1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2018 Spreadtrum Communications Inc.
3
4 #include <linux/gpio/consumer.h>
5 #include <linux/iio/consumer.h>
6 #include <linux/interrupt.h>
7 #include <linux/kernel.h>
8 #include <linux/math64.h>
9 #include <linux/module.h>
10 #include <linux/nvmem-consumer.h>
11 #include <linux/of.h>
12 #include <linux/platform_device.h>
13 #include <linux/power_supply.h>
14 #include <linux/regmap.h>
15 #include <linux/slab.h>
16
17 /* PMIC global control registers definition */
18 #define SC27XX_MODULE_EN0 0xc08
19 #define SC27XX_CLK_EN0 0xc18
20 #define SC27XX_FGU_EN BIT(7)
21 #define SC27XX_FGU_RTC_EN BIT(6)
22
23 /* FGU registers definition */
24 #define SC27XX_FGU_START 0x0
25 #define SC27XX_FGU_CONFIG 0x4
26 #define SC27XX_FGU_ADC_CONFIG 0x8
27 #define SC27XX_FGU_STATUS 0xc
28 #define SC27XX_FGU_INT_EN 0x10
29 #define SC27XX_FGU_INT_CLR 0x14
30 #define SC27XX_FGU_INT_STS 0x1c
31 #define SC27XX_FGU_VOLTAGE 0x20
32 #define SC27XX_FGU_OCV 0x24
33 #define SC27XX_FGU_POCV 0x28
34 #define SC27XX_FGU_CURRENT 0x2c
35 #define SC27XX_FGU_LOW_OVERLOAD 0x34
36 #define SC27XX_FGU_CLBCNT_SETH 0x50
37 #define SC27XX_FGU_CLBCNT_SETL 0x54
38 #define SC27XX_FGU_CLBCNT_DELTH 0x58
39 #define SC27XX_FGU_CLBCNT_DELTL 0x5c
40 #define SC27XX_FGU_CLBCNT_VALH 0x68
41 #define SC27XX_FGU_CLBCNT_VALL 0x6c
42 #define SC27XX_FGU_CLBCNT_QMAXL 0x74
43 #define SC27XX_FGU_USER_AREA_SET 0xa0
44 #define SC27XX_FGU_USER_AREA_CLEAR 0xa4
45 #define SC27XX_FGU_USER_AREA_STATUS 0xa8
46 #define SC27XX_FGU_VOLTAGE_BUF 0xd0
47 #define SC27XX_FGU_CURRENT_BUF 0xf0
48
49 #define SC27XX_WRITE_SELCLB_EN BIT(0)
50 #define SC27XX_FGU_CLBCNT_MASK GENMASK(15, 0)
51 #define SC27XX_FGU_CLBCNT_SHIFT 16
52 #define SC27XX_FGU_LOW_OVERLOAD_MASK GENMASK(12, 0)
53
54 #define SC27XX_FGU_INT_MASK GENMASK(9, 0)
55 #define SC27XX_FGU_LOW_OVERLOAD_INT BIT(0)
56 #define SC27XX_FGU_CLBCNT_DELTA_INT BIT(2)
57
58 #define SC27XX_FGU_MODE_AREA_MASK GENMASK(15, 12)
59 #define SC27XX_FGU_CAP_AREA_MASK GENMASK(11, 0)
60 #define SC27XX_FGU_MODE_AREA_SHIFT 12
61
62 #define SC27XX_FGU_FIRST_POWERTON GENMASK(3, 0)
63 #define SC27XX_FGU_DEFAULT_CAP GENMASK(11, 0)
64 #define SC27XX_FGU_NORMAIL_POWERTON 0x5
65
66 #define SC27XX_FGU_CUR_BASIC_ADC 8192
67 #define SC27XX_FGU_SAMPLE_HZ 2
68 /* micro Ohms */
69 #define SC27XX_FGU_IDEAL_RESISTANCE 20000
70
71 /*
72 * struct sc27xx_fgu_data: describe the FGU device
73 * @regmap: regmap for register access
74 * @dev: platform device
75 * @battery: battery power supply
76 * @base: the base offset for the controller
77 * @lock: protect the structure
78 * @gpiod: GPIO for battery detection
79 * @channel: IIO channel to get battery temperature
80 * @charge_chan: IIO channel to get charge voltage
81 * @internal_resist: the battery internal resistance in mOhm
82 * @total_cap: the total capacity of the battery in mAh
83 * @init_cap: the initial capacity of the battery in mAh
84 * @alarm_cap: the alarm capacity
85 * @init_clbcnt: the initial coulomb counter
86 * @max_volt: the maximum constant input voltage in millivolt
87 * @min_volt: the minimum drained battery voltage in microvolt
88 * @boot_volt: the voltage measured during boot in microvolt
89 * @table_len: the capacity table length
90 * @resist_table_len: the resistance table length
91 * @cur_1000ma_adc: ADC value corresponding to 1000 mA
92 * @vol_1000mv_adc: ADC value corresponding to 1000 mV
93 * @calib_resist: the real resistance of coulomb counter chip in uOhm
94 * @cap_table: capacity table with corresponding ocv
95 * @resist_table: resistance percent table with corresponding temperature
96 */
97 struct sc27xx_fgu_data {
98 struct regmap *regmap;
99 struct device *dev;
100 struct power_supply *battery;
101 u32 base;
102 struct mutex lock;
103 struct gpio_desc *gpiod;
104 struct iio_channel *channel;
105 struct iio_channel *charge_chan;
106 bool bat_present;
107 int internal_resist;
108 int total_cap;
109 int init_cap;
110 int alarm_cap;
111 int init_clbcnt;
112 int max_volt;
113 int min_volt;
114 int boot_volt;
115 int table_len;
116 int resist_table_len;
117 int cur_1000ma_adc;
118 int vol_1000mv_adc;
119 int calib_resist;
120 struct power_supply_battery_ocv_table *cap_table;
121 struct power_supply_resistance_temp_table *resist_table;
122 };
123
124 static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity);
125 static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data,
126 int cap, bool int_mode);
127 static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap);
128 static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp);
129
130 static const char * const sc27xx_charger_supply_name[] = {
131 "sc2731_charger",
132 "sc2720_charger",
133 "sc2721_charger",
134 "sc2723_charger",
135 };
136
sc27xx_fgu_adc_to_current(struct sc27xx_fgu_data * data,s64 adc)137 static int sc27xx_fgu_adc_to_current(struct sc27xx_fgu_data *data, s64 adc)
138 {
139 return DIV_S64_ROUND_CLOSEST(adc * 1000, data->cur_1000ma_adc);
140 }
141
sc27xx_fgu_adc_to_voltage(struct sc27xx_fgu_data * data,s64 adc)142 static int sc27xx_fgu_adc_to_voltage(struct sc27xx_fgu_data *data, s64 adc)
143 {
144 return DIV_S64_ROUND_CLOSEST(adc * 1000, data->vol_1000mv_adc);
145 }
146
sc27xx_fgu_voltage_to_adc(struct sc27xx_fgu_data * data,int vol)147 static int sc27xx_fgu_voltage_to_adc(struct sc27xx_fgu_data *data, int vol)
148 {
149 return DIV_ROUND_CLOSEST(vol * data->vol_1000mv_adc, 1000);
150 }
151
sc27xx_fgu_is_first_poweron(struct sc27xx_fgu_data * data)152 static bool sc27xx_fgu_is_first_poweron(struct sc27xx_fgu_data *data)
153 {
154 int ret, status, cap, mode;
155
156 ret = regmap_read(data->regmap,
157 data->base + SC27XX_FGU_USER_AREA_STATUS, &status);
158 if (ret)
159 return false;
160
161 /*
162 * We use low 4 bits to save the last battery capacity and high 12 bits
163 * to save the system boot mode.
