop.
775 */
776 SCX_KICK_IDLE = 1LLU << 0,
777
778 /*
779 * Preempt the current task and execute the dispatch path. If the
780 * current task of the target CPU is an SCX task, its ->scx.slice is
781 * cleared to zero before the scheduling path is invoked so that the
782 * task expires and the dispatch path is invoked.
783 */
784 SCX_KICK_PREEMPT = 1LLU << 1,
785
786 /*
787 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will
788 * return after the target CPU finishes picking the next task.
789 */
790 SCX_KICK_WAIT = 1LLU << 2,
791 };
792
793 enum scx_tg_flags {
794 SCX_TG_ONLINE = 1U << 0,
795 SCX_TG_INITED = 1U << 1,
796 };
797
798 enum scx_ops_enable_state {
799 SCX_OPS_ENABLING,
800 SCX_OPS_ENABLED,
801 SCX_OPS_DISABLING,
802 SCX_OPS_DISABLED,
803 };
804
805 static const char *scx_ops_enable_state_str[] = {
806 [SCX_OPS_ENABLING] = "enabling",
807 [SCX_OPS_ENABLED] = "enabled",
808 [SCX_OPS_DISABLING] = "disabling",
809 [SCX_OPS_DISABLED] = "disabled",
810 };
811
812 /*
813 * sched_ext_entity->ops_state
814 *
815 * Used to track the task ownership between the SCX core and the BPF scheduler.
816 * State transitions look as follows:
817 *
818 * NONE -> QUEUEING -> QUEUED -> DISPATCHING
819 * ^ | |
820 * | v v
821 * \-------------------------------/
822 *
823 * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call
824 * sites for explanations on the conditions being waited upon and why they are
825 * safe. Transitions out of them into NONE or QUEUED must store_release and the
826 * waiters should load_acquire.
827 *
828 * Tracking scx_ops_state enables sched_ext core to reliably determine whether
829 * any given task can be dispatched by the BPF scheduler at all times and thus
830 * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler
831 * to try to dispatch any task anytime regardless of its state as the SCX core
832 * can safely reject invalid dispatches.
833 */
834 enum scx_ops_state {
835 SCX_OPSS_NONE, /* owned by the SCX core */
836 SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */
837 SCX_OPSS_QUEUED, /* owned by the BPF scheduler */
838 SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */
839
840 /*
841 * QSEQ brands each QUEUED instance so that, when dispatch races
842 * dequeue/requeue, the dispatcher can tell whether it still has a claim
843 * on the task being dispatched.
844 *
845 * As some 32bit archs can't do 64bit store_release/load_acquire,
846 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on
847 * 32bit machines. The dispatch race window QSEQ protects is very narrow
848 * and runs with IRQ disabled. 30 bits should be sufficient.
849 */
850 SCX_OPSS_QSEQ_SHIFT = 2,
851 };
852
853 /* Use macros to ensure that the type is unsigned long for the masks */
854 #define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1)
855 #define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK)
856
857 /*
858 * During exit, a task may schedule after losing its PIDs. When disabling the
859 * BPF scheduler, we need to be able to iterate tasks in every state to
860 * guarantee system safety. Maintain a dedicated task list which contains every
861 * task between its fork and eventual free.
862 */
863 static DEFINE_SPINLOCK(scx_tasks_lock);
864 static LIST_HEAD(scx_tasks);
865
866 /* ops enable/disable */
867 static struct kthread_worker *scx_ops_helper;
868 static DEFINE_MUTEX(scx_ops_enable_mutex);
869 DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled);
870 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem);
871 static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED);
872 static unsigned long scx_in_softlockup;
873 static atomic_t scx_ops_breather_depth = ATOMIC_INIT(0);
874 static int scx_ops_bypass_depth;
875 static bool scx_ops_init_task_enabled;
876 static bool scx_switching_all;
877 DEFINE_STATIC_KEY_FALSE(__scx_switched_all);
878
879 static struct sched_ext_ops scx_ops;
880 static bool scx_warned_zero_slice;
881
882 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last);
883 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting);
884 static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt);
885 static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled);
886
887 #ifdef CONFIG_SMP
888 static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_llc);
889 static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_numa);
890 #endif
891
892 static struct static_key_false scx_has_op[SCX_OPI_END] =
893 { [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT };
894
895 static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE);
896 static struct scx_exit_info *scx_exit_info;
897
898 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0);
899 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0);
900
901 /*
902 * A monotically increasing sequence number that is incremented every time a
903 * scheduler is enabled. This can be used by to check if any custom sched_ext
904 * scheduler has ever been used in the system.
905 */
906 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0);
907
908 /*
909 * The maximum amount of time in jiffies that a task may be runnable without
910 * being scheduled on a CPU. If this timeout is exceeded, it will trigger
911 * scx_ops_error().
912 */
913 static unsigned long scx_watchdog_timeout;
914
915 /*
916 * The last time the delayed work was run. This delayed work relies on
917 * ksoftirqd being able to run to service timer interrupts, so it's possible
918 * that this work itself could get wedged. To account for this, we check that
919 * it's not stalled in the timer tick, and trigger an error if it is.
920 */
921 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES;
922
923 static struct delayed_work scx_watchdog_work;
924
925 /* idle tracking */
926 #ifdef CONFIG_SMP
927 #ifdef CONFIG_CPUMASK_OFFSTACK
928 #define CL_ALIGNED_IF_ONSTACK
929 #else
930 #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp
931 #endif
932
933 static struct {
934 cpumask_var_t cpu;
935 cpumask_var_t smt;
936 } idle_masks CL_ALIGNED_IF_ONSTACK;
937
938 #endif /* CONFIG_SMP */
939
940 /* for %SCX_KICK_WAIT */
941 static unsigned long __percpu *scx_kick_cpus_pnt_seqs;
942
943 /*
944 * Direct dispatch marker.
945 *
946 * Non-NULL values are used for direct dispatch from enqueue path. A valid
947 * pointer points to the task currently being enqueued. An ERR_PTR value is used
948 * to indicate that direct dispatch has already happened.
949 */
950 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task);
951
952 /*
953 * Dispatch queues.
954 *
955 * The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability. This is
956 * to avoid live-locking in bypass mode where all tasks are dispatched to
957 * %SCX_DSQ_GLOBAL and all CPUs consume from it. If per-node split isn't
958 * sufficient, it can be further split.
959 */
960 static struct scx_dispatch_q **global_dsqs;
961
962 static const struct rhashtable_params dsq_hash_params = {
963 .key_len = 8,
964 .key_offset = offsetof(struct scx_dispatch_q, id),
965 .head_offset = offsetof(struct scx_dispatch_q, hash_node),
966 };
967
968 static struct rhashtable dsq_hash;
969 static LLIST_HEAD(dsqs_to_free);
970
971 /* dispatch buf */
972 struct scx_dsp_buf_ent {
973 struct task_struct *task;
974 unsigned long qseq;
975 u64 dsq_id;
976 u64 enq_flags;
977 };
978
979 static u32 scx_dsp_max_batch;
980
981 struct scx_dsp_ctx {
982 struct rq *rq;
983 u32 cursor;
984 u32 nr_tasks;
985 struct scx_dsp_buf_ent buf[];
986 };
987
988 static struct scx_dsp_ctx __percpu *scx_dsp_ctx;
989
990 /* string formatting from BPF */
991 struct scx_bstr_buf {
992 u64 data[MAX_BPRINTF_VARARGS];
993 char line[SCX_EXIT_MSG_LEN];
994 };
995
996 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock);
997 static struct scx_bstr_buf scx_exit_bstr_buf;
998
999 /* ops debug dump */
1000 struct scx_dump_data {
1001 s32 cpu;
1002 bool first;
1003 s32 cursor;
1004 struct seq_buf *s;
1005 const char *prefix;
1006 struct scx_bstr_buf buf;
1007 };
1008
1009 static struct scx_dump_data scx_dump_data = {
1010 .cpu = -1,
1011 };
1012
1013 /* /sys/kernel/sched_ext interface */
1014 static struct kset *scx_kset;
1015 static struct kobject *scx_root_kobj;
1016
1017 #define CREATE_TRACE_POINTS
1018 #include <trace/events/sched_ext.h>
1019
1020 static void process_ddsp_deferred_locals(struct rq *rq);
1021 static void scx_bpf_kick_cpu(s32 cpu, u64 flags);
1022 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
1023 s64 exit_code,
1024 const char *fmt, ...);
1025
1026 #define scx_ops_error_kind(err, fmt, args...) \
1027 scx_ops_exit_kind((err), 0, fmt, ##args)
1028
1029 #define scx_ops_exit(code, fmt, args...) \
1030 scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args)
1031
1032 #define scx_ops_error(fmt, args...) \
1033 scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args)
1034
1035 #define SCX_HAS_OP(op) static_branch_likely(&scx_has_op[SCX_OP_IDX(op)])
1036
jiffies_delta_msecs(unsigned long at,unsigned long now)1037 static long jiffies_delta_msecs(unsigned long at, unsigned long now)
1038 {
1039 if (time_after(at, now))
1040 return jiffies_to_msecs(at - now);
1041 else
1042 return -(long)jiffies_to_msecs(now - at);
1043 }
1044
1045 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */
higher_bits(u32 flags)1046 static u32 higher_bits(u32 flags)
1047 {
1048 return ~((1 << fls(flags)) - 1);
1049 }
1050
1051 /* return the mask with only the highest bit set */
highest_bit(u32 flags)1052 static u32 highest_bit(u32 flags)
1053 {
1054 int bit = fls(flags);
1055 return ((u64)1 << bit) >> 1;
1056 }
1057
u32_before(u32 a,u32 b)1058 static bool u32_before(u32 a, u32 b)
1059 {
1060 return (s32)(a - b) < 0;
1061 }
1062
find_global_dsq(struct task_struct * p)1063 static struct scx_dispatch_q *find_global_dsq(struct task_struct *p)
1064 {
1065 return global_dsqs[cpu_to_node(task_cpu(p))];
1066 }
1067
find_user_dsq(u64 dsq_id)1068 static struct scx_dispatch_q *find_user_dsq(u64 dsq_id)
1069 {
1070 return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params);
1071 }
1072
1073 /*
1074 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX
1075 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate
1076 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check
1077 * whether it's running from an allowed context.
1078 *
1079 * @mask is constant, always inline to cull the mask calculations.
1080 */
scx_kf_allow(u32 mask)1081 static __always_inline void scx_kf_allow(u32 mask)
1082 {
1083 /* nesting is allowed only in increasing scx_kf_mask order */
1084 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask,
1085 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n",
1086 current->scx.kf_mask, mask);
1087 current->scx.kf_mask |= mask;
1088 barrier();
1089 }
1090
scx_kf_disallow(u32 mask)1091 static void scx_kf_disallow(u32 mask)
1092 {
1093 barrier();
1094 current->scx.kf_mask &= ~mask;
1095 }
1096
1097 #define SCX_CALL_OP(mask, op, args...) \
1098 do { \
1099 if (mask) { \
1100 scx_kf_allow(mask); \
1101 scx_ops.op(args); \
1102 scx_kf_disallow(mask); \
1103 } else { \
1104 scx_ops.op(args); \
1105 } \
1106 } while (0)
1107
1108 #define SCX_CALL_OP_RET(mask, op, args...) \
1109 ({ \
1110 __typeof__(scx_ops.op(args)) __ret; \
1111 if (mask) { \
1112 scx_kf_allow(mask); \
1113 __ret = scx_ops.op(args); \
1114 scx_kf_disallow(mask); \
1115 } else { \
1116 __ret = scx_ops.op(args); \
1117 } \
1118 __ret; \
1119 })
1120
1121 /*
1122 * Some kfuncs are allowed only on the tasks that are subjects of the
1123 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such
1124 * restrictions, the following SCX_CALL_OP_*() variants should be used when
1125 * invoking scx_ops operations that take task arguments. These can only be used
1126 * for non-nesting operations due to the way the tasks are tracked.
1127 *
1128 * kfuncs which can only operate on such tasks can in turn use
1129 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on
1130 * the specific task.
1131 */
1132 #define SCX_CALL_OP_TASK(mask, op, task, args...) \
1133 do { \
1134 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
1135 current->scx.kf_tasks[0] = task; \
1136 SCX_CALL_OP(mask, op, task, ##args); \
1137 current->scx.kf_tasks[0] = NULL; \
1138 } while (0)
1139
1140 #define SCX_CALL_OP_TASK_RET(mask, op, task, args...) \
1141 ({ \
1142 __typeof__(scx_ops.op(task, ##args)) __ret; \
1143 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
1144 current->scx.kf_tasks[0] = task; \
1145 __ret = SCX_CALL_OP_RET(mask, op, task, ##args); \
1146 current->scx.kf_tasks[0] = NULL; \
1147 __ret; \
1148 })
1149
1150 #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...) \
1151 ({ \
1152 __typeof__(scx_ops.op(task0, task1, ##args)) __ret; \
1153 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
1154 current->scx.kf_tasks[0] = task0; \
1155 current->scx.kf_tasks[1] = task1; \
1156 __ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args); \
1157 current->scx.kf_tasks[0] = NULL; \
1158 current->scx.kf_tasks[1] = NULL; \
1159 __ret; \
1160 })
1161
1162 /* @mask is constant, always inline to cull unnecessary branches */
scx_kf_allowed(u32 mask)1163 static __always_inline bool scx_kf_allowed(u32 mask)
1164 {
1165 if (unlikely(!(current->scx.kf_mask & mask))) {
1166 scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x",
1167 mask, current->scx.kf_mask);
1168 return false;
1169 }
1170
1171 /*
1172 * Enforce nesting boundaries. e.g. A kfunc which can be called from
1173 * DISPATCH must not be called if we're running DEQUEUE which is nested
1174 * inside ops.dispatch(). We don't need to check boundaries for any
1175 * blocking kfuncs as the verifier ensures they're only called from
1176 * sleepable progs.
1177 */
1178 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE &&
1179 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) {
1180 scx_ops_error("cpu_release kfunc called from a nested operation");
1181 return false;
1182 }
1183
1184 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH &&
1185 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) {
1186 scx_ops_error("dispatch kfunc called from a nested operation");
1187 return false;
1188 }
1189
1190 return true;
1191 }
1192
1193 /* see SCX_CALL_OP_TASK() */
scx_kf_allowed_on_arg_tasks(u32 mask,struct task_struct * p)1194 static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask,
1195 struct task_struct *p)
1196 {
1197 if (!scx_kf_allowed(mask))
1198 return false;
1199
1200 if (unlikely((p != current->scx.kf_tasks[0] &&
1201 p != current->scx.kf_tasks[1]))) {
1202 scx_ops_error("called on a task not being operated on");
1203 return false;
1204 }
1205
1206 return true;
1207 }
1208
scx_kf_allowed_if_unlocked(void)1209 static bool scx_kf_allowed_if_unlocked(void)
1210 {
1211 return !current->scx.kf_mask;
1212 }
1213
1214 /**
1215 * nldsq_next_task - Iterate to the next task in a non-local DSQ
1216 * @dsq: user dsq being interated
1217 * @cur: current position, %NULL to start iteration
1218 * @rev: walk backwards
1219 *
1220 * Returns %NULL when iteration is finished.
1221 */
nldsq_next_task(struct scx_dispatch_q * dsq,struct task_struct * cur,bool rev)1222 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq,
1223 struct task_struct *cur, bool rev)
1224 {
1225 struct list_head *list_node;
1226 struct scx_dsq_list_node *dsq_lnode;
1227
1228 lockdep_assert_held(&dsq->lock);
1229
1230 if (cur)
1231 list_node = &cur->scx.dsq_list.node;
1232 else
1233 list_node = &dsq->list;
1234
1235 /* find the next task, need to skip BPF iteration cursors */
1236 do {
1237 if (rev)
1238 list_node = list_node->prev;
1239 else
1240 list_node = list_node->next;
1241
1242 if (list_node == &dsq->list)
1243 return NULL;
1244
1245 dsq_lnode = container_of(list_node, struct scx_dsq_list_node,
1246 node);
1247 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR);
1248
1249 return container_of(dsq_lnode, struct task_struct, scx.dsq_list);
1250 }
1251
1252 #define nldsq_for_each_task(p, dsq) \
1253 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \
1254 (p) = nldsq_next_task((dsq), (p), false))
1255
1256
1257 /*
1258 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse]
1259 * dispatch order. BPF-visible iterator is opaque and larger to allow future
1260 * changes without breaking backward compatibility. Can be used with
1261 * bpf_for_each(). See bpf_iter_scx_dsq_*().
1262 */
1263 enum scx_dsq_iter_flags {
1264 /* iterate in the reverse dispatch order */
1265 SCX_DSQ_ITER_REV = 1U << 16,
1266
1267 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30,
1268 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31,
1269
1270 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV,
1271 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS |
1272 __SCX_DSQ_ITER_HAS_SLICE |
1273 __SCX_DSQ_ITER_HAS_VTIME,
1274 };
1275
1276 struct bpf_iter_scx_dsq_kern {
1277 struct scx_dsq_list_node cursor;
1278 struct scx_dispatch_q *dsq;
1279 u64 slice;
1280 u64 vtime;
1281 } __attribute__((aligned(8)));
1282
1283 struct bpf_iter_scx_dsq {
1284 u64 __opaque[6];
1285 } __attribute__((aligned(8)));
1286
1287
1288 /*
1289 * SCX task iterator.
1290 */
1291 struct scx_task_iter {
1292 struct sched_ext_entity cursor;
1293 struct task_struct *locked;
1294 struct rq *rq;
1295 struct rq_flags rf;
1296 u32 cnt;
1297 };
1298
1299 /**
1300 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration
1301 * @iter: iterator to init
1302 *
1303 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter
1304 * must eventually be stopped with scx_task_iter_stop().
1305 *
1306 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock()
1307 * between this and the first next() call or between any two next() calls. If
1308 * the locks are released between two next() calls, the caller is responsible
1309 * for ensuring that the task being iterated remains accessible either through
1310 * RCU read lock or obtaining a reference count.
1311 *
1312 * All tasks which existed when the iteration started are guaranteed to be
1313 * visited as long as they still exist.
1314 */
scx_task_iter_start(struct scx_task_iter * iter)1315 static void scx_task_iter_start(struct scx_task_iter *iter)
1316 {
1317 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS &
1318 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1));
1319
1320 spin_lock_irq(&scx_tasks_lock);
1321
1322 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR };
1323 list_add(&iter->cursor.tasks_node, &scx_tasks);
1324 iter->locked = NULL;
1325 iter->cnt = 0;
1326 }
1327
__scx_task_iter_rq_unlock(struct scx_task_iter * iter)1328 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter)
1329 {
1330 if (iter->locked) {
1331 task_rq_unlock(iter->rq, iter->locked, &iter->rf);
1332 iter->locked = NULL;
1333 }
1334 }
1335
1336 /**
1337 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator
1338 * @iter: iterator to unlock
1339 *
1340 * If @iter is in the middle of a locked iteration, it may be locking the rq of
1341 * the task currently being visited in addition to scx_tasks_lock. Unlock both.
1342 * This function can be safely called anytime during an iteration.
1343 */
scx_task_iter_unlock(struct scx_task_iter * iter)1344 static void scx_task_iter_unlock(struct scx_task_iter *iter)
1345 {
1346 __scx_task_iter_rq_unlock(iter);
1347 spin_unlock_irq(&scx_tasks_lock);
1348 }
1349
1350 /**
1351 * scx_task_iter_relock - Lock scx_tasks_lock released by scx_task_iter_unlock()
1352 * @iter: iterator to re-lock
1353 *
1354 * Re-lock scx_tasks_lock unlocked by scx_task_iter_unlock(). Note that it
1355 * doesn't re-lock the rq lock. Must be called before other iterator operations.
1356 */
scx_task_iter_relock(struct scx_task_iter * iter)1357 static void scx_task_iter_relock(struct scx_task_iter *iter)
1358 {
1359 spin_lock_irq(&scx_tasks_lock);
1360 }
1361
1362 /**
1363 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock
1364 * @iter: iterator to exit
1365 *
1366 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held
1367 * which is released on return. If the iterator holds a task's rq lock, that rq
1368 * lock is also released. See scx_task_iter_start() for details.
1369 */
scx_task_iter_stop(struct scx_task_iter * iter)1370 static void scx_task_iter_stop(struct scx_task_iter *iter)
1371 {
1372 list_del_init(&iter->cursor.tasks_node);
1373 scx_task_iter_unlock(iter);
1374 }
1375
1376 /**
1377 * scx_task_iter_next - Next task
1378 * @iter: iterator to walk
1379 *
1380 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped
1381 * and re-acquired every %SCX_OPS_TASK_ITER_BATCH iterations to avoid causing
1382 * stalls by holding scx_tasks_lock for too long.
1383 */
scx_task_iter_next(struct scx_task_iter * iter)1384 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter)
1385 {
1386 struct list_head *cursor = &iter->cursor.tasks_node;
1387 struct sched_ext_entity *pos;
1388
1389 if (!(++iter->cnt % SCX_OPS_TASK_ITER_BATCH)) {
1390 scx_task_iter_unlock(iter);
1391 cond_resched();
1392 scx_task_iter_relock(iter);
1393 }
1394
1395 list_for_each_entry(pos, cursor, tasks_node) {
1396 if (&pos->tasks_node == &scx_tasks)
1397 return NULL;
1398 if (!(pos->flags & SCX_TASK_CURSOR)) {
1399 list_move(cursor, &pos->tasks_node);
1400 return container_of(pos, struct task_struct, scx);
1401 }
1402 }
1403
1404 /* can't happen, should always terminate at scx_tasks above */
1405 BUG();
1406 }
1407
1408 /**
1409 * scx_task_iter_next_locked - Next non-idle task with its rq locked
1410 * @iter: iterator to walk
1411 * @include_dead: Whether we should include dead tasks in the iteration
1412 *
1413 * Visit the non-idle task with its rq lock held. Allows callers to specify
1414 * whether they would like to filter out dead tasks. See scx_task_iter_start()
1415 * for details.
1416 */
scx_task_iter_next_locked(struct scx_task_iter * iter)1417 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter)
1418 {
1419 struct task_struct *p;
1420
1421 __scx_task_iter_rq_unlock(iter);
1422
1423 while ((p = scx_task_iter_next(iter))) {
1424 /*
1425 * scx_task_iter is used to prepare and move tasks into SCX
1426 * while loading the BPF scheduler and vice-versa while
1427 * unloading. The init_tasks ("swappers") should be excluded
1428 * from the iteration because:
1429 *
1430 * - It's unsafe to use __setschduler_prio() on an init_task to
1431 * determine the sched_class to use as it won't preserve its
1432 * idle_sched_class.
1433 *
1434 * - ops.init/exit_task() can easily be confused if called with
1435 * init_tasks as they, e.g., share PID 0.
1436 *
1437 * As init_tasks are never scheduled through SCX, they can be
1438 * skipped safely. Note that is_idle_task() which tests %PF_IDLE
1439 * doesn't work here:
1440 *
1441 * - %PF_IDLE may not be set for an init_task whose CPU hasn't
1442 * yet been onlined.
1443 *
1444 * - %PF_IDLE can be set on tasks that are not init_tasks. See
1445 * play_idle_precise() used by CONFIG_IDLE_INJECT.
1446 *
1447 * Test for idle_sched_class as only init_tasks are on it.
1448 */
1449 if (p->sched_class != &idle_sched_class)
1450 break;
1451 }
1452 if (!p)
1453 return NULL;
1454
1455 iter->rq = task_rq_lock(p, &iter->rf);
1456 iter->locked = p;
1457
1458 return p;
1459 }
1460
scx_ops_enable_state(void)1461 static enum scx_ops_enable_state scx_ops_enable_state(void)
1462 {
1463 return atomic_read(&scx_ops_enable_state_var);
1464 }
1465
1466 static enum scx_ops_enable_state
scx_ops_set_enable_state(enum scx_ops_enable_state to)1467 scx_ops_set_enable_state(enum scx_ops_enable_state to)
1468 {
1469 return atomic_xchg(&scx_ops_enable_state_var, to);
1470 }
1471
scx_ops_tryset_enable_state(enum scx_ops_enable_state to,enum scx_ops_enable_state from)1472 static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to,
1473 enum scx_ops_enable_state from)
1474 {
1475 int from_v = from;
1476
1477 return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to);
1478 }
1479
scx_rq_bypassing(struct rq * rq)1480 static bool scx_rq_bypassing(struct rq *rq)
1481 {
1482 return unlikely(rq->scx.flags & SCX_RQ_BYPASSING);
1483 }
1484
1485 /**
1486 * wait_ops_state - Busy-wait the specified ops state to end
1487 * @p: target task
1488 * @opss: state to wait the end of
1489 *
1490 * Busy-wait for @p to transition out of @opss. This can only be used when the
1491 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also
1492 * has load_acquire semantics to ensure that the caller can see the updates made
1493 * in the enqueueing and dispatching paths.
1494 */
wait_ops_state(struct task_struct * p,unsigned long opss)1495 static void wait_ops_state(struct task_struct *p, unsigned long opss)
1496 {
1497 do {
1498 cpu_relax();
1499 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss);
1500 }
1501
1502 /**
1503 * ops_cpu_valid - Verify a cpu number
1504 * @cpu: cpu number which came from a BPF ops
1505 * @where: extra information reported on error
1506 *
1507 * @cpu is a cpu number which came from the BPF scheduler and can be any value.
1508 * Verify that it is in range and one of the possible cpus. If invalid, trigger
1509 * an ops error.
1510 */
ops_cpu_valid(s32 cpu,const char * where)1511 static bool ops_cpu_valid(s32 cpu, const char *where)
1512 {
1513 if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) {
1514 return true;
1515 } else {
1516 scx_ops_error("invalid CPU %d%s%s", cpu,
1517 where ? " " : "", where ?: "");
1518 return false;
1519 }
1520 }
1521
1522 /**
1523 * ops_sanitize_err - Sanitize a -errno value
1524 * @ops_name: operation to blame on failure
1525 * @err: -errno value to sanitize
1526 *
1527 * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return
1528 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can
1529 * cause misbehaviors. For an example, a large negative return from
1530 * ops.init_task() triggers an oops when passed up the call chain because the
1531 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is
1532 * handled as a pointer.
1533 */
ops_sanitize_err(const char * ops_name,s32 err)1534 static int ops_sanitize_err(const char *ops_name, s32 err)
1535 {
1536 if (err < 0 && err >= -MAX_ERRNO)
1537 return err;
1538
1539 scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err);
1540 return -EPROTO;
1541 }
1542
run_deferred(struct rq * rq)1543 static void run_deferred(struct rq *rq)
1544 {
1545 process_ddsp_deferred_locals(rq);
1546 }
1547
1548 #ifdef CONFIG_SMP
deferred_bal_cb_workfn(struct rq * rq)1549 static void deferred_bal_cb_workfn(struct rq *rq)
1550 {
1551 run_deferred(rq);
1552 }
1553 #endif
1554
deferred_irq_workfn(struct irq_work * irq_work)1555 static void deferred_irq_workfn(struct irq_work *irq_work)
1556 {
1557 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work);
1558
1559 raw_spin_rq_lock(rq);
1560 run_deferred(rq);
1561 raw_spin_rq_unlock(rq);
1562 }
1563
1564 /**
1565 * schedule_deferred - Schedule execution of deferred actions on an rq
1566 * @rq: target rq
1567 *
1568 * Schedule execution of deferred actions on @rq. Must be called with @rq
1569 * locked. Deferred actions are executed with @rq locked but unpinned, and thus
1570 * can unlock @rq to e.g. migrate tasks to other rqs.
1571 */
schedule_deferred(struct rq * rq)1572 static void schedule_deferred(struct rq *rq)
1573 {
1574 lockdep_assert_rq_held(rq);
1575
1576 #ifdef CONFIG_SMP
1577 /*
1578 * If in the middle of waking up a task, task_woken_scx() will be called
1579 * afterwards which will then run the deferred actions, no need to
1580 * schedule anything.
1581 */
1582 if (rq->scx.flags & SCX_RQ_IN_WAKEUP)
1583 return;
1584
1585 /*
1586 * If in balance, the balance callbacks will be called before rq lock is
1587 * released. Schedule one.
1588 */
1589 if (rq->scx.flags & SCX_RQ_IN_BALANCE) {
1590 queue_balance_callback(rq, &rq->scx.deferred_bal_cb,
1591 deferred_bal_cb_workfn);
1592 return;
1593 }
1594 #endif
1595 /*
1596 * No scheduler hooks available. Queue an irq work. They are executed on
1597 * IRQ re-enable which may take a bit longer than the scheduler hooks.
1598 * The above WAKEUP and BALANCE paths should cover most of the cases and
1599 * the time to IRQ re-enable shouldn't be long.
1600 */
1601 irq_work_queue(&rq->scx.deferred_irq_work);
1602 }
1603
1604 /**
1605 * touch_core_sched - Update timestamp used for core-sched task ordering
1606 * @rq: rq to read clock from, must be locked
1607 * @p: task to update the timestamp for
1608 *
1609 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to
1610 * implement global or local-DSQ FIFO ordering for core-sched. Should be called
1611 * when a task becomes runnable and its turn on the CPU ends (e.g. slice
1612 * exhaustion).
1613 */
touch_core_sched(struct rq * rq,struct task_struct * p)1614 static void touch_core_sched(struct rq *rq, struct task_struct *p)
1615 {
1616 lockdep_assert_rq_held(rq);
1617
1618 #ifdef CONFIG_SCHED_CORE
1619 /*
1620 * It's okay to update the timestamp spuriously. Use
1621 * sched_core_disabled() which is cheaper than enabled().
1622 *
1623 * As this is used to determine ordering between tasks of sibling CPUs,
1624 * it may be better to use per-core dispatch sequence instead.
1625 */
1626 if (!sched_core_disabled())
1627 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq));
1628 #endif
1629 }
1630
1631 /**
1632 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch
1633 * @rq: rq to read clock from, must be locked
1634 * @p: task being dispatched
1635 *
1636 * If the BPF scheduler implements custom core-sched ordering via
1637 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO
1638 * ordering within each local DSQ. This function is called from dispatch paths
1639 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect.
