1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/mmu_notifier.h> 8 #include <linux/rmap.h> 9 #include <linux/swap.h> 10 #include <linux/mm_inline.h> 11 #include <linux/kthread.h> 12 #include <linux/khugepaged.h> 13 #include <linux/freezer.h> 14 #include <linux/mman.h> 15 #include <linux/hashtable.h> 16 #include <linux/userfaultfd_k.h> 17 #include <linux/page_idle.h> 18 #include <linux/page_table_check.h> 19 #include <linux/rcupdate_wait.h> 20 #include <linux/swapops.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/dax.h> 23 #include <linux/ksm.h> 24 25 #include <asm/tlb.h> 26 #include <asm/pgalloc.h> 27 #include "internal.h" 28 #include "mm_slot.h" 29 30 enum scan_result { 31 SCAN_FAIL, 32 SCAN_SUCCEED, 33 SCAN_PMD_NULL, 34 SCAN_PMD_NONE, 35 SCAN_PMD_MAPPED, 36 SCAN_EXCEED_NONE_PTE, 37 SCAN_EXCEED_SWAP_PTE, 38 SCAN_EXCEED_SHARED_PTE, 39 SCAN_PTE_NON_PRESENT, 40 SCAN_PTE_UFFD_WP, 41 SCAN_PTE_MAPPED_HUGEPAGE, 42 SCAN_PAGE_RO, 43 SCAN_LACK_REFERENCED_PAGE, 44 SCAN_PAGE_NULL, 45 SCAN_SCAN_ABORT, 46 SCAN_PAGE_COUNT, 47 SCAN_PAGE_LRU, 48 SCAN_PAGE_LOCK, 49 SCAN_PAGE_ANON, 50 SCAN_PAGE_COMPOUND, 51 SCAN_ANY_PROCESS, 52 SCAN_VMA_NULL, 53 SCAN_VMA_CHECK, 54 SCAN_ADDRESS_RANGE, 55 SCAN_DEL_PAGE_LRU, 56 SCAN_ALLOC_HUGE_PAGE_FAIL, 57 SCAN_CGROUP_CHARGE_FAIL, 58 SCAN_TRUNCATED, 59 SCAN_PAGE_HAS_PRIVATE, 60 SCAN_STORE_FAILED, 61 SCAN_COPY_MC, 62 SCAN_PAGE_FILLED, 63 }; 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/huge_memory.h> 67 68 static struct task_struct *khugepaged_thread __read_mostly; 69 static DEFINE_MUTEX(khugepaged_mutex); 70 71 /* default scan 8*512 pte (or vmas) every 30 second */ 72 static unsigned int khugepaged_pages_to_scan __read_mostly; 73 static unsigned int khugepaged_pages_collapsed; 74 static unsigned int khugepaged_full_scans; 75 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 76 /* during fragmentation poll the hugepage allocator once every minute */ 77 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 78 static unsigned long khugepaged_sleep_expire; 79 static DEFINE_SPINLOCK(khugepaged_mm_lock); 80 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 81 /* 82 * default collapse hugepages if there is at least one pte mapped like 83 * it would have happened if the vma was large enough during page 84 * fault. 85 * 86 * Note that these are only respected if collapse was initiated by khugepaged. 87 */ 88 unsigned int khugepaged_max_ptes_none __read_mostly; 89 static unsigned int khugepaged_max_ptes_swap __read_mostly; 90 static unsigned int khugepaged_max_ptes_shared __read_mostly; 91 92 #define MM_SLOTS_HASH_BITS 10 93 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 94 95 static struct kmem_cache *mm_slot_cache __ro_after_init; 96 97 struct collapse_control { 98 bool is_khugepaged; 99 100 /* Num pages scanned per node */ 101 u32 node_load[MAX_NUMNODES]; 102 103 /* nodemask for allocation fallback */ 104 nodemask_t alloc_nmask; 105 }; 106 107 /** 108 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned 109 * @slot: hash lookup from mm to mm_slot 110 */ 111 struct khugepaged_mm_slot { 112 struct mm_slot slot; 113 }; 114 115 /** 116 * struct khugepaged_scan - cursor for scanning 117 * @mm_head: the head of the mm list to scan 118 * @mm_slot: the current mm_slot we are scanning 119 * @address: the next address inside that to be scanned 120 * 121 * There is only the one khugepaged_scan instance of this cursor structure. 122 */ 123 struct khugepaged_scan { 124 struct list_head mm_head; 125 struct khugepaged_mm_slot *mm_slot; 126 unsigned long address; 127 }; 128 129 static struct khugepaged_scan khugepaged_scan = { 130 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 131 }; 132 133 #ifdef CONFIG_SYSFS 134 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 135 struct kobj_attribute *attr, 136 char *buf) 137 { 138 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 139 } 140 141 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 142 struct kobj_attribute *attr, 143 const char *buf, size_t count) 144 { 145 unsigned int msecs; 146 int err; 147 148 err = kstrtouint(buf, 10, &msecs); 149 if (err) 150 return -EINVAL; 151 152 khugepaged_scan_sleep_millisecs = msecs; 153 khugepaged_sleep_expire = 0; 154 wake_up_interruptible(&khugepaged_wait); 155 156 return count; 157 } 158 static struct kobj_attribute scan_sleep_millisecs_attr = 159 __ATTR_RW(scan_sleep_millisecs); 160 161 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 162 struct kobj_attribute *attr, 163 char *buf) 164 { 165 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 166 } 167 168 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 169 struct kobj_attribute *attr, 170 const char *buf, size_t count) 171 { 172 unsigned int msecs; 173 int err; 174 175 err = kstrtouint(buf, 10, &msecs); 176 if (err) 177 return -EINVAL; 178 179 khugepaged_alloc_sleep_millisecs = msecs; 180 khugepaged_sleep_expire = 0; 181 wake_up_interruptible(&khugepaged_wait); 182 183 return count; 184 } 185 static struct kobj_attribute alloc_sleep_millisecs_attr = 186 __ATTR_RW(alloc_sleep_millisecs); 187 188 static ssize_t pages_to_scan_show(struct kobject *kobj, 189 struct kobj_attribute *attr, 190 char *buf) 191 { 192 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 193 } 194 static ssize_t pages_to_scan_store(struct kobject *kobj, 195 struct kobj_attribute *attr, 196 const char *buf, size_t count) 197 { 198 unsigned int pages; 199 int err; 200 201 err = kstrtouint(buf, 10, &pages); 202 if (err || !pages) 203 return -EINVAL; 204 205 khugepaged_pages_to_scan = pages; 206 207 return count; 208 } 209 static struct kobj_attribute pages_to_scan_attr = 210 __ATTR_RW(pages_to_scan); 211 212 static ssize_t pages_collapsed_show(struct kobject *kobj, 213 struct kobj_attribute *attr, 214 char *buf) 215 { 216 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 217 } 218 static struct kobj_attribute pages_collapsed_attr = 219 __ATTR_RO(pages_collapsed); 220 221 static ssize_t full_scans_show(struct kobject *kobj, 222 struct kobj_attribute *attr, 223 char *buf) 224 { 225 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 226 } 227 static struct kobj_attribute full_scans_attr = 228 __ATTR_RO(full_scans); 229 230 static ssize_t defrag_show(struct kobject *kobj, 231 struct kobj_attribute *attr, char *buf) 232 { 233 return single_hugepage_flag_show(kobj, attr, buf, 234 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 235 } 236 static ssize_t defrag_store(struct kobject *kobj, 237 struct kobj_attribute *attr, 238 const char *buf, size_t count) 239 { 240 return single_hugepage_flag_store(kobj, attr, buf, count, 241 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 242 } 243 static struct kobj_attribute khugepaged_defrag_attr = 244 __ATTR_RW(defrag); 245 246 /* 247 * max_ptes_none controls if khugepaged should collapse hugepages over 248 * any unmapped ptes in turn potentially increasing the memory 249 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 250 * reduce the available free memory in the system as it 251 * runs. Increasing max_ptes_none will instead potentially reduce the 252 * free memory in the system during the khugepaged scan. 253 */ 254 static ssize_t max_ptes_none_show(struct kobject *kobj, 255 struct kobj_attribute *attr, 256 char *buf) 257 { 258 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 259 } 260 static ssize_t max_ptes_none_store(struct kobject *kobj, 261 struct kobj_attribute *attr, 262 const char *buf, size_t count) 263 { 264 int err; 265 unsigned long max_ptes_none; 266 267 err = kstrtoul(buf, 10, &max_ptes_none); 268 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 269 return -EINVAL; 270 271 khugepaged_max_ptes_none = max_ptes_none; 272 273 return count; 274 } 275 static struct kobj_attribute khugepaged_max_ptes_none_attr = 276 __ATTR_RW(max_ptes_none); 277 278 static ssize_t max_ptes_swap_show(struct kobject *kobj, 279 struct kobj_attribute *attr, 280 char *buf) 281 { 282 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 283 } 284 285 static ssize_t max_ptes_swap_store(struct kobject *kobj, 286 struct kobj_attribute *attr, 287 const char *buf, size_t count) 288 { 289 int err; 290 unsigned long max_ptes_swap; 291 292 err = kstrtoul(buf, 10, &max_ptes_swap); 293 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 294 return -EINVAL; 295 296 khugepaged_max_ptes_swap = max_ptes_swap; 297 298 return count; 299 } 300 301 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 302 __ATTR_RW(max_ptes_swap); 303 304 static ssize_t max_ptes_shared_show(struct kobject *kobj, 305 struct kobj_attribute *attr, 306 char *buf) 307 { 308 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 309 } 310 311 static ssize_t max_ptes_shared_store(struct kobject *kobj, 312 struct kobj_attribute *attr, 313 const char *buf, size_t count) 314 { 315 int err; 316 unsigned long max_ptes_shared; 317 318 err = kstrtoul(buf, 10, &max_ptes_shared); 319 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 320 return -EINVAL; 321 322 khugepaged_max_ptes_shared = max_ptes_shared; 323 324 return count; 325 } 326 327 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 328 __ATTR_RW(max_ptes_shared); 329 330 static struct attribute *khugepaged_attr[] = { 331 &khugepaged_defrag_attr.attr, 332 &khugepaged_max_ptes_none_attr.attr, 333 &khugepaged_max_ptes_swap_attr.attr, 334 &khugepaged_max_ptes_shared_attr.attr, 335 &pages_to_scan_attr.attr, 336 &pages_collapsed_attr.attr, 337 &full_scans_attr.attr, 338 &scan_sleep_millisecs_attr.attr, 339 &alloc_sleep_millisecs_attr.attr, 340 NULL, 341 }; 342 343 struct attribute_group khugepaged_attr_group = { 344 .attrs = khugepaged_attr, 345 .name = "khugepaged", 346 }; 347 #endif /* CONFIG_SYSFS */ 348 349 int hugepage_madvise(struct vm_area_struct *vma, 350 vm_flags_t *vm_flags, int advice) 351 { 352 switch (advice) { 353 case MADV_HUGEPAGE: 354 #ifdef CONFIG_S390 355 /* 356 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 357 * can't handle this properly after s390_enable_sie, so we simply 358 * ignore the madvise to prevent qemu from causing a SIGSEGV. 