xref: /linux/mm/khugepaged.c (revision 7a405dbb0f036f8d1713ab9e7df0cd3137987b07)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/mmu_notifier.h>
8 #include <linux/rmap.h>
9 #include <linux/swap.h>
10 #include <linux/mm_inline.h>
11 #include <linux/kthread.h>
12 #include <linux/khugepaged.h>
13 #include <linux/freezer.h>
14 #include <linux/mman.h>
15 #include <linux/hashtable.h>
16 #include <linux/userfaultfd_k.h>
17 #include <linux/page_idle.h>
18 #include <linux/page_table_check.h>
19 #include <linux/rcupdate_wait.h>
20 #include <linux/swapops.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/dax.h>
23 #include <linux/ksm.h>
24 
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
28 #include "mm_slot.h"
29 
30 enum scan_result {
31 	SCAN_FAIL,
32 	SCAN_SUCCEED,
33 	SCAN_PMD_NULL,
34 	SCAN_PMD_NONE,
35 	SCAN_PMD_MAPPED,
36 	SCAN_EXCEED_NONE_PTE,
37 	SCAN_EXCEED_SWAP_PTE,
38 	SCAN_EXCEED_SHARED_PTE,
39 	SCAN_PTE_NON_PRESENT,
40 	SCAN_PTE_UFFD_WP,
41 	SCAN_PTE_MAPPED_HUGEPAGE,
42 	SCAN_LACK_REFERENCED_PAGE,
43 	SCAN_PAGE_NULL,
44 	SCAN_SCAN_ABORT,
45 	SCAN_PAGE_COUNT,
46 	SCAN_PAGE_LRU,
47 	SCAN_PAGE_LOCK,
48 	SCAN_PAGE_ANON,
49 	SCAN_PAGE_COMPOUND,
50 	SCAN_ANY_PROCESS,
51 	SCAN_VMA_NULL,
52 	SCAN_VMA_CHECK,
53 	SCAN_ADDRESS_RANGE,
54 	SCAN_DEL_PAGE_LRU,
55 	SCAN_ALLOC_HUGE_PAGE_FAIL,
56 	SCAN_CGROUP_CHARGE_FAIL,
57 	SCAN_TRUNCATED,
58 	SCAN_PAGE_HAS_PRIVATE,
59 	SCAN_STORE_FAILED,
60 	SCAN_COPY_MC,
61 	SCAN_PAGE_FILLED,
62 };
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/huge_memory.h>
66 
67 static struct task_struct *khugepaged_thread __read_mostly;
68 static DEFINE_MUTEX(khugepaged_mutex);
69 
70 /* default scan 8*512 pte (or vmas) every 30 second */
71 static unsigned int khugepaged_pages_to_scan __read_mostly;
72 static unsigned int khugepaged_pages_collapsed;
73 static unsigned int khugepaged_full_scans;
74 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
75 /* during fragmentation poll the hugepage allocator once every minute */
76 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
77 static unsigned long khugepaged_sleep_expire;
78 static DEFINE_SPINLOCK(khugepaged_mm_lock);
79 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
80 /*
81  * default collapse hugepages if there is at least one pte mapped like
82  * it would have happened if the vma was large enough during page
83  * fault.
84  *
85  * Note that these are only respected if collapse was initiated by khugepaged.
86  */
87 unsigned int khugepaged_max_ptes_none __read_mostly;
88 static unsigned int khugepaged_max_ptes_swap __read_mostly;
89 static unsigned int khugepaged_max_ptes_shared __read_mostly;
90 
91 #define MM_SLOTS_HASH_BITS 10
92 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
93 
94 static struct kmem_cache *mm_slot_cache __ro_after_init;
95 
96 struct collapse_control {
97 	bool is_khugepaged;
98 
99 	/* Num pages scanned per node */
100 	u32 node_load[MAX_NUMNODES];
101 
102 	/* nodemask for allocation fallback */
103 	nodemask_t alloc_nmask;
104 };
105 
106 /**
107  * struct khugepaged_scan - cursor for scanning
108  * @mm_head: the head of the mm list to scan
109  * @mm_slot: the current mm_slot we are scanning
110  * @address: the next address inside that to be scanned
111  *
112  * There is only the one khugepaged_scan instance of this cursor structure.
113  */
114 struct khugepaged_scan {
115 	struct list_head mm_head;
116 	struct mm_slot *mm_slot;
117 	unsigned long address;
118 };
119 
120 static struct khugepaged_scan khugepaged_scan = {
121 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
122 };
123 
124 #ifdef CONFIG_SYSFS
scan_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)125 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
126 					 struct kobj_attribute *attr,
127 					 char *buf)
128 {
129 	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
130 }
131 
scan_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)132 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
133 					  struct kobj_attribute *attr,
134 					  const char *buf, size_t count)
135 {
136 	unsigned int msecs;
137 	int err;
138 
139 	err = kstrtouint(buf, 10, &msecs);
140 	if (err)
141 		return -EINVAL;
142 
143 	khugepaged_scan_sleep_millisecs = msecs;
144 	khugepaged_sleep_expire = 0;
145 	wake_up_interruptible(&khugepaged_wait);
146 
147 	return count;
148 }
149 static struct kobj_attribute scan_sleep_millisecs_attr =
150 	__ATTR_RW(scan_sleep_millisecs);
151 
alloc_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)152 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
153 					  struct kobj_attribute *attr,
154 					  char *buf)
155 {
156 	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
157 }
158 
alloc_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)159 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
160 					   struct kobj_attribute *attr,
161 					   const char *buf, size_t count)
162 {
163 	unsigned int msecs;
164 	int err;
165 
166 	err = kstrtouint(buf, 10, &msecs);
167 	if (err)
168 		return -EINVAL;
169 
170 	khugepaged_alloc_sleep_millisecs = msecs;
171 	khugepaged_sleep_expire = 0;
172 	wake_up_interruptible(&khugepaged_wait);
173 
174 	return count;
175 }
176 static struct kobj_attribute alloc_sleep_millisecs_attr =
177 	__ATTR_RW(alloc_sleep_millisecs);
178 
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)179 static ssize_t pages_to_scan_show(struct kobject *kobj,
180 				  struct kobj_attribute *attr,
181 				  char *buf)
182 {
183 	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
184 }
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)185 static ssize_t pages_to_scan_store(struct kobject *kobj,
186 				   struct kobj_attribute *attr,
187 				   const char *buf, size_t count)
188 {
189 	unsigned int pages;
190 	int err;
191 
192 	err = kstrtouint(buf, 10, &pages);
193 	if (err || !pages)
194 		return -EINVAL;
195 
196 	khugepaged_pages_to_scan = pages;
197 
198 	return count;
199 }
200 static struct kobj_attribute pages_to_scan_attr =
201 	__ATTR_RW(pages_to_scan);
202 
pages_collapsed_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)203 static ssize_t pages_collapsed_show(struct kobject *kobj,
204 				    struct kobj_attribute *attr,
205 				    char *buf)
206 {
207 	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
208 }
209 static struct kobj_attribute pages_collapsed_attr =
210 	__ATTR_RO(pages_collapsed);
211 
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)212 static ssize_t full_scans_show(struct kobject *kobj,
213 			       struct kobj_attribute *attr,
214 			       char *buf)
215 {
216 	return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
217 }
218 static struct kobj_attribute full_scans_attr =
219 	__ATTR_RO(full_scans);
220 
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)221 static ssize_t defrag_show(struct kobject *kobj,
222 			   struct kobj_attribute *attr, char *buf)
223 {
224 	return single_hugepage_flag_show(kobj, attr, buf,
225 					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
226 }
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)227 static ssize_t defrag_store(struct kobject *kobj,
228 			    struct kobj_attribute *attr,
229 			    const char *buf, size_t count)
230 {
231 	return single_hugepage_flag_store(kobj, attr, buf, count,
232 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
233 }
234 static struct kobj_attribute khugepaged_defrag_attr =
235 	__ATTR_RW(defrag);
236 
237 /*
238  * max_ptes_none controls if khugepaged should collapse hugepages over
239  * any unmapped ptes in turn potentially increasing the memory
240  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
241  * reduce the available free memory in the system as it
242  * runs. Increasing max_ptes_none will instead potentially reduce the
243  * free memory in the system during the khugepaged scan.
244  */
max_ptes_none_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)245 static ssize_t max_ptes_none_show(struct kobject *kobj,
246 				  struct kobj_attribute *attr,
247 				  char *buf)
248 {
249 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
250 }
max_ptes_none_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)251 static ssize_t max_ptes_none_store(struct kobject *kobj,
252 				   struct kobj_attribute *attr,
253 				   const char *buf, size_t count)
254 {
255 	int err;
256 	unsigned long max_ptes_none;
257 
258 	err = kstrtoul(buf, 10, &max_ptes_none);
259 	if (err || max_ptes_none > HPAGE_PMD_NR - 1)
260 		return -EINVAL;
261 
262 	khugepaged_max_ptes_none = max_ptes_none;
263 
264 	return count;
265 }
266 static struct kobj_attribute khugepaged_max_ptes_none_attr =
267 	__ATTR_RW(max_ptes_none);
268 
max_ptes_swap_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)269 static ssize_t max_ptes_swap_show(struct kobject *kobj,
270 				  struct kobj_attribute *attr,
271 				  char *buf)
272 {
273 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
274 }
275 
max_ptes_swap_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)276 static ssize_t max_ptes_swap_store(struct kobject *kobj,
277 				   struct kobj_attribute *attr,
278 				   const char *buf, size_t count)
279 {
280 	int err;
281 	unsigned long max_ptes_swap;
282 
283 	err  = kstrtoul(buf, 10, &max_ptes_swap);
284 	if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
285 		return -EINVAL;
286 
287 	khugepaged_max_ptes_swap = max_ptes_swap;
288 
289 	return count;
290 }
291 
292 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
293 	__ATTR_RW(max_ptes_swap);
294 
max_ptes_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)295 static ssize_t max_ptes_shared_show(struct kobject *kobj,
296 				    struct kobj_attribute *attr,
297 				    char *buf)
298 {
299 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
300 }
301 
max_ptes_shared_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)302 static ssize_t max_ptes_shared_store(struct kobject *kobj,
303 				     struct kobj_attribute *attr,
304 				     const char *buf, size_t count)
305 {
306 	int err;
307 	unsigned long max_ptes_shared;
308 
309 	err  = kstrtoul(buf, 10, &max_ptes_shared);
310 	if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
311 		return -EINVAL;
312 
313 	khugepaged_max_ptes_shared = max_ptes_shared;
314 
315 	return count;
316 }
317 
318 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
319 	__ATTR_RW(max_ptes_shared);
320 
321 static struct attribute *khugepaged_attr[] = {
322 	&khugepaged_defrag_attr.attr,
323 	&khugepaged_max_ptes_none_attr.attr,
324 	&khugepaged_max_ptes_swap_attr.attr,
325 	&khugepaged_max_ptes_shared_attr.attr,
326 	&pages_to_scan_attr.attr,
327 	&pages_collapsed_attr.attr,
328 	&full_scans_attr.attr,
329 	&scan_sleep_millisecs_attr.attr,
330 	&alloc_sleep_millisecs_attr.attr,
331 	NULL,
332 };
333 
334 struct attribute_group khugepaged_attr_group = {
335 	.attrs = khugepaged_attr,
336 	.name = "khugepaged",
337 };
338 #endif /* CONFIG_SYSFS */
339 
hugepage_madvise(struct vm_area_struct * vma,vm_flags_t * vm_flags,int advice)340 int hugepage_madvise(struct vm_area_struct *vma,
341 		     vm_flags_t *vm_flags, int advice)
342 {
343 	switch (advice) {
344 	case MADV_HUGEPAGE:
345 #ifdef CONFIG_S390
346 		/*
347 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
348 		 * can't handle this properly after s390_enable_sie, so we simply
349 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
350 		 */
351 		if (mm_has_pgste(vma->vm_mm))
352 			return 0;
353 #endif
354 		*vm_flags &= ~VM_NOHUGEPAGE;
355 		*vm_flags |= VM_HUGEPAGE;
356 		/*
357 		 * If the vma become good for khugepaged to scan,
358 		 * register it here without waiting a page fault that
359 		 * may not happen any time soon.
360 		 */
361 		khugepaged_enter_vma(vma, *vm_flags);
362 		break;
363 	case MADV_NOHUGEPAGE:
364 		*vm_flags &= ~VM_HUGEPAGE;
365 		*vm_flags |= VM_NOHUGEPAGE;
366 		/*
367 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
368 		 * this vma even if we leave the mm registered in khugepaged if
369 		 * it got registered before VM_NOHUGEPAGE was set.