1640 */
touch_core_sched_dispatch(struct rq * rq,struct task_struct * p)1641 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p)
1642 {
1643 lockdep_assert_rq_held(rq);
1644
1645 #ifdef CONFIG_SCHED_CORE
1646 if (SCX_HAS_OP(core_sched_before))
1647 touch_core_sched(rq, p);
1648 #endif
1649 }
1650
update_curr_scx(struct rq * rq)1651 static void update_curr_scx(struct rq *rq)
1652 {
1653 struct task_struct *curr = rq->curr;
1654 s64 delta_exec;
1655
1656 delta_exec = update_curr_common(rq);
1657 if (unlikely(delta_exec <= 0))
1658 return;
1659
1660 if (curr->scx.slice != SCX_SLICE_INF) {
1661 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec);
1662 if (!curr->scx.slice)
1663 touch_core_sched(rq, curr);
1664 }
1665 }
1666
scx_dsq_priq_less(struct rb_node * node_a,const struct rb_node * node_b)1667 static bool scx_dsq_priq_less(struct rb_node *node_a,
1668 const struct rb_node *node_b)
1669 {
1670 const struct task_struct *a =
1671 container_of(node_a, struct task_struct, scx.dsq_priq);
1672 const struct task_struct *b =
1673 container_of(node_b, struct task_struct, scx.dsq_priq);
1674
1675 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime);
1676 }
1677
dsq_mod_nr(struct scx_dispatch_q * dsq,s32 delta)1678 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta)
1679 {
1680 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */
1681 WRITE_ONCE(dsq->nr, dsq->nr + delta);
1682 }
1683
dispatch_enqueue(struct scx_dispatch_q * dsq,struct task_struct * p,u64 enq_flags)1684 static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p,
1685 u64 enq_flags)
1686 {
1687 bool is_local = dsq->id == SCX_DSQ_LOCAL;
1688
1689 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1690 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) ||
1691 !RB_EMPTY_NODE(&p->scx.dsq_priq));
1692
1693 if (!is_local) {
1694 raw_spin_lock(&dsq->lock);
1695 if (unlikely(dsq->id == SCX_DSQ_INVALID)) {
1696 scx_ops_error("attempting to dispatch to a destroyed dsq");
1697 /* fall back to the global dsq */
1698 raw_spin_unlock(&dsq->lock);
1699 dsq = find_global_dsq(p);
1700 raw_spin_lock(&dsq->lock);
1701 }
1702 }
1703
1704 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) &&
1705 (enq_flags & SCX_ENQ_DSQ_PRIQ))) {
1706 /*
1707 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from
1708 * their FIFO queues. To avoid confusion and accidentally
1709 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we
1710 * disallow any internal DSQ from doing vtime ordering of
1711 * tasks.
1712 */
1713 scx_ops_error("cannot use vtime ordering for built-in DSQs");
1714 enq_flags &= ~SCX_ENQ_DSQ_PRIQ;
1715 }
1716
1717 if (enq_flags & SCX_ENQ_DSQ_PRIQ) {
1718 struct rb_node *rbp;
1719
1720 /*
1721 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are
1722 * linked to both the rbtree and list on PRIQs, this can only be
1723 * tested easily when adding the first task.
1724 */
1725 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) &&
1726 nldsq_next_task(dsq, NULL, false)))
1727 scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks",
1728 dsq->id);
1729
1730 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ;
1731 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less);
1732
1733 /*
1734 * Find the previous task and insert after it on the list so
1735 * that @dsq->list is vtime ordered.
1736 */
1737 rbp = rb_prev(&p->scx.dsq_priq);
1738 if (rbp) {
1739 struct task_struct *prev =
1740 container_of(rbp, struct task_struct,
1741 scx.dsq_priq);
1742 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node);
1743 } else {
1744 list_add(&p->scx.dsq_list.node, &dsq->list);
1745 }
1746 } else {
1747 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */
1748 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq)))
1749 scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks",
1750 dsq->id);
1751
1752 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
1753 list_add(&p->scx.dsq_list.node, &dsq->list);
1754 else
1755 list_add_tail(&p->scx.dsq_list.node, &dsq->list);
1756 }
1757
1758 /* seq records the order tasks are queued, used by BPF DSQ iterator */
1759 dsq->seq++;
1760 p->scx.dsq_seq = dsq->seq;
1761
1762 dsq_mod_nr(dsq, 1);
1763 p->scx.dsq = dsq;
1764
1765 /*
1766 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the
1767 * direct dispatch path, but we clear them here because the direct
1768 * dispatch verdict may be overridden on the enqueue path during e.g.
1769 * bypass.
1770 */
1771 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID;
1772 p->scx.ddsp_enq_flags = 0;
1773
1774 /*
1775 * We're transitioning out of QUEUEING or DISPATCHING. store_release to
1776 * match waiters' load_acquire.
1777 */
1778 if (enq_flags & SCX_ENQ_CLEAR_OPSS)
1779 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1780
1781 if (is_local) {
1782 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq);
1783 bool preempt = false;
1784
1785 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr &&
1786 rq->curr->sched_class == &ext_sched_class) {
1787 rq->curr->scx.slice = 0;
1788 preempt = true;
1789 }
1790
1791 if (preempt || sched_class_above(&ext_sched_class,
1792 rq->curr->sched_class))
1793 resched_curr(rq);
1794 } else {
1795 raw_spin_unlock(&dsq->lock);
1796 }
1797 }
1798
task_unlink_from_dsq(struct task_struct * p,struct scx_dispatch_q * dsq)1799 static void task_unlink_from_dsq(struct task_struct *p,
1800 struct scx_dispatch_q *dsq)
1801 {
1802 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node));
1803
1804 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) {
1805 rb_erase(&p->scx.dsq_priq, &dsq->priq);
1806 RB_CLEAR_NODE(&p->scx.dsq_priq);
1807 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ;
1808 }
1809
1810 list_del_init(&p->scx.dsq_list.node);
1811 dsq_mod_nr(dsq, -1);
1812 }
1813
dispatch_dequeue(struct rq * rq,struct task_struct * p)1814 static void dispatch_dequeue(struct rq *rq, struct task_struct *p)
1815 {
1816 struct scx_dispatch_q *dsq = p->scx.dsq;
1817 bool is_local = dsq == &rq->scx.local_dsq;
1818
1819 if (!dsq) {
1820 /*
1821 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals.
1822 * Unlinking is all that's needed to cancel.
1823 */
1824 if (unlikely(!list_empty(&p->scx.dsq_list.node)))
1825 list_del_init(&p->scx.dsq_list.node);
1826
1827 /*
1828 * When dispatching directly from the BPF scheduler to a local
1829 * DSQ, the task isn't associated with any DSQ but
1830 * @p->scx.holding_cpu may be set under the protection of
1831 * %SCX_OPSS_DISPATCHING.
1832 */
1833 if (p->scx.holding_cpu >= 0)
1834 p->scx.holding_cpu = -1;
1835
1836 return;
1837 }
1838
1839 if (!is_local)
1840 raw_spin_lock(&dsq->lock);
1841
1842 /*
1843 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't
1844 * change underneath us.
1845 */
1846 if (p->scx.holding_cpu < 0) {
1847 /* @p must still be on @dsq, dequeue */
1848 task_unlink_from_dsq(p, dsq);
1849 } else {
1850 /*
1851 * We're racing against dispatch_to_local_dsq() which already
1852 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the
1853 * holding_cpu which tells dispatch_to_local_dsq() that it lost
1854 * the race.
1855 */
1856 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node));
1857 p->scx.holding_cpu = -1;
1858 }
1859 p->scx.dsq = NULL;
1860
1861 if (!is_local)
1862 raw_spin_unlock(&dsq->lock);
1863 }
1864
find_dsq_for_dispatch(struct rq * rq,u64 dsq_id,struct task_struct * p)1865 static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id,
1866 struct task_struct *p)
1867 {
1868 struct scx_dispatch_q *dsq;
1869
1870 if (dsq_id == SCX_DSQ_LOCAL)
1871 return &rq->scx.local_dsq;
1872
1873 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
1874 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
1875
1876 if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict"))
1877 return find_global_dsq(p);
1878
1879 return &cpu_rq(cpu)->scx.local_dsq;
1880 }
1881
1882 if (dsq_id == SCX_DSQ_GLOBAL)
1883 dsq = find_global_dsq(p);
1884 else
1885 dsq = find_user_dsq(dsq_id);
1886
1887 if (unlikely(!dsq)) {
1888 scx_ops_error("non-existent DSQ 0x%llx for %s[%d]",
1889 dsq_id, p->comm, p->pid);
1890 return find_global_dsq(p);
1891 }
1892
1893 return dsq;
1894 }
1895
mark_direct_dispatch(struct task_struct * ddsp_task,struct task_struct * p,u64 dsq_id,u64 enq_flags)1896 static void mark_direct_dispatch(struct task_struct *ddsp_task,
1897 struct task_struct *p, u64 dsq_id,
1898 u64 enq_flags)
1899 {
1900 /*
1901 * Mark that dispatch already happened from ops.select_cpu() or
1902 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value
1903 * which can never match a valid task pointer.
1904 */
1905 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH));
1906
1907 /* @p must match the task on the enqueue path */
1908 if (unlikely(p != ddsp_task)) {
1909 if (IS_ERR(ddsp_task))
1910 scx_ops_error("%s[%d] already direct-dispatched",
1911 p->comm, p->pid);
1912 else
1913 scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]",
1914 ddsp_task->comm, ddsp_task->pid,
1915 p->comm, p->pid);
1916 return;
1917 }
1918
1919 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID);
1920 WARN_ON_ONCE(p->scx.ddsp_enq_flags);
1921
1922 p->scx.ddsp_dsq_id = dsq_id;
1923 p->scx.ddsp_enq_flags = enq_flags;
1924 }
1925
direct_dispatch(struct task_struct * p,u64 enq_flags)1926 static void direct_dispatch(struct task_struct *p, u64 enq_flags)
1927 {
1928 struct rq *rq = task_rq(p);
1929 struct scx_dispatch_q *dsq =
1930 find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
1931
1932 touch_core_sched_dispatch(rq, p);
1933
1934 p->scx.ddsp_enq_flags |= enq_flags;
1935
1936 /*
1937 * We are in the enqueue path with @rq locked and pinned, and thus can't
1938 * double lock a remote rq and enqueue to its local DSQ. For
1939 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer
1940 * the enqueue so that it's executed when @rq can be unlocked.
1941 */
1942 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) {
1943 unsigned long opss;
1944
1945 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK;
1946
1947 switch (opss & SCX_OPSS_STATE_MASK) {
1948 case SCX_OPSS_NONE:
1949 break;
1950 case SCX_OPSS_QUEUEING:
1951 /*
1952 * As @p was never passed to the BPF side, _release is
1953 * not strictly necessary. Still do it for consistency.
1954 */
1955 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1956 break;
1957 default:
1958 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()",
1959 p->comm, p->pid, opss);
1960 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1961 break;
1962 }
1963
1964 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1965 list_add_tail(&p->scx.dsq_list.node,
1966 &rq->scx.ddsp_deferred_locals);
1967 schedule_deferred(rq);
1968 return;
1969 }
1970
1971 dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS);
1972 }
1973
scx_rq_online(struct rq * rq)1974 static bool scx_rq_online(struct rq *rq)
1975 {
1976 /*
1977 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates
1978 * the online state as seen from the BPF scheduler. cpu_active() test
1979 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will
1980 * stay set until the current scheduling operation is complete even if
1981 * we aren't locking @rq.
1982 */
1983 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq)));
1984 }
1985
do_enqueue_task(struct rq * rq,struct task_struct * p,u64 enq_flags,int sticky_cpu)1986 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags,
1987 int sticky_cpu)
1988 {
1989 struct task_struct **ddsp_taskp;
1990 unsigned long qseq;
1991
1992 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED));
1993
1994 /* rq migration */
1995 if (sticky_cpu == cpu_of(rq))
1996 goto local_norefill;
1997
1998 /*
1999 * If !scx_rq_online(), we already told the BPF scheduler that the CPU
2000 * is offline and are just running the hotplug path. Don't bother the
2001 * BPF scheduler.
2002 */
2003 if (!scx_rq_online(rq))
2004 goto local;
2005
2006 if (scx_rq_bypassing(rq))
2007 goto global;
2008
2009 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
2010 goto direct;
2011
2012 /* see %SCX_OPS_ENQ_EXITING */
2013 if (!static_branch_unlikely(&scx_ops_enq_exiting) &&
2014 unlikely(p->flags & PF_EXITING))
2015 goto local;
2016
2017 if (!SCX_HAS_OP(enqueue))
2018 goto global;
2019
2020 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */
2021 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT;
2022
2023 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
2024 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq);
2025
2026 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
2027 WARN_ON_ONCE(*ddsp_taskp);
2028 *ddsp_taskp = p;
2029
2030 SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags);
2031
2032 *ddsp_taskp = NULL;
2033 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
2034 goto direct;
2035
2036 /*
2037 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or
2038 * dequeue may be waiting. The store_release matches their load_acquire.
2039 */
2040 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq);
2041 return;
2042
2043 direct:
2044 direct_dispatch(p, enq_flags);
2045 return;
2046
2047 local:
2048 /*
2049 * For task-ordering, slice refill must be treated as implying the end
2050 * of the current slice. Otherwise, the longer @p stays on the CPU, the
2051 * higher priority it becomes from scx_prio_less()'s POV.
2052 */
2053 touch_core_sched(rq, p);
2054 p->scx.slice = SCX_SLICE_DFL;
2055 local_norefill:
2056 dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags);
2057 return;
2058
2059 global:
2060 touch_core_sched(rq, p); /* see the comment in local: */
2061 p->scx.slice = SCX_SLICE_DFL;
2062 dispatch_enqueue(find_global_dsq(p), p, enq_flags);
2063 }
2064
task_runnable(const struct task_struct * p)2065 static bool task_runnable(const struct task_struct *p)
2066 {
2067 return !list_empty(&p->scx.runnable_node);
2068 }
2069
set_task_runnable(struct rq * rq,struct task_struct * p)2070 static void set_task_runnable(struct rq *rq, struct task_struct *p)
2071 {
2072 lockdep_assert_rq_held(rq);
2073
2074 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) {
2075 p->scx.runnable_at = jiffies;
2076 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT;
2077 }
2078
2079 /*
2080 * list_add_tail() must be used. scx_ops_bypass() depends on tasks being
2081 * appened to the runnable_list.
2082 */
2083 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list);
2084 }
2085
clr_task_runnable(struct task_struct * p,bool reset_runnable_at)2086 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at)
2087 {
2088 list_del_init(&p->scx.runnable_node);
2089 if (reset_runnable_at)
2090 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
2091 }
2092
enqueue_task_scx(struct rq * rq,struct task_struct * p,int enq_flags)2093 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags)
2094 {
2095 int sticky_cpu = p->scx.sticky_cpu;
2096
2097 if (enq_flags & ENQUEUE_WAKEUP)
2098 rq->scx.flags |= SCX_RQ_IN_WAKEUP;
2099
2100 enq_flags |= rq->scx.extra_enq_flags;
2101
2102 if (sticky_cpu >= 0)
2103 p->scx.sticky_cpu = -1;
2104
2105 /*
2106 * Restoring a running task will be immediately followed by
2107 * set_next_task_scx() which expects the task to not be on the BPF
2108 * scheduler as tasks can only start running through local DSQs. Force
2109 * direct-dispatch into the local DSQ by setting the sticky_cpu.
2110 */
2111 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p))
2112 sticky_cpu = cpu_of(rq);
2113
2114 if (p->scx.flags & SCX_TASK_QUEUED) {
2115 WARN_ON_ONCE(!task_runnable(p));
2116 goto out;
2117 }
2118
2119 set_task_runnable(rq, p);
2120 p->scx.flags |= SCX_TASK_QUEUED;
2121 rq->scx.nr_running++;
2122 add_nr_running(rq, 1);
2123
2124 if (SCX_HAS_OP(runnable) && !task_on_rq_migrating(p))
2125 SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags);
2126
2127 if (enq_flags & SCX_ENQ_WAKEUP)
2128 touch_core_sched(rq, p);
2129
2130 do_enqueue_task(rq, p, enq_flags, sticky_cpu);
2131 out:
2132 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP;
2133 }
2134
ops_dequeue(struct task_struct * p,u64 deq_flags)2135 static void ops_dequeue(struct task_struct *p, u64 deq_flags)
2136 {
2137 unsigned long opss;
2138
2139 /* dequeue is always temporary, don't reset runnable_at */
2140 clr_task_runnable(p, false);
2141
2142 /* acquire ensures that we see the preceding updates on QUEUED */
2143 opss = atomic_long_read_acquire(&p->scx.ops_state);
2144
2145 switch (opss & SCX_OPSS_STATE_MASK) {
2146 case SCX_OPSS_NONE:
2147 break;
2148 case SCX_OPSS_QUEUEING:
2149 /*
2150 * QUEUEING is started and finished while holding @p's rq lock.
2151 * As we're holding the rq lock now, we shouldn't see QUEUEING.
2152 */
2153 BUG();
2154 case SCX_OPSS_QUEUED:
2155 if (SCX_HAS_OP(dequeue))
2156 SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags);
2157
2158 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
2159 SCX_OPSS_NONE))
2160 break;
2161 fallthrough;
2162 case SCX_OPSS_DISPATCHING:
2163 /*
2164 * If @p is being dispatched from the BPF scheduler to a DSQ,
2165 * wait for the transfer to complete so that @p doesn't get
2166 * added to its DSQ after dequeueing is complete.
2167 *
2168 * As we're waiting on DISPATCHING with the rq locked, the
2169 * dispatching side shouldn't try to lock the rq while
2170 * DISPATCHING is set. See dispatch_to_local_dsq().
2171 *
2172 * DISPATCHING shouldn't have qseq set and control can reach
2173 * here with NONE @opss from the above QUEUED case block.
2174 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss.
2175 */
2176 wait_ops_state(p, SCX_OPSS_DISPATCHING);
2177 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
2178 break;
2179 }
2180 }
2181
dequeue_task_scx(struct rq * rq,struct task_struct * p,int deq_flags)2182 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags)
2183 {
2184 if (!(p->scx.flags & SCX_TASK_QUEUED)) {
2185 WARN_ON_ONCE(task_runnable(p));
2186 return true;
2187 }
2188
2189 ops_dequeue(p, deq_flags);
2190
2191 /*
2192 * A currently running task which is going off @rq first gets dequeued
2193 * and then stops running. As we want running <-> stopping transitions
2194 * to be contained within runnable <-> quiescent transitions, trigger
2195 * ->stopping() early here instead of in put_prev_task_scx().
2196 *
2197 * @p may go through multiple stopping <-> running transitions between
2198 * here and put_prev_task_scx() if task attribute changes occur while
2199 * balance_scx() leaves @rq unlocked. However, they don't contain any
2200 * information meaningful to the BPF scheduler and can be suppressed by
2201 * skipping the callbacks if the task is !QUEUED.
2202 */
2203 if (SCX_HAS_OP(stopping) && task_current(rq, p)) {
2204 update_curr_scx(rq);
2205 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false);
2206 }
2207
2208 if (SCX_HAS_OP(quiescent) && !task_on_rq_migrating(p))
2209 SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags);
2210
2211 if (deq_flags & SCX_DEQ_SLEEP)
2212 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP;
2213 else
2214 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP;
2215
2216 p->scx.flags &= ~SCX_TASK_QUEUED;
2217 rq->scx.nr_running--;
2218 sub_nr_running(rq, 1);
2219
2220 dispatch_dequeue(rq, p);
2221 return true;
2222 }
2223
yield_task_scx(struct rq * rq)2224 static void yield_task_scx(struct rq *rq)
2225 {
2226 struct task_struct *p = rq->curr;
2227
2228 if (SCX_HAS_OP(yield))
2229 SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL);
2230 else
2231 p->scx.slice = 0;
2232 }
2233
yield_to_task_scx(struct rq * rq,struct task_struct * to)2234 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to)
2235 {
2236 struct task_struct *from = rq->curr;
2237
2238 if (SCX_HAS_OP(yield))
2239 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to);
2240 else
2241 return false;
2242 }
2243
move_local_task_to_local_dsq(struct task_struct * p,u64 enq_flags,struct scx_dispatch_q * src_dsq,struct rq * dst_rq)2244 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
2245 struct scx_dispatch_q *src_dsq,
2246 struct rq *dst_rq)
2247 {
2248 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq;
2249
2250 /* @dsq is locked and @p is on @dst_rq */
2251 lockdep_assert_held(&src_dsq->lock);
2252 lockdep_assert_rq_held(dst_rq);
2253
2254 WARN_ON_ONCE(p->scx.holding_cpu >= 0);
2255
2256 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
2257 list_add(&p->scx.dsq_list.node, &dst_dsq->list);
2258 else
2259 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list);
2260
2261 dsq_mod_nr(dst_dsq, 1);
2262 p->scx.dsq = dst_dsq;
2263 }
2264
2265 #ifdef CONFIG_SMP
2266 /**
2267 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ
2268 * @p: task to move
2269 * @enq_flags: %SCX_ENQ_*
2270 * @src_rq: rq to move the task from, locked on entry, released on return
2271 * @dst_rq: rq to move the task into, locked on return
2272 *
2273 * Move @p which is currently on @src_rq to @dst_rq's local DSQ.
2274 */
move_remote_task_to_local_dsq(struct task_struct * p,u64 enq_flags,struct rq * src_rq,struct rq * dst_rq)2275 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
2276 struct rq *src_rq, struct rq *dst_rq)
2277 {
2278 lockdep_assert_rq_held(src_rq);
2279
2280 /* the following marks @p MIGRATING which excludes dequeue */
2281 deactivate_task(src_rq, p, 0);
2282 set_task_cpu(p, cpu_of(dst_rq));
2283 p->scx.sticky_cpu = cpu_of(dst_rq);
2284
2285 raw_spin_rq_unlock(src_rq);
2286 raw_spin_rq_lock(dst_rq);
2287
2288 /*
2289 * We want to pass scx-specific enq_flags but activate_task() will
2290 * truncate the upper 32 bit. As we own @rq, we can pass them through
2291 * @rq->scx.extra_enq_flags instead.
2292 */
2293 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr));
2294 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags);
2295 dst_rq->scx.extra_enq_flags = enq_flags;
2296 activate_task(dst_rq, p, 0);
2297 dst_rq->scx.extra_enq_flags = 0;
2298 }
2299
2300 /*
2301 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two
2302 * differences:
2303 *
2304 * - is_cpu_allowed() asks "Can this task run on this CPU?" while
2305 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to
2306 * this CPU?".
2307 *
2308 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task
2309 * must be allowed to finish on the CPU that it's currently on regardless of
2310 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the
2311 * BPF scheduler shouldn't attempt to migrate a task which has migration
2312 * disabled.
2313 *
2314 * - The BPF scheduler is bypassed while the rq is offline and we can always say
2315 * no to the BPF scheduler initiated migrations while offline.
2316 */
task_can_run_on_remote_rq(struct task_struct * p,struct rq * rq,bool trigger_error)2317 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq,
2318 bool trigger_error)
2319 {
2320 int cpu = cpu_of(rq);
2321
2322 /*
2323 * We don't require the BPF scheduler to avoid dispatching to offline
2324 * CPUs mostly for convenience but also because CPUs can go offline
2325 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the
2326 * picked CPU is outside the allowed mask.
2327 */
2328 if (!task_allowed_on_cpu(p, cpu)) {
2329 if (trigger_error)
2330 scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]",
2331 cpu_of(rq), p->comm, p->pid);
2332 return false;
2333 }
2334
2335 if (unlikely(is_migration_disabled(p)))
2336 return false;
2337
2338 if (!scx_rq_online(rq))
2339 return false;
2340
2341 return true;
2342 }
2343
2344 /**
2345 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq
2346 * @p: target task
2347 * @dsq: locked DSQ @p is currently on
2348 * @src_rq: rq @p is currently on, stable with @dsq locked
2349 *
2350 * Called with @dsq locked but no rq's locked. We want to move @p to a different
2351 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is
2352 * required when transferring into a local DSQ. Even when transferring into a
2353 * non-local DSQ, it's better to use the same mechanism to protect against
2354 * dequeues and maintain the invariant that @p->scx.dsq can only change while
2355 * @src_rq is locked, which e.g. scx_dump_task() depends on.
2356 *
2357 * We want to grab @src_rq but that can deadlock if we try while locking @dsq,
2358 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As
2359 * this may race with dequeue, which can't drop the rq lock or fail, do a little
2360 * dancing from our side.
2361 *
2362 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets
2363 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu
2364 * would be cleared to -1. While other cpus may have updated it to different
2365 * values afterwards, as this operation can't be preempted or recurse, the
2366 * holding_cpu can never become this CPU again before we're done. Thus, we can
2367 * tell whether we lost to dequeue by testing whether the holding_cpu still
2368 * points to this CPU. See dispatch_dequeue() for the counterpart.
2369 *
2370 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is
2371 * still valid. %false if lost to dequeue.
2372 */
unlink_dsq_and_lock_src_rq(struct task_struct * p,struct scx_dispatch_q * dsq,struct rq * src_rq)2373 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p,
2374 struct scx_dispatch_q *dsq,
2375 struct rq *src_rq)
2376 {
2377 s32 cpu = raw_smp_processor_id();
2378
2379 lockdep_assert_held(&dsq->lock);
2380
2381 WARN_ON_ONCE(p->scx.holding_cpu >= 0);
2382 task_unlink_from_dsq(p, dsq);
2383 p->scx.holding_cpu = cpu;
2384
2385 raw_spin_unlock(&dsq->lock);
2386 raw_spin_rq_lock(src_rq);
2387
2388 /* task_rq couldn't have changed if we're still the holding cpu */
2389 return likely(p->scx.holding_cpu == cpu) &&
2390 !WARN_ON_ONCE(src_rq != task_rq(p));
2391 }
2392
consume_remote_task(struct rq * this_rq,struct task_struct * p,struct scx_dispatch_q * dsq,struct rq * src_rq)2393 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p,
2394 struct scx_dispatch_q *dsq, struct rq *src_rq)
2395 {
2396 raw_spin_rq_unlock(this_rq);
2397
2398 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) {
2399 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq);
2400 return true;
2401 } else {
2402 raw_spin_rq_unlock(src_rq);
2403 raw_spin_rq_lock(this_rq);
2404 return false;
2405 }
2406 }
2407 #else /* CONFIG_SMP */
move_remote_task_to_local_dsq(struct task_struct * p,u64 enq_flags,struct rq * src_rq,struct rq * dst_rq)2408 static inline void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, struct rq *src_rq, struct rq *dst_rq) { WARN_ON_ONCE(1); }
task_can_run_on_remote_rq(struct task_struct * p,struct rq * rq,bool trigger_error)2409 static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; }
consume_remote_task(struct rq * this_rq,struct task_struct * p,struct scx_dispatch_q * dsq,struct rq * task_rq)2410 static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; }
2411 #endif /* CONFIG_SMP */
2412
2413 /**
2414 * move_task_between_dsqs() - Move a task from one DSQ to another
2415 * @p: target task
2416 * @enq_flags: %SCX_ENQ_*
2417 * @src_dsq: DSQ @p is currently on, must not be a local DSQ
2418 * @dst_dsq: DSQ @p is being moved to, can be any DSQ
2419 *
2420 * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local
2421 * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq
2422 * will change. As @p's task_rq is locked, this function doesn't need to use the
2423 * holding_cpu mechanism.
2424 *
2425 * On return, @src_dsq is unlocked and only @p's new task_rq, which is the
2426 * return value, is locked.
2427 */
move_task_between_dsqs(struct task_struct * p,u64 enq_flags,struct scx_dispatch_q * src_dsq,struct scx_dispatch_q * dst_dsq)2428 static struct rq *move_task_between_dsqs(struct task_struct *p, u64 enq_flags,
2429 struct scx_dispatch_q *src_dsq,
2430 struct scx_dispatch_q *dst_dsq)
2431 {
2432 struct rq *src_rq = task_rq(p), *dst_rq;
2433
2434 BUG_ON(src_dsq->id == SCX_DSQ_LOCAL);
2435 lockdep_assert_held(&src_dsq->lock);
2436 lockdep_assert_rq_held(src_rq);
2437
2438 if (dst_dsq->id == SCX_DSQ_LOCAL) {
2439 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
2440 if (!task_can_run_on_remote_rq(p, dst_rq, true)) {
2441 dst_dsq = find_global_dsq(p);
2442 dst_rq = src_rq;
2443 }
2444 } else {
2445 /* no need to migrate if destination is a non-local DSQ */
2446 dst_rq = src_rq;
2447 }
2448
2449 /*
2450 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different
2451 * CPU, @p will be migrated.
2452 */
2453 if (dst_dsq->id == SCX_DSQ_LOCAL) {
2454 /* @p is going from a non-local DSQ to a local DSQ */
2455 if (src_rq == dst_rq) {
2456 task_unlink_from_dsq(p, src_dsq);
2457 move_local_task_to_local_dsq(p, enq_flags,
2458 src_dsq, dst_rq);
2459 raw_spin_unlock(&src_dsq->lock);
2460 } else {
2461 raw_spin_unlock(&src_dsq->lock);
2462 move_remote_task_to_local_dsq(p, enq_flags,
2463 src_rq, dst_rq);
2464 }
2465 } else {
2466 /*
2467 * @p is going from a non-local DSQ to a non-local DSQ. As
2468 * $src_dsq is already locked, do an abbreviated dequeue.
2469 */
2470 task_unlink_from_dsq(p, src_dsq);
2471 p->scx.dsq = NULL;
2472 raw_spin_unlock(&src_dsq->lock);
2473
2474 dispatch_enqueue(dst_dsq, p, enq_flags);
2475 }
2476
2477 return dst_rq;
2478 }
2479
2480 /*
2481 * A poorly behaving BPF scheduler can live-lock the system by e.g. incessantly
2482 * banging on the same DSQ on a large NUMA system to the point where switching
2483 * to the bypass mode can take a long time. Inject artifical delays while the
2484 * bypass mode is switching to guarantee timely completion.