359 */ 360 if (mm_has_pgste(vma->vm_mm)) 361 return 0; 362 #endif 363 *vm_flags &= ~VM_NOHUGEPAGE; 364 *vm_flags |= VM_HUGEPAGE; 365 /* 366 * If the vma become good for khugepaged to scan, 367 * register it here without waiting a page fault that 368 * may not happen any time soon. 369 */ 370 khugepaged_enter_vma(vma, *vm_flags); 371 break; 372 case MADV_NOHUGEPAGE: 373 *vm_flags &= ~VM_HUGEPAGE; 374 *vm_flags |= VM_NOHUGEPAGE; 375 /* 376 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 377 * this vma even if we leave the mm registered in khugepaged if 378 * it got registered before VM_NOHUGEPAGE was set. 379 */ 380 break; 381 } 382 383 return 0; 384 } 385 386 int __init khugepaged_init(void) 387 { 388 mm_slot_cache = KMEM_CACHE(khugepaged_mm_slot, 0); 389 if (!mm_slot_cache) 390 return -ENOMEM; 391 392 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 393 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 394 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 395 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 396 397 return 0; 398 } 399 400 void __init khugepaged_destroy(void) 401 { 402 kmem_cache_destroy(mm_slot_cache); 403 } 404 405 static inline int hpage_collapse_test_exit(struct mm_struct *mm) 406 { 407 return atomic_read(&mm->mm_users) == 0; 408 } 409 410 static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm) 411 { 412 return hpage_collapse_test_exit(mm) || 413 test_bit(MMF_DISABLE_THP, &mm->flags); 414 } 415 416 static bool hugepage_pmd_enabled(void) 417 { 418 /* 419 * We cover the anon, shmem and the file-backed case here; file-backed 420 * hugepages, when configured in, are determined by the global control. 421 * Anon pmd-sized hugepages are determined by the pmd-size control. 422 * Shmem pmd-sized hugepages are also determined by its pmd-size control, 423 * except when the global shmem_huge is set to SHMEM_HUGE_DENY. 424 */ 425 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && 426 hugepage_global_enabled()) 427 return true; 428 if (test_bit(PMD_ORDER, &huge_anon_orders_always)) 429 return true; 430 if (test_bit(PMD_ORDER, &huge_anon_orders_madvise)) 431 return true; 432 if (test_bit(PMD_ORDER, &huge_anon_orders_inherit) && 433 hugepage_global_enabled()) 434 return true; 435 if (IS_ENABLED(CONFIG_SHMEM) && shmem_hpage_pmd_enabled()) 436 return true; 437 return false; 438 } 439 440 void __khugepaged_enter(struct mm_struct *mm) 441 { 442 struct khugepaged_mm_slot *mm_slot; 443 struct mm_slot *slot; 444 int wakeup; 445 446 /* __khugepaged_exit() must not run from under us */ 447 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); 448 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) 449 return; 450 451 mm_slot = mm_slot_alloc(mm_slot_cache); 452 if (!mm_slot) 453 return; 454 455 slot = &mm_slot->slot; 456 457 spin_lock(&khugepaged_mm_lock); 458 mm_slot_insert(mm_slots_hash, mm, slot); 459 /* 460 * Insert just behind the scanning cursor, to let the area settle 461 * down a little. 462 */ 463 wakeup = list_empty(&khugepaged_scan.mm_head); 464 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); 465 spin_unlock(&khugepaged_mm_lock); 466 467 mmgrab(mm); 468 if (wakeup) 469 wake_up_interruptible(&khugepaged_wait); 470 } 471 472 void khugepaged_enter_vma(struct vm_area_struct *vma, 473 vm_flags_t vm_flags) 474 { 475 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) && 476 hugepage_pmd_enabled()) { 477 if (thp_vma_allowable_order(vma, vm_flags, TVA_ENFORCE_SYSFS, 478 PMD_ORDER)) 479 __khugepaged_enter(vma->vm_mm); 480 } 481 } 482 483 void __khugepaged_exit(struct mm_struct *mm) 484 { 485 struct khugepaged_mm_slot *mm_slot; 486 struct mm_slot *slot; 487 int free = 0; 488 489 spin_lock(&khugepaged_mm_lock); 490 slot = mm_slot_lookup(mm_slots_hash, mm); 491 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 492 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 493 hash_del(&slot->hash); 494 list_del(&slot->mm_node); 495 free = 1; 496 } 497 spin_unlock(&khugepaged_mm_lock); 498 499 if (free) { 500 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 501 mm_slot_free(mm_slot_cache, mm_slot); 502 mmdrop(mm); 503 } else if (mm_slot) { 504 /* 505 * This is required to serialize against 506 * hpage_collapse_test_exit() (which is guaranteed to run 507 * under mmap sem read mode). Stop here (after we return all 508 * pagetables will be destroyed) until khugepaged has finished 509 * working on the pagetables under the mmap_lock. 510 */ 511 mmap_write_lock(mm); 512 mmap_write_unlock(mm); 513 } 514 } 515 516 static void release_pte_folio(struct folio *folio) 517 { 518 node_stat_mod_folio(folio, 519 NR_ISOLATED_ANON + folio_is_file_lru(folio), 520 -folio_nr_pages(folio)); 521 folio_unlock(folio); 522 folio_putback_lru(folio); 523 } 524 525 static void release_pte_pages(pte_t *pte, pte_t *_pte, 526 struct list_head *compound_pagelist) 527 { 528 struct folio *folio, *tmp; 529 530 while (--_pte >= pte) { 531 pte_t pteval = ptep_get(_pte); 532 unsigned long pfn; 533 534 if (pte_none(pteval)) 535 continue; 536 pfn = pte_pfn(pteval); 537 if (is_zero_pfn(pfn)) 538 continue; 539 folio = pfn_folio(pfn); 540 if (folio_test_large(folio)) 541 continue; 542 release_pte_folio(folio); 543 } 544 545 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) { 546 list_del(&folio->lru); 547 release_pte_folio(folio); 548 } 549 } 550 551 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 552 unsigned long address, 553 pte_t *pte, 554 struct collapse_control *cc, 555 struct list_head *compound_pagelist) 556 { 557 struct page *page = NULL; 558 struct folio *folio = NULL; 559 pte_t *_pte; 560 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0; 561 bool writable = false; 562 563 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 564 _pte++, address += PAGE_SIZE) { 565 pte_t pteval = ptep_get(_pte); 566 if (pte_none(pteval) || (pte_present(pteval) && 567 is_zero_pfn(pte_pfn(pteval)))) { 568 ++none_or_zero; 569 if (!userfaultfd_armed(vma) && 570 (!cc->is_khugepaged || 571 none_or_zero <= khugepaged_max_ptes_none)) { 572 continue; 573 } else { 574 result = SCAN_EXCEED_NONE_PTE; 575 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 576 goto out; 577 } 578 } 579 if (!pte_present(pteval)) { 580 result = SCAN_PTE_NON_PRESENT; 581 goto out; 582 } 583 if (pte_uffd_wp(pteval)) { 584 result = SCAN_PTE_UFFD_WP; 585 goto out; 586 } 587 page = vm_normal_page(vma, address, pteval); 588 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 589 result = SCAN_PAGE_NULL; 590 goto out; 591 } 592 593 folio = page_folio(page); 594 VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio); 595 596 /* See hpage_collapse_scan_pmd(). */ 597 if (folio_maybe_mapped_shared(folio)) { 598 ++shared; 599 if (cc->is_khugepaged && 600 shared > khugepaged_max_ptes_shared) { 601 result = SCAN_EXCEED_SHARED_PTE; 602 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 603 goto out; 604 } 605 } 606 607 if (folio_test_large(folio)) { 608 struct folio *f; 609 610 /* 611 * Check if we have dealt with the compound page 612 * already 613 */ 614 list_for_each_entry(f, compound_pagelist, lru) { 615 if (folio == f) 616 goto next; 617 } 618 } 619 620 /* 621 * We can do it before folio_isolate_lru because the 622 * folio can't be freed from under us. NOTE: PG_lock 623 * is needed to serialize against split_huge_page 624 * when invoked from the VM. 625 */ 626 if (!folio_trylock(folio)) { 627 result = SCAN_PAGE_LOCK; 628 goto out; 629 } 630 631 /* 632 * Check if the page has any GUP (or other external) pins. 633 * 634 * The page table that maps the page has been already unlinked 635 * from the page table tree and this process cannot get 636 * an additional pin on the page. 637 * 638 * New pins can come later if the page is shared across fork, 639 * but not from this process. The other process cannot write to 640 * the page, only trigger CoW. 641 */ 642 if (folio_expected_ref_count(folio) != folio_ref_count(folio)) { 643 folio_unlock(folio); 644 result = SCAN_PAGE_COUNT; 645 goto out; 646 } 647 648 /* 649 * Isolate the page to avoid collapsing an hugepage 650 * currently in use by the VM. 651 */ 652 if (!folio_isolate_lru(folio)) { 653 folio_unlock(folio); 654 result = SCAN_DEL_PAGE_LRU; 655 goto out; 656 } 657 node_stat_mod_folio(folio, 658 NR_ISOLATED_ANON + folio_is_file_lru(folio), 659 folio_nr_pages(folio)); 660 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 661 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 662 663 if (folio_test_large(folio)) 664 list_add_tail(&folio->lru, compound_pagelist); 665 next: 666 /* 667 * If collapse was initiated by khugepaged, check that there is 668 * enough young pte to justify collapsing the page 669 */ 670 if (cc->is_khugepaged && 671 (pte_young(pteval) || folio_test_young(folio) || 672 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm, 673 address))) 674 referenced++; 675 676 if (pte_write(pteval)) 677 writable = true; 678 } 679 680 if (unlikely(!writable)) { 681 result = SCAN_PAGE_RO; 682 } else if (unlikely(cc->is_khugepaged && !referenced)) { 683 result = SCAN_LACK_REFERENCED_PAGE; 684 } else { 685 result = SCAN_SUCCEED; 686 trace_mm_collapse_huge_page_isolate(folio, none_or_zero, 687 referenced, writable, result); 688 return result; 689 } 690 out: 691 release_pte_pages(pte, _pte, compound_pagelist); 692 trace_mm_collapse_huge_page_isolate(folio, none_or_zero, 693 referenced, writable, result); 694 return result; 695 } 696 697 static void __collapse_huge_page_copy_succeeded(pte_t *pte, 698 struct vm_area_struct *vma, 699 unsigned long address, 700 spinlock_t *ptl, 701 struct list_head *compound_pagelist) 702 { 703 struct folio *src, *tmp; 704 pte_t *_pte; 705 pte_t pteval; 706 707 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 708 _pte++, address += PAGE_SIZE) { 709 pteval = ptep_get(_pte); 710 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 711 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 712 if (is_zero_pfn(pte_pfn(pteval))) { 713 /* 714 * ptl mostly unnecessary. 715 */ 716 spin_lock(ptl); 717 ptep_clear(vma->vm_mm, address, _pte); 718 spin_unlock(ptl); 719 ksm_might_unmap_zero_page(vma->vm_mm, pteval); 720 } 721 } else { 722 struct page *src_page = pte_page(pteval); 723 724 src = page_folio(src_page); 725 if (!folio_test_large(src)) 726 release_pte_folio(src); 727 /* 728 * ptl mostly unnecessary, but preempt has to 729 * be disabled to update the per-cpu stats 730 * inside folio_remove_rmap_pte(). 