370 		 */
371 		break;
372 	}
373 
374 	return 0;
375 }
376 
khugepaged_init(void)377 int __init khugepaged_init(void)
378 {
379 	mm_slot_cache = KMEM_CACHE(mm_slot, 0);
380 	if (!mm_slot_cache)
381 		return -ENOMEM;
382 
383 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
384 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
385 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
386 	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
387 
388 	return 0;
389 }
390 
khugepaged_destroy(void)391 void __init khugepaged_destroy(void)
392 {
393 	kmem_cache_destroy(mm_slot_cache);
394 }
395 
hpage_collapse_test_exit(struct mm_struct * mm)396 static inline int hpage_collapse_test_exit(struct mm_struct *mm)
397 {
398 	return atomic_read(&mm->mm_users) == 0;
399 }
400 
hpage_collapse_test_exit_or_disable(struct mm_struct * mm)401 static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm)
402 {
403 	return hpage_collapse_test_exit(mm) ||
404 		mm_flags_test(MMF_DISABLE_THP_COMPLETELY, mm);
405 }
406 
hugepage_pmd_enabled(void)407 static bool hugepage_pmd_enabled(void)
408 {
409 	/*
410 	 * We cover the anon, shmem and the file-backed case here; file-backed
411 	 * hugepages, when configured in, are determined by the global control.
412 	 * Anon pmd-sized hugepages are determined by the pmd-size control.
413 	 * Shmem pmd-sized hugepages are also determined by its pmd-size control,
414 	 * except when the global shmem_huge is set to SHMEM_HUGE_DENY.
415 	 */
416 	if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
417 	    hugepage_global_enabled())
418 		return true;
419 	if (test_bit(PMD_ORDER, &huge_anon_orders_always))
420 		return true;
421 	if (test_bit(PMD_ORDER, &huge_anon_orders_madvise))
422 		return true;
423 	if (test_bit(PMD_ORDER, &huge_anon_orders_inherit) &&
424 	    hugepage_global_enabled())
425 		return true;
426 	if (IS_ENABLED(CONFIG_SHMEM) && shmem_hpage_pmd_enabled())
427 		return true;
428 	return false;
429 }
430 
__khugepaged_enter(struct mm_struct * mm)431 void __khugepaged_enter(struct mm_struct *mm)
432 {
433 	struct mm_slot *slot;
434 	int wakeup;
435 
436 	/* __khugepaged_exit() must not run from under us */
437 	VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
438 	if (unlikely(mm_flags_test_and_set(MMF_VM_HUGEPAGE, mm)))
439 		return;
440 
441 	slot = mm_slot_alloc(mm_slot_cache);
442 	if (!slot)
443 		return;
444 
445 	spin_lock(&khugepaged_mm_lock);
446 	mm_slot_insert(mm_slots_hash, mm, slot);
447 	/*
448 	 * Insert just behind the scanning cursor, to let the area settle
449 	 * down a little.
450 	 */
451 	wakeup = list_empty(&khugepaged_scan.mm_head);
452 	list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
453 	spin_unlock(&khugepaged_mm_lock);
454 
455 	mmgrab(mm);
456 	if (wakeup)
457 		wake_up_interruptible(&khugepaged_wait);
458 }
459 
khugepaged_enter_vma(struct vm_area_struct * vma,vm_flags_t vm_flags)460 void khugepaged_enter_vma(struct vm_area_struct *vma,
461 			  vm_flags_t vm_flags)
462 {
463 	if (!mm_flags_test(MMF_VM_HUGEPAGE, vma->vm_mm) &&
464 	    hugepage_pmd_enabled()) {
465 		if (thp_vma_allowable_order(vma, vm_flags, TVA_KHUGEPAGED, PMD_ORDER))
466 			__khugepaged_enter(vma->vm_mm);
467 	}
468 }
469 
__khugepaged_exit(struct mm_struct * mm)470 void __khugepaged_exit(struct mm_struct *mm)
471 {
472 	struct mm_slot *slot;
473 	int free = 0;
474 
475 	spin_lock(&khugepaged_mm_lock);
476 	slot = mm_slot_lookup(mm_slots_hash, mm);
477 	if (slot && khugepaged_scan.mm_slot != slot) {
478 		hash_del(&slot->hash);
479 		list_del(&slot->mm_node);
480 		free = 1;
481 	}
482 	spin_unlock(&khugepaged_mm_lock);
483 
484 	if (free) {
485 		mm_flags_clear(MMF_VM_HUGEPAGE, mm);
486 		mm_slot_free(mm_slot_cache, slot);
487 		mmdrop(mm);
488 	} else if (slot) {
489 		/*
490 		 * This is required to serialize against
491 		 * hpage_collapse_test_exit() (which is guaranteed to run
492 		 * under mmap sem read mode). Stop here (after we return all
493 		 * pagetables will be destroyed) until khugepaged has finished
494 		 * working on the pagetables under the mmap_lock.
495 		 */
496 		mmap_write_lock(mm);
497 		mmap_write_unlock(mm);
498 	}
499 }
500 
release_pte_folio(struct folio * folio)501 static void release_pte_folio(struct folio *folio)
502 {
503 	node_stat_mod_folio(folio,
504 			NR_ISOLATED_ANON + folio_is_file_lru(folio),
505 			-folio_nr_pages(folio));
506 	folio_unlock(folio);
507 	folio_putback_lru(folio);
508 }
509 
release_pte_pages(pte_t * pte,pte_t * _pte,struct list_head * compound_pagelist)510 static void release_pte_pages(pte_t *pte, pte_t *_pte,
511 		struct list_head *compound_pagelist)
512 {
513 	struct folio *folio, *tmp;
514 
515 	while (--_pte >= pte) {
516 		pte_t pteval = ptep_get(_pte);
517 		unsigned long pfn;
518 
519 		if (pte_none(pteval))
520 			continue;
521 		pfn = pte_pfn(pteval);
522 		if (is_zero_pfn(pfn))
523 			continue;
524 		folio = pfn_folio(pfn);
525 		if (folio_test_large(folio))
526 			continue;
527 		release_pte_folio(folio);
528 	}
529 
530 	list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) {
531 		list_del(&folio->lru);
532 		release_pte_folio(folio);
533 	}
534 }
535 
__collapse_huge_page_isolate(struct vm_area_struct * vma,unsigned long start_addr,pte_t * pte,struct collapse_control * cc,struct list_head * compound_pagelist)536 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
537 					unsigned long start_addr,
538 					pte_t *pte,
539 					struct collapse_control *cc,
540 					struct list_head *compound_pagelist)
541 {
542 	struct page *page = NULL;
543 	struct folio *folio = NULL;
544 	unsigned long addr = start_addr;
545 	pte_t *_pte;
546 	int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
547 
548 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
549 	     _pte++, addr += PAGE_SIZE) {
550 		pte_t pteval = ptep_get(_pte);
551 		if (pte_none(pteval) || (pte_present(pteval) &&
552 				is_zero_pfn(pte_pfn(pteval)))) {
553 			++none_or_zero;
554 			if (!userfaultfd_armed(vma) &&
555 			    (!cc->is_khugepaged ||
556 			     none_or_zero <= khugepaged_max_ptes_none)) {
557 				continue;
558 			} else {
559 				result = SCAN_EXCEED_NONE_PTE;
560 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
561 				goto out;
562 			}
563 		}
564 		if (!pte_present(pteval)) {
565 			result = SCAN_PTE_NON_PRESENT;
566 			goto out;
567 		}
568 		if (pte_uffd_wp(pteval)) {
569 			result = SCAN_PTE_UFFD_WP;
570 			goto out;
571 		}
572 		page = vm_normal_page(vma, addr, pteval);
573 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
574 			result = SCAN_PAGE_NULL;
575 			goto out;
576 		}
577 
578 		folio = page_folio(page);
579 		VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio);
580 
581 		/* See hpage_collapse_scan_pmd(). */
582 		if (folio_maybe_mapped_shared(folio)) {
583 			++shared;
584 			if (cc->is_khugepaged &&
585 			    shared > khugepaged_max_ptes_shared) {
586 				result = SCAN_EXCEED_SHARED_PTE;
587 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
588 				goto out;
589 			}
590 		}
591 
592 		if (folio_test_large(folio)) {
593 			struct folio *f;
594 
595 			/*
596 			 * Check if we have dealt with the compound page
597 			 * already
598 			 */
599 			list_for_each_entry(f, compound_pagelist, lru) {
600 				if (folio == f)
601 					goto next;
602 			}
603 		}
604 
605 		/*
606 		 * We can do it before folio_isolate_lru because the
607 		 * folio can't be freed from under us. NOTE: PG_lock
608 		 * is needed to serialize against split_huge_page
609 		 * when invoked from the VM.
610 		 */
611 		if (!folio_trylock(folio)) {
612 			result = SCAN_PAGE_LOCK;
613 			goto out;
614 		}
615 
616 		/*
617 		 * Check if the page has any GUP (or other external) pins.
618 		 *
619 		 * The page table that maps the page has been already unlinked
620 		 * from the page table tree and this process cannot get
621 		 * an additional pin on the page.
622 		 *
623 		 * New pins can come later if the page is shared across fork,
624 		 * but not from this process. The other process cannot write to
625 		 * the page, only trigger CoW.
626 		 */
627 		if (folio_expected_ref_count(folio) != folio_ref_count(folio)) {
628 			folio_unlock(folio);
629 			result = SCAN_PAGE_COUNT;
630 			goto out;
631 		}
632 
633 		/*
634 		 * Isolate the page to avoid collapsing an hugepage
635 		 * currently in use by the VM.
636 		 */
637 		if (!folio_isolate_lru(folio)) {
638 			folio_unlock(folio);
639 			result = SCAN_DEL_PAGE_LRU;
640 			goto out;
641 		}
642 		node_stat_mod_folio(folio,
643 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
644 				folio_nr_pages(folio));
645 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
646 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
647 
648 		if (folio_test_large(folio))
649 			list_add_tail(&folio->lru, compound_pagelist);
650 next:
651 		/*
652 		 * If collapse was initiated by khugepaged, check that there is
653 		 * enough young pte to justify collapsing the page
654 		 */
655 		if (cc->is_khugepaged &&
656 		    (pte_young(pteval) || folio_test_young(folio) ||
657 		     folio_test_referenced(folio) ||
658 		     mmu_notifier_test_young(vma->vm_mm, addr)))
659 			referenced++;
660 	}
661 
662 	if (unlikely(cc->is_khugepaged && !referenced)) {
663 		result = SCAN_LACK_REFERENCED_PAGE;
664 	} else {
665 		result = SCAN_SUCCEED;
666 		trace_mm_collapse_huge_page_isolate(folio, none_or_zero,
667 						    referenced, result);
668 		return result;
669 	}
670 out:
671 	release_pte_pages(pte, _pte, compound_pagelist);
672 	trace_mm_collapse_huge_page_isolate(folio, none_or_zero,
673 					    referenced, result);
674 	return result;
675 }
676 
__collapse_huge_page_copy_succeeded(pte_t * pte,struct vm_area_struct * vma,unsigned long address,spinlock_t * ptl,struct list_head * compound_pagelist)677 static void __collapse_huge_page_copy_succeeded(pte_t *pte,
678 						struct vm_area_struct *vma,
679 						unsigned long address,
680 						spinlock_t *ptl,
681 						struct list_head *compound_pagelist)
682 {
683 	unsigned long end = address + HPAGE_PMD_SIZE;
684 	struct folio *src, *tmp;
685 	pte_t pteval;
686 	pte_t *_pte;
687 	unsigned int nr_ptes;
688 
689 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR; _pte += nr_ptes,
690 	     address += nr_ptes * PAGE_SIZE) {
691 		nr_ptes = 1;
692 		pteval = ptep_get(_pte);
693 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
694 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
695 			if (is_zero_pfn(pte_pfn(pteval))) {
696 				/*
697 				 * ptl mostly unnecessary.
698 				 */
699 				spin_lock(ptl);
700 				ptep_clear(vma->vm_mm, address, _pte);
701 				spin_unlock(ptl);
702 				ksm_might_unmap_zero_page(vma->vm_mm, pteval);
703 			}
704 		} else {
705 			struct page *src_page = pte_page(pteval);
706 
707 			src = page_folio(src_page);
708 
709 			if (folio_test_large(src)) {
710 				unsigned int max_nr_ptes = (end - address) >> PAGE_SHIFT;
711 
712 				nr_ptes = folio_pte_batch(src, _pte, pteval, max_nr_ptes);
713 			} else {
714 				release_pte_folio(src);
715 			}
716 
717 			/*
718 			 * ptl mostly unnecessary, but preempt has to
719 			 * be disabled to update the per-cpu stats
720 			 * inside folio_remove_rmap_pte().
721 			 */
722 			spin_lock(ptl);
723 			clear_ptes(vma->vm_mm, address, _pte, nr_ptes);
724 			folio_remove_rmap_ptes(src, src_page, nr_ptes, vma);
725 			spin_unlock(ptl);
726 			free_swap_cache(src);
727 			folio_put_refs(src, nr_ptes);
728 		}
729 	}
730 
731 	list_for_each_entry_safe(src, tmp, compound_pagelist, lru) {
732 		list_del(&src->lru);
733 		node_stat_sub_folio(src, NR_ISOLATED_ANON +
734 				folio_is_file_lru(src));
735 		folio_unlock(src);
736 		free_swap_cache(src);
737 		folio_putback_lru(src);
738 	}
739 }
740 
__collapse_huge_page_copy_failed(pte_t * pte,pmd_t * pmd,pmd_t orig_pmd,struct vm_area_struct * vma,struct list_head * compound_pagelist)741 static void __collapse_huge_page_copy_failed(pte_t *pte,
742 					     pmd_t *pmd,
743 					     pmd_t orig_pmd,
744 					     struct vm_area_struct *vma,
745 					     struct list_head *compound_pagelist)
746 {
747 	spinlock_t *pmd_ptl;
748 
749 	/*
750 	 * Re-establish the PMD to point to the original page table
751 	 * entry. Restoring PMD needs to be done prior to releasing
752 	 * pages. Since pages are still isolated and locked here,
753 	 * acquiring anon_vma_lock_write is unnecessary.