2485 */
scx_ops_breather(struct rq * rq)2486 static void scx_ops_breather(struct rq *rq)
2487 {
2488 u64 until;
2489
2490 lockdep_assert_rq_held(rq);
2491
2492 if (likely(!atomic_read(&scx_ops_breather_depth)))
2493 return;
2494
2495 raw_spin_rq_unlock(rq);
2496
2497 until = ktime_get_ns() + NSEC_PER_MSEC;
2498
2499 do {
2500 int cnt = 1024;
2501 while (atomic_read(&scx_ops_breather_depth) && --cnt)
2502 cpu_relax();
2503 } while (atomic_read(&scx_ops_breather_depth) &&
2504 time_before64(ktime_get_ns(), until));
2505
2506 raw_spin_rq_lock(rq);
2507 }
2508
consume_dispatch_q(struct rq * rq,struct scx_dispatch_q * dsq)2509 static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq)
2510 {
2511 struct task_struct *p;
2512 retry:
2513 /*
2514 * This retry loop can repeatedly race against scx_ops_bypass()
2515 * dequeueing tasks from @dsq trying to put the system into the bypass
2516 * mode. On some multi-socket machines (e.g. 2x Intel 8480c), this can
2517 * live-lock the machine into soft lockups. Give a breather.
2518 */
2519 scx_ops_breather(rq);
2520
2521 /*
2522 * The caller can't expect to successfully consume a task if the task's
2523 * addition to @dsq isn't guaranteed to be visible somehow. Test
2524 * @dsq->list without locking and skip if it seems empty.
2525 */
2526 if (list_empty(&dsq->list))
2527 return false;
2528
2529 raw_spin_lock(&dsq->lock);
2530
2531 nldsq_for_each_task(p, dsq) {
2532 struct rq *task_rq = task_rq(p);
2533
2534 if (rq == task_rq) {
2535 task_unlink_from_dsq(p, dsq);
2536 move_local_task_to_local_dsq(p, 0, dsq, rq);
2537 raw_spin_unlock(&dsq->lock);
2538 return true;
2539 }
2540
2541 if (task_can_run_on_remote_rq(p, rq, false)) {
2542 if (likely(consume_remote_task(rq, p, dsq, task_rq)))
2543 return true;
2544 goto retry;
2545 }
2546 }
2547
2548 raw_spin_unlock(&dsq->lock);
2549 return false;
2550 }
2551
consume_global_dsq(struct rq * rq)2552 static bool consume_global_dsq(struct rq *rq)
2553 {
2554 int node = cpu_to_node(cpu_of(rq));
2555
2556 return consume_dispatch_q(rq, global_dsqs[node]);
2557 }
2558
2559 /**
2560 * dispatch_to_local_dsq - Dispatch a task to a local dsq
2561 * @rq: current rq which is locked
2562 * @dst_dsq: destination DSQ
2563 * @p: task to dispatch
2564 * @enq_flags: %SCX_ENQ_*
2565 *
2566 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local
2567 * DSQ. This function performs all the synchronization dancing needed because
2568 * local DSQs are protected with rq locks.
2569 *
2570 * The caller must have exclusive ownership of @p (e.g. through
2571 * %SCX_OPSS_DISPATCHING).
2572 */
dispatch_to_local_dsq(struct rq * rq,struct scx_dispatch_q * dst_dsq,struct task_struct * p,u64 enq_flags)2573 static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq,
2574 struct task_struct *p, u64 enq_flags)
2575 {
2576 struct rq *src_rq = task_rq(p);
2577 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
2578
2579 /*
2580 * We're synchronized against dequeue through DISPATCHING. As @p can't
2581 * be dequeued, its task_rq and cpus_allowed are stable too.
2582 *
2583 * If dispatching to @rq that @p is already on, no lock dancing needed.
2584 */
2585 if (rq == src_rq && rq == dst_rq) {
2586 dispatch_enqueue(dst_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
2587 return;
2588 }
2589
2590 #ifdef CONFIG_SMP
2591 if (unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) {
2592 dispatch_enqueue(find_global_dsq(p), p,
2593 enq_flags | SCX_ENQ_CLEAR_OPSS);
2594 return;
2595 }
2596
2597 /*
2598 * @p is on a possibly remote @src_rq which we need to lock to move the
2599 * task. If dequeue is in progress, it'd be locking @src_rq and waiting
2600 * on DISPATCHING, so we can't grab @src_rq lock while holding
2601 * DISPATCHING.
2602 *
2603 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that
2604 * we're moving from a DSQ and use the same mechanism - mark the task
2605 * under transfer with holding_cpu, release DISPATCHING and then follow
2606 * the same protocol. See unlink_dsq_and_lock_src_rq().
2607 */
2608 p->scx.holding_cpu = raw_smp_processor_id();
2609
2610 /* store_release ensures that dequeue sees the above */
2611 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
2612
2613 /* switch to @src_rq lock */
2614 if (rq != src_rq) {
2615 raw_spin_rq_unlock(rq);
2616 raw_spin_rq_lock(src_rq);
2617 }
2618
2619 /* task_rq couldn't have changed if we're still the holding cpu */
2620 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) &&
2621 !WARN_ON_ONCE(src_rq != task_rq(p))) {
2622 /*
2623 * If @p is staying on the same rq, there's no need to go
2624 * through the full deactivate/activate cycle. Optimize by
2625 * abbreviating move_remote_task_to_local_dsq().
2626 */
2627 if (src_rq == dst_rq) {
2628 p->scx.holding_cpu = -1;
2629 dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags);
2630 } else {
2631 move_remote_task_to_local_dsq(p, enq_flags,
2632 src_rq, dst_rq);
2633 }
2634
2635 /* if the destination CPU is idle, wake it up */
2636 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class))
2637 resched_curr(dst_rq);
2638 }
2639
2640 /* switch back to @rq lock */
2641 if (rq != dst_rq) {
2642 raw_spin_rq_unlock(dst_rq);
2643 raw_spin_rq_lock(rq);
2644 }
2645 #else /* CONFIG_SMP */
2646 BUG(); /* control can not reach here on UP */
2647 #endif /* CONFIG_SMP */
2648 }
2649
2650 /**
2651 * finish_dispatch - Asynchronously finish dispatching a task
2652 * @rq: current rq which is locked
2653 * @p: task to finish dispatching
2654 * @qseq_at_dispatch: qseq when @p started getting dispatched
2655 * @dsq_id: destination DSQ ID
2656 * @enq_flags: %SCX_ENQ_*
2657 *
2658 * Dispatching to local DSQs may need to wait for queueing to complete or
2659 * require rq lock dancing. As we don't wanna do either while inside
2660 * ops.dispatch() to avoid locking order inversion, we split dispatching into
2661 * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the
2662 * task and its qseq. Once ops.dispatch() returns, this function is called to
2663 * finish up.
2664 *
2665 * There is no guarantee that @p is still valid for dispatching or even that it
2666 * was valid in the first place. Make sure that the task is still owned by the
2667 * BPF scheduler and claim the ownership before dispatching.
2668 */
finish_dispatch(struct rq * rq,struct task_struct * p,unsigned long qseq_at_dispatch,u64 dsq_id,u64 enq_flags)2669 static void finish_dispatch(struct rq *rq, struct task_struct *p,
2670 unsigned long qseq_at_dispatch,
2671 u64 dsq_id, u64 enq_flags)
2672 {
2673 struct scx_dispatch_q *dsq;
2674 unsigned long opss;
2675
2676 touch_core_sched_dispatch(rq, p);
2677 retry:
2678 /*
2679 * No need for _acquire here. @p is accessed only after a successful
2680 * try_cmpxchg to DISPATCHING.
2681 */
2682 opss = atomic_long_read(&p->scx.ops_state);
2683
2684 switch (opss & SCX_OPSS_STATE_MASK) {
2685 case SCX_OPSS_DISPATCHING:
2686 case SCX_OPSS_NONE:
2687 /* someone else already got to it */
2688 return;
2689 case SCX_OPSS_QUEUED:
2690 /*
2691 * If qseq doesn't match, @p has gone through at least one
2692 * dispatch/dequeue and re-enqueue cycle between
2693 * scx_bpf_dsq_insert() and here and we have no claim on it.
2694 */
2695 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch)
2696 return;
2697
2698 /*
2699 * While we know @p is accessible, we don't yet have a claim on
2700 * it - the BPF scheduler is allowed to dispatch tasks
2701 * spuriously and there can be a racing dequeue attempt. Let's
2702 * claim @p by atomically transitioning it from QUEUED to
2703 * DISPATCHING.
2704 */
2705 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
2706 SCX_OPSS_DISPATCHING)))
2707 break;
2708 goto retry;
2709 case SCX_OPSS_QUEUEING:
2710 /*
2711 * do_enqueue_task() is in the process of transferring the task
2712 * to the BPF scheduler while holding @p's rq lock. As we aren't
2713 * holding any kernel or BPF resource that the enqueue path may
2714 * depend upon, it's safe to wait.
2715 */
2716 wait_ops_state(p, opss);
2717 goto retry;
2718 }
2719
2720 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED));
2721
2722 dsq = find_dsq_for_dispatch(this_rq(), dsq_id, p);
2723
2724 if (dsq->id == SCX_DSQ_LOCAL)
2725 dispatch_to_local_dsq(rq, dsq, p, enq_flags);
2726 else
2727 dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
2728 }
2729
flush_dispatch_buf(struct rq * rq)2730 static void flush_dispatch_buf(struct rq *rq)
2731 {
2732 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2733 u32 u;
2734
2735 for (u = 0; u < dspc->cursor; u++) {
2736 struct scx_dsp_buf_ent *ent = &dspc->buf[u];
2737
2738 finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id,
2739 ent->enq_flags);
2740 }
2741
2742 dspc->nr_tasks += dspc->cursor;
2743 dspc->cursor = 0;
2744 }
2745
balance_one(struct rq * rq,struct task_struct * prev)2746 static int balance_one(struct rq *rq, struct task_struct *prev)
2747 {
2748 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2749 bool prev_on_scx = prev->sched_class == &ext_sched_class;
2750 int nr_loops = SCX_DSP_MAX_LOOPS;
2751
2752 lockdep_assert_rq_held(rq);
2753 rq->scx.flags |= SCX_RQ_IN_BALANCE;
2754 rq->scx.flags &= ~(SCX_RQ_BAL_PENDING | SCX_RQ_BAL_KEEP);
2755
2756 if (static_branch_unlikely(&scx_ops_cpu_preempt) &&
2757 unlikely(rq->scx.cpu_released)) {
2758 /*
2759 * If the previous sched_class for the current CPU was not SCX,
2760 * notify the BPF scheduler that it again has control of the
2761 * core. This callback complements ->cpu_release(), which is
2762 * emitted in switch_class().
2763 */
2764 if (SCX_HAS_OP(cpu_acquire))
2765 SCX_CALL_OP(SCX_KF_REST, cpu_acquire, cpu_of(rq), NULL);
2766 rq->scx.cpu_released = false;
2767 }
2768
2769 if (prev_on_scx) {
2770 update_curr_scx(rq);
2771
2772 /*
2773 * If @prev is runnable & has slice left, it has priority and
2774 * fetching more just increases latency for the fetched tasks.
2775 * Tell pick_task_scx() to keep running @prev. If the BPF
2776 * scheduler wants to handle this explicitly, it should
2777 * implement ->cpu_release().
2778 *
2779 * See scx_ops_disable_workfn() for the explanation on the
2780 * bypassing test.
2781 */
2782 if ((prev->scx.flags & SCX_TASK_QUEUED) &&
2783 prev->scx.slice && !scx_rq_bypassing(rq)) {
2784 rq->scx.flags |= SCX_RQ_BAL_KEEP;
2785 goto has_tasks;
2786 }
2787 }
2788
2789 /* if there already are tasks to run, nothing to do */
2790 if (rq->scx.local_dsq.nr)
2791 goto has_tasks;
2792
2793 if (consume_global_dsq(rq))
2794 goto has_tasks;
2795
2796 if (!SCX_HAS_OP(dispatch) || scx_rq_bypassing(rq) || !scx_rq_online(rq))
2797 goto no_tasks;
2798
2799 dspc->rq = rq;
2800
2801 /*
2802 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock,
2803 * the local DSQ might still end up empty after a successful
2804 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch()
2805 * produced some tasks, retry. The BPF scheduler may depend on this
2806 * looping behavior to simplify its implementation.
2807 */
2808 do {
2809 dspc->nr_tasks = 0;
2810
2811 SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq),
2812 prev_on_scx ? prev : NULL);
2813
2814 flush_dispatch_buf(rq);
2815
2816 if (rq->scx.local_dsq.nr)
2817 goto has_tasks;
2818 if (consume_global_dsq(rq))
2819 goto has_tasks;
2820
2821 /*
2822 * ops.dispatch() can trap us in this loop by repeatedly
2823 * dispatching ineligible tasks. Break out once in a while to
2824 * allow the watchdog to run. As IRQ can't be enabled in
2825 * balance(), we want to complete this scheduling cycle and then
2826 * start a new one. IOW, we want to call resched_curr() on the
2827 * next, most likely idle, task, not the current one. Use
2828 * scx_bpf_kick_cpu() for deferred kicking.
2829 */
2830 if (unlikely(!--nr_loops)) {
2831 scx_bpf_kick_cpu(cpu_of(rq), 0);
2832 break;
2833 }
2834 } while (dspc->nr_tasks);
2835
2836 no_tasks:
2837 /*
2838 * Didn't find another task to run. Keep running @prev unless
2839 * %SCX_OPS_ENQ_LAST is in effect.
2840 */
2841 if ((prev->scx.flags & SCX_TASK_QUEUED) &&
2842 (!static_branch_unlikely(&scx_ops_enq_last) ||
2843 scx_rq_bypassing(rq))) {
2844 rq->scx.flags |= SCX_RQ_BAL_KEEP;
2845 goto has_tasks;
2846 }
2847 rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2848 return false;
2849
2850 has_tasks:
2851 rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2852 return true;
2853 }
2854
balance_scx(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)2855 static int balance_scx(struct rq *rq, struct task_struct *prev,
2856 struct rq_flags *rf)
2857 {
2858 int ret;
2859
2860 rq_unpin_lock(rq, rf);
2861
2862 ret = balance_one(rq, prev);
2863
2864 #ifdef CONFIG_SCHED_SMT
2865 /*
2866 * When core-sched is enabled, this ops.balance() call will be followed
2867 * by pick_task_scx() on this CPU and the SMT siblings. Balance the
2868 * siblings too.
2869 */
2870 if (sched_core_enabled(rq)) {
2871 const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq));
2872 int scpu;
2873
2874 for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) {
2875 struct rq *srq = cpu_rq(scpu);
2876 struct task_struct *sprev = srq->curr;
2877
2878 WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq));
2879 update_rq_clock(srq);
2880 balance_one(srq, sprev);
2881 }
2882 }
2883 #endif
2884 rq_repin_lock(rq, rf);
2885
2886 return ret;
2887 }
2888
process_ddsp_deferred_locals(struct rq * rq)2889 static void process_ddsp_deferred_locals(struct rq *rq)
2890 {
2891 struct task_struct *p;
2892
2893 lockdep_assert_rq_held(rq);
2894
2895 /*
2896 * Now that @rq can be unlocked, execute the deferred enqueueing of
2897 * tasks directly dispatched to the local DSQs of other CPUs. See
2898 * direct_dispatch(). Keep popping from the head instead of using
2899 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq
2900 * temporarily.
2901 */
2902 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals,
2903 struct task_struct, scx.dsq_list.node))) {
2904 struct scx_dispatch_q *dsq;
2905
2906 list_del_init(&p->scx.dsq_list.node);
2907
2908 dsq = find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
2909 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL))
2910 dispatch_to_local_dsq(rq, dsq, p, p->scx.ddsp_enq_flags);
2911 }
2912 }
2913
set_next_task_scx(struct rq * rq,struct task_struct * p,bool first)2914 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first)
2915 {
2916 if (p->scx.flags & SCX_TASK_QUEUED) {
2917 /*
2918 * Core-sched might decide to execute @p before it is
2919 * dispatched. Call ops_dequeue() to notify the BPF scheduler.
2920 */
2921 ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC);
2922 dispatch_dequeue(rq, p);
2923 }
2924
2925 p->se.exec_start = rq_clock_task(rq);
2926
2927 /* see dequeue_task_scx() on why we skip when !QUEUED */
2928 if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED))
2929 SCX_CALL_OP_TASK(SCX_KF_REST, running, p);
2930
2931 clr_task_runnable(p, true);
2932
2933 /*
2934 * @p is getting newly scheduled or got kicked after someone updated its
2935 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick().
2936 */
2937 if ((p->scx.slice == SCX_SLICE_INF) !=
2938 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) {
2939 if (p->scx.slice == SCX_SLICE_INF)
2940 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK;
2941 else
2942 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK;
2943
2944 sched_update_tick_dependency(rq);
2945
2946 /*
2947 * For now, let's refresh the load_avgs just when transitioning
2948 * in and out of nohz. In the future, we might want to add a
2949 * mechanism which calls the following periodically on
2950 * tick-stopped CPUs.
2951 */
2952 update_other_load_avgs(rq);
2953 }
2954 }
2955
2956 static enum scx_cpu_preempt_reason
preempt_reason_from_class(const struct sched_class * class)2957 preempt_reason_from_class(const struct sched_class *class)
2958 {
2959 #ifdef CONFIG_SMP
2960 if (class == &stop_sched_class)
2961 return SCX_CPU_PREEMPT_STOP;
2962 #endif
2963 if (class == &dl_sched_class)
2964 return SCX_CPU_PREEMPT_DL;
2965 if (class == &rt_sched_class)
2966 return SCX_CPU_PREEMPT_RT;
2967 return SCX_CPU_PREEMPT_UNKNOWN;
2968 }
2969
switch_class(struct rq * rq,struct task_struct * next)2970 static void switch_class(struct rq *rq, struct task_struct *next)
2971 {
2972 const struct sched_class *next_class = next->sched_class;
2973
2974 #ifdef CONFIG_SMP
2975 /*
2976 * Pairs with the smp_load_acquire() issued by a CPU in
2977 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a
2978 * resched.
2979 */
2980 smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1);
2981 #endif
2982 if (!static_branch_unlikely(&scx_ops_cpu_preempt))
2983 return;
2984
2985 /*
2986 * The callback is conceptually meant to convey that the CPU is no
2987 * longer under the control of SCX. Therefore, don't invoke the callback
2988 * if the next class is below SCX (in which case the BPF scheduler has
2989 * actively decided not to schedule any tasks on the CPU).
2990 */
2991 if (sched_class_above(&ext_sched_class, next_class))
2992 return;
2993
2994 /*
2995 * At this point we know that SCX was preempted by a higher priority
2996 * sched_class, so invoke the ->cpu_release() callback if we have not
2997 * done so already. We only send the callback once between SCX being
2998 * preempted, and it regaining control of the CPU.
2999 *
3000 * ->cpu_release() complements ->cpu_acquire(), which is emitted the
3001 * next time that balance_scx() is invoked.
3002 */
3003 if (!rq->scx.cpu_released) {
3004 if (SCX_HAS_OP(cpu_release)) {
3005 struct scx_cpu_release_args args = {
3006 .reason = preempt_reason_from_class(next_class),
3007 .task = next,
3008 };
3009
3010 SCX_CALL_OP(SCX_KF_CPU_RELEASE,
3011 cpu_release, cpu_of(rq), &args);
3012 }
3013 rq->scx.cpu_released = true;
3014 }
3015 }
3016
put_prev_task_scx(struct rq * rq,struct task_struct * p,struct task_struct * next)3017 static void put_prev_task_scx(struct rq *rq, struct task_struct *p,
3018 struct task_struct *next)
3019 {
3020 update_curr_scx(rq);
3021
3022 /* see dequeue_task_scx() on why we skip when !QUEUED */
3023 if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED))
3024 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true);
3025
3026 if (p->scx.flags & SCX_TASK_QUEUED) {
3027 set_task_runnable(rq, p);
3028
3029 /*
3030 * If @p has slice left and is being put, @p is getting
3031 * preempted by a higher priority scheduler class or core-sched
3032 * forcing a different task. Leave it at the head of the local
3033 * DSQ.
3034 */
3035 if (p->scx.slice && !scx_rq_bypassing(rq)) {
3036 dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD);
3037 return;
3038 }
3039
3040 /*
3041 * If @p is runnable but we're about to enter a lower
3042 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell
3043 * ops.enqueue() that @p is the only one available for this cpu,
3044 * which should trigger an explicit follow-up scheduling event.
3045 */
3046 if (sched_class_above(&ext_sched_class, next->sched_class)) {
3047 WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last));
3048 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1);
3049 } else {
3050 do_enqueue_task(rq, p, 0, -1);
3051 }
3052 }
3053
3054 if (next && next->sched_class != &ext_sched_class)
3055 switch_class(rq, next);
3056 }
3057
first_local_task(struct rq * rq)3058 static struct task_struct *first_local_task(struct rq *rq)
3059 {
3060 return list_first_entry_or_null(&rq->scx.local_dsq.list,
3061 struct task_struct, scx.dsq_list.node);
3062 }
3063
pick_task_scx(struct rq * rq)3064 static struct task_struct *pick_task_scx(struct rq *rq)
3065 {
3066 struct task_struct *prev = rq->curr;
3067 struct task_struct *p;
3068 bool prev_on_scx = prev->sched_class == &ext_sched_class;
3069 bool keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP;
3070 bool kick_idle = false;
3071
3072 /*
3073 * WORKAROUND:
3074 *
3075 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just
3076 * have gone through balance_scx(). Unfortunately, there currently is a
3077 * bug where fair could say yes on balance() but no on pick_task(),
3078 * which then ends up calling pick_task_scx() without preceding
3079 * balance_scx().
3080 *
3081 * Keep running @prev if possible and avoid stalling from entering idle
3082 * without balancing.
3083 *
3084 * Once fair is fixed, remove the workaround and trigger WARN_ON_ONCE()
3085 * if pick_task_scx() is called without preceding balance_scx().
3086 */
3087 if (unlikely(rq->scx.flags & SCX_RQ_BAL_PENDING)) {
3088 if (prev_on_scx) {
3089 keep_prev = true;
3090 } else {
3091 keep_prev = false;
3092 kick_idle = true;
3093 }
3094 } else if (unlikely(keep_prev && !prev_on_scx)) {
3095 /* only allowed during transitions */
3096 WARN_ON_ONCE(scx_ops_enable_state() == SCX_OPS_ENABLED);
3097 keep_prev = false;
3098 }
3099
3100 /*
3101 * If balance_scx() is telling us to keep running @prev, replenish slice
3102 * if necessary and keep running @prev. Otherwise, pop the first one
3103 * from the local DSQ.
3104 */
3105 if (keep_prev) {
3106 p = prev;
3107 if (!p->scx.slice)
3108 p->scx.slice = SCX_SLICE_DFL;
3109 } else {
3110 p = first_local_task(rq);
3111 if (!p) {
3112 if (kick_idle)
3113 scx_bpf_kick_cpu(cpu_of(rq), SCX_KICK_IDLE);
3114 return NULL;
3115 }
3116
3117 if (unlikely(!p->scx.slice)) {
3118 if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) {
3119 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n",
3120 p->comm, p->pid, __func__);
3121 scx_warned_zero_slice = true;
3122 }
3123 p->scx.slice = SCX_SLICE_DFL;
3124 }
3125 }
3126
3127 return p;
3128 }
3129
3130 #ifdef CONFIG_SCHED_CORE
3131 /**
3132 * scx_prio_less - Task ordering for core-sched
3133 * @a: task A
3134 * @b: task B
3135 *
3136 * Core-sched is implemented as an additional scheduling layer on top of the
3137 * usual sched_class'es and needs to find out the expected task ordering. For
3138 * SCX, core-sched calls this function to interrogate the task ordering.
3139 *
3140 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used
3141 * to implement the default task ordering. The older the timestamp, the higher
3142 * prority the task - the global FIFO ordering matching the default scheduling
3143 * behavior.
3144 *
3145 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to
3146 * implement FIFO ordering within each local DSQ. See pick_task_scx().
3147 */
scx_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)3148 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b,
3149 bool in_fi)
3150 {
3151 /*
3152 * The const qualifiers are dropped from task_struct pointers when
3153 * calling ops.core_sched_before(). Accesses are controlled by the
3154 * verifier.
3155 */
3156 if (SCX_HAS_OP(core_sched_before) && !scx_rq_bypassing(task_rq(a)))
3157 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before,
3158 (struct task_struct *)a,
3159 (struct task_struct *)b);
3160 else
3161 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at);
3162 }
3163 #endif /* CONFIG_SCHED_CORE */
3164
3165 #ifdef CONFIG_SMP
3166
test_and_clear_cpu_idle(int cpu)3167 static bool test_and_clear_cpu_idle(int cpu)
3168 {
3169 #ifdef CONFIG_SCHED_SMT
3170 /*
3171 * SMT mask should be cleared whether we can claim @cpu or not. The SMT
3172 * cluster is not wholly idle either way. This also prevents
3173 * scx_pick_idle_cpu() from getting caught in an infinite loop.
3174 */
3175 if (sched_smt_active()) {
3176 const struct cpumask *smt = cpu_smt_mask(cpu);
3177
3178 /*
3179 * If offline, @cpu is not its own sibling and
3180 * scx_pick_idle_cpu() can get caught in an infinite loop as
3181 * @cpu is never cleared from idle_masks.smt. Ensure that @cpu
3182 * is eventually cleared.
3183 */
3184 if (cpumask_intersects(smt, idle_masks.smt))
3185 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
3186 else if (cpumask_test_cpu(cpu, idle_masks.smt))
3187 __cpumask_clear_cpu(cpu, idle_masks.smt);
3188 }
3189 #endif
3190 return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu);
3191 }
3192
scx_pick_idle_cpu(const struct cpumask * cpus_allowed,u64 flags)3193 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags)
3194 {
3195 int cpu;
3196
3197 retry:
3198 if (sched_smt_active()) {
3199 cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed);
3200 if (cpu < nr_cpu_ids)
3201 goto found;
3202
3203 if (flags & SCX_PICK_IDLE_CORE)
3204 return -EBUSY;
3205 }
3206
3207 cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed);
3208 if (cpu >= nr_cpu_ids)
3209 return -EBUSY;
3210
3211 found:
3212 if (test_and_clear_cpu_idle(cpu))
3213 return cpu;
3214 else
3215 goto retry;
3216 }
3217
3218 /*
3219 * Return true if the LLC domains do not perfectly overlap with the NUMA
3220 * domains, false otherwise.
3221 */
llc_numa_mismatch(void)3222 static bool llc_numa_mismatch(void)
3223 {
3224 int cpu;
3225
3226 /*
3227 * We need to scan all online CPUs to verify whether their scheduling
3228 * domains overlap.
3229 *
3230 * While it is rare to encounter architectures with asymmetric NUMA
3231 * topologies, CPU hotplugging or virtualized environments can result
3232 * in asymmetric configurations.
3233 *
3234 * For example:
3235 *
3236 * NUMA 0:
3237 * - LLC 0: cpu0..cpu7
3238 * - LLC 1: cpu8..cpu15 [offline]
3239 *
3240 * NUMA 1:
3241 * - LLC 0: cpu16..cpu23
3242 * - LLC 1: cpu24..cpu31
3243 *
3244 * In this case, if we only check the first online CPU (cpu0), we might
3245 * incorrectly assume that the LLC and NUMA domains are fully
3246 * overlapping, which is incorrect (as NUMA 1 has two distinct LLC
3247 * domains).
3248 */
3249 for_each_online_cpu(cpu) {
3250 const struct cpumask *numa_cpus;
3251 struct sched_domain *sd;
3252
3253 sd = rcu_dereference(per_cpu(sd_llc, cpu));
3254 if (!sd)
3255 return true;
3256
3257 numa_cpus = cpumask_of_node(cpu_to_node(cpu));
3258 if (sd->span_weight != cpumask_weight(numa_cpus))
3259 return true;
3260 }
3261
3262 return false;
3263 }
3264
3265 /*
3266 * Initialize topology-aware scheduling.
3267 *
3268 * Detect if the system has multiple LLC or multiple NUMA domains and enable
3269 * cache-aware / NUMA-aware scheduling optimizations in the default CPU idle
3270 * selection policy.
3271 *
3272 * Assumption: the kernel's internal topology representation assumes that each
3273 * CPU belongs to a single LLC domain, and that each LLC domain is entirely
3274 * contained within a single NUMA node.
3275 */
update_selcpu_topology(void)3276 static void update_selcpu_topology(void)
3277 {
3278 bool enable_llc = false, enable_numa = false;
3279 struct sched_domain *sd;
3280 const struct cpumask *cpus;
3281 s32 cpu = cpumask_first(cpu_online_mask);
3282
3283 /*
3284 * Enable LLC domain optimization only when there are multiple LLC
3285 * domains among the online CPUs. If all online CPUs are part of a
3286 * single LLC domain, the idle CPU selection logic can choose any
3287 * online CPU without bias.
3288 *
3289 * Note that it is sufficient to check the LLC domain of the first
3290 * online CPU to determine whether a single LLC domain includes all
3291 * CPUs.
3292 */
3293 rcu_read_lock();
3294 sd = rcu_dereference(per_cpu(sd_llc, cpu));
3295 if (sd) {
3296 if (sd->span_weight < num_online_cpus())
3297 enable_llc = true;
3298 }
3299
3300 /*
3301 * Enable NUMA optimization only when there are multiple NUMA domains
3302 * among the online CPUs and the NUMA domains don't perfectly overlaps
3303 * with the LLC domains.
3304 *
3305 * If all CPUs belong to the same NUMA node and the same LLC domain,
3306 * enabling both NUMA and LLC optimizations is unnecessary, as checking
3307 * for an idle CPU in the same domain twice is redundant.
3308 */
3309 cpus = cpumask_of_node(cpu_to_node(cpu));
3310 if ((cpumask_weight(cpus) < num_online_cpus()) && llc_numa_mismatch())
3311 enable_numa = true;
3312 rcu_read_unlock();
3313
3314 pr_debug("sched_ext: LLC idle selection %s\n",
3315 enable_llc ? "enabled" : "disabled");
3316 pr_debug("sched_ext: NUMA idle selection %s\n",
3317 enable_numa ? "enabled" : "disabled");
3318
3319 if (enable_llc)
3320 static_branch_enable_cpuslocked(&scx_selcpu_topo_llc);
3321 else
3322 static_branch_disable_cpuslocked(&scx_selcpu_topo_llc);
3323 if (enable_numa)
3324 static_branch_enable_cpuslocked(&scx_selcpu_topo_numa);
3325 else
3326 static_branch_disable_cpuslocked(&scx_selcpu_topo_numa);
3327 }
3328
3329 /*
3330 * Built-in CPU idle selection policy:
3331 *
3332 * 1. Prioritize full-idle cores:
3333 * - always prioritize CPUs from fully idle cores (both logical CPUs are
3334 * idle) to avoid interference caused by SMT.