731 */ 732 spin_lock(ptl); 733 ptep_clear(vma->vm_mm, address, _pte); 734 folio_remove_rmap_pte(src, src_page, vma); 735 spin_unlock(ptl); 736 free_folio_and_swap_cache(src); 737 } 738 } 739 740 list_for_each_entry_safe(src, tmp, compound_pagelist, lru) { 741 list_del(&src->lru); 742 node_stat_sub_folio(src, NR_ISOLATED_ANON + 743 folio_is_file_lru(src)); 744 folio_unlock(src); 745 free_swap_cache(src); 746 folio_putback_lru(src); 747 } 748 } 749 750 static void __collapse_huge_page_copy_failed(pte_t *pte, 751 pmd_t *pmd, 752 pmd_t orig_pmd, 753 struct vm_area_struct *vma, 754 struct list_head *compound_pagelist) 755 { 756 spinlock_t *pmd_ptl; 757 758 /* 759 * Re-establish the PMD to point to the original page table 760 * entry. Restoring PMD needs to be done prior to releasing 761 * pages. Since pages are still isolated and locked here, 762 * acquiring anon_vma_lock_write is unnecessary. 763 */ 764 pmd_ptl = pmd_lock(vma->vm_mm, pmd); 765 pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd)); 766 spin_unlock(pmd_ptl); 767 /* 768 * Release both raw and compound pages isolated 769 * in __collapse_huge_page_isolate. 770 */ 771 release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist); 772 } 773 774 /* 775 * __collapse_huge_page_copy - attempts to copy memory contents from raw 776 * pages to a hugepage. Cleans up the raw pages if copying succeeds; 777 * otherwise restores the original page table and releases isolated raw pages. 778 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC. 779 * 780 * @pte: starting of the PTEs to copy from 781 * @folio: the new hugepage to copy contents to 782 * @pmd: pointer to the new hugepage's PMD 783 * @orig_pmd: the original raw pages' PMD 784 * @vma: the original raw pages' virtual memory area 785 * @address: starting address to copy 786 * @ptl: lock on raw pages' PTEs 787 * @compound_pagelist: list that stores compound pages 788 */ 789 static int __collapse_huge_page_copy(pte_t *pte, struct folio *folio, 790 pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma, 791 unsigned long address, spinlock_t *ptl, 792 struct list_head *compound_pagelist) 793 { 794 unsigned int i; 795 int result = SCAN_SUCCEED; 796 797 /* 798 * Copying pages' contents is subject to memory poison at any iteration. 799 */ 800 for (i = 0; i < HPAGE_PMD_NR; i++) { 801 pte_t pteval = ptep_get(pte + i); 802 struct page *page = folio_page(folio, i); 803 unsigned long src_addr = address + i * PAGE_SIZE; 804 struct page *src_page; 805 806 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 807 clear_user_highpage(page, src_addr); 808 continue; 809 } 810 src_page = pte_page(pteval); 811 if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) { 812 result = SCAN_COPY_MC; 813 break; 814 } 815 } 816 817 if (likely(result == SCAN_SUCCEED)) 818 __collapse_huge_page_copy_succeeded(pte, vma, address, ptl, 819 compound_pagelist); 820 else 821 __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma, 822 compound_pagelist); 823 824 return result; 825 } 826 827 static void khugepaged_alloc_sleep(void) 828 { 829 DEFINE_WAIT(wait); 830 831 add_wait_queue(&khugepaged_wait, &wait); 832 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 833 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 834 remove_wait_queue(&khugepaged_wait, &wait); 835 } 836 837 struct collapse_control khugepaged_collapse_control = { 838 .is_khugepaged = true, 839 }; 840 841 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) 842 { 843 int i; 844 845 /* 846 * If node_reclaim_mode is disabled, then no extra effort is made to 847 * allocate memory locally. 848 */ 849 if (!node_reclaim_enabled()) 850 return false; 851 852 /* If there is a count for this node already, it must be acceptable */ 853 if (cc->node_load[nid]) 854 return false; 855 856 for (i = 0; i < MAX_NUMNODES; i++) { 857 if (!cc->node_load[i]) 858 continue; 859 if (node_distance(nid, i) > node_reclaim_distance) 860 return true; 861 } 862 return false; 863 } 864 865 #define khugepaged_defrag() \ 866 (transparent_hugepage_flags & \ 867 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 868 869 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 870 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 871 { 872 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 873 } 874 875 #ifdef CONFIG_NUMA 876 static int hpage_collapse_find_target_node(struct collapse_control *cc) 877 { 878 int nid, target_node = 0, max_value = 0; 879 880 /* find first node with max normal pages hit */ 881 for (nid = 0; nid < MAX_NUMNODES; nid++) 882 if (cc->node_load[nid] > max_value) { 883 max_value = cc->node_load[nid]; 884 target_node = nid; 885 } 886 887 for_each_online_node(nid) { 888 if (max_value == cc->node_load[nid]) 889 node_set(nid, cc->alloc_nmask); 890 } 891 892 return target_node; 893 } 894 #else 895 static int hpage_collapse_find_target_node(struct collapse_control *cc) 896 { 897 return 0; 898 } 899 #endif 900 901 /* 902 * If mmap_lock temporarily dropped, revalidate vma 903 * before taking mmap_lock. 904 * Returns enum scan_result value. 905 */ 906 907 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 908 bool expect_anon, 909 struct vm_area_struct **vmap, 910 struct collapse_control *cc) 911 { 912 struct vm_area_struct *vma; 913 unsigned long tva_flags = cc->is_khugepaged ? TVA_ENFORCE_SYSFS : 0; 914 915 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 916 return SCAN_ANY_PROCESS; 917 918 *vmap = vma = find_vma(mm, address); 919 if (!vma) 920 return SCAN_VMA_NULL; 921 922 if (!thp_vma_suitable_order(vma, address, PMD_ORDER)) 923 return SCAN_ADDRESS_RANGE; 924 if (!thp_vma_allowable_order(vma, vma->vm_flags, tva_flags, PMD_ORDER)) 925 return SCAN_VMA_CHECK; 926 /* 927 * Anon VMA expected, the address may be unmapped then 928 * remapped to file after khugepaged reaquired the mmap_lock. 929 * 930 * thp_vma_allowable_order may return true for qualified file 931 * vmas. 932 */ 933 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) 934 return SCAN_PAGE_ANON; 935 return SCAN_SUCCEED; 936 } 937 938 static inline int check_pmd_state(pmd_t *pmd) 939 { 940 pmd_t pmde = pmdp_get_lockless(pmd); 941 942 if (pmd_none(pmde)) 943 return SCAN_PMD_NONE; 944 945 /* 946 * The folio may be under migration when khugepaged is trying to 947 * collapse it. Migration success or failure will eventually end 948 * up with a present PMD mapping a folio again. 949 */ 950 if (is_pmd_migration_entry(pmde)) 951 return SCAN_PMD_MAPPED; 952 if (!pmd_present(pmde)) 953 return SCAN_PMD_NULL; 954 if (pmd_trans_huge(pmde)) 955 return SCAN_PMD_MAPPED; 956 if (pmd_bad(pmde)) 957 return SCAN_PMD_NULL; 958 return SCAN_SUCCEED; 959 } 960 961 static int find_pmd_or_thp_or_none(struct mm_struct *mm, 962 unsigned long address, 963 pmd_t **pmd) 964 { 965 *pmd = mm_find_pmd(mm, address); 966 if (!*pmd) 967 return SCAN_PMD_NULL; 968 969 return check_pmd_state(*pmd); 970 } 971 972 static int check_pmd_still_valid(struct mm_struct *mm, 973 unsigned long address, 974 pmd_t *pmd) 975 { 976 pmd_t *new_pmd; 977 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd); 978 979 if (result != SCAN_SUCCEED) 980 return result; 981 if (new_pmd != pmd) 982 return SCAN_FAIL; 983 return SCAN_SUCCEED; 984 } 985 986 /* 987 * Bring missing pages in from swap, to complete THP collapse. 988 * Only done if hpage_collapse_scan_pmd believes it is worthwhile. 989 * 990 * Called and returns without pte mapped or spinlocks held. 991 * Returns result: if not SCAN_SUCCEED, mmap_lock has been released. 992 */ 993 static int __collapse_huge_page_swapin(struct mm_struct *mm, 994 struct vm_area_struct *vma, 995 unsigned long haddr, pmd_t *pmd, 996 int referenced) 997 { 998 int swapped_in = 0; 999 vm_fault_t ret = 0; 1000 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 1001 int result; 1002 pte_t *pte = NULL; 1003 spinlock_t *ptl; 1004 1005 for (address = haddr; address < end; address += PAGE_SIZE) { 1006 struct vm_fault vmf = { 1007 .vma = vma, 1008 .address = address, 1009 .pgoff = linear_page_index(vma, address), 1010 .flags = FAULT_FLAG_ALLOW_RETRY, 1011 .pmd = pmd, 1012 }; 1013 1014 if (!pte++) { 1015 /* 1016 * Here the ptl is only used to check pte_same() in 1017 * do_swap_page(), so readonly version is enough. 1018 */ 1019 pte = pte_offset_map_ro_nolock(mm, pmd, address, &ptl); 1020 if (!pte) { 1021 mmap_read_unlock(mm); 1022 result = SCAN_PMD_NULL; 1023 goto out; 1024 } 1025 } 1026 1027 vmf.orig_pte = ptep_get_lockless(pte); 1028 if (!is_swap_pte(vmf.orig_pte)) 1029 continue; 1030 1031 vmf.pte = pte; 1032 vmf.ptl = ptl; 1033 ret = do_swap_page(&vmf); 1034 /* Which unmaps pte (after perhaps re-checking the entry) */ 1035 pte = NULL; 1036 1037 /* 1038 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 1039 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 1040 * we do not retry here and swap entry will remain in pagetable 1041 * resulting in later failure. 