164 */
165 mode = (status & SC27XX_FGU_MODE_AREA_MASK) >> SC27XX_FGU_MODE_AREA_SHIFT;
166 cap = status & SC27XX_FGU_CAP_AREA_MASK;
167
168 /*
169 * When FGU has been powered down, the user area registers became
170 * default value (0xffff), which can be used to valid if the system is
171 * first power on or not.
172 */
173 if (mode == SC27XX_FGU_FIRST_POWERTON || cap == SC27XX_FGU_DEFAULT_CAP)
174 return true;
175
176 return false;
177 }
178
sc27xx_fgu_save_boot_mode(struct sc27xx_fgu_data * data,int boot_mode)179 static int sc27xx_fgu_save_boot_mode(struct sc27xx_fgu_data *data,
180 int boot_mode)
181 {
182 int ret;
183
184 ret = regmap_update_bits(data->regmap,
185 data->base + SC27XX_FGU_USER_AREA_CLEAR,
186 SC27XX_FGU_MODE_AREA_MASK,
187 SC27XX_FGU_MODE_AREA_MASK);
188 if (ret)
189 return ret;
190
191 /*
192 * Since the user area registers are put on power always-on region,
193 * then these registers changing time will be a little long. Thus
194 * here we should delay 200us to wait until values are updated
195 * successfully according to the datasheet.
196 */
197 udelay(200);
198
199 ret = regmap_update_bits(data->regmap,
200 data->base + SC27XX_FGU_USER_AREA_SET,
201 SC27XX_FGU_MODE_AREA_MASK,
202 boot_mode << SC27XX_FGU_MODE_AREA_SHIFT);
203 if (ret)
204 return ret;
205
206 /*
207 * Since the user area registers are put on power always-on region,
208 * then these registers changing time will be a little long. Thus
209 * here we should delay 200us to wait until values are updated
210 * successfully according to the datasheet.
211 */
212 udelay(200);
213
214 /*
215 * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
216 * make the user area data available, otherwise we can not save the user
217 * area data.
218 */
219 return regmap_update_bits(data->regmap,
220 data->base + SC27XX_FGU_USER_AREA_CLEAR,
221 SC27XX_FGU_MODE_AREA_MASK, 0);
222 }
223
sc27xx_fgu_save_last_cap(struct sc27xx_fgu_data * data,int cap)224 static int sc27xx_fgu_save_last_cap(struct sc27xx_fgu_data *data, int cap)
225 {
226 int ret;
227
228 ret = regmap_update_bits(data->regmap,
229 data->base + SC27XX_FGU_USER_AREA_CLEAR,
230 SC27XX_FGU_CAP_AREA_MASK,
231 SC27XX_FGU_CAP_AREA_MASK);
232 if (ret)
233 return ret;
234
235 /*
236 * Since the user area registers are put on power always-on region,
237 * then these registers changing time will be a little long. Thus
238 * here we should delay 200us to wait until values are updated
239 * successfully according to the datasheet.
240 */
241 udelay(200);
242
243 ret = regmap_update_bits(data->regmap,
244 data->base + SC27XX_FGU_USER_AREA_SET,
245 SC27XX_FGU_CAP_AREA_MASK, cap);
246 if (ret)
247 return ret;
248
249 /*
250 * Since the user area registers are put on power always-on region,
251 * then these registers changing time will be a little long. Thus
252 * here we should delay 200us to wait until values are updated
253 * successfully according to the datasheet.
254 */
255 udelay(200);
256
257 /*
258 * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
259 * make the user area data available, otherwise we can not save the user
260 * area data.
261 */
262 return regmap_update_bits(data->regmap,
263 data->base + SC27XX_FGU_USER_AREA_CLEAR,
264 SC27XX_FGU_CAP_AREA_MASK, 0);
265 }
266
sc27xx_fgu_read_last_cap(struct sc27xx_fgu_data * data,int * cap)267 static int sc27xx_fgu_read_last_cap(struct sc27xx_fgu_data *data, int *cap)
268 {
269 int ret, value;
270
271 ret = regmap_read(data->regmap,
272 data->base + SC27XX_FGU_USER_AREA_STATUS, &value);
273 if (ret)
274 return ret;
275
276 *cap = value & SC27XX_FGU_CAP_AREA_MASK;
277 return 0;
278 }
279
280 /*
281 * When system boots on, we can not read battery capacity from coulomb
282 * registers, since now the coulomb registers are invalid. So we should
283 * calculate the battery open circuit voltage, and get current battery
284 * capacity according to the capacity table.
285 */
sc27xx_fgu_get_boot_capacity(struct sc27xx_fgu_data * data,int * cap)286 static int sc27xx_fgu_get_boot_capacity(struct sc27xx_fgu_data *data, int *cap)
287 {
288 int volt, cur, oci, ocv, ret;
289 bool is_first_poweron = sc27xx_fgu_is_first_poweron(data);
290
291 /*
292 * If system is not the first power on, we should use the last saved
293 * battery capacity as the initial battery capacity. Otherwise we should
294 * re-calculate the initial battery capacity.
