1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * STM32 ALSA SoC Digital Audio Interface (SAI) driver.
4 *
5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6 * Author(s): Olivier Moysan <olivier.moysan@st.com> for STMicroelectronics.
7 */
8
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_platform.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/regmap.h>
17
18 #include <sound/asoundef.h>
19 #include <sound/core.h>
20 #include <sound/dmaengine_pcm.h>
21 #include <sound/pcm_params.h>
22
23 #include "stm32_sai.h"
24
25 #define SAI_FREE_PROTOCOL 0x0
26 #define SAI_SPDIF_PROTOCOL 0x1
27
28 #define SAI_SLOT_SIZE_AUTO 0x0
29 #define SAI_SLOT_SIZE_16 0x1
30 #define SAI_SLOT_SIZE_32 0x2
31
32 #define SAI_DATASIZE_8 0x2
33 #define SAI_DATASIZE_10 0x3
34 #define SAI_DATASIZE_16 0x4
35 #define SAI_DATASIZE_20 0x5
36 #define SAI_DATASIZE_24 0x6
37 #define SAI_DATASIZE_32 0x7
38
39 #define STM_SAI_DAI_NAME_SIZE 15
40
41 #define STM_SAI_IS_PLAYBACK(ip) ((ip)->dir == SNDRV_PCM_STREAM_PLAYBACK)
42 #define STM_SAI_IS_CAPTURE(ip) ((ip)->dir == SNDRV_PCM_STREAM_CAPTURE)
43
44 #define STM_SAI_A_ID 0x0
45 #define STM_SAI_B_ID 0x1
46
47 #define STM_SAI_IS_SUB_A(x) ((x)->id == STM_SAI_A_ID)
48
49 #define SAI_SYNC_NONE 0x0
50 #define SAI_SYNC_INTERNAL 0x1
51 #define SAI_SYNC_EXTERNAL 0x2
52
53 #define STM_SAI_PROTOCOL_IS_SPDIF(ip) ((ip)->spdif)
54 #define STM_SAI_HAS_SPDIF(x) ((x)->pdata->conf.has_spdif_pdm)
55 #define STM_SAI_HAS_PDM(x) ((x)->pdata->conf.has_spdif_pdm)
56 #define STM_SAI_HAS_EXT_SYNC(x) (!STM_SAI_IS_F4(sai->pdata))
57
58 #define SAI_IEC60958_BLOCK_FRAMES 192
59 #define SAI_IEC60958_STATUS_BYTES 24
60
61 #define SAI_MCLK_NAME_LEN 32
62 #define SAI_RATE_11K 11025
63
64 /**
65 * struct stm32_sai_sub_data - private data of SAI sub block (block A or B)
66 * @pdev: device data pointer
67 * @regmap: SAI register map pointer
68 * @regmap_config: SAI sub block register map configuration pointer
69 * @dma_params: dma configuration data for rx or tx channel
70 * @cpu_dai_drv: DAI driver data pointer
71 * @cpu_dai: DAI runtime data pointer
72 * @substream: PCM substream data pointer
73 * @pdata: SAI block parent data pointer
74 * @np_sync_provider: synchronization provider node
75 * @sai_ck: kernel clock feeding the SAI clock generator
76 * @sai_mclk: master clock from SAI mclk provider
77 * @phys_addr: SAI registers physical base address
78 * @mclk_rate: SAI block master clock frequency (Hz). set at init
79 * @id: SAI sub block id corresponding to sub-block A or B
80 * @dir: SAI block direction (playback or capture). set at init
81 * @master: SAI block mode flag. (true=master, false=slave) set at init
82 * @spdif: SAI S/PDIF iec60958 mode flag. set at init
83 * @fmt: SAI block format. relevant only for custom protocols. set at init
84 * @sync: SAI block synchronization mode. (none, internal or external)
85 * @synco: SAI block ext sync source (provider setting). (none, sub-block A/B)
86 * @synci: SAI block ext sync source (client setting). (SAI sync provider index)
87 * @fs_length: frame synchronization length. depends on protocol settings
88 * @slots: rx or tx slot number
89 * @slot_width: rx or tx slot width in bits
90 * @slot_mask: rx or tx active slots mask. set at init or at runtime
91 * @data_size: PCM data width. corresponds to PCM substream width.