754 	 */
755 	pmd_ptl = pmd_lock(vma->vm_mm, pmd);
756 	pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd));
757 	spin_unlock(pmd_ptl);
758 	/*
759 	 * Release both raw and compound pages isolated
760 	 * in __collapse_huge_page_isolate.
761 	 */
762 	release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist);
763 }
764 
765 /*
766  * __collapse_huge_page_copy - attempts to copy memory contents from raw
767  * pages to a hugepage. Cleans up the raw pages if copying succeeds;
768  * otherwise restores the original page table and releases isolated raw pages.
769  * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC.
770  *
771  * @pte: starting of the PTEs to copy from
772  * @folio: the new hugepage to copy contents to
773  * @pmd: pointer to the new hugepage's PMD
774  * @orig_pmd: the original raw pages' PMD
775  * @vma: the original raw pages' virtual memory area
776  * @address: starting address to copy
777  * @ptl: lock on raw pages' PTEs
778  * @compound_pagelist: list that stores compound pages
779  */
__collapse_huge_page_copy(pte_t * pte,struct folio * folio,pmd_t * pmd,pmd_t orig_pmd,struct vm_area_struct * vma,unsigned long address,spinlock_t * ptl,struct list_head * compound_pagelist)780 static int __collapse_huge_page_copy(pte_t *pte, struct folio *folio,
781 		pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma,
782 		unsigned long address, spinlock_t *ptl,
783 		struct list_head *compound_pagelist)
784 {
785 	unsigned int i;
786 	int result = SCAN_SUCCEED;
787 
788 	/*
789 	 * Copying pages' contents is subject to memory poison at any iteration.
790 	 */
791 	for (i = 0; i < HPAGE_PMD_NR; i++) {
792 		pte_t pteval = ptep_get(pte + i);
793 		struct page *page = folio_page(folio, i);
794 		unsigned long src_addr = address + i * PAGE_SIZE;
795 		struct page *src_page;
796 
797 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
798 			clear_user_highpage(page, src_addr);
799 			continue;
800 		}
801 		src_page = pte_page(pteval);
802 		if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) {
803 			result = SCAN_COPY_MC;
804 			break;
805 		}
806 	}
807 
808 	if (likely(result == SCAN_SUCCEED))
809 		__collapse_huge_page_copy_succeeded(pte, vma, address, ptl,
810 						    compound_pagelist);
811 	else
812 		__collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma,
813 						 compound_pagelist);
814 
815 	return result;
816 }
817 
khugepaged_alloc_sleep(void)818 static void khugepaged_alloc_sleep(void)
819 {
820 	DEFINE_WAIT(wait);
821 
822 	add_wait_queue(&khugepaged_wait, &wait);
823 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
824 	schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
825 	remove_wait_queue(&khugepaged_wait, &wait);
826 }
827 
828 struct collapse_control khugepaged_collapse_control = {
829 	.is_khugepaged = true,
830 };
831 
hpage_collapse_scan_abort(int nid,struct collapse_control * cc)832 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
833 {
834 	int i;
835 
836 	/*
837 	 * If node_reclaim_mode is disabled, then no extra effort is made to
838 	 * allocate memory locally.
839 	 */
840 	if (!node_reclaim_enabled())
841 		return false;
842 
843 	/* If there is a count for this node already, it must be acceptable */
844 	if (cc->node_load[nid])
845 		return false;
846 
847 	for (i = 0; i < MAX_NUMNODES; i++) {
848 		if (!cc->node_load[i])
849 			continue;
850 		if (node_distance(nid, i) > node_reclaim_distance)
851 			return true;
852 	}
853 	return false;
854 }
855 
856 #define khugepaged_defrag()					\
857 	(transparent_hugepage_flags &				\
858 	 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
859 
860 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
alloc_hugepage_khugepaged_gfpmask(void)861 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
862 {
863 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
864 }
865 
866 #ifdef CONFIG_NUMA
hpage_collapse_find_target_node(struct collapse_control * cc)867 static int hpage_collapse_find_target_node(struct collapse_control *cc)
868 {
869 	int nid, target_node = 0, max_value = 0;
870 
871 	/* find first node with max normal pages hit */
872 	for (nid = 0; nid < MAX_NUMNODES; nid++)
873 		if (cc->node_load[nid] > max_value) {
874 			max_value = cc->node_load[nid];
875 			target_node = nid;
876 		}
877 
878 	for_each_online_node(nid) {
879 		if (max_value == cc->node_load[nid])
880 			node_set(nid, cc->alloc_nmask);
881 	}
882 
883 	return target_node;
884 }
885 #else
hpage_collapse_find_target_node(struct collapse_control * cc)886 static int hpage_collapse_find_target_node(struct collapse_control *cc)
887 {
888 	return 0;
889 }
890 #endif
891 
892 /*
893  * If mmap_lock temporarily dropped, revalidate vma
894  * before taking mmap_lock.
895  * Returns enum scan_result value.
896  */
897 
hugepage_vma_revalidate(struct mm_struct * mm,unsigned long address,bool expect_anon,struct vm_area_struct ** vmap,struct collapse_control * cc)898 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
899 				   bool expect_anon,
900 				   struct vm_area_struct **vmap,
901 				   struct collapse_control *cc)
902 {
903 	struct vm_area_struct *vma;
904 	enum tva_type type = cc->is_khugepaged ? TVA_KHUGEPAGED :
905 				 TVA_FORCED_COLLAPSE;
906 
907 	if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
908 		return SCAN_ANY_PROCESS;
909 
910 	*vmap = vma = find_vma(mm, address);
911 	if (!vma)
912 		return SCAN_VMA_NULL;
913 
914 	if (!thp_vma_suitable_order(vma, address, PMD_ORDER))
915 		return SCAN_ADDRESS_RANGE;
916 	if (!thp_vma_allowable_order(vma, vma->vm_flags, type, PMD_ORDER))
917 		return SCAN_VMA_CHECK;
918 	/*
919 	 * Anon VMA expected, the address may be unmapped then
920 	 * remapped to file after khugepaged reaquired the mmap_lock.
921 	 *
922 	 * thp_vma_allowable_order may return true for qualified file
923 	 * vmas.
924 	 */
925 	if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
926 		return SCAN_PAGE_ANON;
927 	return SCAN_SUCCEED;
928 }
929 
check_pmd_state(pmd_t * pmd)930 static inline int check_pmd_state(pmd_t *pmd)
931 {
932 	pmd_t pmde = pmdp_get_lockless(pmd);
933 
934 	if (pmd_none(pmde))
935 		return SCAN_PMD_NONE;
936 
937 	/*
938 	 * The folio may be under migration when khugepaged is trying to
939 	 * collapse it. Migration success or failure will eventually end
940 	 * up with a present PMD mapping a folio again.
941 	 */
942 	if (is_pmd_migration_entry(pmde))
943 		return SCAN_PMD_MAPPED;
944 	if (!pmd_present(pmde))
945 		return SCAN_PMD_NULL;
946 	if (pmd_trans_huge(pmde))
947 		return SCAN_PMD_MAPPED;
948 	if (pmd_bad(pmde))
949 		return SCAN_PMD_NULL;
950 	return SCAN_SUCCEED;
951 }
952 
find_pmd_or_thp_or_none(struct mm_struct * mm,unsigned long address,pmd_t ** pmd)953 static int find_pmd_or_thp_or_none(struct mm_struct *mm,
954 				   unsigned long address,
955 				   pmd_t **pmd)
956 {
957 	*pmd = mm_find_pmd(mm, address);
958 	if (!*pmd)
959 		return SCAN_PMD_NULL;
960 
961 	return check_pmd_state(*pmd);
962 }
963 
check_pmd_still_valid(struct mm_struct * mm,unsigned long address,pmd_t * pmd)964 static int check_pmd_still_valid(struct mm_struct *mm,
965 				 unsigned long address,
966 				 pmd_t *pmd)
967 {
968 	pmd_t *new_pmd;
969 	int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
970 
971 	if (result != SCAN_SUCCEED)
972 		return result;
973 	if (new_pmd != pmd)
974 		return SCAN_FAIL;
975 	return SCAN_SUCCEED;
976 }
977 
978 /*
979  * Bring missing pages in from swap, to complete THP collapse.
980  * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
981  *
982  * Called and returns without pte mapped or spinlocks held.
983  * Returns result: if not SCAN_SUCCEED, mmap_lock has been released.
984  */
__collapse_huge_page_swapin(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long start_addr,pmd_t * pmd,int referenced)985 static int __collapse_huge_page_swapin(struct mm_struct *mm,
986 				       struct vm_area_struct *vma,
987 				       unsigned long start_addr, pmd_t *pmd,
988 				       int referenced)
989 {
990 	int swapped_in = 0;
991 	vm_fault_t ret = 0;
992 	unsigned long addr, end = start_addr + (HPAGE_PMD_NR * PAGE_SIZE);
993 	int result;
994 	pte_t *pte = NULL;
995 	spinlock_t *ptl;
996 
997 	for (addr = start_addr; addr < end; addr += PAGE_SIZE) {
998 		struct vm_fault vmf = {
999 			.vma = vma,
1000 			.address = addr,
1001 			.pgoff = linear_page_index(vma, addr),
1002 			.flags = FAULT_FLAG_ALLOW_RETRY,
1003 			.pmd = pmd,
1004 		};
1005 
1006 		if (!pte++) {
1007 			/*
1008 			 * Here the ptl is only used to check pte_same() in
1009 			 * do_swap_page(), so readonly version is enough.
1010 			 */
1011 			pte = pte_offset_map_ro_nolock(mm, pmd, addr, &ptl);
1012 			if (!pte) {
1013 				mmap_read_unlock(mm);
1014 				result = SCAN_PMD_NULL;
1015 				goto out;
1016 			}
1017 		}
1018 
1019 		vmf.orig_pte = ptep_get_lockless(pte);
1020 		if (!is_swap_pte(vmf.orig_pte))
1021 			continue;
1022 
1023 		vmf.pte = pte;
1024 		vmf.ptl = ptl;
1025 		ret = do_swap_page(&vmf);
1026 		/* Which unmaps pte (after perhaps re-checking the entry) */
1027 		pte = NULL;
1028 
1029 		/*
1030 		 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
1031 		 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
1032 		 * we do not retry here and swap entry will remain in pagetable
1033 		 * resulting in later failure.
1034 		 */
1035 		if (ret & VM_FAULT_RETRY) {
1036 			/* Likely, but not guaranteed, that page lock failed */
1037 			result = SCAN_PAGE_LOCK;
1038 			goto out;
1039 		}
1040 		if (ret & VM_FAULT_ERROR) {
1041 			mmap_read_unlock(mm);
1042 			result = SCAN_FAIL;
1043 			goto out;
1044 		}
1045 		swapped_in++;
1046 	}
1047 
1048 	if (pte)
1049 		pte_unmap(pte);
1050 
1051 	/* Drain LRU cache to remove extra pin on the swapped in pages */
1052 	if (swapped_in)
1053 		lru_add_drain();
1054 
1055 	result = SCAN_SUCCEED;
1056 out:
1057 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result);
1058 	return result;
1059 }
1060 
alloc_charge_folio(struct folio ** foliop,struct mm_struct * mm,struct collapse_control * cc)1061 static int alloc_charge_folio(struct folio **foliop, struct mm_struct *mm,
1062 			      struct collapse_control *cc)
1063 {
1064 	gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
1065 		     GFP_TRANSHUGE);
1066 	int node = hpage_collapse_find_target_node(cc);
1067 	struct folio *folio;
1068 
1069 	folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask);
1070 	if (!folio) {
1071 		*foliop = NULL;
1072 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1073 		return SCAN_ALLOC_HUGE_PAGE_FAIL;
1074 	}
1075 
1076 	count_vm_event(THP_COLLAPSE_ALLOC);
1077 	if (unlikely(mem_cgroup_charge(folio, mm, gfp))) {
1078 		folio_put(folio);
1079 		*foliop = NULL;
1080 		return SCAN_CGROUP_CHARGE_FAIL;
1081 	}
1082 
1083 	count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1);
1084 
1085 	*foliop = folio;
1086 	return SCAN_SUCCEED;
1087 }
1088 
collapse_huge_page(struct mm_struct * mm,unsigned long address,int referenced,int unmapped,struct collapse_control * cc)1089 static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
1090 			      int referenced, int unmapped,
1091 			      struct collapse_control *cc)
1092 {
1093 	LIST_HEAD(compound_pagelist);
1094 	pmd_t *pmd, _pmd;
1095 	pte_t *pte;
1096 	pgtable_t pgtable;
1097 	struct folio *folio;
1098 	spinlock_t *pmd_ptl, *pte_ptl;
1099 	int result = SCAN_FAIL;
1100 	struct vm_area_struct *vma;
1101 	struct mmu_notifier_range range;
1102 
1103 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1104 
1105 	/*
1106 	 * Before allocating the hugepage, release the mmap_lock read lock.
