xref: /linux/drivers/iio/accel/sca3000.c (revision 0d5ec7919f3747193f051036b2301734a4b5e1d6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * sca3000_core.c -- support VTI sca3000 series accelerometers via SPI
4  *
5  * Copyright (c) 2009 Jonathan Cameron <jic23@kernel.org>
6  *
7  * See industrialio/accels/sca3000.h for comments.
8  */
9 
10 #include <linux/interrupt.h>
11 #include <linux/fs.h>
12 #include <linux/device.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/spi/spi.h>
16 #include <linux/sysfs.h>
17 #include <linux/module.h>
18 #include <linux/uaccess.h>
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
21 #include <linux/iio/events.h>
22 #include <linux/iio/buffer.h>
23 #include <linux/iio/kfifo_buf.h>
24 
25 #define SCA3000_WRITE_REG(a) (((a) << 2) | 0x02)
26 #define SCA3000_READ_REG(a) ((a) << 2)
27 
28 #define SCA3000_REG_REVID_ADDR				0x00
29 #define   SCA3000_REG_REVID_MAJOR_MASK			GENMASK(8, 4)
30 #define   SCA3000_REG_REVID_MINOR_MASK			GENMASK(3, 0)
31 
32 #define SCA3000_REG_STATUS_ADDR				0x02
33 #define   SCA3000_LOCKED				BIT(5)
34 #define   SCA3000_EEPROM_CS_ERROR			BIT(1)
35 #define   SCA3000_SPI_FRAME_ERROR			BIT(0)
36 
37 /* All reads done using register decrement so no need to directly access LSBs */
38 #define SCA3000_REG_X_MSB_ADDR				0x05
39 #define SCA3000_REG_Y_MSB_ADDR				0x07
40 #define SCA3000_REG_Z_MSB_ADDR				0x09
41 
42 #define SCA3000_REG_RING_OUT_ADDR			0x0f
43 
44 /* Temp read untested - the e05 doesn't have the sensor */
45 #define SCA3000_REG_TEMP_MSB_ADDR			0x13
46 
47 #define SCA3000_REG_MODE_ADDR				0x14
48 #define SCA3000_MODE_PROT_MASK				0x28
49 #define   SCA3000_REG_MODE_RING_BUF_ENABLE		BIT(7)
50 #define   SCA3000_REG_MODE_RING_BUF_8BIT		BIT(6)
51 
52 /*
53  * Free fall detection triggers an interrupt if the acceleration
54  * is below a threshold for equivalent of 25cm drop
55  */
56 #define   SCA3000_REG_MODE_FREE_FALL_DETECT		BIT(4)
57 #define   SCA3000_REG_MODE_MEAS_MODE_NORMAL		0x00
58 #define   SCA3000_REG_MODE_MEAS_MODE_OP_1		0x01
59 #define   SCA3000_REG_MODE_MEAS_MODE_OP_2		0x02
60 
61 /*
62  * In motion detection mode the accelerations are band pass filtered
63  * (approx 1 - 25Hz) and then a programmable threshold used to trigger
64  * and interrupt.
65  */
66 #define   SCA3000_REG_MODE_MEAS_MODE_MOT_DET		0x03
67 #define   SCA3000_REG_MODE_MODE_MASK			0x03
68 
69 #define SCA3000_REG_BUF_COUNT_ADDR			0x15
70 
71 #define SCA3000_REG_INT_STATUS_ADDR			0x16
72 #define   SCA3000_REG_INT_STATUS_THREE_QUARTERS		BIT(7)
73 #define   SCA3000_REG_INT_STATUS_HALF			BIT(6)
74 
75 #define SCA3000_INT_STATUS_FREE_FALL			BIT(3)
76 #define SCA3000_INT_STATUS_Y_TRIGGER			BIT(2)
77 #define SCA3000_INT_STATUS_X_TRIGGER			BIT(1)
78 #define SCA3000_INT_STATUS_Z_TRIGGER			BIT(0)
79 
80 /* Used to allow access to multiplexed registers */
81 #define SCA3000_REG_CTRL_SEL_ADDR			0x18
82 /* Only available for SCA3000-D03 and SCA3000-D01 */
83 #define   SCA3000_REG_CTRL_SEL_I2C_DISABLE		0x01
84 #define   SCA3000_REG_CTRL_SEL_MD_CTRL			0x02
85 #define   SCA3000_REG_CTRL_SEL_MD_Y_TH			0x03
86 #define   SCA3000_REG_CTRL_SEL_MD_X_TH			0x04
87 #define   SCA3000_REG_CTRL_SEL_MD_Z_TH			0x05
88 /*
89  * BE VERY CAREFUL WITH THIS, IF 3 BITS ARE NOT SET the device
90  * will not function
91  */
92 #define   SCA3000_REG_CTRL_SEL_OUT_CTRL			0x0B
93 
94 #define     SCA3000_REG_OUT_CTRL_PROT_MASK		0xE0
95 #define     SCA3000_REG_OUT_CTRL_BUF_X_EN		0x10
96 #define     SCA3000_REG_OUT_CTRL_BUF_Y_EN		0x08
97 #define     SCA3000_REG_OUT_CTRL_BUF_Z_EN		0x04
98 #define     SCA3000_REG_OUT_CTRL_BUF_DIV_MASK		0x03
99 #define     SCA3000_REG_OUT_CTRL_BUF_DIV_4		0x02
100 #define     SCA3000_REG_OUT_CTRL_BUF_DIV_2		0x01
101 
102 
103 /*
104  * Control which motion detector interrupts are on.
105  * For now only OR combinations are supported.
106  */
107 #define SCA3000_MD_CTRL_PROT_MASK			0xC0
108 #define SCA3000_MD_CTRL_OR_Y				BIT(0)
109 #define SCA3000_MD_CTRL_OR_X				BIT(1)
110 #define SCA3000_MD_CTRL_OR_Z				BIT(2)
111 /* Currently unsupported */
112 #define SCA3000_MD_CTRL_AND_Y				BIT(3)
113 #define SCA3000_MD_CTRL_AND_X				BIT(4)
114 #define SCA3000_MD_CTRL_AND_Z				BIT(5)
115 
116 /*
117  * Some control registers of complex access methods requiring this register to
118  * be used to remove a lock.
119  */
120 #define SCA3000_REG_UNLOCK_ADDR				0x1e
121 
122 #define SCA3000_REG_INT_MASK_ADDR			0x21
123 #define   SCA3000_REG_INT_MASK_PROT_MASK		0x1C
124 
125 #define   SCA3000_REG_INT_MASK_RING_THREE_QUARTER	BIT(7)
126 #define   SCA3000_REG_INT_MASK_RING_HALF		BIT(6)
127 
128 #define SCA3000_REG_INT_MASK_ALL_INTS			0x02
129 #define SCA3000_REG_INT_MASK_ACTIVE_HIGH		0x01
130 #define SCA3000_REG_INT_MASK_ACTIVE_LOW			0x00
131 /* Values of multiplexed registers (write to ctrl_data after select) */
132 #define SCA3000_REG_CTRL_DATA_ADDR			0x22
133 
134 /*
135  * Measurement modes available on some sca3000 series chips. Code assumes others
136  * may become available in the future.
137  *
138  * Bypass - Bypass the low-pass filter in the signal channel so as to increase
139  *          signal bandwidth.
140  *
141  * Narrow - Narrow low-pass filtering of the signal channel and half output
142  *          data rate by decimation.
