xref: /linux/mm/khugepaged.c (revision 8804d970fab45726b3c7cd7f240b31122aa94219)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/mmu_notifier.h>
8 #include <linux/rmap.h>
9 #include <linux/swap.h>
10 #include <linux/mm_inline.h>
11 #include <linux/kthread.h>
12 #include <linux/khugepaged.h>
13 #include <linux/freezer.h>
14 #include <linux/mman.h>
15 #include <linux/hashtable.h>
16 #include <linux/userfaultfd_k.h>
17 #include <linux/page_idle.h>
18 #include <linux/page_table_check.h>
19 #include <linux/rcupdate_wait.h>
20 #include <linux/swapops.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/dax.h>
23 #include <linux/ksm.h>
24 
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
28 #include "mm_slot.h"
29 
30 enum scan_result {
31 	SCAN_FAIL,
32 	SCAN_SUCCEED,
33 	SCAN_PMD_NULL,
34 	SCAN_PMD_NONE,
35 	SCAN_PMD_MAPPED,
36 	SCAN_EXCEED_NONE_PTE,
37 	SCAN_EXCEED_SWAP_PTE,
38 	SCAN_EXCEED_SHARED_PTE,
39 	SCAN_PTE_NON_PRESENT,
40 	SCAN_PTE_UFFD_WP,
41 	SCAN_PTE_MAPPED_HUGEPAGE,
42 	SCAN_LACK_REFERENCED_PAGE,
43 	SCAN_PAGE_NULL,
44 	SCAN_SCAN_ABORT,
45 	SCAN_PAGE_COUNT,
46 	SCAN_PAGE_LRU,
47 	SCAN_PAGE_LOCK,
48 	SCAN_PAGE_ANON,
49 	SCAN_PAGE_COMPOUND,
50 	SCAN_ANY_PROCESS,
51 	SCAN_VMA_NULL,
52 	SCAN_VMA_CHECK,
53 	SCAN_ADDRESS_RANGE,
54 	SCAN_DEL_PAGE_LRU,
55 	SCAN_ALLOC_HUGE_PAGE_FAIL,
56 	SCAN_CGROUP_CHARGE_FAIL,
57 	SCAN_TRUNCATED,
58 	SCAN_PAGE_HAS_PRIVATE,
59 	SCAN_STORE_FAILED,
60 	SCAN_COPY_MC,
61 	SCAN_PAGE_FILLED,
62 };
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/huge_memory.h>
66 
67 static struct task_struct *khugepaged_thread __read_mostly;
68 static DEFINE_MUTEX(khugepaged_mutex);
69 
70 /* default scan 8*512 pte (or vmas) every 30 second */
71 static unsigned int khugepaged_pages_to_scan __read_mostly;
72 static unsigned int khugepaged_pages_collapsed;
73 static unsigned int khugepaged_full_scans;
74 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
75 /* during fragmentation poll the hugepage allocator once every minute */
76 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
77 static unsigned long khugepaged_sleep_expire;
78 static DEFINE_SPINLOCK(khugepaged_mm_lock);
79 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
80 /*
81  * default collapse hugepages if there is at least one pte mapped like
82  * it would have happened if the vma was large enough during page
83  * fault.
84  *
85  * Note that these are only respected if collapse was initiated by khugepaged.
86  */
87 unsigned int khugepaged_max_ptes_none __read_mostly;
88 static unsigned int khugepaged_max_ptes_swap __read_mostly;
89 static unsigned int khugepaged_max_ptes_shared __read_mostly;
90 
91 #define MM_SLOTS_HASH_BITS 10
92 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
93 
94 static struct kmem_cache *mm_slot_cache __ro_after_init;
95 
96 struct collapse_control {
97 	bool is_khugepaged;
98 
99 	/* Num pages scanned per node */
100 	u32 node_load[MAX_NUMNODES];
101 
102 	/* nodemask for allocation fallback */
103 	nodemask_t alloc_nmask;
104 };
105 
106 /**
107  * struct khugepaged_scan - cursor for scanning
108  * @mm_head: the head of the mm list to scan
109  * @mm_slot: the current mm_slot we are scanning
110  * @address: the next address inside that to be scanned
111  *
112  * There is only the one khugepaged_scan instance of this cursor structure.
113  */
114 struct khugepaged_scan {
115 	struct list_head mm_head;
116 	struct mm_slot *mm_slot;
117 	unsigned long address;
118 };
119 
120 static struct khugepaged_scan khugepaged_scan = {
121 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
122 };
123 
124 #ifdef CONFIG_SYSFS
scan_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)125 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
126 					 struct kobj_attribute *attr,
127 					 char *buf)
128 {
129 	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
130 }
131 
scan_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)132 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
133 					  struct kobj_attribute *attr,
134 					  const char *buf, size_t count)
135 {
136 	unsigned int msecs;
137 	int err;
138 
139 	err = kstrtouint(buf, 10, &msecs);
140 	if (err)
141 		return -EINVAL;
142 
143 	khugepaged_scan_sleep_millisecs = msecs;
144 	khugepaged_sleep_expire = 0;
145 	wake_up_interruptible(&khugepaged_wait);
146 
147 	return count;
148 }
149 static struct kobj_attribute scan_sleep_millisecs_attr =
150 	__ATTR_RW(scan_sleep_millisecs);
151 
alloc_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)152 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
153 					  struct kobj_attribute *attr,
154 					  char *buf)
155 {
156 	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
157 }
158 
alloc_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)159 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
160 					   struct kobj_attribute *attr,
161 					   const char *buf, size_t count)
162 {
163 	unsigned int msecs;
164 	int err;
165 
166 	err = kstrtouint(buf, 10, &msecs);
167 	if (err)
168 		return -EINVAL;
169 
170 	khugepaged_alloc_sleep_millisecs = msecs;
171 	khugepaged_sleep_expire = 0;
172 	wake_up_interruptible(&khugepaged_wait);
173 
174 	return count;
175 }
176 static struct kobj_attribute alloc_sleep_millisecs_attr =
177 	__ATTR_RW(alloc_sleep_millisecs);
178 
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)179 static ssize_t pages_to_scan_show(struct kobject *kobj,
180 				  struct kobj_attribute *attr,
181 				  char *buf)
182 {
183 	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
184 }
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)185 static ssize_t pages_to_scan_store(struct kobject *kobj,
186 				   struct kobj_attribute *attr,
187 				   const char *buf, size_t count)
188 {
189 	unsigned int pages;
190 	int err;
191 
192 	err = kstrtouint(buf, 10, &pages);
193 	if (err || !pages)
194 		return -EINVAL;
195 
196 	khugepaged_pages_to_scan = pages;
197 
198 	return count;
199 }
200 static struct kobj_attribute pages_to_scan_attr =
201 	__ATTR_RW(pages_to_scan);
202 
pages_collapsed_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)203 static ssize_t pages_collapsed_show(struct kobject *kobj,
204 				    struct kobj_attribute *attr,
205 				    char *buf)
206 {
207 	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
208 }
209 static struct kobj_attribute pages_collapsed_attr =
210 	__ATTR_RO(pages_collapsed);
211 
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)212 static ssize_t full_scans_show(struct kobject *kobj,
213 			       struct kobj_attribute *attr,
214 			       char *buf)
215 {
216 	return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
217 }
218 static struct kobj_attribute full_scans_attr =
219 	__ATTR_RO(full_scans);
220 
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)221 static ssize_t defrag_show(struct kobject *kobj,
222 			   struct kobj_attribute *attr, char *buf)
223 {
224 	return single_hugepage_flag_show(kobj, attr, buf,
225 					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
226 }
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)227 static ssize_t defrag_store(struct kobject *kobj,
228 			    struct kobj_attribute *attr,
229 			    const char *buf, size_t count)
230 {
231 	return single_hugepage_flag_store(kobj, attr, buf, count,
232 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
233 }
234 static struct kobj_attribute khugepaged_defrag_attr =
235 	__ATTR_RW(defrag);
236 
237 /*
238  * max_ptes_none controls if khugepaged should collapse hugepages over
239  * any unmapped ptes in turn potentially increasing the memory
240  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
241  * reduce the available free memory in the system as it
242  * runs. Increasing max_ptes_none will instead potentially reduce the
243  * free memory in the system during the khugepaged scan.
244  */
max_ptes_none_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)245 static ssize_t max_ptes_none_show(struct kobject *kobj,
246 				  struct kobj_attribute *attr,
247 				  char *buf)
248 {
249 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
250 }
max_ptes_none_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)251 static ssize_t max_ptes_none_store(struct kobject *kobj,
252 				   struct kobj_attribute *attr,
253 				   const char *buf, size_t count)
254 {
255 	int err;
256 	unsigned long max_ptes_none;
257 
258 	err = kstrtoul(buf, 10, &max_ptes_none);
259 	if (err || max_ptes_none > HPAGE_PMD_NR - 1)
260 		return -EINVAL;
261 
262 	khugepaged_max_ptes_none = max_ptes_none;
263 
264 	return count;
265 }
266 static struct kobj_attribute khugepaged_max_ptes_none_attr =
267 	__ATTR_RW(max_ptes_none);
268 
max_ptes_swap_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)269 static ssize_t max_ptes_swap_show(struct kobject *kobj,
270 				  struct kobj_attribute *attr,
271 				  char *buf)
272 {
273 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
274 }
275 
max_ptes_swap_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)276 static ssize_t max_ptes_swap_store(struct kobject *kobj,
277 				   struct kobj_attribute *attr,
278 				   const char *buf, size_t count)
279 {
280 	int err;
281 	unsigned long max_ptes_swap;
282 
283 	err  = kstrtoul(buf, 10, &max_ptes_swap);
284 	if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
285 		return -EINVAL;
286 
287 	khugepaged_max_ptes_swap = max_ptes_swap;
288 
289 	return count;
290 }
291 
292 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
293 	__ATTR_RW(max_ptes_swap);
294 
max_ptes_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)295 static ssize_t max_ptes_shared_show(struct kobject *kobj,
296 				    struct kobj_attribute *attr,
297 				    char *buf)
298 {
299 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
300 }
301 
max_ptes_shared_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)302 static ssize_t max_ptes_shared_store(struct kobject *kobj,
303 				     struct kobj_attribute *attr,
304 				     const char *buf, size_t count)
305 {
306 	int err;
307 	unsigned long max_ptes_shared;
308 
309 	err  = kstrtoul(buf, 10, &max_ptes_shared);
310 	if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
311 		return -EINVAL;
312 
313 	khugepaged_max_ptes_shared = max_ptes_shared;
314 
315 	return count;
316 }
317 
318 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
319 	__ATTR_RW(max_ptes_shared);
320 
321 static struct attribute *khugepaged_attr[] = {
322 	&khugepaged_defrag_attr.attr,
323 	&khugepaged_max_ptes_none_attr.attr,
324 	&khugepaged_max_ptes_swap_attr.attr,
325 	&khugepaged_max_ptes_shared_attr.attr,
326 	&pages_to_scan_attr.attr,
327 	&pages_collapsed_attr.attr,
328 	&full_scans_attr.attr,
329 	&scan_sleep_millisecs_attr.attr,
330 	&alloc_sleep_millisecs_attr.attr,
331 	NULL,
332 };
333 
334 struct attribute_group khugepaged_attr_group = {
335 	.attrs = khugepaged_attr,
336 	.name = "khugepaged",
337 };
338 #endif /* CONFIG_SYSFS */
339 
hugepage_madvise(struct vm_area_struct * vma,vm_flags_t * vm_flags,int advice)340 int hugepage_madvise(struct vm_area_struct *vma,
341 		     vm_flags_t *vm_flags, int advice)
342 {
343 	switch (advice) {
344 	case MADV_HUGEPAGE:
345 #ifdef CONFIG_S390
346 		/*
347 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
348 		 * can't handle this properly after s390_enable_sie, so we simply
349 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
350 		 */
351 		if (mm_has_pgste(vma->vm_mm))
352 			return 0;
353 #endif
354 		*vm_flags &= ~VM_NOHUGEPAGE;
355 		*vm_flags |= VM_HUGEPAGE;
356 		/*
357 		 * If the vma become good for khugepaged to scan,
358 		 * register it here without waiting a page fault that
359 		 * may not happen any time soon.
360 		 */
361 		khugepaged_enter_vma(vma, *vm_flags);
362 		break;
363 	case MADV_NOHUGEPAGE:
364 		*vm_flags &= ~VM_HUGEPAGE;
365 		*vm_flags |= VM_NOHUGEPAGE;
366 		/*
367 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
368 		 * this vma even if we leave the mm registered in khugepaged if
369 		 * it got registered before VM_NOHUGEPAGE was set.