3335 *
3336 * 2. Reuse the same CPU:
3337 * - prefer the last used CPU to take advantage of cached data (L1, L2) and
3338 * branch prediction optimizations.
3339 *
3340 * 3. Pick a CPU within the same LLC (Last-Level Cache):
3341 * - if the above conditions aren't met, pick a CPU that shares the same LLC
3342 * to maintain cache locality.
3343 *
3344 * 4. Pick a CPU within the same NUMA node, if enabled:
3345 * - choose a CPU from the same NUMA node to reduce memory access latency.
3346 *
3347 * Step 3 and 4 are performed only if the system has, respectively, multiple
3348 * LLC domains / multiple NUMA nodes (see scx_selcpu_topo_llc and
3349 * scx_selcpu_topo_numa).
3350 *
3351 * NOTE: tasks that can only run on 1 CPU are excluded by this logic, because
3352 * we never call ops.select_cpu() for them, see select_task_rq().
3353 */
scx_select_cpu_dfl(struct task_struct * p,s32 prev_cpu,u64 wake_flags,bool * found)3354 static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
3355 u64 wake_flags, bool *found)
3356 {
3357 const struct cpumask *llc_cpus = NULL;
3358 const struct cpumask *numa_cpus = NULL;
3359 s32 cpu;
3360
3361 *found = false;
3362
3363
3364 /*
3365 * This is necessary to protect llc_cpus.
3366 */
3367 rcu_read_lock();
3368
3369 /*
3370 * Determine the scheduling domain only if the task is allowed to run
3371 * on all CPUs.
3372 *
3373 * This is done primarily for efficiency, as it avoids the overhead of
3374 * updating a cpumask every time we need to select an idle CPU (which
3375 * can be costly in large SMP systems), but it also aligns logically:
3376 * if a task's scheduling domain is restricted by user-space (through
3377 * CPU affinity), the task will simply use the flat scheduling domain
3378 * defined by user-space.
3379 */
3380 if (p->nr_cpus_allowed >= num_possible_cpus()) {
3381 if (static_branch_maybe(CONFIG_NUMA, &scx_selcpu_topo_numa))
3382 numa_cpus = cpumask_of_node(cpu_to_node(prev_cpu));
3383
3384 if (static_branch_maybe(CONFIG_SCHED_MC, &scx_selcpu_topo_llc)) {
3385 struct sched_domain *sd;
3386
3387 sd = rcu_dereference(per_cpu(sd_llc, prev_cpu));
3388 if (sd)
3389 llc_cpus = sched_domain_span(sd);
3390 }
3391 }
3392
3393 /*
3394 * If WAKE_SYNC, try to migrate the wakee to the waker's CPU.
3395 */
3396 if (wake_flags & SCX_WAKE_SYNC) {
3397 cpu = smp_processor_id();
3398
3399 /*
3400 * If the waker's CPU is cache affine and prev_cpu is idle,
3401 * then avoid a migration.
3402 */
3403 if (cpus_share_cache(cpu, prev_cpu) &&
3404 test_and_clear_cpu_idle(prev_cpu)) {
3405 cpu = prev_cpu;
3406 goto cpu_found;
3407 }
3408
3409 /*
3410 * If the waker's local DSQ is empty, and the system is under
3411 * utilized, try to wake up @p to the local DSQ of the waker.
3412 *
3413 * Checking only for an empty local DSQ is insufficient as it
3414 * could give the wakee an unfair advantage when the system is
3415 * oversaturated.
3416 *
3417 * Checking only for the presence of idle CPUs is also
3418 * insufficient as the local DSQ of the waker could have tasks
3419 * piled up on it even if there is an idle core elsewhere on
3420 * the system.
3421 */
3422 if (!cpumask_empty(idle_masks.cpu) &&
3423 !(current->flags & PF_EXITING) &&
3424 cpu_rq(cpu)->scx.local_dsq.nr == 0) {
3425 if (cpumask_test_cpu(cpu, p->cpus_ptr))
3426 goto cpu_found;
3427 }
3428 }
3429
3430 /*
3431 * If CPU has SMT, any wholly idle CPU is likely a better pick than
3432 * partially idle @prev_cpu.
3433 */
3434 if (sched_smt_active()) {
3435 /*
3436 * Keep using @prev_cpu if it's part of a fully idle core.
3437 */
3438 if (cpumask_test_cpu(prev_cpu, idle_masks.smt) &&
3439 test_and_clear_cpu_idle(prev_cpu)) {
3440 cpu = prev_cpu;
3441 goto cpu_found;
3442 }
3443
3444 /*
3445 * Search for any fully idle core in the same LLC domain.
3446 */
3447 if (llc_cpus) {
3448 cpu = scx_pick_idle_cpu(llc_cpus, SCX_PICK_IDLE_CORE);
3449 if (cpu >= 0)
3450 goto cpu_found;
3451 }
3452
3453 /*
3454 * Search for any fully idle core in the same NUMA node.
3455 */
3456 if (numa_cpus) {
3457 cpu = scx_pick_idle_cpu(numa_cpus, SCX_PICK_IDLE_CORE);
3458 if (cpu >= 0)
3459 goto cpu_found;
3460 }
3461
3462 /*
3463 * Search for any full idle core usable by the task.
3464 */
3465 cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE);
3466 if (cpu >= 0)
3467 goto cpu_found;
3468 }
3469
3470 /*
3471 * Use @prev_cpu if it's idle.
3472 */
3473 if (test_and_clear_cpu_idle(prev_cpu)) {
3474 cpu = prev_cpu;
3475 goto cpu_found;
3476 }
3477
3478 /*
3479 * Search for any idle CPU in the same LLC domain.
3480 */
3481 if (llc_cpus) {
3482 cpu = scx_pick_idle_cpu(llc_cpus, 0);
3483 if (cpu >= 0)
3484 goto cpu_found;
3485 }
3486
3487 /*
3488 * Search for any idle CPU in the same NUMA node.
3489 */
3490 if (numa_cpus) {
3491 cpu = scx_pick_idle_cpu(numa_cpus, 0);
3492 if (cpu >= 0)
3493 goto cpu_found;
3494 }
3495
3496 /*
3497 * Search for any idle CPU usable by the task.
3498 */
3499 cpu = scx_pick_idle_cpu(p->cpus_ptr, 0);
3500 if (cpu >= 0)
3501 goto cpu_found;
3502
3503 rcu_read_unlock();
3504 return prev_cpu;
3505
3506 cpu_found:
3507 rcu_read_unlock();
3508
3509 *found = true;
3510 return cpu;
3511 }
3512
select_task_rq_scx(struct task_struct * p,int prev_cpu,int wake_flags)3513 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags)
3514 {
3515 /*
3516 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it
3517 * can be a good migration opportunity with low cache and memory
3518 * footprint. Returning a CPU different than @prev_cpu triggers
3519 * immediate rq migration. However, for SCX, as the current rq
3520 * association doesn't dictate where the task is going to run, this
3521 * doesn't fit well. If necessary, we can later add a dedicated method
3522 * which can decide to preempt self to force it through the regular
3523 * scheduling path.
3524 */
3525 if (unlikely(wake_flags & WF_EXEC))
3526 return prev_cpu;
3527
3528 if (SCX_HAS_OP(select_cpu) && !scx_rq_bypassing(task_rq(p))) {
3529 s32 cpu;
3530 struct task_struct **ddsp_taskp;
3531
3532 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
3533 WARN_ON_ONCE(*ddsp_taskp);
3534 *ddsp_taskp = p;
3535
3536 cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU,
3537 select_cpu, p, prev_cpu, wake_flags);
3538 *ddsp_taskp = NULL;
3539 if (ops_cpu_valid(cpu, "from ops.select_cpu()"))
3540 return cpu;
3541 else
3542 return prev_cpu;
3543 } else {
3544 bool found;
3545 s32 cpu;
3546
3547 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found);
3548 if (found) {
3549 p->scx.slice = SCX_SLICE_DFL;
3550 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL;
3551 }
3552 return cpu;
3553 }
3554 }
3555
task_woken_scx(struct rq * rq,struct task_struct * p)3556 static void task_woken_scx(struct rq *rq, struct task_struct *p)
3557 {
3558 run_deferred(rq);
3559 }
3560
set_cpus_allowed_scx(struct task_struct * p,struct affinity_context * ac)3561 static void set_cpus_allowed_scx(struct task_struct *p,
3562 struct affinity_context *ac)
3563 {
3564 set_cpus_allowed_common(p, ac);
3565
3566 /*
3567 * The effective cpumask is stored in @p->cpus_ptr which may temporarily
3568 * differ from the configured one in @p->cpus_mask. Always tell the bpf
3569 * scheduler the effective one.
3570 *
3571 * Fine-grained memory write control is enforced by BPF making the const
3572 * designation pointless. Cast it away when calling the operation.
3573 */
3574 if (SCX_HAS_OP(set_cpumask))
3575 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
3576 (struct cpumask *)p->cpus_ptr);
3577 }
3578
reset_idle_masks(void)3579 static void reset_idle_masks(void)
3580 {
3581 /*
3582 * Consider all online cpus idle. Should converge to the actual state
3583 * quickly.
3584 */
3585 cpumask_copy(idle_masks.cpu, cpu_online_mask);
3586 cpumask_copy(idle_masks.smt, cpu_online_mask);
3587 }
3588
__scx_update_idle(struct rq * rq,bool idle)3589 void __scx_update_idle(struct rq *rq, bool idle)
3590 {
3591 int cpu = cpu_of(rq);
3592
3593 if (SCX_HAS_OP(update_idle) && !scx_rq_bypassing(rq)) {
3594 SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle);
3595 if (!static_branch_unlikely(&scx_builtin_idle_enabled))
3596 return;
3597 }
3598
3599 if (idle)
3600 cpumask_set_cpu(cpu, idle_masks.cpu);
3601 else
3602 cpumask_clear_cpu(cpu, idle_masks.cpu);
3603
3604 #ifdef CONFIG_SCHED_SMT
3605 if (sched_smt_active()) {
3606 const struct cpumask *smt = cpu_smt_mask(cpu);
3607
3608 if (idle) {
3609 /*
3610 * idle_masks.smt handling is racy but that's fine as
3611 * it's only for optimization and self-correcting.
3612 */
3613 for_each_cpu(cpu, smt) {
3614 if (!cpumask_test_cpu(cpu, idle_masks.cpu))
3615 return;
3616 }
3617 cpumask_or(idle_masks.smt, idle_masks.smt, smt);
3618 } else {
3619 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
3620 }
3621 }
3622 #endif
3623 }
3624
handle_hotplug(struct rq * rq,bool online)3625 static void handle_hotplug(struct rq *rq, bool online)
3626 {
3627 int cpu = cpu_of(rq);
3628
3629 atomic_long_inc(&scx_hotplug_seq);
3630
3631 if (scx_enabled())
3632 update_selcpu_topology();
3633
3634 if (online && SCX_HAS_OP(cpu_online))
3635 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu);
3636 else if (!online && SCX_HAS_OP(cpu_offline))
3637 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu);
3638 else
3639 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
3640 "cpu %d going %s, exiting scheduler", cpu,
3641 online ? "online" : "offline");
3642 }
3643
scx_rq_activate(struct rq * rq)3644 void scx_rq_activate(struct rq *rq)
3645 {
3646 handle_hotplug(rq, true);
3647 }
3648
scx_rq_deactivate(struct rq * rq)3649 void scx_rq_deactivate(struct rq *rq)
3650 {
3651 handle_hotplug(rq, false);
3652 }
3653
rq_online_scx(struct rq * rq)3654 static void rq_online_scx(struct rq *rq)
3655 {
3656 rq->scx.flags |= SCX_RQ_ONLINE;
3657 }
3658
rq_offline_scx(struct rq * rq)3659 static void rq_offline_scx(struct rq *rq)
3660 {
3661 rq->scx.flags &= ~SCX_RQ_ONLINE;
3662 }
3663
3664 #else /* CONFIG_SMP */
3665
test_and_clear_cpu_idle(int cpu)3666 static bool test_and_clear_cpu_idle(int cpu) { return false; }
scx_pick_idle_cpu(const struct cpumask * cpus_allowed,u64 flags)3667 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; }
reset_idle_masks(void)3668 static void reset_idle_masks(void) {}
3669
3670 #endif /* CONFIG_SMP */
3671
check_rq_for_timeouts(struct rq * rq)3672 static bool check_rq_for_timeouts(struct rq *rq)
3673 {
3674 struct task_struct *p;
3675 struct rq_flags rf;
3676 bool timed_out = false;
3677
3678 rq_lock_irqsave(rq, &rf);
3679 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) {
3680 unsigned long last_runnable = p->scx.runnable_at;
3681
3682 if (unlikely(time_after(jiffies,
3683 last_runnable + scx_watchdog_timeout))) {
3684 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable);
3685
3686 scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
3687 "%s[%d] failed to run for %u.%03us",
3688 p->comm, p->pid,
3689 dur_ms / 1000, dur_ms % 1000);
3690 timed_out = true;
3691 break;
3692 }
3693 }
3694 rq_unlock_irqrestore(rq, &rf);
3695
3696 return timed_out;
3697 }
3698
scx_watchdog_workfn(struct work_struct * work)3699 static void scx_watchdog_workfn(struct work_struct *work)
3700 {
3701 int cpu;
3702
3703 WRITE_ONCE(scx_watchdog_timestamp, jiffies);
3704
3705 for_each_online_cpu(cpu) {
3706 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu))))
3707 break;
3708
3709 cond_resched();
3710 }
3711 queue_delayed_work(system_unbound_wq, to_delayed_work(work),
3712 scx_watchdog_timeout / 2);
3713 }
3714
scx_tick(struct rq * rq)3715 void scx_tick(struct rq *rq)
3716 {
3717 unsigned long last_check;
3718
3719 if (!scx_enabled())
3720 return;
3721
3722 last_check = READ_ONCE(scx_watchdog_timestamp);
3723 if (unlikely(time_after(jiffies,
3724 last_check + READ_ONCE(scx_watchdog_timeout)))) {
3725 u32 dur_ms = jiffies_to_msecs(jiffies - last_check);
3726
3727 scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
3728 "watchdog failed to check in for %u.%03us",
3729 dur_ms / 1000, dur_ms % 1000);
3730 }
3731
3732 update_other_load_avgs(rq);
3733 }
3734
task_tick_scx(struct rq * rq,struct task_struct * curr,int queued)3735 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued)
3736 {
3737 update_curr_scx(rq);
3738
3739 /*
3740 * While disabling, always resched and refresh core-sched timestamp as
3741 * we can't trust the slice management or ops.core_sched_before().
3742 */
3743 if (scx_rq_bypassing(rq)) {
3744 curr->scx.slice = 0;
3745 touch_core_sched(rq, curr);
3746 } else if (SCX_HAS_OP(tick)) {
3747 SCX_CALL_OP(SCX_KF_REST, tick, curr);
3748 }
3749
3750 if (!curr->scx.slice)
3751 resched_curr(rq);
3752 }
3753
3754 #ifdef CONFIG_EXT_GROUP_SCHED
tg_cgrp(struct task_group * tg)3755 static struct cgroup *tg_cgrp(struct task_group *tg)
3756 {
3757 /*
3758 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup,
3759 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the
3760 * root cgroup.
3761 */
3762 if (tg && tg->css.cgroup)
3763 return tg->css.cgroup;
3764 else
3765 return &cgrp_dfl_root.cgrp;
3766 }
3767
3768 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg),
3769
3770 #else /* CONFIG_EXT_GROUP_SCHED */
3771
3772 #define SCX_INIT_TASK_ARGS_CGROUP(tg)
3773
3774 #endif /* CONFIG_EXT_GROUP_SCHED */
3775
scx_get_task_state(const struct task_struct * p)3776 static enum scx_task_state scx_get_task_state(const struct task_struct *p)
3777 {
3778 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT;
3779 }
3780
scx_set_task_state(struct task_struct * p,enum scx_task_state state)3781 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state)
3782 {
3783 enum scx_task_state prev_state = scx_get_task_state(p);
3784 bool warn = false;
3785
3786 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS));
3787
3788 switch (state) {
3789 case SCX_TASK_NONE:
3790 break;
3791 case SCX_TASK_INIT:
3792 warn = prev_state != SCX_TASK_NONE;
3793 break;
3794 case SCX_TASK_READY:
3795 warn = prev_state == SCX_TASK_NONE;
3796 break;
3797 case SCX_TASK_ENABLED:
3798 warn = prev_state != SCX_TASK_READY;
3799 break;
3800 default:
3801 warn = true;
3802 return;
3803 }
3804
3805 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]",
3806 prev_state, state, p->comm, p->pid);
3807
3808 p->scx.flags &= ~SCX_TASK_STATE_MASK;
3809 p->scx.flags |= state << SCX_TASK_STATE_SHIFT;
3810 }
3811
scx_ops_init_task(struct task_struct * p,struct task_group * tg,bool fork)3812 static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork)
3813 {
3814 int ret;
3815
3816 p->scx.disallow = false;
3817
3818 if (SCX_HAS_OP(init_task)) {
3819 struct scx_init_task_args args = {
3820 SCX_INIT_TASK_ARGS_CGROUP(tg)
3821 .fork = fork,
3822 };
3823
3824 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args);
3825 if (unlikely(ret)) {
3826 ret = ops_sanitize_err("init_task", ret);
3827 return ret;
3828 }
3829 }
3830
3831 scx_set_task_state(p, SCX_TASK_INIT);
3832
3833 if (p->scx.disallow) {
3834 if (!fork) {
3835 struct rq *rq;
3836 struct rq_flags rf;
3837
3838 rq = task_rq_lock(p, &rf);
3839
3840 /*
3841 * We're in the load path and @p->policy will be applied
3842 * right after. Reverting @p->policy here and rejecting
3843 * %SCHED_EXT transitions from scx_check_setscheduler()
3844 * guarantees that if ops.init_task() sets @p->disallow,
3845 * @p can never be in SCX.
3846 */
3847 if (p->policy == SCHED_EXT) {
3848 p->policy = SCHED_NORMAL;
3849 atomic_long_inc(&scx_nr_rejected);
3850 }
3851
3852 task_rq_unlock(rq, p, &rf);
3853 } else if (p->policy == SCHED_EXT) {
3854 scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork",
3855 p->comm, p->pid);
3856 }
3857 }
3858
3859 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
3860 return 0;
3861 }
3862
scx_ops_enable_task(struct task_struct * p)3863 static void scx_ops_enable_task(struct task_struct *p)
3864 {
3865 u32 weight;
3866
3867 lockdep_assert_rq_held(task_rq(p));
3868
3869 /*
3870 * Set the weight before calling ops.enable() so that the scheduler
3871 * doesn't see a stale value if they inspect the task struct.
3872 */
3873 if (task_has_idle_policy(p))
3874 weight = WEIGHT_IDLEPRIO;
3875 else
3876 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO];
3877
3878 p->scx.weight = sched_weight_to_cgroup(weight);
3879
3880 if (SCX_HAS_OP(enable))
3881 SCX_CALL_OP_TASK(SCX_KF_REST, enable, p);
3882 scx_set_task_state(p, SCX_TASK_ENABLED);
3883
3884 if (SCX_HAS_OP(set_weight))
3885 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
3886 }
3887
scx_ops_disable_task(struct task_struct * p)3888 static void scx_ops_disable_task(struct task_struct *p)
3889 {
3890 lockdep_assert_rq_held(task_rq(p));
3891 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED);
3892
3893 if (SCX_HAS_OP(disable))
3894 SCX_CALL_OP(SCX_KF_REST, disable, p);
3895 scx_set_task_state(p, SCX_TASK_READY);
3896 }
3897
scx_ops_exit_task(struct task_struct * p)3898 static void scx_ops_exit_task(struct task_struct *p)
3899 {
3900 struct scx_exit_task_args args = {
3901 .cancelled = false,
3902 };
3903
3904 lockdep_assert_rq_held(task_rq(p));
3905
3906 switch (scx_get_task_state(p)) {
3907 case SCX_TASK_NONE:
3908 return;
3909 case SCX_TASK_INIT:
3910 args.cancelled = true;
3911 break;
3912 case SCX_TASK_READY:
3913 break;
3914 case SCX_TASK_ENABLED:
3915 scx_ops_disable_task(p);
3916 break;
3917 default:
3918 WARN_ON_ONCE(true);
3919 return;
3920 }
3921
3922 if (SCX_HAS_OP(exit_task))
3923 SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args);
3924 scx_set_task_state(p, SCX_TASK_NONE);
3925 }
3926
init_scx_entity(struct sched_ext_entity * scx)3927 void init_scx_entity(struct sched_ext_entity *scx)
3928 {
3929 memset(scx, 0, sizeof(*scx));
3930 INIT_LIST_HEAD(&scx->dsq_list.node);
3931 RB_CLEAR_NODE(&scx->dsq_priq);
3932 scx->sticky_cpu = -1;
3933 scx->holding_cpu = -1;
3934 INIT_LIST_HEAD(&scx->runnable_node);
3935 scx->runnable_at = jiffies;
3936 scx->ddsp_dsq_id = SCX_DSQ_INVALID;
3937 scx->slice = SCX_SLICE_DFL;
3938 }
3939
scx_pre_fork(struct task_struct * p)3940 void scx_pre_fork(struct task_struct *p)
3941 {
3942 /*
3943 * BPF scheduler enable/disable paths want to be able to iterate and
3944 * update all tasks which can become complex when racing forks. As
3945 * enable/disable are very cold paths, let's use a percpu_rwsem to
3946 * exclude forks.
3947 */
3948 percpu_down_read(&scx_fork_rwsem);
3949 }
3950
scx_fork(struct task_struct * p)3951 int scx_fork(struct task_struct *p)
3952 {
3953 percpu_rwsem_assert_held(&scx_fork_rwsem);
3954
3955 if (scx_ops_init_task_enabled)
3956 return scx_ops_init_task(p, task_group(p), true);
3957 else
3958 return 0;
3959 }
3960
scx_post_fork(struct task_struct * p)3961 void scx_post_fork(struct task_struct *p)
3962 {
3963 if (scx_ops_init_task_enabled) {
3964 scx_set_task_state(p, SCX_TASK_READY);
3965
3966 /*
3967 * Enable the task immediately if it's running on sched_ext.
3968 * Otherwise, it'll be enabled in switching_to_scx() if and
3969 * when it's ever configured to run with a SCHED_EXT policy.
3970 */
3971 if (p->sched_class == &ext_sched_class) {
3972 struct rq_flags rf;
3973 struct rq *rq;
3974
3975 rq = task_rq_lock(p, &rf);
3976 scx_ops_enable_task(p);
3977 task_rq_unlock(rq, p, &rf);
3978 }
3979 }
3980
3981 spin_lock_irq(&scx_tasks_lock);
3982 list_add_tail(&p->scx.tasks_node, &scx_tasks);
3983 spin_unlock_irq(&scx_tasks_lock);
3984
3985 percpu_up_read(&scx_fork_rwsem);
3986 }
3987
scx_cancel_fork(struct task_struct * p)3988 void scx_cancel_fork(struct task_struct *p)
3989 {
3990 if (scx_enabled()) {
3991 struct rq *rq;
3992 struct rq_flags rf;
3993
3994 rq = task_rq_lock(p, &rf);
3995 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY);
3996 scx_ops_exit_task(p);
3997 task_rq_unlock(rq, p, &rf);
3998 }
3999
4000 percpu_up_read(&scx_fork_rwsem);
4001 }
4002
sched_ext_free(struct task_struct * p)4003 void sched_ext_free(struct task_struct *p)
4004 {
4005 unsigned long flags;
4006
4007 spin_lock_irqsave(&scx_tasks_lock, flags);
4008 list_del_init(&p->scx.tasks_node);
4009 spin_unlock_irqrestore(&scx_tasks_lock, flags);
4010
4011 /*
4012 * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY ->
4013 * ENABLED transitions can't race us. Disable ops for @p.
4014 */
4015 if (scx_get_task_state(p) != SCX_TASK_NONE) {
4016 struct rq_flags rf;
4017 struct rq *rq;
4018
4019 rq = task_rq_lock(p, &rf);
4020 scx_ops_exit_task(p);
4021 task_rq_unlock(rq, p, &rf);
4022 }
4023 }
4024
reweight_task_scx(struct rq * rq,struct task_struct * p,const struct load_weight * lw)4025 static void reweight_task_scx(struct rq *rq, struct task_struct *p,
4026 const struct load_weight *lw)
4027 {
4028 lockdep_assert_rq_held(task_rq(p));
4029
4030 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight));
4031 if (SCX_HAS_OP(set_weight))
4032 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
4033 }
4034
prio_changed_scx(struct rq * rq,struct task_struct * p,int oldprio)4035 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio)
4036 {
4037 }
4038
switching_to_scx(struct rq * rq,struct task_struct * p)4039 static void switching_to_scx(struct rq *rq, struct task_struct *p)
4040 {
4041 scx_ops_enable_task(p);
4042
4043 /*
4044 * set_cpus_allowed_scx() is not called while @p is associated with a
4045 * different scheduler class. Keep the BPF scheduler up-to-date.
4046 */
4047 if (SCX_HAS_OP(set_cpumask))
4048 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
4049 (struct cpumask *)p->cpus_ptr);
4050 }
4051
switched_from_scx(struct rq * rq,struct task_struct * p)4052 static void switched_from_scx(struct rq *rq, struct task_struct *p)
4053 {
4054 scx_ops_disable_task(p);
4055 }
4056
wakeup_preempt_scx(struct rq * rq,struct task_struct * p,int wake_flags)4057 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {}
switched_to_scx(struct rq * rq,struct task_struct * p)4058 static void switched_to_scx(struct rq *rq, struct task_struct *p) {}
4059
scx_check_setscheduler(struct task_struct * p,int policy)4060 int scx_check_setscheduler(struct task_struct *p, int policy)
4061 {
4062 lockdep_assert_rq_held(task_rq(p));
4063
4064 /* if disallow, reject transitioning into SCX */
4065 if (scx_enabled() && READ_ONCE(p->scx.disallow) &&
4066 p->policy != policy && policy == SCHED_EXT)
4067 return -EACCES;
4068
4069 return 0;
4070 }
4071
4072 #ifdef CONFIG_NO_HZ_FULL
scx_can_stop_tick(struct rq * rq)4073 bool scx_can_stop_tick(struct rq *rq)
4074 {
4075 struct task_struct *p = rq->curr;
4076
4077 if (scx_rq_bypassing(rq))
4078 return false;
4079
4080 if (p->sched_class != &ext_sched_class)
4081 return true;
4082
4083 /*
4084 * @rq can dispatch from different DSQs, so we can't tell whether it
4085 * needs the tick or not by looking at nr_running. Allow stopping ticks
4086 * iff the BPF scheduler indicated so. See set_next_task_scx().
4087 */
4088 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK;
4089 }
4090 #endif
4091
4092 #ifdef CONFIG_EXT_GROUP_SCHED
4093
4094 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem);
4095 static bool scx_cgroup_enabled;
4096 static bool cgroup_warned_missing_weight;
4097 static bool cgroup_warned_missing_idle;
4098
scx_cgroup_warn_missing_weight(struct task_group * tg)4099 static void scx_cgroup_warn_missing_weight(struct task_group *tg)
4100 {
4101 if (scx_ops_enable_state() == SCX_OPS_DISABLED ||
4102 cgroup_warned_missing_weight)
4103 return;
4104
4105 if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent)
4106 return;
4107
4108 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n",
4109 scx_ops.name);
4110 cgroup_warned_missing_weight = true;
4111 }
4112
scx_cgroup_warn_missing_idle(struct task_group * tg)4113 static void scx_cgroup_warn_missing_idle(struct task_group *tg)
4114 {
4115 if (!scx_cgroup_enabled || cgroup_warned_missing_idle)
4116 return;
4117
4118 if (!tg->idle)
4119 return;
4120
4121 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n",
4122 scx_ops.name);
4123 cgroup_warned_missing_idle = true;
4124 }
4125
scx_tg_online(struct task_group * tg)4126 int scx_tg_online(struct task_group *tg)
4127 {
4128 int ret = 0;
4129
4130 WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED));
4131
4132 percpu_down_read(&scx_cgroup_rwsem);
4133
4134 scx_cgroup_warn_missing_weight(tg);
4135
4136 if (scx_cgroup_enabled) {
4137 if (SCX_HAS_OP(cgroup_init)) {
4138 struct scx_cgroup_init_args args =
4139 { .weight = tg->scx_weight };
4140
4141 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
4142 tg->css.cgroup, &args);
4143 if (ret)
4144 ret = ops_sanitize_err("cgroup_init", ret);
4145 }
4146 if (ret == 0)
4147 tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED;
4148 } else {
4149 tg->scx_flags |= SCX_TG_ONLINE;
4150 }
4151
4152 percpu_up_read(&scx_cgroup_rwsem);
4153 return ret;
4154 }
4155
scx_tg_offline(struct task_group * tg)4156 void scx_tg_offline(struct task_group *tg)
4157 {
4158 WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE));
4159
4160 percpu_down_read(&scx_cgroup_rwsem);
4161
4162 if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED))
4163 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup);
4164 tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED);
4165
4166 percpu_up_read(&scx_cgroup_rwsem);
4167 }
4168
scx_cgroup_can_attach(struct cgroup_taskset * tset)4169 int scx_cgroup_can_attach(struct cgroup_taskset *tset)
4170 {
4171 struct cgroup_subsys_state *css;
4172 struct task_struct *p;
4173 int ret;
4174
4175 /* released in scx_finish/cancel_attach() */
4176 percpu_down_read(&scx_cgroup_rwsem);
4177
4178 if (!scx_cgroup_enabled)
4179 return 0;
4180
4181 cgroup_taskset_for_each(p, css, tset) {
4182 struct cgroup *from = tg_cgrp(task_group(p));
4183 struct cgroup *to = tg_cgrp(css_tg(css));
4184
4185 WARN_ON_ONCE(p->scx.cgrp_moving_from);
4186
4187 /*
4188 * sched_move_task() omits identity migrations. Let's match the
4189 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move()
4190 * always match one-to-one.