1107 	 * The allocation can take potentially a long time if it involves
1108 	 * sync compaction, and we do not need to hold the mmap_lock during
1109 	 * that. We will recheck the vma after taking it again in write mode.
1110 	 */
1111 	mmap_read_unlock(mm);
1112 
1113 	result = alloc_charge_folio(&folio, mm, cc);
1114 	if (result != SCAN_SUCCEED)
1115 		goto out_nolock;
1116 
1117 	mmap_read_lock(mm);
1118 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1119 	if (result != SCAN_SUCCEED) {
1120 		mmap_read_unlock(mm);
1121 		goto out_nolock;
1122 	}
1123 
1124 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1125 	if (result != SCAN_SUCCEED) {
1126 		mmap_read_unlock(mm);
1127 		goto out_nolock;
1128 	}
1129 
1130 	if (unmapped) {
1131 		/*
1132 		 * __collapse_huge_page_swapin will return with mmap_lock
1133 		 * released when it fails. So we jump out_nolock directly in
1134 		 * that case.  Continuing to collapse causes inconsistency.
1135 		 */
1136 		result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1137 						     referenced);
1138 		if (result != SCAN_SUCCEED)
1139 			goto out_nolock;
1140 	}
1141 
1142 	mmap_read_unlock(mm);
1143 	/*
1144 	 * Prevent all access to pagetables with the exception of
1145 	 * gup_fast later handled by the ptep_clear_flush and the VM
1146 	 * handled by the anon_vma lock + PG_lock.
1147 	 *
1148 	 * UFFDIO_MOVE is prevented to race as well thanks to the
1149 	 * mmap_lock.
1150 	 */
1151 	mmap_write_lock(mm);
1152 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1153 	if (result != SCAN_SUCCEED)
1154 		goto out_up_write;
1155 	/* check if the pmd is still valid */
1156 	vma_start_write(vma);
1157 	result = check_pmd_still_valid(mm, address, pmd);
1158 	if (result != SCAN_SUCCEED)
1159 		goto out_up_write;
1160 
1161 	anon_vma_lock_write(vma->anon_vma);
1162 
1163 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address,
1164 				address + HPAGE_PMD_SIZE);
1165 	mmu_notifier_invalidate_range_start(&range);
1166 
1167 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1168 	/*
1169 	 * This removes any huge TLB entry from the CPU so we won't allow
1170 	 * huge and small TLB entries for the same virtual address to
1171 	 * avoid the risk of CPU bugs in that area.
1172 	 *
1173 	 * Parallel GUP-fast is fine since GUP-fast will back off when
1174 	 * it detects PMD is changed.
1175 	 */
1176 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1177 	spin_unlock(pmd_ptl);
1178 	mmu_notifier_invalidate_range_end(&range);
1179 	tlb_remove_table_sync_one();
1180 
1181 	pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl);
1182 	if (pte) {
1183 		result = __collapse_huge_page_isolate(vma, address, pte, cc,
1184 						      &compound_pagelist);
1185 		spin_unlock(pte_ptl);
1186 	} else {
1187 		result = SCAN_PMD_NULL;
1188 	}
1189 
1190 	if (unlikely(result != SCAN_SUCCEED)) {
1191 		if (pte)
1192 			pte_unmap(pte);
1193 		spin_lock(pmd_ptl);
1194 		BUG_ON(!pmd_none(*pmd));
1195 		/*
1196 		 * We can only use set_pmd_at when establishing
1197 		 * hugepmds and never for establishing regular pmds that
1198 		 * points to regular pagetables. Use pmd_populate for that
1199 		 */
1200 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1201 		spin_unlock(pmd_ptl);
1202 		anon_vma_unlock_write(vma->anon_vma);
1203 		goto out_up_write;
1204 	}
1205 
1206 	/*
1207 	 * All pages are isolated and locked so anon_vma rmap
1208 	 * can't run anymore.
1209 	 */
1210 	anon_vma_unlock_write(vma->anon_vma);
1211 
1212 	result = __collapse_huge_page_copy(pte, folio, pmd, _pmd,
1213 					   vma, address, pte_ptl,
1214 					   &compound_pagelist);
1215 	pte_unmap(pte);
1216 	if (unlikely(result != SCAN_SUCCEED))
1217 		goto out_up_write;
1218 
1219 	/*
1220 	 * The smp_wmb() inside __folio_mark_uptodate() ensures the
1221 	 * copy_huge_page writes become visible before the set_pmd_at()
1222 	 * write.
1223 	 */
1224 	__folio_mark_uptodate(folio);
1225 	pgtable = pmd_pgtable(_pmd);
1226 
1227 	_pmd = folio_mk_pmd(folio, vma->vm_page_prot);
1228 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1229 
1230 	spin_lock(pmd_ptl);
1231 	BUG_ON(!pmd_none(*pmd));
1232 	folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
1233 	folio_add_lru_vma(folio, vma);
1234 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1235 	set_pmd_at(mm, address, pmd, _pmd);
1236 	update_mmu_cache_pmd(vma, address, pmd);
1237 	deferred_split_folio(folio, false);
1238 	spin_unlock(pmd_ptl);
1239 
1240 	folio = NULL;
1241 
1242 	result = SCAN_SUCCEED;
1243 out_up_write:
1244 	mmap_write_unlock(mm);
1245 out_nolock:
1246 	if (folio)
1247 		folio_put(folio);
1248 	trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1249 	return result;
1250 }
1251 
hpage_collapse_scan_pmd(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long start_addr,bool * mmap_locked,struct collapse_control * cc)1252 static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1253 				   struct vm_area_struct *vma,
1254 				   unsigned long start_addr, bool *mmap_locked,
1255 				   struct collapse_control *cc)
1256 {
1257 	pmd_t *pmd;
1258 	pte_t *pte, *_pte;
1259 	int result = SCAN_FAIL, referenced = 0;
1260 	int none_or_zero = 0, shared = 0;
1261 	struct page *page = NULL;
1262 	struct folio *folio = NULL;
1263 	unsigned long addr;
1264 	spinlock_t *ptl;
1265 	int node = NUMA_NO_NODE, unmapped = 0;
1266 
1267 	VM_BUG_ON(start_addr & ~HPAGE_PMD_MASK);
1268 
1269 	result = find_pmd_or_thp_or_none(mm, start_addr, &pmd);
1270 	if (result != SCAN_SUCCEED)
1271 		goto out;
1272 
1273 	memset(cc->node_load, 0, sizeof(cc->node_load));
1274 	nodes_clear(cc->alloc_nmask);
1275 	pte = pte_offset_map_lock(mm, pmd, start_addr, &ptl);
1276 	if (!pte) {
1277 		result = SCAN_PMD_NULL;
1278 		goto out;
1279 	}
1280 
1281 	for (addr = start_addr, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1282 	     _pte++, addr += PAGE_SIZE) {
1283 		pte_t pteval = ptep_get(_pte);
1284 		if (is_swap_pte(pteval)) {
1285 			++unmapped;
1286 			if (!cc->is_khugepaged ||
1287 			    unmapped <= khugepaged_max_ptes_swap) {
1288 				/*
1289 				 * Always be strict with uffd-wp
1290 				 * enabled swap entries.  Please see
1291 				 * comment below for pte_uffd_wp().
1292 				 */
1293 				if (pte_swp_uffd_wp_any(pteval)) {
1294 					result = SCAN_PTE_UFFD_WP;
1295 					goto out_unmap;
1296 				}
1297 				continue;
1298 			} else {
1299 				result = SCAN_EXCEED_SWAP_PTE;
1300 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1301 				goto out_unmap;
1302 			}
1303 		}
1304 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1305 			++none_or_zero;
1306 			if (!userfaultfd_armed(vma) &&
1307 			    (!cc->is_khugepaged ||
1308 			     none_or_zero <= khugepaged_max_ptes_none)) {
1309 				continue;
1310 			} else {
1311 				result = SCAN_EXCEED_NONE_PTE;
1312 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1313 				goto out_unmap;
1314 			}
1315 		}
1316 		if (pte_uffd_wp(pteval)) {
1317 			/*
1318 			 * Don't collapse the page if any of the small
1319 			 * PTEs are armed with uffd write protection.
1320 			 * Here we can also mark the new huge pmd as
1321 			 * write protected if any of the small ones is
1322 			 * marked but that could bring unknown
1323 			 * userfault messages that falls outside of
1324 			 * the registered range.  So, just be simple.
1325 			 */
1326 			result = SCAN_PTE_UFFD_WP;
1327 			goto out_unmap;
1328 		}
1329 
1330 		page = vm_normal_page(vma, addr, pteval);
1331 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1332 			result = SCAN_PAGE_NULL;
1333 			goto out_unmap;
1334 		}
1335 		folio = page_folio(page);
1336 
1337 		if (!folio_test_anon(folio)) {
1338 			result = SCAN_PAGE_ANON;
1339 			goto out_unmap;
1340 		}
1341 
1342 		/*
1343 		 * We treat a single page as shared if any part of the THP
1344 		 * is shared.
1345 		 */
1346 		if (folio_maybe_mapped_shared(folio)) {
1347 			++shared;
1348 			if (cc->is_khugepaged &&
1349 			    shared > khugepaged_max_ptes_shared) {
1350 				result = SCAN_EXCEED_SHARED_PTE;
1351 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1352 				goto out_unmap;
1353 			}
1354 		}
1355 
1356 		/*
1357 		 * Record which node the original page is from and save this
1358 		 * information to cc->node_load[].
1359 		 * Khugepaged will allocate hugepage from the node has the max
1360 		 * hit record.
1361 		 */
1362 		node = folio_nid(folio);
1363 		if (hpage_collapse_scan_abort(node, cc)) {
1364 			result = SCAN_SCAN_ABORT;
1365 			goto out_unmap;
1366 		}
1367 		cc->node_load[node]++;
1368 		if (!folio_test_lru(folio)) {
1369 			result = SCAN_PAGE_LRU;
1370 			goto out_unmap;
1371 		}
1372 		if (folio_test_locked(folio)) {
1373 			result = SCAN_PAGE_LOCK;
1374 			goto out_unmap;
1375 		}
1376 
1377 		/*
1378 		 * Check if the page has any GUP (or other external) pins.
1379 		 *
1380 		 * Here the check may be racy:
1381 		 * it may see folio_mapcount() > folio_ref_count().
1382 		 * But such case is ephemeral we could always retry collapse
1383 		 * later.  However it may report false positive if the page
1384 		 * has excessive GUP pins (i.e. 512).  Anyway the same check
1385 		 * will be done again later the risk seems low.
1386 		 */
1387 		if (folio_expected_ref_count(folio) != folio_ref_count(folio)) {
1388 			result = SCAN_PAGE_COUNT;
1389 			goto out_unmap;
1390 		}
1391 
1392 		/*
1393 		 * If collapse was initiated by khugepaged, check that there is
1394 		 * enough young pte to justify collapsing the page
1395 		 */
1396 		if (cc->is_khugepaged &&
1397 		    (pte_young(pteval) || folio_test_young(folio) ||
1398 		     folio_test_referenced(folio) ||
1399 		     mmu_notifier_test_young(vma->vm_mm, addr)))
1400 			referenced++;
1401 	}
1402 	if (cc->is_khugepaged &&
1403 		   (!referenced ||
1404 		    (unmapped && referenced < HPAGE_PMD_NR / 2))) {
1405 		result = SCAN_LACK_REFERENCED_PAGE;
1406 	} else {
1407 		result = SCAN_SUCCEED;
1408 	}
1409 out_unmap:
1410 	pte_unmap_unlock(pte, ptl);
1411 	if (result == SCAN_SUCCEED) {
1412 		result = collapse_huge_page(mm, start_addr, referenced,
1413 					    unmapped, cc);
1414 		/* collapse_huge_page will return with the mmap_lock released */
1415 		*mmap_locked = false;
1416 	}
1417 out:
1418 	trace_mm_khugepaged_scan_pmd(mm, folio, referenced,
1419 				     none_or_zero, result, unmapped);
1420 	return result;
1421 }
1422 
collect_mm_slot(struct mm_slot * slot)1423 static void collect_mm_slot(struct mm_slot *slot)
1424 {
1425 	struct mm_struct *mm = slot->mm;
1426 
1427 	lockdep_assert_held(&khugepaged_mm_lock);
1428 
1429 	if (hpage_collapse_test_exit(mm)) {
1430 		/* free mm_slot */
1431 		hash_del(&slot->hash);
1432 		list_del(&slot->mm_node);
1433 
1434 		/*
1435 		 * Not strictly needed because the mm exited already.