370 		 */
371 		break;
372 	}
373 
374 	return 0;
375 }
376 
khugepaged_init(void)377 int __init khugepaged_init(void)
378 {
379 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
380 					  sizeof(struct mm_slot),
381 					  __alignof__(struct mm_slot),
382 					  0, NULL);
383 	if (!mm_slot_cache)
384 		return -ENOMEM;
385 
386 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
387 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
388 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
389 	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
390 
391 	return 0;
392 }
393 
khugepaged_destroy(void)394 void __init khugepaged_destroy(void)
395 {
396 	kmem_cache_destroy(mm_slot_cache);
397 }
398 
hpage_collapse_test_exit(struct mm_struct * mm)399 static inline int hpage_collapse_test_exit(struct mm_struct *mm)
400 {
401 	return atomic_read(&mm->mm_users) == 0;
402 }
403 
hpage_collapse_test_exit_or_disable(struct mm_struct * mm)404 static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm)
405 {
406 	return hpage_collapse_test_exit(mm) ||
407 		mm_flags_test(MMF_DISABLE_THP_COMPLETELY, mm);
408 }
409 
hugepage_pmd_enabled(void)410 static bool hugepage_pmd_enabled(void)
411 {
412 	/*
413 	 * We cover the anon, shmem and the file-backed case here; file-backed
414 	 * hugepages, when configured in, are determined by the global control.
415 	 * Anon pmd-sized hugepages are determined by the pmd-size control.
416 	 * Shmem pmd-sized hugepages are also determined by its pmd-size control,
417 	 * except when the global shmem_huge is set to SHMEM_HUGE_DENY.
418 	 */
419 	if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
420 	    hugepage_global_enabled())
421 		return true;
422 	if (test_bit(PMD_ORDER, &huge_anon_orders_always))
423 		return true;
424 	if (test_bit(PMD_ORDER, &huge_anon_orders_madvise))
425 		return true;
426 	if (test_bit(PMD_ORDER, &huge_anon_orders_inherit) &&
427 	    hugepage_global_enabled())
428 		return true;
429 	if (IS_ENABLED(CONFIG_SHMEM) && shmem_hpage_pmd_enabled())
430 		return true;
431 	return false;
432 }
433 
__khugepaged_enter(struct mm_struct * mm)434 void __khugepaged_enter(struct mm_struct *mm)
435 {
436 	struct mm_slot *slot;
437 	int wakeup;
438 
439 	/* __khugepaged_exit() must not run from under us */
440 	VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
441 	if (unlikely(mm_flags_test_and_set(MMF_VM_HUGEPAGE, mm)))
442 		return;
443 
444 	slot = mm_slot_alloc(mm_slot_cache);
445 	if (!slot)
446 		return;
447 
448 	spin_lock(&khugepaged_mm_lock);
449 	mm_slot_insert(mm_slots_hash, mm, slot);
450 	/*
451 	 * Insert just behind the scanning cursor, to let the area settle
452 	 * down a little.
453 	 */
454 	wakeup = list_empty(&khugepaged_scan.mm_head);
455 	list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
456 	spin_unlock(&khugepaged_mm_lock);
457 
458 	mmgrab(mm);
459 	if (wakeup)
460 		wake_up_interruptible(&khugepaged_wait);
461 }
462 
khugepaged_enter_vma(struct vm_area_struct * vma,vm_flags_t vm_flags)463 void khugepaged_enter_vma(struct vm_area_struct *vma,
464 			  vm_flags_t vm_flags)
465 {
466 	if (!mm_flags_test(MMF_VM_HUGEPAGE, vma->vm_mm) &&
467 	    hugepage_pmd_enabled()) {
468 		if (thp_vma_allowable_order(vma, vm_flags, TVA_KHUGEPAGED, PMD_ORDER))
469 			__khugepaged_enter(vma->vm_mm);
470 	}
471 }
472 
__khugepaged_exit(struct mm_struct * mm)473 void __khugepaged_exit(struct mm_struct *mm)
474 {
475 	struct mm_slot *slot;
476 	int free = 0;
477 
478 	spin_lock(&khugepaged_mm_lock);
479 	slot = mm_slot_lookup(mm_slots_hash, mm);
480 	if (slot && khugepaged_scan.mm_slot != slot) {
481 		hash_del(&slot->hash);
482 		list_del(&slot->mm_node);
483 		free = 1;
484 	}
485 	spin_unlock(&khugepaged_mm_lock);
486 
487 	if (free) {
488 		mm_flags_clear(MMF_VM_HUGEPAGE, mm);
489 		mm_slot_free(mm_slot_cache, slot);
490 		mmdrop(mm);
491 	} else if (slot) {
492 		/*
493 		 * This is required to serialize against
494 		 * hpage_collapse_test_exit() (which is guaranteed to run
495 		 * under mmap sem read mode). Stop here (after we return all
496 		 * pagetables will be destroyed) until khugepaged has finished
497 		 * working on the pagetables under the mmap_lock.
498 		 */
499 		mmap_write_lock(mm);
500 		mmap_write_unlock(mm);
501 	}
502 }
503 
release_pte_folio(struct folio * folio)504 static void release_pte_folio(struct folio *folio)
505 {
506 	node_stat_mod_folio(folio,
507 			NR_ISOLATED_ANON + folio_is_file_lru(folio),
508 			-folio_nr_pages(folio));
509 	folio_unlock(folio);
510 	folio_putback_lru(folio);
511 }
512 
release_pte_pages(pte_t * pte,pte_t * _pte,struct list_head * compound_pagelist)513 static void release_pte_pages(pte_t *pte, pte_t *_pte,
514 		struct list_head *compound_pagelist)
515 {
516 	struct folio *folio, *tmp;
517 
518 	while (--_pte >= pte) {
519 		pte_t pteval = ptep_get(_pte);
520 		unsigned long pfn;
521 
522 		if (pte_none(pteval))
523 			continue;
524 		pfn = pte_pfn(pteval);
525 		if (is_zero_pfn(pfn))
526 			continue;
527 		folio = pfn_folio(pfn);
528 		if (folio_test_large(folio))
529 			continue;
530 		release_pte_folio(folio);
531 	}
532 
533 	list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) {
534 		list_del(&folio->lru);
535 		release_pte_folio(folio);
536 	}
537 }
538 
__collapse_huge_page_isolate(struct vm_area_struct * vma,unsigned long start_addr,pte_t * pte,struct collapse_control * cc,struct list_head * compound_pagelist)539 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
540 					unsigned long start_addr,
541 					pte_t *pte,
542 					struct collapse_control *cc,
543 					struct list_head *compound_pagelist)
544 {
545 	struct page *page = NULL;
546 	struct folio *folio = NULL;
547 	unsigned long addr = start_addr;
548 	pte_t *_pte;
549 	int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
550 
551 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
552 	     _pte++, addr += PAGE_SIZE) {
553 		pte_t pteval = ptep_get(_pte);
554 		if (pte_none(pteval) || (pte_present(pteval) &&
555 				is_zero_pfn(pte_pfn(pteval)))) {
556 			++none_or_zero;
557 			if (!userfaultfd_armed(vma) &&
558 			    (!cc->is_khugepaged ||
559 			     none_or_zero <= khugepaged_max_ptes_none)) {
560 				continue;
561 			} else {
562 				result = SCAN_EXCEED_NONE_PTE;
563 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
564 				goto out;
565 			}
566 		}
567 		if (!pte_present(pteval)) {
568 			result = SCAN_PTE_NON_PRESENT;
569 			goto out;
570 		}
571 		if (pte_uffd_wp(pteval)) {
572 			result = SCAN_PTE_UFFD_WP;
573 			goto out;
574 		}
575 		page = vm_normal_page(vma, addr, pteval);
576 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
577 			result = SCAN_PAGE_NULL;
578 			goto out;
579 		}
580 
581 		folio = page_folio(page);
582 		VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio);
583 
584 		/* See hpage_collapse_scan_pmd(). */
585 		if (folio_maybe_mapped_shared(folio)) {
586 			++shared;
587 			if (cc->is_khugepaged &&
588 			    shared > khugepaged_max_ptes_shared) {
589 				result = SCAN_EXCEED_SHARED_PTE;
590 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
591 				goto out;
592 			}
593 		}
594 
595 		if (folio_test_large(folio)) {
596 			struct folio *f;
597 
598 			/*
599 			 * Check if we have dealt with the compound page
600 			 * already
601 			 */
602 			list_for_each_entry(f, compound_pagelist, lru) {
603 				if (folio == f)
604 					goto next;
605 			}
606 		}
607 
608 		/*
609 		 * We can do it before folio_isolate_lru because the
610 		 * folio can't be freed from under us. NOTE: PG_lock
611 		 * is needed to serialize against split_huge_page
612 		 * when invoked from the VM.
613 		 */
614 		if (!folio_trylock(folio)) {
615 			result = SCAN_PAGE_LOCK;
616 			goto out;
617 		}
618 
619 		/*
620 		 * Check if the page has any GUP (or other external) pins.
621 		 *
622 		 * The page table that maps the page has been already unlinked
623 		 * from the page table tree and this process cannot get
624 		 * an additional pin on the page.
625 		 *
626 		 * New pins can come later if the page is shared across fork,
627 		 * but not from this process. The other process cannot write to
628 		 * the page, only trigger CoW.
629 		 */
630 		if (folio_expected_ref_count(folio) != folio_ref_count(folio)) {
631 			folio_unlock(folio);
632 			result = SCAN_PAGE_COUNT;
633 			goto out;
634 		}
635 
636 		/*
637 		 * Isolate the page to avoid collapsing an hugepage
638 		 * currently in use by the VM.
639 		 */
640 		if (!folio_isolate_lru(folio)) {
641 			folio_unlock(folio);
642 			result = SCAN_DEL_PAGE_LRU;
643 			goto out;
644 		}
645 		node_stat_mod_folio(folio,
646 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
647 				folio_nr_pages(folio));
648 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
649 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
650 
651 		if (folio_test_large(folio))
652 			list_add_tail(&folio->lru, compound_pagelist);
653 next:
654 		/*
655 		 * If collapse was initiated by khugepaged, check that there is
656 		 * enough young pte to justify collapsing the page
657 		 */
658 		if (cc->is_khugepaged &&
659 		    (pte_young(pteval) || folio_test_young(folio) ||
660 		     folio_test_referenced(folio) ||
661 		     mmu_notifier_test_young(vma->vm_mm, addr)))
662 			referenced++;
663 	}
664 
665 	if (unlikely(cc->is_khugepaged && !referenced)) {
666 		result = SCAN_LACK_REFERENCED_PAGE;
667 	} else {
668 		result = SCAN_SUCCEED;
669 		trace_mm_collapse_huge_page_isolate(folio, none_or_zero,
670 						    referenced, result);
671 		return result;
672 	}
673 out:
674 	release_pte_pages(pte, _pte, compound_pagelist);
675 	trace_mm_collapse_huge_page_isolate(folio, none_or_zero,
676 					    referenced, result);
677 	return result;
678 }
679 
__collapse_huge_page_copy_succeeded(pte_t * pte,struct vm_area_struct * vma,unsigned long address,spinlock_t * ptl,struct list_head * compound_pagelist)680 static void __collapse_huge_page_copy_succeeded(pte_t *pte,
681 						struct vm_area_struct *vma,
682 						unsigned long address,
683 						spinlock_t *ptl,
684 						struct list_head *compound_pagelist)
685 {
686 	unsigned long end = address + HPAGE_PMD_SIZE;
687 	struct folio *src, *tmp;
688 	pte_t pteval;
689 	pte_t *_pte;
690 	unsigned int nr_ptes;
691 
692 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR; _pte += nr_ptes,
693 	     address += nr_ptes * PAGE_SIZE) {
694 		nr_ptes = 1;
695 		pteval = ptep_get(_pte);
696 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
697 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
698 			if (is_zero_pfn(pte_pfn(pteval))) {
699 				/*
700 				 * ptl mostly unnecessary.
701 				 */
702 				spin_lock(ptl);
703 				ptep_clear(vma->vm_mm, address, _pte);
704 				spin_unlock(ptl);
705 				ksm_might_unmap_zero_page(vma->vm_mm, pteval);
706 			}
707 		} else {
708 			struct page *src_page = pte_page(pteval);
709 
710 			src = page_folio(src_page);
711 
712 			if (folio_test_large(src)) {
713 				unsigned int max_nr_ptes = (end - address) >> PAGE_SHIFT;
714 
715 				nr_ptes = folio_pte_batch(src, _pte, pteval, max_nr_ptes);
716 			} else {
717 				release_pte_folio(src);
718 			}
719 
720 			/*
721 			 * ptl mostly unnecessary, but preempt has to
722 			 * be disabled to update the per-cpu stats
723 			 * inside folio_remove_rmap_pte().
724 			 */
725 			spin_lock(ptl);
726 			clear_ptes(vma->vm_mm, address, _pte, nr_ptes);
727 			folio_remove_rmap_ptes(src, src_page, nr_ptes, vma);
728 			spin_unlock(ptl);
729 			free_swap_cache(src);
730 			folio_put_refs(src, nr_ptes);
731 		}
732 	}
733 
734 	list_for_each_entry_safe(src, tmp, compound_pagelist, lru) {
735 		list_del(&src->lru);
736 		node_stat_sub_folio(src, NR_ISOLATED_ANON +
737 				folio_is_file_lru(src));
738 		folio_unlock(src);
739 		free_swap_cache(src);
740 		folio_putback_lru(src);
741 	}
742 }
743 
__collapse_huge_page_copy_failed(pte_t * pte,pmd_t * pmd,pmd_t orig_pmd,struct vm_area_struct * vma,struct list_head * compound_pagelist)744 static void __collapse_huge_page_copy_failed(pte_t *pte,
745 					     pmd_t *pmd,
746 					     pmd_t orig_pmd,
747 					     struct vm_area_struct *vma,
748 					     struct list_head *compound_pagelist)
749 {
750 	spinlock_t *pmd_ptl;
751 
752 	/*
753 	 * Re-establish the PMD to point to the original page table
754 	 * entry. Restoring PMD needs to be done prior to releasing
755 	 * pages. Since pages are still isolated and locked here,
756 	 * acquiring anon_vma_lock_write is unnecessary.