143  *
144  * Wide - Widen low-pass filtering of signal channel to increase bandwidth
145  */
146 #define SCA3000_OP_MODE_BYPASS				0x01
147 #define SCA3000_OP_MODE_NARROW				0x02
148 #define SCA3000_OP_MODE_WIDE				0x04
149 #define SCA3000_MAX_TX 6
150 #define SCA3000_MAX_RX 2
151 
152 /**
153  * struct sca3000_state - device instance state information
154  * @us:			the associated spi device
155  * @info:			chip variant information
156  * @last_timestamp:		the timestamp of the last event
157  * @mo_det_use_count:		reference counter for the motion detection unit
158  * @lock:			lock used to protect elements of sca3000_state
159  *				and the underlying device state.
160  * @tx:			dma-able transmit buffer
161  * @rx:			dma-able receive buffer
162  **/
163 struct sca3000_state {
164 	struct spi_device		*us;
165 	const struct sca3000_chip_info	*info;
166 	s64				last_timestamp;
167 	int				mo_det_use_count;
168 	struct mutex			lock;
169 	/* Can these share a cacheline ? */
170 	u8				rx[384] __aligned(IIO_DMA_MINALIGN);
171 	u8				tx[6] __aligned(IIO_DMA_MINALIGN);
172 };
173 
174 /**
175  * struct sca3000_chip_info - model dependent parameters
176  * @scale:			scale * 10^-6
177  * @temp_output:		some devices have temperature sensors.
178  * @measurement_mode_freq:	normal mode sampling frequency
179  * @measurement_mode_3db_freq:	3db cutoff frequency of the low pass filter for
180  * the normal measurement mode.
181  * @option_mode_1:		first optional mode. Not all models have one
182  * @option_mode_1_freq:		option mode 1 sampling frequency
183  * @option_mode_1_3db_freq:	3db cutoff frequency of the low pass filter for
184  * the first option mode.
185  * @option_mode_2:		second optional mode. Not all chips have one
186  * @option_mode_2_freq:		option mode 2 sampling frequency
187  * @option_mode_2_3db_freq:	3db cutoff frequency of the low pass filter for
188  * the second option mode.
189  * @mot_det_mult_xz:		Bit wise multipliers to calculate the threshold
190  * for motion detection in the x and z axis.
191  * @mot_det_mult_y:		Bit wise multipliers to calculate the threshold
192  * for motion detection in the y axis.
193  *
194  * This structure is used to hold information about the functionality of a given
195  * sca3000 variant.
196  **/
197 struct sca3000_chip_info {
198 	unsigned int		scale;
199 	bool			temp_output;
200 	int			measurement_mode_freq;
201 	int			measurement_mode_3db_freq;
202 	int			option_mode_1;
203 	int			option_mode_1_freq;
204 	int			option_mode_1_3db_freq;
205 	int			option_mode_2;
206 	int			option_mode_2_freq;
207 	int			option_mode_2_3db_freq;
208 	int			mot_det_mult_xz[6];
209 	int			mot_det_mult_y[7];
210 };
211 
212 enum sca3000_variant {
213 	d01,
214 	e02,
215 	e04,
216 	e05,
217 };
218 
219 /*
220  * Note where option modes are not defined, the chip simply does not
221  * support any.
222  * Other chips in the sca3000 series use i2c and are not included here.
223  *
224  * Some of these devices are only listed in the family data sheet and
225  * do not actually appear to be available.
226  */
227 static const struct sca3000_chip_info sca3000_spi_chip_info_tbl[] = {
228 	[d01] = {
229 		.scale = 7357,
230 		.temp_output = true,
231 		.measurement_mode_freq = 250,
232 		.measurement_mode_3db_freq = 45,
233 		.option_mode_1 = SCA3000_OP_MODE_BYPASS,
234 		.option_mode_1_freq = 250,
235 		.option_mode_1_3db_freq = 70,
236 		.mot_det_mult_xz = {50, 100, 200, 350, 650, 1300},
237 		.mot_det_mult_y = {50, 100, 150, 250, 450, 850, 1750},
238 	},
239 	[e02] = {
240 		.scale = 9810,
241 		.measurement_mode_freq = 125,
242 		.measurement_mode_3db_freq = 40,
243 		.option_mode_1 = SCA3000_OP_MODE_NARROW,
244 		.option_mode_1_freq = 63,
245 		.option_mode_1_3db_freq = 11,
246 		.mot_det_mult_xz = {100, 150, 300, 550, 1050, 2050},
247 		.mot_det_mult_y = {50, 100, 200, 350, 700, 1350, 2700},
248 	},
249 	[e04] = {
250 		.scale = 19620,
251 		.measurement_mode_freq = 100,
252 		.measurement_mode_3db_freq = 38,
253 		.option_mode_1 = SCA3000_OP_MODE_NARROW,
254 		.option_mode_1_freq = 50,
255 		.option_mode_1_3db_freq = 9,
256 		.option_mode_2 = SCA3000_OP_MODE_WIDE,
257 		.option_mode_2_freq = 400,
258 		.option_mode_2_3db_freq = 70,
259 		.mot_det_mult_xz = {200, 300, 600, 1100, 2100, 4100},
260 		.mot_det_mult_y = {100, 200, 400, 7000, 1400, 2700, 54000},
261 	},
262 	[e05] = {
263 		.scale = 61313,
264 		.measurement_mode_freq = 200,
265 		.measurement_mode_3db_freq = 60,
266 		.option_mode_1 = SCA3000_OP_MODE_NARROW,
267 		.option_mode_1_freq = 50,
268 		.option_mode_1_3db_freq = 9,
269 		.option_mode_2 = SCA3000_OP_MODE_WIDE,
270 		.option_mode_2_freq = 400,
271 		.option_mode_2_3db_freq = 75,
272 		.mot_det_mult_xz = {600, 900, 1700, 3200, 6100, 11900},
273 		.mot_det_mult_y = {300, 600, 1200, 2000, 4100, 7800, 15600},
274 	},
275 };
276 
sca3000_write_reg(struct sca3000_state * st,u8 address,u8 val)277 static int sca3000_write_reg(struct sca3000_state *st, u8 address, u8 val)
278 {
279 	st->tx[0] = SCA3000_WRITE_REG(address);
280 	st->tx[1] = val;
281 	return spi_write(st->us, st->tx, 2);
282 }
283 
sca3000_read_data_short(struct sca3000_state * st,u8 reg_address_high,int len)284 static int sca3000_read_data_short(struct sca3000_state *st,
285 				   u8 reg_address_high,
286 				   int len)
287 {
288 	struct spi_transfer xfer[2] = {
289 		{
290 			.len = 1,
291 			.tx_buf = st->tx,
292 		}, {
293 			.len = len,
294 			.rx_buf = st->rx,
295 		}
296 	};
297 	st->tx[0] = SCA3000_READ_REG(reg_address_high);
298 
299 	return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
300 }
301 
302 /**
303  * sca3000_reg_lock_on() - test if the ctrl register lock is on
304  * @st: Driver specific device instance data.
305  *
306  * Lock must be held.
307  **/
sca3000_reg_lock_on(struct sca3000_state * st)308 static int sca3000_reg_lock_on(struct sca3000_state *st)
309 {
310 	int ret;
311 
312 	ret = sca3000_read_data_short(st, SCA3000_REG_STATUS_ADDR, 1);
313 	if (ret < 0)
314 		return ret;
315 
316 	return !(st->rx[0] & SCA3000_LOCKED);
317 }
318 
319 /**
320  * __sca3000_unlock_reg_lock() - unlock the control registers
321  * @st: Driver specific device instance data.
322  *
323  * Note the device does not appear to support doing this in a single transfer.
324  * This should only ever be used as part of ctrl reg read.