1042 */ 1043 if (ret & VM_FAULT_RETRY) { 1044 /* Likely, but not guaranteed, that page lock failed */ 1045 result = SCAN_PAGE_LOCK; 1046 goto out; 1047 } 1048 if (ret & VM_FAULT_ERROR) { 1049 mmap_read_unlock(mm); 1050 result = SCAN_FAIL; 1051 goto out; 1052 } 1053 swapped_in++; 1054 } 1055 1056 if (pte) 1057 pte_unmap(pte); 1058 1059 /* Drain LRU cache to remove extra pin on the swapped in pages */ 1060 if (swapped_in) 1061 lru_add_drain(); 1062 1063 result = SCAN_SUCCEED; 1064 out: 1065 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result); 1066 return result; 1067 } 1068 1069 static int alloc_charge_folio(struct folio **foliop, struct mm_struct *mm, 1070 struct collapse_control *cc) 1071 { 1072 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : 1073 GFP_TRANSHUGE); 1074 int node = hpage_collapse_find_target_node(cc); 1075 struct folio *folio; 1076 1077 folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask); 1078 if (!folio) { 1079 *foliop = NULL; 1080 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 1081 return SCAN_ALLOC_HUGE_PAGE_FAIL; 1082 } 1083 1084 count_vm_event(THP_COLLAPSE_ALLOC); 1085 if (unlikely(mem_cgroup_charge(folio, mm, gfp))) { 1086 folio_put(folio); 1087 *foliop = NULL; 1088 return SCAN_CGROUP_CHARGE_FAIL; 1089 } 1090 1091 count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1); 1092 1093 *foliop = folio; 1094 return SCAN_SUCCEED; 1095 } 1096 1097 static int collapse_huge_page(struct mm_struct *mm, unsigned long address, 1098 int referenced, int unmapped, 1099 struct collapse_control *cc) 1100 { 1101 LIST_HEAD(compound_pagelist); 1102 pmd_t *pmd, _pmd; 1103 pte_t *pte; 1104 pgtable_t pgtable; 1105 struct folio *folio; 1106 spinlock_t *pmd_ptl, *pte_ptl; 1107 int result = SCAN_FAIL; 1108 struct vm_area_struct *vma; 1109 struct mmu_notifier_range range; 1110 1111 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1112 1113 /* 1114 * Before allocating the hugepage, release the mmap_lock read lock. 1115 * The allocation can take potentially a long time if it involves 1116 * sync compaction, and we do not need to hold the mmap_lock during 1117 * that. We will recheck the vma after taking it again in write mode. 1118 */ 1119 mmap_read_unlock(mm); 1120 1121 result = alloc_charge_folio(&folio, mm, cc); 1122 if (result != SCAN_SUCCEED) 1123 goto out_nolock; 1124 1125 mmap_read_lock(mm); 1126 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1127 if (result != SCAN_SUCCEED) { 1128 mmap_read_unlock(mm); 1129 goto out_nolock; 1130 } 1131 1132 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1133 if (result != SCAN_SUCCEED) { 1134 mmap_read_unlock(mm); 1135 goto out_nolock; 1136 } 1137 1138 if (unmapped) { 1139 /* 1140 * __collapse_huge_page_swapin will return with mmap_lock 1141 * released when it fails. So we jump out_nolock directly in 1142 * that case. Continuing to collapse causes inconsistency. 1143 */ 1144 result = __collapse_huge_page_swapin(mm, vma, address, pmd, 1145 referenced); 1146 if (result != SCAN_SUCCEED) 1147 goto out_nolock; 1148 } 1149 1150 mmap_read_unlock(mm); 1151 /* 1152 * Prevent all access to pagetables with the exception of 1153 * gup_fast later handled by the ptep_clear_flush and the VM 1154 * handled by the anon_vma lock + PG_lock. 1155 * 1156 * UFFDIO_MOVE is prevented to race as well thanks to the 1157 * mmap_lock. 1158 */ 1159 mmap_write_lock(mm); 1160 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1161 if (result != SCAN_SUCCEED) 1162 goto out_up_write; 1163 /* check if the pmd is still valid */ 1164 result = check_pmd_still_valid(mm, address, pmd); 1165 if (result != SCAN_SUCCEED) 1166 goto out_up_write; 1167 1168 vma_start_write(vma); 1169 anon_vma_lock_write(vma->anon_vma); 1170 1171 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address, 1172 address + HPAGE_PMD_SIZE); 1173 mmu_notifier_invalidate_range_start(&range); 1174 1175 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1176 /* 1177 * This removes any huge TLB entry from the CPU so we won't allow 1178 * huge and small TLB entries for the same virtual address to 1179 * avoid the risk of CPU bugs in that area. 1180 * 1181 * Parallel GUP-fast is fine since GUP-fast will back off when 1182 * it detects PMD is changed. 1183 */ 1184 _pmd = pmdp_collapse_flush(vma, address, pmd); 1185 spin_unlock(pmd_ptl); 1186 mmu_notifier_invalidate_range_end(&range); 1187 tlb_remove_table_sync_one(); 1188 1189 pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl); 1190 if (pte) { 1191 result = __collapse_huge_page_isolate(vma, address, pte, cc, 1192 &compound_pagelist); 1193 spin_unlock(pte_ptl); 1194 } else { 1195 result = SCAN_PMD_NULL; 1196 } 1197 1198 if (unlikely(result != SCAN_SUCCEED)) { 1199 if (pte) 1200 pte_unmap(pte); 1201 spin_lock(pmd_ptl); 1202 BUG_ON(!pmd_none(*pmd)); 1203 /* 1204 * We can only use set_pmd_at when establishing 1205 * hugepmds and never for establishing regular pmds that 1206 * points to regular pagetables. Use pmd_populate for that 1207 */ 1208 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1209 spin_unlock(pmd_ptl); 1210 anon_vma_unlock_write(vma->anon_vma); 1211 goto out_up_write; 1212 } 1213 1214 /* 1215 * All pages are isolated and locked so anon_vma rmap 1216 * can't run anymore. 1217 */ 1218 anon_vma_unlock_write(vma->anon_vma); 1219 1220 result = __collapse_huge_page_copy(pte, folio, pmd, _pmd, 1221 vma, address, pte_ptl, 1222 &compound_pagelist); 1223 pte_unmap(pte); 1224 if (unlikely(result != SCAN_SUCCEED)) 1225 goto out_up_write; 1226 1227 /* 1228 * The smp_wmb() inside __folio_mark_uptodate() ensures the 1229 * copy_huge_page writes become visible before the set_pmd_at() 1230 * write. 1231 */ 1232 __folio_mark_uptodate(folio); 1233 pgtable = pmd_pgtable(_pmd); 1234 1235 _pmd = folio_mk_pmd(folio, vma->vm_page_prot); 1236 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1237 1238 spin_lock(pmd_ptl); 1239 BUG_ON(!pmd_none(*pmd)); 1240 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 1241 folio_add_lru_vma(folio, vma); 1242 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1243 set_pmd_at(mm, address, pmd, _pmd); 1244 update_mmu_cache_pmd(vma, address, pmd); 1245 deferred_split_folio(folio, false); 1246 spin_unlock(pmd_ptl); 1247 1248 folio = NULL; 1249 1250 result = SCAN_SUCCEED; 1251 out_up_write: 1252 mmap_write_unlock(mm); 1253 out_nolock: 1254 if (folio) 1255 folio_put(folio); 1256 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); 1257 return result; 1258 } 1259 1260 static int hpage_collapse_scan_pmd(struct mm_struct *mm, 1261 struct vm_area_struct *vma, 1262 unsigned long address, bool *mmap_locked, 1263 struct collapse_control *cc) 1264 { 1265 pmd_t *pmd; 1266 pte_t *pte, *_pte; 1267 int result = SCAN_FAIL, referenced = 0; 1268 int none_or_zero = 0, shared = 0; 1269 struct page *page = NULL; 1270 struct folio *folio = NULL; 1271 unsigned long _address; 1272 spinlock_t *ptl; 1273 int node = NUMA_NO_NODE, unmapped = 0; 1274 bool writable = false; 1275 1276 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1277 1278 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1279 if (result != SCAN_SUCCEED) 1280 goto out; 1281 1282 memset(cc->node_load, 0, sizeof(cc->node_load)); 1283 nodes_clear(cc->alloc_nmask); 1284 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1285 if (!pte) { 1286 result = SCAN_PMD_NULL; 1287 goto out; 1288 } 1289 1290 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1291 _pte++, _address += PAGE_SIZE) { 1292 pte_t pteval = ptep_get(_pte); 1293 if (is_swap_pte(pteval)) { 1294 ++unmapped; 1295 if (!cc->is_khugepaged || 1296 unmapped <= khugepaged_max_ptes_swap) { 1297 /* 1298 * Always be strict with uffd-wp 1299 * enabled swap entries. Please see 1300 * comment below for pte_uffd_wp(). 1301 */ 1302 if (pte_swp_uffd_wp_any(pteval)) { 1303 result = SCAN_PTE_UFFD_WP; 1304 goto out_unmap; 1305 } 1306 continue; 1307 } else { 1308 result = SCAN_EXCEED_SWAP_PTE; 1309 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1310 goto out_unmap; 1311 } 1312 } 1313 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1314 ++none_or_zero; 1315 if (!userfaultfd_armed(vma) && 1316 (!cc->is_khugepaged || 1317 none_or_zero <= khugepaged_max_ptes_none)) { 1318 continue; 1319 } else { 1320 result = SCAN_EXCEED_NONE_PTE; 1321 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1322 goto out_unmap; 1323 } 1324 } 1325 if (pte_uffd_wp(pteval)) { 1326 /* 1327 * Don't collapse the page if any of the small 1328 * PTEs are armed with uffd write protection. 1329 * Here we can also mark the new huge pmd as 1330 * write protected if any of the small ones is 1331 * marked but that could bring unknown 1332 * userfault messages that falls outside of 1333 * the registered range. So, just be simple. 1334 */ 1335 result = SCAN_PTE_UFFD_WP; 1336 goto out_unmap; 1337 } 1338 if (pte_write(pteval)) 1339 writable = true; 1340 1341 page = vm_normal_page(vma, _address, pteval); 1342 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1343 result = SCAN_PAGE_NULL; 1344 goto out_unmap; 1345 } 1346 folio = page_folio(page); 1347 1348 if (!folio_test_anon(folio)) { 1349 result = SCAN_PAGE_ANON; 1350 goto out_unmap; 1351 } 1352 1353 /* 1354 * We treat a single page as shared if any part of the THP 1355 * is shared. 1356 */ 1357 if (folio_maybe_mapped_shared(folio)) { 1358 ++shared; 1359 if (cc->is_khugepaged && 1360 shared > khugepaged_max_ptes_shared) { 1361 result = SCAN_EXCEED_SHARED_PTE; 1362 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1363 goto out_unmap; 1364 } 1365 } 1366 1367 /* 1368 * Record which node the original page is from and save this 1369 * information to cc->node_load[]. 1370 * Khugepaged will allocate hugepage from the node has the max 1371 * hit record. 1372 */ 1373 node = folio_nid(folio); 1374 if (hpage_collapse_scan_abort(node, cc)) { 1375 result = SCAN_SCAN_ABORT; 1376 goto out_unmap; 1377 } 1378 cc->node_load[node]++; 1379 if (!folio_test_lru(folio)) { 1380 result = SCAN_PAGE_LRU; 1381 goto out_unmap; 1382 } 1383 if (folio_test_locked(folio)) { 1384 result = SCAN_PAGE_LOCK; 1385 goto out_unmap; 1386 } 1387 1388 /* 1389 * Check if the page has any GUP (or other external) pins. 1390 * 1391 * Here the check may be racy: 1392 * it may see folio_mapcount() > folio_ref_count(). 1393 * But such case is ephemeral we could always retry collapse 1394 * later. However it may report false positive if the page 1395 * has excessive GUP pins (i.e. 512). Anyway the same check 1396 * will be done again later the risk seems low. 1397 */ 1398 if (folio_expected_ref_count(folio) != folio_ref_count(folio)) { 1399 result = SCAN_PAGE_COUNT; 1400 goto out_unmap; 1401 } 1402 1403 /* 1404 * If collapse was initiated by khugepaged, check that there is 1405 * enough young pte to justify collapsing the page 1406 */ 1407 if (cc->is_khugepaged && 1408 (pte_young(pteval) || folio_test_young(folio) || 1409 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm, 1410 address))) 1411 referenced++; 1412 } 1413 if (!writable) { 1414 result = SCAN_PAGE_RO; 1415 } else if (cc->is_khugepaged && 1416 (!referenced || 1417 (unmapped && referenced < HPAGE_PMD_NR / 2))) { 1418 result = SCAN_LACK_REFERENCED_PAGE; 1419 } else { 1420 result = SCAN_SUCCEED; 1421 } 1422 out_unmap: 1423 pte_unmap_unlock(pte, ptl); 1424 if (result == SCAN_SUCCEED) { 1425 result = collapse_huge_page(mm, address, referenced, 1426 unmapped, cc); 1427 /* collapse_huge_page will return with the mmap_lock released */ 1428 *mmap_locked = false; 1429 } 1430 out: 1431 trace_mm_khugepaged_scan_pmd(mm, folio, writable, referenced, 1432 none_or_zero, result, unmapped); 1433 return result; 1434 } 1435 1436 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot) 1437 { 1438 struct mm_slot *slot = &mm_slot->slot; 1439 struct mm_struct *mm = slot->mm; 1440 1441 lockdep_assert_held(&khugepaged_mm_lock); 1442 1443 if (hpage_collapse_test_exit(mm)) { 1444 /* free mm_slot */ 1445 hash_del(&slot->hash); 1446 list_del(&slot->mm_node); 1447 1448 /* 1449 * Not strictly needed because the mm exited already. 