295 */
296 if (!is_first_poweron) {
297 ret = sc27xx_fgu_read_last_cap(data, cap);
298 if (ret)
299 return ret;
300
301 return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON);
302 }
303
304 /*
305 * After system booting on, the SC27XX_FGU_CLBCNT_QMAXL register saved
306 * the first sampled open circuit current.
307 */
308 ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_QMAXL,
309 &cur);
310 if (ret)
311 return ret;
312
313 cur <<= 1;
314 oci = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);
315
316 /*
317 * Should get the OCV from SC27XX_FGU_POCV register at the system
318 * beginning. It is ADC values reading from registers which need to
319 * convert the corresponding voltage.
320 */
321 ret = regmap_read(data->regmap, data->base + SC27XX_FGU_POCV, &volt);
322 if (ret)
323 return ret;
324
325 volt = sc27xx_fgu_adc_to_voltage(data, volt);
326 ocv = volt * 1000 - oci * data->internal_resist;
327 data->boot_volt = ocv;
328
329 /*
330 * Parse the capacity table to look up the correct capacity percent
331 * according to current battery's corresponding OCV values.
332 */
333 *cap = power_supply_ocv2cap_simple(data->cap_table, data->table_len,
334 ocv);
335
336 ret = sc27xx_fgu_save_last_cap(data, *cap);
337 if (ret)
338 return ret;
339
340 return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON);
341 }
342
sc27xx_fgu_set_clbcnt(struct sc27xx_fgu_data * data,int clbcnt)343 static int sc27xx_fgu_set_clbcnt(struct sc27xx_fgu_data *data, int clbcnt)
344 {
345 int ret;
346
347 ret = regmap_update_bits(data->regmap,
348 data->base + SC27XX_FGU_CLBCNT_SETL,
349 SC27XX_FGU_CLBCNT_MASK, clbcnt);
350 if (ret)
351 return ret;
352
353 ret = regmap_update_bits(data->regmap,
354 data->base + SC27XX_FGU_CLBCNT_SETH,
355 SC27XX_FGU_CLBCNT_MASK,
356 clbcnt >> SC27XX_FGU_CLBCNT_SHIFT);
357 if (ret)
358 return ret;
359
360 return regmap_update_bits(data->regmap, data->base + SC27XX_FGU_START,
361 SC27XX_WRITE_SELCLB_EN,
362 SC27XX_WRITE_SELCLB_EN);
363 }
364
sc27xx_fgu_get_clbcnt(struct sc27xx_fgu_data * data,int * clb_cnt)365 static int sc27xx_fgu_get_clbcnt(struct sc27xx_fgu_data *data, int *clb_cnt)
366 {
367 int ccl, cch, ret;
368
369 ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALL,
370 &ccl);
371 if (ret)
372 return ret;
373
374 ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALH,
375 &cch);
376 if (ret)
377 return ret;
378
379 *clb_cnt = ccl & SC27XX_FGU_CLBCNT_MASK;
380 *clb_cnt |= (cch & SC27XX_FGU_CLBCNT_MASK) << SC27XX_FGU_CLBCNT_SHIFT;
381
382 return 0;
383 }
384
sc27xx_fgu_get_vol_now(struct sc27xx_fgu_data * data,int * val)385 static int sc27xx_fgu_get_vol_now(struct sc27xx_fgu_data *data, int *val)
386 {
387 int ret;
388 u32 vol;
389
390 ret = regmap_read(data->regmap, data->base + SC27XX_FGU_VOLTAGE_BUF,
391 &vol);
392 if (ret)
393 return ret;
394
395 /*
396 * It is ADC values reading from registers which need to convert to
397 * corresponding voltage values.
398 */
399 *val = sc27xx_fgu_adc_to_voltage(data, vol);
400
401 return 0;
402 }
403
sc27xx_fgu_get_cur_now(struct sc27xx_fgu_data * data,int * val)404 static int sc27xx_fgu_get_cur_now(struct sc27xx_fgu_data *data, int *val)
405 {
406 int ret;
407 u32 cur;
408
409 ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CURRENT_BUF,
410 &cur);
411 if (ret)
412 return ret;
413
414 /*
415 * It is ADC values reading from registers which need to convert to
416 * corresponding current values.
417 */
418 *val = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);
419
420 return 0;
421 }
422
sc27xx_fgu_get_capacity(struct sc27xx_fgu_data * data,int * cap)423 static int sc27xx_fgu_get_capacity(struct sc27xx_fgu_data *data, int *cap)
424 {
425 int ret, cur_clbcnt, delta_clbcnt, delta_cap, temp;
426
427 /* Get current coulomb counters firstly */
428 ret = sc27xx_fgu_get_clbcnt(data, &cur_clbcnt);
429 if (ret)
430 return ret;
431
432 delta_clbcnt = cur_clbcnt - data->init_clbcnt;
433
434 /*
435 * Convert coulomb counter to delta capacity (mAh), and set multiplier
436 * as 10 to improve the precision.
437 */
438 temp = DIV_ROUND_CLOSEST(delta_clbcnt * 10, 36 * SC27XX_FGU_SAMPLE_HZ);
439 temp = sc27xx_fgu_adc_to_current(data, temp / 1000);
440
441 /*
442 * Convert to capacity percent of the battery total capacity,
443 * and multiplier is 100 too.
444 */
445 delta_cap = DIV_ROUND_CLOSEST(temp * 100, data->total_cap);
446 *cap = delta_cap + data->init_cap;
447
448 /* Calibrate the battery capacity in a normal range. */
449 sc27xx_fgu_capacity_calibration(data, *cap, false);
450
451 return 0;
452 }
453
sc27xx_fgu_get_vbat_vol(struct sc27xx_fgu_data * data,int * val)454 static int sc27xx_fgu_get_vbat_vol(struct sc27xx_fgu_data *data, int *val)
455 {
456 int ret, vol;
457
458 ret = regmap_read(data->regmap, data->base + SC27XX_FGU_VOLTAGE, &vol);
459 if (ret)
460 return ret;
461
462 /*
463 * It is ADC values reading from registers which need to convert to
464 * corresponding voltage values.