757 	 */
758 	pmd_ptl = pmd_lock(vma->vm_mm, pmd);
759 	pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd));
760 	spin_unlock(pmd_ptl);
761 	/*
762 	 * Release both raw and compound pages isolated
763 	 * in __collapse_huge_page_isolate.
764 	 */
765 	release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist);
766 }
767 
768 /*
769  * __collapse_huge_page_copy - attempts to copy memory contents from raw
770  * pages to a hugepage. Cleans up the raw pages if copying succeeds;
771  * otherwise restores the original page table and releases isolated raw pages.
772  * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC.
773  *
774  * @pte: starting of the PTEs to copy from
775  * @folio: the new hugepage to copy contents to
776  * @pmd: pointer to the new hugepage's PMD
777  * @orig_pmd: the original raw pages' PMD
778  * @vma: the original raw pages' virtual memory area
779  * @address: starting address to copy
780  * @ptl: lock on raw pages' PTEs
781  * @compound_pagelist: list that stores compound pages
782  */
__collapse_huge_page_copy(pte_t * pte,struct folio * folio,pmd_t * pmd,pmd_t orig_pmd,struct vm_area_struct * vma,unsigned long address,spinlock_t * ptl,struct list_head * compound_pagelist)783 static int __collapse_huge_page_copy(pte_t *pte, struct folio *folio,
784 		pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma,
785 		unsigned long address, spinlock_t *ptl,
786 		struct list_head *compound_pagelist)
787 {
788 	unsigned int i;
789 	int result = SCAN_SUCCEED;
790 
791 	/*
792 	 * Copying pages' contents is subject to memory poison at any iteration.
793 	 */
794 	for (i = 0; i < HPAGE_PMD_NR; i++) {
795 		pte_t pteval = ptep_get(pte + i);
796 		struct page *page = folio_page(folio, i);
797 		unsigned long src_addr = address + i * PAGE_SIZE;
798 		struct page *src_page;
799 
800 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
801 			clear_user_highpage(page, src_addr);
802 			continue;
803 		}
804 		src_page = pte_page(pteval);
805 		if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) {
806 			result = SCAN_COPY_MC;
807 			break;
808 		}
809 	}
810 
811 	if (likely(result == SCAN_SUCCEED))
812 		__collapse_huge_page_copy_succeeded(pte, vma, address, ptl,
813 						    compound_pagelist);
814 	else
815 		__collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma,
816 						 compound_pagelist);
817 
818 	return result;
819 }
820 
khugepaged_alloc_sleep(void)821 static void khugepaged_alloc_sleep(void)
822 {
823 	DEFINE_WAIT(wait);
824 
825 	add_wait_queue(&khugepaged_wait, &wait);
826 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
827 	schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
828 	remove_wait_queue(&khugepaged_wait, &wait);
829 }
830 
831 struct collapse_control khugepaged_collapse_control = {
832 	.is_khugepaged = true,
833 };
834 
hpage_collapse_scan_abort(int nid,struct collapse_control * cc)835 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
836 {
837 	int i;
838 
839 	/*
840 	 * If node_reclaim_mode is disabled, then no extra effort is made to
841 	 * allocate memory locally.
842 	 */
843 	if (!node_reclaim_enabled())
844 		return false;
845 
846 	/* If there is a count for this node already, it must be acceptable */
847 	if (cc->node_load[nid])
848 		return false;
849 
850 	for (i = 0; i < MAX_NUMNODES; i++) {
851 		if (!cc->node_load[i])
852 			continue;
853 		if (node_distance(nid, i) > node_reclaim_distance)
854 			return true;
855 	}
856 	return false;
857 }
858 
859 #define khugepaged_defrag()					\
860 	(transparent_hugepage_flags &				\
861 	 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
862 
863 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
alloc_hugepage_khugepaged_gfpmask(void)864 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
865 {
866 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
867 }
868 
869 #ifdef CONFIG_NUMA
hpage_collapse_find_target_node(struct collapse_control * cc)870 static int hpage_collapse_find_target_node(struct collapse_control *cc)
871 {
872 	int nid, target_node = 0, max_value = 0;
873 
874 	/* find first node with max normal pages hit */
875 	for (nid = 0; nid < MAX_NUMNODES; nid++)
876 		if (cc->node_load[nid] > max_value) {
877 			max_value = cc->node_load[nid];
878 			target_node = nid;
879 		}
880 
881 	for_each_online_node(nid) {
882 		if (max_value == cc->node_load[nid])
883 			node_set(nid, cc->alloc_nmask);
884 	}
885 
886 	return target_node;
887 }
888 #else
hpage_collapse_find_target_node(struct collapse_control * cc)889 static int hpage_collapse_find_target_node(struct collapse_control *cc)
890 {
891 	return 0;
892 }
893 #endif
894 
895 /*
896  * If mmap_lock temporarily dropped, revalidate vma
897  * before taking mmap_lock.
898  * Returns enum scan_result value.
899  */
900 
hugepage_vma_revalidate(struct mm_struct * mm,unsigned long address,bool expect_anon,struct vm_area_struct ** vmap,struct collapse_control * cc)901 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
902 				   bool expect_anon,
903 				   struct vm_area_struct **vmap,
904 				   struct collapse_control *cc)
905 {
906 	struct vm_area_struct *vma;
907 	enum tva_type type = cc->is_khugepaged ? TVA_KHUGEPAGED :
908 				 TVA_FORCED_COLLAPSE;
909 
910 	if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
911 		return SCAN_ANY_PROCESS;
912 
913 	*vmap = vma = find_vma(mm, address);
914 	if (!vma)
915 		return SCAN_VMA_NULL;
916 
917 	if (!thp_vma_suitable_order(vma, address, PMD_ORDER))
918 		return SCAN_ADDRESS_RANGE;
919 	if (!thp_vma_allowable_order(vma, vma->vm_flags, type, PMD_ORDER))
920 		return SCAN_VMA_CHECK;
921 	/*
922 	 * Anon VMA expected, the address may be unmapped then
923 	 * remapped to file after khugepaged reaquired the mmap_lock.
924 	 *
925 	 * thp_vma_allowable_order may return true for qualified file
926 	 * vmas.
927 	 */
928 	if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
929 		return SCAN_PAGE_ANON;
930 	return SCAN_SUCCEED;
931 }
932 
check_pmd_state(pmd_t * pmd)933 static inline int check_pmd_state(pmd_t *pmd)
934 {
935 	pmd_t pmde = pmdp_get_lockless(pmd);
936 
937 	if (pmd_none(pmde))
938 		return SCAN_PMD_NONE;
939 
940 	/*
941 	 * The folio may be under migration when khugepaged is trying to
942 	 * collapse it. Migration success or failure will eventually end
943 	 * up with a present PMD mapping a folio again.
944 	 */
945 	if (is_pmd_migration_entry(pmde))
946 		return SCAN_PMD_MAPPED;
947 	if (!pmd_present(pmde))
948 		return SCAN_PMD_NULL;
949 	if (pmd_trans_huge(pmde))
950 		return SCAN_PMD_MAPPED;
951 	if (pmd_bad(pmde))
952 		return SCAN_PMD_NULL;
953 	return SCAN_SUCCEED;
954 }
955 
find_pmd_or_thp_or_none(struct mm_struct * mm,unsigned long address,pmd_t ** pmd)956 static int find_pmd_or_thp_or_none(struct mm_struct *mm,
957 				   unsigned long address,
958 				   pmd_t **pmd)
959 {
960 	*pmd = mm_find_pmd(mm, address);
961 	if (!*pmd)
962 		return SCAN_PMD_NULL;
963 
964 	return check_pmd_state(*pmd);
965 }
966 
check_pmd_still_valid(struct mm_struct * mm,unsigned long address,pmd_t * pmd)967 static int check_pmd_still_valid(struct mm_struct *mm,
968 				 unsigned long address,
969 				 pmd_t *pmd)
970 {
971 	pmd_t *new_pmd;
972 	int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
973 
974 	if (result != SCAN_SUCCEED)
975 		return result;
976 	if (new_pmd != pmd)
977 		return SCAN_FAIL;
978 	return SCAN_SUCCEED;
979 }
980 
981 /*
982  * Bring missing pages in from swap, to complete THP collapse.
983  * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
984  *
985  * Called and returns without pte mapped or spinlocks held.
986  * Returns result: if not SCAN_SUCCEED, mmap_lock has been released.
987  */
__collapse_huge_page_swapin(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long start_addr,pmd_t * pmd,int referenced)988 static int __collapse_huge_page_swapin(struct mm_struct *mm,
989 				       struct vm_area_struct *vma,
990 				       unsigned long start_addr, pmd_t *pmd,
991 				       int referenced)
992 {
993 	int swapped_in = 0;
994 	vm_fault_t ret = 0;
995 	unsigned long addr, end = start_addr + (HPAGE_PMD_NR * PAGE_SIZE);
996 	int result;
997 	pte_t *pte = NULL;
998 	spinlock_t *ptl;
999 
1000 	for (addr = start_addr; addr < end; addr += PAGE_SIZE) {
1001 		struct vm_fault vmf = {
1002 			.vma = vma,
1003 			.address = addr,
1004 			.pgoff = linear_page_index(vma, addr),
1005 			.flags = FAULT_FLAG_ALLOW_RETRY,
1006 			.pmd = pmd,
1007 		};
1008 
1009 		if (!pte++) {
1010 			/*
1011 			 * Here the ptl is only used to check pte_same() in
1012 			 * do_swap_page(), so readonly version is enough.
1013 			 */
1014 			pte = pte_offset_map_ro_nolock(mm, pmd, addr, &ptl);
1015 			if (!pte) {
1016 				mmap_read_unlock(mm);
1017 				result = SCAN_PMD_NULL;
1018 				goto out;
1019 			}
1020 		}
1021 
1022 		vmf.orig_pte = ptep_get_lockless(pte);
1023 		if (!is_swap_pte(vmf.orig_pte))
1024 			continue;
1025 
1026 		vmf.pte = pte;
1027 		vmf.ptl = ptl;
1028 		ret = do_swap_page(&vmf);
1029 		/* Which unmaps pte (after perhaps re-checking the entry) */
1030 		pte = NULL;
1031 
1032 		/*
1033 		 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
1034 		 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
1035 		 * we do not retry here and swap entry will remain in pagetable
1036 		 * resulting in later failure.
1037 		 */
1038 		if (ret & VM_FAULT_RETRY) {
1039 			/* Likely, but not guaranteed, that page lock failed */
1040 			result = SCAN_PAGE_LOCK;
1041 			goto out;
1042 		}
1043 		if (ret & VM_FAULT_ERROR) {
1044 			mmap_read_unlock(mm);
1045 			result = SCAN_FAIL;
1046 			goto out;
1047 		}
1048 		swapped_in++;
1049 	}
1050 
1051 	if (pte)
1052 		pte_unmap(pte);
1053 
1054 	/* Drain LRU cache to remove extra pin on the swapped in pages */
1055 	if (swapped_in)
1056 		lru_add_drain();
1057 
1058 	result = SCAN_SUCCEED;
1059 out:
1060 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result);
1061 	return result;
1062 }
1063 
alloc_charge_folio(struct folio ** foliop,struct mm_struct * mm,struct collapse_control * cc)1064 static int alloc_charge_folio(struct folio **foliop, struct mm_struct *mm,
1065 			      struct collapse_control *cc)
1066 {
1067 	gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
1068 		     GFP_TRANSHUGE);
1069 	int node = hpage_collapse_find_target_node(cc);
1070 	struct folio *folio;
1071 
1072 	folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask);
1073 	if (!folio) {
1074 		*foliop = NULL;
1075 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1076 		return SCAN_ALLOC_HUGE_PAGE_FAIL;
1077 	}
1078 
1079 	count_vm_event(THP_COLLAPSE_ALLOC);
1080 	if (unlikely(mem_cgroup_charge(folio, mm, gfp))) {
1081 		folio_put(folio);
1082 		*foliop = NULL;
1083 		return SCAN_CGROUP_CHARGE_FAIL;
1084 	}
1085 
1086 	count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1);
1087 
1088 	*foliop = folio;
1089 	return SCAN_SUCCEED;
1090 }
1091 
collapse_huge_page(struct mm_struct * mm,unsigned long address,int referenced,int unmapped,struct collapse_control * cc)1092 static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
1093 			      int referenced, int unmapped,
1094 			      struct collapse_control *cc)
1095 {
1096 	LIST_HEAD(compound_pagelist);
1097 	pmd_t *pmd, _pmd;
1098 	pte_t *pte;
1099 	pgtable_t pgtable;
1100 	struct folio *folio;
1101 	spinlock_t *pmd_ptl, *pte_ptl;
1102 	int result = SCAN_FAIL;
1103 	struct vm_area_struct *vma;
1104 	struct mmu_notifier_range range;
1105 
1106 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1107 
1108 	/*
1109 	 * Before allocating the hugepage, release the mmap_lock read lock.