325  * Lock must be held before calling this
326  */
__sca3000_unlock_reg_lock(struct sca3000_state * st)327 static int __sca3000_unlock_reg_lock(struct sca3000_state *st)
328 {
329 	struct spi_transfer xfer[3] = {
330 		{
331 			.len = 2,
332 			.cs_change = 1,
333 			.tx_buf = st->tx,
334 		}, {
335 			.len = 2,
336 			.cs_change = 1,
337 			.tx_buf = st->tx + 2,
338 		}, {
339 			.len = 2,
340 			.tx_buf = st->tx + 4,
341 		},
342 	};
343 	st->tx[0] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
344 	st->tx[1] = 0x00;
345 	st->tx[2] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
346 	st->tx[3] = 0x50;
347 	st->tx[4] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
348 	st->tx[5] = 0xA0;
349 
350 	return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
351 }
352 
353 /**
354  * sca3000_write_ctrl_reg() - write to a lock protect ctrl register
355  * @st: Driver specific device instance data.
356  * @sel: selects which registers we wish to write to
357  * @val: the value to be written
358  *
359  * Certain control registers are protected against overwriting by the lock
360  * register and use a shared write address. This function allows writing of
361  * these registers.
362  * Lock must be held.
363  */
sca3000_write_ctrl_reg(struct sca3000_state * st,u8 sel,uint8_t val)364 static int sca3000_write_ctrl_reg(struct sca3000_state *st,
365 				  u8 sel,
366 				  uint8_t val)
367 {
368 	int ret;
369 
370 	ret = sca3000_reg_lock_on(st);
371 	if (ret < 0)
372 		return ret;
373 	if (ret) {
374 		ret = __sca3000_unlock_reg_lock(st);
375 		if (ret)
376 			return ret;
377 	}
378 
379 	/* Set the control select register */
380 	ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, sel);
381 	if (ret)
382 		return ret;
383 
384 	/* Write the actual value into the register */
385 	return sca3000_write_reg(st, SCA3000_REG_CTRL_DATA_ADDR, val);
386 }
387 
388 /**
389  * sca3000_read_ctrl_reg() - read from lock protected control register.
390  * @st: Driver specific device instance data.
391  * @ctrl_reg: Which ctrl register do we want to read.
392  *
393  * Lock must be held.
394  */
sca3000_read_ctrl_reg(struct sca3000_state * st,u8 ctrl_reg)395 static int sca3000_read_ctrl_reg(struct sca3000_state *st,
396 				 u8 ctrl_reg)
397 {
398 	int ret;
399 
400 	ret = sca3000_reg_lock_on(st);
401 	if (ret < 0)
402 		return ret;
403 	if (ret) {
404 		ret = __sca3000_unlock_reg_lock(st);
405 		if (ret)
406 			return ret;
407 	}
408 	/* Set the control select register */
409 	ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, ctrl_reg);
410 	if (ret)
411 		return ret;
412 	ret = sca3000_read_data_short(st, SCA3000_REG_CTRL_DATA_ADDR, 1);
413 	if (ret)
414 		return ret;
415 	return st->rx[0];
416 }
417 
418 /**
419  * sca3000_print_rev() - sysfs interface to read the chip revision number
420  * @indio_dev: Device instance specific generic IIO data.
421  * Driver specific device instance data can be obtained via
422  * iio_priv(indio_dev)
423  */
sca3000_print_rev(struct iio_dev * indio_dev)424 static int sca3000_print_rev(struct iio_dev *indio_dev)
425 {
426 	int ret;
427 	struct sca3000_state *st = iio_priv(indio_dev);
428 
429 	mutex_lock(&st->lock);
430 	ret = sca3000_read_data_short(st, SCA3000_REG_REVID_ADDR, 1);
431 	if (ret < 0)
432 		goto error_ret;
433 	dev_info(&indio_dev->dev,
434 		 "sca3000 revision major=%lu, minor=%lu\n",
435 		 st->rx[0] & SCA3000_REG_REVID_MAJOR_MASK,
436 		 st->rx[0] & SCA3000_REG_REVID_MINOR_MASK);
437 error_ret:
438 	mutex_unlock(&st->lock);
439 
440 	return ret;
441 }
442 
443 static ssize_t
sca3000_show_available_3db_freqs(struct device * dev,struct device_attribute * attr,char * buf)444 sca3000_show_available_3db_freqs(struct device *dev,
445 				 struct device_attribute *attr,
446 				 char *buf)
447 {
448 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
449 	struct sca3000_state *st = iio_priv(indio_dev);
450 	int len;
451 
452 	len = sprintf(buf, "%d", st->info->measurement_mode_3db_freq);
453 	if (st->info->option_mode_1)
454 		len += sprintf(buf + len, " %d",
455 			       st->info->option_mode_1_3db_freq);
456 	if (st->info->option_mode_2)
457 		len += sprintf(buf + len, " %d",
458 			       st->info->option_mode_2_3db_freq);
459 	len += sprintf(buf + len, "\n");
460 
461 	return len;
462 }
463 
464 static IIO_DEVICE_ATTR(in_accel_filter_low_pass_3db_frequency_available,
465 		       S_IRUGO, sca3000_show_available_3db_freqs,
466 		       NULL, 0);
467 
468 static const struct iio_event_spec sca3000_event = {
469 	.type = IIO_EV_TYPE_MAG,
470 	.dir = IIO_EV_DIR_RISING,
471 	.mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE),
472 };
473 
474 /*
475  * Note the hack in the number of bits to pretend we have 2 more than
476  * we do in the fifo.
477  */
478 #define SCA3000_CHAN(index, mod)				\
479 	{							\
480 		.type = IIO_ACCEL,				\
481 		.modified = 1,					\
482 		.channel2 = mod,				\
483 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),	\
484 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |\
485 			BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),\
486 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
487 		.address = index,				\
488 		.scan_index = index,				\
489 		.scan_type = {					\
490 			.sign = 's',				\
491 			.realbits = 13,				\
492 			.storagebits = 16,			\
493 			.shift = 3,				\
494 			.endianness = IIO_BE,			\
495 		},						\
496 		.event_spec = &sca3000_event,			\
497 		.num_event_specs = 1,				\
498 	}
499 
500 static const struct iio_event_spec sca3000_freefall_event_spec = {
501 	.type = IIO_EV_TYPE_MAG,
502 	.dir = IIO_EV_DIR_FALLING,
503 	.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
504 		BIT(IIO_EV_INFO_PERIOD),
505 };
506 
507 static const struct iio_chan_spec sca3000_channels[] = {
508 	SCA3000_CHAN(0, IIO_MOD_X),
509 	SCA3000_CHAN(1, IIO_MOD_Y),
510 	SCA3000_CHAN(2, IIO_MOD_Z),
511 	{
512 		.type = IIO_ACCEL,
513 		.modified = 1,
514 		.channel2 = IIO_MOD_X_AND_Y_AND_Z,
515 		.scan_index = -1, /* Fake channel */
516 		.event_spec = &sca3000_freefall_event_spec,
517 		.num_event_specs = 1,
518 	},
519 };
520 
521 static const struct iio_chan_spec sca3000_channels_with_temp[] = {
522 	SCA3000_CHAN(0, IIO_MOD_X),
523 	SCA3000_CHAN(1, IIO_MOD_Y),
524 	SCA3000_CHAN(2, IIO_MOD_Z),
525 	{
526 		.type = IIO_TEMP,
527 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
528 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
529 			BIT(IIO_CHAN_INFO_OFFSET),
530 		/* No buffer support */
531 		.scan_index = -1,
532 		.scan_type = {
533 			.sign = 'u',
534 			.realbits = 9,
535 			.storagebits = 16,
536 			.shift = 5,
537 			.endianness = IIO_BE,
538 		},
539 	},
540 	{
541 		.type = IIO_ACCEL,
542 		.modified = 1,
543 		.channel2 = IIO_MOD_X_AND_Y_AND_Z,
544 		.scan_index = -1, /* Fake channel */
545 		.event_spec = &sca3000_freefall_event_spec,
546 		.num_event_specs = 1,
547 	},
548 };
549 
550 static u8 sca3000_addresses[3][3] = {
551 	[0] = {SCA3000_REG_X_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_X_TH,
552 	       SCA3000_MD_CTRL_OR_X},
553 	[1] = {SCA3000_REG_Y_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Y_TH,
554 	       SCA3000_MD_CTRL_OR_Y},
555 	[2] = {SCA3000_REG_Z_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Z_TH,
556 	       SCA3000_MD_CTRL_OR_Z},
557 };
558 
559 /**
560  * __sca3000_get_base_freq() - obtain mode specific base frequency
561  * @st: Private driver specific device instance specific state.