92 * @spdif_frm_cnt: S/PDIF playback frame counter
93 * @iec958: iec958 data
94 * @ctrl_lock: control lock
95 * @irq_lock: prevent race condition with IRQ
96 */
97 struct stm32_sai_sub_data {
98 struct platform_device *pdev;
99 struct regmap *regmap;
100 const struct regmap_config *regmap_config;
101 struct snd_dmaengine_dai_dma_data dma_params;
102 struct snd_soc_dai_driver cpu_dai_drv;
103 struct snd_soc_dai *cpu_dai;
104 struct snd_pcm_substream *substream;
105 struct stm32_sai_data *pdata;
106 struct device_node *np_sync_provider;
107 struct clk *sai_ck;
108 struct clk *sai_mclk;
109 dma_addr_t phys_addr;
110 unsigned int mclk_rate;
111 unsigned int id;
112 int dir;
113 bool master;
114 bool spdif;
115 int fmt;
116 int sync;
117 int synco;
118 int synci;
119 int fs_length;
120 int slots;
121 int slot_width;
122 int slot_mask;
123 int data_size;
124 unsigned int spdif_frm_cnt;
125 struct snd_aes_iec958 iec958;
126 struct mutex ctrl_lock; /* protect resources accessed by controls */
127 spinlock_t irq_lock; /* used to prevent race condition with IRQ */
128 };
129
130 enum stm32_sai_fifo_th {
131 STM_SAI_FIFO_TH_EMPTY,
132 STM_SAI_FIFO_TH_QUARTER,
133 STM_SAI_FIFO_TH_HALF,
134 STM_SAI_FIFO_TH_3_QUARTER,
135 STM_SAI_FIFO_TH_FULL,
136 };
137
stm32_sai_sub_readable_reg(struct device * dev,unsigned int reg)138 static bool stm32_sai_sub_readable_reg(struct device *dev, unsigned int reg)
139 {
140 switch (reg) {
141 case STM_SAI_CR1_REGX:
142 case STM_SAI_CR2_REGX:
143 case STM_SAI_FRCR_REGX:
144 case STM_SAI_SLOTR_REGX:
145 case STM_SAI_IMR_REGX:
146 case STM_SAI_SR_REGX:
147 case STM_SAI_CLRFR_REGX:
148 case STM_SAI_DR_REGX:
149 case STM_SAI_PDMCR_REGX:
150 case STM_SAI_PDMLY_REGX:
151 return true;
152 default:
153 return false;
154 }
155 }
156
stm32_sai_sub_volatile_reg(struct device * dev,unsigned int reg)157 static bool stm32_sai_sub_volatile_reg(struct device *dev, unsigned int reg)
158 {
159 switch (reg) {
160 case STM_SAI_DR_REGX:
161 case STM_SAI_SR_REGX:
162 return true;
163 default:
164 return false;
165 }
166 }
167
stm32_sai_sub_writeable_reg(struct device * dev,unsigned int reg)168 static bool stm32_sai_sub_writeable_reg(struct device *dev, unsigned int reg)
169 {
170 switch (reg) {
171 case STM_SAI_CR1_REGX:
172 case STM_SAI_CR2_REGX:
173 case STM_SAI_FRCR_REGX:
174 case STM_SAI_SLOTR_REGX:
175 case STM_SAI_IMR_REGX:
176 case STM_SAI_CLRFR_REGX:
177 case STM_SAI_DR_REGX:
178 case STM_SAI_PDMCR_REGX:
179 case STM_SAI_PDMLY_REGX:
180 return true;
181 default:
182 return false;
183 }
184 }
185
stm32_sai_sub_reg_up(struct stm32_sai_sub_data * sai,unsigned int reg,unsigned int mask,unsigned int val)186 static int stm32_sai_sub_reg_up(struct stm32_sai_sub_data *sai,
187 unsigned int reg, unsigned int mask,
188 unsigned int val)
189 {
190 int ret;
191
192 ret = clk_enable(sai->pdata->pclk);
193 if (ret < 0)
194 return ret;
195
196 ret = regmap_update_bits(sai->regmap, reg, mask, val);
197
198 clk_disable(sai->pdata->pclk);
199
200 return ret;
201 }
202
stm32_sai_sub_reg_wr(struct stm32_sai_sub_data * sai,unsigned int reg,unsigned int mask,unsigned int val)203 static int stm32_sai_sub_reg_wr(struct stm32_sai_sub_data *sai,
204 unsigned int reg, unsigned int mask,
205 unsigned int val)
206 {
207 int ret;
208
209 ret = clk_enable(sai->pdata->pclk);
210 if (ret < 0)
211 return ret;
212
213 ret = regmap_write_bits(sai->regmap, reg, mask, val);
214
215 clk_disable(sai->pdata->pclk);
216
217 return ret;
218 }
219
stm32_sai_sub_reg_rd(struct stm32_sai_sub_data * sai,unsigned int reg,unsigned int * val)220 static int stm32_sai_sub_reg_rd(struct stm32_sai_sub_data *sai,
221 unsigned int reg, unsigned int *val)
222 {
223 int ret;
224
225 ret = clk_enable(sai->pdata->pclk);
226 if (ret < 0)
227 return ret;
228
229 ret = regmap_read(sai->regmap, reg, val);
230
231 clk_disable(sai->pdata->pclk);
232
233 return ret;
234 }
235
236 static const struct regmap_config stm32_sai_sub_regmap_config_f4 = {
237 .reg_bits = 32,
238 .reg_stride = 4,
239 .val_bits = 32,
240 .max_register = STM_SAI_DR_REGX,
241 .readable_reg = stm32_sai_sub_readable_reg,
242 .volatile_reg = stm32_sai_sub_volatile_reg,
243 .writeable_reg = stm32_sai_sub_writeable_reg,
244 .fast_io = true,
245 .cache_type = REGCACHE_FLAT,
246 };
247
248 static const struct regmap_config stm32_sai_sub_regmap_config_h7 = {
249 .reg_bits = 32,
250 .reg_stride = 4,
251 .val_bits = 32,
252 .max_register = STM_SAI_PDMLY_REGX,
253 .readable_reg = stm32_sai_sub_readable_reg,
254 .volatile_reg = stm32_sai_sub_volatile_reg,
255 .writeable_reg = stm32_sai_sub_writeable_reg,
256 .fast_io = true,
257 .cache_type = REGCACHE_FLAT,
258 };
259
snd_pcm_iec958_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)260 static int snd_pcm_iec958_info(struct snd_kcontrol *kcontrol,
261 struct snd_ctl_elem_info *uinfo)
262 {
263 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
264 uinfo->count = 1;
265
266 return 0;
267 }
268
snd_pcm_iec958_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * uctl)269 static int snd_pcm_iec958_get(struct snd_kcontrol *kcontrol,
270 struct snd_ctl_elem_value *uctl)
271 {
272 struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
273
274 mutex_lock(&sai->ctrl_lock);
275 memcpy(uctl->value.iec958.status, sai->iec958.status, 4);
276 mutex_unlock(&sai->ctrl_lock);
277
278 return 0;
279 }
280
snd_pcm_iec958_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * uctl)281 static int snd_pcm_iec958_put(struct snd_kcontrol *kcontrol,
282 struct snd_ctl_elem_value *uctl)
283 {
284 struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
285
286 mutex_lock(&sai->ctrl_lock);
287 memcpy(sai->iec958.status, uctl->value.iec958.status, 4);