1436 		 *
1437 		 * mm_flags_clear(MMF_VM_HUGEPAGE, mm);
1438 		 */
1439 
1440 		/* khugepaged_mm_lock actually not necessary for the below */
1441 		mm_slot_free(mm_slot_cache, slot);
1442 		mmdrop(mm);
1443 	}
1444 }
1445 
1446 /* folio must be locked, and mmap_lock must be held */
set_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,struct folio * folio,struct page * page)1447 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1448 			pmd_t *pmdp, struct folio *folio, struct page *page)
1449 {
1450 	struct mm_struct *mm = vma->vm_mm;
1451 	struct vm_fault vmf = {
1452 		.vma = vma,
1453 		.address = addr,
1454 		.flags = 0,
1455 	};
1456 	pgd_t *pgdp;
1457 	p4d_t *p4dp;
1458 	pud_t *pudp;
1459 
1460 	mmap_assert_locked(vma->vm_mm);
1461 
1462 	if (!pmdp) {
1463 		pgdp = pgd_offset(mm, addr);
1464 		p4dp = p4d_alloc(mm, pgdp, addr);
1465 		if (!p4dp)
1466 			return SCAN_FAIL;
1467 		pudp = pud_alloc(mm, p4dp, addr);
1468 		if (!pudp)
1469 			return SCAN_FAIL;
1470 		pmdp = pmd_alloc(mm, pudp, addr);
1471 		if (!pmdp)
1472 			return SCAN_FAIL;
1473 	}
1474 
1475 	vmf.pmd = pmdp;
1476 	if (do_set_pmd(&vmf, folio, page))
1477 		return SCAN_FAIL;
1478 
1479 	folio_get(folio);
1480 	return SCAN_SUCCEED;
1481 }
1482 
1483 /**
1484  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1485  * address haddr.
1486  *
1487  * @mm: process address space where collapse happens
1488  * @addr: THP collapse address
1489  * @install_pmd: If a huge PMD should be installed
1490  *
1491  * This function checks whether all the PTEs in the PMD are pointing to the
1492  * right THP. If so, retract the page table so the THP can refault in with
1493  * as pmd-mapped. Possibly install a huge PMD mapping the THP.
1494  */
collapse_pte_mapped_thp(struct mm_struct * mm,unsigned long addr,bool install_pmd)1495 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1496 			    bool install_pmd)
1497 {
1498 	int nr_mapped_ptes = 0, result = SCAN_FAIL;
1499 	unsigned int nr_batch_ptes;
1500 	struct mmu_notifier_range range;
1501 	bool notified = false;
1502 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1503 	unsigned long end = haddr + HPAGE_PMD_SIZE;
1504 	struct vm_area_struct *vma = vma_lookup(mm, haddr);
1505 	struct folio *folio;
1506 	pte_t *start_pte, *pte;
1507 	pmd_t *pmd, pgt_pmd;
1508 	spinlock_t *pml = NULL, *ptl;
1509 	int i;
1510 
1511 	mmap_assert_locked(mm);
1512 
1513 	/* First check VMA found, in case page tables are being torn down */
1514 	if (!vma || !vma->vm_file ||
1515 	    !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1516 		return SCAN_VMA_CHECK;
1517 
1518 	/* Fast check before locking page if already PMD-mapped */
1519 	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1520 	if (result == SCAN_PMD_MAPPED)
1521 		return result;
1522 
1523 	/*
1524 	 * If we are here, we've succeeded in replacing all the native pages
1525 	 * in the page cache with a single hugepage. If a mm were to fault-in
1526 	 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1527 	 * and map it by a PMD, regardless of sysfs THP settings. As such, let's
1528 	 * analogously elide sysfs THP settings here and force collapse.
1529 	 */
1530 	if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_FORCED_COLLAPSE, PMD_ORDER))
1531 		return SCAN_VMA_CHECK;
1532 
1533 	/* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1534 	if (userfaultfd_wp(vma))
1535 		return SCAN_PTE_UFFD_WP;
1536 
1537 	folio = filemap_lock_folio(vma->vm_file->f_mapping,
1538 			       linear_page_index(vma, haddr));
1539 	if (IS_ERR(folio))
1540 		return SCAN_PAGE_NULL;
1541 
1542 	if (folio_order(folio) != HPAGE_PMD_ORDER) {
1543 		result = SCAN_PAGE_COMPOUND;
1544 		goto drop_folio;
1545 	}
1546 
1547 	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1548 	switch (result) {
1549 	case SCAN_SUCCEED:
1550 		break;
1551 	case SCAN_PMD_NULL:
1552 	case SCAN_PMD_NONE:
1553 		/*
1554 		 * All pte entries have been removed and pmd cleared.
1555 		 * Skip all the pte checks and just update the pmd mapping.
1556 		 */
1557 		goto maybe_install_pmd;
1558 	default:
1559 		goto drop_folio;
1560 	}
1561 
1562 	result = SCAN_FAIL;
1563 	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1564 	if (!start_pte)		/* mmap_lock + page lock should prevent this */
1565 		goto drop_folio;
1566 
1567 	/* step 1: check all mapped PTEs are to the right huge page */
1568 	for (i = 0, addr = haddr, pte = start_pte;
1569 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1570 		struct page *page;
1571 		pte_t ptent = ptep_get(pte);
1572 
1573 		/* empty pte, skip */
1574 		if (pte_none(ptent))
1575 			continue;
1576 
1577 		/* page swapped out, abort */
1578 		if (!pte_present(ptent)) {
1579 			result = SCAN_PTE_NON_PRESENT;
1580 			goto abort;
1581 		}
1582 
1583 		page = vm_normal_page(vma, addr, ptent);
1584 		if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1585 			page = NULL;
1586 		/*
1587 		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1588 		 * page table, but the new page will not be a subpage of hpage.
1589 		 */
1590 		if (folio_page(folio, i) != page)
1591 			goto abort;
1592 	}
1593 
1594 	pte_unmap_unlock(start_pte, ptl);
1595 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1596 				haddr, haddr + HPAGE_PMD_SIZE);
1597 	mmu_notifier_invalidate_range_start(&range);
1598 	notified = true;
1599 
1600 	/*
1601 	 * pmd_lock covers a wider range than ptl, and (if split from mm's
1602 	 * page_table_lock) ptl nests inside pml. The less time we hold pml,
1603 	 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA
1604 	 * inserts a valid as-if-COWed PTE without even looking up page cache.
1605 	 * So page lock of folio does not protect from it, so we must not drop
1606 	 * ptl before pgt_pmd is removed, so uffd private needs pml taken now.
1607 	 */
1608 	if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED))
1609 		pml = pmd_lock(mm, pmd);
1610 
1611 	start_pte = pte_offset_map_rw_nolock(mm, pmd, haddr, &pgt_pmd, &ptl);
1612 	if (!start_pte)		/* mmap_lock + page lock should prevent this */
1613 		goto abort;
1614 	if (!pml)
1615 		spin_lock(ptl);
1616 	else if (ptl != pml)
1617 		spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1618 
1619 	if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd))))
1620 		goto abort;
1621 
1622 	/* step 2: clear page table and adjust rmap */
1623 	for (i = 0, addr = haddr, pte = start_pte; i < HPAGE_PMD_NR;
1624 	     i += nr_batch_ptes, addr += nr_batch_ptes * PAGE_SIZE,
1625 	     pte += nr_batch_ptes) {
1626 		unsigned int max_nr_batch_ptes = (end - addr) >> PAGE_SHIFT;
1627 		struct page *page;
1628 		pte_t ptent = ptep_get(pte);
1629 
1630 		nr_batch_ptes = 1;
1631 
1632 		if (pte_none(ptent))
1633 			continue;
1634 		/*
1635 		 * We dropped ptl after the first scan, to do the mmu_notifier:
1636 		 * page lock stops more PTEs of the folio being faulted in, but
1637 		 * does not stop write faults COWing anon copies from existing
1638 		 * PTEs; and does not stop those being swapped out or migrated.
1639 		 */
1640 		if (!pte_present(ptent)) {
1641 			result = SCAN_PTE_NON_PRESENT;
1642 			goto abort;
1643 		}
1644 		page = vm_normal_page(vma, addr, ptent);
1645 
1646 		if (folio_page(folio, i) != page)
1647 			goto abort;
1648 
1649 		nr_batch_ptes = folio_pte_batch(folio, pte, ptent, max_nr_batch_ptes);
1650 
1651 		/*
1652 		 * Must clear entry, or a racing truncate may re-remove it.
1653 		 * TLB flush can be left until pmdp_collapse_flush() does it.
1654 		 * PTE dirty? Shmem page is already dirty; file is read-only.
1655 		 */
1656 		clear_ptes(mm, addr, pte, nr_batch_ptes);
1657 		folio_remove_rmap_ptes(folio, page, nr_batch_ptes, vma);
1658 		nr_mapped_ptes += nr_batch_ptes;
1659 	}
1660 
1661 	if (!pml)
1662 		spin_unlock(ptl);
1663 
1664 	/* step 3: set proper refcount and mm_counters. */
1665 	if (nr_mapped_ptes) {
1666 		folio_ref_sub(folio, nr_mapped_ptes);
1667 		add_mm_counter(mm, mm_counter_file(folio), -nr_mapped_ptes);
1668 	}
1669 
1670 	/* step 4: remove empty page table */
1671 	if (!pml) {
1672 		pml = pmd_lock(mm, pmd);
1673 		if (ptl != pml) {
1674 			spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1675 			if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) {
1676 				flush_tlb_mm(mm);
1677 				goto unlock;
1678 			}
1679 		}
1680 	}
1681 	pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1682 	pmdp_get_lockless_sync();
1683 	pte_unmap_unlock(start_pte, ptl);
1684 	if (ptl != pml)
1685 		spin_unlock(pml);
1686 
1687 	mmu_notifier_invalidate_range_end(&range);
1688 
1689 	mm_dec_nr_ptes(mm);
1690 	page_table_check_pte_clear_range(mm, haddr, pgt_pmd);
1691 	pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1692 
1693 maybe_install_pmd:
1694 	/* step 5: install pmd entry */
1695 	result = install_pmd
1696 			? set_huge_pmd(vma, haddr, pmd, folio, &folio->page)
1697 			: SCAN_SUCCEED;
1698 	goto drop_folio;
1699 abort:
1700 	if (nr_mapped_ptes) {
1701 		flush_tlb_mm(mm);
1702 		folio_ref_sub(folio, nr_mapped_ptes);
1703 		add_mm_counter(mm, mm_counter_file(folio), -nr_mapped_ptes);
1704 	}
1705 unlock:
1706 	if (start_pte)
1707 		pte_unmap_unlock(start_pte, ptl);
1708 	if (pml && pml != ptl)
1709 		spin_unlock(pml);
1710 	if (notified)
1711 		mmu_notifier_invalidate_range_end(&range);
1712 drop_folio:
1713 	folio_unlock(folio);
1714 	folio_put(folio);
1715 	return result;
1716 }
1717 
retract_page_tables(struct address_space * mapping,pgoff_t pgoff)1718 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1719 {
1720 	struct vm_area_struct *vma;
1721 
1722 	i_mmap_lock_read(mapping);
1723 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1724 		struct mmu_notifier_range range;
1725 		struct mm_struct *mm;
1726 		unsigned long addr;
1727 		pmd_t *pmd, pgt_pmd;
1728 		spinlock_t *pml;
1729 		spinlock_t *ptl;
1730 		bool success = false;
1731 
1732 		/*
1733 		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1734 		 * got written to. These VMAs are likely not worth removing
1735 		 * page tables from, as PMD-mapping is likely to be split later.
1736 		 */
1737 		if (READ_ONCE(vma->anon_vma))
1738 			continue;
1739 
1740 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1741 		if (addr & ~HPAGE_PMD_MASK ||
1742 		    vma->vm_end < addr + HPAGE_PMD_SIZE)
1743 			continue;
1744 
1745 		mm = vma->vm_mm;
1746 		if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED)
1747 			continue;
1748 
1749 		if (hpage_collapse_test_exit(mm))
1750 			continue;
1751 		/*
1752 		 * When a vma is registered with uffd-wp, we cannot recycle
1753 		 * the page table because there may be pte markers installed.
1754 		 * Other vmas can still have the same file mapped hugely, but
1755 		 * skip this one: it will always be mapped in small page size
1756 		 * for uffd-wp registered ranges.
1757 		 */
1758 		if (userfaultfd_wp(vma))
1759 			continue;
1760 
1761 		/* PTEs were notified when unmapped; but now for the PMD? */
1762 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1763 					addr, addr + HPAGE_PMD_SIZE);
1764 		mmu_notifier_invalidate_range_start(&range);
1765 
1766 		pml = pmd_lock(mm, pmd);
1767 		/*
1768 		 * The lock of new_folio is still held, we will be blocked in
1769 		 * the page fault path, which prevents the pte entries from
1770 		 * being set again. So even though the old empty PTE page may be
1771 		 * concurrently freed and a new PTE page is filled into the pmd
1772 		 * entry, it is still empty and can be removed.
1773 		 *
1774 		 * So here we only need to recheck if the state of pmd entry
1775 		 * still meets our requirements, rather than checking pmd_same()
1776 		 * like elsewhere.