562  * @info: chip type specific information.
563  * @base_freq: Base frequency for the current measurement mode.
564  *
565  * lock must be held
566  */
__sca3000_get_base_freq(struct sca3000_state * st,const struct sca3000_chip_info * info,int * base_freq)567 static inline int __sca3000_get_base_freq(struct sca3000_state *st,
568 					  const struct sca3000_chip_info *info,
569 					  int *base_freq)
570 {
571 	int ret;
572 
573 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
574 	if (ret)
575 		return ret;
576 
577 	switch (SCA3000_REG_MODE_MODE_MASK & st->rx[0]) {
578 	case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
579 		*base_freq = info->measurement_mode_freq;
580 		break;
581 	case SCA3000_REG_MODE_MEAS_MODE_OP_1:
582 		*base_freq = info->option_mode_1_freq;
583 		break;
584 	case SCA3000_REG_MODE_MEAS_MODE_OP_2:
585 		*base_freq = info->option_mode_2_freq;
586 		break;
587 	default:
588 		ret = -EINVAL;
589 	}
590 	return ret;
591 }
592 
593 /**
594  * sca3000_read_raw_samp_freq() - read_raw handler for IIO_CHAN_INFO_SAMP_FREQ
595  * @st: Private driver specific device instance specific state.
596  * @val: The frequency read back.
597  *
598  * lock must be held
599  **/
sca3000_read_raw_samp_freq(struct sca3000_state * st,int * val)600 static int sca3000_read_raw_samp_freq(struct sca3000_state *st, int *val)
601 {
602 	int ret;
603 
604 	ret = __sca3000_get_base_freq(st, st->info, val);
605 	if (ret)
606 		return ret;
607 
608 	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
609 	if (ret < 0)
610 		return ret;
611 
612 	if (*val > 0) {
613 		ret &= SCA3000_REG_OUT_CTRL_BUF_DIV_MASK;
614 		switch (ret) {
615 		case SCA3000_REG_OUT_CTRL_BUF_DIV_2:
616 			*val /= 2;
617 			break;
618 		case SCA3000_REG_OUT_CTRL_BUF_DIV_4:
619 			*val /= 4;
620 			break;
621 		}
622 	}
623 
624 	return 0;
625 }
626 
627 /**
628  * sca3000_write_raw_samp_freq() - write_raw handler for IIO_CHAN_INFO_SAMP_FREQ
629  * @st: Private driver specific device instance specific state.
630  * @val: The frequency desired.
631  *
632  * lock must be held
633  */
sca3000_write_raw_samp_freq(struct sca3000_state * st,int val)634 static int sca3000_write_raw_samp_freq(struct sca3000_state *st, int val)
635 {
636 	int ret, base_freq, ctrlval;
637 
638 	ret = __sca3000_get_base_freq(st, st->info, &base_freq);
639 	if (ret)
640 		return ret;
641 
642 	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
643 	if (ret < 0)
644 		return ret;
645 
646 	ctrlval = ret & ~SCA3000_REG_OUT_CTRL_BUF_DIV_MASK;
647 
648 	if (val == base_freq / 2)
649 		ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_2;
650 	if (val == base_freq / 4)
651 		ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_4;
652 	else if (val != base_freq)
653 		return -EINVAL;
654 
655 	return sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
656 				     ctrlval);
657 }
658 
sca3000_read_3db_freq(struct sca3000_state * st,int * val)659 static int sca3000_read_3db_freq(struct sca3000_state *st, int *val)
660 {
661 	int ret;
662 
663 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
664 	if (ret)
665 		return ret;
666 
667 	/* mask bottom 2 bits - only ones that are relevant */
668 	st->rx[0] &= SCA3000_REG_MODE_MODE_MASK;
669 	switch (st->rx[0]) {
670 	case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
671 		*val = st->info->measurement_mode_3db_freq;
672 		return IIO_VAL_INT;
673 	case SCA3000_REG_MODE_MEAS_MODE_MOT_DET:
674 		return -EBUSY;
675 	case SCA3000_REG_MODE_MEAS_MODE_OP_1:
676 		*val = st->info->option_mode_1_3db_freq;
677 		return IIO_VAL_INT;
678 	case SCA3000_REG_MODE_MEAS_MODE_OP_2:
679 		*val = st->info->option_mode_2_3db_freq;
680 		return IIO_VAL_INT;
681 	default:
682 		return -EINVAL;
683 	}
684 }
685 
sca3000_write_3db_freq(struct sca3000_state * st,int val)686 static int sca3000_write_3db_freq(struct sca3000_state *st, int val)
687 {
688 	int ret;
689 	int mode;
690 
691 	if (val == st->info->measurement_mode_3db_freq)
692 		mode = SCA3000_REG_MODE_MEAS_MODE_NORMAL;
693 	else if (st->info->option_mode_1 &&
694 		 (val == st->info->option_mode_1_3db_freq))
695 		mode = SCA3000_REG_MODE_MEAS_MODE_OP_1;
696 	else if (st->info->option_mode_2 &&
697 		 (val == st->info->option_mode_2_3db_freq))
698 		mode = SCA3000_REG_MODE_MEAS_MODE_OP_2;
699 	else
700 		return -EINVAL;
701 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
702 	if (ret)
703 		return ret;
704 
705 	st->rx[0] &= ~SCA3000_REG_MODE_MODE_MASK;
706 	st->rx[0] |= (mode & SCA3000_REG_MODE_MODE_MASK);
707 
708 	return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, st->rx[0]);
709 }
710 
sca3000_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)711 static int sca3000_read_raw(struct iio_dev *indio_dev,
712 			    struct iio_chan_spec const *chan,
713 			    int *val,
714 			    int *val2,
715 			    long mask)
716 {
717 	struct sca3000_state *st = iio_priv(indio_dev);
718 	int ret;
719 	u8 address;
720 
721 	switch (mask) {
722 	case IIO_CHAN_INFO_RAW:
723 		mutex_lock(&st->lock);
724 		if (chan->type == IIO_ACCEL) {
725 			if (st->mo_det_use_count) {
726 				mutex_unlock(&st->lock);
727 				return -EBUSY;
728 			}
729 			address = sca3000_addresses[chan->address][0];
730 			ret = sca3000_read_data_short(st, address, 2);
731 			if (ret < 0) {
732 				mutex_unlock(&st->lock);
733 				return ret;
734 			}
735 			*val = sign_extend32(be16_to_cpup((__be16 *)st->rx) >>
736 					     chan->scan_type.shift,
737 					     chan->scan_type.realbits - 1);
738 		} else {
739 			/* get the temperature when available */
740 			ret = sca3000_read_data_short(st,
741 						      SCA3000_REG_TEMP_MSB_ADDR,
742 						      2);
743 			if (ret < 0) {
744 				mutex_unlock(&st->lock);
745 				return ret;
746 			}
747 			*val = (be16_to_cpup((__be16 *)st->rx) >>
748 				chan->scan_type.shift) &
749 				GENMASK(chan->scan_type.realbits - 1, 0);
750 		}
751 		mutex_unlock(&st->lock);
752 		return IIO_VAL_INT;
753 	case IIO_CHAN_INFO_SCALE:
754 		*val = 0;
755 		if (chan->type == IIO_ACCEL)
756 			*val2 = st->info->scale;
757 		else /* temperature */
758 			*val2 = 555556;
759 		return IIO_VAL_INT_PLUS_MICRO;
760 	case IIO_CHAN_INFO_OFFSET:
761 		*val = -214;
762 		*val2 = 600000;
763 		return IIO_VAL_INT_PLUS_MICRO;
764 	case IIO_CHAN_INFO_SAMP_FREQ:
765 		mutex_lock(&st->lock);
766 		ret = sca3000_read_raw_samp_freq(st, val);
767 		mutex_unlock(&st->lock);
768 		return ret ? ret : IIO_VAL_INT;
769 	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
770 		mutex_lock(&st->lock);
771 		ret = sca3000_read_3db_freq(st, val);
772 		mutex_unlock(&st->lock);
773 		return ret;
774 	default:
775 		return -EINVAL;
776 	}
777 }
778 
sca3000_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)779 static int sca3000_write_raw(struct iio_dev *indio_dev,
780 			     struct iio_chan_spec const *chan,
781 			     int val, int val2, long mask)
782 {
783 	struct sca3000_state *st = iio_priv(indio_dev);
784 	int ret;
785 
786 	switch (mask) {
787 	case IIO_CHAN_INFO_SAMP_FREQ:
788 		if (val2)
789 			return -EINVAL;
790 		mutex_lock(&st->lock);
791 		ret = sca3000_write_raw_samp_freq(st, val);
792 		mutex_unlock(&st->lock);
793 		return ret;
794 	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
795 		if (val2)
796 			return -EINVAL;
797 		mutex_lock(&st->lock);
798 		ret = sca3000_write_3db_freq(st, val);
799 		mutex_unlock(&st->lock);
800 		return ret;
801 	default:
802 		return -EINVAL;
803 	}
804 
805 	return ret;
806 }
807 
808 /**
809  * sca3000_read_av_freq() - sysfs function to get available frequencies
810  * @dev: Device structure for this device.