288 mutex_unlock(&sai->ctrl_lock);
289
290 return 0;
291 }
292
293 static const struct snd_kcontrol_new iec958_ctls = {
294 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
295 SNDRV_CTL_ELEM_ACCESS_VOLATILE),
296 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
297 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
298 .info = snd_pcm_iec958_info,
299 .get = snd_pcm_iec958_get,
300 .put = snd_pcm_iec958_put,
301 };
302
303 struct stm32_sai_mclk_data {
304 struct clk_hw hw;
305 unsigned long freq;
306 struct stm32_sai_sub_data *sai_data;
307 };
308
309 #define to_mclk_data(_hw) container_of(_hw, struct stm32_sai_mclk_data, hw)
310 #define STM32_SAI_MAX_CLKS 1
311
stm32_sai_get_clk_div(struct stm32_sai_sub_data * sai,unsigned long input_rate,unsigned long output_rate)312 static int stm32_sai_get_clk_div(struct stm32_sai_sub_data *sai,
313 unsigned long input_rate,
314 unsigned long output_rate)
315 {
316 int version = sai->pdata->conf.version;
317 int div;
318
319 div = DIV_ROUND_CLOSEST(input_rate, output_rate);
320 if (div > SAI_XCR1_MCKDIV_MAX(version) || div <= 0) {
321 dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
322 return -EINVAL;
323 }
324 dev_dbg(&sai->pdev->dev, "SAI divider %d\n", div);
325
326 if (input_rate % div)
327 dev_dbg(&sai->pdev->dev,
328 "Rate not accurate. requested (%ld), actual (%ld)\n",
329 output_rate, input_rate / div);
330
331 return div;
332 }
333
stm32_sai_set_clk_div(struct stm32_sai_sub_data * sai,unsigned int div)334 static int stm32_sai_set_clk_div(struct stm32_sai_sub_data *sai,
335 unsigned int div)
336 {
337 int version = sai->pdata->conf.version;
338 int ret, cr1, mask;
339
340 if (div > SAI_XCR1_MCKDIV_MAX(version)) {
341 dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
342 return -EINVAL;
343 }
344
345 mask = SAI_XCR1_MCKDIV_MASK(SAI_XCR1_MCKDIV_WIDTH(version));
346 cr1 = SAI_XCR1_MCKDIV_SET(div);
347 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, mask, cr1);
348 if (ret < 0)
349 dev_err(&sai->pdev->dev, "Failed to update CR1 register\n");
350
351 return ret;
352 }
353
stm32_sai_set_parent_clock(struct stm32_sai_sub_data * sai,unsigned int rate)354 static int stm32_sai_set_parent_clock(struct stm32_sai_sub_data *sai,
355 unsigned int rate)
356 {
357 struct platform_device *pdev = sai->pdev;
358 struct clk *parent_clk = sai->pdata->clk_x8k;
359 int ret;
360
361 if (!(rate % SAI_RATE_11K))
362 parent_clk = sai->pdata->clk_x11k;
363
364 ret = clk_set_parent(sai->sai_ck, parent_clk);
365 if (ret)
366 dev_err(&pdev->dev, " Error %d setting sai_ck parent clock. %s",
367 ret, ret == -EBUSY ?
368 "Active stream rates conflict\n" : "\n");
369
370 return ret;
371 }
372
stm32_sai_mclk_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * prate)373 static long stm32_sai_mclk_round_rate(struct clk_hw *hw, unsigned long rate,
374 unsigned long *prate)
375 {
376 struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
377 struct stm32_sai_sub_data *sai = mclk->sai_data;
378 int div;
379
380 div = stm32_sai_get_clk_div(sai, *prate, rate);
381 if (div <= 0)
382 return -EINVAL;
383
384 mclk->freq = *prate / div;
385
386 return mclk->freq;
387 }
388
stm32_sai_mclk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)389 static unsigned long stm32_sai_mclk_recalc_rate(struct clk_hw *hw,
390 unsigned long parent_rate)
391 {
392 struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
393
394 return mclk->freq;
395 }
396
stm32_sai_mclk_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)397 static int stm32_sai_mclk_set_rate(struct clk_hw *hw, unsigned long rate,
398 unsigned long parent_rate)
399 {
400 struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
401 struct stm32_sai_sub_data *sai = mclk->sai_data;
402 int div, ret;
403
404 div = stm32_sai_get_clk_div(sai, parent_rate, rate);
405 if (div < 0)
406 return div;
407
408 ret = stm32_sai_set_clk_div(sai, div);
409 if (ret)
410 return ret;
411
412 mclk->freq = rate;
413
414 return 0;
415 }
416
stm32_sai_mclk_enable(struct clk_hw * hw)417 static int stm32_sai_mclk_enable(struct clk_hw *hw)
418 {
419 struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
420 struct stm32_sai_sub_data *sai = mclk->sai_data;
421
422 dev_dbg(&sai->pdev->dev, "Enable master clock\n");
423
424 return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
425 SAI_XCR1_MCKEN, SAI_XCR1_MCKEN);
426 }
427
stm32_sai_mclk_disable(struct clk_hw * hw)428 static void stm32_sai_mclk_disable(struct clk_hw *hw)
429 {
430 struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
431 struct stm32_sai_sub_data *sai = mclk->sai_data;
432
433 dev_dbg(&sai->pdev->dev, "Disable master clock\n");
434
435 stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, SAI_XCR1_MCKEN, 0);
436 }
437
438 static const struct clk_ops mclk_ops = {
439 .enable = stm32_sai_mclk_enable,
440 .disable = stm32_sai_mclk_disable,
441 .recalc_rate = stm32_sai_mclk_recalc_rate,
442 .round_rate = stm32_sai_mclk_round_rate,
443 .set_rate = stm32_sai_mclk_set_rate,
444 };
445
stm32_sai_add_mclk_provider(struct stm32_sai_sub_data * sai)446 static int stm32_sai_add_mclk_provider(struct stm32_sai_sub_data *sai)
447 {
448 struct clk_hw *hw;
449 struct stm32_sai_mclk_data *mclk;
450 struct device *dev = &sai->pdev->dev;
451 const char *pname = __clk_get_name(sai->sai_ck);
452 char *mclk_name, *p, *s = (char *)pname;
453 int ret, i = 0;
454
455 mclk = devm_kzalloc(dev, sizeof(*mclk), GFP_KERNEL);
456 if (!mclk)
457 return -ENOMEM;
458
459 mclk_name = devm_kcalloc(dev, sizeof(char),
460 SAI_MCLK_NAME_LEN, GFP_KERNEL);
461 if (!mclk_name)
462 return -ENOMEM;
463
464 /*
465 * Forge mclk clock name from parent clock name and suffix.