465 */
466 *val = sc27xx_fgu_adc_to_voltage(data, vol);
467
468 return 0;
469 }
470
sc27xx_fgu_get_current(struct sc27xx_fgu_data * data,int * val)471 static int sc27xx_fgu_get_current(struct sc27xx_fgu_data *data, int *val)
472 {
473 int ret, cur;
474
475 ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CURRENT, &cur);
476 if (ret)
477 return ret;
478
479 /*
480 * It is ADC values reading from registers which need to convert to
481 * corresponding current values.
482 */
483 *val = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);
484
485 return 0;
486 }
487
sc27xx_fgu_get_vbat_ocv(struct sc27xx_fgu_data * data,int * val)488 static int sc27xx_fgu_get_vbat_ocv(struct sc27xx_fgu_data *data, int *val)
489 {
490 int vol, cur, ret, temp, resistance;
491
492 ret = sc27xx_fgu_get_vbat_vol(data, &vol);
493 if (ret)
494 return ret;
495
496 ret = sc27xx_fgu_get_current(data, &cur);
497 if (ret)
498 return ret;
499
500 resistance = data->internal_resist;
501 if (data->resist_table_len > 0) {
502 ret = sc27xx_fgu_get_temp(data, &temp);
503 if (ret)
504 return ret;
505
506 resistance = power_supply_temp2resist_simple(data->resist_table,
507 data->resist_table_len, temp);
508 resistance = data->internal_resist * resistance / 100;
509 }
510
511 /* Return the battery OCV in micro volts. */
512 *val = vol * 1000 - cur * resistance;
513
514 return 0;
515 }
516
sc27xx_fgu_get_charge_vol(struct sc27xx_fgu_data * data,int * val)517 static int sc27xx_fgu_get_charge_vol(struct sc27xx_fgu_data *data, int *val)
518 {
519 int ret, vol;
520
521 ret = iio_read_channel_processed(data->charge_chan, &vol);
522 if (ret < 0)
523 return ret;
524
525 *val = vol * 1000;
526 return 0;
527 }
528
sc27xx_fgu_get_temp(struct sc27xx_fgu_data * data,int * temp)529 static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp)
530 {
531 return iio_read_channel_processed(data->channel, temp);
532 }
533
sc27xx_fgu_get_health(struct sc27xx_fgu_data * data,int * health)534 static int sc27xx_fgu_get_health(struct sc27xx_fgu_data *data, int *health)
535 {
536 int ret, vol;
537
538 ret = sc27xx_fgu_get_vbat_vol(data, &vol);
539 if (ret)
540 return ret;
541
542 if (vol > data->max_volt)
543 *health = POWER_SUPPLY_HEALTH_OVERVOLTAGE;
544 else
545 *health = POWER_SUPPLY_HEALTH_GOOD;
546
547 return 0;
548 }
549
sc27xx_fgu_get_status(struct sc27xx_fgu_data * data,int * status)550 static int sc27xx_fgu_get_status(struct sc27xx_fgu_data *data, int *status)
551 {
552 union power_supply_propval val;
553 struct power_supply *psy;
554 int i, ret = -EINVAL;
555
556 for (i = 0; i < ARRAY_SIZE(sc27xx_charger_supply_name); i++) {
557 psy = power_supply_get_by_name(sc27xx_charger_supply_name[i]);
558 if (!psy)
559 continue;
560
561 ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_STATUS,
562 &val);
563 power_supply_put(psy);
564 if (ret)
565 return ret;
566
567 *status = val.intval;
568 }
569
570 return ret;
571 }
572
sc27xx_fgu_get_property(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)573 static int sc27xx_fgu_get_property(struct power_supply *psy,
574 enum power_supply_property psp,
575 union power_supply_propval *val)
576 {
577 struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
578 int ret = 0;
579 int value;
580
581 mutex_lock(&data->lock);
582
583 switch (psp) {
584 case POWER_SUPPLY_PROP_STATUS:
585 ret = sc27xx_fgu_get_status(data, &value);
586 if (ret)
587 goto error;
588
589 val->intval = value;
590 break;
591
592 case POWER_SUPPLY_PROP_HEALTH:
593 ret = sc27xx_fgu_get_health(data, &value);
594 if (ret)
595 goto error;
596
597 val->intval = value;
598 break;
599
600 case POWER_SUPPLY_PROP_PRESENT:
601 val->intval = data->bat_present;
602 break;
603
604 case POWER_SUPPLY_PROP_TEMP:
605 ret = sc27xx_fgu_get_temp(data, &value);
606 if (ret)
607 goto error;
608
609 val->intval = value;
610 break;
611
612 case POWER_SUPPLY_PROP_TECHNOLOGY:
613 val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
614 break;
615
616 case POWER_SUPPLY_PROP_CAPACITY:
617 ret = sc27xx_fgu_get_capacity(data, &value);
618 if (ret)
619 goto error;
620
621 val->intval = value;
622 break;
623
624 case POWER_SUPPLY_PROP_VOLTAGE_AVG:
625 ret = sc27xx_fgu_get_vbat_vol(data, &value);
626 if (ret)
627 goto error;
628
629 val->intval = value * 1000;
630 break;
631
632 case POWER_SUPPLY_PROP_VOLTAGE_OCV:
633 ret = sc27xx_fgu_get_vbat_ocv(data, &value);
634 if (ret)
635 goto error;
636
637 val->intval = value;
638 break;
639
640 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
641 ret = sc27xx_fgu_get_charge_vol(data, &value);
642 if (ret)
643 goto error;
644
645 val->intval = value;
646 break;
647
648 case POWER_SUPPLY_PROP_CURRENT_AVG:
649 ret = sc27xx_fgu_get_current(data, &value);
650 if (ret)
651 goto error;
652
653 val->intval = value * 1000;
654 break;
655
656 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
657 val->intval = data->total_cap * 1000;
658 break;
659
660 case POWER_SUPPLY_PROP_CHARGE_NOW:
661 ret = sc27xx_fgu_get_clbcnt(data, &value);
662 if (ret)
663 goto error;
664
665 value = DIV_ROUND_CLOSEST(value * 10,
666 36 * SC27XX_FGU_SAMPLE_HZ);
667 val->intval = sc27xx_fgu_adc_to_current(data, value);
668
669 break;
670
671 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
672 ret = sc27xx_fgu_get_vol_now(data, &value);
673 if (ret)
674 goto error;
675
676 val->intval = value * 1000;