4191 */
4192 if (from == to)
4193 continue;
4194
4195 if (SCX_HAS_OP(cgroup_prep_move)) {
4196 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move,
4197 p, from, css->cgroup);
4198 if (ret)
4199 goto err;
4200 }
4201
4202 p->scx.cgrp_moving_from = from;
4203 }
4204
4205 return 0;
4206
4207 err:
4208 cgroup_taskset_for_each(p, css, tset) {
4209 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
4210 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
4211 p->scx.cgrp_moving_from, css->cgroup);
4212 p->scx.cgrp_moving_from = NULL;
4213 }
4214
4215 percpu_up_read(&scx_cgroup_rwsem);
4216 return ops_sanitize_err("cgroup_prep_move", ret);
4217 }
4218
scx_move_task(struct task_struct * p)4219 void scx_move_task(struct task_struct *p)
4220 {
4221 if (!scx_cgroup_enabled)
4222 return;
4223
4224 /*
4225 * We're called from sched_move_task() which handles both cgroup and
4226 * autogroup moves. Ignore the latter.
4227 *
4228 * Also ignore exiting tasks, because in the exit path tasks transition
4229 * from the autogroup to the root group, so task_group_is_autogroup()
4230 * alone isn't able to catch exiting autogroup tasks. This is safe for
4231 * cgroup_move(), because cgroup migrations never happen for PF_EXITING
4232 * tasks.
4233 */
4234 if (task_group_is_autogroup(task_group(p)) || (p->flags & PF_EXITING))
4235 return;
4236
4237 /*
4238 * @p must have ops.cgroup_prep_move() called on it and thus
4239 * cgrp_moving_from set.
4240 */
4241 if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from))
4242 SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p,
4243 p->scx.cgrp_moving_from, tg_cgrp(task_group(p)));
4244 p->scx.cgrp_moving_from = NULL;
4245 }
4246
scx_cgroup_finish_attach(void)4247 void scx_cgroup_finish_attach(void)
4248 {
4249 percpu_up_read(&scx_cgroup_rwsem);
4250 }
4251
scx_cgroup_cancel_attach(struct cgroup_taskset * tset)4252 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset)
4253 {
4254 struct cgroup_subsys_state *css;
4255 struct task_struct *p;
4256
4257 if (!scx_cgroup_enabled)
4258 goto out_unlock;
4259
4260 cgroup_taskset_for_each(p, css, tset) {
4261 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
4262 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
4263 p->scx.cgrp_moving_from, css->cgroup);
4264 p->scx.cgrp_moving_from = NULL;
4265 }
4266 out_unlock:
4267 percpu_up_read(&scx_cgroup_rwsem);
4268 }
4269
scx_group_set_weight(struct task_group * tg,unsigned long weight)4270 void scx_group_set_weight(struct task_group *tg, unsigned long weight)
4271 {
4272 percpu_down_read(&scx_cgroup_rwsem);
4273
4274 if (scx_cgroup_enabled && tg->scx_weight != weight) {
4275 if (SCX_HAS_OP(cgroup_set_weight))
4276 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight,
4277 tg_cgrp(tg), weight);
4278 tg->scx_weight = weight;
4279 }
4280
4281 percpu_up_read(&scx_cgroup_rwsem);
4282 }
4283
scx_group_set_idle(struct task_group * tg,bool idle)4284 void scx_group_set_idle(struct task_group *tg, bool idle)
4285 {
4286 percpu_down_read(&scx_cgroup_rwsem);
4287 scx_cgroup_warn_missing_idle(tg);
4288 percpu_up_read(&scx_cgroup_rwsem);
4289 }
4290
scx_cgroup_lock(void)4291 static void scx_cgroup_lock(void)
4292 {
4293 percpu_down_write(&scx_cgroup_rwsem);
4294 }
4295
scx_cgroup_unlock(void)4296 static void scx_cgroup_unlock(void)
4297 {
4298 percpu_up_write(&scx_cgroup_rwsem);
4299 }
4300
4301 #else /* CONFIG_EXT_GROUP_SCHED */
4302
scx_cgroup_lock(void)4303 static inline void scx_cgroup_lock(void) {}
scx_cgroup_unlock(void)4304 static inline void scx_cgroup_unlock(void) {}
4305
4306 #endif /* CONFIG_EXT_GROUP_SCHED */
4307
4308 /*
4309 * Omitted operations:
4310 *
4311 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task
4312 * isn't tied to the CPU at that point. Preemption is implemented by resetting
4313 * the victim task's slice to 0 and triggering reschedule on the target CPU.
4314 *
4315 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient.
4316 *
4317 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of
4318 * their current sched_class. Call them directly from sched core instead.
4319 */
4320 DEFINE_SCHED_CLASS(ext) = {
4321 .enqueue_task = enqueue_task_scx,
4322 .dequeue_task = dequeue_task_scx,
4323 .yield_task = yield_task_scx,
4324 .yield_to_task = yield_to_task_scx,
4325
4326 .wakeup_preempt = wakeup_preempt_scx,
4327
4328 .balance = balance_scx,
4329 .pick_task = pick_task_scx,
4330
4331 .put_prev_task = put_prev_task_scx,
4332 .set_next_task = set_next_task_scx,
4333
4334 #ifdef CONFIG_SMP
4335 .select_task_rq = select_task_rq_scx,
4336 .task_woken = task_woken_scx,
4337 .set_cpus_allowed = set_cpus_allowed_scx,
4338
4339 .rq_online = rq_online_scx,
4340 .rq_offline = rq_offline_scx,
4341 #endif
4342
4343 .task_tick = task_tick_scx,
4344
4345 .switching_to = switching_to_scx,
4346 .switched_from = switched_from_scx,
4347 .switched_to = switched_to_scx,
4348 .reweight_task = reweight_task_scx,
4349 .prio_changed = prio_changed_scx,
4350
4351 .update_curr = update_curr_scx,
4352
4353 #ifdef CONFIG_UCLAMP_TASK
4354 .uclamp_enabled = 1,
4355 #endif
4356 };
4357
init_dsq(struct scx_dispatch_q * dsq,u64 dsq_id)4358 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id)
4359 {
4360 memset(dsq, 0, sizeof(*dsq));
4361
4362 raw_spin_lock_init(&dsq->lock);
4363 INIT_LIST_HEAD(&dsq->list);
4364 dsq->id = dsq_id;
4365 }
4366
create_dsq(u64 dsq_id,int node)4367 static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node)
4368 {
4369 struct scx_dispatch_q *dsq;
4370 int ret;
4371
4372 if (dsq_id & SCX_DSQ_FLAG_BUILTIN)
4373 return ERR_PTR(-EINVAL);
4374
4375 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node);
4376 if (!dsq)
4377 return ERR_PTR(-ENOMEM);
4378
4379 init_dsq(dsq, dsq_id);
4380
4381 ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node,
4382 dsq_hash_params);
4383 if (ret) {
4384 kfree(dsq);
4385 return ERR_PTR(ret);
4386 }
4387 return dsq;
4388 }
4389
free_dsq_irq_workfn(struct irq_work * irq_work)4390 static void free_dsq_irq_workfn(struct irq_work *irq_work)
4391 {
4392 struct llist_node *to_free = llist_del_all(&dsqs_to_free);
4393 struct scx_dispatch_q *dsq, *tmp_dsq;
4394
4395 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node)
4396 kfree_rcu(dsq, rcu);
4397 }
4398
4399 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn);
4400
destroy_dsq(u64 dsq_id)4401 static void destroy_dsq(u64 dsq_id)
4402 {
4403 struct scx_dispatch_q *dsq;
4404 unsigned long flags;
4405
4406 rcu_read_lock();
4407
4408 dsq = find_user_dsq(dsq_id);
4409 if (!dsq)
4410 goto out_unlock_rcu;
4411
4412 raw_spin_lock_irqsave(&dsq->lock, flags);
4413
4414 if (dsq->nr) {
4415 scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)",
4416 dsq->id, dsq->nr);
4417 goto out_unlock_dsq;
4418 }
4419
4420 if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params))
4421 goto out_unlock_dsq;
4422
4423 /*
4424 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from
4425 * queueing more tasks. As this function can be called from anywhere,
4426 * freeing is bounced through an irq work to avoid nesting RCU
4427 * operations inside scheduler locks.
4428 */
4429 dsq->id = SCX_DSQ_INVALID;
4430 llist_add(&dsq->free_node, &dsqs_to_free);
4431 irq_work_queue(&free_dsq_irq_work);
4432
4433 out_unlock_dsq:
4434 raw_spin_unlock_irqrestore(&dsq->lock, flags);
4435 out_unlock_rcu:
4436 rcu_read_unlock();
4437 }
4438
4439 #ifdef CONFIG_EXT_GROUP_SCHED
scx_cgroup_exit(void)4440 static void scx_cgroup_exit(void)
4441 {
4442 struct cgroup_subsys_state *css;
4443
4444 percpu_rwsem_assert_held(&scx_cgroup_rwsem);
4445
4446 scx_cgroup_enabled = false;
4447
4448 /*
4449 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk
4450 * cgroups and exit all the inited ones, all online cgroups are exited.
4451 */
4452 rcu_read_lock();
4453 css_for_each_descendant_post(css, &root_task_group.css) {
4454 struct task_group *tg = css_tg(css);
4455
4456 if (!(tg->scx_flags & SCX_TG_INITED))
4457 continue;
4458 tg->scx_flags &= ~SCX_TG_INITED;
4459
4460 if (!scx_ops.cgroup_exit)
4461 continue;
4462
4463 if (WARN_ON_ONCE(!css_tryget(css)))
4464 continue;
4465 rcu_read_unlock();
4466
4467 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup);
4468
4469 rcu_read_lock();
4470 css_put(css);
4471 }
4472 rcu_read_unlock();
4473 }
4474
scx_cgroup_init(void)4475 static int scx_cgroup_init(void)
4476 {
4477 struct cgroup_subsys_state *css;
4478 int ret;
4479
4480 percpu_rwsem_assert_held(&scx_cgroup_rwsem);
4481
4482 cgroup_warned_missing_weight = false;
4483 cgroup_warned_missing_idle = false;
4484
4485 /*
4486 * scx_tg_on/offline() are excluded thorugh scx_cgroup_rwsem. If we walk
4487 * cgroups and init, all online cgroups are initialized.
4488 */
4489 rcu_read_lock();
4490 css_for_each_descendant_pre(css, &root_task_group.css) {
4491 struct task_group *tg = css_tg(css);
4492 struct scx_cgroup_init_args args = { .weight = tg->scx_weight };
4493
4494 scx_cgroup_warn_missing_weight(tg);
4495 scx_cgroup_warn_missing_idle(tg);
4496
4497 if ((tg->scx_flags &
4498 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE)
4499 continue;
4500
4501 if (!scx_ops.cgroup_init) {
4502 tg->scx_flags |= SCX_TG_INITED;
4503 continue;
4504 }
4505
4506 if (WARN_ON_ONCE(!css_tryget(css)))
4507 continue;
4508 rcu_read_unlock();
4509
4510 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
4511 css->cgroup, &args);
4512 if (ret) {
4513 css_put(css);
4514 scx_ops_error("ops.cgroup_init() failed (%d)", ret);
4515 return ret;
4516 }
4517 tg->scx_flags |= SCX_TG_INITED;
4518
4519 rcu_read_lock();
4520 css_put(css);
4521 }
4522 rcu_read_unlock();
4523
4524 WARN_ON_ONCE(scx_cgroup_enabled);
4525 scx_cgroup_enabled = true;
4526
4527 return 0;
4528 }
4529
4530 #else
scx_cgroup_exit(void)4531 static void scx_cgroup_exit(void) {}
scx_cgroup_init(void)4532 static int scx_cgroup_init(void) { return 0; }
4533 #endif
4534
4535
4536 /********************************************************************************
4537 * Sysfs interface and ops enable/disable.
4538 */
4539
4540 #define SCX_ATTR(_name) \
4541 static struct kobj_attribute scx_attr_##_name = { \
4542 .attr = { .name = __stringify(_name), .mode = 0444 }, \
4543 .show = scx_attr_##_name##_show, \
4544 }
4545
scx_attr_state_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)4546 static ssize_t scx_attr_state_show(struct kobject *kobj,
4547 struct kobj_attribute *ka, char *buf)
4548 {
4549 return sysfs_emit(buf, "%s\n",
4550 scx_ops_enable_state_str[scx_ops_enable_state()]);
4551 }
4552 SCX_ATTR(state);
4553
scx_attr_switch_all_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)4554 static ssize_t scx_attr_switch_all_show(struct kobject *kobj,
4555 struct kobj_attribute *ka, char *buf)
4556 {
4557 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all));
4558 }
4559 SCX_ATTR(switch_all);
4560
scx_attr_nr_rejected_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)4561 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj,
4562 struct kobj_attribute *ka, char *buf)
4563 {
4564 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected));
4565 }
4566 SCX_ATTR(nr_rejected);
4567
scx_attr_hotplug_seq_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)4568 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj,
4569 struct kobj_attribute *ka, char *buf)
4570 {
4571 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq));
4572 }
4573 SCX_ATTR(hotplug_seq);
4574
scx_attr_enable_seq_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)4575 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj,
4576 struct kobj_attribute *ka, char *buf)
4577 {
4578 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq));
4579 }
4580 SCX_ATTR(enable_seq);
4581
4582 static struct attribute *scx_global_attrs[] = {
4583 &scx_attr_state.attr,
4584 &scx_attr_switch_all.attr,
4585 &scx_attr_nr_rejected.attr,
4586 &scx_attr_hotplug_seq.attr,
4587 &scx_attr_enable_seq.attr,
4588 NULL,
4589 };
4590
4591 static const struct attribute_group scx_global_attr_group = {
4592 .attrs = scx_global_attrs,
4593 };
4594
scx_kobj_release(struct kobject * kobj)4595 static void scx_kobj_release(struct kobject *kobj)
4596 {
4597 kfree(kobj);
4598 }
4599
scx_attr_ops_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)4600 static ssize_t scx_attr_ops_show(struct kobject *kobj,
4601 struct kobj_attribute *ka, char *buf)
4602 {
4603 return sysfs_emit(buf, "%s\n", scx_ops.name);
4604 }
4605 SCX_ATTR(ops);
4606
4607 static struct attribute *scx_sched_attrs[] = {
4608 &scx_attr_ops.attr,
4609 NULL,
4610 };
4611 ATTRIBUTE_GROUPS(scx_sched);
4612
4613 static const struct kobj_type scx_ktype = {
4614 .release = scx_kobj_release,
4615 .sysfs_ops = &kobj_sysfs_ops,
4616 .default_groups = scx_sched_groups,
4617 };
4618
scx_uevent(const struct kobject * kobj,struct kobj_uevent_env * env)4619 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
4620 {
4621 return add_uevent_var(env, "SCXOPS=%s", scx_ops.name);
4622 }
4623
4624 static const struct kset_uevent_ops scx_uevent_ops = {
4625 .uevent = scx_uevent,
4626 };
4627
4628 /*
4629 * Used by sched_fork() and __setscheduler_prio() to pick the matching
4630 * sched_class. dl/rt are already handled.
4631 */
task_should_scx(int policy)4632 bool task_should_scx(int policy)
4633 {
4634 if (!scx_enabled() ||
4635 unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING))
4636 return false;
4637 if (READ_ONCE(scx_switching_all))
4638 return true;
4639 return policy == SCHED_EXT;
4640 }
4641
4642 /**
4643 * scx_softlockup - sched_ext softlockup handler
4644 *
4645 * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can
4646 * live-lock the system by making many CPUs target the same DSQ to the point
4647 * where soft-lockup detection triggers. This function is called from
4648 * soft-lockup watchdog when the triggering point is close and tries to unjam
4649 * the system by enabling the breather and aborting the BPF scheduler.
4650 */
scx_softlockup(u32 dur_s)4651 void scx_softlockup(u32 dur_s)
4652 {
4653 switch (scx_ops_enable_state()) {
4654 case SCX_OPS_ENABLING:
4655 case SCX_OPS_ENABLED:
4656 break;
4657 default:
4658 return;
4659 }
4660
4661 /* allow only one instance, cleared at the end of scx_ops_bypass() */
4662 if (test_and_set_bit(0, &scx_in_softlockup))
4663 return;
4664
4665 printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU%d stuck for %us, disabling \"%s\"\n",
4666 smp_processor_id(), dur_s, scx_ops.name);
4667
4668 /*
4669 * Some CPUs may be trapped in the dispatch paths. Enable breather
4670 * immediately; otherwise, we might even be able to get to
4671 * scx_ops_bypass().
4672 */
4673 atomic_inc(&scx_ops_breather_depth);
4674
4675 scx_ops_error("soft lockup - CPU#%d stuck for %us",
4676 smp_processor_id(), dur_s);
4677 }
4678
scx_clear_softlockup(void)4679 static void scx_clear_softlockup(void)
4680 {
4681 if (test_and_clear_bit(0, &scx_in_softlockup))
4682 atomic_dec(&scx_ops_breather_depth);
4683 }
4684
4685 /**
4686 * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress
4687 *
4688 * Bypassing guarantees that all runnable tasks make forward progress without
4689 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might
4690 * be held by tasks that the BPF scheduler is forgetting to run, which
4691 * unfortunately also excludes toggling the static branches.
4692 *
4693 * Let's work around by overriding a couple ops and modifying behaviors based on
4694 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue
4695 * to force global FIFO scheduling.
4696 *
4697 * - ops.select_cpu() is ignored and the default select_cpu() is used.
4698 *
4699 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order.
4700 * %SCX_OPS_ENQ_LAST is also ignored.
4701 *
4702 * - ops.dispatch() is ignored.
4703 *
4704 * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice
4705 * can't be trusted. Whenever a tick triggers, the running task is rotated to
4706 * the tail of the queue with core_sched_at touched.
4707 *
4708 * - pick_next_task() suppresses zero slice warning.
4709 *
4710 * - scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM
4711 * operations.
4712 *
4713 * - scx_prio_less() reverts to the default core_sched_at order.
4714 */
scx_ops_bypass(bool bypass)4715 static void scx_ops_bypass(bool bypass)
4716 {
4717 static DEFINE_RAW_SPINLOCK(bypass_lock);
4718 int cpu;
4719 unsigned long flags;
4720
4721 raw_spin_lock_irqsave(&bypass_lock, flags);
4722 if (bypass) {
4723 scx_ops_bypass_depth++;
4724 WARN_ON_ONCE(scx_ops_bypass_depth <= 0);
4725 if (scx_ops_bypass_depth != 1)
4726 goto unlock;
4727 } else {
4728 scx_ops_bypass_depth--;
4729 WARN_ON_ONCE(scx_ops_bypass_depth < 0);
4730 if (scx_ops_bypass_depth != 0)
4731 goto unlock;
4732 }
4733
4734 atomic_inc(&scx_ops_breather_depth);
4735
4736 /*
4737 * No task property is changing. We just need to make sure all currently
4738 * queued tasks are re-queued according to the new scx_rq_bypassing()
4739 * state. As an optimization, walk each rq's runnable_list instead of
4740 * the scx_tasks list.
4741 *
4742 * This function can't trust the scheduler and thus can't use
4743 * cpus_read_lock(). Walk all possible CPUs instead of online.
4744 */
4745 for_each_possible_cpu(cpu) {
4746 struct rq *rq = cpu_rq(cpu);
4747 struct rq_flags rf;
4748 struct task_struct *p, *n;
4749
4750 rq_lock(rq, &rf);
4751
4752 if (bypass) {
4753 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING);
4754 rq->scx.flags |= SCX_RQ_BYPASSING;
4755 } else {
4756 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING));
4757 rq->scx.flags &= ~SCX_RQ_BYPASSING;
4758 }
4759
4760 /*
4761 * We need to guarantee that no tasks are on the BPF scheduler
4762 * while bypassing. Either we see enabled or the enable path
4763 * sees scx_rq_bypassing() before moving tasks to SCX.
4764 */
4765 if (!scx_enabled()) {
4766 rq_unlock_irqrestore(rq, &rf);
4767 continue;
4768 }
4769
4770 /*
4771 * The use of list_for_each_entry_safe_reverse() is required
4772 * because each task is going to be removed from and added back
4773 * to the runnable_list during iteration. Because they're added
4774 * to the tail of the list, safe reverse iteration can still
4775 * visit all nodes.
4776 */
4777 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list,
4778 scx.runnable_node) {
4779 struct sched_enq_and_set_ctx ctx;
4780
4781 /* cycling deq/enq is enough, see the function comment */
4782 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
4783 sched_enq_and_set_task(&ctx);
4784 }
4785
4786 rq_unlock(rq, &rf);
4787
4788 /* resched to restore ticks and idle state */
4789 resched_cpu(cpu);
4790 }
4791
4792 atomic_dec(&scx_ops_breather_depth);
4793 unlock:
4794 raw_spin_unlock_irqrestore(&bypass_lock, flags);
4795 scx_clear_softlockup();
4796 }
4797
free_exit_info(struct scx_exit_info * ei)4798 static void free_exit_info(struct scx_exit_info *ei)
4799 {
4800 kfree(ei->dump);
4801 kfree(ei->msg);
4802 kfree(ei->bt);
4803 kfree(ei);
4804 }
4805
alloc_exit_info(size_t exit_dump_len)4806 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len)
4807 {
4808 struct scx_exit_info *ei;
4809
4810 ei = kzalloc(sizeof(*ei), GFP_KERNEL);
4811 if (!ei)
4812 return NULL;
4813
4814 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL);
4815 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL);
4816 ei->dump = kzalloc(exit_dump_len, GFP_KERNEL);
4817
4818 if (!ei->bt || !ei->msg || !ei->dump) {
4819 free_exit_info(ei);
4820 return NULL;
4821 }
4822
4823 return ei;
4824 }
4825
scx_exit_reason(enum scx_exit_kind kind)4826 static const char *scx_exit_reason(enum scx_exit_kind kind)
4827 {
4828 switch (kind) {
4829 case SCX_EXIT_UNREG:
4830 return "unregistered from user space";
4831 case SCX_EXIT_UNREG_BPF:
4832 return "unregistered from BPF";
4833 case SCX_EXIT_UNREG_KERN:
4834 return "unregistered from the main kernel";
4835 case SCX_EXIT_SYSRQ:
4836 return "disabled by sysrq-S";
4837 case SCX_EXIT_ERROR:
4838 return "runtime error";
4839 case SCX_EXIT_ERROR_BPF:
4840 return "scx_bpf_error";
4841 case SCX_EXIT_ERROR_STALL:
4842 return "runnable task stall";
4843 default:
4844 return "<UNKNOWN>";
4845 }
4846 }
4847
scx_ops_disable_workfn(struct kthread_work * work)4848 static void scx_ops_disable_workfn(struct kthread_work *work)
4849 {
4850 struct scx_exit_info *ei = scx_exit_info;
4851 struct scx_task_iter sti;
4852 struct task_struct *p;
4853 struct rhashtable_iter rht_iter;
4854 struct scx_dispatch_q *dsq;
4855 int i, kind;
4856
4857 kind = atomic_read(&scx_exit_kind);
4858 while (true) {
4859 /*
4860 * NONE indicates that a new scx_ops has been registered since
4861 * disable was scheduled - don't kill the new ops. DONE
4862 * indicates that the ops has already been disabled.
4863 */
4864 if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)
4865 return;
4866 if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE))
4867 break;
4868 }
4869 ei->kind = kind;
4870 ei->reason = scx_exit_reason(ei->kind);
4871
4872 /* guarantee forward progress by bypassing scx_ops */
4873 scx_ops_bypass(true);
4874
4875 switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) {
4876 case SCX_OPS_DISABLING:
4877 WARN_ONCE(true, "sched_ext: duplicate disabling instance?");
4878 break;
4879 case SCX_OPS_DISABLED:
4880 pr_warn("sched_ext: ops error detected without ops (%s)\n",
4881 scx_exit_info->msg);
4882 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
4883 SCX_OPS_DISABLING);
4884 goto done;
4885 default:
4886 break;
4887 }
4888
4889 /*
4890 * Here, every runnable task is guaranteed to make forward progress and
4891 * we can safely use blocking synchronization constructs. Actually
4892 * disable ops.
4893 */
4894 mutex_lock(&scx_ops_enable_mutex);
4895
4896 static_branch_disable(&__scx_switched_all);
4897 WRITE_ONCE(scx_switching_all, false);
4898
4899 /*
4900 * Shut down cgroup support before tasks so that the cgroup attach path
4901 * doesn't race against scx_ops_exit_task().
4902 */
4903 scx_cgroup_lock();
4904 scx_cgroup_exit();
4905 scx_cgroup_unlock();
4906
4907 /*
4908 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones
4909 * must be switched out and exited synchronously.
4910 */
4911 percpu_down_write(&scx_fork_rwsem);
4912
4913 scx_ops_init_task_enabled = false;
4914
4915 scx_task_iter_start(&sti);
4916 while ((p = scx_task_iter_next_locked(&sti))) {
4917 const struct sched_class *old_class = p->sched_class;
4918 const struct sched_class *new_class =
4919 __setscheduler_class(p->policy, p->prio);
4920 struct sched_enq_and_set_ctx ctx;
4921
4922 if (old_class != new_class && p->se.sched_delayed)
4923 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
4924
4925 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
4926
4927 p->sched_class = new_class;
4928 check_class_changing(task_rq(p), p, old_class);
4929
4930 sched_enq_and_set_task(&ctx);
4931
4932 check_class_changed(task_rq(p), p, old_class, p->prio);
4933 scx_ops_exit_task(p);
4934 }
4935 scx_task_iter_stop(&sti);
4936 percpu_up_write(&scx_fork_rwsem);
4937
4938 /* no task is on scx, turn off all the switches and flush in-progress calls */
4939 static_branch_disable(&__scx_ops_enabled);
4940 for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++)
4941 static_branch_disable(&scx_has_op[i]);
4942 static_branch_disable(&scx_ops_enq_last);
4943 static_branch_disable(&scx_ops_enq_exiting);
4944 static_branch_disable(&scx_ops_cpu_preempt);
4945 static_branch_disable(&scx_builtin_idle_enabled);
4946 synchronize_rcu();
4947
4948 if (ei->kind >= SCX_EXIT_ERROR) {
4949 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4950 scx_ops.name, ei->reason);
4951
4952 if (ei->msg[0] != '\0')
4953 pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg);
4954 #ifdef CONFIG_STACKTRACE
4955 stack_trace_print(ei->bt, ei->bt_len, 2);
4956 #endif
4957 } else {
4958 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4959 scx_ops.name, ei->reason);
4960 }
4961
4962 if (scx_ops.exit)
4963 SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei);
4964
4965 cancel_delayed_work_sync(&scx_watchdog_work);
4966
4967 /*
4968 * Delete the kobject from the hierarchy eagerly in addition to just
4969 * dropping a reference. Otherwise, if the object is deleted
4970 * asynchronously, sysfs could observe an object of the same name still
4971 * in the hierarchy when another scheduler is loaded.
4972 */
4973 kobject_del(scx_root_kobj);
4974 kobject_put(scx_root_kobj);
4975 scx_root_kobj = NULL;
4976
4977 memset(&scx_ops, 0, sizeof(scx_ops));
4978
4979 rhashtable_walk_enter(&dsq_hash, &rht_iter);
4980 do {
4981 rhashtable_walk_start(&rht_iter);
4982
4983 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq))
4984 destroy_dsq(dsq->id);
4985
4986 rhashtable_walk_stop(&rht_iter);
4987 } while (dsq == ERR_PTR(-EAGAIN));
4988 rhashtable_walk_exit(&rht_iter);
4989
4990 free_percpu(scx_dsp_ctx);
4991 scx_dsp_ctx = NULL;
4992 scx_dsp_max_batch = 0;
4993
4994 free_exit_info(scx_exit_info);
4995 scx_exit_info = NULL;
4996
4997 mutex_unlock(&scx_ops_enable_mutex);
4998
4999 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
5000 SCX_OPS_DISABLING);
5001 done:
5002 scx_ops_bypass(false);
5003 }
5004
5005 static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn);
5006
schedule_scx_ops_disable_work(void)5007 static void schedule_scx_ops_disable_work(void)
5008 {
5009 struct kthread_worker *helper = READ_ONCE(scx_ops_helper);
5010
5011 /*
5012 * We may be called spuriously before the first bpf_sched_ext_reg(). If
5013 * scx_ops_helper isn't set up yet, there's nothing to do.
5014 */
5015 if (helper)
5016 kthread_queue_work(helper, &scx_ops_disable_work);
5017 }
5018
scx_ops_disable(enum scx_exit_kind kind)5019 static void scx_ops_disable(enum scx_exit_kind kind)
5020 {
5021 int none = SCX_EXIT_NONE;
5022
5023 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE))
5024 kind = SCX_EXIT_ERROR;
5025
5026 atomic_try_cmpxchg(&scx_exit_kind, &none, kind);
5027
5028 schedule_scx_ops_disable_work();
5029 }
5030
dump_newline(struct seq_buf * s)5031 static void dump_newline(struct seq_buf *s)
5032 {
5033 trace_sched_ext_dump("");
5034
5035 /* @s may be zero sized and seq_buf triggers WARN if so */
5036 if (s->size)
5037 seq_buf_putc(s, '\n');
5038 }
5039
dump_line(struct seq_buf * s,const char * fmt,...)5040 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...)