466 * String after "_" char is stripped in parent name.
467 */
468 p = mclk_name;
469 while (*s && *s != '_' && (i < (SAI_MCLK_NAME_LEN - 7))) {
470 *p++ = *s++;
471 i++;
472 }
473 STM_SAI_IS_SUB_A(sai) ? strcat(p, "a_mclk") : strcat(p, "b_mclk");
474
475 mclk->hw.init = CLK_HW_INIT(mclk_name, pname, &mclk_ops, 0);
476 mclk->sai_data = sai;
477 hw = &mclk->hw;
478
479 dev_dbg(dev, "Register master clock %s\n", mclk_name);
480 ret = devm_clk_hw_register(&sai->pdev->dev, hw);
481 if (ret) {
482 dev_err(dev, "mclk register returned %d\n", ret);
483 return ret;
484 }
485 sai->sai_mclk = hw->clk;
486
487 /* register mclk provider */
488 return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, hw);
489 }
490
stm32_sai_isr(int irq,void * devid)491 static irqreturn_t stm32_sai_isr(int irq, void *devid)
492 {
493 struct stm32_sai_sub_data *sai = (struct stm32_sai_sub_data *)devid;
494 struct platform_device *pdev = sai->pdev;
495 unsigned int sr, imr, flags;
496 snd_pcm_state_t status = SNDRV_PCM_STATE_RUNNING;
497
498 stm32_sai_sub_reg_rd(sai, STM_SAI_IMR_REGX, &imr);
499 stm32_sai_sub_reg_rd(sai, STM_SAI_SR_REGX, &sr);
500
501 flags = sr & imr;
502 if (!flags)
503 return IRQ_NONE;
504
505 stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX, SAI_XCLRFR_MASK,
506 SAI_XCLRFR_MASK);
507
508 if (!sai->substream) {
509 dev_err(&pdev->dev, "Device stopped. Spurious IRQ 0x%x\n", sr);
510 return IRQ_NONE;
511 }
512
513 if (flags & SAI_XIMR_OVRUDRIE) {
514 dev_err(&pdev->dev, "IRQ %s\n",
515 STM_SAI_IS_PLAYBACK(sai) ? "underrun" : "overrun");
516 status = SNDRV_PCM_STATE_XRUN;
517 }
518
519 if (flags & SAI_XIMR_MUTEDETIE)
520 dev_dbg(&pdev->dev, "IRQ mute detected\n");
521
522 if (flags & SAI_XIMR_WCKCFGIE) {
523 dev_err(&pdev->dev, "IRQ wrong clock configuration\n");
524 status = SNDRV_PCM_STATE_DISCONNECTED;
525 }
526
527 if (flags & SAI_XIMR_CNRDYIE)
528 dev_err(&pdev->dev, "IRQ Codec not ready\n");
529
530 if (flags & SAI_XIMR_AFSDETIE) {
531 dev_err(&pdev->dev, "IRQ Anticipated frame synchro\n");
532 status = SNDRV_PCM_STATE_XRUN;
533 }
534
535 if (flags & SAI_XIMR_LFSDETIE) {
536 dev_err(&pdev->dev, "IRQ Late frame synchro\n");
537 status = SNDRV_PCM_STATE_XRUN;
538 }
539
540 spin_lock(&sai->irq_lock);
541 if (status != SNDRV_PCM_STATE_RUNNING && sai->substream)
542 snd_pcm_stop_xrun(sai->substream);
543 spin_unlock(&sai->irq_lock);
544
545 return IRQ_HANDLED;
546 }
547
stm32_sai_set_sysclk(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,int dir)548 static int stm32_sai_set_sysclk(struct snd_soc_dai *cpu_dai,
549 int clk_id, unsigned int freq, int dir)
550 {
551 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
552 int ret;
553
554 if (dir == SND_SOC_CLOCK_OUT && sai->sai_mclk) {
555 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
556 SAI_XCR1_NODIV,
557 freq ? 0 : SAI_XCR1_NODIV);
558 if (ret < 0)
559 return ret;
560
561 /* Assume shutdown if requested frequency is 0Hz */
562 if (!freq) {
563 /* Release mclk rate only if rate was actually set */
564 if (sai->mclk_rate) {
565 clk_rate_exclusive_put(sai->sai_mclk);
566 sai->mclk_rate = 0;
567 }
568 return 0;
569 }
570
571 /* If master clock is used, set parent clock now */
572 ret = stm32_sai_set_parent_clock(sai, freq);
573 if (ret)
574 return ret;
575
576 ret = clk_set_rate_exclusive(sai->sai_mclk, freq);
577 if (ret) {
578 dev_err(cpu_dai->dev,
579 ret == -EBUSY ?