1777 		 */
1778 		if (check_pmd_state(pmd) != SCAN_SUCCEED)
1779 			goto drop_pml;
1780 		ptl = pte_lockptr(mm, pmd);
1781 		if (ptl != pml)
1782 			spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1783 
1784 		/*
1785 		 * Huge page lock is still held, so normally the page table
1786 		 * must remain empty; and we have already skipped anon_vma
1787 		 * and userfaultfd_wp() vmas.  But since the mmap_lock is not
1788 		 * held, it is still possible for a racing userfaultfd_ioctl()
1789 		 * to have inserted ptes or markers.  Now that we hold ptlock,
1790 		 * repeating the anon_vma check protects from one category,
1791 		 * and repeating the userfaultfd_wp() check from another.
1792 		 */
1793 		if (likely(!vma->anon_vma && !userfaultfd_wp(vma))) {
1794 			pgt_pmd = pmdp_collapse_flush(vma, addr, pmd);
1795 			pmdp_get_lockless_sync();
1796 			success = true;
1797 		}
1798 
1799 		if (ptl != pml)
1800 			spin_unlock(ptl);
1801 drop_pml:
1802 		spin_unlock(pml);
1803 
1804 		mmu_notifier_invalidate_range_end(&range);
1805 
1806 		if (success) {
1807 			mm_dec_nr_ptes(mm);
1808 			page_table_check_pte_clear_range(mm, addr, pgt_pmd);
1809 			pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1810 		}
1811 	}
1812 	i_mmap_unlock_read(mapping);
1813 }
1814 
1815 /**
1816  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1817  *
1818  * @mm: process address space where collapse happens
1819  * @addr: virtual collapse start address
1820  * @file: file that collapse on
1821  * @start: collapse start address
1822  * @cc: collapse context and scratchpad
1823  *
1824  * Basic scheme is simple, details are more complex:
1825  *  - allocate and lock a new huge page;
1826  *  - scan page cache, locking old pages
1827  *    + swap/gup in pages if necessary;
1828  *  - copy data to new page
1829  *  - handle shmem holes
1830  *    + re-validate that holes weren't filled by someone else
1831  *    + check for userfaultfd
1832  *  - finalize updates to the page cache;
1833  *  - if replacing succeeds:
1834  *    + unlock huge page;
1835  *    + free old pages;
1836  *  - if replacing failed;
1837  *    + unlock old pages
1838  *    + unlock and free huge page;
1839  */
collapse_file(struct mm_struct * mm,unsigned long addr,struct file * file,pgoff_t start,struct collapse_control * cc)1840 static int collapse_file(struct mm_struct *mm, unsigned long addr,
1841 			 struct file *file, pgoff_t start,
1842 			 struct collapse_control *cc)
1843 {
1844 	struct address_space *mapping = file->f_mapping;
1845 	struct page *dst;
1846 	struct folio *folio, *tmp, *new_folio;
1847 	pgoff_t index = 0, end = start + HPAGE_PMD_NR;
1848 	LIST_HEAD(pagelist);
1849 	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1850 	int nr_none = 0, result = SCAN_SUCCEED;
1851 	bool is_shmem = shmem_file(file);
1852 
1853 	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1854 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1855 
1856 	result = alloc_charge_folio(&new_folio, mm, cc);
1857 	if (result != SCAN_SUCCEED)
1858 		goto out;
1859 
1860 	mapping_set_update(&xas, mapping);
1861 
1862 	__folio_set_locked(new_folio);
1863 	if (is_shmem)
1864 		__folio_set_swapbacked(new_folio);
1865 	new_folio->index = start;
1866 	new_folio->mapping = mapping;
1867 
1868 	/*
1869 	 * Ensure we have slots for all the pages in the range.  This is
1870 	 * almost certainly a no-op because most of the pages must be present
1871 	 */
1872 	do {
1873 		xas_lock_irq(&xas);
1874 		xas_create_range(&xas);
1875 		if (!xas_error(&xas))
1876 			break;
1877 		xas_unlock_irq(&xas);
1878 		if (!xas_nomem(&xas, GFP_KERNEL)) {
1879 			result = SCAN_FAIL;
1880 			goto rollback;
1881 		}
1882 	} while (1);
1883 
1884 	for (index = start; index < end;) {
1885 		xas_set(&xas, index);
1886 		folio = xas_load(&xas);
1887 
1888 		VM_BUG_ON(index != xas.xa_index);
1889 		if (is_shmem) {
1890 			if (!folio) {
1891 				/*
1892 				 * Stop if extent has been truncated or
1893 				 * hole-punched, and is now completely
1894 				 * empty.
1895 				 */
1896 				if (index == start) {
1897 					if (!xas_next_entry(&xas, end - 1)) {
1898 						result = SCAN_TRUNCATED;
1899 						goto xa_locked;
1900 					}
1901 				}
1902 				nr_none++;
1903 				index++;
1904 				continue;
1905 			}
1906 
1907 			if (xa_is_value(folio) || !folio_test_uptodate(folio)) {
1908 				xas_unlock_irq(&xas);
1909 				/* swap in or instantiate fallocated page */
1910 				if (shmem_get_folio(mapping->host, index, 0,
1911 						&folio, SGP_NOALLOC)) {
1912 					result = SCAN_FAIL;
1913 					goto xa_unlocked;
1914 				}
1915 				/* drain lru cache to help folio_isolate_lru() */
1916 				lru_add_drain();
1917 			} else if (folio_trylock(folio)) {
1918 				folio_get(folio);
1919 				xas_unlock_irq(&xas);
1920 			} else {
1921 				result = SCAN_PAGE_LOCK;
1922 				goto xa_locked;
1923 			}
1924 		} else {	/* !is_shmem */
1925 			if (!folio || xa_is_value(folio)) {
1926 				xas_unlock_irq(&xas);
1927 				page_cache_sync_readahead(mapping, &file->f_ra,
1928 							  file, index,
1929 							  end - index);
1930 				/* drain lru cache to help folio_isolate_lru() */
1931 				lru_add_drain();
1932 				folio = filemap_lock_folio(mapping, index);
1933 				if (IS_ERR(folio)) {
1934 					result = SCAN_FAIL;
1935 					goto xa_unlocked;
1936 				}
1937 			} else if (folio_test_dirty(folio)) {
1938 				/*
1939 				 * khugepaged only works on read-only fd,
1940 				 * so this page is dirty because it hasn't
1941 				 * been flushed since first write. There
1942 				 * won't be new dirty pages.
1943 				 *
1944 				 * Trigger async flush here and hope the
1945 				 * writeback is done when khugepaged
1946 				 * revisits this page.
1947 				 *
1948 				 * This is a one-off situation. We are not
1949 				 * forcing writeback in loop.
1950 				 */
1951 				xas_unlock_irq(&xas);
1952 				filemap_flush(mapping);
1953 				result = SCAN_FAIL;
1954 				goto xa_unlocked;
1955 			} else if (folio_test_writeback(folio)) {
1956 				xas_unlock_irq(&xas);
1957 				result = SCAN_FAIL;
1958 				goto xa_unlocked;
1959 			} else if (folio_trylock(folio)) {
1960 				folio_get(folio);
1961 				xas_unlock_irq(&xas);
1962 			} else {
1963 				result = SCAN_PAGE_LOCK;
1964 				goto xa_locked;
1965 			}
1966 		}
1967 
1968 		/*
1969 		 * The folio must be locked, so we can drop the i_pages lock
1970 		 * without racing with truncate.
1971 		 */
1972 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1973 
1974 		/* make sure the folio is up to date */
1975 		if (unlikely(!folio_test_uptodate(folio))) {
1976 			result = SCAN_FAIL;
1977 			goto out_unlock;
1978 		}
1979 
1980 		/*
1981 		 * If file was truncated then extended, or hole-punched, before
1982 		 * we locked the first folio, then a THP might be there already.
1983 		 * This will be discovered on the first iteration.
1984 		 */
1985 		if (folio_order(folio) == HPAGE_PMD_ORDER &&
1986 		    folio->index == start) {
1987 			/* Maybe PMD-mapped */
1988 			result = SCAN_PTE_MAPPED_HUGEPAGE;
1989 			goto out_unlock;
1990 		}
1991 
1992 		if (folio_mapping(folio) != mapping) {
1993 			result = SCAN_TRUNCATED;
1994 			goto out_unlock;
1995 		}
1996 
1997 		if (!is_shmem && (folio_test_dirty(folio) ||
1998 				  folio_test_writeback(folio))) {
1999 			/*
2000 			 * khugepaged only works on read-only fd, so this
2001 			 * folio is dirty because it hasn't been flushed
2002 			 * since first write.
2003 			 */
2004 			result = SCAN_FAIL;
2005 			goto out_unlock;
2006 		}
2007 
2008 		if (!folio_isolate_lru(folio)) {
2009 			result = SCAN_DEL_PAGE_LRU;
2010 			goto out_unlock;
2011 		}
2012 
2013 		if (!filemap_release_folio(folio, GFP_KERNEL)) {
2014 			result = SCAN_PAGE_HAS_PRIVATE;
2015 			folio_putback_lru(folio);
2016 			goto out_unlock;
2017 		}
2018 
2019 		if (folio_mapped(folio))
2020 			try_to_unmap(folio,
2021 					TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
2022 
2023 		xas_lock_irq(&xas);
2024 
2025 		VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio);
2026 
2027 		/*
2028 		 * We control 2 + nr_pages references to the folio:
2029 		 *  - we hold a pin on it;
2030 		 *  - nr_pages reference from page cache;
2031 		 *  - one from lru_isolate_folio;
2032 		 * If those are the only references, then any new usage
2033 		 * of the folio will have to fetch it from the page
2034 		 * cache. That requires locking the folio to handle
2035 		 * truncate, so any new usage will be blocked until we
2036 		 * unlock folio after collapse/during rollback.
2037 		 */
2038 		if (folio_ref_count(folio) != 2 + folio_nr_pages(folio)) {
2039 			result = SCAN_PAGE_COUNT;
2040 			xas_unlock_irq(&xas);
2041 			folio_putback_lru(folio);
2042 			goto out_unlock;
2043 		}
2044 
2045 		/*
2046 		 * Accumulate the folios that are being collapsed.
2047 		 */
2048 		list_add_tail(&folio->lru, &pagelist);
2049 		index += folio_nr_pages(folio);
2050 		continue;
2051 out_unlock:
2052 		folio_unlock(folio);
2053 		folio_put(folio);
2054 		goto xa_unlocked;
2055 	}
2056 
2057 	if (!is_shmem) {
2058 		filemap_nr_thps_inc(mapping);
2059 		/*
2060 		 * Paired with the fence in do_dentry_open() -> get_write_access()
2061 		 * to ensure i_writecount is up to date and the update to nr_thps
2062 		 * is visible. Ensures the page cache will be truncated if the
2063 		 * file is opened writable.
2064 		 */
2065 		smp_mb();
2066 		if (inode_is_open_for_write(mapping->host)) {
2067 			result = SCAN_FAIL;
2068 			filemap_nr_thps_dec(mapping);
2069 		}
2070 	}
2071 
2072 xa_locked:
2073 	xas_unlock_irq(&xas);
2074 xa_unlocked:
2075 
2076 	/*
2077 	 * If collapse is successful, flush must be done now before copying.
2078 	 * If collapse is unsuccessful, does flush actually need to be done?
2079 	 * Do it anyway, to clear the state.
2080 	 */
2081 	try_to_unmap_flush();
2082 
2083 	if (result == SCAN_SUCCEED && nr_none &&
2084 	    !shmem_charge(mapping->host, nr_none))
2085 		result = SCAN_FAIL;
2086 	if (result != SCAN_SUCCEED) {
2087 		nr_none = 0;
2088 		goto rollback;
2089 	}
2090 
2091 	/*
2092 	 * The old folios are locked, so they won't change anymore.
2093 	 */
2094 	index = start;
2095 	dst = folio_page(new_folio, 0);
2096 	list_for_each_entry(folio, &pagelist, lru) {
2097 		int i, nr_pages = folio_nr_pages(folio);
2098 
2099 		while (index < folio->index) {
2100 			clear_highpage(dst);
2101 			index++;
2102 			dst++;
2103 		}
2104 
2105 		for (i = 0; i < nr_pages; i++) {
2106 			if (copy_mc_highpage(dst, folio_page(folio, i)) > 0) {
2107 				result = SCAN_COPY_MC;
2108 				goto rollback;
2109 			}
2110 			index++;
2111 			dst++;
2112 		}
2113 	}
2114 	while (index < end) {
2115 		clear_highpage(dst);
2116 		index++;
2117 		dst++;
2118 	}
2119 
2120 	if (nr_none) {
2121 		struct vm_area_struct *vma;
2122 		int nr_none_check = 0;
2123 
2124 		i_mmap_lock_read(mapping);
2125 		xas_lock_irq(&xas);
2126 
2127 		xas_set(&xas, start);
2128 		for (index = start; index < end; index++) {
2129 			if (!xas_next(&xas)) {
2130 				xas_store(&xas, XA_RETRY_ENTRY);
2131 				if (xas_error(&xas)) {
2132 					result = SCAN_STORE_FAILED;
2133 					goto immap_locked;
2134 				}
2135 				nr_none_check++;
2136 			}
2137 		}
2138 
2139 		if (nr_none != nr_none_check) {
2140 			result = SCAN_PAGE_FILLED;
2141 			goto immap_locked;
2142 		}
2143 
2144 		/*
2145 		 * If userspace observed a missing page in a VMA with
2146 		 * a MODE_MISSING userfaultfd, then it might expect a
2147 		 * UFFD_EVENT_PAGEFAULT for that page. If so, we need to
2148 		 * roll back to avoid suppressing such an event. Since
2149 		 * wp/minor userfaultfds don't give userspace any
2150 		 * guarantees that the kernel doesn't fill a missing
2151 		 * page with a zero page, so they don't matter here.