1450 * 1451 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1452 */ 1453 1454 /* khugepaged_mm_lock actually not necessary for the below */ 1455 mm_slot_free(mm_slot_cache, mm_slot); 1456 mmdrop(mm); 1457 } 1458 } 1459 1460 /* folio must be locked, and mmap_lock must be held */ 1461 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, 1462 pmd_t *pmdp, struct folio *folio, struct page *page) 1463 { 1464 struct vm_fault vmf = { 1465 .vma = vma, 1466 .address = addr, 1467 .flags = 0, 1468 .pmd = pmdp, 1469 }; 1470 1471 mmap_assert_locked(vma->vm_mm); 1472 1473 if (do_set_pmd(&vmf, folio, page)) 1474 return SCAN_FAIL; 1475 1476 folio_get(folio); 1477 return SCAN_SUCCEED; 1478 } 1479 1480 /** 1481 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1482 * address haddr. 1483 * 1484 * @mm: process address space where collapse happens 1485 * @addr: THP collapse address 1486 * @install_pmd: If a huge PMD should be installed 1487 * 1488 * This function checks whether all the PTEs in the PMD are pointing to the 1489 * right THP. If so, retract the page table so the THP can refault in with 1490 * as pmd-mapped. Possibly install a huge PMD mapping the THP. 1491 */ 1492 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1493 bool install_pmd) 1494 { 1495 struct mmu_notifier_range range; 1496 bool notified = false; 1497 unsigned long haddr = addr & HPAGE_PMD_MASK; 1498 struct vm_area_struct *vma = vma_lookup(mm, haddr); 1499 struct folio *folio; 1500 pte_t *start_pte, *pte; 1501 pmd_t *pmd, pgt_pmd; 1502 spinlock_t *pml = NULL, *ptl; 1503 int nr_ptes = 0, result = SCAN_FAIL; 1504 int i; 1505 1506 mmap_assert_locked(mm); 1507 1508 /* First check VMA found, in case page tables are being torn down */ 1509 if (!vma || !vma->vm_file || 1510 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1511 return SCAN_VMA_CHECK; 1512 1513 /* Fast check before locking page if already PMD-mapped */ 1514 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1515 if (result == SCAN_PMD_MAPPED) 1516 return result; 1517 1518 /* 1519 * If we are here, we've succeeded in replacing all the native pages 1520 * in the page cache with a single hugepage. If a mm were to fault-in 1521 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage 1522 * and map it by a PMD, regardless of sysfs THP settings. As such, let's 1523 * analogously elide sysfs THP settings here. 1524 */ 1525 if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER)) 1526 return SCAN_VMA_CHECK; 1527 1528 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1529 if (userfaultfd_wp(vma)) 1530 return SCAN_PTE_UFFD_WP; 1531 1532 folio = filemap_lock_folio(vma->vm_file->f_mapping, 1533 linear_page_index(vma, haddr)); 1534 if (IS_ERR(folio)) 1535 return SCAN_PAGE_NULL; 1536 1537 if (folio_order(folio) != HPAGE_PMD_ORDER) { 1538 result = SCAN_PAGE_COMPOUND; 1539 goto drop_folio; 1540 } 1541 1542 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1543 switch (result) { 1544 case SCAN_SUCCEED: 1545 break; 1546 case SCAN_PMD_NONE: 1547 /* 1548 * All pte entries have been removed and pmd cleared. 1549 * Skip all the pte checks and just update the pmd mapping. 1550 */ 1551 goto maybe_install_pmd; 1552 default: 1553 goto drop_folio; 1554 } 1555 1556 result = SCAN_FAIL; 1557 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1558 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1559 goto drop_folio; 1560 1561 /* step 1: check all mapped PTEs are to the right huge page */ 1562 for (i = 0, addr = haddr, pte = start_pte; 1563 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1564 struct page *page; 1565 pte_t ptent = ptep_get(pte); 1566 1567 /* empty pte, skip */ 1568 if (pte_none(ptent)) 1569 continue; 1570 1571 /* page swapped out, abort */ 1572 if (!pte_present(ptent)) { 1573 result = SCAN_PTE_NON_PRESENT; 1574 goto abort; 1575 } 1576 1577 page = vm_normal_page(vma, addr, ptent); 1578 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1579 page = NULL; 1580 /* 1581 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1582 * page table, but the new page will not be a subpage of hpage. 1583 */ 1584 if (folio_page(folio, i) != page) 1585 goto abort; 1586 } 1587 1588 pte_unmap_unlock(start_pte, ptl); 1589 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1590 haddr, haddr + HPAGE_PMD_SIZE); 1591 mmu_notifier_invalidate_range_start(&range); 1592 notified = true; 1593 1594 /* 1595 * pmd_lock covers a wider range than ptl, and (if split from mm's 1596 * page_table_lock) ptl nests inside pml. The less time we hold pml, 1597 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA 1598 * inserts a valid as-if-COWed PTE without even looking up page cache. 1599 * So page lock of folio does not protect from it, so we must not drop 1600 * ptl before pgt_pmd is removed, so uffd private needs pml taken now. 1601 */ 1602 if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED)) 1603 pml = pmd_lock(mm, pmd); 1604 1605 start_pte = pte_offset_map_rw_nolock(mm, pmd, haddr, &pgt_pmd, &ptl); 1606 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1607 goto abort; 1608 if (!pml) 1609 spin_lock(ptl); 1610 else if (ptl != pml) 1611 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1612 1613 if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) 1614 goto abort; 1615 1616 /* step 2: clear page table and adjust rmap */ 1617 for (i = 0, addr = haddr, pte = start_pte; 1618 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1619 struct page *page; 1620 pte_t ptent = ptep_get(pte); 1621 1622 if (pte_none(ptent)) 1623 continue; 1624 /* 1625 * We dropped ptl after the first scan, to do the mmu_notifier: 1626 * page lock stops more PTEs of the folio being faulted in, but 1627 * does not stop write faults COWing anon copies from existing 1628 * PTEs; and does not stop those being swapped out or migrated. 1629 */ 1630 if (!pte_present(ptent)) { 1631 result = SCAN_PTE_NON_PRESENT; 1632 goto abort; 1633 } 1634 page = vm_normal_page(vma, addr, ptent); 1635 if (folio_page(folio, i) != page) 1636 goto abort; 1637 1638 /* 1639 * Must clear entry, or a racing truncate may re-remove it. 1640 * TLB flush can be left until pmdp_collapse_flush() does it. 1641 * PTE dirty? Shmem page is already dirty; file is read-only. 1642 */ 1643 ptep_clear(mm, addr, pte); 1644 folio_remove_rmap_pte(folio, page, vma); 1645 nr_ptes++; 1646 } 1647 1648 if (!pml) 1649 spin_unlock(ptl); 1650 1651 /* step 3: set proper refcount and mm_counters. */ 1652 if (nr_ptes) { 1653 folio_ref_sub(folio, nr_ptes); 1654 add_mm_counter(mm, mm_counter_file(folio), -nr_ptes); 1655 } 1656 1657 /* step 4: remove empty page table */ 1658 if (!pml) { 1659 pml = pmd_lock(mm, pmd); 1660 if (ptl != pml) { 1661 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1662 if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) { 1663 flush_tlb_mm(mm); 1664 goto unlock; 1665 } 1666 } 1667 } 1668 pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd); 1669 pmdp_get_lockless_sync(); 1670 pte_unmap_unlock(start_pte, ptl); 1671 if (ptl != pml) 1672 spin_unlock(pml); 1673 1674 mmu_notifier_invalidate_range_end(&range); 1675 1676 mm_dec_nr_ptes(mm); 1677 page_table_check_pte_clear_range(mm, haddr, pgt_pmd); 1678 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1679 1680 maybe_install_pmd: 1681 /* step 5: install pmd entry */ 1682 result = install_pmd 1683 ? set_huge_pmd(vma, haddr, pmd, folio, &folio->page) 1684 : SCAN_SUCCEED; 1685 goto drop_folio; 1686 abort: 1687 if (nr_ptes) { 1688 flush_tlb_mm(mm); 1689 folio_ref_sub(folio, nr_ptes); 1690 add_mm_counter(mm, mm_counter_file(folio), -nr_ptes); 1691 } 1692 unlock: 1693 if (start_pte) 1694 pte_unmap_unlock(start_pte, ptl); 1695 if (pml && pml != ptl) 1696 spin_unlock(pml); 1697 if (notified) 1698 mmu_notifier_invalidate_range_end(&range); 1699 drop_folio: 1700 folio_unlock(folio); 1701 folio_put(folio); 1702 return result; 1703 } 1704 1705 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) 1706 { 1707 struct vm_area_struct *vma; 1708 1709 i_mmap_lock_read(mapping); 1710 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1711 struct mmu_notifier_range range; 1712 struct mm_struct *mm; 1713 unsigned long addr; 1714 pmd_t *pmd, pgt_pmd; 1715 spinlock_t *pml; 1716 spinlock_t *ptl; 1717 bool success = false; 1718 1719 /* 1720 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1721 * got written to. These VMAs are likely not worth removing 1722 * page tables from, as PMD-mapping is likely to be split later. 1723 */ 1724 if (READ_ONCE(vma->anon_vma)) 1725 continue; 1726 1727 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1728 if (addr & ~HPAGE_PMD_MASK || 1729 vma->vm_end < addr + HPAGE_PMD_SIZE) 1730 continue; 1731 1732 mm = vma->vm_mm; 1733 if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED) 1734 continue; 1735 1736 if (hpage_collapse_test_exit(mm)) 1737 continue; 1738 /* 1739 * When a vma is registered with uffd-wp, we cannot recycle 1740 * the page table because there may be pte markers installed. 1741 * Other vmas can still have the same file mapped hugely, but 1742 * skip this one: it will always be mapped in small page size 1743 * for uffd-wp registered ranges. 1744 */ 1745 if (userfaultfd_wp(vma)) 1746 continue; 1747 1748 /* PTEs were notified when unmapped; but now for the PMD? */ 1749 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1750 addr, addr + HPAGE_PMD_SIZE); 1751 mmu_notifier_invalidate_range_start(&range); 1752 1753 pml = pmd_lock(mm, pmd); 1754 /* 1755 * The lock of new_folio is still held, we will be blocked in 1756 * the page fault path, which prevents the pte entries from 1757 * being set again. So even though the old empty PTE page may be 1758 * concurrently freed and a new PTE page is filled into the pmd 1759 * entry, it is still empty and can be removed. 