1110 	 * The allocation can take potentially a long time if it involves
1111 	 * sync compaction, and we do not need to hold the mmap_lock during
1112 	 * that. We will recheck the vma after taking it again in write mode.
1113 	 */
1114 	mmap_read_unlock(mm);
1115 
1116 	result = alloc_charge_folio(&folio, mm, cc);
1117 	if (result != SCAN_SUCCEED)
1118 		goto out_nolock;
1119 
1120 	mmap_read_lock(mm);
1121 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1122 	if (result != SCAN_SUCCEED) {
1123 		mmap_read_unlock(mm);
1124 		goto out_nolock;
1125 	}
1126 
1127 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1128 	if (result != SCAN_SUCCEED) {
1129 		mmap_read_unlock(mm);
1130 		goto out_nolock;
1131 	}
1132 
1133 	if (unmapped) {
1134 		/*
1135 		 * __collapse_huge_page_swapin will return with mmap_lock
1136 		 * released when it fails. So we jump out_nolock directly in
1137 		 * that case.  Continuing to collapse causes inconsistency.
1138 		 */
1139 		result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1140 						     referenced);
1141 		if (result != SCAN_SUCCEED)
1142 			goto out_nolock;
1143 	}
1144 
1145 	mmap_read_unlock(mm);
1146 	/*
1147 	 * Prevent all access to pagetables with the exception of
1148 	 * gup_fast later handled by the ptep_clear_flush and the VM
1149 	 * handled by the anon_vma lock + PG_lock.
1150 	 *
1151 	 * UFFDIO_MOVE is prevented to race as well thanks to the
1152 	 * mmap_lock.
1153 	 */
1154 	mmap_write_lock(mm);
1155 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1156 	if (result != SCAN_SUCCEED)
1157 		goto out_up_write;
1158 	/* check if the pmd is still valid */
1159 	vma_start_write(vma);
1160 	result = check_pmd_still_valid(mm, address, pmd);
1161 	if (result != SCAN_SUCCEED)
1162 		goto out_up_write;
1163 
1164 	anon_vma_lock_write(vma->anon_vma);
1165 
1166 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address,
1167 				address + HPAGE_PMD_SIZE);
1168 	mmu_notifier_invalidate_range_start(&range);
1169 
1170 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1171 	/*
1172 	 * This removes any huge TLB entry from the CPU so we won't allow
1173 	 * huge and small TLB entries for the same virtual address to
1174 	 * avoid the risk of CPU bugs in that area.
1175 	 *
1176 	 * Parallel GUP-fast is fine since GUP-fast will back off when
1177 	 * it detects PMD is changed.
1178 	 */
1179 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1180 	spin_unlock(pmd_ptl);
1181 	mmu_notifier_invalidate_range_end(&range);
1182 	tlb_remove_table_sync_one();
1183 
1184 	pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl);
1185 	if (pte) {
1186 		result = __collapse_huge_page_isolate(vma, address, pte, cc,
1187 						      &compound_pagelist);
1188 		spin_unlock(pte_ptl);
1189 	} else {
1190 		result = SCAN_PMD_NULL;
1191 	}
1192 
1193 	if (unlikely(result != SCAN_SUCCEED)) {
1194 		if (pte)
1195 			pte_unmap(pte);
1196 		spin_lock(pmd_ptl);
1197 		BUG_ON(!pmd_none(*pmd));
1198 		/*
1199 		 * We can only use set_pmd_at when establishing
1200 		 * hugepmds and never for establishing regular pmds that
1201 		 * points to regular pagetables. Use pmd_populate for that
1202 		 */
1203 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1204 		spin_unlock(pmd_ptl);
1205 		anon_vma_unlock_write(vma->anon_vma);
1206 		goto out_up_write;
1207 	}
1208 
1209 	/*
1210 	 * All pages are isolated and locked so anon_vma rmap
1211 	 * can't run anymore.
1212 	 */
1213 	anon_vma_unlock_write(vma->anon_vma);
1214 
1215 	result = __collapse_huge_page_copy(pte, folio, pmd, _pmd,
1216 					   vma, address, pte_ptl,
1217 					   &compound_pagelist);
1218 	pte_unmap(pte);
1219 	if (unlikely(result != SCAN_SUCCEED))
1220 		goto out_up_write;
1221 
1222 	/*
1223 	 * The smp_wmb() inside __folio_mark_uptodate() ensures the
1224 	 * copy_huge_page writes become visible before the set_pmd_at()
1225 	 * write.
1226 	 */
1227 	__folio_mark_uptodate(folio);
1228 	pgtable = pmd_pgtable(_pmd);
1229 
1230 	_pmd = folio_mk_pmd(folio, vma->vm_page_prot);
1231 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1232 
1233 	spin_lock(pmd_ptl);
1234 	BUG_ON(!pmd_none(*pmd));
1235 	folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
1236 	folio_add_lru_vma(folio, vma);
1237 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1238 	set_pmd_at(mm, address, pmd, _pmd);
1239 	update_mmu_cache_pmd(vma, address, pmd);
1240 	deferred_split_folio(folio, false);
1241 	spin_unlock(pmd_ptl);
1242 
1243 	folio = NULL;
1244 
1245 	result = SCAN_SUCCEED;
1246 out_up_write:
1247 	mmap_write_unlock(mm);
1248 out_nolock:
1249 	if (folio)
1250 		folio_put(folio);
1251 	trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1252 	return result;
1253 }
1254 
hpage_collapse_scan_pmd(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long start_addr,bool * mmap_locked,struct collapse_control * cc)1255 static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1256 				   struct vm_area_struct *vma,
1257 				   unsigned long start_addr, bool *mmap_locked,
1258 				   struct collapse_control *cc)
1259 {
1260 	pmd_t *pmd;
1261 	pte_t *pte, *_pte;
1262 	int result = SCAN_FAIL, referenced = 0;
1263 	int none_or_zero = 0, shared = 0;
1264 	struct page *page = NULL;
1265 	struct folio *folio = NULL;
1266 	unsigned long addr;
1267 	spinlock_t *ptl;
1268 	int node = NUMA_NO_NODE, unmapped = 0;
1269 
1270 	VM_BUG_ON(start_addr & ~HPAGE_PMD_MASK);
1271 
1272 	result = find_pmd_or_thp_or_none(mm, start_addr, &pmd);
1273 	if (result != SCAN_SUCCEED)
1274 		goto out;
1275 
1276 	memset(cc->node_load, 0, sizeof(cc->node_load));
1277 	nodes_clear(cc->alloc_nmask);
1278 	pte = pte_offset_map_lock(mm, pmd, start_addr, &ptl);
1279 	if (!pte) {
1280 		result = SCAN_PMD_NULL;
1281 		goto out;
1282 	}
1283 
1284 	for (addr = start_addr, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1285 	     _pte++, addr += PAGE_SIZE) {
1286 		pte_t pteval = ptep_get(_pte);
1287 		if (is_swap_pte(pteval)) {
1288 			++unmapped;
1289 			if (!cc->is_khugepaged ||
1290 			    unmapped <= khugepaged_max_ptes_swap) {
1291 				/*
1292 				 * Always be strict with uffd-wp
1293 				 * enabled swap entries.  Please see
1294 				 * comment below for pte_uffd_wp().
1295 				 */
1296 				if (pte_swp_uffd_wp_any(pteval)) {
1297 					result = SCAN_PTE_UFFD_WP;
1298 					goto out_unmap;
1299 				}
1300 				continue;
1301 			} else {
1302 				result = SCAN_EXCEED_SWAP_PTE;
1303 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1304 				goto out_unmap;
1305 			}
1306 		}
1307 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1308 			++none_or_zero;
1309 			if (!userfaultfd_armed(vma) &&
1310 			    (!cc->is_khugepaged ||
1311 			     none_or_zero <= khugepaged_max_ptes_none)) {
1312 				continue;
1313 			} else {
1314 				result = SCAN_EXCEED_NONE_PTE;
1315 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1316 				goto out_unmap;
1317 			}
1318 		}
1319 		if (pte_uffd_wp(pteval)) {
1320 			/*
1321 			 * Don't collapse the page if any of the small
1322 			 * PTEs are armed with uffd write protection.
1323 			 * Here we can also mark the new huge pmd as
1324 			 * write protected if any of the small ones is
1325 			 * marked but that could bring unknown
1326 			 * userfault messages that falls outside of
1327 			 * the registered range.  So, just be simple.
1328 			 */
1329 			result = SCAN_PTE_UFFD_WP;
1330 			goto out_unmap;
1331 		}
1332 
1333 		page = vm_normal_page(vma, addr, pteval);
1334 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1335 			result = SCAN_PAGE_NULL;
1336 			goto out_unmap;
1337 		}
1338 		folio = page_folio(page);
1339 
1340 		if (!folio_test_anon(folio)) {
1341 			result = SCAN_PAGE_ANON;
1342 			goto out_unmap;
1343 		}
1344 
1345 		/*
1346 		 * We treat a single page as shared if any part of the THP
1347 		 * is shared.
1348 		 */
1349 		if (folio_maybe_mapped_shared(folio)) {
1350 			++shared;
1351 			if (cc->is_khugepaged &&
1352 			    shared > khugepaged_max_ptes_shared) {
1353 				result = SCAN_EXCEED_SHARED_PTE;
1354 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1355 				goto out_unmap;
1356 			}
1357 		}
1358 
1359 		/*
1360 		 * Record which node the original page is from and save this
1361 		 * information to cc->node_load[].
1362 		 * Khugepaged will allocate hugepage from the node has the max
1363 		 * hit record.
1364 		 */
1365 		node = folio_nid(folio);
1366 		if (hpage_collapse_scan_abort(node, cc)) {
1367 			result = SCAN_SCAN_ABORT;
1368 			goto out_unmap;
1369 		}
1370 		cc->node_load[node]++;
1371 		if (!folio_test_lru(folio)) {
1372 			result = SCAN_PAGE_LRU;
1373 			goto out_unmap;
1374 		}
1375 		if (folio_test_locked(folio)) {
1376 			result = SCAN_PAGE_LOCK;
1377 			goto out_unmap;
1378 		}
1379 
1380 		/*
1381 		 * Check if the page has any GUP (or other external) pins.
1382 		 *
1383 		 * Here the check may be racy:
1384 		 * it may see folio_mapcount() > folio_ref_count().
1385 		 * But such case is ephemeral we could always retry collapse
1386 		 * later.  However it may report false positive if the page
1387 		 * has excessive GUP pins (i.e. 512).  Anyway the same check
1388 		 * will be done again later the risk seems low.
1389 		 */
1390 		if (folio_expected_ref_count(folio) != folio_ref_count(folio)) {
1391 			result = SCAN_PAGE_COUNT;
1392 			goto out_unmap;
1393 		}
1394 
1395 		/*
1396 		 * If collapse was initiated by khugepaged, check that there is
1397 		 * enough young pte to justify collapsing the page
1398 		 */
1399 		if (cc->is_khugepaged &&
1400 		    (pte_young(pteval) || folio_test_young(folio) ||
1401 		     folio_test_referenced(folio) ||
1402 		     mmu_notifier_test_young(vma->vm_mm, addr)))
1403 			referenced++;
1404 	}
1405 	if (cc->is_khugepaged &&
1406 		   (!referenced ||
1407 		    (unmapped && referenced < HPAGE_PMD_NR / 2))) {
1408 		result = SCAN_LACK_REFERENCED_PAGE;
1409 	} else {
1410 		result = SCAN_SUCCEED;
1411 	}
1412 out_unmap:
1413 	pte_unmap_unlock(pte, ptl);
1414 	if (result == SCAN_SUCCEED) {
1415 		result = collapse_huge_page(mm, start_addr, referenced,
1416 					    unmapped, cc);
1417 		/* collapse_huge_page will return with the mmap_lock released */
1418 		*mmap_locked = false;
1419 	}
1420 out:
1421 	trace_mm_khugepaged_scan_pmd(mm, folio, referenced,
1422 				     none_or_zero, result, unmapped);
1423 	return result;
1424 }
1425 
collect_mm_slot(struct mm_slot * slot)1426 static void collect_mm_slot(struct mm_slot *slot)
1427 {
1428 	struct mm_struct *mm = slot->mm;
1429 
1430 	lockdep_assert_held(&khugepaged_mm_lock);
1431 
1432 	if (hpage_collapse_test_exit(mm)) {
1433 		/* free mm_slot */
1434 		hash_del(&slot->hash);
1435 		list_del(&slot->mm_node);
1436 
1437 		/*
1438 		 * Not strictly needed because the mm exited already.