2152 		 *
2153 		 * Any userfaultfds registered after this point will
2154 		 * not be able to observe any missing pages due to the
2155 		 * previously inserted retry entries.
2156 		 */
2157 		vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) {
2158 			if (userfaultfd_missing(vma)) {
2159 				result = SCAN_EXCEED_NONE_PTE;
2160 				goto immap_locked;
2161 			}
2162 		}
2163 
2164 immap_locked:
2165 		i_mmap_unlock_read(mapping);
2166 		if (result != SCAN_SUCCEED) {
2167 			xas_set(&xas, start);
2168 			for (index = start; index < end; index++) {
2169 				if (xas_next(&xas) == XA_RETRY_ENTRY)
2170 					xas_store(&xas, NULL);
2171 			}
2172 
2173 			xas_unlock_irq(&xas);
2174 			goto rollback;
2175 		}
2176 	} else {
2177 		xas_lock_irq(&xas);
2178 	}
2179 
2180 	if (is_shmem)
2181 		__lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR);
2182 	else
2183 		__lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR);
2184 
2185 	if (nr_none) {
2186 		__lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, nr_none);
2187 		/* nr_none is always 0 for non-shmem. */
2188 		__lruvec_stat_mod_folio(new_folio, NR_SHMEM, nr_none);
2189 	}
2190 
2191 	/*
2192 	 * Mark new_folio as uptodate before inserting it into the
2193 	 * page cache so that it isn't mistaken for an fallocated but
2194 	 * unwritten page.
2195 	 */
2196 	folio_mark_uptodate(new_folio);
2197 	folio_ref_add(new_folio, HPAGE_PMD_NR - 1);
2198 
2199 	if (is_shmem)
2200 		folio_mark_dirty(new_folio);
2201 	folio_add_lru(new_folio);
2202 
2203 	/* Join all the small entries into a single multi-index entry. */
2204 	xas_set_order(&xas, start, HPAGE_PMD_ORDER);
2205 	xas_store(&xas, new_folio);
2206 	WARN_ON_ONCE(xas_error(&xas));
2207 	xas_unlock_irq(&xas);
2208 
2209 	/*
2210 	 * Remove pte page tables, so we can re-fault the page as huge.
2211 	 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp().
2212 	 */
2213 	retract_page_tables(mapping, start);
2214 	if (cc && !cc->is_khugepaged)
2215 		result = SCAN_PTE_MAPPED_HUGEPAGE;
2216 	folio_unlock(new_folio);
2217 
2218 	/*
2219 	 * The collapse has succeeded, so free the old folios.
2220 	 */
2221 	list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2222 		list_del(&folio->lru);
2223 		folio->mapping = NULL;
2224 		folio_clear_active(folio);
2225 		folio_clear_unevictable(folio);
2226 		folio_unlock(folio);
2227 		folio_put_refs(folio, 2 + folio_nr_pages(folio));
2228 	}
2229 
2230 	goto out;
2231 
2232 rollback:
2233 	/* Something went wrong: roll back page cache changes */
2234 	if (nr_none) {
2235 		xas_lock_irq(&xas);
2236 		mapping->nrpages -= nr_none;
2237 		xas_unlock_irq(&xas);
2238 		shmem_uncharge(mapping->host, nr_none);
2239 	}
2240 
2241 	list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2242 		list_del(&folio->lru);
2243 		folio_unlock(folio);
2244 		folio_putback_lru(folio);
2245 		folio_put(folio);
2246 	}
2247 	/*
2248 	 * Undo the updates of filemap_nr_thps_inc for non-SHMEM
2249 	 * file only. This undo is not needed unless failure is
2250 	 * due to SCAN_COPY_MC.
2251 	 */
2252 	if (!is_shmem && result == SCAN_COPY_MC) {
2253 		filemap_nr_thps_dec(mapping);
2254 		/*
2255 		 * Paired with the fence in do_dentry_open() -> get_write_access()
2256 		 * to ensure the update to nr_thps is visible.
2257 		 */
2258 		smp_mb();
2259 	}
2260 
2261 	new_folio->mapping = NULL;
2262 
2263 	folio_unlock(new_folio);
2264 	folio_put(new_folio);
2265 out:
2266 	VM_BUG_ON(!list_empty(&pagelist));
2267 	trace_mm_khugepaged_collapse_file(mm, new_folio, index, addr, is_shmem, file, HPAGE_PMD_NR, result);
2268 	return result;
2269 }
2270 
hpage_collapse_scan_file(struct mm_struct * mm,unsigned long addr,struct file * file,pgoff_t start,struct collapse_control * cc)2271 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2272 				    struct file *file, pgoff_t start,
2273 				    struct collapse_control *cc)
2274 {
2275 	struct folio *folio = NULL;
2276 	struct address_space *mapping = file->f_mapping;
2277 	XA_STATE(xas, &mapping->i_pages, start);
2278 	int present, swap;
2279 	int node = NUMA_NO_NODE;
2280 	int result = SCAN_SUCCEED;
2281 
2282 	present = 0;
2283 	swap = 0;
2284 	memset(cc->node_load, 0, sizeof(cc->node_load));
2285 	nodes_clear(cc->alloc_nmask);
2286 	rcu_read_lock();
2287 	xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) {
2288 		if (xas_retry(&xas, folio))
2289 			continue;
2290 
2291 		if (xa_is_value(folio)) {
2292 			swap += 1 << xas_get_order(&xas);
2293 			if (cc->is_khugepaged &&
2294 			    swap > khugepaged_max_ptes_swap) {
2295 				result = SCAN_EXCEED_SWAP_PTE;
2296 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2297 				break;
2298 			}
2299 			continue;
2300 		}
2301 
2302 		if (!folio_try_get(folio)) {
2303 			xas_reset(&xas);
2304 			continue;
2305 		}
2306 
2307 		if (unlikely(folio != xas_reload(&xas))) {
2308 			folio_put(folio);
2309 			xas_reset(&xas);
2310 			continue;
2311 		}
2312 
2313 		if (folio_order(folio) == HPAGE_PMD_ORDER &&
2314 		    folio->index == start) {
2315 			/* Maybe PMD-mapped */
2316 			result = SCAN_PTE_MAPPED_HUGEPAGE;
2317 			/*
2318 			 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2319 			 * by the caller won't touch the page cache, and so
2320 			 * it's safe to skip LRU and refcount checks before
2321 			 * returning.
2322 			 */
2323 			folio_put(folio);
2324 			break;
2325 		}
2326 
2327 		node = folio_nid(folio);
2328 		if (hpage_collapse_scan_abort(node, cc)) {
2329 			result = SCAN_SCAN_ABORT;
2330 			folio_put(folio);
2331 			break;
2332 		}
2333 		cc->node_load[node]++;
2334 
2335 		if (!folio_test_lru(folio)) {
2336 			result = SCAN_PAGE_LRU;
2337 			folio_put(folio);
2338 			break;
2339 		}
2340 
2341 		if (folio_expected_ref_count(folio) + 1 != folio_ref_count(folio)) {
2342 			result = SCAN_PAGE_COUNT;
2343 			folio_put(folio);
2344 			break;
2345 		}
2346 
2347 		/*
2348 		 * We probably should check if the folio is referenced
2349 		 * here, but nobody would transfer pte_young() to
2350 		 * folio_test_referenced() for us.  And rmap walk here
2351 		 * is just too costly...
2352 		 */
2353 
2354 		present += folio_nr_pages(folio);
2355 		folio_put(folio);
2356 
2357 		if (need_resched()) {
2358 			xas_pause(&xas);
2359 			cond_resched_rcu();
2360 		}
2361 	}
2362 	rcu_read_unlock();
2363 
2364 	if (result == SCAN_SUCCEED) {
2365 		if (cc->is_khugepaged &&
2366 		    present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2367 			result = SCAN_EXCEED_NONE_PTE;
2368 			count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2369 		} else {
2370 			result = collapse_file(mm, addr, file, start, cc);
2371 		}
2372 	}
2373 
2374 	trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result);
2375 	return result;
2376 }
2377 
khugepaged_scan_mm_slot(unsigned int pages,int * result,struct collapse_control * cc)2378 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2379 					    struct collapse_control *cc)
2380 	__releases(&khugepaged_mm_lock)
2381 	__acquires(&khugepaged_mm_lock)
2382 {
2383 	struct vma_iterator vmi;
2384 	struct mm_slot *slot;
2385 	struct mm_struct *mm;
2386 	struct vm_area_struct *vma;
2387 	int progress = 0;
2388 
2389 	VM_BUG_ON(!pages);
2390 	lockdep_assert_held(&khugepaged_mm_lock);
2391 	*result = SCAN_FAIL;
2392 
2393 	if (khugepaged_scan.mm_slot) {
2394 		slot = khugepaged_scan.mm_slot;
2395 	} else {
2396 		slot = list_first_entry(&khugepaged_scan.mm_head,
2397 				     struct mm_slot, mm_node);
2398 		khugepaged_scan.address = 0;
2399 		khugepaged_scan.mm_slot = slot;
2400 	}
2401 	spin_unlock(&khugepaged_mm_lock);
2402 
2403 	mm = slot->mm;
2404 	/*
2405 	 * Don't wait for semaphore (to avoid long wait times).  Just move to
2406 	 * the next mm on the list.
2407 	 */
2408 	vma = NULL;
2409 	if (unlikely(!mmap_read_trylock(mm)))
2410 		goto breakouterloop_mmap_lock;
2411 
2412 	progress++;
2413 	if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2414 		goto breakouterloop;
2415 
2416 	vma_iter_init(&vmi, mm, khugepaged_scan.address);
2417 	for_each_vma(vmi, vma) {
2418 		unsigned long hstart, hend;
2419 
2420 		cond_resched();
2421 		if (unlikely(hpage_collapse_test_exit_or_disable(mm))) {
2422 			progress++;
2423 			break;
2424 		}
2425 		if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_KHUGEPAGED, PMD_ORDER)) {
2426 skip:
2427 			progress++;
2428 			continue;
2429 		}
2430 		hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2431 		hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2432 		if (khugepaged_scan.address > hend)
2433 			goto skip;
2434 		if (khugepaged_scan.address < hstart)
2435 			khugepaged_scan.address = hstart;
2436 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2437 
2438 		while (khugepaged_scan.address < hend) {
2439 			bool mmap_locked = true;
2440 
2441 			cond_resched();
2442 			if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2443 				goto breakouterloop;
2444 
2445 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2446 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2447 				  hend);
2448 			if (!vma_is_anonymous(vma)) {
2449 				struct file *file = get_file(vma->vm_file);
2450 				pgoff_t pgoff = linear_page_index(vma,
2451 						khugepaged_scan.address);
2452 
2453 				mmap_read_unlock(mm);
2454 				mmap_locked = false;
2455 				*result = hpage_collapse_scan_file(mm,
2456 					khugepaged_scan.address, file, pgoff, cc);
2457 				fput(file);
2458 				if (*result == SCAN_PTE_MAPPED_HUGEPAGE) {
2459 					mmap_read_lock(mm);
2460 					if (hpage_collapse_test_exit_or_disable(mm))
2461 						goto breakouterloop;
2462 					*result = collapse_pte_mapped_thp(mm,
2463 						khugepaged_scan.address, false);
2464 					if (*result == SCAN_PMD_MAPPED)
2465 						*result = SCAN_SUCCEED;
2466 					mmap_read_unlock(mm);
2467 				}
2468 			} else {
2469 				*result = hpage_collapse_scan_pmd(mm, vma,
2470 					khugepaged_scan.address, &mmap_locked, cc);
2471 			}
2472 
2473 			if (*result == SCAN_SUCCEED)
2474 				++khugepaged_pages_collapsed;
2475 
2476 			/* move to next address */
2477 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2478 			progress += HPAGE_PMD_NR;
2479 			if (!mmap_locked)
2480 				/*
2481 				 * We released mmap_lock so break loop.  Note
2482 				 * that we drop mmap_lock before all hugepage
2483 				 * allocations, so if allocation fails, we are
2484 				 * guaranteed to break here and report the
2485 				 * correct result back to caller.