1760 * 1761 * So here we only need to recheck if the state of pmd entry 1762 * still meets our requirements, rather than checking pmd_same() 1763 * like elsewhere. 1764 */ 1765 if (check_pmd_state(pmd) != SCAN_SUCCEED) 1766 goto drop_pml; 1767 ptl = pte_lockptr(mm, pmd); 1768 if (ptl != pml) 1769 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1770 1771 /* 1772 * Huge page lock is still held, so normally the page table 1773 * must remain empty; and we have already skipped anon_vma 1774 * and userfaultfd_wp() vmas. But since the mmap_lock is not 1775 * held, it is still possible for a racing userfaultfd_ioctl() 1776 * to have inserted ptes or markers. Now that we hold ptlock, 1777 * repeating the anon_vma check protects from one category, 1778 * and repeating the userfaultfd_wp() check from another. 1779 */ 1780 if (likely(!vma->anon_vma && !userfaultfd_wp(vma))) { 1781 pgt_pmd = pmdp_collapse_flush(vma, addr, pmd); 1782 pmdp_get_lockless_sync(); 1783 success = true; 1784 } 1785 1786 if (ptl != pml) 1787 spin_unlock(ptl); 1788 drop_pml: 1789 spin_unlock(pml); 1790 1791 mmu_notifier_invalidate_range_end(&range); 1792 1793 if (success) { 1794 mm_dec_nr_ptes(mm); 1795 page_table_check_pte_clear_range(mm, addr, pgt_pmd); 1796 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1797 } 1798 } 1799 i_mmap_unlock_read(mapping); 1800 } 1801 1802 /** 1803 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1804 * 1805 * @mm: process address space where collapse happens 1806 * @addr: virtual collapse start address 1807 * @file: file that collapse on 1808 * @start: collapse start address 1809 * @cc: collapse context and scratchpad 1810 * 1811 * Basic scheme is simple, details are more complex: 1812 * - allocate and lock a new huge page; 1813 * - scan page cache, locking old pages 1814 * + swap/gup in pages if necessary; 1815 * - copy data to new page 1816 * - handle shmem holes 1817 * + re-validate that holes weren't filled by someone else 1818 * + check for userfaultfd 1819 * - finalize updates to the page cache; 1820 * - if replacing succeeds: 1821 * + unlock huge page; 1822 * + free old pages; 1823 * - if replacing failed; 1824 * + unlock old pages 1825 * + unlock and free huge page; 1826 */ 1827 static int collapse_file(struct mm_struct *mm, unsigned long addr, 1828 struct file *file, pgoff_t start, 1829 struct collapse_control *cc) 1830 { 1831 struct address_space *mapping = file->f_mapping; 1832 struct page *dst; 1833 struct folio *folio, *tmp, *new_folio; 1834 pgoff_t index = 0, end = start + HPAGE_PMD_NR; 1835 LIST_HEAD(pagelist); 1836 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1837 int nr_none = 0, result = SCAN_SUCCEED; 1838 bool is_shmem = shmem_file(file); 1839 1840 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1841 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1842 1843 result = alloc_charge_folio(&new_folio, mm, cc); 1844 if (result != SCAN_SUCCEED) 1845 goto out; 1846 1847 mapping_set_update(&xas, mapping); 1848 1849 __folio_set_locked(new_folio); 1850 if (is_shmem) 1851 __folio_set_swapbacked(new_folio); 1852 new_folio->index = start; 1853 new_folio->mapping = mapping; 1854 1855 /* 1856 * Ensure we have slots for all the pages in the range. This is 1857 * almost certainly a no-op because most of the pages must be present 1858 */ 1859 do { 1860 xas_lock_irq(&xas); 1861 xas_create_range(&xas); 1862 if (!xas_error(&xas)) 1863 break; 1864 xas_unlock_irq(&xas); 1865 if (!xas_nomem(&xas, GFP_KERNEL)) { 1866 result = SCAN_FAIL; 1867 goto rollback; 1868 } 1869 } while (1); 1870 1871 for (index = start; index < end;) { 1872 xas_set(&xas, index); 1873 folio = xas_load(&xas); 1874 1875 VM_BUG_ON(index != xas.xa_index); 1876 if (is_shmem) { 1877 if (!folio) { 1878 /* 1879 * Stop if extent has been truncated or 1880 * hole-punched, and is now completely 1881 * empty. 1882 */ 1883 if (index == start) { 1884 if (!xas_next_entry(&xas, end - 1)) { 1885 result = SCAN_TRUNCATED; 1886 goto xa_locked; 1887 } 1888 } 1889 nr_none++; 1890 index++; 1891 continue; 1892 } 1893 1894 if (xa_is_value(folio) || !folio_test_uptodate(folio)) { 1895 xas_unlock_irq(&xas); 1896 /* swap in or instantiate fallocated page */ 1897 if (shmem_get_folio(mapping->host, index, 0, 1898 &folio, SGP_NOALLOC)) { 1899 result = SCAN_FAIL; 1900 goto xa_unlocked; 1901 } 1902 /* drain lru cache to help folio_isolate_lru() */ 1903 lru_add_drain(); 1904 } else if (folio_trylock(folio)) { 1905 folio_get(folio); 1906 xas_unlock_irq(&xas); 1907 } else { 1908 result = SCAN_PAGE_LOCK; 1909 goto xa_locked; 1910 } 1911 } else { /* !is_shmem */ 1912 if (!folio || xa_is_value(folio)) { 1913 xas_unlock_irq(&xas); 1914 page_cache_sync_readahead(mapping, &file->f_ra, 1915 file, index, 1916 end - index); 1917 /* drain lru cache to help folio_isolate_lru() */ 1918 lru_add_drain(); 1919 folio = filemap_lock_folio(mapping, index); 1920 if (IS_ERR(folio)) { 1921 result = SCAN_FAIL; 1922 goto xa_unlocked; 1923 } 1924 } else if (folio_test_dirty(folio)) { 1925 /* 1926 * khugepaged only works on read-only fd, 1927 * so this page is dirty because it hasn't 1928 * been flushed since first write. There 1929 * won't be new dirty pages. 1930 * 1931 * Trigger async flush here and hope the 1932 * writeback is done when khugepaged 1933 * revisits this page. 1934 * 1935 * This is a one-off situation. We are not 1936 * forcing writeback in loop. 1937 */ 1938 xas_unlock_irq(&xas); 1939 filemap_flush(mapping); 1940 result = SCAN_FAIL; 1941 goto xa_unlocked; 1942 } else if (folio_test_writeback(folio)) { 1943 xas_unlock_irq(&xas); 1944 result = SCAN_FAIL; 1945 goto xa_unlocked; 1946 } else if (folio_trylock(folio)) { 1947 folio_get(folio); 1948 xas_unlock_irq(&xas); 1949 } else { 1950 result = SCAN_PAGE_LOCK; 1951 goto xa_locked; 1952 } 1953 } 1954 1955 /* 1956 * The folio must be locked, so we can drop the i_pages lock 1957 * without racing with truncate. 1958 */ 1959 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1960 1961 /* make sure the folio is up to date */ 1962 if (unlikely(!folio_test_uptodate(folio))) { 1963 result = SCAN_FAIL; 1964 goto out_unlock; 1965 } 1966 1967 /* 1968 * If file was truncated then extended, or hole-punched, before 1969 * we locked the first folio, then a THP might be there already. 1970 * This will be discovered on the first iteration. 1971 */ 1972 if (folio_order(folio) == HPAGE_PMD_ORDER && 1973 folio->index == start) { 1974 /* Maybe PMD-mapped */ 1975 result = SCAN_PTE_MAPPED_HUGEPAGE; 1976 goto out_unlock; 1977 } 1978 1979 if (folio_mapping(folio) != mapping) { 1980 result = SCAN_TRUNCATED; 1981 goto out_unlock; 1982 } 1983 1984 if (!is_shmem && (folio_test_dirty(folio) || 1985 folio_test_writeback(folio))) { 1986 /* 1987 * khugepaged only works on read-only fd, so this 1988 * folio is dirty because it hasn't been flushed 1989 * since first write. 1990 */ 1991 result = SCAN_FAIL; 1992 goto out_unlock; 1993 } 1994 1995 if (!folio_isolate_lru(folio)) { 1996 result = SCAN_DEL_PAGE_LRU; 1997 goto out_unlock; 1998 } 1999 2000 if (!filemap_release_folio(folio, GFP_KERNEL)) { 2001 result = SCAN_PAGE_HAS_PRIVATE; 2002 folio_putback_lru(folio); 2003 goto out_unlock; 2004 } 2005 2006 if (folio_mapped(folio)) 2007 try_to_unmap(folio, 2008 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 2009 2010 xas_lock_irq(&xas); 2011 2012 VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio); 2013 2014 /* 2015 * We control 2 + nr_pages references to the folio: 2016 * - we hold a pin on it; 2017 * - nr_pages reference from page cache; 2018 * - one from lru_isolate_folio; 2019 * If those are the only references, then any new usage 2020 * of the folio will have to fetch it from the page 2021 * cache. That requires locking the folio to handle 2022 * truncate, so any new usage will be blocked until we 2023 * unlock folio after collapse/during rollback. 2024 */ 2025 if (folio_ref_count(folio) != 2 + folio_nr_pages(folio)) { 2026 result = SCAN_PAGE_COUNT; 2027 xas_unlock_irq(&xas); 2028 folio_putback_lru(folio); 2029 goto out_unlock; 2030 } 2031 2032 /* 2033 * Accumulate the folios that are being collapsed. 2034 */ 2035 list_add_tail(&folio->lru, &pagelist); 2036 index += folio_nr_pages(folio); 2037 continue; 2038 out_unlock: 2039 folio_unlock(folio); 2040 folio_put(folio); 2041 goto xa_unlocked; 2042 } 2043 2044 if (!is_shmem) { 2045 filemap_nr_thps_inc(mapping); 2046 /* 2047 * Paired with the fence in do_dentry_open() -> get_write_access() 2048 * to ensure i_writecount is up to date and the update to nr_thps 2049 * is visible. Ensures the page cache will be truncated if the 2050 * file is opened writable. 2051 */ 2052 smp_mb(); 2053 if (inode_is_open_for_write(mapping->host)) { 2054 result = SCAN_FAIL; 2055 filemap_nr_thps_dec(mapping); 2056 } 2057 } 2058 2059 xa_locked: 2060 xas_unlock_irq(&xas); 2061 xa_unlocked: 2062 2063 /* 2064 * If collapse is successful, flush must be done now before copying. 2065 * If collapse is unsuccessful, does flush actually need to be done? 2066 * Do it anyway, to clear the state. 2067 */ 2068 try_to_unmap_flush(); 2069 2070 if (result == SCAN_SUCCEED && nr_none && 2071 !shmem_charge(mapping->host, nr_none)) 2072 result = SCAN_FAIL; 2073 if (result != SCAN_SUCCEED) { 2074 nr_none = 0; 2075 goto rollback; 2076 } 2077 2078 /* 2079 * The old folios are locked, so they won't change anymore. 