677 break;
678
679 case POWER_SUPPLY_PROP_CURRENT_NOW:
680 ret = sc27xx_fgu_get_cur_now(data, &value);
681 if (ret)
682 goto error;
683
684 val->intval = value * 1000;
685 break;
686
687 case POWER_SUPPLY_PROP_VOLTAGE_BOOT:
688 val->intval = data->boot_volt;
689 break;
690
691 default:
692 ret = -EINVAL;
693 break;
694 }
695
696 error:
697 mutex_unlock(&data->lock);
698 return ret;
699 }
700
sc27xx_fgu_set_property(struct power_supply * psy,enum power_supply_property psp,const union power_supply_propval * val)701 static int sc27xx_fgu_set_property(struct power_supply *psy,
702 enum power_supply_property psp,
703 const union power_supply_propval *val)
704 {
705 struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
706 int ret;
707
708 mutex_lock(&data->lock);
709
710 switch (psp) {
711 case POWER_SUPPLY_PROP_CAPACITY:
712 ret = sc27xx_fgu_save_last_cap(data, val->intval);
713 if (ret < 0)
714 dev_err(data->dev, "failed to save battery capacity\n");
715 break;
716
717 case POWER_SUPPLY_PROP_CALIBRATE:
718 sc27xx_fgu_adjust_cap(data, val->intval);
719 ret = 0;
720 break;
721
722 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
723 data->total_cap = val->intval / 1000;
724 ret = 0;
725 break;
726
727 default:
728 ret = -EINVAL;
729 }
730
731 mutex_unlock(&data->lock);
732
733 return ret;
734 }
735
sc27xx_fgu_property_is_writeable(struct power_supply * psy,enum power_supply_property psp)736 static int sc27xx_fgu_property_is_writeable(struct power_supply *psy,
737 enum power_supply_property psp)
738 {
739 return psp == POWER_SUPPLY_PROP_CAPACITY ||
740 psp == POWER_SUPPLY_PROP_CALIBRATE ||
741 psp == POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN;
742 }
743
744 static enum power_supply_property sc27xx_fgu_props[] = {
745 POWER_SUPPLY_PROP_STATUS,
746 POWER_SUPPLY_PROP_HEALTH,
747 POWER_SUPPLY_PROP_PRESENT,
748 POWER_SUPPLY_PROP_TEMP,
749 POWER_SUPPLY_PROP_TECHNOLOGY,
750 POWER_SUPPLY_PROP_CAPACITY,
751 POWER_SUPPLY_PROP_VOLTAGE_NOW,
752 POWER_SUPPLY_PROP_VOLTAGE_OCV,
753 POWER_SUPPLY_PROP_VOLTAGE_AVG,
754 POWER_SUPPLY_PROP_VOLTAGE_BOOT,
755 POWER_SUPPLY_PROP_CURRENT_NOW,
756 POWER_SUPPLY_PROP_CURRENT_AVG,
757 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
758 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
759 POWER_SUPPLY_PROP_CALIBRATE,
760 POWER_SUPPLY_PROP_CHARGE_NOW
761 };
762
763 static const struct power_supply_desc sc27xx_fgu_desc = {
764 .name = "sc27xx-fgu",
765 .type = POWER_SUPPLY_TYPE_BATTERY,
766 .properties = sc27xx_fgu_props,
767 .num_properties = ARRAY_SIZE(sc27xx_fgu_props),
768 .get_property = sc27xx_fgu_get_property,
769 .set_property = sc27xx_fgu_set_property,
770 .external_power_changed = power_supply_changed,
771 .property_is_writeable = sc27xx_fgu_property_is_writeable,
772 .no_thermal = true,
773 };
774
sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data * data,int cap)775 static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap)
776 {
777 int ret;
778
779 data->init_cap = cap;
780 ret = sc27xx_fgu_get_clbcnt(data, &data->init_clbcnt);
781 if (ret)
782 dev_err(data->dev, "failed to get init coulomb counter\n");
783 }
784
sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data * data,int cap,bool int_mode)785 static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data,
786 int cap, bool int_mode)
787 {
788 int ret, ocv, chg_sts, adc;
789
790 ret = sc27xx_fgu_get_vbat_ocv(data, &ocv);
791 if (ret) {
792 dev_err(data->dev, "get battery ocv error.\n");
793 return;
794 }
795
796 ret = sc27xx_fgu_get_status(data, &chg_sts);
797 if (ret) {
798 dev_err(data->dev, "get charger status error.\n");
799 return;
800 }
801
802 /*
803 * If we are in charging mode, then we do not need to calibrate the
804 * lower capacity.
805 */
806 if (chg_sts == POWER_SUPPLY_STATUS_CHARGING)
807 return;
808
809 if ((ocv > data->cap_table[0].ocv && cap < 100) || cap > 100) {
810 /*
811 * If current OCV value is larger than the max OCV value in
812 * OCV table, or the current capacity is larger than 100,
813 * we should force the inititial capacity to 100.
814 */
815 sc27xx_fgu_adjust_cap(data, 100);
816 } else if (ocv <= data->cap_table[data->table_len - 1].ocv) {
817 /*
818 * If current OCV value is leass than the minimum OCV value in
819 * OCV table, we should force the inititial capacity to 0.
820 */
821 sc27xx_fgu_adjust_cap(data, 0);
822 } else if ((ocv > data->cap_table[data->table_len - 1].ocv && cap <= 0) ||
823 (ocv > data->min_volt && cap <= data->alarm_cap)) {
824 /*
825 * If current OCV value is not matchable with current capacity,
826 * we should re-calculate current capacity by looking up the
827 * OCV table.
828 */
829 int cur_cap = power_supply_ocv2cap_simple(data->cap_table,
830 data->table_len, ocv);
831
832 sc27xx_fgu_adjust_cap(data, cur_cap);
833 } else if (ocv <= data->min_volt) {
834 /*
835 * If current OCV value is less than the low alarm voltage, but
836 * current capacity is larger than the alarm capacity, we should
837 * adjust the inititial capacity to alarm capacity.
838 */
839 if (cap > data->alarm_cap) {
840 sc27xx_fgu_adjust_cap(data, data->alarm_cap);
841 } else {
842 int cur_cap;
843
844 /*
845 * If current capacity is equal with 0 or less than 0
846 * (some error occurs), we should adjust inititial
847 * capacity to the capacity corresponding to current OCV
848 * value.