5041 {
5042 va_list args;
5043
5044 #ifdef CONFIG_TRACEPOINTS
5045 if (trace_sched_ext_dump_enabled()) {
5046 /* protected by scx_dump_state()::dump_lock */
5047 static char line_buf[SCX_EXIT_MSG_LEN];
5048
5049 va_start(args, fmt);
5050 vscnprintf(line_buf, sizeof(line_buf), fmt, args);
5051 va_end(args);
5052
5053 trace_sched_ext_dump(line_buf);
5054 }
5055 #endif
5056 /* @s may be zero sized and seq_buf triggers WARN if so */
5057 if (s->size) {
5058 va_start(args, fmt);
5059 seq_buf_vprintf(s, fmt, args);
5060 va_end(args);
5061
5062 seq_buf_putc(s, '\n');
5063 }
5064 }
5065
dump_stack_trace(struct seq_buf * s,const char * prefix,const unsigned long * bt,unsigned int len)5066 static void dump_stack_trace(struct seq_buf *s, const char *prefix,
5067 const unsigned long *bt, unsigned int len)
5068 {
5069 unsigned int i;
5070
5071 for (i = 0; i < len; i++)
5072 dump_line(s, "%s%pS", prefix, (void *)bt[i]);
5073 }
5074
ops_dump_init(struct seq_buf * s,const char * prefix)5075 static void ops_dump_init(struct seq_buf *s, const char *prefix)
5076 {
5077 struct scx_dump_data *dd = &scx_dump_data;
5078
5079 lockdep_assert_irqs_disabled();
5080
5081 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */
5082 dd->first = true;
5083 dd->cursor = 0;
5084 dd->s = s;
5085 dd->prefix = prefix;
5086 }
5087
ops_dump_flush(void)5088 static void ops_dump_flush(void)
5089 {
5090 struct scx_dump_data *dd = &scx_dump_data;
5091 char *line = dd->buf.line;
5092
5093 if (!dd->cursor)
5094 return;
5095
5096 /*
5097 * There's something to flush and this is the first line. Insert a blank
5098 * line to distinguish ops dump.
5099 */
5100 if (dd->first) {
5101 dump_newline(dd->s);
5102 dd->first = false;
5103 }
5104
5105 /*
5106 * There may be multiple lines in $line. Scan and emit each line
5107 * separately.
5108 */
5109 while (true) {
5110 char *end = line;
5111 char c;
5112
5113 while (*end != '\n' && *end != '\0')
5114 end++;
5115
5116 /*
5117 * If $line overflowed, it may not have newline at the end.
5118 * Always emit with a newline.
5119 */
5120 c = *end;
5121 *end = '\0';
5122 dump_line(dd->s, "%s%s", dd->prefix, line);
5123 if (c == '\0')
5124 break;
5125
5126 /* move to the next line */
5127 end++;
5128 if (*end == '\0')
5129 break;
5130 line = end;
5131 }
5132
5133 dd->cursor = 0;
5134 }
5135
ops_dump_exit(void)5136 static void ops_dump_exit(void)
5137 {
5138 ops_dump_flush();
5139 scx_dump_data.cpu = -1;
5140 }
5141
scx_dump_task(struct seq_buf * s,struct scx_dump_ctx * dctx,struct task_struct * p,char marker)5142 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx,
5143 struct task_struct *p, char marker)
5144 {
5145 static unsigned long bt[SCX_EXIT_BT_LEN];
5146 char dsq_id_buf[19] = "(n/a)";
5147 unsigned long ops_state = atomic_long_read(&p->scx.ops_state);
5148 unsigned int bt_len = 0;
5149
5150 if (p->scx.dsq)
5151 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx",
5152 (unsigned long long)p->scx.dsq->id);
5153
5154 dump_newline(s);
5155 dump_line(s, " %c%c %s[%d] %+ldms",
5156 marker, task_state_to_char(p), p->comm, p->pid,
5157 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies));
5158 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu",
5159 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK,
5160 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK,
5161 ops_state >> SCX_OPSS_QSEQ_SHIFT);
5162 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu",
5163 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf,
5164 p->scx.dsq_vtime);
5165 dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr));
5166
5167 if (SCX_HAS_OP(dump_task)) {
5168 ops_dump_init(s, " ");
5169 SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p);
5170 ops_dump_exit();
5171 }
5172
5173 #ifdef CONFIG_STACKTRACE
5174 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1);
5175 #endif
5176 if (bt_len) {
5177 dump_newline(s);
5178 dump_stack_trace(s, " ", bt, bt_len);
5179 }
5180 }
5181
scx_dump_state(struct scx_exit_info * ei,size_t dump_len)5182 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
5183 {
5184 static DEFINE_SPINLOCK(dump_lock);
5185 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n";
5186 struct scx_dump_ctx dctx = {
5187 .kind = ei->kind,
5188 .exit_code = ei->exit_code,
5189 .reason = ei->reason,
5190 .at_ns = ktime_get_ns(),
5191 .at_jiffies = jiffies,
5192 };
5193 struct seq_buf s;
5194 unsigned long flags;
5195 char *buf;
5196 int cpu;
5197
5198 spin_lock_irqsave(&dump_lock, flags);
5199
5200 seq_buf_init(&s, ei->dump, dump_len);
5201
5202 if (ei->kind == SCX_EXIT_NONE) {
5203 dump_line(&s, "Debug dump triggered by %s", ei->reason);
5204 } else {
5205 dump_line(&s, "%s[%d] triggered exit kind %d:",
5206 current->comm, current->pid, ei->kind);
5207 dump_line(&s, " %s (%s)", ei->reason, ei->msg);
5208 dump_newline(&s);
5209 dump_line(&s, "Backtrace:");
5210 dump_stack_trace(&s, " ", ei->bt, ei->bt_len);
5211 }
5212
5213 if (SCX_HAS_OP(dump)) {
5214 ops_dump_init(&s, "");
5215 SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx);
5216 ops_dump_exit();
5217 }
5218
5219 dump_newline(&s);
5220 dump_line(&s, "CPU states");
5221 dump_line(&s, "----------");
5222
5223 for_each_possible_cpu(cpu) {
5224 struct rq *rq = cpu_rq(cpu);
5225 struct rq_flags rf;
5226 struct task_struct *p;
5227 struct seq_buf ns;
5228 size_t avail, used;
5229 bool idle;
5230
5231 rq_lock(rq, &rf);
5232
5233 idle = list_empty(&rq->scx.runnable_list) &&
5234 rq->curr->sched_class == &idle_sched_class;
5235
5236 if (idle && !SCX_HAS_OP(dump_cpu))
5237 goto next;
5238
5239 /*
5240 * We don't yet know whether ops.dump_cpu() will produce output
5241 * and we may want to skip the default CPU dump if it doesn't.
5242 * Use a nested seq_buf to generate the standard dump so that we
5243 * can decide whether to commit later.
5244 */
5245 avail = seq_buf_get_buf(&s, &buf);
5246 seq_buf_init(&ns, buf, avail);
5247
5248 dump_newline(&ns);
5249 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu",
5250 cpu, rq->scx.nr_running, rq->scx.flags,
5251 rq->scx.cpu_released, rq->scx.ops_qseq,
5252 rq->scx.pnt_seq);
5253 dump_line(&ns, " curr=%s[%d] class=%ps",
5254 rq->curr->comm, rq->curr->pid,
5255 rq->curr->sched_class);
5256 if (!cpumask_empty(rq->scx.cpus_to_kick))
5257 dump_line(&ns, " cpus_to_kick : %*pb",
5258 cpumask_pr_args(rq->scx.cpus_to_kick));
5259 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle))
5260 dump_line(&ns, " idle_to_kick : %*pb",
5261 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle));
5262 if (!cpumask_empty(rq->scx.cpus_to_preempt))
5263 dump_line(&ns, " cpus_to_preempt: %*pb",
5264 cpumask_pr_args(rq->scx.cpus_to_preempt));
5265 if (!cpumask_empty(rq->scx.cpus_to_wait))
5266 dump_line(&ns, " cpus_to_wait : %*pb",
5267 cpumask_pr_args(rq->scx.cpus_to_wait));
5268
5269 used = seq_buf_used(&ns);
5270 if (SCX_HAS_OP(dump_cpu)) {
5271 ops_dump_init(&ns, " ");
5272 SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle);
5273 ops_dump_exit();
5274 }
5275
5276 /*
5277 * If idle && nothing generated by ops.dump_cpu(), there's
5278 * nothing interesting. Skip.
5279 */
5280 if (idle && used == seq_buf_used(&ns))
5281 goto next;
5282
5283 /*
5284 * $s may already have overflowed when $ns was created. If so,
5285 * calling commit on it will trigger BUG.
5286 */
5287 if (avail) {
5288 seq_buf_commit(&s, seq_buf_used(&ns));
5289 if (seq_buf_has_overflowed(&ns))
5290 seq_buf_set_overflow(&s);
5291 }
5292
5293 if (rq->curr->sched_class == &ext_sched_class)
5294 scx_dump_task(&s, &dctx, rq->curr, '*');
5295
5296 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node)
5297 scx_dump_task(&s, &dctx, p, ' ');
5298 next:
5299 rq_unlock(rq, &rf);
5300 }
5301
5302 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker))
5303 memcpy(ei->dump + dump_len - sizeof(trunc_marker),
5304 trunc_marker, sizeof(trunc_marker));
5305
5306 spin_unlock_irqrestore(&dump_lock, flags);
5307 }
5308
scx_ops_error_irq_workfn(struct irq_work * irq_work)5309 static void scx_ops_error_irq_workfn(struct irq_work *irq_work)
5310 {
5311 struct scx_exit_info *ei = scx_exit_info;
5312
5313 if (ei->kind >= SCX_EXIT_ERROR)
5314 scx_dump_state(ei, scx_ops.exit_dump_len);
5315
5316 schedule_scx_ops_disable_work();
5317 }
5318
5319 static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn);
5320
scx_ops_exit_kind(enum scx_exit_kind kind,s64 exit_code,const char * fmt,...)5321 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
5322 s64 exit_code,
5323 const char *fmt, ...)
5324 {
5325 struct scx_exit_info *ei = scx_exit_info;
5326 int none = SCX_EXIT_NONE;
5327 va_list args;
5328
5329 if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind))
5330 return;
5331
5332 ei->exit_code = exit_code;
5333 #ifdef CONFIG_STACKTRACE
5334 if (kind >= SCX_EXIT_ERROR)
5335 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1);
5336 #endif
5337 va_start(args, fmt);
5338 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args);
5339 va_end(args);
5340
5341 /*
5342 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again
5343 * in scx_ops_disable_workfn().
5344 */
5345 ei->kind = kind;
5346 ei->reason = scx_exit_reason(ei->kind);
5347
5348 irq_work_queue(&scx_ops_error_irq_work);
5349 }
5350
scx_create_rt_helper(const char * name)5351 static struct kthread_worker *scx_create_rt_helper(const char *name)
5352 {
5353 struct kthread_worker *helper;
5354
5355 helper = kthread_create_worker(0, name);
5356 if (helper)
5357 sched_set_fifo(helper->task);
5358 return helper;
5359 }
5360
check_hotplug_seq(const struct sched_ext_ops * ops)5361 static void check_hotplug_seq(const struct sched_ext_ops *ops)
5362 {
5363 unsigned long long global_hotplug_seq;
5364
5365 /*
5366 * If a hotplug event has occurred between when a scheduler was
5367 * initialized, and when we were able to attach, exit and notify user
5368 * space about it.
5369 */
5370 if (ops->hotplug_seq) {
5371 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq);
5372 if (ops->hotplug_seq != global_hotplug_seq) {
5373 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
5374 "expected hotplug seq %llu did not match actual %llu",
5375 ops->hotplug_seq, global_hotplug_seq);
5376 }
5377 }
5378 }
5379
validate_ops(const struct sched_ext_ops * ops)5380 static int validate_ops(const struct sched_ext_ops *ops)
5381 {
5382 /*
5383 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the
5384 * ops.enqueue() callback isn't implemented.
5385 */
5386 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) {
5387 scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented");
5388 return -EINVAL;
5389 }
5390
5391 return 0;
5392 }
5393
scx_ops_enable(struct sched_ext_ops * ops,struct bpf_link * link)5394 static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
5395 {
5396 struct scx_task_iter sti;
5397 struct task_struct *p;
5398 unsigned long timeout;
5399 int i, cpu, node, ret;
5400
5401 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN),
5402 cpu_possible_mask)) {
5403 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n");
5404 return -EINVAL;
5405 }
5406
5407 mutex_lock(&scx_ops_enable_mutex);
5408
5409 if (!scx_ops_helper) {
5410 WRITE_ONCE(scx_ops_helper,
5411 scx_create_rt_helper("sched_ext_ops_helper"));
5412 if (!scx_ops_helper) {
5413 ret = -ENOMEM;
5414 goto err_unlock;
5415 }
5416 }
5417
5418 if (!global_dsqs) {
5419 struct scx_dispatch_q **dsqs;
5420
5421 dsqs = kcalloc(nr_node_ids, sizeof(dsqs[0]), GFP_KERNEL);
5422 if (!dsqs) {
5423 ret = -ENOMEM;
5424 goto err_unlock;
5425 }
5426
5427 for_each_node_state(node, N_POSSIBLE) {
5428 struct scx_dispatch_q *dsq;
5429
5430 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node);
5431 if (!dsq) {
5432 for_each_node_state(node, N_POSSIBLE)
5433 kfree(dsqs[node]);
5434 kfree(dsqs);
5435 ret = -ENOMEM;
5436 goto err_unlock;
5437 }
5438
5439 init_dsq(dsq, SCX_DSQ_GLOBAL);
5440 dsqs[node] = dsq;
5441 }
5442
5443 global_dsqs = dsqs;
5444 }
5445
5446 if (scx_ops_enable_state() != SCX_OPS_DISABLED) {
5447 ret = -EBUSY;
5448 goto err_unlock;
5449 }
5450
5451 scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL);
5452 if (!scx_root_kobj) {
5453 ret = -ENOMEM;
5454 goto err_unlock;
5455 }
5456
5457 scx_root_kobj->kset = scx_kset;
5458 ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root");
5459 if (ret < 0)
5460 goto err;
5461
5462 scx_exit_info = alloc_exit_info(ops->exit_dump_len);
5463 if (!scx_exit_info) {
5464 ret = -ENOMEM;
5465 goto err_del;
5466 }
5467
5468 /*
5469 * Set scx_ops, transition to ENABLING and clear exit info to arm the
5470 * disable path. Failure triggers full disabling from here on.
5471 */
5472 scx_ops = *ops;
5473
5474 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_ENABLING) !=
5475 SCX_OPS_DISABLED);
5476
5477 atomic_set(&scx_exit_kind, SCX_EXIT_NONE);
5478 scx_warned_zero_slice = false;
5479
5480 atomic_long_set(&scx_nr_rejected, 0);
5481
5482 for_each_possible_cpu(cpu)
5483 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE;
5484
5485 /*
5486 * Keep CPUs stable during enable so that the BPF scheduler can track
5487 * online CPUs by watching ->on/offline_cpu() after ->init().
5488 */
5489 cpus_read_lock();
5490
5491 if (scx_ops.init) {
5492 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init);
5493 if (ret) {
5494 ret = ops_sanitize_err("init", ret);
5495 cpus_read_unlock();
5496 scx_ops_error("ops.init() failed (%d)", ret);
5497 goto err_disable;
5498 }
5499 }
5500
5501 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++)
5502 if (((void (**)(void))ops)[i])
5503 static_branch_enable_cpuslocked(&scx_has_op[i]);
5504
5505 check_hotplug_seq(ops);
5506 #ifdef CONFIG_SMP
5507 update_selcpu_topology();
5508 #endif
5509 cpus_read_unlock();
5510
5511 ret = validate_ops(ops);
5512 if (ret)
5513 goto err_disable;
5514
5515 WARN_ON_ONCE(scx_dsp_ctx);
5516 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH;
5517 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf,
5518 scx_dsp_max_batch),
5519 __alignof__(struct scx_dsp_ctx));
5520 if (!scx_dsp_ctx) {
5521 ret = -ENOMEM;
5522 goto err_disable;
5523 }
5524
5525 if (ops->timeout_ms)
5526 timeout = msecs_to_jiffies(ops->timeout_ms);
5527 else
5528 timeout = SCX_WATCHDOG_MAX_TIMEOUT;
5529
5530 WRITE_ONCE(scx_watchdog_timeout, timeout);
5531 WRITE_ONCE(scx_watchdog_timestamp, jiffies);
5532 queue_delayed_work(system_unbound_wq, &scx_watchdog_work,
5533 scx_watchdog_timeout / 2);
5534
5535 /*
5536 * Once __scx_ops_enabled is set, %current can be switched to SCX
5537 * anytime. This can lead to stalls as some BPF schedulers (e.g.
5538 * userspace scheduling) may not function correctly before all tasks are
5539 * switched. Init in bypass mode to guarantee forward progress.
5540 */
5541 scx_ops_bypass(true);
5542
5543 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++)
5544 if (((void (**)(void))ops)[i])
5545 static_branch_enable(&scx_has_op[i]);
5546
5547 if (ops->flags & SCX_OPS_ENQ_LAST)
5548 static_branch_enable(&scx_ops_enq_last);
5549
5550 if (ops->flags & SCX_OPS_ENQ_EXITING)
5551 static_branch_enable(&scx_ops_enq_exiting);
5552 if (scx_ops.cpu_acquire || scx_ops.cpu_release)
5553 static_branch_enable(&scx_ops_cpu_preempt);
5554
5555 if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) {
5556 reset_idle_masks();
5557 static_branch_enable(&scx_builtin_idle_enabled);
5558 } else {
5559 static_branch_disable(&scx_builtin_idle_enabled);
5560 }
5561
5562 /*
5563 * Lock out forks, cgroup on/offlining and moves before opening the
5564 * floodgate so that they don't wander into the operations prematurely.
5565 */
5566 percpu_down_write(&scx_fork_rwsem);
5567
5568 WARN_ON_ONCE(scx_ops_init_task_enabled);
5569 scx_ops_init_task_enabled = true;
5570
5571 /*
5572 * Enable ops for every task. Fork is excluded by scx_fork_rwsem
5573 * preventing new tasks from being added. No need to exclude tasks
5574 * leaving as sched_ext_free() can handle both prepped and enabled
5575 * tasks. Prep all tasks first and then enable them with preemption
5576 * disabled.
5577 *
5578 * All cgroups should be initialized before scx_ops_init_task() so that
5579 * the BPF scheduler can reliably track each task's cgroup membership
5580 * from scx_ops_init_task(). Lock out cgroup on/offlining and task
5581 * migrations while tasks are being initialized so that
5582 * scx_cgroup_can_attach() never sees uninitialized tasks.
5583 */
5584 scx_cgroup_lock();
5585 ret = scx_cgroup_init();
5586 if (ret)
5587 goto err_disable_unlock_all;
5588
5589 scx_task_iter_start(&sti);
5590 while ((p = scx_task_iter_next_locked(&sti))) {
5591 /*
5592 * @p may already be dead, have lost all its usages counts and
5593 * be waiting for RCU grace period before being freed. @p can't
5594 * be initialized for SCX in such cases and should be ignored.
5595 */
5596 if (!tryget_task_struct(p))
5597 continue;
5598
5599 scx_task_iter_unlock(&sti);
5600
5601 ret = scx_ops_init_task(p, task_group(p), false);
5602 if (ret) {
5603 put_task_struct(p);
5604 scx_task_iter_relock(&sti);
5605 scx_task_iter_stop(&sti);
5606 scx_ops_error("ops.init_task() failed (%d) for %s[%d]",
5607 ret, p->comm, p->pid);
5608 goto err_disable_unlock_all;
5609 }
5610
5611 scx_set_task_state(p, SCX_TASK_READY);
5612
5613 put_task_struct(p);
5614 scx_task_iter_relock(&sti);
5615 }
5616 scx_task_iter_stop(&sti);
5617 scx_cgroup_unlock();
5618 percpu_up_write(&scx_fork_rwsem);
5619
5620 /*
5621 * All tasks are READY. It's safe to turn on scx_enabled() and switch
5622 * all eligible tasks.
5623 */
5624 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL));
5625 static_branch_enable(&__scx_ops_enabled);
5626
5627 /*
5628 * We're fully committed and can't fail. The task READY -> ENABLED
5629 * transitions here are synchronized against sched_ext_free() through
5630 * scx_tasks_lock.
5631 */
5632 percpu_down_write(&scx_fork_rwsem);
5633 scx_task_iter_start(&sti);
5634 while ((p = scx_task_iter_next_locked(&sti))) {
5635 const struct sched_class *old_class = p->sched_class;
5636 const struct sched_class *new_class =
5637 __setscheduler_class(p->policy, p->prio);
5638 struct sched_enq_and_set_ctx ctx;
5639
5640 if (old_class != new_class && p->se.sched_delayed)
5641 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5642
5643 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
5644
5645 p->scx.slice = SCX_SLICE_DFL;
5646 p->sched_class = new_class;
5647 check_class_changing(task_rq(p), p, old_class);
5648
5649 sched_enq_and_set_task(&ctx);
5650
5651 check_class_changed(task_rq(p), p, old_class, p->prio);
5652 }
5653 scx_task_iter_stop(&sti);
5654 percpu_up_write(&scx_fork_rwsem);
5655
5656 scx_ops_bypass(false);
5657
5658 if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) {
5659 WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE);
5660 goto err_disable;
5661 }
5662
5663 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL))
5664 static_branch_enable(&__scx_switched_all);
5665
5666 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n",
5667 scx_ops.name, scx_switched_all() ? "" : " (partial)");
5668 kobject_uevent(scx_root_kobj, KOBJ_ADD);
5669 mutex_unlock(&scx_ops_enable_mutex);
5670
5671 atomic_long_inc(&scx_enable_seq);
5672
5673 return 0;
5674
5675 err_del:
5676 kobject_del(scx_root_kobj);
5677 err:
5678 kobject_put(scx_root_kobj);
5679 scx_root_kobj = NULL;
5680 if (scx_exit_info) {
5681 free_exit_info(scx_exit_info);
5682 scx_exit_info = NULL;
5683 }
5684 err_unlock:
5685 mutex_unlock(&scx_ops_enable_mutex);
5686 return ret;
5687
5688 err_disable_unlock_all:
5689 scx_cgroup_unlock();
5690 percpu_up_write(&scx_fork_rwsem);
5691 scx_ops_bypass(false);
5692 err_disable:
5693 mutex_unlock(&scx_ops_enable_mutex);
5694 /*
5695 * Returning an error code here would not pass all the error information
5696 * to userspace. Record errno using scx_ops_error() for cases
5697 * scx_ops_error() wasn't already invoked and exit indicating success so
5698 * that the error is notified through ops.exit() with all the details.
5699 *
5700 * Flush scx_ops_disable_work to ensure that error is reported before
5701 * init completion.
5702 */
5703 scx_ops_error("scx_ops_enable() failed (%d)", ret);
5704 kthread_flush_work(&scx_ops_disable_work);
5705 return 0;
5706 }
5707
5708
5709 /********************************************************************************
5710 * bpf_struct_ops plumbing.
5711 */
5712 #include <linux/bpf_verifier.h>
5713 #include <linux/bpf.h>
5714 #include <linux/btf.h>
5715
5716 static const struct btf_type *task_struct_type;
5717
bpf_scx_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5718 static bool bpf_scx_is_valid_access(int off, int size,
5719 enum bpf_access_type type,
5720 const struct bpf_prog *prog,
5721 struct bpf_insn_access_aux *info)
5722 {
5723 if (type != BPF_READ)
5724 return false;
5725 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
5726 return false;
5727 if (off % size != 0)
5728 return false;
5729
5730 return btf_ctx_access(off, size, type, prog, info);
5731 }
5732
bpf_scx_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)5733 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log,
5734 const struct bpf_reg_state *reg, int off,
5735 int size)
5736 {
5737 const struct btf_type *t;
5738
5739 t = btf_type_by_id(reg->btf, reg->btf_id);
5740 if (t == task_struct_type) {
5741 if (off >= offsetof(struct task_struct, scx.slice) &&
5742 off + size <= offsetofend(struct task_struct, scx.slice))
5743 return SCALAR_VALUE;
5744 if (off >= offsetof(struct task_struct, scx.dsq_vtime) &&
5745 off + size <= offsetofend(struct task_struct, scx.dsq_vtime))
5746 return SCALAR_VALUE;
5747 if (off >= offsetof(struct task_struct, scx.disallow) &&
5748 off + size <= offsetofend(struct task_struct, scx.disallow))
5749 return SCALAR_VALUE;
5750 }
5751
5752 return -EACCES;
5753 }
5754
5755 static const struct bpf_func_proto *
bpf_scx_get_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)5756 bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5757 {
5758 switch (func_id) {
5759 case BPF_FUNC_task_storage_get:
5760 return &bpf_task_storage_get_proto;
5761 case BPF_FUNC_task_storage_delete:
5762 return &bpf_task_storage_delete_proto;
5763 default:
5764 return bpf_base_func_proto(func_id, prog);
5765 }
5766 }
5767
5768 static const struct bpf_verifier_ops bpf_scx_verifier_ops = {
5769 .get_func_proto = bpf_scx_get_func_proto,
5770 .is_valid_access = bpf_scx_is_valid_access,
5771 .btf_struct_access = bpf_scx_btf_struct_access,
5772 };
5773
bpf_scx_init_member(const struct btf_type * t,const struct btf_member * member,void * kdata,const void * udata)5774 static int bpf_scx_init_member(const struct btf_type *t,
5775 const struct btf_member *member,
5776 void *kdata, const void *udata)
5777 {
5778 const struct sched_ext_ops *uops = udata;
5779 struct sched_ext_ops *ops = kdata;
5780 u32 moff = __btf_member_bit_offset(t, member) / 8;
5781 int ret;
5782
5783 switch (moff) {
5784 case offsetof(struct sched_ext_ops, dispatch_max_batch):
5785 if (*(u32 *)(udata + moff) > INT_MAX)
5786 return -E2BIG;
5787 ops->dispatch_max_batch = *(u32 *)(udata + moff);
5788 return 1;
5789 case offsetof(struct sched_ext_ops, flags):
5790 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS)
5791 return -EINVAL;
5792 ops->flags = *(u64 *)(udata + moff);
5793 return 1;
5794 case offsetof(struct sched_ext_ops, name):
5795 ret = bpf_obj_name_cpy(ops->name, uops->name,
5796 sizeof(ops->name));
5797 if (ret < 0)
5798 return ret;
5799 if (ret == 0)
5800 return -EINVAL;
5801 return 1;
5802 case offsetof(struct sched_ext_ops, timeout_ms):
5803 if (msecs_to_jiffies(*(u32 *)(udata + moff)) >
5804 SCX_WATCHDOG_MAX_TIMEOUT)
5805 return -E2BIG;
5806 ops->timeout_ms = *(u32 *)(udata + moff);
5807 return 1;
5808 case offsetof(struct sched_ext_ops, exit_dump_len):
5809 ops->exit_dump_len =
5810 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN;
5811 return 1;
5812 case offsetof(struct sched_ext_ops, hotplug_seq):
5813 ops->hotplug_seq = *(u64 *)(udata + moff);
5814 return 1;
5815 }
5816
5817 return 0;
5818 }
5819
bpf_scx_check_member(const struct btf_type * t,const struct btf_member * member,const struct bpf_prog * prog)5820 static int bpf_scx_check_member(const struct btf_type *t,
5821 const struct btf_member *member,
5822 const struct bpf_prog *prog)
5823 {
5824 u32 moff = __btf_member_bit_offset(t, member) / 8;
5825
5826 switch (moff) {
5827 case offsetof(struct sched_ext_ops, init_task):
5828 #ifdef CONFIG_EXT_GROUP_SCHED
5829 case offsetof(struct sched_ext_ops, cgroup_init):
5830 case offsetof(struct sched_ext_ops, cgroup_exit):
5831 case offsetof(struct sched_ext_ops, cgroup_prep_move):
5832 #endif
5833 case offsetof(struct sched_ext_ops, cpu_online):
5834 case offsetof(struct sched_ext_ops, cpu_offline):
5835 case offsetof(struct sched_ext_ops, init):
5836 case offsetof(struct sched_ext_ops, exit):
5837 break;
5838 default:
5839 if (prog->sleepable)
5840 return -EINVAL;
5841 }
5842
5843 return 0;
5844 }
5845
bpf_scx_reg(void * kdata,struct bpf_link * link)5846 static int bpf_scx_reg(void *kdata, struct bpf_link *link)
5847 {
5848 return scx_ops_enable(kdata, link);
5849 }
5850
bpf_scx_unreg(void * kdata,struct bpf_link * link)5851 static void bpf_scx_unreg(void *kdata, struct bpf_link *link)
5852 {
5853 scx_ops_disable(SCX_EXIT_UNREG);
5854 kthread_flush_work(&scx_ops_disable_work);
5855 }
5856
bpf_scx_init(struct btf * btf)5857 static int bpf_scx_init(struct btf *btf)
5858 {
5859 task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]);
5860
5861 return 0;
5862 }
5863
bpf_scx_update(void * kdata,void * old_kdata,struct bpf_link * link)5864 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link)
5865 {
5866 /*
5867 * sched_ext does not support updating the actively-loaded BPF
5868 * scheduler, as registering a BPF scheduler can always fail if the
5869 * scheduler returns an error code for e.g. ops.init(), ops.init_task(),
5870 * etc. Similarly, we can always race with unregistration happening
5871 * elsewhere, such as with sysrq.