811  * @attr: Description of the attribute.
812  * @buf: Incoming string
813  *
814  * The later modes are only relevant to the ring buffer - and depend on current
815  * mode. Note that data sheet gives rather wide tolerances for these so integer
816  * division will give good enough answer and not all chips have them specified
817  * at all.
818  **/
sca3000_read_av_freq(struct device * dev,struct device_attribute * attr,char * buf)819 static ssize_t sca3000_read_av_freq(struct device *dev,
820 				    struct device_attribute *attr,
821 				    char *buf)
822 {
823 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
824 	struct sca3000_state *st = iio_priv(indio_dev);
825 	int len = 0, ret, val;
826 
827 	mutex_lock(&st->lock);
828 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
829 	val = st->rx[0];
830 	mutex_unlock(&st->lock);
831 	if (ret)
832 		return ret;
833 
834 	switch (val & SCA3000_REG_MODE_MODE_MASK) {
835 	case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
836 		len += sprintf(buf + len, "%d %d %d\n",
837 			       st->info->measurement_mode_freq,
838 			       st->info->measurement_mode_freq / 2,
839 			       st->info->measurement_mode_freq / 4);
840 		break;
841 	case SCA3000_REG_MODE_MEAS_MODE_OP_1:
842 		len += sprintf(buf + len, "%d %d %d\n",
843 			       st->info->option_mode_1_freq,
844 			       st->info->option_mode_1_freq / 2,
845 			       st->info->option_mode_1_freq / 4);
846 		break;
847 	case SCA3000_REG_MODE_MEAS_MODE_OP_2:
848 		len += sprintf(buf + len, "%d %d %d\n",
849 			       st->info->option_mode_2_freq,
850 			       st->info->option_mode_2_freq / 2,
851 			       st->info->option_mode_2_freq / 4);
852 		break;
853 	}
854 	return len;
855 }
856 
857 /*
858  * Should only really be registered if ring buffer support is compiled in.
859  * Does no harm however and doing it right would add a fair bit of complexity
860  */
861 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(sca3000_read_av_freq);
862 
863 /*
864  * sca3000_read_event_value() - query of a threshold or period
865  */
sca3000_read_event_value(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int * val,int * val2)866 static int sca3000_read_event_value(struct iio_dev *indio_dev,
867 				    const struct iio_chan_spec *chan,
868 				    enum iio_event_type type,
869 				    enum iio_event_direction dir,
870 				    enum iio_event_info info,
871 				    int *val, int *val2)
872 {
873 	struct sca3000_state *st = iio_priv(indio_dev);
874 	long ret;
875 	int i;
876 
877 	switch (info) {
878 	case IIO_EV_INFO_VALUE:
879 		mutex_lock(&st->lock);
880 		ret = sca3000_read_ctrl_reg(st,
881 					    sca3000_addresses[chan->address][1]);
882 		mutex_unlock(&st->lock);
883 		if (ret < 0)
884 			return ret;
885 		*val = 0;
886 		if (chan->channel2 == IIO_MOD_Y)
887 			for_each_set_bit(i, &ret,
888 					 ARRAY_SIZE(st->info->mot_det_mult_y))
889 				*val += st->info->mot_det_mult_y[i];
890 		else
891 			for_each_set_bit(i, &ret,
892 					 ARRAY_SIZE(st->info->mot_det_mult_xz))
893 				*val += st->info->mot_det_mult_xz[i];
894 
895 		return IIO_VAL_INT;
896 	case IIO_EV_INFO_PERIOD:
897 		*val = 0;
898 		*val2 = 226000;
899 		return IIO_VAL_INT_PLUS_MICRO;
900 	default:
901 		return -EINVAL;
902 	}
903 }
904 
905 /**
906  * sca3000_write_event_value() - control of threshold and period
907  * @indio_dev: Device instance specific IIO information.
908  * @chan: Description of the channel for which the event is being
909  * configured.
910  * @type: The type of event being configured, here magnitude rising
911  * as everything else is read only.
912  * @dir: Direction of the event (here rising)
913  * @info: What information about the event are we configuring.
914  * Here the threshold only.
915  * @val: Integer part of the value being written..
916  * @val2: Non integer part of the value being written. Here always 0.
917  */
sca3000_write_event_value(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int val,int val2)918 static int sca3000_write_event_value(struct iio_dev *indio_dev,
919 				     const struct iio_chan_spec *chan,
920 				     enum iio_event_type type,
921 				     enum iio_event_direction dir,
922 				     enum iio_event_info info,
923 				     int val, int val2)
924 {
925 	struct sca3000_state *st = iio_priv(indio_dev);
926 	int ret;
927 	int i;
928 	u8 nonlinear = 0;
929 
930 	if (chan->channel2 == IIO_MOD_Y) {
931 		i = ARRAY_SIZE(st->info->mot_det_mult_y);
932 		while (i > 0)
933 			if (val >= st->info->mot_det_mult_y[--i]) {
934 				nonlinear |= (1 << i);
935 				val -= st->info->mot_det_mult_y[i];
936 			}
937 	} else {
938 		i = ARRAY_SIZE(st->info->mot_det_mult_xz);
939 		while (i > 0)
940 			if (val >= st->info->mot_det_mult_xz[--i]) {
941 				nonlinear |= (1 << i);
942 				val -= st->info->mot_det_mult_xz[i];
943 			}
944 	}
945 
946 	mutex_lock(&st->lock);
947 	ret = sca3000_write_ctrl_reg(st,
948 				     sca3000_addresses[chan->address][1],
949 				     nonlinear);
950 	mutex_unlock(&st->lock);
951 
952 	return ret;
953 }
954 
955 static struct attribute *sca3000_attributes[] = {
956 	&iio_dev_attr_in_accel_filter_low_pass_3db_frequency_available.dev_attr.attr,
957 	&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
958 	NULL,
959 };
960 
961 static const struct attribute_group sca3000_attribute_group = {
962 	.attrs = sca3000_attributes,
963 };
964 
sca3000_read_data(struct sca3000_state * st,u8 reg_address_high,u8 * rx,int len)965 static int sca3000_read_data(struct sca3000_state *st,
966 			     u8 reg_address_high,
967 			     u8 *rx,
968 			     int len)
969 {
970 	int ret;
971 	struct spi_transfer xfer[2] = {
972 		{
973 			.len = 1,
974 			.tx_buf = st->tx,
975 		}, {
976 			.len = len,
977 			.rx_buf = rx,
978 		}
979 	};
980 
981 	st->tx[0] = SCA3000_READ_REG(reg_address_high);
982 	ret = spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
983 	if (ret) {
984 		dev_err(&st->us->dev, "problem reading register\n");
985 		return ret;
986 	}
987 
988 	return 0;
989 }
990 
991 /**
992  * sca3000_ring_int_process() - ring specific interrupt handling.