849 */
850 cur_cap = power_supply_ocv2cap_simple(data->cap_table,
851 data->table_len,
852 ocv);
853 sc27xx_fgu_adjust_cap(data, cur_cap);
854 }
855
856 if (!int_mode)
857 return;
858
859 /*
860 * After adjusting the battery capacity, we should set the
861 * lowest alarm voltage instead.
862 */
863 data->min_volt = data->cap_table[data->table_len - 1].ocv;
864 data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table,
865 data->table_len,
866 data->min_volt);
867
868 adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000);
869 regmap_update_bits(data->regmap,
870 data->base + SC27XX_FGU_LOW_OVERLOAD,
871 SC27XX_FGU_LOW_OVERLOAD_MASK, adc);
872 }
873 }
874
sc27xx_fgu_interrupt(int irq,void * dev_id)875 static irqreturn_t sc27xx_fgu_interrupt(int irq, void *dev_id)
876 {
877 struct sc27xx_fgu_data *data = dev_id;
878 int ret, cap;
879 u32 status;
880
881 mutex_lock(&data->lock);
882
883 ret = regmap_read(data->regmap, data->base + SC27XX_FGU_INT_STS,
884 &status);
885 if (ret)
886 goto out;
887
888 ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR,
889 status, status);
890 if (ret)
891 goto out;
892
893 /*
894 * When low overload voltage interrupt happens, we should calibrate the
895 * battery capacity in lower voltage stage.
896 */
897 if (!(status & SC27XX_FGU_LOW_OVERLOAD_INT))
898 goto out;
899
900 ret = sc27xx_fgu_get_capacity(data, &cap);
901 if (ret)
902 goto out;
903
904 sc27xx_fgu_capacity_calibration(data, cap, true);
905
906 out:
907 mutex_unlock(&data->lock);
908
909 power_supply_changed(data->battery);
910 return IRQ_HANDLED;
911 }
912
sc27xx_fgu_bat_detection(int irq,void * dev_id)913 static irqreturn_t sc27xx_fgu_bat_detection(int irq, void *dev_id)
914 {
915 struct sc27xx_fgu_data *data = dev_id;
916 int state;
917
918 mutex_lock(&data->lock);
919
920 state = gpiod_get_value_cansleep(data->gpiod);
921 if (state < 0) {
922 dev_err(data->dev, "failed to get gpio state\n");
923 mutex_unlock(&data->lock);
924 return IRQ_RETVAL(state);
925 }
926
927 data->bat_present = !!state;
928
929 mutex_unlock(&data->lock);
930
931 power_supply_changed(data->battery);
932 return IRQ_HANDLED;
933 }
934
sc27xx_fgu_disable(void * _data)935 static void sc27xx_fgu_disable(void *_data)
936 {
937 struct sc27xx_fgu_data *data = _data;
938
939 regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0);
940 regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0);
941 }
942
sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data * data,int capacity)943 static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity)
944 {
945 /*
946 * Get current capacity (mAh) = battery total capacity (mAh) *
947 * current capacity percent (capacity / 100).
948 */
949 int cur_cap = DIV_ROUND_CLOSEST(data->total_cap * capacity, 100);
950
951 /*
952 * Convert current capacity (mAh) to coulomb counter according to the
953 * formula: 1 mAh =3.6 coulomb.
954 */
955 return DIV_ROUND_CLOSEST(cur_cap * 36 * data->cur_1000ma_adc * SC27XX_FGU_SAMPLE_HZ, 10);
956 }
957
sc27xx_fgu_calibration(struct sc27xx_fgu_data * data)958 static int sc27xx_fgu_calibration(struct sc27xx_fgu_data *data)
959 {
960 struct nvmem_cell *cell;
961 int calib_data, cal_4200mv;
962 void *buf;
963 size_t len;
964
965 cell = nvmem_cell_get(data->dev, "fgu_calib");
966 if (IS_ERR(cell))
967 return PTR_ERR(cell);
968
969 buf = nvmem_cell_read(cell, &len);
970 nvmem_cell_put(cell);
971
972 if (IS_ERR(buf))
973 return PTR_ERR(buf);
974
975 memcpy(&calib_data, buf, min(len, sizeof(u32)));
976
977 /*
978 * Get the ADC value corresponding to 4200 mV from eFuse controller
979 * according to below formula. Then convert to ADC values corresponding
980 * to 1000 mV and 1000 mA.
981 */
982 cal_4200mv = (calib_data & 0x1ff) + 6963 - 4096 - 256;
983 data->vol_1000mv_adc = DIV_ROUND_CLOSEST(cal_4200mv * 10, 42);
984 data->cur_1000ma_adc =
985 DIV_ROUND_CLOSEST(data->vol_1000mv_adc * 4 * data->calib_resist,
986 SC27XX_FGU_IDEAL_RESISTANCE);
987
988 kfree(buf);
989 return 0;
990 }
991
sc27xx_fgu_hw_init(struct sc27xx_fgu_data * data)992 static int sc27xx_fgu_hw_init(struct sc27xx_fgu_data *data)
993 {
994 struct power_supply_battery_info *info;
995 const struct power_supply_battery_ocv_table *table;
996 int ret, delta_clbcnt, alarm_adc;
997
998 ret = power_supply_get_battery_info(data->battery, &info);
999 if (ret) {
1000 dev_err(data->dev, "failed to get battery information\n");
1001 return ret;
1002 }
1003
1004 data->total_cap = info->charge_full_design_uah / 1000;
1005 data->max_volt = info->constant_charge_voltage_max_uv / 1000;
1006 data->internal_resist = info->factory_internal_resistance_uohm / 1000;
1007 data->min_volt = info->voltage_min_design_uv;
1008
1009 /*
1010 * For SC27XX fuel gauge device, we only use one ocv-capacity
1011 * table in normal temperature 20 Celsius.