5872 */
5873 return -EOPNOTSUPP;
5874 }
5875
bpf_scx_validate(void * kdata)5876 static int bpf_scx_validate(void *kdata)
5877 {
5878 return 0;
5879 }
5880
sched_ext_ops__select_cpu(struct task_struct * p,s32 prev_cpu,u64 wake_flags)5881 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; }
sched_ext_ops__enqueue(struct task_struct * p,u64 enq_flags)5882 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {}
sched_ext_ops__dequeue(struct task_struct * p,u64 enq_flags)5883 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {}
sched_ext_ops__dispatch(s32 prev_cpu,struct task_struct * prev__nullable)5884 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {}
sched_ext_ops__tick(struct task_struct * p)5885 static void sched_ext_ops__tick(struct task_struct *p) {}
sched_ext_ops__runnable(struct task_struct * p,u64 enq_flags)5886 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {}
sched_ext_ops__running(struct task_struct * p)5887 static void sched_ext_ops__running(struct task_struct *p) {}
sched_ext_ops__stopping(struct task_struct * p,bool runnable)5888 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {}
sched_ext_ops__quiescent(struct task_struct * p,u64 deq_flags)5889 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {}
sched_ext_ops__yield(struct task_struct * from,struct task_struct * to__nullable)5890 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; }
sched_ext_ops__core_sched_before(struct task_struct * a,struct task_struct * b)5891 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; }
sched_ext_ops__set_weight(struct task_struct * p,u32 weight)5892 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {}
sched_ext_ops__set_cpumask(struct task_struct * p,const struct cpumask * mask)5893 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {}
sched_ext_ops__update_idle(s32 cpu,bool idle)5894 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {}
sched_ext_ops__cpu_acquire(s32 cpu,struct scx_cpu_acquire_args * args)5895 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {}
sched_ext_ops__cpu_release(s32 cpu,struct scx_cpu_release_args * args)5896 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {}
sched_ext_ops__init_task(struct task_struct * p,struct scx_init_task_args * args)5897 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; }
sched_ext_ops__exit_task(struct task_struct * p,struct scx_exit_task_args * args)5898 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {}
sched_ext_ops__enable(struct task_struct * p)5899 static void sched_ext_ops__enable(struct task_struct *p) {}
sched_ext_ops__disable(struct task_struct * p)5900 static void sched_ext_ops__disable(struct task_struct *p) {}
5901 #ifdef CONFIG_EXT_GROUP_SCHED
sched_ext_ops__cgroup_init(struct cgroup * cgrp,struct scx_cgroup_init_args * args)5902 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; }
sched_ext_ops__cgroup_exit(struct cgroup * cgrp)5903 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {}
sched_ext_ops__cgroup_prep_move(struct task_struct * p,struct cgroup * from,struct cgroup * to)5904 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; }
sched_ext_ops__cgroup_move(struct task_struct * p,struct cgroup * from,struct cgroup * to)5905 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
sched_ext_ops__cgroup_cancel_move(struct task_struct * p,struct cgroup * from,struct cgroup * to)5906 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
sched_ext_ops__cgroup_set_weight(struct cgroup * cgrp,u32 weight)5907 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {}
5908 #endif
sched_ext_ops__cpu_online(s32 cpu)5909 static void sched_ext_ops__cpu_online(s32 cpu) {}
sched_ext_ops__cpu_offline(s32 cpu)5910 static void sched_ext_ops__cpu_offline(s32 cpu) {}
sched_ext_ops__init(void)5911 static s32 sched_ext_ops__init(void) { return -EINVAL; }
sched_ext_ops__exit(struct scx_exit_info * info)5912 static void sched_ext_ops__exit(struct scx_exit_info *info) {}
sched_ext_ops__dump(struct scx_dump_ctx * ctx)5913 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {}
sched_ext_ops__dump_cpu(struct scx_dump_ctx * ctx,s32 cpu,bool idle)5914 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {}
sched_ext_ops__dump_task(struct scx_dump_ctx * ctx,struct task_struct * p)5915 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {}
5916
5917 static struct sched_ext_ops __bpf_ops_sched_ext_ops = {
5918 .select_cpu = sched_ext_ops__select_cpu,
5919 .enqueue = sched_ext_ops__enqueue,
5920 .dequeue = sched_ext_ops__dequeue,
5921 .dispatch = sched_ext_ops__dispatch,
5922 .tick = sched_ext_ops__tick,
5923 .runnable = sched_ext_ops__runnable,
5924 .running = sched_ext_ops__running,
5925 .stopping = sched_ext_ops__stopping,
5926 .quiescent = sched_ext_ops__quiescent,
5927 .yield = sched_ext_ops__yield,
5928 .core_sched_before = sched_ext_ops__core_sched_before,
5929 .set_weight = sched_ext_ops__set_weight,
5930 .set_cpumask = sched_ext_ops__set_cpumask,
5931 .update_idle = sched_ext_ops__update_idle,
5932 .cpu_acquire = sched_ext_ops__cpu_acquire,
5933 .cpu_release = sched_ext_ops__cpu_release,
5934 .init_task = sched_ext_ops__init_task,
5935 .exit_task = sched_ext_ops__exit_task,
5936 .enable = sched_ext_ops__enable,
5937 .disable = sched_ext_ops__disable,
5938 #ifdef CONFIG_EXT_GROUP_SCHED
5939 .cgroup_init = sched_ext_ops__cgroup_init,
5940 .cgroup_exit = sched_ext_ops__cgroup_exit,
5941 .cgroup_prep_move = sched_ext_ops__cgroup_prep_move,
5942 .cgroup_move = sched_ext_ops__cgroup_move,
5943 .cgroup_cancel_move = sched_ext_ops__cgroup_cancel_move,
5944 .cgroup_set_weight = sched_ext_ops__cgroup_set_weight,
5945 #endif
5946 .cpu_online = sched_ext_ops__cpu_online,
5947 .cpu_offline = sched_ext_ops__cpu_offline,
5948 .init = sched_ext_ops__init,
5949 .exit = sched_ext_ops__exit,
5950 .dump = sched_ext_ops__dump,
5951 .dump_cpu = sched_ext_ops__dump_cpu,
5952 .dump_task = sched_ext_ops__dump_task,
5953 };
5954
5955 static struct bpf_struct_ops bpf_sched_ext_ops = {
5956 .verifier_ops = &bpf_scx_verifier_ops,
5957 .reg = bpf_scx_reg,
5958 .unreg = bpf_scx_unreg,
5959 .check_member = bpf_scx_check_member,
5960 .init_member = bpf_scx_init_member,
5961 .init = bpf_scx_init,
5962 .update = bpf_scx_update,
5963 .validate = bpf_scx_validate,
5964 .name = "sched_ext_ops",
5965 .owner = THIS_MODULE,
5966 .cfi_stubs = &__bpf_ops_sched_ext_ops
5967 };
5968
5969
5970 /********************************************************************************
5971 * System integration and init.
5972 */
5973
sysrq_handle_sched_ext_reset(u8 key)5974 static void sysrq_handle_sched_ext_reset(u8 key)
5975 {
5976 if (scx_ops_helper)
5977 scx_ops_disable(SCX_EXIT_SYSRQ);
5978 else
5979 pr_info("sched_ext: BPF scheduler not yet used\n");
5980 }
5981
5982 static const struct sysrq_key_op sysrq_sched_ext_reset_op = {
5983 .handler = sysrq_handle_sched_ext_reset,
5984 .help_msg = "reset-sched-ext(S)",
5985 .action_msg = "Disable sched_ext and revert all tasks to CFS",
5986 .enable_mask = SYSRQ_ENABLE_RTNICE,
5987 };
5988
sysrq_handle_sched_ext_dump(u8 key)5989 static void sysrq_handle_sched_ext_dump(u8 key)
5990 {
5991 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" };
5992
5993 if (scx_enabled())
5994 scx_dump_state(&ei, 0);
5995 }
5996
5997 static const struct sysrq_key_op sysrq_sched_ext_dump_op = {
5998 .handler = sysrq_handle_sched_ext_dump,
5999 .help_msg = "dump-sched-ext(D)",
6000 .action_msg = "Trigger sched_ext debug dump",
6001 .enable_mask = SYSRQ_ENABLE_RTNICE,
6002 };
6003
can_skip_idle_kick(struct rq * rq)6004 static bool can_skip_idle_kick(struct rq *rq)
6005 {
6006 lockdep_assert_rq_held(rq);
6007
6008 /*
6009 * We can skip idle kicking if @rq is going to go through at least one
6010 * full SCX scheduling cycle before going idle. Just checking whether
6011 * curr is not idle is insufficient because we could be racing
6012 * balance_one() trying to pull the next task from a remote rq, which
6013 * may fail, and @rq may become idle afterwards.
6014 *
6015 * The race window is small and we don't and can't guarantee that @rq is
6016 * only kicked while idle anyway. Skip only when sure.
6017 */
6018 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE);
6019 }
6020
kick_one_cpu(s32 cpu,struct rq * this_rq,unsigned long * pseqs)6021 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs)
6022 {
6023 struct rq *rq = cpu_rq(cpu);
6024 struct scx_rq *this_scx = &this_rq->scx;
6025 bool should_wait = false;
6026 unsigned long flags;
6027
6028 raw_spin_rq_lock_irqsave(rq, flags);
6029
6030 /*
6031 * During CPU hotplug, a CPU may depend on kicking itself to make
6032 * forward progress. Allow kicking self regardless of online state.
6033 */
6034 if (cpu_online(cpu) || cpu == cpu_of(this_rq)) {
6035 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) {
6036 if (rq->curr->sched_class == &ext_sched_class)
6037 rq->curr->scx.slice = 0;
6038 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
6039 }
6040
6041 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) {
6042 pseqs[cpu] = rq->scx.pnt_seq;
6043 should_wait = true;
6044 }
6045
6046 resched_curr(rq);
6047 } else {
6048 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
6049 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
6050 }
6051
6052 raw_spin_rq_unlock_irqrestore(rq, flags);
6053
6054 return should_wait;
6055 }
6056
kick_one_cpu_if_idle(s32 cpu,struct rq * this_rq)6057 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq)
6058 {
6059 struct rq *rq = cpu_rq(cpu);
6060 unsigned long flags;
6061
6062 raw_spin_rq_lock_irqsave(rq, flags);
6063
6064 if (!can_skip_idle_kick(rq) &&
6065 (cpu_online(cpu) || cpu == cpu_of(this_rq)))
6066 resched_curr(rq);
6067
6068 raw_spin_rq_unlock_irqrestore(rq, flags);
6069 }
6070
kick_cpus_irq_workfn(struct irq_work * irq_work)6071 static void kick_cpus_irq_workfn(struct irq_work *irq_work)
6072 {
6073 struct rq *this_rq = this_rq();
6074 struct scx_rq *this_scx = &this_rq->scx;
6075 unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs);
6076 bool should_wait = false;
6077 s32 cpu;
6078
6079 for_each_cpu(cpu, this_scx->cpus_to_kick) {
6080 should_wait |= kick_one_cpu(cpu, this_rq, pseqs);
6081 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick);
6082 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
6083 }
6084
6085 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) {
6086 kick_one_cpu_if_idle(cpu, this_rq);
6087 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
6088 }
6089
6090 if (!should_wait)
6091 return;
6092
6093 for_each_cpu(cpu, this_scx->cpus_to_wait) {
6094 unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq;
6095
6096 if (cpu != cpu_of(this_rq)) {
6097 /*
6098 * Pairs with smp_store_release() issued by this CPU in
6099 * switch_class() on the resched path.
6100 *
6101 * We busy-wait here to guarantee that no other task can
6102 * be scheduled on our core before the target CPU has
6103 * entered the resched path.
6104 */
6105 while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu])
6106 cpu_relax();
6107 }
6108
6109 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
6110 }
6111 }
6112
6113 /**
6114 * print_scx_info - print out sched_ext scheduler state
6115 * @log_lvl: the log level to use when printing
6116 * @p: target task
6117 *
6118 * If a sched_ext scheduler is enabled, print the name and state of the
6119 * scheduler. If @p is on sched_ext, print further information about the task.
6120 *
6121 * This function can be safely called on any task as long as the task_struct
6122 * itself is accessible. While safe, this function isn't synchronized and may
6123 * print out mixups or garbages of limited length.
6124 */
print_scx_info(const char * log_lvl,struct task_struct * p)6125 void print_scx_info(const char *log_lvl, struct task_struct *p)
6126 {
6127 enum scx_ops_enable_state state = scx_ops_enable_state();
6128 const char *all = READ_ONCE(scx_switching_all) ? "+all" : "";
6129 char runnable_at_buf[22] = "?";
6130 struct sched_class *class;
6131 unsigned long runnable_at;
6132
6133 if (state == SCX_OPS_DISABLED)
6134 return;
6135
6136 /*
6137 * Carefully check if the task was running on sched_ext, and then
6138 * carefully copy the time it's been runnable, and its state.
6139 */
6140 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) ||
6141 class != &ext_sched_class) {
6142 printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name,
6143 scx_ops_enable_state_str[state], all);
6144 return;
6145 }
6146
6147 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at,
6148 sizeof(runnable_at)))
6149 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms",
6150 jiffies_delta_msecs(runnable_at, jiffies));
6151
6152 /* print everything onto one line to conserve console space */
6153 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s",
6154 log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all,
6155 runnable_at_buf);
6156 }
6157
scx_pm_handler(struct notifier_block * nb,unsigned long event,void * ptr)6158 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr)
6159 {
6160 /*
6161 * SCX schedulers often have userspace components which are sometimes
6162 * involved in critial scheduling paths. PM operations involve freezing
6163 * userspace which can lead to scheduling misbehaviors including stalls.
6164 * Let's bypass while PM operations are in progress.
6165 */
6166 switch (event) {
6167 case PM_HIBERNATION_PREPARE:
6168 case PM_SUSPEND_PREPARE:
6169 case PM_RESTORE_PREPARE:
6170 scx_ops_bypass(true);
6171 break;
6172 case PM_POST_HIBERNATION:
6173 case PM_POST_SUSPEND:
6174 case PM_POST_RESTORE:
6175 scx_ops_bypass(false);
6176 break;
6177 }
6178
6179 return NOTIFY_OK;
6180 }
6181
6182 static struct notifier_block scx_pm_notifier = {
6183 .notifier_call = scx_pm_handler,
6184 };
6185
init_sched_ext_class(void)6186 void __init init_sched_ext_class(void)
6187 {
6188 s32 cpu, v;
6189
6190 /*
6191 * The following is to prevent the compiler from optimizing out the enum
6192 * definitions so that BPF scheduler implementations can use them
6193 * through the generated vmlinux.h.
6194 */
6195 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT |
6196 SCX_TG_ONLINE);
6197
6198 BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params));
6199 #ifdef CONFIG_SMP
6200 BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL));
6201 BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL));
6202 #endif
6203 scx_kick_cpus_pnt_seqs =
6204 __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids,
6205 __alignof__(scx_kick_cpus_pnt_seqs[0]));
6206 BUG_ON(!scx_kick_cpus_pnt_seqs);
6207
6208 for_each_possible_cpu(cpu) {
6209 struct rq *rq = cpu_rq(cpu);
6210
6211 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL);
6212 INIT_LIST_HEAD(&rq->scx.runnable_list);
6213 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals);
6214
6215 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL));
6216 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL));
6217 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL));
6218 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL));
6219 init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn);
6220 init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn);
6221
6222 if (cpu_online(cpu))
6223 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE;
6224 }
6225
6226 register_sysrq_key('S', &sysrq_sched_ext_reset_op);
6227 register_sysrq_key('D', &sysrq_sched_ext_dump_op);
6228 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn);
6229 }
6230
6231
6232 /********************************************************************************
6233 * Helpers that can be called from the BPF scheduler.
6234 */
6235 #include <linux/btf_ids.h>
6236
6237 __bpf_kfunc_start_defs();
6238
6239 /**
6240 * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu()
6241 * @p: task_struct to select a CPU for
6242 * @prev_cpu: CPU @p was on previously
6243 * @wake_flags: %SCX_WAKE_* flags
6244 * @is_idle: out parameter indicating whether the returned CPU is idle
6245 *
6246 * Can only be called from ops.select_cpu() if the built-in CPU selection is
6247 * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set.
6248 * @p, @prev_cpu and @wake_flags match ops.select_cpu().
6249 *
6250 * Returns the picked CPU with *@is_idle indicating whether the picked CPU is
6251 * currently idle and thus a good candidate for direct dispatching.
6252 */
scx_bpf_select_cpu_dfl(struct task_struct * p,s32 prev_cpu,u64 wake_flags,bool * is_idle)6253 __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
6254 u64 wake_flags, bool *is_idle)
6255 {
6256 if (!static_branch_likely(&scx_builtin_idle_enabled)) {
6257 scx_ops_error("built-in idle tracking is disabled");
6258 goto prev_cpu;
6259 }
6260
6261 if (!scx_kf_allowed(SCX_KF_SELECT_CPU))
6262 goto prev_cpu;
6263
6264 #ifdef CONFIG_SMP
6265 return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle);
6266 #endif
6267
6268 prev_cpu:
6269 *is_idle = false;
6270 return prev_cpu;
6271 }
6272
6273 __bpf_kfunc_end_defs();
6274
6275 BTF_KFUNCS_START(scx_kfunc_ids_select_cpu)
6276 BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU)
6277 BTF_KFUNCS_END(scx_kfunc_ids_select_cpu)
6278
6279 static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = {
6280 .owner = THIS_MODULE,
6281 .set = &scx_kfunc_ids_select_cpu,
6282 };
6283
scx_dsq_insert_preamble(struct task_struct * p,u64 enq_flags)6284 static bool scx_dsq_insert_preamble(struct task_struct *p, u64 enq_flags)
6285 {
6286 if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH))
6287 return false;
6288
6289 lockdep_assert_irqs_disabled();
6290
6291 if (unlikely(!p)) {
6292 scx_ops_error("called with NULL task");
6293 return false;
6294 }
6295
6296 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) {
6297 scx_ops_error("invalid enq_flags 0x%llx", enq_flags);
6298 return false;
6299 }
6300
6301 return true;
6302 }
6303
scx_dsq_insert_commit(struct task_struct * p,u64 dsq_id,u64 enq_flags)6304 static void scx_dsq_insert_commit(struct task_struct *p, u64 dsq_id,
6305 u64 enq_flags)
6306 {
6307 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6308 struct task_struct *ddsp_task;
6309
6310 ddsp_task = __this_cpu_read(direct_dispatch_task);
6311 if (ddsp_task) {
6312 mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags);
6313 return;
6314 }
6315
6316 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) {
6317 scx_ops_error("dispatch buffer overflow");
6318 return;
6319 }
6320
6321 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){
6322 .task = p,
6323 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK,
6324 .dsq_id = dsq_id,
6325 .enq_flags = enq_flags,
6326 };
6327 }
6328
6329 __bpf_kfunc_start_defs();
6330
6331 /**
6332 * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ
6333 * @p: task_struct to insert
6334 * @dsq_id: DSQ to insert into
6335 * @slice: duration @p can run for in nsecs, 0 to keep the current value
6336 * @enq_flags: SCX_ENQ_*
6337 *
6338 * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to
6339 * call this function spuriously. Can be called from ops.enqueue(),
6340 * ops.select_cpu(), and ops.dispatch().
6341 *
6342 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch
6343 * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be
6344 * used to target the local DSQ of a CPU other than the enqueueing one. Use
6345 * ops.select_cpu() to be on the target CPU in the first place.
6346 *
6347 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p
6348 * will be directly inserted into the corresponding dispatch queue after
6349 * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be
6350 * inserted into the local DSQ of the CPU returned by ops.select_cpu().
6351 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the
6352 * task is inserted.
6353 *
6354 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id
6355 * and this function can be called upto ops.dispatch_max_batch times to insert
6356 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the
6357 * remaining slots. scx_bpf_consume() flushes the batch and resets the counter.
6358 *
6359 * This function doesn't have any locking restrictions and may be called under
6360 * BPF locks (in the future when BPF introduces more flexible locking).
6361 *
6362 * @p is allowed to run for @slice. The scheduling path is triggered on slice
6363 * exhaustion. If zero, the current residual slice is maintained. If
6364 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with
6365 * scx_bpf_kick_cpu() to trigger scheduling.
6366 */
scx_bpf_dsq_insert(struct task_struct * p,u64 dsq_id,u64 slice,u64 enq_flags)6367 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, u64 slice,
6368 u64 enq_flags)
6369 {
6370 if (!scx_dsq_insert_preamble(p, enq_flags))
6371 return;
6372
6373 if (slice)
6374 p->scx.slice = slice;
6375 else
6376 p->scx.slice = p->scx.slice ?: 1;
6377
6378 scx_dsq_insert_commit(p, dsq_id, enq_flags);
6379 }
6380
6381 /* for backward compatibility, will be removed in v6.15 */
scx_bpf_dispatch(struct task_struct * p,u64 dsq_id,u64 slice,u64 enq_flags)6382 __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice,
6383 u64 enq_flags)
6384 {
6385 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch() renamed to scx_bpf_dsq_insert()");
6386 scx_bpf_dsq_insert(p, dsq_id, slice, enq_flags);
6387 }
6388
6389 /**
6390 * scx_bpf_dsq_insert_vtime - Insert a task into the vtime priority queue of a DSQ
6391 * @p: task_struct to insert
6392 * @dsq_id: DSQ to insert into
6393 * @slice: duration @p can run for in nsecs, 0 to keep the current value
6394 * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ
6395 * @enq_flags: SCX_ENQ_*
6396 *
6397 * Insert @p into the vtime priority queue of the DSQ identified by @dsq_id.
6398 * Tasks queued into the priority queue are ordered by @vtime. All other aspects
6399 * are identical to scx_bpf_dsq_insert().
6400 *
6401 * @vtime ordering is according to time_before64() which considers wrapping. A
6402 * numerically larger vtime may indicate an earlier position in the ordering and
6403 * vice-versa.
6404 *
6405 * A DSQ can only be used as a FIFO or priority queue at any given time and this
6406 * function must not be called on a DSQ which already has one or more FIFO tasks
6407 * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and
6408 * SCX_DSQ_GLOBAL) cannot be used as priority queues.
6409 */
scx_bpf_dsq_insert_vtime(struct task_struct * p,u64 dsq_id,u64 slice,u64 vtime,u64 enq_flags)6410 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id,
6411 u64 slice, u64 vtime, u64 enq_flags)
6412 {
6413 if (!scx_dsq_insert_preamble(p, enq_flags))
6414 return;
6415
6416 if (slice)
6417 p->scx.slice = slice;
6418 else
6419 p->scx.slice = p->scx.slice ?: 1;
6420
6421 p->scx.dsq_vtime = vtime;
6422
6423 scx_dsq_insert_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
6424 }
6425
6426 /* for backward compatibility, will be removed in v6.15 */
scx_bpf_dispatch_vtime(struct task_struct * p,u64 dsq_id,u64 slice,u64 vtime,u64 enq_flags)6427 __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id,
6428 u64 slice, u64 vtime, u64 enq_flags)
6429 {
6430 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_vtime() renamed to scx_bpf_dsq_insert_vtime()");
6431 scx_bpf_dsq_insert_vtime(p, dsq_id, slice, vtime, enq_flags);
6432 }
6433
6434 __bpf_kfunc_end_defs();
6435
6436 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch)
6437 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU)
6438 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU)
6439 BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU)
6440 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU)
6441 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch)
6442
6443 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = {
6444 .owner = THIS_MODULE,
6445 .set = &scx_kfunc_ids_enqueue_dispatch,
6446 };
6447
scx_dsq_move(struct bpf_iter_scx_dsq_kern * kit,struct task_struct * p,u64 dsq_id,u64 enq_flags)6448 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit,
6449 struct task_struct *p, u64 dsq_id, u64 enq_flags)
6450 {
6451 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq;
6452 struct rq *this_rq, *src_rq, *locked_rq;
6453 bool dispatched = false;
6454 bool in_balance;
6455 unsigned long flags;
6456
6457 if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH))
6458 return false;
6459
6460 /*
6461 * Can be called from either ops.dispatch() locking this_rq() or any
6462 * context where no rq lock is held. If latter, lock @p's task_rq which
6463 * we'll likely need anyway.
6464 */
6465 src_rq = task_rq(p);
6466
6467 local_irq_save(flags);
6468 this_rq = this_rq();
6469 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE;
6470
6471 if (in_balance) {
6472 if (this_rq != src_rq) {
6473 raw_spin_rq_unlock(this_rq);
6474 raw_spin_rq_lock(src_rq);
6475 }
6476 } else {
6477 raw_spin_rq_lock(src_rq);
6478 }
6479
6480 /*
6481 * If the BPF scheduler keeps calling this function repeatedly, it can
6482 * cause similar live-lock conditions as consume_dispatch_q(). Insert a
6483 * breather if necessary.
6484 */
6485 scx_ops_breather(src_rq);
6486
6487 locked_rq = src_rq;
6488 raw_spin_lock(&src_dsq->lock);
6489
6490 /*
6491 * Did someone else get to it? @p could have already left $src_dsq, got
6492 * re-enqueud, or be in the process of being consumed by someone else.
6493 */
6494 if (unlikely(p->scx.dsq != src_dsq ||
6495 u32_before(kit->cursor.priv, p->scx.dsq_seq) ||
6496 p->scx.holding_cpu >= 0) ||
6497 WARN_ON_ONCE(src_rq != task_rq(p))) {
6498 raw_spin_unlock(&src_dsq->lock);
6499 goto out;
6500 }
6501
6502 /* @p is still on $src_dsq and stable, determine the destination */
6503 dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p);
6504
6505 /*
6506 * Apply vtime and slice updates before moving so that the new time is
6507 * visible before inserting into $dst_dsq. @p is still on $src_dsq but
6508 * this is safe as we're locking it.
6509 */
6510 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME)
6511 p->scx.dsq_vtime = kit->vtime;
6512 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE)
6513 p->scx.slice = kit->slice;
6514
6515 /* execute move */
6516 locked_rq = move_task_between_dsqs(p, enq_flags, src_dsq, dst_dsq);
6517 dispatched = true;
6518 out:
6519 if (in_balance) {
6520 if (this_rq != locked_rq) {
6521 raw_spin_rq_unlock(locked_rq);
6522 raw_spin_rq_lock(this_rq);
6523 }
6524 } else {
6525 raw_spin_rq_unlock_irqrestore(locked_rq, flags);
6526 }
6527
6528 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE |
6529 __SCX_DSQ_ITER_HAS_VTIME);
6530 return dispatched;
6531 }
6532
6533 __bpf_kfunc_start_defs();
6534
6535 /**
6536 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots
6537 *
6538 * Can only be called from ops.dispatch().
6539 */
scx_bpf_dispatch_nr_slots(void)6540 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void)
6541 {
6542 if (!scx_kf_allowed(SCX_KF_DISPATCH))
6543 return 0;
6544
6545 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor);
6546 }
6547
6548 /**
6549 * scx_bpf_dispatch_cancel - Cancel the latest dispatch
6550 *
6551 * Cancel the latest dispatch. Can be called multiple times to cancel further
6552 * dispatches. Can only be called from ops.dispatch().
6553 */
scx_bpf_dispatch_cancel(void)6554 __bpf_kfunc void scx_bpf_dispatch_cancel(void)
6555 {
6556 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6557
6558 if (!scx_kf_allowed(SCX_KF_DISPATCH))
6559 return;
6560
6561 if (dspc->cursor > 0)
6562 dspc->cursor--;
6563 else
6564 scx_ops_error("dispatch buffer underflow");
6565 }
6566
6567 /**
6568 * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ
6569 * @dsq_id: DSQ to move task from
6570 *
6571 * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's
6572 * local DSQ for execution. Can only be called from ops.dispatch().
6573 *
6574 * This function flushes the in-flight dispatches from scx_bpf_dsq_insert()
6575 * before trying to move from the specified DSQ. It may also grab rq locks and
6576 * thus can't be called under any BPF locks.
6577 *
6578 * Returns %true if a task has been moved, %false if there isn't any task to
6579 * move.
6580 */
scx_bpf_dsq_move_to_local(u64 dsq_id)6581 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id)
6582 {
6583 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6584 struct scx_dispatch_q *dsq;
6585
6586 if (!scx_kf_allowed(SCX_KF_DISPATCH))
6587 return false;
6588
6589 flush_dispatch_buf(dspc->rq);
6590
6591 dsq = find_user_dsq(dsq_id);
6592 if (unlikely(!dsq)) {
6593 scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id);
6594 return false;
6595 }
6596
6597 if (consume_dispatch_q(dspc->rq, dsq)) {
6598 /*
6599 * A successfully consumed task can be dequeued before it starts
6600 * running while the CPU is trying to migrate other dispatched
6601 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty
6602 * local DSQ.
6603 */
6604 dspc->nr_tasks++;
6605 return true;
6606 } else {
6607 return false;
6608 }
6609 }
6610
6611 /* for backward compatibility, will be removed in v6.15 */
scx_bpf_consume(u64 dsq_id)6612 __bpf_kfunc bool scx_bpf_consume(u64 dsq_id)
6613 {
6614 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_consume() renamed to scx_bpf_dsq_move_to_local()");
6615 return scx_bpf_dsq_move_to_local(dsq_id);
6616 }
6617
6618 /**
6619 * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs
6620 * @it__iter: DSQ iterator in progress
6621 * @slice: duration the moved task can run for in nsecs
6622 *
6623 * Override the slice of the next task that will be moved from @it__iter using
6624 * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous
6625 * slice duration is kept.
6626 */
scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq * it__iter,u64 slice)6627 __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter,
6628 u64 slice)
6629 {
6630 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6631
6632 kit->slice = slice;
6633 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE;
6634 }
6635
6636 /* for backward compatibility, will be removed in v6.15 */
scx_bpf_dispatch_from_dsq_set_slice(struct bpf_iter_scx_dsq * it__iter,u64 slice)6637 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice(
6638 struct bpf_iter_scx_dsq *it__iter, u64 slice)
6639 {
6640 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_slice() renamed to scx_bpf_dsq_move_set_slice()");
6641 scx_bpf_dsq_move_set_slice(it__iter, slice);
6642 }
6643
6644 /**
6645 * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs
6646 * @it__iter: DSQ iterator in progress
6647 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ
6648 *
6649 * Override the vtime of the next task that will be moved from @it__iter using
6650 * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice
6651 * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the
6652 * override is ignored and cleared.
6653 */
scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq * it__iter,u64 vtime)6654 __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter,
6655 u64 vtime)
6656 {
6657 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6658
6659 kit->vtime = vtime;
6660 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME;
6661 }
6662
6663 /* for backward compatibility, will be removed in v6.15 */
scx_bpf_dispatch_from_dsq_set_vtime(struct bpf_iter_scx_dsq * it__iter,u64 vtime)6664 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime(
6665 struct bpf_iter_scx_dsq *it__iter, u64 vtime)
6666 {
6667 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_vtime() renamed to scx_bpf_dsq_move_set_vtime()");
6668 scx_bpf_dsq_move_set_vtime(it__iter, vtime);
6669 }
6670
6671 /**
6672 * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ
6673 * @it__iter: DSQ iterator in progress
6674 * @p: task to transfer
6675 * @dsq_id: DSQ to move @p to
6676 * @enq_flags: SCX_ENQ_*
6677 *
6678 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ
6679 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can
6680 * be the destination.
6681 *
6682 * For the transfer to be successful, @p must still be on the DSQ and have been
6683 * queued before the DSQ iteration started. This function doesn't care whether
6684 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have
6685 * been queued before the iteration started.
6686 *
6687 * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update.
6688 *
6689 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq
6690 * lock (e.g. BPF timers or SYSCALL programs).
6691 *
6692 * Returns %true if @p has been consumed, %false if @p had already been consumed
6693 * or dequeued.