993  * @val: Value of the interrupt status register.
994  * @indio_dev: Device instance specific IIO device structure.
995  */
sca3000_ring_int_process(u8 val,struct iio_dev * indio_dev)996 static void sca3000_ring_int_process(u8 val, struct iio_dev *indio_dev)
997 {
998 	struct sca3000_state *st = iio_priv(indio_dev);
999 	int ret, i, num_available;
1000 
1001 	mutex_lock(&st->lock);
1002 
1003 	if (val & SCA3000_REG_INT_STATUS_HALF) {
1004 		ret = sca3000_read_data_short(st, SCA3000_REG_BUF_COUNT_ADDR,
1005 					      1);
1006 		if (ret)
1007 			goto error_ret;
1008 		num_available = st->rx[0];
1009 		/*
1010 		 * num_available is the total number of samples available
1011 		 * i.e. number of time points * number of channels.
1012 		 */
1013 		ret = sca3000_read_data(st, SCA3000_REG_RING_OUT_ADDR, st->rx,
1014 					num_available * 2);
1015 		if (ret)
1016 			goto error_ret;
1017 		for (i = 0; i < num_available / 3; i++) {
1018 			/*
1019 			 * Dirty hack to cover for 11 bit in fifo, 13 bit
1020 			 * direct reading.
1021 			 *
1022 			 * In theory the bottom two bits are undefined.
1023 			 * In reality they appear to always be 0.
1024 			 */
1025 			iio_push_to_buffers(indio_dev, st->rx + i * 3 * 2);
1026 		}
1027 	}
1028 error_ret:
1029 	mutex_unlock(&st->lock);
1030 }
1031 
1032 /**
1033  * sca3000_event_handler() - handling ring and non ring events
1034  * @irq: The irq being handled.
1035  * @private: struct iio_device pointer for the device.
1036  *
1037  * Ring related interrupt handler. Depending on event, push to
1038  * the ring buffer event chrdev or the event one.
1039  *
1040  * This function is complicated by the fact that the devices can signify ring
1041  * and non ring events via the same interrupt line and they can only
1042  * be distinguished via a read of the relevant status register.
1043  */
sca3000_event_handler(int irq,void * private)1044 static irqreturn_t sca3000_event_handler(int irq, void *private)
1045 {
1046 	struct iio_dev *indio_dev = private;
1047 	struct sca3000_state *st = iio_priv(indio_dev);
1048 	int ret, val;
1049 	s64 last_timestamp = iio_get_time_ns(indio_dev);
1050 
1051 	/*
1052 	 * Could lead if badly timed to an extra read of status reg,
1053 	 * but ensures no interrupt is missed.
1054 	 */
1055 	mutex_lock(&st->lock);
1056 	ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1);
1057 	val = st->rx[0];
1058 	mutex_unlock(&st->lock);
1059 	if (ret)
1060 		goto done;
1061 
1062 	sca3000_ring_int_process(val, indio_dev);
1063 
1064 	if (val & SCA3000_INT_STATUS_FREE_FALL)
1065 		iio_push_event(indio_dev,
1066 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1067 						  0,
1068 						  IIO_MOD_X_AND_Y_AND_Z,
1069 						  IIO_EV_TYPE_MAG,
1070 						  IIO_EV_DIR_FALLING),
1071 			       last_timestamp);
1072 
1073 	if (val & SCA3000_INT_STATUS_Y_TRIGGER)
1074 		iio_push_event(indio_dev,
1075 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1076 						  0,
1077 						  IIO_MOD_Y,
1078 						  IIO_EV_TYPE_MAG,
1079 						  IIO_EV_DIR_RISING),
1080 			       last_timestamp);
1081 
1082 	if (val & SCA3000_INT_STATUS_X_TRIGGER)
1083 		iio_push_event(indio_dev,
1084 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1085 						  0,
1086 						  IIO_MOD_X,
1087 						  IIO_EV_TYPE_MAG,
1088 						  IIO_EV_DIR_RISING),
1089 			       last_timestamp);
1090 
1091 	if (val & SCA3000_INT_STATUS_Z_TRIGGER)
1092 		iio_push_event(indio_dev,
1093 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1094 						  0,
1095 						  IIO_MOD_Z,
1096 						  IIO_EV_TYPE_MAG,
1097 						  IIO_EV_DIR_RISING),
1098 			       last_timestamp);
1099 
1100 done:
1101 	return IRQ_HANDLED;
1102 }
1103 
1104 /*
1105  * sca3000_read_event_config() what events are enabled
1106  */
sca3000_read_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir)1107 static int sca3000_read_event_config(struct iio_dev *indio_dev,
1108 				     const struct iio_chan_spec *chan,
1109 				     enum iio_event_type type,
1110 				     enum iio_event_direction dir)
1111 {
1112 	struct sca3000_state *st = iio_priv(indio_dev);
1113 	int ret;
1114 	/* read current value of mode register */
1115 	mutex_lock(&st->lock);
1116 
1117 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1118 	if (ret)
1119 		goto error_ret;
1120 
1121 	switch (chan->channel2) {
1122 	case IIO_MOD_X_AND_Y_AND_Z:
1123 		ret = !!(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT);
1124 		break;
1125 	case IIO_MOD_X:
1126 	case IIO_MOD_Y:
1127 	case IIO_MOD_Z:
1128 		/*
1129 		 * Motion detection mode cannot run at the same time as
1130 		 * acceleration data being read.