2486 				 */
2487 				goto breakouterloop_mmap_lock;
2488 			if (progress >= pages)
2489 				goto breakouterloop;
2490 		}
2491 	}
2492 breakouterloop:
2493 	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2494 breakouterloop_mmap_lock:
2495 
2496 	spin_lock(&khugepaged_mm_lock);
2497 	VM_BUG_ON(khugepaged_scan.mm_slot != slot);
2498 	/*
2499 	 * Release the current mm_slot if this mm is about to die, or
2500 	 * if we scanned all vmas of this mm.
2501 	 */
2502 	if (hpage_collapse_test_exit(mm) || !vma) {
2503 		/*
2504 		 * Make sure that if mm_users is reaching zero while
2505 		 * khugepaged runs here, khugepaged_exit will find
2506 		 * mm_slot not pointing to the exiting mm.
2507 		 */
2508 		if (!list_is_last(&slot->mm_node, &khugepaged_scan.mm_head)) {
2509 			khugepaged_scan.mm_slot = list_next_entry(slot, mm_node);
2510 			khugepaged_scan.address = 0;
2511 		} else {
2512 			khugepaged_scan.mm_slot = NULL;
2513 			khugepaged_full_scans++;
2514 		}
2515 
2516 		collect_mm_slot(slot);
2517 	}
2518 
2519 	return progress;
2520 }
2521 
khugepaged_has_work(void)2522 static int khugepaged_has_work(void)
2523 {
2524 	return !list_empty(&khugepaged_scan.mm_head) && hugepage_pmd_enabled();
2525 }
2526 
khugepaged_wait_event(void)2527 static int khugepaged_wait_event(void)
2528 {
2529 	return !list_empty(&khugepaged_scan.mm_head) ||
2530 		kthread_should_stop();
2531 }
2532 
khugepaged_do_scan(struct collapse_control * cc)2533 static void khugepaged_do_scan(struct collapse_control *cc)
2534 {
2535 	unsigned int progress = 0, pass_through_head = 0;
2536 	unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2537 	bool wait = true;
2538 	int result = SCAN_SUCCEED;
2539 
2540 	lru_add_drain_all();
2541 
2542 	while (true) {
2543 		cond_resched();
2544 
2545 		if (unlikely(kthread_should_stop()))
2546 			break;
2547 
2548 		spin_lock(&khugepaged_mm_lock);
2549 		if (!khugepaged_scan.mm_slot)
2550 			pass_through_head++;
2551 		if (khugepaged_has_work() &&
2552 		    pass_through_head < 2)
2553 			progress += khugepaged_scan_mm_slot(pages - progress,
2554 							    &result, cc);
2555 		else
2556 			progress = pages;
2557 		spin_unlock(&khugepaged_mm_lock);
2558 
2559 		if (progress >= pages)
2560 			break;
2561 
2562 		if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2563 			/*
2564 			 * If fail to allocate the first time, try to sleep for
2565 			 * a while.  When hit again, cancel the scan.
2566 			 */
2567 			if (!wait)
2568 				break;
2569 			wait = false;
2570 			khugepaged_alloc_sleep();
2571 		}
2572 	}
2573 }
2574 
khugepaged_should_wakeup(void)2575 static bool khugepaged_should_wakeup(void)
2576 {
2577 	return kthread_should_stop() ||
2578 	       time_after_eq(jiffies, khugepaged_sleep_expire);
2579 }
2580 
khugepaged_wait_work(void)2581 static void khugepaged_wait_work(void)
2582 {
2583 	if (khugepaged_has_work()) {
2584 		const unsigned long scan_sleep_jiffies =
2585 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2586 
2587 		if (!scan_sleep_jiffies)
2588 			return;
2589 
2590 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2591 		wait_event_freezable_timeout(khugepaged_wait,
2592 					     khugepaged_should_wakeup(),
2593 					     scan_sleep_jiffies);
2594 		return;
2595 	}
2596 
2597 	if (hugepage_pmd_enabled())
2598 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2599 }
2600 
khugepaged(void * none)2601 static int khugepaged(void *none)
2602 {
2603 	struct mm_slot *slot;
2604 
2605 	set_freezable();
2606 	set_user_nice(current, MAX_NICE);
2607 
2608 	while (!kthread_should_stop()) {
2609 		khugepaged_do_scan(&khugepaged_collapse_control);
2610 		khugepaged_wait_work();
2611 	}
2612 
2613 	spin_lock(&khugepaged_mm_lock);
2614 	slot = khugepaged_scan.mm_slot;
2615 	khugepaged_scan.mm_slot = NULL;
2616 	if (slot)
2617 		collect_mm_slot(slot);
2618 	spin_unlock(&khugepaged_mm_lock);
2619 	return 0;
2620 }
2621 
set_recommended_min_free_kbytes(void)2622 static void set_recommended_min_free_kbytes(void)
2623 {
2624 	struct zone *zone;
2625 	int nr_zones = 0;
2626 	unsigned long recommended_min;
2627 
2628 	if (!hugepage_pmd_enabled()) {
2629 		calculate_min_free_kbytes();
2630 		goto update_wmarks;
2631 	}
2632 
2633 	for_each_populated_zone(zone) {
2634 		/*
2635 		 * We don't need to worry about fragmentation of
2636 		 * ZONE_MOVABLE since it only has movable pages.
2637 		 */
2638 		if (zone_idx(zone) > gfp_zone(GFP_USER))
2639 			continue;
2640 
2641 		nr_zones++;
2642 	}
2643 
2644 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2645 	recommended_min = pageblock_nr_pages * nr_zones * 2;
2646 
2647 	/*
2648 	 * Make sure that on average at least two pageblocks are almost free
2649 	 * of another type, one for a migratetype to fall back to and a
2650 	 * second to avoid subsequent fallbacks of other types There are 3
2651 	 * MIGRATE_TYPES we care about.
2652 	 */
2653 	recommended_min += pageblock_nr_pages * nr_zones *
2654 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2655 
2656 	/* don't ever allow to reserve more than 5% of the lowmem */
2657 	recommended_min = min(recommended_min,
2658 			      (unsigned long) nr_free_buffer_pages() / 20);
2659 	recommended_min <<= (PAGE_SHIFT-10);
2660 
2661 	if (recommended_min > min_free_kbytes) {
2662 		if (user_min_free_kbytes >= 0)
2663 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2664 				min_free_kbytes, recommended_min);
2665 
2666 		min_free_kbytes = recommended_min;
2667 	}
2668 
2669 update_wmarks:
2670 	setup_per_zone_wmarks();
2671 }
2672 
start_stop_khugepaged(void)2673 int start_stop_khugepaged(void)
2674 {
2675 	int err = 0;
2676 
2677 	mutex_lock(&khugepaged_mutex);
2678 	if (hugepage_pmd_enabled()) {
2679 		if (!khugepaged_thread)
2680 			khugepaged_thread = kthread_run(khugepaged, NULL,
2681 							"khugepaged");
2682 		if (IS_ERR(khugepaged_thread)) {
2683 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2684 			err = PTR_ERR(khugepaged_thread);
2685 			khugepaged_thread = NULL;
2686 			goto fail;
2687 		}
2688 
2689 		if (!list_empty(&khugepaged_scan.mm_head))
2690 			wake_up_interruptible(&khugepaged_wait);
2691 	} else if (khugepaged_thread) {
2692 		kthread_stop(khugepaged_thread);
2693 		khugepaged_thread = NULL;
2694 	}
2695 	set_recommended_min_free_kbytes();
2696 fail:
2697 	mutex_unlock(&khugepaged_mutex);
2698 	return err;
2699 }
2700 
khugepaged_min_free_kbytes_update(void)2701 void khugepaged_min_free_kbytes_update(void)
2702 {
2703 	mutex_lock(&khugepaged_mutex);
2704 	if (hugepage_pmd_enabled() && khugepaged_thread)
2705 		set_recommended_min_free_kbytes();
2706 	mutex_unlock(&khugepaged_mutex);
2707 }
2708 
current_is_khugepaged(void)2709 bool current_is_khugepaged(void)
2710 {
2711 	return kthread_func(current) == khugepaged;
2712 }
2713 
madvise_collapse_errno(enum scan_result r)2714 static int madvise_collapse_errno(enum scan_result r)
2715 {
2716 	/*
2717 	 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2718 	 * actionable feedback to caller, so they may take an appropriate
2719 	 * fallback measure depending on the nature of the failure.
2720 	 */
2721 	switch (r) {
2722 	case SCAN_ALLOC_HUGE_PAGE_FAIL:
2723 		return -ENOMEM;
2724 	case SCAN_CGROUP_CHARGE_FAIL:
2725 	case SCAN_EXCEED_NONE_PTE:
2726 		return -EBUSY;
2727 	/* Resource temporary unavailable - trying again might succeed */
2728 	case SCAN_PAGE_COUNT:
2729 	case SCAN_PAGE_LOCK:
2730 	case SCAN_PAGE_LRU:
2731 	case SCAN_DEL_PAGE_LRU:
2732 	case SCAN_PAGE_FILLED:
2733 		return -EAGAIN;
2734 	/*
2735 	 * Other: Trying again likely not to succeed / error intrinsic to
2736 	 * specified memory range. khugepaged likely won't be able to collapse
2737 	 * either.
2738 	 */
2739 	default:
2740 		return -EINVAL;
2741 	}
2742 }
2743 
madvise_collapse(struct vm_area_struct * vma,unsigned long start,unsigned long end,bool * lock_dropped)2744 int madvise_collapse(struct vm_area_struct *vma, unsigned long start,
2745 		     unsigned long end, bool *lock_dropped)
2746 {
2747 	struct collapse_control *cc;
2748 	struct mm_struct *mm = vma->vm_mm;
2749 	unsigned long hstart, hend, addr;
2750 	int thps = 0, last_fail = SCAN_FAIL;
2751 	bool mmap_locked = true;
2752 
2753 	BUG_ON(vma->vm_start > start);
2754 	BUG_ON(vma->vm_end < end);
2755 
2756 	if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_FORCED_COLLAPSE, PMD_ORDER))
2757 		return -EINVAL;
2758 
2759 	cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2760 	if (!cc)
2761 		return -ENOMEM;
2762 	cc->is_khugepaged = false;
2763 
2764 	mmgrab(mm);
2765 	lru_add_drain_all();
2766 
2767 	hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2768 	hend = end & HPAGE_PMD_MASK;
2769 
2770 	for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2771 		int result = SCAN_FAIL;
2772 
2773 		if (!mmap_locked) {
2774 			cond_resched();
2775 			mmap_read_lock(mm);
2776 			mmap_locked = true;
2777 			result = hugepage_vma_revalidate(mm, addr, false, &vma,
2778 							 cc);
2779 			if (result  != SCAN_SUCCEED) {
2780 				last_fail = result;
2781 				goto out_nolock;
2782 			}
2783 
2784 			hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
2785 		}
2786 		mmap_assert_locked(mm);
2787 		memset(cc->node_load, 0, sizeof(cc->node_load));
2788 		nodes_clear(cc->alloc_nmask);
2789 		if (!vma_is_anonymous(vma)) {
2790 			struct file *file = get_file(vma->vm_file);
2791 			pgoff_t pgoff = linear_page_index(vma, addr);
2792 
2793 			mmap_read_unlock(mm);
2794 			mmap_locked = false;
2795 			result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2796 							  cc);
2797 			fput(file);
2798 		} else {
2799 			result = hpage_collapse_scan_pmd(mm, vma, addr,
2800 							 &mmap_locked, cc);
2801 		}
2802 		if (!mmap_locked)
2803 			*lock_dropped = true;
2804 
2805 handle_result:
2806 		switch (result) {
2807 		case SCAN_SUCCEED:
2808 		case SCAN_PMD_MAPPED:
2809 			++thps;
2810 			break;
2811 		case SCAN_PTE_MAPPED_HUGEPAGE:
2812 			BUG_ON(mmap_locked);
2813 			mmap_read_lock(mm);
2814 			result = collapse_pte_mapped_thp(mm, addr, true);
2815 			mmap_read_unlock(mm);
2816 			goto handle_result;
2817 		/* Whitelisted set of results where continuing OK */
2818 		case SCAN_PMD_NULL:
2819 		case SCAN_PTE_NON_PRESENT:
2820 		case SCAN_PTE_UFFD_WP:
2821 		case SCAN_LACK_REFERENCED_PAGE:
2822 		case SCAN_PAGE_NULL:
2823 		case SCAN_PAGE_COUNT:
2824 		case SCAN_PAGE_LOCK:
2825 		case SCAN_PAGE_COMPOUND:
2826 		case SCAN_PAGE_LRU:
2827 		case SCAN_DEL_PAGE_LRU:
2828 			last_fail = result;
2829 			break;
2830 		default:
2831 			last_fail = result;
2832 			/* Other error, exit */
2833 			goto out_maybelock;
2834 		}
2835 	}
2836 
2837 out_maybelock:
2838 	/* Caller expects us to hold mmap_lock on return */
2839 	if (!mmap_locked)
2840 		mmap_read_lock(mm);
2841 out_nolock:
2842 	mmap_assert_locked(mm);
2843 	mmdrop(mm);
2844 	kfree(cc);
2845 
2846 	return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2847 			: madvise_collapse_errno(last_fail);
2848 }
2849