1012 */
1013 table = power_supply_find_ocv2cap_table(info, 20, &data->table_len);
1014 if (!table)
1015 return -EINVAL;
1016
1017 data->cap_table = devm_kmemdup(data->dev, table,
1018 data->table_len * sizeof(*table),
1019 GFP_KERNEL);
1020 if (!data->cap_table) {
1021 power_supply_put_battery_info(data->battery, info);
1022 return -ENOMEM;
1023 }
1024
1025 data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table,
1026 data->table_len,
1027 data->min_volt);
1028 if (!data->alarm_cap)
1029 data->alarm_cap += 1;
1030
1031 data->resist_table_len = info->resist_table_size;
1032 if (data->resist_table_len > 0) {
1033 data->resist_table = devm_kmemdup(data->dev, info->resist_table,
1034 data->resist_table_len *
1035 sizeof(struct power_supply_resistance_temp_table),
1036 GFP_KERNEL);
1037 if (!data->resist_table) {
1038 power_supply_put_battery_info(data->battery, info);
1039 return -ENOMEM;
1040 }
1041 }
1042
1043 power_supply_put_battery_info(data->battery, info);
1044
1045 ret = sc27xx_fgu_calibration(data);
1046 if (ret)
1047 return ret;
1048
1049 /* Enable the FGU module */
1050 ret = regmap_update_bits(data->regmap, SC27XX_MODULE_EN0,
1051 SC27XX_FGU_EN, SC27XX_FGU_EN);
1052 if (ret) {
1053 dev_err(data->dev, "failed to enable fgu\n");
1054 return ret;
1055 }
1056
1057 /* Enable the FGU RTC clock to make it work */
1058 ret = regmap_update_bits(data->regmap, SC27XX_CLK_EN0,
1059 SC27XX_FGU_RTC_EN, SC27XX_FGU_RTC_EN);
1060 if (ret) {
1061 dev_err(data->dev, "failed to enable fgu RTC clock\n");
1062 goto disable_fgu;
1063 }
1064
1065 ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR,
1066 SC27XX_FGU_INT_MASK, SC27XX_FGU_INT_MASK);
1067 if (ret) {
1068 dev_err(data->dev, "failed to clear interrupt status\n");
1069 goto disable_clk;
1070 }
1071
1072 /*
1073 * Set the voltage low overload threshold, which means when the battery
1074 * voltage is lower than this threshold, the controller will generate
1075 * one interrupt to notify.
1076 */
1077 alarm_adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000);
1078 ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_LOW_OVERLOAD,
1079 SC27XX_FGU_LOW_OVERLOAD_MASK, alarm_adc);
1080 if (ret) {
1081 dev_err(data->dev, "failed to set fgu low overload\n");
1082 goto disable_clk;
1083 }
1084
1085 /*
1086 * Set the coulomb counter delta threshold, that means when the coulomb
1087 * counter change is multiples of the delta threshold, the controller
1088 * will generate one interrupt to notify the users to update the battery
1089 * capacity. Now we set the delta threshold as a counter value of 1%
1090 * capacity.
1091 */
1092 delta_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, 1);
1093
1094 ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTL,
1095 SC27XX_FGU_CLBCNT_MASK, delta_clbcnt);
1096 if (ret) {
1097 dev_err(data->dev, "failed to set low delta coulomb counter\n");
1098 goto disable_clk;
1099 }
1100
1101 ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTH,
1102 SC27XX_FGU_CLBCNT_MASK,
1103 delta_clbcnt >> SC27XX_FGU_CLBCNT_SHIFT);
1104 if (ret) {
1105 dev_err(data->dev, "failed to set high delta coulomb counter\n");
1106 goto disable_clk;
1107 }
1108
1109 /*
1110 * Get the boot battery capacity when system powers on, which is used to
1111 * initialize the coulomb counter. After that, we can read the coulomb
1112 * counter to measure the battery capacity.
1113 */
1114 ret = sc27xx_fgu_get_boot_capacity(data, &data->init_cap);
1115 if (ret) {
1116 dev_err(data->dev, "failed to get boot capacity\n");
1117 goto disable_clk;
1118 }
1119
1120 /*
1121 * Convert battery capacity to the corresponding initial coulomb counter
1122 * and set into coulomb counter registers.
1123 */
1124 data->init_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, data->init_cap);
1125 ret = sc27xx_fgu_set_clbcnt(data, data->init_clbcnt);
1126 if (ret) {
1127 dev_err(data->dev, "failed to initialize coulomb counter\n");
1128 goto disable_clk;
1129 }
1130
1131 return 0;
1132
1133 disable_clk:
1134 regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0);
1135 disable_fgu:
1136 regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0);
1137
1138 return ret;
1139 }
1140
sc27xx_fgu_probe(struct platform_device * pdev)1141 static int sc27xx_fgu_probe(struct platform_device *pdev)
1142 {
1143 struct device *dev = &pdev->dev;
1144 struct device_node *np = dev->of_node;
1145 struct power_supply_config fgu_cfg = { };
1146 struct sc27xx_fgu_data *data;
1147 int ret, irq;
1148
1149 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
1150 if (!data)
1151 return -ENOMEM;
1152
1153 data->regmap = dev_get_regmap(dev->parent, NULL);
1154 if (!data->regmap) {
1155 dev_err(dev, "failed to get regmap\n");
1156 return -ENODEV;
1157 }
1158
1159 ret = device_property_read_u32(dev, "reg", &data->base);
1160 if (ret) {
1161 dev_err(dev, "failed to get fgu address\n");
1162 return ret;
1163 }
1164
1165 ret = device_property_read_u32(&pdev->dev,
1166 "sprd,calib-resistance-micro-ohms",
1167 &data->calib_resist);
1168 if (ret) {
1169 dev_err(&pdev->dev,
1170 "failed to get fgu calibration resistance\n");
1171 return ret;
1172 }