580 "Active streams have incompatible rates" :
581 "Could not set mclk rate\n");
582 return ret;
583 }
584
585 dev_dbg(cpu_dai->dev, "SAI MCLK frequency is %uHz\n", freq);
586 sai->mclk_rate = freq;
587 }
588
589 return 0;
590 }
591
stm32_sai_set_dai_tdm_slot(struct snd_soc_dai * cpu_dai,u32 tx_mask,u32 rx_mask,int slots,int slot_width)592 static int stm32_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
593 u32 rx_mask, int slots, int slot_width)
594 {
595 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
596 int slotr, slotr_mask, slot_size;
597
598 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
599 dev_warn(cpu_dai->dev, "Slot setting relevant only for TDM\n");
600 return 0;
601 }
602
603 dev_dbg(cpu_dai->dev, "Masks tx/rx:%#x/%#x, slots:%d, width:%d\n",
604 tx_mask, rx_mask, slots, slot_width);
605
606 switch (slot_width) {
607 case 16:
608 slot_size = SAI_SLOT_SIZE_16;
609 break;
610 case 32:
611 slot_size = SAI_SLOT_SIZE_32;
612 break;
613 default:
614 slot_size = SAI_SLOT_SIZE_AUTO;
615 break;
616 }
617
618 slotr = SAI_XSLOTR_SLOTSZ_SET(slot_size) |
619 SAI_XSLOTR_NBSLOT_SET(slots - 1);
620 slotr_mask = SAI_XSLOTR_SLOTSZ_MASK | SAI_XSLOTR_NBSLOT_MASK;
621
622 /* tx/rx mask set in machine init, if slot number defined in DT */
623 if (STM_SAI_IS_PLAYBACK(sai)) {
624 sai->slot_mask = tx_mask;
625 slotr |= SAI_XSLOTR_SLOTEN_SET(tx_mask);
626 }
627
628 if (STM_SAI_IS_CAPTURE(sai)) {
629 sai->slot_mask = rx_mask;
630 slotr |= SAI_XSLOTR_SLOTEN_SET(rx_mask);
631 }
632
633 slotr_mask |= SAI_XSLOTR_SLOTEN_MASK;
634
635 stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX, slotr_mask, slotr);
636
637 sai->slot_width = slot_width;
638 sai->slots = slots;
639
640 return 0;
641 }
642
stm32_sai_set_dai_fmt(struct snd_soc_dai * cpu_dai,unsigned int fmt)643 static int stm32_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
644 {
645 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
646 int cr1, frcr = 0;
647 int cr1_mask, frcr_mask = 0;
648 int ret;
649
650 dev_dbg(cpu_dai->dev, "fmt %x\n", fmt);
651
652 /* Do not generate master by default */
653 cr1 = SAI_XCR1_NODIV;
654 cr1_mask = SAI_XCR1_NODIV;
655
656 cr1_mask |= SAI_XCR1_PRTCFG_MASK;
657 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
658 cr1 |= SAI_XCR1_PRTCFG_SET(SAI_SPDIF_PROTOCOL);
659 goto conf_update;
660 }
661
662 cr1 |= SAI_XCR1_PRTCFG_SET(SAI_FREE_PROTOCOL);
663
664 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
665 /* SCK active high for all protocols */
666 case SND_SOC_DAIFMT_I2S:
667 cr1 |= SAI_XCR1_CKSTR;
668 frcr |= SAI_XFRCR_FSOFF | SAI_XFRCR_FSDEF;
669 break;
670 /* Left justified */
671 case SND_SOC_DAIFMT_MSB:
672 frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
673 break;
674 /* Right justified */
675 case SND_SOC_DAIFMT_LSB:
676 frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
677 break;
678 case SND_SOC_DAIFMT_DSP_A:
679 frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF;
680 break;
681 case SND_SOC_DAIFMT_DSP_B:
682 frcr |= SAI_XFRCR_FSPOL;
683 break;
684 default:
685 dev_err(cpu_dai->dev, "Unsupported protocol %#x\n",
686 fmt & SND_SOC_DAIFMT_FORMAT_MASK);
687 return -EINVAL;
688 }
689
690 cr1_mask |= SAI_XCR1_CKSTR;
691 frcr_mask |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF |
692 SAI_XFRCR_FSDEF;
693
694 /* DAI clock strobing. Invert setting previously set */
695 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
696 case SND_SOC_DAIFMT_NB_NF:
697 break;
698 case SND_SOC_DAIFMT_IB_NF:
699 cr1 ^= SAI_XCR1_CKSTR;
700 break;
701 case SND_SOC_DAIFMT_NB_IF:
702 frcr ^= SAI_XFRCR_FSPOL;
703 break;
704 case SND_SOC_DAIFMT_IB_IF:
705 /* Invert fs & sck */
706 cr1 ^= SAI_XCR1_CKSTR;
707 frcr ^= SAI_XFRCR_FSPOL;
708 break;
709 default:
710 dev_err(cpu_dai->dev, "Unsupported strobing %#x\n",
711 fmt & SND_SOC_DAIFMT_INV_MASK);
712 return -EINVAL;
713 }
714 cr1_mask |= SAI_XCR1_CKSTR;
715 frcr_mask |= SAI_XFRCR_FSPOL;
716
717 stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
718
719 /* DAI clock master masks */
720 switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
721 case SND_SOC_DAIFMT_BC_FC:
722 /* codec is master */
723 cr1 |= SAI_XCR1_SLAVE;
724 sai->master = false;
725 break;
726 case SND_SOC_DAIFMT_BP_FP:
727 sai->master = true;
728 break;
729 default:
730 dev_err(cpu_dai->dev, "Unsupported mode %#x\n",
731 fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK);
732 return -EINVAL;
733 }
734
735 /* Set slave mode if sub-block is synchronized with another SAI */
736 if (sai->sync) {
737 dev_dbg(cpu_dai->dev, "Synchronized SAI configured as slave\n");
738 cr1 |= SAI_XCR1_SLAVE;
739 sai->master = false;
740 }
741
742 cr1_mask |= SAI_XCR1_SLAVE;
743
744 conf_update:
745 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
746 if (ret < 0) {
747 dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
748 return ret;
749 }
750
751 sai->fmt = fmt;
752
753 return 0;
754 }
755
stm32_sai_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)756 static int stm32_sai_startup(struct snd_pcm_substream *substream,
757 struct snd_soc_dai *cpu_dai)
758 {
759 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
760 int imr, cr2, ret;
761 unsigned long flags;
762
763 spin_lock_irqsave(&sai->irq_lock, flags);
764 sai->substream = substream;
765 spin_unlock_irqrestore(&sai->irq_lock, flags);
766
767 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
768 snd_pcm_hw_constraint_mask64(substream->runtime,
769 SNDRV_PCM_HW_PARAM_FORMAT,
770 SNDRV_PCM_FMTBIT_S32_LE);
771 snd_pcm_hw_constraint_single(substream->runtime,
772 SNDRV_PCM_HW_PARAM_CHANNELS, 2);
773 }
774
775 ret = clk_prepare_enable(sai->sai_ck);
776 if (ret < 0) {
777 dev_err(cpu_dai->dev, "Failed to enable clock: %d\n", ret);
778 return ret;
779 }
780
781 /* Enable ITs */
782 stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX,
783 SAI_XCLRFR_MASK, SAI_XCLRFR_MASK);
784
785 imr = SAI_XIMR_OVRUDRIE;
786 if (STM_SAI_IS_CAPTURE(sai)) {
787 stm32_sai_sub_reg_rd(sai, STM_SAI_CR2_REGX, &cr2);
788 if (cr2 & SAI_XCR2_MUTECNT_MASK)
789 imr |= SAI_XIMR_MUTEDETIE;
790 }
791
792 if (sai->master)
793 imr |= SAI_XIMR_WCKCFGIE;
794 else
795 imr |= SAI_XIMR_AFSDETIE | SAI_XIMR_LFSDETIE;
796
797 stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
798 SAI_XIMR_MASK, imr);
799
800 return 0;
801 }
802
stm32_sai_set_config(struct snd_soc_dai * cpu_dai,struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params)803 static int stm32_sai_set_config(struct snd_soc_dai *cpu_dai,
804 struct snd_pcm_substream *substream,
805 struct snd_pcm_hw_params *params)
806 {
807 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
808 int cr1, cr1_mask, ret;
809
810 /*
811 * DMA bursts increment is set to 4 words.