1439 		 *
1440 		 * mm_flags_clear(MMF_VM_HUGEPAGE, mm);
1441 		 */
1442 
1443 		/* khugepaged_mm_lock actually not necessary for the below */
1444 		mm_slot_free(mm_slot_cache, slot);
1445 		mmdrop(mm);
1446 	}
1447 }
1448 
1449 /* folio must be locked, and mmap_lock must be held */
set_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,struct folio * folio,struct page * page)1450 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1451 			pmd_t *pmdp, struct folio *folio, struct page *page)
1452 {
1453 	struct mm_struct *mm = vma->vm_mm;
1454 	struct vm_fault vmf = {
1455 		.vma = vma,
1456 		.address = addr,
1457 		.flags = 0,
1458 	};
1459 	pgd_t *pgdp;
1460 	p4d_t *p4dp;
1461 	pud_t *pudp;
1462 
1463 	mmap_assert_locked(vma->vm_mm);
1464 
1465 	if (!pmdp) {
1466 		pgdp = pgd_offset(mm, addr);
1467 		p4dp = p4d_alloc(mm, pgdp, addr);
1468 		if (!p4dp)
1469 			return SCAN_FAIL;
1470 		pudp = pud_alloc(mm, p4dp, addr);
1471 		if (!pudp)
1472 			return SCAN_FAIL;
1473 		pmdp = pmd_alloc(mm, pudp, addr);
1474 		if (!pmdp)
1475 			return SCAN_FAIL;
1476 	}
1477 
1478 	vmf.pmd = pmdp;
1479 	if (do_set_pmd(&vmf, folio, page))
1480 		return SCAN_FAIL;
1481 
1482 	folio_get(folio);
1483 	return SCAN_SUCCEED;
1484 }
1485 
1486 /**
1487  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1488  * address haddr.
1489  *
1490  * @mm: process address space where collapse happens
1491  * @addr: THP collapse address
1492  * @install_pmd: If a huge PMD should be installed
1493  *
1494  * This function checks whether all the PTEs in the PMD are pointing to the
1495  * right THP. If so, retract the page table so the THP can refault in with
1496  * as pmd-mapped. Possibly install a huge PMD mapping the THP.
1497  */
collapse_pte_mapped_thp(struct mm_struct * mm,unsigned long addr,bool install_pmd)1498 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1499 			    bool install_pmd)
1500 {
1501 	int nr_mapped_ptes = 0, result = SCAN_FAIL;
1502 	unsigned int nr_batch_ptes;
1503 	struct mmu_notifier_range range;
1504 	bool notified = false;
1505 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1506 	unsigned long end = haddr + HPAGE_PMD_SIZE;
1507 	struct vm_area_struct *vma = vma_lookup(mm, haddr);
1508 	struct folio *folio;
1509 	pte_t *start_pte, *pte;
1510 	pmd_t *pmd, pgt_pmd;
1511 	spinlock_t *pml = NULL, *ptl;
1512 	int i;
1513 
1514 	mmap_assert_locked(mm);
1515 
1516 	/* First check VMA found, in case page tables are being torn down */
1517 	if (!vma || !vma->vm_file ||
1518 	    !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1519 		return SCAN_VMA_CHECK;
1520 
1521 	/* Fast check before locking page if already PMD-mapped */
1522 	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1523 	if (result == SCAN_PMD_MAPPED)
1524 		return result;
1525 
1526 	/*
1527 	 * If we are here, we've succeeded in replacing all the native pages
1528 	 * in the page cache with a single hugepage. If a mm were to fault-in
1529 	 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1530 	 * and map it by a PMD, regardless of sysfs THP settings. As such, let's
1531 	 * analogously elide sysfs THP settings here and force collapse.
1532 	 */
1533 	if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_FORCED_COLLAPSE, PMD_ORDER))
1534 		return SCAN_VMA_CHECK;
1535 
1536 	/* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1537 	if (userfaultfd_wp(vma))
1538 		return SCAN_PTE_UFFD_WP;
1539 
1540 	folio = filemap_lock_folio(vma->vm_file->f_mapping,
1541 			       linear_page_index(vma, haddr));
1542 	if (IS_ERR(folio))
1543 		return SCAN_PAGE_NULL;
1544 
1545 	if (folio_order(folio) != HPAGE_PMD_ORDER) {
1546 		result = SCAN_PAGE_COMPOUND;
1547 		goto drop_folio;
1548 	}
1549 
1550 	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1551 	switch (result) {
1552 	case SCAN_SUCCEED:
1553 		break;
1554 	case SCAN_PMD_NULL:
1555 	case SCAN_PMD_NONE:
1556 		/*
1557 		 * All pte entries have been removed and pmd cleared.
1558 		 * Skip all the pte checks and just update the pmd mapping.
1559 		 */
1560 		goto maybe_install_pmd;
1561 	default:
1562 		goto drop_folio;
1563 	}
1564 
1565 	result = SCAN_FAIL;
1566 	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1567 	if (!start_pte)		/* mmap_lock + page lock should prevent this */
1568 		goto drop_folio;
1569 
1570 	/* step 1: check all mapped PTEs are to the right huge page */
1571 	for (i = 0, addr = haddr, pte = start_pte;
1572 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1573 		struct page *page;
1574 		pte_t ptent = ptep_get(pte);
1575 
1576 		/* empty pte, skip */
1577 		if (pte_none(ptent))
1578 			continue;
1579 
1580 		/* page swapped out, abort */
1581 		if (!pte_present(ptent)) {
1582 			result = SCAN_PTE_NON_PRESENT;
1583 			goto abort;
1584 		}
1585 
1586 		page = vm_normal_page(vma, addr, ptent);
1587 		if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1588 			page = NULL;
1589 		/*
1590 		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1591 		 * page table, but the new page will not be a subpage of hpage.
1592 		 */
1593 		if (folio_page(folio, i) != page)
1594 			goto abort;
1595 	}
1596 
1597 	pte_unmap_unlock(start_pte, ptl);
1598 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1599 				haddr, haddr + HPAGE_PMD_SIZE);
1600 	mmu_notifier_invalidate_range_start(&range);
1601 	notified = true;
1602 
1603 	/*
1604 	 * pmd_lock covers a wider range than ptl, and (if split from mm's
1605 	 * page_table_lock) ptl nests inside pml. The less time we hold pml,
1606 	 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA
1607 	 * inserts a valid as-if-COWed PTE without even looking up page cache.
1608 	 * So page lock of folio does not protect from it, so we must not drop
1609 	 * ptl before pgt_pmd is removed, so uffd private needs pml taken now.
1610 	 */
1611 	if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED))
1612 		pml = pmd_lock(mm, pmd);
1613 
1614 	start_pte = pte_offset_map_rw_nolock(mm, pmd, haddr, &pgt_pmd, &ptl);
1615 	if (!start_pte)		/* mmap_lock + page lock should prevent this */
1616 		goto abort;
1617 	if (!pml)
1618 		spin_lock(ptl);
1619 	else if (ptl != pml)
1620 		spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1621 
1622 	if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd))))
1623 		goto abort;
1624 
1625 	/* step 2: clear page table and adjust rmap */
1626 	for (i = 0, addr = haddr, pte = start_pte; i < HPAGE_PMD_NR;
1627 	     i += nr_batch_ptes, addr += nr_batch_ptes * PAGE_SIZE,
1628 	     pte += nr_batch_ptes) {
1629 		unsigned int max_nr_batch_ptes = (end - addr) >> PAGE_SHIFT;
1630 		struct page *page;
1631 		pte_t ptent = ptep_get(pte);
1632 
1633 		nr_batch_ptes = 1;
1634 
1635 		if (pte_none(ptent))
1636 			continue;
1637 		/*
1638 		 * We dropped ptl after the first scan, to do the mmu_notifier:
1639 		 * page lock stops more PTEs of the folio being faulted in, but
1640 		 * does not stop write faults COWing anon copies from existing
1641 		 * PTEs; and does not stop those being swapped out or migrated.
1642 		 */
1643 		if (!pte_present(ptent)) {
1644 			result = SCAN_PTE_NON_PRESENT;
1645 			goto abort;
1646 		}
1647 		page = vm_normal_page(vma, addr, ptent);
1648 
1649 		if (folio_page(folio, i) != page)
1650 			goto abort;
1651 
1652 		nr_batch_ptes = folio_pte_batch(folio, pte, ptent, max_nr_batch_ptes);
1653 
1654 		/*
1655 		 * Must clear entry, or a racing truncate may re-remove it.
1656 		 * TLB flush can be left until pmdp_collapse_flush() does it.
1657 		 * PTE dirty? Shmem page is already dirty; file is read-only.
1658 		 */
1659 		clear_ptes(mm, addr, pte, nr_batch_ptes);
1660 		folio_remove_rmap_ptes(folio, page, nr_batch_ptes, vma);
1661 		nr_mapped_ptes += nr_batch_ptes;
1662 	}
1663 
1664 	if (!pml)
1665 		spin_unlock(ptl);
1666 
1667 	/* step 3: set proper refcount and mm_counters. */
1668 	if (nr_mapped_ptes) {
1669 		folio_ref_sub(folio, nr_mapped_ptes);
1670 		add_mm_counter(mm, mm_counter_file(folio), -nr_mapped_ptes);
1671 	}
1672 
1673 	/* step 4: remove empty page table */
1674 	if (!pml) {
1675 		pml = pmd_lock(mm, pmd);
1676 		if (ptl != pml) {
1677 			spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1678 			if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) {
1679 				flush_tlb_mm(mm);
1680 				goto unlock;
1681 			}
1682 		}
1683 	}
1684 	pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1685 	pmdp_get_lockless_sync();
1686 	pte_unmap_unlock(start_pte, ptl);
1687 	if (ptl != pml)
1688 		spin_unlock(pml);
1689 
1690 	mmu_notifier_invalidate_range_end(&range);
1691 
1692 	mm_dec_nr_ptes(mm);
1693 	page_table_check_pte_clear_range(mm, haddr, pgt_pmd);
1694 	pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1695 
1696 maybe_install_pmd:
1697 	/* step 5: install pmd entry */
1698 	result = install_pmd
1699 			? set_huge_pmd(vma, haddr, pmd, folio, &folio->page)
1700 			: SCAN_SUCCEED;
1701 	goto drop_folio;
1702 abort:
1703 	if (nr_mapped_ptes) {
1704 		flush_tlb_mm(mm);
1705 		folio_ref_sub(folio, nr_mapped_ptes);
1706 		add_mm_counter(mm, mm_counter_file(folio), -nr_mapped_ptes);
1707 	}
1708 unlock:
1709 	if (start_pte)
1710 		pte_unmap_unlock(start_pte, ptl);
1711 	if (pml && pml != ptl)
1712 		spin_unlock(pml);
1713 	if (notified)
1714 		mmu_notifier_invalidate_range_end(&range);
1715 drop_folio:
1716 	folio_unlock(folio);
1717 	folio_put(folio);
1718 	return result;
1719 }
1720 
retract_page_tables(struct address_space * mapping,pgoff_t pgoff)1721 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1722 {
1723 	struct vm_area_struct *vma;
1724 
1725 	i_mmap_lock_read(mapping);
1726 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1727 		struct mmu_notifier_range range;
1728 		struct mm_struct *mm;
1729 		unsigned long addr;
1730 		pmd_t *pmd, pgt_pmd;
1731 		spinlock_t *pml;
1732 		spinlock_t *ptl;
1733 		bool success = false;
1734 
1735 		/*
1736 		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1737 		 * got written to. These VMAs are likely not worth removing
1738 		 * page tables from, as PMD-mapping is likely to be split later.
1739 		 */
1740 		if (READ_ONCE(vma->anon_vma))
1741 			continue;
1742 
1743 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1744 		if (addr & ~HPAGE_PMD_MASK ||
1745 		    vma->vm_end < addr + HPAGE_PMD_SIZE)
1746 			continue;
1747 
1748 		mm = vma->vm_mm;
1749 		if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED)
1750 			continue;
1751 
1752 		if (hpage_collapse_test_exit(mm))
1753 			continue;
1754 		/*
1755 		 * When a vma is registered with uffd-wp, we cannot recycle
1756 		 * the page table because there may be pte markers installed.
1757 		 * Other vmas can still have the same file mapped hugely, but
1758 		 * skip this one: it will always be mapped in small page size
1759 		 * for uffd-wp registered ranges.
1760 		 */
1761 		if (userfaultfd_wp(vma))
1762 			continue;
1763 
1764 		/* PTEs were notified when unmapped; but now for the PMD? */
1765 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1766 					addr, addr + HPAGE_PMD_SIZE);
1767 		mmu_notifier_invalidate_range_start(&range);
1768 
1769 		pml = pmd_lock(mm, pmd);
1770 		/*
1771 		 * The lock of new_folio is still held, we will be blocked in
1772 		 * the page fault path, which prevents the pte entries from
1773 		 * being set again. So even though the old empty PTE page may be
1774 		 * concurrently freed and a new PTE page is filled into the pmd
1775 		 * entry, it is still empty and can be removed.
1776 		 *
1777 		 * So here we only need to recheck if the state of pmd entry
1778 		 * still meets our requirements, rather than checking pmd_same()
1779 		 * like elsewhere.