1173
1174 data->channel = devm_iio_channel_get(dev, "bat-temp");
1175 if (IS_ERR(data->channel)) {
1176 dev_err(dev, "failed to get IIO channel\n");
1177 return PTR_ERR(data->channel);
1178 }
1179
1180 data->charge_chan = devm_iio_channel_get(dev, "charge-vol");
1181 if (IS_ERR(data->charge_chan)) {
1182 dev_err(dev, "failed to get charge IIO channel\n");
1183 return PTR_ERR(data->charge_chan);
1184 }
1185
1186 data->gpiod = devm_gpiod_get(dev, "battery-detect", GPIOD_IN);
1187 if (IS_ERR(data->gpiod)) {
1188 data->gpiod = devm_gpiod_get(dev, "bat-detect", GPIOD_IN);
1189 if (IS_ERR(data->gpiod)) {
1190 dev_err(dev, "failed to get battery detection GPIO\n");
1191 return PTR_ERR(data->gpiod);
1192 }
1193 dev_warn(dev, "bat-detect is deprecated, please use battery-detect\n");
1194 }
1195
1196 ret = gpiod_get_value_cansleep(data->gpiod);
1197 if (ret < 0) {
1198 dev_err(dev, "failed to get gpio state\n");
1199 return ret;
1200 }
1201
1202 data->bat_present = !!ret;
1203 mutex_init(&data->lock);
1204 data->dev = dev;
1205 platform_set_drvdata(pdev, data);
1206
1207 fgu_cfg.drv_data = data;
1208 fgu_cfg.of_node = np;
1209 data->battery = devm_power_supply_register(dev, &sc27xx_fgu_desc,
1210 &fgu_cfg);
1211 if (IS_ERR(data->battery)) {
1212 dev_err(dev, "failed to register power supply\n");
1213 return PTR_ERR(data->battery);
1214 }
1215
1216 ret = sc27xx_fgu_hw_init(data);
1217 if (ret) {
1218 dev_err(dev, "failed to initialize fgu hardware\n");
1219 return ret;
1220 }
1221
1222 ret = devm_add_action_or_reset(dev, sc27xx_fgu_disable, data);
1223 if (ret) {
1224 dev_err(dev, "failed to add fgu disable action\n");
1225 return ret;
1226 }
1227
1228 irq = platform_get_irq(pdev, 0);
1229 if (irq < 0)
1230 return irq;
1231
1232 ret = devm_request_threaded_irq(data->dev, irq, NULL,
1233 sc27xx_fgu_interrupt,
1234 IRQF_NO_SUSPEND | IRQF_ONESHOT,
1235 pdev->name, data);
1236 if (ret) {
1237 dev_err(data->dev, "failed to request fgu IRQ\n");
1238 return ret;
1239 }
1240
1241 irq = gpiod_to_irq(data->gpiod);
1242 if (irq < 0) {
1243 dev_err(dev, "failed to translate GPIO to IRQ\n");
1244 return irq;
1245 }
1246
1247 ret = devm_request_threaded_irq(dev, irq, NULL,
1248 sc27xx_fgu_bat_detection,
1249 IRQF_ONESHOT | IRQF_TRIGGER_RISING |
1250 IRQF_TRIGGER_FALLING,
1251 pdev->name, data);
1252 if (ret) {
1253 dev_err(dev, "failed to request IRQ\n");
1254 return ret;
1255 }
1256
1257 return 0;
1258 }
1259
1260 #ifdef CONFIG_PM_SLEEP
sc27xx_fgu_resume(struct device * dev)1261 static int sc27xx_fgu_resume(struct device *dev)
1262 {
1263 struct sc27xx_fgu_data *data = dev_get_drvdata(dev);
1264 int ret;
1265
1266 ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
1267 SC27XX_FGU_LOW_OVERLOAD_INT |
1268 SC27XX_FGU_CLBCNT_DELTA_INT, 0);
1269 if (ret) {
1270 dev_err(data->dev, "failed to disable fgu interrupts\n");
1271 return ret;
1272 }
1273
1274 return 0;
1275 }
1276
sc27xx_fgu_suspend(struct device * dev)1277 static int sc27xx_fgu_suspend(struct device *dev)
1278 {
1279 struct sc27xx_fgu_data *data = dev_get_drvdata(dev);
1280 int ret, status, ocv;
1281
1282 ret = sc27xx_fgu_get_status(data, &status);
1283 if (ret)
1284 return ret;
1285
1286 /*
1287 * If we are charging, then no need to enable the FGU interrupts to
1288 * adjust the battery capacity.
1289 */
1290 if (status != POWER_SUPPLY_STATUS_NOT_CHARGING &&
1291 status != POWER_SUPPLY_STATUS_DISCHARGING)
1292 return 0;
1293
1294 ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
1295 SC27XX_FGU_LOW_OVERLOAD_INT,
1296 SC27XX_FGU_LOW_OVERLOAD_INT);
1297 if (ret) {
1298 dev_err(data->dev, "failed to enable low voltage interrupt\n");
1299 return ret;
1300 }
1301
1302 ret = sc27xx_fgu_get_vbat_ocv(data, &ocv);
1303 if (ret)
1304 goto disable_int;
1305
1306 /*
1307 * If current OCV is less than the minimum voltage, we should enable the
1308 * coulomb counter threshold interrupt to notify events to adjust the
1309 * battery capacity.
1310 */
1311 if (ocv < data->min_volt) {
1312 ret = regmap_update_bits(data->regmap,
1313 data->base + SC27XX_FGU_INT_EN,
1314 SC27XX_FGU_CLBCNT_DELTA_INT,
1315 SC27XX_FGU_CLBCNT_DELTA_INT);
1316 if (ret) {
1317 dev_err(data->dev,
1318 "failed to enable coulomb threshold int\n");
1319 goto disable_int;
1320 }
1321 }
1322
1323 return 0;
1324
1325 disable_int:
1326 regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
1327 SC27XX_FGU_LOW_OVERLOAD_INT, 0);
1328 return ret;
1329 }
1330 #endif
1331
1332 static const struct dev_pm_ops sc27xx_fgu_pm_ops = {
1333 SET_SYSTEM_SLEEP_PM_OPS(sc27xx_fgu_suspend, sc27xx_fgu_resume)
1334 };
1335
1336 static const struct of_device_id sc27xx_fgu_of_match[] = {
1337 { .compatible = "sprd,sc2731-fgu", },
1338 { }
1339 };
1340 MODULE_DEVICE_TABLE(of, sc27xx_fgu_of_match);
1341
1342 static struct platform_driver sc27xx_fgu_driver = {
1343 .probe = sc27xx_fgu_probe,
1344 .driver = {
1345 .name = "sc27xx-fgu",
1346 .of_match_table = sc27xx_fgu_of_match,
1347 .pm = &sc27xx_fgu_pm_ops,
1348 }
1349 };
1350
1351 module_platform_driver(sc27xx_fgu_driver);
1352
1353 MODULE_DESCRIPTION("Spreadtrum SC27XX PMICs Fual Gauge Unit Driver");
1354 MODULE_LICENSE("GPL v2");
1355