6694 */
scx_bpf_dsq_move(struct bpf_iter_scx_dsq * it__iter,struct task_struct * p,u64 dsq_id,u64 enq_flags)6695 __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter,
6696 struct task_struct *p, u64 dsq_id,
6697 u64 enq_flags)
6698 {
6699 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter,
6700 p, dsq_id, enq_flags);
6701 }
6702
6703 /* for backward compatibility, will be removed in v6.15 */
scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq * it__iter,struct task_struct * p,u64 dsq_id,u64 enq_flags)6704 __bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter,
6705 struct task_struct *p, u64 dsq_id,
6706 u64 enq_flags)
6707 {
6708 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq() renamed to scx_bpf_dsq_move()");
6709 return scx_bpf_dsq_move(it__iter, p, dsq_id, enq_flags);
6710 }
6711
6712 /**
6713 * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ
6714 * @it__iter: DSQ iterator in progress
6715 * @p: task to transfer
6716 * @dsq_id: DSQ to move @p to
6717 * @enq_flags: SCX_ENQ_*
6718 *
6719 * Transfer @p which is on the DSQ currently iterated by @it__iter to the
6720 * priority queue of the DSQ specified by @dsq_id. The destination must be a
6721 * user DSQ as only user DSQs support priority queue.
6722 *
6723 * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice()
6724 * and scx_bpf_dsq_move_set_vtime() to update.
6725 *
6726 * All other aspects are identical to scx_bpf_dsq_move(). See
6727 * scx_bpf_dsq_insert_vtime() for more information on @vtime.
6728 */
scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq * it__iter,struct task_struct * p,u64 dsq_id,u64 enq_flags)6729 __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter,
6730 struct task_struct *p, u64 dsq_id,
6731 u64 enq_flags)
6732 {
6733 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter,
6734 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
6735 }
6736
6737 /* for backward compatibility, will be removed in v6.15 */
scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq * it__iter,struct task_struct * p,u64 dsq_id,u64 enq_flags)6738 __bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter,
6739 struct task_struct *p, u64 dsq_id,
6740 u64 enq_flags)
6741 {
6742 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_vtime() renamed to scx_bpf_dsq_move_vtime()");
6743 return scx_bpf_dsq_move_vtime(it__iter, p, dsq_id, enq_flags);
6744 }
6745
6746 __bpf_kfunc_end_defs();
6747
6748 BTF_KFUNCS_START(scx_kfunc_ids_dispatch)
6749 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots)
6750 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel)
6751 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local)
6752 BTF_ID_FLAGS(func, scx_bpf_consume)
6753 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice)
6754 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime)
6755 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU)
6756 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU)
6757 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice)
6758 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime)
6759 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
6760 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
6761 BTF_KFUNCS_END(scx_kfunc_ids_dispatch)
6762
6763 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = {
6764 .owner = THIS_MODULE,
6765 .set = &scx_kfunc_ids_dispatch,
6766 };
6767
6768 __bpf_kfunc_start_defs();
6769
6770 /**
6771 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
6772 *
6773 * Iterate over all of the tasks currently enqueued on the local DSQ of the
6774 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of
6775 * processed tasks. Can only be called from ops.cpu_release().
6776 */
scx_bpf_reenqueue_local(void)6777 __bpf_kfunc u32 scx_bpf_reenqueue_local(void)
6778 {
6779 LIST_HEAD(tasks);
6780 u32 nr_enqueued = 0;
6781 struct rq *rq;
6782 struct task_struct *p, *n;
6783
6784 if (!scx_kf_allowed(SCX_KF_CPU_RELEASE))
6785 return 0;
6786
6787 rq = cpu_rq(smp_processor_id());
6788 lockdep_assert_rq_held(rq);
6789
6790 /*
6791 * The BPF scheduler may choose to dispatch tasks back to
6792 * @rq->scx.local_dsq. Move all candidate tasks off to a private list
6793 * first to avoid processing the same tasks repeatedly.
6794 */
6795 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list,
6796 scx.dsq_list.node) {
6797 /*
6798 * If @p is being migrated, @p's current CPU may not agree with
6799 * its allowed CPUs and the migration_cpu_stop is about to
6800 * deactivate and re-activate @p anyway. Skip re-enqueueing.
6801 *
6802 * While racing sched property changes may also dequeue and
6803 * re-enqueue a migrating task while its current CPU and allowed
6804 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to
6805 * the current local DSQ for running tasks and thus are not
6806 * visible to the BPF scheduler.
6807 */
6808 if (p->migration_pending)
6809 continue;
6810
6811 dispatch_dequeue(rq, p);
6812 list_add_tail(&p->scx.dsq_list.node, &tasks);
6813 }
6814
6815 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) {
6816 list_del_init(&p->scx.dsq_list.node);
6817 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1);
6818 nr_enqueued++;
6819 }
6820
6821 return nr_enqueued;
6822 }
6823
6824 __bpf_kfunc_end_defs();
6825
6826 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release)
6827 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local)
6828 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release)
6829
6830 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = {
6831 .owner = THIS_MODULE,
6832 .set = &scx_kfunc_ids_cpu_release,
6833 };
6834
6835 __bpf_kfunc_start_defs();
6836
6837 /**
6838 * scx_bpf_create_dsq - Create a custom DSQ
6839 * @dsq_id: DSQ to create
6840 * @node: NUMA node to allocate from
6841 *
6842 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable
6843 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog.
6844 */
scx_bpf_create_dsq(u64 dsq_id,s32 node)6845 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node)
6846 {
6847 if (unlikely(node >= (int)nr_node_ids ||
6848 (node < 0 && node != NUMA_NO_NODE)))
6849 return -EINVAL;
6850 return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node));
6851 }
6852
6853 __bpf_kfunc_end_defs();
6854
6855 BTF_KFUNCS_START(scx_kfunc_ids_unlocked)
6856 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE)
6857 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice)
6858 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime)
6859 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU)
6860 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU)
6861 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice)
6862 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime)
6863 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
6864 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
6865 BTF_KFUNCS_END(scx_kfunc_ids_unlocked)
6866
6867 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = {
6868 .owner = THIS_MODULE,
6869 .set = &scx_kfunc_ids_unlocked,
6870 };
6871
6872 __bpf_kfunc_start_defs();
6873
6874 /**
6875 * scx_bpf_kick_cpu - Trigger reschedule on a CPU
6876 * @cpu: cpu to kick
6877 * @flags: %SCX_KICK_* flags
6878 *
6879 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or
6880 * trigger rescheduling on a busy CPU. This can be called from any online
6881 * scx_ops operation and the actual kicking is performed asynchronously through
6882 * an irq work.
6883 */
scx_bpf_kick_cpu(s32 cpu,u64 flags)6884 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags)
6885 {
6886 struct rq *this_rq;
6887 unsigned long irq_flags;
6888
6889 if (!ops_cpu_valid(cpu, NULL))
6890 return;
6891
6892 local_irq_save(irq_flags);
6893
6894 this_rq = this_rq();
6895
6896 /*
6897 * While bypassing for PM ops, IRQ handling may not be online which can
6898 * lead to irq_work_queue() malfunction such as infinite busy wait for
6899 * IRQ status update. Suppress kicking.
6900 */
6901 if (scx_rq_bypassing(this_rq))
6902 goto out;
6903
6904 /*
6905 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting
6906 * rq locks. We can probably be smarter and avoid bouncing if called
6907 * from ops which don't hold a rq lock.
6908 */
6909 if (flags & SCX_KICK_IDLE) {
6910 struct rq *target_rq = cpu_rq(cpu);
6911
6912 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT)))
6913 scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE");
6914
6915 if (raw_spin_rq_trylock(target_rq)) {
6916 if (can_skip_idle_kick(target_rq)) {
6917 raw_spin_rq_unlock(target_rq);
6918 goto out;
6919 }
6920 raw_spin_rq_unlock(target_rq);
6921 }
6922 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle);
6923 } else {
6924 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick);
6925
6926 if (flags & SCX_KICK_PREEMPT)
6927 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt);
6928 if (flags & SCX_KICK_WAIT)
6929 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait);
6930 }
6931
6932 irq_work_queue(&this_rq->scx.kick_cpus_irq_work);
6933 out:
6934 local_irq_restore(irq_flags);
6935 }
6936
6937 /**
6938 * scx_bpf_dsq_nr_queued - Return the number of queued tasks
6939 * @dsq_id: id of the DSQ
6940 *
6941 * Return the number of tasks in the DSQ matching @dsq_id. If not found,
6942 * -%ENOENT is returned.
6943 */
scx_bpf_dsq_nr_queued(u64 dsq_id)6944 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id)
6945 {
6946 struct scx_dispatch_q *dsq;
6947 s32 ret;
6948
6949 preempt_disable();
6950
6951 if (dsq_id == SCX_DSQ_LOCAL) {
6952 ret = READ_ONCE(this_rq()->scx.local_dsq.nr);
6953 goto out;
6954 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
6955 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
6956
6957 if (ops_cpu_valid(cpu, NULL)) {
6958 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr);
6959 goto out;
6960 }
6961 } else {
6962 dsq = find_user_dsq(dsq_id);
6963 if (dsq) {
6964 ret = READ_ONCE(dsq->nr);
6965 goto out;
6966 }
6967 }
6968 ret = -ENOENT;
6969 out:
6970 preempt_enable();
6971 return ret;
6972 }
6973
6974 /**
6975 * scx_bpf_destroy_dsq - Destroy a custom DSQ
6976 * @dsq_id: DSQ to destroy
6977 *
6978 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with
6979 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is
6980 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ
6981 * which doesn't exist. Can be called from any online scx_ops operations.
6982 */
scx_bpf_destroy_dsq(u64 dsq_id)6983 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id)
6984 {
6985 destroy_dsq(dsq_id);
6986 }
6987
6988 /**
6989 * bpf_iter_scx_dsq_new - Create a DSQ iterator
6990 * @it: iterator to initialize
6991 * @dsq_id: DSQ to iterate
6992 * @flags: %SCX_DSQ_ITER_*
6993 *
6994 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk
6995 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes
6996 * tasks which are already queued when this function is invoked.
6997 */
bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq * it,u64 dsq_id,u64 flags)6998 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id,
6999 u64 flags)
7000 {
7001 struct bpf_iter_scx_dsq_kern *kit = (void *)it;
7002
7003 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) >
7004 sizeof(struct bpf_iter_scx_dsq));
7005 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) !=
7006 __alignof__(struct bpf_iter_scx_dsq));
7007
7008 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS)
7009 return -EINVAL;
7010
7011 kit->dsq = find_user_dsq(dsq_id);
7012 if (!kit->dsq)
7013 return -ENOENT;
7014
7015 INIT_LIST_HEAD(&kit->cursor.node);
7016 kit->cursor.flags |= SCX_DSQ_LNODE_ITER_CURSOR | flags;
7017 kit->cursor.priv = READ_ONCE(kit->dsq->seq);
7018
7019 return 0;
7020 }
7021
7022 /**
7023 * bpf_iter_scx_dsq_next - Progress a DSQ iterator
7024 * @it: iterator to progress
7025 *
7026 * Return the next task. See bpf_iter_scx_dsq_new().
7027 */
bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq * it)7028 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it)
7029 {
7030 struct bpf_iter_scx_dsq_kern *kit = (void *)it;
7031 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV;
7032 struct task_struct *p;
7033 unsigned long flags;
7034
7035 if (!kit->dsq)
7036 return NULL;
7037
7038 raw_spin_lock_irqsave(&kit->dsq->lock, flags);
7039
7040 if (list_empty(&kit->cursor.node))
7041 p = NULL;
7042 else
7043 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list);
7044
7045 /*
7046 * Only tasks which were queued before the iteration started are
7047 * visible. This bounds BPF iterations and guarantees that vtime never
7048 * jumps in the other direction while iterating.
7049 */
7050 do {
7051 p = nldsq_next_task(kit->dsq, p, rev);
7052 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq)));
7053
7054 if (p) {
7055 if (rev)
7056 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node);
7057 else
7058 list_move(&kit->cursor.node, &p->scx.dsq_list.node);
7059 } else {
7060 list_del_init(&kit->cursor.node);
7061 }
7062
7063 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
7064
7065 return p;
7066 }
7067
7068 /**
7069 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator
7070 * @it: iterator to destroy
7071 *
7072 * Undo scx_iter_scx_dsq_new().
7073 */
bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq * it)7074 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it)
7075 {
7076 struct bpf_iter_scx_dsq_kern *kit = (void *)it;
7077
7078 if (!kit->dsq)
7079 return;
7080
7081 if (!list_empty(&kit->cursor.node)) {
7082 unsigned long flags;
7083
7084 raw_spin_lock_irqsave(&kit->dsq->lock, flags);
7085 list_del_init(&kit->cursor.node);
7086 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
7087 }
7088 kit->dsq = NULL;
7089 }
7090
7091 __bpf_kfunc_end_defs();
7092
__bstr_format(u64 * data_buf,char * line_buf,size_t line_size,char * fmt,unsigned long long * data,u32 data__sz)7093 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size,
7094 char *fmt, unsigned long long *data, u32 data__sz)
7095 {
7096 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true };
7097 s32 ret;
7098
7099 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 ||
7100 (data__sz && !data)) {
7101 scx_ops_error("invalid data=%p and data__sz=%u",
7102 (void *)data, data__sz);
7103 return -EINVAL;
7104 }
7105
7106 ret = copy_from_kernel_nofault(data_buf, data, data__sz);
7107 if (ret < 0) {
7108 scx_ops_error("failed to read data fields (%d)", ret);
7109 return ret;
7110 }
7111
7112 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8,
7113 &bprintf_data);
7114 if (ret < 0) {
7115 scx_ops_error("format preparation failed (%d)", ret);
7116 return ret;
7117 }
7118
7119 ret = bstr_printf(line_buf, line_size, fmt,
7120 bprintf_data.bin_args);
7121 bpf_bprintf_cleanup(&bprintf_data);
7122 if (ret < 0) {
7123 scx_ops_error("(\"%s\", %p, %u) failed to format",
7124 fmt, data, data__sz);
7125 return ret;
7126 }
7127
7128 return ret;
7129 }
7130
bstr_format(struct scx_bstr_buf * buf,char * fmt,unsigned long long * data,u32 data__sz)7131 static s32 bstr_format(struct scx_bstr_buf *buf,
7132 char *fmt, unsigned long long *data, u32 data__sz)
7133 {
7134 return __bstr_format(buf->data, buf->line, sizeof(buf->line),
7135 fmt, data, data__sz);
7136 }
7137
7138 __bpf_kfunc_start_defs();
7139
7140 /**
7141 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler.
7142 * @exit_code: Exit value to pass to user space via struct scx_exit_info.
7143 * @fmt: error message format string
7144 * @data: format string parameters packaged using ___bpf_fill() macro
7145 * @data__sz: @data len, must end in '__sz' for the verifier
7146 *
7147 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops
7148 * disabling.
7149 */
scx_bpf_exit_bstr(s64 exit_code,char * fmt,unsigned long long * data,u32 data__sz)7150 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt,
7151 unsigned long long *data, u32 data__sz)
7152 {
7153 unsigned long flags;
7154
7155 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
7156 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
7157 scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s",
7158 scx_exit_bstr_buf.line);
7159 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
7160 }
7161
7162 /**
7163 * scx_bpf_error_bstr - Indicate fatal error
7164 * @fmt: error message format string
7165 * @data: format string parameters packaged using ___bpf_fill() macro
7166 * @data__sz: @data len, must end in '__sz' for the verifier
7167 *
7168 * Indicate that the BPF scheduler encountered a fatal error and initiate ops
7169 * disabling.
7170 */
scx_bpf_error_bstr(char * fmt,unsigned long long * data,u32 data__sz)7171 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data,
7172 u32 data__sz)
7173 {
7174 unsigned long flags;
7175
7176 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
7177 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
7178 scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s",
7179 scx_exit_bstr_buf.line);
7180 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
7181 }
7182
7183 /**
7184 * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler
7185 * @fmt: format string
7186 * @data: format string parameters packaged using ___bpf_fill() macro
7187 * @data__sz: @data len, must end in '__sz' for the verifier
7188 *
7189 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and
7190 * dump_task() to generate extra debug dump specific to the BPF scheduler.
7191 *
7192 * The extra dump may be multiple lines. A single line may be split over
7193 * multiple calls. The last line is automatically terminated.
7194 */
scx_bpf_dump_bstr(char * fmt,unsigned long long * data,u32 data__sz)7195 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data,
7196 u32 data__sz)
7197 {
7198 struct scx_dump_data *dd = &scx_dump_data;
7199 struct scx_bstr_buf *buf = &dd->buf;
7200 s32 ret;
7201
7202 if (raw_smp_processor_id() != dd->cpu) {
7203 scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends");
7204 return;
7205 }
7206
7207 /* append the formatted string to the line buf */
7208 ret = __bstr_format(buf->data, buf->line + dd->cursor,
7209 sizeof(buf->line) - dd->cursor, fmt, data, data__sz);
7210 if (ret < 0) {
7211 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)",
7212 dd->prefix, fmt, data, data__sz, ret);
7213 return;
7214 }
7215
7216 dd->cursor += ret;
7217 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line));
7218
7219 if (!dd->cursor)
7220 return;
7221
7222 /*
7223 * If the line buf overflowed or ends in a newline, flush it into the
7224 * dump. This is to allow the caller to generate a single line over
7225 * multiple calls. As ops_dump_flush() can also handle multiple lines in
7226 * the line buf, the only case which can lead to an unexpected
7227 * truncation is when the caller keeps generating newlines in the middle
7228 * instead of the end consecutively. Don't do that.
7229 */
7230 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n')
7231 ops_dump_flush();
7232 }
7233
7234 /**
7235 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU
7236 * @cpu: CPU of interest
7237 *
7238 * Return the maximum relative capacity of @cpu in relation to the most
7239 * performant CPU in the system. The return value is in the range [1,
7240 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur().
7241 */
scx_bpf_cpuperf_cap(s32 cpu)7242 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu)
7243 {
7244 if (ops_cpu_valid(cpu, NULL))
7245 return arch_scale_cpu_capacity(cpu);
7246 else
7247 return SCX_CPUPERF_ONE;
7248 }
7249
7250 /**
7251 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU
7252 * @cpu: CPU of interest
7253 *
7254 * Return the current relative performance of @cpu in relation to its maximum.
7255 * The return value is in the range [1, %SCX_CPUPERF_ONE].
7256 *
7257 * The current performance level of a CPU in relation to the maximum performance
7258 * available in the system can be calculated as follows:
7259 *
7260 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE
7261 *
7262 * The result is in the range [1, %SCX_CPUPERF_ONE].
7263 */
scx_bpf_cpuperf_cur(s32 cpu)7264 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu)
7265 {
7266 if (ops_cpu_valid(cpu, NULL))
7267 return arch_scale_freq_capacity(cpu);
7268 else
7269 return SCX_CPUPERF_ONE;
7270 }
7271
7272 /**
7273 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU
7274 * @cpu: CPU of interest
7275 * @perf: target performance level [0, %SCX_CPUPERF_ONE]
7276 * @flags: %SCX_CPUPERF_* flags
7277 *
7278 * Set the target performance level of @cpu to @perf. @perf is in linear
7279 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the
7280 * schedutil cpufreq governor chooses the target frequency.
7281 *
7282 * The actual performance level chosen, CPU grouping, and the overhead and
7283 * latency of the operations are dependent on the hardware and cpufreq driver in
7284 * use. Consult hardware and cpufreq documentation for more information. The
7285 * current performance level can be monitored using scx_bpf_cpuperf_cur().
7286 */
scx_bpf_cpuperf_set(s32 cpu,u32 perf)7287 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf)
7288 {
7289 if (unlikely(perf > SCX_CPUPERF_ONE)) {
7290 scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu);
7291 return;
7292 }
7293
7294 if (ops_cpu_valid(cpu, NULL)) {
7295 struct rq *rq = cpu_rq(cpu);
7296
7297 rq->scx.cpuperf_target = perf;
7298
7299 rcu_read_lock_sched_notrace();
7300 cpufreq_update_util(cpu_rq(cpu), 0);
7301 rcu_read_unlock_sched_notrace();
7302 }
7303 }
7304
7305 /**
7306 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs
7307 *
7308 * All valid CPU IDs in the system are smaller than the returned value.
7309 */
scx_bpf_nr_cpu_ids(void)7310 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void)
7311 {
7312 return nr_cpu_ids;
7313 }
7314
7315 /**
7316 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask
7317 */
scx_bpf_get_possible_cpumask(void)7318 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void)
7319 {
7320 return cpu_possible_mask;
7321 }
7322
7323 /**
7324 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask
7325 */
scx_bpf_get_online_cpumask(void)7326 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void)
7327 {
7328 return cpu_online_mask;
7329 }
7330
7331 /**
7332 * scx_bpf_put_cpumask - Release a possible/online cpumask
7333 * @cpumask: cpumask to release
7334 */
scx_bpf_put_cpumask(const struct cpumask * cpumask)7335 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask)
7336 {
7337 /*
7338 * Empty function body because we aren't actually acquiring or releasing
7339 * a reference to a global cpumask, which is read-only in the caller and
7340 * is never released. The acquire / release semantics here are just used
7341 * to make the cpumask is a trusted pointer in the caller.
7342 */
7343 }
7344
7345 /**
7346 * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking
7347 * per-CPU cpumask.
7348 *
7349 * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
7350 */
scx_bpf_get_idle_cpumask(void)7351 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void)
7352 {
7353 if (!static_branch_likely(&scx_builtin_idle_enabled)) {
7354 scx_ops_error("built-in idle tracking is disabled");
7355 return cpu_none_mask;
7356 }
7357
7358 #ifdef CONFIG_SMP
7359 return idle_masks.cpu;
7360 #else
7361 return cpu_none_mask;
7362 #endif
7363 }
7364
7365 /**
7366 * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking,
7367 * per-physical-core cpumask. Can be used to determine if an entire physical
7368 * core is free.
7369 *
7370 * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
7371 */
scx_bpf_get_idle_smtmask(void)7372 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void)
7373 {
7374 if (!static_branch_likely(&scx_builtin_idle_enabled)) {
7375 scx_ops_error("built-in idle tracking is disabled");
7376 return cpu_none_mask;
7377 }
7378
7379 #ifdef CONFIG_SMP
7380 if (sched_smt_active())
7381 return idle_masks.smt;
7382 else
7383 return idle_masks.cpu;
7384 #else
7385 return cpu_none_mask;
7386 #endif
7387 }
7388
7389 /**
7390 * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to
7391 * either the percpu, or SMT idle-tracking cpumask.
7392 */
scx_bpf_put_idle_cpumask(const struct cpumask * idle_mask)7393 __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask)
7394 {
7395 /*
7396 * Empty function body because we aren't actually acquiring or releasing
7397 * a reference to a global idle cpumask, which is read-only in the
7398 * caller and is never released. The acquire / release semantics here
7399 * are just used to make the cpumask a trusted pointer in the caller.
7400 */
7401 }
7402
7403 /**
7404 * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state
7405 * @cpu: cpu to test and clear idle for
7406 *
7407 * Returns %true if @cpu was idle and its idle state was successfully cleared.
7408 * %false otherwise.
7409 *
7410 * Unavailable if ops.update_idle() is implemented and
7411 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
7412 */
scx_bpf_test_and_clear_cpu_idle(s32 cpu)7413 __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu)
7414 {
7415 if (!static_branch_likely(&scx_builtin_idle_enabled)) {
7416 scx_ops_error("built-in idle tracking is disabled");
7417 return false;
7418 }
7419
7420 if (ops_cpu_valid(cpu, NULL))
7421 return test_and_clear_cpu_idle(cpu);
7422 else
7423 return false;
7424 }
7425
7426 /**
7427 * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu
7428 * @cpus_allowed: Allowed cpumask
7429 * @flags: %SCX_PICK_IDLE_CPU_* flags
7430 *
7431 * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu
7432 * number on success. -%EBUSY if no matching cpu was found.
7433 *
7434 * Idle CPU tracking may race against CPU scheduling state transitions. For
7435 * example, this function may return -%EBUSY as CPUs are transitioning into the
7436 * idle state. If the caller then assumes that there will be dispatch events on
7437 * the CPUs as they were all busy, the scheduler may end up stalling with CPUs
7438 * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and
7439 * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch
7440 * event in the near future.
7441 *
7442 * Unavailable if ops.update_idle() is implemented and
7443 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
7444 */
scx_bpf_pick_idle_cpu(const struct cpumask * cpus_allowed,u64 flags)7445 __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed,
7446 u64 flags)
7447 {
7448 if (!static_branch_likely(&scx_builtin_idle_enabled)) {
7449 scx_ops_error("built-in idle tracking is disabled");
7450 return -EBUSY;
7451 }
7452
7453 return scx_pick_idle_cpu(cpus_allowed, flags);
7454 }
7455
7456 /**
7457 * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU
7458 * @cpus_allowed: Allowed cpumask
7459 * @flags: %SCX_PICK_IDLE_CPU_* flags
7460 *
7461 * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
7462 * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
7463 * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
7464 * empty.
7465 *
7466 * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
7467 * set, this function can't tell which CPUs are idle and will always pick any
7468 * CPU.
7469 */
scx_bpf_pick_any_cpu(const struct cpumask * cpus_allowed,u64 flags)7470 __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed,
7471 u64 flags)
7472 {
7473 s32 cpu;
7474
7475 if (static_branch_likely(&scx_builtin_idle_enabled)) {
7476 cpu = scx_pick_idle_cpu(cpus_allowed, flags);
7477 if (cpu >= 0)
7478 return cpu;
7479 }
7480
7481 cpu = cpumask_any_distribute(cpus_allowed);
7482 if (cpu < nr_cpu_ids)
7483 return cpu;
7484 else
7485 return -EBUSY;
7486 }
7487
7488 /**
7489 * scx_bpf_task_running - Is task currently running?
7490 * @p: task of interest
7491 */
scx_bpf_task_running(const struct task_struct * p)7492 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p)
7493 {
7494 return task_rq(p)->curr == p;
7495 }
7496
7497 /**
7498 * scx_bpf_task_cpu - CPU a task is currently associated with
7499 * @p: task of interest
7500 */
scx_bpf_task_cpu(const struct task_struct * p)7501 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p)
7502 {
7503 return task_cpu(p);
7504 }
7505
7506 /**
7507 * scx_bpf_cpu_rq - Fetch the rq of a CPU
7508 * @cpu: CPU of the rq
7509 */
scx_bpf_cpu_rq(s32 cpu)7510 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu)
7511 {
7512 if (!ops_cpu_valid(cpu, NULL))
7513 return NULL;
7514
7515 return cpu_rq(cpu);
7516 }
7517
7518 /**
7519 * scx_bpf_task_cgroup - Return the sched cgroup of a task
7520 * @p: task of interest
7521 *
7522 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with
7523 * from the scheduler's POV. SCX operations should use this function to
7524 * determine @p's current cgroup as, unlike following @p->cgroups,
7525 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all
7526 * rq-locked operations. Can be called on the parameter tasks of rq-locked
7527 * operations. The restriction guarantees that @p's rq is locked by the caller.
7528 */
7529 #ifdef CONFIG_CGROUP_SCHED
scx_bpf_task_cgroup(struct task_struct * p)7530 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p)
7531 {
7532 struct task_group *tg = p->sched_task_group;
7533 struct cgroup *cgrp = &cgrp_dfl_root.cgrp;
7534
7535 if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p))
7536 goto out;
7537
7538 cgrp = tg_cgrp(tg);
7539
7540 out:
7541 cgroup_get(cgrp);
7542 return cgrp;
7543 }
7544 #endif
7545
7546 __bpf_kfunc_end_defs();
7547
7548 BTF_KFUNCS_START(scx_kfunc_ids_any)
7549 BTF_ID_FLAGS(func, scx_bpf_kick_cpu)
7550 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued)
7551 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq)
7552 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED)
7553 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL)
7554 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY)
7555 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS)
7556 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS)
7557 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS)
7558 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap)
7559 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur)
7560 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set)
7561 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids)
7562 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE)
7563 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE)
7564 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE)
7565 BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE)
7566 BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE)
7567 BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE)
7568 BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle)
7569 BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU)
7570 BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU)
7571 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU)
7572 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU)
7573 BTF_ID_FLAGS(func, scx_bpf_cpu_rq)
7574 #ifdef CONFIG_CGROUP_SCHED
7575 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE)
7576 #endif
7577 BTF_KFUNCS_END(scx_kfunc_ids_any)
7578
7579 static const struct btf_kfunc_id_set scx_kfunc_set_any = {
7580 .owner = THIS_MODULE,
7581 .set = &scx_kfunc_ids_any,
7582 };
7583
scx_init(void)7584 static int __init scx_init(void)
7585 {
7586 int ret;
7587
7588 /*
7589 * kfunc registration can't be done from init_sched_ext_class() as
7590 * register_btf_kfunc_id_set() needs most of the system to be up.
7591 *
7592 * Some kfuncs are context-sensitive and can only be called from
7593 * specific SCX ops. They are grouped into BTF sets accordingly.
7594 * Unfortunately, BPF currently doesn't have a way of enforcing such
7595 * restrictions. Eventually, the verifier should be able to enforce
7596 * them. For now, register them the same and make each kfunc explicitly
7597 * check using scx_kf_allowed().
7598 */
7599 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7600 &scx_kfunc_set_select_cpu)) ||
7601 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7602 &scx_kfunc_set_enqueue_dispatch)) ||
7603 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7604 &scx_kfunc_set_dispatch)) ||
7605 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7606 &scx_kfunc_set_cpu_release)) ||
7607 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7608 &scx_kfunc_set_unlocked)) ||
7609 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7610 &scx_kfunc_set_unlocked)) ||
7611 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7612 &scx_kfunc_set_any)) ||
7613 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
7614 &scx_kfunc_set_any)) ||
7615 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7616 &scx_kfunc_set_any))) {
7617 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret);
7618 return ret;
7619 }
7620
7621 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops);
7622 if (ret) {
7623 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret);
7624 return ret;
7625 }
7626
7627 ret = register_pm_notifier(&scx_pm_notifier);
7628 if (ret) {
7629 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret);
7630 return ret;
7631 }
7632
7633 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj);
7634 if (!scx_kset) {
7635 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n");
7636 return -ENOMEM;
7637 }
7638
7639 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group);
7640 if (ret < 0) {
7641 pr_err("sched_ext: Failed to add global attributes\n");
7642 return ret;
7643 }
7644
7645 return 0;
7646 }
7647 __initcall(scx_init);
7648