1780 		 */
1781 		if (check_pmd_state(pmd) != SCAN_SUCCEED)
1782 			goto drop_pml;
1783 		ptl = pte_lockptr(mm, pmd);
1784 		if (ptl != pml)
1785 			spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1786 
1787 		/*
1788 		 * Huge page lock is still held, so normally the page table
1789 		 * must remain empty; and we have already skipped anon_vma
1790 		 * and userfaultfd_wp() vmas.  But since the mmap_lock is not
1791 		 * held, it is still possible for a racing userfaultfd_ioctl()
1792 		 * to have inserted ptes or markers.  Now that we hold ptlock,
1793 		 * repeating the anon_vma check protects from one category,
1794 		 * and repeating the userfaultfd_wp() check from another.
1795 		 */
1796 		if (likely(!vma->anon_vma && !userfaultfd_wp(vma))) {
1797 			pgt_pmd = pmdp_collapse_flush(vma, addr, pmd);
1798 			pmdp_get_lockless_sync();
1799 			success = true;
1800 		}
1801 
1802 		if (ptl != pml)
1803 			spin_unlock(ptl);
1804 drop_pml:
1805 		spin_unlock(pml);
1806 
1807 		mmu_notifier_invalidate_range_end(&range);
1808 
1809 		if (success) {
1810 			mm_dec_nr_ptes(mm);
1811 			page_table_check_pte_clear_range(mm, addr, pgt_pmd);
1812 			pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1813 		}
1814 	}
1815 	i_mmap_unlock_read(mapping);
1816 }
1817 
1818 /**
1819  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1820  *
1821  * @mm: process address space where collapse happens
1822  * @addr: virtual collapse start address
1823  * @file: file that collapse on
1824  * @start: collapse start address
1825  * @cc: collapse context and scratchpad
1826  *
1827  * Basic scheme is simple, details are more complex:
1828  *  - allocate and lock a new huge page;
1829  *  - scan page cache, locking old pages
1830  *    + swap/gup in pages if necessary;
1831  *  - copy data to new page
1832  *  - handle shmem holes
1833  *    + re-validate that holes weren't filled by someone else
1834  *    + check for userfaultfd
1835  *  - finalize updates to the page cache;
1836  *  - if replacing succeeds:
1837  *    + unlock huge page;
1838  *    + free old pages;
1839  *  - if replacing failed;
1840  *    + unlock old pages
1841  *    + unlock and free huge page;
1842  */
collapse_file(struct mm_struct * mm,unsigned long addr,struct file * file,pgoff_t start,struct collapse_control * cc)1843 static int collapse_file(struct mm_struct *mm, unsigned long addr,
1844 			 struct file *file, pgoff_t start,
1845 			 struct collapse_control *cc)
1846 {
1847 	struct address_space *mapping = file->f_mapping;
1848 	struct page *dst;
1849 	struct folio *folio, *tmp, *new_folio;
1850 	pgoff_t index = 0, end = start + HPAGE_PMD_NR;
1851 	LIST_HEAD(pagelist);
1852 	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1853 	int nr_none = 0, result = SCAN_SUCCEED;
1854 	bool is_shmem = shmem_file(file);
1855 
1856 	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1857 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1858 
1859 	result = alloc_charge_folio(&new_folio, mm, cc);
1860 	if (result != SCAN_SUCCEED)
1861 		goto out;
1862 
1863 	mapping_set_update(&xas, mapping);
1864 
1865 	__folio_set_locked(new_folio);
1866 	if (is_shmem)
1867 		__folio_set_swapbacked(new_folio);
1868 	new_folio->index = start;
1869 	new_folio->mapping = mapping;
1870 
1871 	/*
1872 	 * Ensure we have slots for all the pages in the range.  This is
1873 	 * almost certainly a no-op because most of the pages must be present
1874 	 */
1875 	do {
1876 		xas_lock_irq(&xas);
1877 		xas_create_range(&xas);
1878 		if (!xas_error(&xas))
1879 			break;
1880 		xas_unlock_irq(&xas);
1881 		if (!xas_nomem(&xas, GFP_KERNEL)) {
1882 			result = SCAN_FAIL;
1883 			goto rollback;
1884 		}
1885 	} while (1);
1886 
1887 	for (index = start; index < end;) {
1888 		xas_set(&xas, index);
1889 		folio = xas_load(&xas);
1890 
1891 		VM_BUG_ON(index != xas.xa_index);
1892 		if (is_shmem) {
1893 			if (!folio) {
1894 				/*
1895 				 * Stop if extent has been truncated or
1896 				 * hole-punched, and is now completely
1897 				 * empty.
1898 				 */
1899 				if (index == start) {
1900 					if (!xas_next_entry(&xas, end - 1)) {
1901 						result = SCAN_TRUNCATED;
1902 						goto xa_locked;
1903 					}
1904 				}
1905 				nr_none++;
1906 				index++;
1907 				continue;
1908 			}
1909 
1910 			if (xa_is_value(folio) || !folio_test_uptodate(folio)) {
1911 				xas_unlock_irq(&xas);
1912 				/* swap in or instantiate fallocated page */
1913 				if (shmem_get_folio(mapping->host, index, 0,
1914 						&folio, SGP_NOALLOC)) {
1915 					result = SCAN_FAIL;
1916 					goto xa_unlocked;
1917 				}
1918 				/* drain lru cache to help folio_isolate_lru() */
1919 				lru_add_drain();
1920 			} else if (folio_trylock(folio)) {
1921 				folio_get(folio);
1922 				xas_unlock_irq(&xas);
1923 			} else {
1924 				result = SCAN_PAGE_LOCK;
1925 				goto xa_locked;
1926 			}
1927 		} else {	/* !is_shmem */
1928 			if (!folio || xa_is_value(folio)) {
1929 				xas_unlock_irq(&xas);
1930 				page_cache_sync_readahead(mapping, &file->f_ra,
1931 							  file, index,
1932 							  end - index);
1933 				/* drain lru cache to help folio_isolate_lru() */
1934 				lru_add_drain();
1935 				folio = filemap_lock_folio(mapping, index);
1936 				if (IS_ERR(folio)) {
1937 					result = SCAN_FAIL;
1938 					goto xa_unlocked;
1939 				}
1940 			} else if (folio_test_dirty(folio)) {
1941 				/*
1942 				 * khugepaged only works on read-only fd,
1943 				 * so this page is dirty because it hasn't
1944 				 * been flushed since first write. There
1945 				 * won't be new dirty pages.
1946 				 *
1947 				 * Trigger async flush here and hope the
1948 				 * writeback is done when khugepaged
1949 				 * revisits this page.
1950 				 *
1951 				 * This is a one-off situation. We are not
1952 				 * forcing writeback in loop.
1953 				 */
1954 				xas_unlock_irq(&xas);
1955 				filemap_flush(mapping);
1956 				result = SCAN_FAIL;
1957 				goto xa_unlocked;
1958 			} else if (folio_test_writeback(folio)) {
1959 				xas_unlock_irq(&xas);
1960 				result = SCAN_FAIL;
1961 				goto xa_unlocked;
1962 			} else if (folio_trylock(folio)) {
1963 				folio_get(folio);
1964 				xas_unlock_irq(&xas);
1965 			} else {
1966 				result = SCAN_PAGE_LOCK;
1967 				goto xa_locked;
1968 			}
1969 		}
1970 
1971 		/*
1972 		 * The folio must be locked, so we can drop the i_pages lock
1973 		 * without racing with truncate.
1974 		 */
1975 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1976 
1977 		/* make sure the folio is up to date */
1978 		if (unlikely(!folio_test_uptodate(folio))) {
1979 			result = SCAN_FAIL;
1980 			goto out_unlock;
1981 		}
1982 
1983 		/*
1984 		 * If file was truncated then extended, or hole-punched, before
1985 		 * we locked the first folio, then a THP might be there already.
1986 		 * This will be discovered on the first iteration.
1987 		 */
1988 		if (folio_order(folio) == HPAGE_PMD_ORDER &&
1989 		    folio->index == start) {
1990 			/* Maybe PMD-mapped */
1991 			result = SCAN_PTE_MAPPED_HUGEPAGE;
1992 			goto out_unlock;
1993 		}
1994 
1995 		if (folio_mapping(folio) != mapping) {
1996 			result = SCAN_TRUNCATED;
1997 			goto out_unlock;
1998 		}
1999 
2000 		if (!is_shmem && (folio_test_dirty(folio) ||
2001 				  folio_test_writeback(folio))) {
2002 			/*
2003 			 * khugepaged only works on read-only fd, so this
2004 			 * folio is dirty because it hasn't been flushed
2005 			 * since first write.
2006 			 */
2007 			result = SCAN_FAIL;
2008 			goto out_unlock;
2009 		}
2010 
2011 		if (!folio_isolate_lru(folio)) {
2012 			result = SCAN_DEL_PAGE_LRU;
2013 			goto out_unlock;
2014 		}
2015 
2016 		if (!filemap_release_folio(folio, GFP_KERNEL)) {
2017 			result = SCAN_PAGE_HAS_PRIVATE;
2018 			folio_putback_lru(folio);
2019 			goto out_unlock;
2020 		}
2021 
2022 		if (folio_mapped(folio))
2023 			try_to_unmap(folio,
2024 					TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
2025 
2026 		xas_lock_irq(&xas);
2027 
2028 		VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio);
2029 
2030 		/*
2031 		 * We control 2 + nr_pages references to the folio:
2032 		 *  - we hold a pin on it;
2033 		 *  - nr_pages reference from page cache;
2034 		 *  - one from lru_isolate_folio;
2035 		 * If those are the only references, then any new usage
2036 		 * of the folio will have to fetch it from the page
2037 		 * cache. That requires locking the folio to handle
2038 		 * truncate, so any new usage will be blocked until we
2039 		 * unlock folio after collapse/during rollback.
2040 		 */
2041 		if (folio_ref_count(folio) != 2 + folio_nr_pages(folio)) {
2042 			result = SCAN_PAGE_COUNT;
2043 			xas_unlock_irq(&xas);
2044 			folio_putback_lru(folio);
2045 			goto out_unlock;
2046 		}
2047 
2048 		/*
2049 		 * Accumulate the folios that are being collapsed.
2050 		 */
2051 		list_add_tail(&folio->lru, &pagelist);
2052 		index += folio_nr_pages(folio);
2053 		continue;
2054 out_unlock:
2055 		folio_unlock(folio);
2056 		folio_put(folio);
2057 		goto xa_unlocked;
2058 	}
2059 
2060 	if (!is_shmem) {
2061 		filemap_nr_thps_inc(mapping);
2062 		/*
2063 		 * Paired with the fence in do_dentry_open() -> get_write_access()
2064 		 * to ensure i_writecount is up to date and the update to nr_thps
2065 		 * is visible. Ensures the page cache will be truncated if the
2066 		 * file is opened writable.
2067 		 */
2068 		smp_mb();
2069 		if (inode_is_open_for_write(mapping->host)) {
2070 			result = SCAN_FAIL;
2071 			filemap_nr_thps_dec(mapping);
2072 		}
2073 	}
2074 
2075 xa_locked:
2076 	xas_unlock_irq(&xas);
2077 xa_unlocked:
2078 
2079 	/*
2080 	 * If collapse is successful, flush must be done now before copying.
2081 	 * If collapse is unsuccessful, does flush actually need to be done?
2082 	 * Do it anyway, to clear the state.
2083 	 */
2084 	try_to_unmap_flush();
2085 
2086 	if (result == SCAN_SUCCEED && nr_none &&
2087 	    !shmem_charge(mapping->host, nr_none))
2088 		result = SCAN_FAIL;
2089 	if (result != SCAN_SUCCEED) {
2090 		nr_none = 0;
2091 		goto rollback;
2092 	}
2093 
2094 	/*
2095 	 * The old folios are locked, so they won't change anymore.
2096 	 */
2097 	index = start;
2098 	dst = folio_page(new_folio, 0);
2099 	list_for_each_entry(folio, &pagelist, lru) {
2100 		int i, nr_pages = folio_nr_pages(folio);
2101 
2102 		while (index < folio->index) {
2103 			clear_highpage(dst);
2104 			index++;
2105 			dst++;
2106 		}
2107 
2108 		for (i = 0; i < nr_pages; i++) {
2109 			if (copy_mc_highpage(dst, folio_page(folio, i)) > 0) {
2110 				result = SCAN_COPY_MC;
2111 				goto rollback;
2112 			}
2113 			index++;
2114 			dst++;
2115 		}
2116 	}
2117 	while (index < end) {
2118 		clear_highpage(dst);
2119 		index++;
2120 		dst++;
2121 	}
2122 
2123 	if (nr_none) {
2124 		struct vm_area_struct *vma;
2125 		int nr_none_check = 0;
2126 
2127 		i_mmap_lock_read(mapping);
2128 		xas_lock_irq(&xas);
2129 
2130 		xas_set(&xas, start);
2131 		for (index = start; index < end; index++) {
2132 			if (!xas_next(&xas)) {
2133 				xas_store(&xas, XA_RETRY_ENTRY);
2134 				if (xas_error(&xas)) {
2135 					result = SCAN_STORE_FAILED;
2136 					goto immap_locked;
2137 				}
2138 				nr_none_check++;
2139 			}
2140 		}
2141 
2142 		if (nr_none != nr_none_check) {
2143 			result = SCAN_PAGE_FILLED;
2144 			goto immap_locked;
2145 		}
2146 
2147 		/*
2148 		 * If userspace observed a missing page in a VMA with
2149 		 * a MODE_MISSING userfaultfd, then it might expect a
2150 		 * UFFD_EVENT_PAGEFAULT for that page. If so, we need to
2151 		 * roll back to avoid suppressing such an event. Since
2152 		 * wp/minor userfaultfds don't give userspace any
2153 		 * guarantees that the kernel doesn't fill a missing
2154 		 * page with a zero page, so they don't matter here.