1131 		 */
1132 		if ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1133 		    != SCA3000_REG_MODE_MEAS_MODE_MOT_DET) {
1134 			ret = 0;
1135 		} else {
1136 			ret = sca3000_read_ctrl_reg(st,
1137 						SCA3000_REG_CTRL_SEL_MD_CTRL);
1138 			if (ret < 0)
1139 				goto error_ret;
1140 			/* only supporting logical or's for now */
1141 			ret = !!(ret & sca3000_addresses[chan->address][2]);
1142 		}
1143 		break;
1144 	default:
1145 		ret = -EINVAL;
1146 	}
1147 
1148 error_ret:
1149 	mutex_unlock(&st->lock);
1150 
1151 	return ret;
1152 }
1153 
sca3000_freefall_set_state(struct iio_dev * indio_dev,bool state)1154 static int sca3000_freefall_set_state(struct iio_dev *indio_dev, bool state)
1155 {
1156 	struct sca3000_state *st = iio_priv(indio_dev);
1157 	int ret;
1158 
1159 	/* read current value of mode register */
1160 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1161 	if (ret)
1162 		return ret;
1163 
1164 	/* if off and should be on */
1165 	if (state && !(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT))
1166 		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1167 					 st->rx[0] | SCA3000_REG_MODE_FREE_FALL_DETECT);
1168 	/* if on and should be off */
1169 	else if (!state && (st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT))
1170 		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1171 					 st->rx[0] & ~SCA3000_REG_MODE_FREE_FALL_DETECT);
1172 	else
1173 		return 0;
1174 }
1175 
sca3000_motion_detect_set_state(struct iio_dev * indio_dev,int axis,bool state)1176 static int sca3000_motion_detect_set_state(struct iio_dev *indio_dev, int axis,
1177 					   bool state)
1178 {
1179 	struct sca3000_state *st = iio_priv(indio_dev);
1180 	int ret, ctrlval;
1181 
1182 	/*
1183 	 * First read the motion detector config to find out if
1184 	 * this axis is on
1185 	 */
1186 	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
1187 	if (ret < 0)
1188 		return ret;
1189 	ctrlval = ret;
1190 	/* if off and should be on */
1191 	if (state && !(ctrlval & sca3000_addresses[axis][2])) {
1192 		ret = sca3000_write_ctrl_reg(st,
1193 					     SCA3000_REG_CTRL_SEL_MD_CTRL,
1194 					     ctrlval |
1195 					     sca3000_addresses[axis][2]);
1196 		if (ret)
1197 			return ret;
1198 		st->mo_det_use_count++;
1199 	} else if (!state && (ctrlval & sca3000_addresses[axis][2])) {
1200 		ret = sca3000_write_ctrl_reg(st,
1201 					     SCA3000_REG_CTRL_SEL_MD_CTRL,
1202 					     ctrlval &
1203 					     ~(sca3000_addresses[axis][2]));
1204 		if (ret)
1205 			return ret;
1206 		st->mo_det_use_count--;
1207 	}
1208 
1209 	/* read current value of mode register */
1210 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1211 	if (ret)
1212 		return ret;
1213 	/* if off and should be on */
1214 	if ((st->mo_det_use_count) &&
1215 	    ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1216 	     != SCA3000_REG_MODE_MEAS_MODE_MOT_DET))
1217 		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1218 			(st->rx[0] & ~SCA3000_REG_MODE_MODE_MASK)
1219 			| SCA3000_REG_MODE_MEAS_MODE_MOT_DET);
1220 	/* if on and should be off */
1221 	else if (!(st->mo_det_use_count) &&
1222 		 ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1223 		  == SCA3000_REG_MODE_MEAS_MODE_MOT_DET))
1224 		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1225 			st->rx[0] & SCA3000_REG_MODE_MODE_MASK);
1226 	else
1227 		return 0;
1228 }
1229 
1230 /**
1231  * sca3000_write_event_config() - simple on off control for motion detector
1232  * @indio_dev: IIO device instance specific structure. Data specific to this
1233  * particular driver may be accessed via iio_priv(indio_dev).
1234  * @chan: Description of the channel whose event we are configuring.
1235  * @type: The type of event.
1236  * @dir: The direction of the event.
1237  * @state: Desired state of event being configured.
1238  *
1239  * This is a per axis control, but enabling any will result in the
1240  * motion detector unit being enabled.
1241  * N.B. enabling motion detector stops normal data acquisition.
1242  * There is a complexity in knowing which mode to return to when
1243  * this mode is disabled.  Currently normal mode is assumed.
1244  **/
sca3000_write_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,bool state)1245 static int sca3000_write_event_config(struct iio_dev *indio_dev,
1246 				      const struct iio_chan_spec *chan,
1247 				      enum iio_event_type type,
1248 				      enum iio_event_direction dir,
1249 				      bool state)
1250 {
1251 	struct sca3000_state *st = iio_priv(indio_dev);
1252 	int ret;
1253 
1254 	mutex_lock(&st->lock);
1255 	switch (chan->channel2) {
1256 	case IIO_MOD_X_AND_Y_AND_Z:
1257 		ret = sca3000_freefall_set_state(indio_dev, state);
1258 		break;
1259 
1260 	case IIO_MOD_X:
1261 	case IIO_MOD_Y:
1262 	case IIO_MOD_Z:
1263 		ret = sca3000_motion_detect_set_state(indio_dev,
1264 						      chan->address,
1265 						      state);
1266 		break;
1267 	default:
1268 		ret = -EINVAL;
1269 		break;
1270 	}
1271 	mutex_unlock(&st->lock);
1272 
1273 	return ret;
1274 }
1275 
1276 static inline
__sca3000_hw_ring_state_set(struct iio_dev * indio_dev,bool state)1277 int __sca3000_hw_ring_state_set(struct iio_dev *indio_dev, bool state)
1278 {
1279 	struct sca3000_state *st = iio_priv(indio_dev);
1280 	int ret;
1281 
1282 	mutex_lock(&st->lock);
1283 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1284 	if (ret)
1285 		goto error_ret;
1286 	if (state) {
1287 		dev_info(&indio_dev->dev, "supposedly enabling ring buffer\n");
1288 		ret = sca3000_write_reg(st,
1289 			SCA3000_REG_MODE_ADDR,
1290 			(st->rx[0] | SCA3000_REG_MODE_RING_BUF_ENABLE));
1291 	} else
1292 		ret = sca3000_write_reg(st,
1293 			SCA3000_REG_MODE_ADDR,
1294 			(st->rx[0] & ~SCA3000_REG_MODE_RING_BUF_ENABLE));
1295 error_ret:
1296 	mutex_unlock(&st->lock);
1297 
1298 	return ret;
1299 }
1300 
1301 /**
1302  * sca3000_hw_ring_preenable() - hw ring buffer preenable function
1303  * @indio_dev: structure representing the IIO device. Device instance
1304  * specific state can be accessed via iio_priv(indio_dev).
1305  *
1306  * Very simple enable function as the chip will allows normal reads
1307  * during ring buffer operation so as long as it is indeed running
1308  * before we notify the core, the precise ordering does not matter.
1309  */
sca3000_hw_ring_preenable(struct iio_dev * indio_dev)1310 static int sca3000_hw_ring_preenable(struct iio_dev *indio_dev)
1311 {
1312 	int ret;
1313 	struct sca3000_state *st = iio_priv(indio_dev);
1314 
1315 	mutex_lock(&st->lock);
1316 
1317 	/* Enable the 50% full interrupt */
1318 	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1319 	if (ret)
1320 		goto error_unlock;
1321 	ret = sca3000_write_reg(st,
1322 				SCA3000_REG_INT_MASK_ADDR,
1323 				st->rx[0] | SCA3000_REG_INT_MASK_RING_HALF);
1324 	if (ret)
1325 		goto error_unlock;
1326 
1327 	mutex_unlock(&st->lock);
1328 
1329 	return __sca3000_hw_ring_state_set(indio_dev, 1);
1330 
1331 error_unlock:
1332 	mutex_unlock(&st->lock);
1333 
1334 	return ret;
1335 }
1336 
sca3000_hw_ring_postdisable(struct iio_dev * indio_dev)1337 static int sca3000_hw_ring_postdisable(struct iio_dev *indio_dev)
1338 {
1339 	int ret;
1340 	struct sca3000_state *st = iio_priv(indio_dev);
1341 
1342 	ret = __sca3000_hw_ring_state_set(indio_dev, 0);
1343 	if (ret)
1344 		return ret;
1345 
1346 	/* Disable the 50% full interrupt */
1347 	mutex_lock(&st->lock);
1348 
1349 	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1350 	if (ret)
1351 		goto unlock;
1352 	ret = sca3000_write_reg(st,
1353 				SCA3000_REG_INT_MASK_ADDR,
1354 				st->rx[0] & ~SCA3000_REG_INT_MASK_RING_HALF);
1355 unlock:
1356 	mutex_unlock(&st->lock);
1357 	return ret;
1358 }
1359 
1360 static const struct iio_buffer_setup_ops sca3000_ring_setup_ops = {
1361 	.preenable = &sca3000_hw_ring_preenable,
1362 	.postdisable = &sca3000_hw_ring_postdisable,
1363 };
1364 
1365 /**
1366  * sca3000_clean_setup() - get the device into a predictable state
1367  * @st: Device instance specific private data structure
1368  *
1369  * Devices use flash memory to store many of the register values
1370  * and hence can come up in somewhat unpredictable states.