812 * SAI fifo threshold is set to half fifo, to keep enough space
813 * for DMA incoming bursts.
814 */
815 stm32_sai_sub_reg_wr(sai, STM_SAI_CR2_REGX,
816 SAI_XCR2_FFLUSH | SAI_XCR2_FTH_MASK,
817 SAI_XCR2_FFLUSH |
818 SAI_XCR2_FTH_SET(STM_SAI_FIFO_TH_HALF));
819
820 /* DS bits in CR1 not set for SPDIF (size forced to 24 bits).*/
821 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
822 sai->spdif_frm_cnt = 0;
823 return 0;
824 }
825
826 /* Mode, data format and channel config */
827 cr1_mask = SAI_XCR1_DS_MASK;
828 switch (params_format(params)) {
829 case SNDRV_PCM_FORMAT_S8:
830 cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_8);
831 break;
832 case SNDRV_PCM_FORMAT_S16_LE:
833 cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_16);
834 break;
835 case SNDRV_PCM_FORMAT_S32_LE:
836 cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_32);
837 break;
838 default:
839 dev_err(cpu_dai->dev, "Data format not supported\n");
840 return -EINVAL;
841 }
842
843 cr1_mask |= SAI_XCR1_MONO;
844 if ((sai->slots == 2) && (params_channels(params) == 1))
845 cr1 |= SAI_XCR1_MONO;
846
847 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
848 if (ret < 0) {
849 dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
850 return ret;
851 }
852
853 return 0;
854 }
855
stm32_sai_set_slots(struct snd_soc_dai * cpu_dai)856 static int stm32_sai_set_slots(struct snd_soc_dai *cpu_dai)
857 {
858 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
859 int slotr, slot_sz;
860
861 stm32_sai_sub_reg_rd(sai, STM_SAI_SLOTR_REGX, &slotr);
862
863 /*
864 * If SLOTSZ is set to auto in SLOTR, align slot width on data size
865 * By default slot width = data size, if not forced from DT
866 */
867 slot_sz = slotr & SAI_XSLOTR_SLOTSZ_MASK;
868 if (slot_sz == SAI_XSLOTR_SLOTSZ_SET(SAI_SLOT_SIZE_AUTO))
869 sai->slot_width = sai->data_size;
870
871 if (sai->slot_width < sai->data_size) {
872 dev_err(cpu_dai->dev,
873 "Data size %d larger than slot width\n",
874 sai->data_size);
875 return -EINVAL;
876 }
877
878 /* Slot number is set to 2, if not specified in DT */
879 if (!sai->slots)
880 sai->slots = 2;
881
882 /* The number of slots in the audio frame is equal to NBSLOT[3:0] + 1*/
883 stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
884 SAI_XSLOTR_NBSLOT_MASK,
885 SAI_XSLOTR_NBSLOT_SET((sai->slots - 1)));
886
887 /* Set default slots mask if not already set from DT */
888 if (!(slotr & SAI_XSLOTR_SLOTEN_MASK)) {
889 sai->slot_mask = (1 << sai->slots) - 1;
890 stm32_sai_sub_reg_up(sai,
891 STM_SAI_SLOTR_REGX, SAI_XSLOTR_SLOTEN_MASK,
892 SAI_XSLOTR_SLOTEN_SET(sai->slot_mask));
893 }
894
895 dev_dbg(cpu_dai->dev, "Slots %d, slot width %d\n",
896 sai->slots, sai->slot_width);
897
898 return 0;
899 }
900
stm32_sai_set_frame(struct snd_soc_dai * cpu_dai)901 static void stm32_sai_set_frame(struct snd_soc_dai *cpu_dai)
902 {
903 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
904 int fs_active, offset, format;
905 int frcr, frcr_mask;
906
907 format = sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
908 sai->fs_length = sai->slot_width * sai->slots;
909
910 fs_active = sai->fs_length / 2;
911 if ((format == SND_SOC_DAIFMT_DSP_A) ||
912 (format == SND_SOC_DAIFMT_DSP_B))
913 fs_active = 1;
914
915 frcr = SAI_XFRCR_FRL_SET((sai->fs_length - 1));
916 frcr |= SAI_XFRCR_FSALL_SET((fs_active - 1));
917 frcr_mask = SAI_XFRCR_FRL_MASK | SAI_XFRCR_FSALL_MASK;
918