2155 		 *
2156 		 * Any userfaultfds registered after this point will
2157 		 * not be able to observe any missing pages due to the
2158 		 * previously inserted retry entries.
2159 		 */
2160 		vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) {
2161 			if (userfaultfd_missing(vma)) {
2162 				result = SCAN_EXCEED_NONE_PTE;
2163 				goto immap_locked;
2164 			}
2165 		}
2166 
2167 immap_locked:
2168 		i_mmap_unlock_read(mapping);
2169 		if (result != SCAN_SUCCEED) {
2170 			xas_set(&xas, start);
2171 			for (index = start; index < end; index++) {
2172 				if (xas_next(&xas) == XA_RETRY_ENTRY)
2173 					xas_store(&xas, NULL);
2174 			}
2175 
2176 			xas_unlock_irq(&xas);
2177 			goto rollback;
2178 		}
2179 	} else {
2180 		xas_lock_irq(&xas);
2181 	}
2182 
2183 	if (is_shmem)
2184 		__lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR);
2185 	else
2186 		__lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR);
2187 
2188 	if (nr_none) {
2189 		__lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, nr_none);
2190 		/* nr_none is always 0 for non-shmem. */
2191 		__lruvec_stat_mod_folio(new_folio, NR_SHMEM, nr_none);
2192 	}
2193 
2194 	/*
2195 	 * Mark new_folio as uptodate before inserting it into the
2196 	 * page cache so that it isn't mistaken for an fallocated but
2197 	 * unwritten page.
2198 	 */
2199 	folio_mark_uptodate(new_folio);
2200 	folio_ref_add(new_folio, HPAGE_PMD_NR - 1);
2201 
2202 	if (is_shmem)
2203 		folio_mark_dirty(new_folio);
2204 	folio_add_lru(new_folio);
2205 
2206 	/* Join all the small entries into a single multi-index entry. */
2207 	xas_set_order(&xas, start, HPAGE_PMD_ORDER);
2208 	xas_store(&xas, new_folio);
2209 	WARN_ON_ONCE(xas_error(&xas));
2210 	xas_unlock_irq(&xas);
2211 
2212 	/*
2213 	 * Remove pte page tables, so we can re-fault the page as huge.
2214 	 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp().
2215 	 */
2216 	retract_page_tables(mapping, start);
2217 	if (cc && !cc->is_khugepaged)
2218 		result = SCAN_PTE_MAPPED_HUGEPAGE;
2219 	folio_unlock(new_folio);
2220 
2221 	/*
2222 	 * The collapse has succeeded, so free the old folios.
2223 	 */
2224 	list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2225 		list_del(&folio->lru);
2226 		folio->mapping = NULL;
2227 		folio_clear_active(folio);
2228 		folio_clear_unevictable(folio);
2229 		folio_unlock(folio);
2230 		folio_put_refs(folio, 2 + folio_nr_pages(folio));
2231 	}
2232 
2233 	goto out;
2234 
2235 rollback:
2236 	/* Something went wrong: roll back page cache changes */
2237 	if (nr_none) {
2238 		xas_lock_irq(&xas);
2239 		mapping->nrpages -= nr_none;
2240 		xas_unlock_irq(&xas);
2241 		shmem_uncharge(mapping->host, nr_none);
2242 	}
2243 
2244 	list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2245 		list_del(&folio->lru);
2246 		folio_unlock(folio);
2247 		folio_putback_lru(folio);
2248 		folio_put(folio);
2249 	}
2250 	/*
2251 	 * Undo the updates of filemap_nr_thps_inc for non-SHMEM
2252 	 * file only. This undo is not needed unless failure is
2253 	 * due to SCAN_COPY_MC.
2254 	 */
2255 	if (!is_shmem && result == SCAN_COPY_MC) {
2256 		filemap_nr_thps_dec(mapping);
2257 		/*
2258 		 * Paired with the fence in do_dentry_open() -> get_write_access()
2259 		 * to ensure the update to nr_thps is visible.
2260 		 */
2261 		smp_mb();
2262 	}
2263 
2264 	new_folio->mapping = NULL;
2265 
2266 	folio_unlock(new_folio);
2267 	folio_put(new_folio);
2268 out:
2269 	VM_BUG_ON(!list_empty(&pagelist));
2270 	trace_mm_khugepaged_collapse_file(mm, new_folio, index, addr, is_shmem, file, HPAGE_PMD_NR, result);
2271 	return result;
2272 }
2273 
hpage_collapse_scan_file(struct mm_struct * mm,unsigned long addr,struct file * file,pgoff_t start,struct collapse_control * cc)2274 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2275 				    struct file *file, pgoff_t start,
2276 				    struct collapse_control *cc)
2277 {
2278 	struct folio *folio = NULL;
2279 	struct address_space *mapping = file->f_mapping;
2280 	XA_STATE(xas, &mapping->i_pages, start);
2281 	int present, swap;
2282 	int node = NUMA_NO_NODE;
2283 	int result = SCAN_SUCCEED;
2284 
2285 	present = 0;
2286 	swap = 0;
2287 	memset(cc->node_load, 0, sizeof(cc->node_load));
2288 	nodes_clear(cc->alloc_nmask);
2289 	rcu_read_lock();
2290 	xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) {
2291 		if (xas_retry(&xas, folio))
2292 			continue;
2293 
2294 		if (xa_is_value(folio)) {
2295 			swap += 1 << xas_get_order(&xas);
2296 			if (cc->is_khugepaged &&
2297 			    swap > khugepaged_max_ptes_swap) {
2298 				result = SCAN_EXCEED_SWAP_PTE;
2299 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2300 				break;
2301 			}
2302 			continue;
2303 		}
2304 
2305 		if (!folio_try_get(folio)) {
2306 			xas_reset(&xas);
2307 			continue;
2308 		}
2309 
2310 		if (unlikely(folio != xas_reload(&xas))) {
2311 			folio_put(folio);
2312 			xas_reset(&xas);
2313 			continue;
2314 		}
2315 
2316 		if (folio_order(folio) == HPAGE_PMD_ORDER &&
2317 		    folio->index == start) {
2318 			/* Maybe PMD-mapped */
2319 			result = SCAN_PTE_MAPPED_HUGEPAGE;
2320 			/*
2321 			 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2322 			 * by the caller won't touch the page cache, and so
2323 			 * it's safe to skip LRU and refcount checks before
2324 			 * returning.
2325 			 */
2326 			folio_put(folio);
2327 			break;
2328 		}
2329 
2330 		node = folio_nid(folio);
2331 		if (hpage_collapse_scan_abort(node, cc)) {
2332 			result = SCAN_SCAN_ABORT;
2333 			folio_put(folio);
2334 			break;
2335 		}
2336 		cc->node_load[node]++;
2337 
2338 		if (!folio_test_lru(folio)) {
2339 			result = SCAN_PAGE_LRU;
2340 			folio_put(folio);
2341 			break;
2342 		}
2343 
2344 		if (folio_expected_ref_count(folio) + 1 != folio_ref_count(folio)) {
2345 			result = SCAN_PAGE_COUNT;
2346 			folio_put(folio);
2347 			break;
2348 		}
2349 
2350 		/*
2351 		 * We probably should check if the folio is referenced
2352 		 * here, but nobody would transfer pte_young() to
2353 		 * folio_test_referenced() for us.  And rmap walk here
2354 		 * is just too costly...
2355 		 */
2356 
2357 		present += folio_nr_pages(folio);
2358 		folio_put(folio);
2359 
2360 		if (need_resched()) {
2361 			xas_pause(&xas);
2362 			cond_resched_rcu();
2363 		}
2364 	}
2365 	rcu_read_unlock();
2366 
2367 	if (result == SCAN_SUCCEED) {
2368 		if (cc->is_khugepaged &&
2369 		    present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2370 			result = SCAN_EXCEED_NONE_PTE;
2371 			count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2372 		} else {
2373 			result = collapse_file(mm, addr, file, start, cc);
2374 		}
2375 	}
2376 
2377 	trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result);
2378 	return result;
2379 }
2380 
khugepaged_scan_mm_slot(unsigned int pages,int * result,struct collapse_control * cc)2381 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2382 					    struct collapse_control *cc)
2383 	__releases(&khugepaged_mm_lock)
2384 	__acquires(&khugepaged_mm_lock)
2385 {
2386 	struct vma_iterator vmi;
2387 	struct mm_slot *slot;
2388 	struct mm_struct *mm;
2389 	struct vm_area_struct *vma;
2390 	int progress = 0;
2391 
2392 	VM_BUG_ON(!pages);
2393 	lockdep_assert_held(&khugepaged_mm_lock);
2394 	*result = SCAN_FAIL;
2395 
2396 	if (khugepaged_scan.mm_slot) {
2397 		slot = khugepaged_scan.mm_slot;
2398 	} else {
2399 		slot = list_first_entry(&khugepaged_scan.mm_head,
2400 				     struct mm_slot, mm_node);
2401 		khugepaged_scan.address = 0;
2402 		khugepaged_scan.mm_slot = slot;
2403 	}
2404 	spin_unlock(&khugepaged_mm_lock);
2405 
2406 	mm = slot->mm;
2407 	/*
2408 	 * Don't wait for semaphore (to avoid long wait times).  Just move to
2409 	 * the next mm on the list.
2410 	 */
2411 	vma = NULL;
2412 	if (unlikely(!mmap_read_trylock(mm)))
2413 		goto breakouterloop_mmap_lock;
2414 
2415 	progress++;
2416 	if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2417 		goto breakouterloop;
2418 
2419 	vma_iter_init(&vmi, mm, khugepaged_scan.address);
2420 	for_each_vma(vmi, vma) {
2421 		unsigned long hstart, hend;
2422 
2423 		cond_resched();
2424 		if (unlikely(hpage_collapse_test_exit_or_disable(mm))) {
2425 			progress++;
2426 			break;
2427 		}
2428 		if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_KHUGEPAGED, PMD_ORDER)) {
2429 skip:
2430 			progress++;
2431 			continue;
2432 		}
2433 		hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2434 		hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2435 		if (khugepaged_scan.address > hend)
2436 			goto skip;
2437 		if (khugepaged_scan.address < hstart)
2438 			khugepaged_scan.address = hstart;
2439 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2440 
2441 		while (khugepaged_scan.address < hend) {
2442 			bool mmap_locked = true;
2443 
2444 			cond_resched();
2445 			if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2446 				goto breakouterloop;
2447 
2448 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2449 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2450 				  hend);
2451 			if (!vma_is_anonymous(vma)) {
2452 				struct file *file = get_file(vma->vm_file);
2453 				pgoff_t pgoff = linear_page_index(vma,
2454 						khugepaged_scan.address);
2455 
2456 				mmap_read_unlock(mm);
2457 				mmap_locked = false;
2458 				*result = hpage_collapse_scan_file(mm,
2459 					khugepaged_scan.address, file, pgoff, cc);
2460 				fput(file);
2461 				if (*result == SCAN_PTE_MAPPED_HUGEPAGE) {
2462 					mmap_read_lock(mm);
2463 					if (hpage_collapse_test_exit_or_disable(mm))
2464 						goto breakouterloop;
2465 					*result = collapse_pte_mapped_thp(mm,
2466 						khugepaged_scan.address, false);
2467 					if (*result == SCAN_PMD_MAPPED)
2468 						*result = SCAN_SUCCEED;
2469 					mmap_read_unlock(mm);
2470 				}
2471 			} else {
2472 				*result = hpage_collapse_scan_pmd(mm, vma,
2473 					khugepaged_scan.address, &mmap_locked, cc);
2474 			}
2475 
2476 			if (*result == SCAN_SUCCEED)
2477 				++khugepaged_pages_collapsed;
2478 
2479 			/* move to next address */
2480 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2481 			progress += HPAGE_PMD_NR;
2482 			if (!mmap_locked)
2483 				/*
2484 				 * We released mmap_lock so break loop.  Note
2485 				 * that we drop mmap_lock before all hugepage
2486 				 * allocations, so if allocation fails, we are
2487 				 * guaranteed to break here and report the
2488 				 * correct result back to caller.