2080 */ 2081 index = start; 2082 dst = folio_page(new_folio, 0); 2083 list_for_each_entry(folio, &pagelist, lru) { 2084 int i, nr_pages = folio_nr_pages(folio); 2085 2086 while (index < folio->index) { 2087 clear_highpage(dst); 2088 index++; 2089 dst++; 2090 } 2091 2092 for (i = 0; i < nr_pages; i++) { 2093 if (copy_mc_highpage(dst, folio_page(folio, i)) > 0) { 2094 result = SCAN_COPY_MC; 2095 goto rollback; 2096 } 2097 index++; 2098 dst++; 2099 } 2100 } 2101 while (index < end) { 2102 clear_highpage(dst); 2103 index++; 2104 dst++; 2105 } 2106 2107 if (nr_none) { 2108 struct vm_area_struct *vma; 2109 int nr_none_check = 0; 2110 2111 i_mmap_lock_read(mapping); 2112 xas_lock_irq(&xas); 2113 2114 xas_set(&xas, start); 2115 for (index = start; index < end; index++) { 2116 if (!xas_next(&xas)) { 2117 xas_store(&xas, XA_RETRY_ENTRY); 2118 if (xas_error(&xas)) { 2119 result = SCAN_STORE_FAILED; 2120 goto immap_locked; 2121 } 2122 nr_none_check++; 2123 } 2124 } 2125 2126 if (nr_none != nr_none_check) { 2127 result = SCAN_PAGE_FILLED; 2128 goto immap_locked; 2129 } 2130 2131 /* 2132 * If userspace observed a missing page in a VMA with 2133 * a MODE_MISSING userfaultfd, then it might expect a 2134 * UFFD_EVENT_PAGEFAULT for that page. If so, we need to 2135 * roll back to avoid suppressing such an event. Since 2136 * wp/minor userfaultfds don't give userspace any 2137 * guarantees that the kernel doesn't fill a missing 2138 * page with a zero page, so they don't matter here. 2139 * 2140 * Any userfaultfds registered after this point will 2141 * not be able to observe any missing pages due to the 2142 * previously inserted retry entries. 2143 */ 2144 vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) { 2145 if (userfaultfd_missing(vma)) { 2146 result = SCAN_EXCEED_NONE_PTE; 2147 goto immap_locked; 2148 } 2149 } 2150 2151 immap_locked: 2152 i_mmap_unlock_read(mapping); 2153 if (result != SCAN_SUCCEED) { 2154 xas_set(&xas, start); 2155 for (index = start; index < end; index++) { 2156 if (xas_next(&xas) == XA_RETRY_ENTRY) 2157 xas_store(&xas, NULL); 2158 } 2159 2160 xas_unlock_irq(&xas); 2161 goto rollback; 2162 } 2163 } else { 2164 xas_lock_irq(&xas); 2165 } 2166 2167 if (is_shmem) 2168 __lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR); 2169 else 2170 __lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR); 2171 2172 if (nr_none) { 2173 __lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, nr_none); 2174 /* nr_none is always 0 for non-shmem. */ 2175 __lruvec_stat_mod_folio(new_folio, NR_SHMEM, nr_none); 2176 } 2177 2178 /* 2179 * Mark new_folio as uptodate before inserting it into the 2180 * page cache so that it isn't mistaken for an fallocated but 2181 * unwritten page. 2182 */ 2183 folio_mark_uptodate(new_folio); 2184 folio_ref_add(new_folio, HPAGE_PMD_NR - 1); 2185 2186 if (is_shmem) 2187 folio_mark_dirty(new_folio); 2188 folio_add_lru(new_folio); 2189 2190 /* Join all the small entries into a single multi-index entry. */ 2191 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 2192 xas_store(&xas, new_folio); 2193 WARN_ON_ONCE(xas_error(&xas)); 2194 xas_unlock_irq(&xas); 2195 2196 /* 2197 * Remove pte page tables, so we can re-fault the page as huge. 2198 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp(). 2199 */ 2200 retract_page_tables(mapping, start); 2201 if (cc && !cc->is_khugepaged) 2202 result = SCAN_PTE_MAPPED_HUGEPAGE; 2203 folio_unlock(new_folio); 2204 2205 /* 2206 * The collapse has succeeded, so free the old folios. 2207 */ 2208 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2209 list_del(&folio->lru); 2210 folio->mapping = NULL; 2211 folio_clear_active(folio); 2212 folio_clear_unevictable(folio); 2213 folio_unlock(folio); 2214 folio_put_refs(folio, 2 + folio_nr_pages(folio)); 2215 } 2216 2217 goto out; 2218 2219 rollback: 2220 /* Something went wrong: roll back page cache changes */ 2221 if (nr_none) { 2222 xas_lock_irq(&xas); 2223 mapping->nrpages -= nr_none; 2224 xas_unlock_irq(&xas); 2225 shmem_uncharge(mapping->host, nr_none); 2226 } 2227 2228 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2229 list_del(&folio->lru); 2230 folio_unlock(folio); 2231 folio_putback_lru(folio); 2232 folio_put(folio); 2233 } 2234 /* 2235 * Undo the updates of filemap_nr_thps_inc for non-SHMEM 2236 * file only. This undo is not needed unless failure is 2237 * due to SCAN_COPY_MC. 2238 */ 2239 if (!is_shmem && result == SCAN_COPY_MC) { 2240 filemap_nr_thps_dec(mapping); 2241 /* 2242 * Paired with the fence in do_dentry_open() -> get_write_access() 2243 * to ensure the update to nr_thps is visible. 2244 */ 2245 smp_mb(); 2246 } 2247 2248 new_folio->mapping = NULL; 2249 2250 folio_unlock(new_folio); 2251 folio_put(new_folio); 2252 out: 2253 VM_BUG_ON(!list_empty(&pagelist)); 2254 trace_mm_khugepaged_collapse_file(mm, new_folio, index, addr, is_shmem, file, HPAGE_PMD_NR, result); 2255 return result; 2256 } 2257 2258 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2259 struct file *file, pgoff_t start, 2260 struct collapse_control *cc) 2261 { 2262 struct folio *folio = NULL; 2263 struct address_space *mapping = file->f_mapping; 2264 XA_STATE(xas, &mapping->i_pages, start); 2265 int present, swap; 2266 int node = NUMA_NO_NODE; 2267 int result = SCAN_SUCCEED; 2268 2269 present = 0; 2270 swap = 0; 2271 memset(cc->node_load, 0, sizeof(cc->node_load)); 2272 nodes_clear(cc->alloc_nmask); 2273 rcu_read_lock(); 2274 xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) { 2275 if (xas_retry(&xas, folio)) 2276 continue; 2277 2278 if (xa_is_value(folio)) { 2279 swap += 1 << xas_get_order(&xas); 2280 if (cc->is_khugepaged && 2281 swap > khugepaged_max_ptes_swap) { 2282 result = SCAN_EXCEED_SWAP_PTE; 2283 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2284 break; 2285 } 2286 continue; 2287 } 2288 2289 if (!folio_try_get(folio)) { 2290 xas_reset(&xas); 2291 continue; 2292 } 2293 2294 if (unlikely(folio != xas_reload(&xas))) { 2295 folio_put(folio); 2296 xas_reset(&xas); 2297 continue; 2298 } 2299 2300 if (folio_order(folio) == HPAGE_PMD_ORDER && 2301 folio->index == start) { 2302 /* Maybe PMD-mapped */ 2303 result = SCAN_PTE_MAPPED_HUGEPAGE; 2304 /* 2305 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing 2306 * by the caller won't touch the page cache, and so 2307 * it's safe to skip LRU and refcount checks before 2308 * returning. 2309 */ 2310 folio_put(folio); 2311 break; 2312 } 2313 2314 node = folio_nid(folio); 2315 if (hpage_collapse_scan_abort(node, cc)) { 2316 result = SCAN_SCAN_ABORT; 2317 folio_put(folio); 2318 break; 2319 } 2320 cc->node_load[node]++; 2321 2322 if (!folio_test_lru(folio)) { 2323 result = SCAN_PAGE_LRU; 2324 folio_put(folio); 2325 break; 2326 } 2327 2328 if (folio_expected_ref_count(folio) + 1 != folio_ref_count(folio)) { 2329 result = SCAN_PAGE_COUNT; 2330 folio_put(folio); 2331 break; 2332 } 2333 2334 /* 2335 * We probably should check if the folio is referenced 2336 * here, but nobody would transfer pte_young() to 2337 * folio_test_referenced() for us. And rmap walk here 2338 * is just too costly... 2339 */ 2340 2341 present += folio_nr_pages(folio); 2342 folio_put(folio); 2343 2344 if (need_resched()) { 2345 xas_pause(&xas); 2346 cond_resched_rcu(); 2347 } 2348 } 2349 rcu_read_unlock(); 2350 2351 if (result == SCAN_SUCCEED) { 2352 if (cc->is_khugepaged && 2353 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2354 result = SCAN_EXCEED_NONE_PTE; 2355 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2356 } else { 2357 result = collapse_file(mm, addr, file, start, cc); 2358 } 2359 } 2360 2361 trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result); 2362 return result; 2363 } 2364 2365 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result, 2366 struct collapse_control *cc) 2367 __releases(&khugepaged_mm_lock) 2368 __acquires(&khugepaged_mm_lock) 2369 { 2370 struct vma_iterator vmi; 2371 struct khugepaged_mm_slot *mm_slot; 2372 struct mm_slot *slot; 2373 struct mm_struct *mm; 2374 struct vm_area_struct *vma; 2375 int progress = 0; 2376 2377 VM_BUG_ON(!pages); 2378 lockdep_assert_held(&khugepaged_mm_lock); 2379 *result = SCAN_FAIL; 2380 2381 if (khugepaged_scan.mm_slot) { 2382 mm_slot = khugepaged_scan.mm_slot; 2383 slot = &mm_slot->slot; 2384 } else { 2385 slot = list_entry(khugepaged_scan.mm_head.next, 2386 struct mm_slot, mm_node); 2387 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2388 khugepaged_scan.address = 0; 2389 khugepaged_scan.mm_slot = mm_slot; 2390 } 2391 spin_unlock(&khugepaged_mm_lock); 2392 2393 mm = slot->mm; 2394 /* 2395 * Don't wait for semaphore (to avoid long wait times). Just move to 2396 * the next mm on the list. 2397 */ 2398 vma = NULL; 2399 if (unlikely(!mmap_read_trylock(mm))) 2400 goto breakouterloop_mmap_lock; 2401 2402 progress++; 2403 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2404 goto breakouterloop; 2405 2406 vma_iter_init(&vmi, mm, khugepaged_scan.address); 2407 for_each_vma(vmi, vma) { 2408 unsigned long hstart, hend; 2409 2410 cond_resched(); 2411 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) { 2412 progress++; 2413 break; 2414 } 2415 if (!thp_vma_allowable_order(vma, vma->vm_flags, 2416 TVA_ENFORCE_SYSFS, PMD_ORDER)) { 2417 skip: 2418 progress++; 2419 continue; 2420 } 2421 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2422 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2423 if (khugepaged_scan.address > hend) 2424 goto skip; 2425 if (khugepaged_scan.address < hstart) 2426 khugepaged_scan.address = hstart; 2427 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2428 2429 while (khugepaged_scan.address < hend) { 2430 bool mmap_locked = true; 2431 2432 cond_resched(); 2433 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2434 goto breakouterloop; 2435 2436 VM_BUG_ON(khugepaged_scan.address < hstart || 2437 khugepaged_scan.address + HPAGE_PMD_SIZE > 2438 hend); 2439 if (!vma_is_anonymous(vma)) { 2440 struct file *file = get_file(vma->vm_file); 2441 pgoff_t pgoff = linear_page_index(vma, 2442 khugepaged_scan.address); 2443 2444 mmap_read_unlock(mm); 2445 mmap_locked = false; 2446 *result = hpage_collapse_scan_file(mm, 2447 khugepaged_scan.address, file, pgoff, cc); 2448 fput(file); 2449 if (*result == SCAN_PTE_MAPPED_HUGEPAGE) { 2450 mmap_read_lock(mm); 2451 if (hpage_collapse_test_exit_or_disable(mm)) 2452 goto breakouterloop; 2453 *result = collapse_pte_mapped_thp(mm, 2454 khugepaged_scan.address, false); 2455 if (*result == SCAN_PMD_MAPPED) 2456 *result = SCAN_SUCCEED; 2457 mmap_read_unlock(mm); 2458 } 2459 } else { 2460 *result = hpage_collapse_scan_pmd(mm, vma, 2461 khugepaged_scan.address, &mmap_locked, cc); 2462 } 2463 2464 if (*result == SCAN_SUCCEED) 2465 ++khugepaged_pages_collapsed; 2466 2467 /* move to next address */ 2468 khugepaged_scan.address += HPAGE_PMD_SIZE; 2469 progress += HPAGE_PMD_NR; 2470 if (!mmap_locked) 2471 /* 2472 * We released mmap_lock so break loop. Note 2473 * that we drop mmap_lock before all hugepage 2474 * allocations, so if allocation fails, we are 2475 * guaranteed to break here and report the 2476 * correct result back to caller. 