919 dev_dbg(cpu_dai->dev, "Frame length %d, frame active %d\n",
920 sai->fs_length, fs_active);
921
922 stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
923
924 if ((sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_LSB) {
925 offset = sai->slot_width - sai->data_size;
926
927 stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
928 SAI_XSLOTR_FBOFF_MASK,
929 SAI_XSLOTR_FBOFF_SET(offset));
930 }
931 }
932
stm32_sai_init_iec958_status(struct stm32_sai_sub_data * sai)933 static void stm32_sai_init_iec958_status(struct stm32_sai_sub_data *sai)
934 {
935 unsigned char *cs = sai->iec958.status;
936
937 cs[0] = IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS_NONE;
938 cs[1] = IEC958_AES1_CON_GENERAL;
939 cs[2] = IEC958_AES2_CON_SOURCE_UNSPEC | IEC958_AES2_CON_CHANNEL_UNSPEC;
940 cs[3] = IEC958_AES3_CON_CLOCK_1000PPM | IEC958_AES3_CON_FS_NOTID;
941 }
942
stm32_sai_set_iec958_status(struct stm32_sai_sub_data * sai,struct snd_pcm_runtime * runtime)943 static void stm32_sai_set_iec958_status(struct stm32_sai_sub_data *sai,
944 struct snd_pcm_runtime *runtime)
945 {
946 if (!runtime)
947 return;
948
949 /* Force the sample rate according to runtime rate */
950 mutex_lock(&sai->ctrl_lock);
951 switch (runtime->rate) {
952 case 22050:
953 sai->iec958.status[3] = IEC958_AES3_CON_FS_22050;
954 break;
955 case 44100:
956 sai->iec958.status[3] = IEC958_AES3_CON_FS_44100;
957 break;
958 case 88200:
959 sai->iec958.status[3] = IEC958_AES3_CON_FS_88200;
960 break;
961 case 176400:
962 sai->iec958.status[3] = IEC958_AES3_CON_FS_176400;
963 break;
964 case 24000:
965 sai->iec958.status[3] = IEC958_AES3_CON_FS_24000;
966 break;
967 case 48000:
968 sai->iec958.status[3] = IEC958_AES3_CON_FS_48000;
969 break;
970 case 96000:
971 sai->iec958.status[3] = IEC958_AES3_CON_FS_96000;
972 break;
973 case 192000:
974 sai->iec958.status[3] = IEC958_AES3_CON_FS_192000;
975 break;
976 case 32000:
977 sai->iec958.status[3] = IEC958_AES3_CON_FS_32000;
978 break;
979 default:
980 sai->iec958.status[3] = IEC958_AES3_CON_FS_NOTID;
981 break;
982 }
983 mutex_unlock(&sai->ctrl_lock);
984 }
985
stm32_sai_configure_clock(struct snd_soc_dai * cpu_dai,struct snd_pcm_hw_params * params)986 static int stm32_sai_configure_clock(struct snd_soc_dai *cpu_dai,
987 struct snd_pcm_hw_params *params)
988 {
989 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
990 int div = 0, cr1 = 0;
991 int sai_clk_rate, mclk_ratio, den;
992 unsigned int rate = params_rate(params);
993 int ret;
994
995 if (!sai->sai_mclk) {
996 ret = stm32_sai_set_parent_clock(sai, rate);
997 if (ret)
998 return ret;
999 }
1000 sai_clk_rate = clk_get_rate(sai->sai_ck);
1001
1002 if (STM_SAI_IS_F4(sai->pdata)) {
1003 /* mclk on (NODIV=0)
1004 * mclk_rate = 256 * fs
1005 * MCKDIV = 0 if sai_ck < 3/2 * mclk_rate
1006 * MCKDIV = sai_ck / (2 * mclk_rate) otherwise
1007 * mclk off (NODIV=1)
1008 * MCKDIV ignored. sck = sai_ck
1009 */
1010 if (!sai->mclk_rate)
1011 return 0;
1012
1013 if (2 * sai_clk_rate >= 3 * sai->mclk_rate) {
1014 div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1015 2 * sai->mclk_rate);
1016 if (div < 0)
1017 return div;
1018 }
1019 } else {
1020 /*
1021 * TDM mode :
1022 * mclk on
1023 * MCKDIV = sai_ck / (ws x 256) (NOMCK=0. OSR=0)
1024 * MCKDIV = sai_ck / (ws x 512) (NOMCK=0. OSR=1)
1025 * mclk off
1026 * MCKDIV = sai_ck / (frl x ws) (NOMCK=1)
1027 * Note: NOMCK/NODIV correspond to same bit.