2489 				 */
2490 				goto breakouterloop_mmap_lock;
2491 			if (progress >= pages)
2492 				goto breakouterloop;
2493 		}
2494 	}
2495 breakouterloop:
2496 	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2497 breakouterloop_mmap_lock:
2498 
2499 	spin_lock(&khugepaged_mm_lock);
2500 	VM_BUG_ON(khugepaged_scan.mm_slot != slot);
2501 	/*
2502 	 * Release the current mm_slot if this mm is about to die, or
2503 	 * if we scanned all vmas of this mm.
2504 	 */
2505 	if (hpage_collapse_test_exit(mm) || !vma) {
2506 		/*
2507 		 * Make sure that if mm_users is reaching zero while
2508 		 * khugepaged runs here, khugepaged_exit will find
2509 		 * mm_slot not pointing to the exiting mm.
2510 		 */
2511 		if (!list_is_last(&slot->mm_node, &khugepaged_scan.mm_head)) {
2512 			khugepaged_scan.mm_slot = list_next_entry(slot, mm_node);
2513 			khugepaged_scan.address = 0;
2514 		} else {
2515 			khugepaged_scan.mm_slot = NULL;
2516 			khugepaged_full_scans++;
2517 		}
2518 
2519 		collect_mm_slot(slot);
2520 	}
2521 
2522 	return progress;
2523 }
2524 
khugepaged_has_work(void)2525 static int khugepaged_has_work(void)
2526 {
2527 	return !list_empty(&khugepaged_scan.mm_head) && hugepage_pmd_enabled();
2528 }
2529 
khugepaged_wait_event(void)2530 static int khugepaged_wait_event(void)
2531 {
2532 	return !list_empty(&khugepaged_scan.mm_head) ||
2533 		kthread_should_stop();
2534 }
2535 
khugepaged_do_scan(struct collapse_control * cc)2536 static void khugepaged_do_scan(struct collapse_control *cc)
2537 {
2538 	unsigned int progress = 0, pass_through_head = 0;
2539 	unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2540 	bool wait = true;
2541 	int result = SCAN_SUCCEED;
2542 
2543 	lru_add_drain_all();
2544 
2545 	while (true) {
2546 		cond_resched();
2547 
2548 		if (unlikely(kthread_should_stop()))
2549 			break;
2550 
2551 		spin_lock(&khugepaged_mm_lock);
2552 		if (!khugepaged_scan.mm_slot)
2553 			pass_through_head++;
2554 		if (khugepaged_has_work() &&
2555 		    pass_through_head < 2)
2556 			progress += khugepaged_scan_mm_slot(pages - progress,
2557 							    &result, cc);
2558 		else
2559 			progress = pages;
2560 		spin_unlock(&khugepaged_mm_lock);
2561 
2562 		if (progress >= pages)
2563 			break;
2564 
2565 		if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2566 			/*
2567 			 * If fail to allocate the first time, try to sleep for
2568 			 * a while.  When hit again, cancel the scan.
2569 			 */
2570 			if (!wait)
2571 				break;
2572 			wait = false;
2573 			khugepaged_alloc_sleep();
2574 		}
2575 	}
2576 }
2577 
khugepaged_should_wakeup(void)2578 static bool khugepaged_should_wakeup(void)
2579 {
2580 	return kthread_should_stop() ||
2581 	       time_after_eq(jiffies, khugepaged_sleep_expire);
2582 }
2583 
khugepaged_wait_work(void)2584 static void khugepaged_wait_work(void)
2585 {
2586 	if (khugepaged_has_work()) {
2587 		const unsigned long scan_sleep_jiffies =
2588 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2589 
2590 		if (!scan_sleep_jiffies)
2591 			return;
2592 
2593 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2594 		wait_event_freezable_timeout(khugepaged_wait,
2595 					     khugepaged_should_wakeup(),
2596 					     scan_sleep_jiffies);
2597 		return;
2598 	}
2599 
2600 	if (hugepage_pmd_enabled())
2601 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2602 }
2603 
khugepaged(void * none)2604 static int khugepaged(void *none)
2605 {
2606 	struct mm_slot *slot;
2607 
2608 	set_freezable();
2609 	set_user_nice(current, MAX_NICE);
2610 
2611 	while (!kthread_should_stop()) {
2612 		khugepaged_do_scan(&khugepaged_collapse_control);
2613 		khugepaged_wait_work();
2614 	}
2615 
2616 	spin_lock(&khugepaged_mm_lock);
2617 	slot = khugepaged_scan.mm_slot;
2618 	khugepaged_scan.mm_slot = NULL;
2619 	if (slot)
2620 		collect_mm_slot(slot);
2621 	spin_unlock(&khugepaged_mm_lock);
2622 	return 0;
2623 }
2624 
set_recommended_min_free_kbytes(void)2625 static void set_recommended_min_free_kbytes(void)
2626 {
2627 	struct zone *zone;
2628 	int nr_zones = 0;
2629 	unsigned long recommended_min;
2630 
2631 	if (!hugepage_pmd_enabled()) {
2632 		calculate_min_free_kbytes();
2633 		goto update_wmarks;
2634 	}
2635 
2636 	for_each_populated_zone(zone) {
2637 		/*
2638 		 * We don't need to worry about fragmentation of
2639 		 * ZONE_MOVABLE since it only has movable pages.
2640 		 */
2641 		if (zone_idx(zone) > gfp_zone(GFP_USER))
2642 			continue;
2643 
2644 		nr_zones++;
2645 	}
2646 
2647 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2648 	recommended_min = pageblock_nr_pages * nr_zones * 2;
2649 
2650 	/*
2651 	 * Make sure that on average at least two pageblocks are almost free
2652 	 * of another type, one for a migratetype to fall back to and a
2653 	 * second to avoid subsequent fallbacks of other types There are 3
2654 	 * MIGRATE_TYPES we care about.
2655 	 */
2656 	recommended_min += pageblock_nr_pages * nr_zones *
2657 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2658 
2659 	/* don't ever allow to reserve more than 5% of the lowmem */
2660 	recommended_min = min(recommended_min,
2661 			      (unsigned long) nr_free_buffer_pages() / 20);
2662 	recommended_min <<= (PAGE_SHIFT-10);
2663 
2664 	if (recommended_min > min_free_kbytes) {
2665 		if (user_min_free_kbytes >= 0)
2666 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2667 				min_free_kbytes, recommended_min);
2668 
2669 		min_free_kbytes = recommended_min;
2670 	}
2671 
2672 update_wmarks:
2673 	setup_per_zone_wmarks();
2674 }
2675 
start_stop_khugepaged(void)2676 int start_stop_khugepaged(void)
2677 {
2678 	int err = 0;
2679 
2680 	mutex_lock(&khugepaged_mutex);
2681 	if (hugepage_pmd_enabled()) {
2682 		if (!khugepaged_thread)
2683 			khugepaged_thread = kthread_run(khugepaged, NULL,
2684 							"khugepaged");
2685 		if (IS_ERR(khugepaged_thread)) {
2686 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2687 			err = PTR_ERR(khugepaged_thread);
2688 			khugepaged_thread = NULL;
2689 			goto fail;
2690 		}
2691 
2692 		if (!list_empty(&khugepaged_scan.mm_head))
2693 			wake_up_interruptible(&khugepaged_wait);
2694 	} else if (khugepaged_thread) {
2695 		kthread_stop(khugepaged_thread);
2696 		khugepaged_thread = NULL;
2697 	}
2698 	set_recommended_min_free_kbytes();
2699 fail:
2700 	mutex_unlock(&khugepaged_mutex);
2701 	return err;
2702 }
2703 
khugepaged_min_free_kbytes_update(void)2704 void khugepaged_min_free_kbytes_update(void)
2705 {
2706 	mutex_lock(&khugepaged_mutex);
2707 	if (hugepage_pmd_enabled() && khugepaged_thread)
2708 		set_recommended_min_free_kbytes();
2709 	mutex_unlock(&khugepaged_mutex);
2710 }
2711 
current_is_khugepaged(void)2712 bool current_is_khugepaged(void)
2713 {
2714 	return kthread_func(current) == khugepaged;
2715 }
2716 
madvise_collapse_errno(enum scan_result r)2717 static int madvise_collapse_errno(enum scan_result r)
2718 {
2719 	/*
2720 	 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2721 	 * actionable feedback to caller, so they may take an appropriate
2722 	 * fallback measure depending on the nature of the failure.
2723 	 */
2724 	switch (r) {
2725 	case SCAN_ALLOC_HUGE_PAGE_FAIL:
2726 		return -ENOMEM;
2727 	case SCAN_CGROUP_CHARGE_FAIL:
2728 	case SCAN_EXCEED_NONE_PTE:
2729 		return -EBUSY;
2730 	/* Resource temporary unavailable - trying again might succeed */
2731 	case SCAN_PAGE_COUNT:
2732 	case SCAN_PAGE_LOCK:
2733 	case SCAN_PAGE_LRU:
2734 	case SCAN_DEL_PAGE_LRU:
2735 	case SCAN_PAGE_FILLED:
2736 		return -EAGAIN;
2737 	/*
2738 	 * Other: Trying again likely not to succeed / error intrinsic to
2739 	 * specified memory range. khugepaged likely won't be able to collapse
2740 	 * either.
2741 	 */
2742 	default:
2743 		return -EINVAL;
2744 	}
2745 }
2746 
madvise_collapse(struct vm_area_struct * vma,unsigned long start,unsigned long end,bool * lock_dropped)2747 int madvise_collapse(struct vm_area_struct *vma, unsigned long start,
2748 		     unsigned long end, bool *lock_dropped)
2749 {
2750 	struct collapse_control *cc;
2751 	struct mm_struct *mm = vma->vm_mm;
2752 	unsigned long hstart, hend, addr;
2753 	int thps = 0, last_fail = SCAN_FAIL;
2754 	bool mmap_locked = true;
2755 
2756 	BUG_ON(vma->vm_start > start);
2757 	BUG_ON(vma->vm_end < end);
2758 
2759 	if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_FORCED_COLLAPSE, PMD_ORDER))
2760 		return -EINVAL;
2761 
2762 	cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2763 	if (!cc)
2764 		return -ENOMEM;
2765 	cc->is_khugepaged = false;
2766 
2767 	mmgrab(mm);
2768 	lru_add_drain_all();
2769 
2770 	hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2771 	hend = end & HPAGE_PMD_MASK;
2772 
2773 	for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2774 		int result = SCAN_FAIL;
2775 
2776 		if (!mmap_locked) {
2777 			cond_resched();
2778 			mmap_read_lock(mm);
2779 			mmap_locked = true;
2780 			result = hugepage_vma_revalidate(mm, addr, false, &vma,
2781 							 cc);
2782 			if (result  != SCAN_SUCCEED) {
2783 				last_fail = result;
2784 				goto out_nolock;
2785 			}
2786 
2787 			hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
2788 		}
2789 		mmap_assert_locked(mm);
2790 		memset(cc->node_load, 0, sizeof(cc->node_load));
2791 		nodes_clear(cc->alloc_nmask);
2792 		if (!vma_is_anonymous(vma)) {
2793 			struct file *file = get_file(vma->vm_file);
2794 			pgoff_t pgoff = linear_page_index(vma, addr);
2795 
2796 			mmap_read_unlock(mm);
2797 			mmap_locked = false;
2798 			result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2799 							  cc);
2800 			fput(file);
2801 		} else {
2802 			result = hpage_collapse_scan_pmd(mm, vma, addr,
2803 							 &mmap_locked, cc);
2804 		}
2805 		if (!mmap_locked)
2806 			*lock_dropped = true;
2807 
2808 handle_result:
2809 		switch (result) {
2810 		case SCAN_SUCCEED:
2811 		case SCAN_PMD_MAPPED:
2812 			++thps;
2813 			break;
2814 		case SCAN_PTE_MAPPED_HUGEPAGE:
2815 			BUG_ON(mmap_locked);
2816 			mmap_read_lock(mm);
2817 			result = collapse_pte_mapped_thp(mm, addr, true);
2818 			mmap_read_unlock(mm);
2819 			goto handle_result;
2820 		/* Whitelisted set of results where continuing OK */
2821 		case SCAN_PMD_NULL:
2822 		case SCAN_PTE_NON_PRESENT:
2823 		case SCAN_PTE_UFFD_WP:
2824 		case SCAN_LACK_REFERENCED_PAGE:
2825 		case SCAN_PAGE_NULL:
2826 		case SCAN_PAGE_COUNT:
2827 		case SCAN_PAGE_LOCK:
2828 		case SCAN_PAGE_COMPOUND:
2829 		case SCAN_PAGE_LRU:
2830 		case SCAN_DEL_PAGE_LRU:
2831 			last_fail = result;
2832 			break;
2833 		default:
2834 			last_fail = result;
2835 			/* Other error, exit */
2836 			goto out_maybelock;
2837 		}
2838 	}
2839 
2840 out_maybelock:
2841 	/* Caller expects us to hold mmap_lock on return */
2842 	if (!mmap_locked)
2843 		mmap_read_lock(mm);
2844 out_nolock:
2845 	mmap_assert_locked(mm);
2846 	mmdrop(mm);
2847 	kfree(cc);
2848 
2849 	return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2850 			: madvise_collapse_errno(last_fail);
2851 }
2852