2477 */ 2478 goto breakouterloop_mmap_lock; 2479 if (progress >= pages) 2480 goto breakouterloop; 2481 } 2482 } 2483 breakouterloop: 2484 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2485 breakouterloop_mmap_lock: 2486 2487 spin_lock(&khugepaged_mm_lock); 2488 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2489 /* 2490 * Release the current mm_slot if this mm is about to die, or 2491 * if we scanned all vmas of this mm. 2492 */ 2493 if (hpage_collapse_test_exit(mm) || !vma) { 2494 /* 2495 * Make sure that if mm_users is reaching zero while 2496 * khugepaged runs here, khugepaged_exit will find 2497 * mm_slot not pointing to the exiting mm. 2498 */ 2499 if (slot->mm_node.next != &khugepaged_scan.mm_head) { 2500 slot = list_entry(slot->mm_node.next, 2501 struct mm_slot, mm_node); 2502 khugepaged_scan.mm_slot = 2503 mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2504 khugepaged_scan.address = 0; 2505 } else { 2506 khugepaged_scan.mm_slot = NULL; 2507 khugepaged_full_scans++; 2508 } 2509 2510 collect_mm_slot(mm_slot); 2511 } 2512 2513 return progress; 2514 } 2515 2516 static int khugepaged_has_work(void) 2517 { 2518 return !list_empty(&khugepaged_scan.mm_head) && hugepage_pmd_enabled(); 2519 } 2520 2521 static int khugepaged_wait_event(void) 2522 { 2523 return !list_empty(&khugepaged_scan.mm_head) || 2524 kthread_should_stop(); 2525 } 2526 2527 static void khugepaged_do_scan(struct collapse_control *cc) 2528 { 2529 unsigned int progress = 0, pass_through_head = 0; 2530 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2531 bool wait = true; 2532 int result = SCAN_SUCCEED; 2533 2534 lru_add_drain_all(); 2535 2536 while (true) { 2537 cond_resched(); 2538 2539 if (unlikely(kthread_should_stop())) 2540 break; 2541 2542 spin_lock(&khugepaged_mm_lock); 2543 if (!khugepaged_scan.mm_slot) 2544 pass_through_head++; 2545 if (khugepaged_has_work() && 2546 pass_through_head < 2) 2547 progress += khugepaged_scan_mm_slot(pages - progress, 2548 &result, cc); 2549 else 2550 progress = pages; 2551 spin_unlock(&khugepaged_mm_lock); 2552 2553 if (progress >= pages) 2554 break; 2555 2556 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { 2557 /* 2558 * If fail to allocate the first time, try to sleep for 2559 * a while. When hit again, cancel the scan. 2560 */ 2561 if (!wait) 2562 break; 2563 wait = false; 2564 khugepaged_alloc_sleep(); 2565 } 2566 } 2567 } 2568 2569 static bool khugepaged_should_wakeup(void) 2570 { 2571 return kthread_should_stop() || 2572 time_after_eq(jiffies, khugepaged_sleep_expire); 2573 } 2574 2575 static void khugepaged_wait_work(void) 2576 { 2577 if (khugepaged_has_work()) { 2578 const unsigned long scan_sleep_jiffies = 2579 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2580 2581 if (!scan_sleep_jiffies) 2582 return; 2583 2584 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2585 wait_event_freezable_timeout(khugepaged_wait, 2586 khugepaged_should_wakeup(), 2587 scan_sleep_jiffies); 2588 return; 2589 } 2590 2591 if (hugepage_pmd_enabled()) 2592 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2593 } 2594 2595 static int khugepaged(void *none) 2596 { 2597 struct khugepaged_mm_slot *mm_slot; 2598 2599 set_freezable(); 2600 set_user_nice(current, MAX_NICE); 2601 2602 while (!kthread_should_stop()) { 2603 khugepaged_do_scan(&khugepaged_collapse_control); 2604 khugepaged_wait_work(); 2605 } 2606 2607 spin_lock(&khugepaged_mm_lock); 2608 mm_slot = khugepaged_scan.mm_slot; 2609 khugepaged_scan.mm_slot = NULL; 2610 if (mm_slot) 2611 collect_mm_slot(mm_slot); 2612 spin_unlock(&khugepaged_mm_lock); 2613 return 0; 2614 } 2615 2616 static void set_recommended_min_free_kbytes(void) 2617 { 2618 struct zone *zone; 2619 int nr_zones = 0; 2620 unsigned long recommended_min; 2621 2622 if (!hugepage_pmd_enabled()) { 2623 calculate_min_free_kbytes(); 2624 goto update_wmarks; 2625 } 2626 2627 for_each_populated_zone(zone) { 2628 /* 2629 * We don't need to worry about fragmentation of 2630 * ZONE_MOVABLE since it only has movable pages. 2631 */ 2632 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2633 continue; 2634 2635 nr_zones++; 2636 } 2637 2638 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2639 recommended_min = pageblock_nr_pages * nr_zones * 2; 2640 2641 /* 2642 * Make sure that on average at least two pageblocks are almost free 2643 * of another type, one for a migratetype to fall back to and a 2644 * second to avoid subsequent fallbacks of other types There are 3 2645 * MIGRATE_TYPES we care about. 2646 */ 2647 recommended_min += pageblock_nr_pages * nr_zones * 2648 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2649 2650 /* don't ever allow to reserve more than 5% of the lowmem */ 2651 recommended_min = min(recommended_min, 2652 (unsigned long) nr_free_buffer_pages() / 20); 2653 recommended_min <<= (PAGE_SHIFT-10); 2654 2655 if (recommended_min > min_free_kbytes) { 2656 if (user_min_free_kbytes >= 0) 2657 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2658 min_free_kbytes, recommended_min); 2659 2660 min_free_kbytes = recommended_min; 2661 } 2662 2663 update_wmarks: 2664 setup_per_zone_wmarks(); 2665 } 2666 2667 int start_stop_khugepaged(void) 2668 { 2669 int err = 0; 2670 2671 mutex_lock(&khugepaged_mutex); 2672 if (hugepage_pmd_enabled()) { 2673 if (!khugepaged_thread) 2674 khugepaged_thread = kthread_run(khugepaged, NULL, 2675 "khugepaged"); 2676 if (IS_ERR(khugepaged_thread)) { 2677 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2678 err = PTR_ERR(khugepaged_thread); 2679 khugepaged_thread = NULL; 2680 goto fail; 2681 } 2682 2683 if (!list_empty(&khugepaged_scan.mm_head)) 2684 wake_up_interruptible(&khugepaged_wait); 2685 } else if (khugepaged_thread) { 2686 kthread_stop(khugepaged_thread); 2687 khugepaged_thread = NULL; 2688 } 2689 set_recommended_min_free_kbytes(); 2690 fail: 2691 mutex_unlock(&khugepaged_mutex); 2692 return err; 2693 } 2694 2695 void khugepaged_min_free_kbytes_update(void) 2696 { 2697 mutex_lock(&khugepaged_mutex); 2698 if (hugepage_pmd_enabled() && khugepaged_thread) 2699 set_recommended_min_free_kbytes(); 2700 mutex_unlock(&khugepaged_mutex); 2701 } 2702 2703 bool current_is_khugepaged(void) 2704 { 2705 return kthread_func(current) == khugepaged; 2706 } 2707 2708 static int madvise_collapse_errno(enum scan_result r) 2709 { 2710 /* 2711 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide 2712 * actionable feedback to caller, so they may take an appropriate 2713 * fallback measure depending on the nature of the failure. 2714 */ 2715 switch (r) { 2716 case SCAN_ALLOC_HUGE_PAGE_FAIL: 2717 return -ENOMEM; 2718 case SCAN_CGROUP_CHARGE_FAIL: 2719 case SCAN_EXCEED_NONE_PTE: 2720 return -EBUSY; 2721 /* Resource temporary unavailable - trying again might succeed */ 2722 case SCAN_PAGE_COUNT: 2723 case SCAN_PAGE_LOCK: 2724 case SCAN_PAGE_LRU: 2725 case SCAN_DEL_PAGE_LRU: 2726 case SCAN_PAGE_FILLED: 2727 return -EAGAIN; 2728 /* 2729 * Other: Trying again likely not to succeed / error intrinsic to 2730 * specified memory range. khugepaged likely won't be able to collapse 2731 * either. 2732 */ 2733 default: 2734 return -EINVAL; 2735 } 2736 } 2737 2738 int madvise_collapse(struct vm_area_struct *vma, unsigned long start, 2739 unsigned long end, bool *lock_dropped) 2740 { 2741 struct collapse_control *cc; 2742 struct mm_struct *mm = vma->vm_mm; 2743 unsigned long hstart, hend, addr; 2744 int thps = 0, last_fail = SCAN_FAIL; 2745 bool mmap_locked = true; 2746 2747 BUG_ON(vma->vm_start > start); 2748 BUG_ON(vma->vm_end < end); 2749 2750 if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER)) 2751 return -EINVAL; 2752 2753 cc = kmalloc(sizeof(*cc), GFP_KERNEL); 2754 if (!cc) 2755 return -ENOMEM; 2756 cc->is_khugepaged = false; 2757 2758 mmgrab(mm); 2759 lru_add_drain_all(); 2760 2761 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2762 hend = end & HPAGE_PMD_MASK; 2763 2764 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { 2765 int result = SCAN_FAIL; 2766 2767 if (!mmap_locked) { 2768 cond_resched(); 2769 mmap_read_lock(mm); 2770 mmap_locked = true; 2771 result = hugepage_vma_revalidate(mm, addr, false, &vma, 2772 cc); 2773 if (result != SCAN_SUCCEED) { 2774 last_fail = result; 2775 goto out_nolock; 2776 } 2777 2778 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK); 2779 } 2780 mmap_assert_locked(mm); 2781 memset(cc->node_load, 0, sizeof(cc->node_load)); 2782 nodes_clear(cc->alloc_nmask); 2783 if (!vma_is_anonymous(vma)) { 2784 struct file *file = get_file(vma->vm_file); 2785 pgoff_t pgoff = linear_page_index(vma, addr); 2786 2787 mmap_read_unlock(mm); 2788 mmap_locked = false; 2789 result = hpage_collapse_scan_file(mm, addr, file, pgoff, 2790 cc); 2791 fput(file); 2792 } else { 2793 result = hpage_collapse_scan_pmd(mm, vma, addr, 2794 &mmap_locked, cc); 2795 } 2796 if (!mmap_locked) 2797 *lock_dropped = true; 2798 2799 handle_result: 2800 switch (result) { 2801 case SCAN_SUCCEED: 2802 case SCAN_PMD_MAPPED: 2803 ++thps; 2804 break; 2805 case SCAN_PTE_MAPPED_HUGEPAGE: 2806 BUG_ON(mmap_locked); 2807 mmap_read_lock(mm); 2808 result = collapse_pte_mapped_thp(mm, addr, true); 2809 mmap_read_unlock(mm); 2810 goto handle_result; 2811 /* Whitelisted set of results where continuing OK */ 2812 case SCAN_PMD_NULL: 2813 case SCAN_PTE_NON_PRESENT: 2814 case SCAN_PTE_UFFD_WP: 2815 case SCAN_PAGE_RO: 2816 case SCAN_LACK_REFERENCED_PAGE: 2817 case SCAN_PAGE_NULL: 2818 case SCAN_PAGE_COUNT: 2819 case SCAN_PAGE_LOCK: 2820 case SCAN_PAGE_COMPOUND: 2821 case SCAN_PAGE_LRU: 2822 case SCAN_DEL_PAGE_LRU: 2823 last_fail = result; 2824 break; 2825 default: 2826 last_fail = result; 2827 /* Other error, exit */ 2828 goto out_maybelock; 2829 } 2830 } 2831 2832 out_maybelock: 2833 /* Caller expects us to hold mmap_lock on return */ 2834 if (!mmap_locked) 2835 mmap_read_lock(mm); 2836 out_nolock: 2837 mmap_assert_locked(mm); 2838 mmdrop(mm); 2839 kfree(cc); 2840 2841 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 2842 : madvise_collapse_errno(last_fail); 2843 } 2844