1371  * Hence reset everything on driver load.
1372  */
sca3000_clean_setup(struct sca3000_state * st)1373 static int sca3000_clean_setup(struct sca3000_state *st)
1374 {
1375 	int ret;
1376 
1377 	mutex_lock(&st->lock);
1378 	/* Ensure all interrupts have been acknowledged */
1379 	ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1);
1380 	if (ret)
1381 		goto error_ret;
1382 
1383 	/* Turn off all motion detection channels */
1384 	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
1385 	if (ret < 0)
1386 		goto error_ret;
1387 	ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL,
1388 				     ret & SCA3000_MD_CTRL_PROT_MASK);
1389 	if (ret)
1390 		goto error_ret;
1391 
1392 	/* Disable ring buffer */
1393 	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
1394 	if (ret < 0)
1395 		goto error_ret;
1396 	ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
1397 				     (ret & SCA3000_REG_OUT_CTRL_PROT_MASK)
1398 				     | SCA3000_REG_OUT_CTRL_BUF_X_EN
1399 				     | SCA3000_REG_OUT_CTRL_BUF_Y_EN
1400 				     | SCA3000_REG_OUT_CTRL_BUF_Z_EN
1401 				     | SCA3000_REG_OUT_CTRL_BUF_DIV_4);
1402 	if (ret)
1403 		goto error_ret;
1404 	/* Enable interrupts, relevant to mode and set up as active low */
1405 	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1406 	if (ret)
1407 		goto error_ret;
1408 	ret = sca3000_write_reg(st,
1409 				SCA3000_REG_INT_MASK_ADDR,
1410 				(ret & SCA3000_REG_INT_MASK_PROT_MASK)
1411 				| SCA3000_REG_INT_MASK_ACTIVE_LOW);
1412 	if (ret)
1413 		goto error_ret;
1414 	/*
1415 	 * Select normal measurement mode, free fall off, ring off
1416 	 * Ring in 12 bit mode - it is fine to overwrite reserved bits 3,5
1417 	 * as that occurs in one of the example on the datasheet
1418 	 */
1419 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1420 	if (ret)
1421 		goto error_ret;
1422 	ret = sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1423 				(st->rx[0] & SCA3000_MODE_PROT_MASK));
1424 
1425 error_ret:
1426 	mutex_unlock(&st->lock);
1427 	return ret;
1428 }
1429 
1430 static const struct iio_info sca3000_info = {
1431 	.attrs = &sca3000_attribute_group,
1432 	.read_raw = &sca3000_read_raw,
1433 	.write_raw = &sca3000_write_raw,
1434 	.read_event_value = &sca3000_read_event_value,
1435 	.write_event_value = &sca3000_write_event_value,
1436 	.read_event_config = &sca3000_read_event_config,
1437 	.write_event_config = &sca3000_write_event_config,
1438 };
1439 
sca3000_probe(struct spi_device * spi)1440 static int sca3000_probe(struct spi_device *spi)
1441 {
1442 	int ret;
1443 	struct sca3000_state *st;
1444 	struct iio_dev *indio_dev;
1445 
1446 	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
1447 	if (!indio_dev)
1448 		return -ENOMEM;
1449 
1450 	st = iio_priv(indio_dev);
1451 	spi_set_drvdata(spi, indio_dev);
1452 	st->us = spi;
1453 	mutex_init(&st->lock);
1454 	st->info = &sca3000_spi_chip_info_tbl[spi_get_device_id(spi)
1455 					      ->driver_data];
1456 
1457 	indio_dev->name = spi_get_device_id(spi)->name;
1458 	indio_dev->info = &sca3000_info;
1459 	if (st->info->temp_output) {
1460 		indio_dev->channels = sca3000_channels_with_temp;
1461 		indio_dev->num_channels =
1462 			ARRAY_SIZE(sca3000_channels_with_temp);
1463 	} else {
1464 		indio_dev->channels = sca3000_channels;
1465 		indio_dev->num_channels = ARRAY_SIZE(sca3000_channels);
1466 	}
1467 	indio_dev->modes = INDIO_DIRECT_MODE;
1468 
1469 	ret = devm_iio_kfifo_buffer_setup(&spi->dev, indio_dev,
1470 					  &sca3000_ring_setup_ops);
1471 	if (ret)
1472 		return ret;
1473 
1474 	if (spi->irq) {
1475 		ret = request_threaded_irq(spi->irq,
1476 					   NULL,
1477 					   &sca3000_event_handler,
1478 					   IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
1479 					   "sca3000",
1480 					   indio_dev);
1481 		if (ret)
1482 			return ret;
1483 	}
1484 	ret = sca3000_clean_setup(st);
1485 	if (ret)
1486 		goto error_free_irq;
1487 
1488 	ret = sca3000_print_rev(indio_dev);
1489 	if (ret)
1490 		goto error_free_irq;
1491 
1492 	return iio_device_register(indio_dev);
1493 
1494 error_free_irq:
1495 	if (spi->irq)
1496 		free_irq(spi->irq, indio_dev);
1497 
1498 	return ret;
1499 }
1500 
sca3000_stop_all_interrupts(struct sca3000_state * st)1501 static int sca3000_stop_all_interrupts(struct sca3000_state *st)
1502 {
1503 	int ret;
1504 
1505 	mutex_lock(&st->lock);
1506 	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1507 	if (ret)
1508 		goto error_ret;
1509 	ret = sca3000_write_reg(st, SCA3000_REG_INT_MASK_ADDR,
1510 				(st->rx[0] &
1511 				 ~(SCA3000_REG_INT_MASK_RING_THREE_QUARTER |
1512 				   SCA3000_REG_INT_MASK_RING_HALF |
1513 				   SCA3000_REG_INT_MASK_ALL_INTS)));
1514 error_ret:
1515 	mutex_unlock(&st->lock);
1516 	return ret;
1517 }
1518 
sca3000_remove(struct spi_device * spi)1519 static void sca3000_remove(struct spi_device *spi)
1520 {
1521 	struct iio_dev *indio_dev = spi_get_drvdata(spi);
1522 	struct sca3000_state *st = iio_priv(indio_dev);
1523 
1524 	iio_device_unregister(indio_dev);
1525 
1526 	/* Must ensure no interrupts can be generated after this! */
1527 	sca3000_stop_all_interrupts(st);
1528 	if (spi->irq)
1529 		free_irq(spi->irq, indio_dev);
1530 }
1531 
1532 static const struct spi_device_id sca3000_id[] = {
1533 	{"sca3000_d01", d01},
1534 	{"sca3000_e02", e02},
1535 	{"sca3000_e04", e04},
1536 	{"sca3000_e05", e05},
1537 	{ }
1538 };
1539 MODULE_DEVICE_TABLE(spi, sca3000_id);
1540 
1541 static struct spi_driver sca3000_driver = {
1542 	.driver = {
1543 		.name = "sca3000",
1544 	},
1545 	.probe = sca3000_probe,
1546 	.remove = sca3000_remove,
1547 	.id_table = sca3000_id,
1548 };
1549 module_spi_driver(sca3000_driver);
1550 
1551 MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
1552 MODULE_DESCRIPTION("VTI SCA3000 Series Accelerometers SPI driver");
1553 MODULE_LICENSE("GPL v2");
1554