1028 */
1029 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1030 div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1031 rate * 128);
1032 if (div < 0)
1033 return div;
1034 } else {
1035 if (sai->mclk_rate) {
1036 mclk_ratio = sai->mclk_rate / rate;
1037 if (mclk_ratio == 512) {
1038 cr1 = SAI_XCR1_OSR;
1039 } else if (mclk_ratio != 256) {
1040 dev_err(cpu_dai->dev,
1041 "Wrong mclk ratio %d\n",
1042 mclk_ratio);
1043 return -EINVAL;
1044 }
1045
1046 stm32_sai_sub_reg_up(sai,
1047 STM_SAI_CR1_REGX,
1048 SAI_XCR1_OSR, cr1);
1049
1050 div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1051 sai->mclk_rate);
1052 if (div < 0)
1053 return div;
1054 } else {
1055 /* mclk-fs not set, master clock not active */
1056 den = sai->fs_length * params_rate(params);
1057 div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1058 den);
1059 if (div < 0)
1060 return div;
1061 }
1062 }
1063 }
1064
1065 return stm32_sai_set_clk_div(sai, div);
1066 }
1067
stm32_sai_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * cpu_dai)1068 static int stm32_sai_hw_params(struct snd_pcm_substream *substream,
1069 struct snd_pcm_hw_params *params,
1070 struct snd_soc_dai *cpu_dai)
1071 {
1072 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1073 int ret;
1074
1075 sai->data_size = params_width(params);
1076
1077 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1078 /* Rate not already set in runtime structure */
1079 substream->runtime->rate = params_rate(params);
1080 stm32_sai_set_iec958_status(sai, substream->runtime);
1081 } else {
1082 ret = stm32_sai_set_slots(cpu_dai);
1083 if (ret < 0)
1084 return ret;
1085 stm32_sai_set_frame(cpu_dai);
1086 }
1087
1088 ret = stm32_sai_set_config(cpu_dai, substream, params);
1089 if (ret)
1090 return ret;
1091
1092 if (sai->master)
1093 ret = stm32_sai_configure_clock(cpu_dai, params);
1094
1095 return ret;
1096 }
1097
stm32_sai_trigger(struct snd_pcm_substream * substream,int cmd,struct snd_soc_dai * cpu_dai)1098 static int stm32_sai_trigger(struct snd_pcm_substream *substream, int cmd,
1099 struct snd_soc_dai *cpu_dai)
1100 {
1101 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1102 int ret;
1103
1104 switch (cmd) {
1105 case SNDRV_PCM_TRIGGER_START:
1106 case SNDRV_PCM_TRIGGER_RESUME:
1107 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1108 dev_dbg(cpu_dai->dev, "Enable DMA and SAI\n");
1109
1110 stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1111 SAI_XCR1_DMAEN, SAI_XCR1_DMAEN);
1112
1113 /* Enable SAI */
1114 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1115 SAI_XCR1_SAIEN, SAI_XCR1_SAIEN);
1116 if (ret < 0)
1117 dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1118 break;
1119 case SNDRV_PCM_TRIGGER_SUSPEND:
1120 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1121 case SNDRV_PCM_TRIGGER_STOP:
1122 dev_dbg(cpu_dai->dev, "Disable DMA and SAI\n");
1123
1124 stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
1125 SAI_XIMR_MASK, 0);
1126
1127 stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1128 SAI_XCR1_SAIEN,
1129 (unsigned int)~SAI_XCR1_SAIEN);
1130
1131 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1132 SAI_XCR1_DMAEN,
1133 (unsigned int)~SAI_XCR1_DMAEN);
1134 if (ret < 0)
1135 dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1136
1137 if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1138 sai->spdif_frm_cnt = 0;
1139 break;
1140 default:
1141 return -EINVAL;
1142 }
1143
1144 return ret;
1145 }
1146
stm32_sai_shutdown(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)1147 static void stm32_sai_shutdown(struct snd_pcm_substream *substream,
1148 struct snd_soc_dai *cpu_dai)
1149 {
1150 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1151 unsigned long flags;
1152
1153 stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX, SAI_XIMR_MASK, 0);
1154
1155 clk_disable_unprepare(sai->sai_ck);
1156
1157 spin_lock_irqsave(&sai->irq_lock, flags);
1158 sai->substream = NULL;
1159 spin_unlock_irqrestore(&sai->irq_lock, flags);
1160 }
1161
stm32_sai_pcm_new(struct snd_soc_pcm_runtime * rtd,struct snd_soc_dai * cpu_dai)1162 static int stm32_sai_pcm_new(struct snd_soc_pcm_runtime *rtd,
1163 struct snd_soc_dai *cpu_dai)
1164 {
1165 struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1166 struct snd_kcontrol_new knew = iec958_ctls;
1167
1168 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1169 dev_dbg(&sai->pdev->dev, "%s: register iec controls", __func__);
1170 knew.device = rtd->pcm->device;
1171 return snd_ctl_add(rtd->pcm->card, snd_ctl_new1(&knew, sai));
1172 }
1173
1174 return 0;
1175 }
1176
stm32_sai_dai_probe(struct snd_soc_dai * cpu_dai)1177 static int stm32_sai_dai_probe(struct snd_soc_dai *cpu_dai)
1178 {
1179 struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1180 int cr1 = 0, cr1_mask, ret;
1181
1182 sai->cpu_dai = cpu_dai;
1183
1184 sai->dma_params.addr = (dma_addr_t)(sai->phys_addr + STM_SAI_DR_REGX);
1185 /*
1186 * DMA supports 4, 8 or 16 burst sizes. Burst size 4 is the best choice,
1187 * as it allows bytes, half-word and words transfers. (See DMA fifos
1188 * constraints).
1189 */
1190 sai->dma_params.maxburst = 4;
1191 if (sai->pdata->conf.fifo_size < 8)
1192 sai->dma_params.maxburst = 1;
1193 /* Buswidth will be set by framework at runtime */
1194 sai->dma_params.addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1195
1196 if (STM_SAI_IS_PLAYBACK(sai))
1197 snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params, NULL);
1198 else
1199 snd_soc_dai_init_dma_data(cpu_dai, NULL, &sai->dma_params);
1200
1201 /* Next settings are not relevant for spdif mode */
1202 if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1203 return 0;
1204
1205 cr1_mask = SAI_XCR1_RX_TX;
1206 if (STM_SAI_IS_CAPTURE(sai))
1207 cr1 |= SAI_XCR1_RX_TX;
1208
1209 /* Configure synchronization */
1210 if (sai->sync == SAI_SYNC_EXTERNAL) {
1211 /* Configure synchro client and provider */
1212 ret = sai->pdata->set_sync(sai->pdata, sai->np_sync_provider,
1213 sai->synco, sai->synci);
1214 if (ret)
1215 return ret;
1216 }
1217
1218 cr1_mask |= SAI_XCR1_SYNCEN_MASK;
1219 cr1 |= SAI_XCR1_SYNCEN_SET(sai->sync);
1220
1221 return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
1222 }
1223
1224 static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops = {
1225 .probe = stm32_sai_dai_probe,
1226 .set_sysclk = stm32_sai_set_sysclk,
1227 .set_fmt = stm32_sai_set_dai_fmt,
1228 .set_tdm_slot = stm32_sai_set_dai_tdm_slot,
1229 .startup = stm32_sai_startup,
1230 .hw_params = stm32_sai_hw_params,
1231 .trigger = stm32_sai_trigger,
1232 .shutdown = stm32_sai_shutdown,
1233 .pcm_new = stm32_sai_pcm_new,
1234 };
1235
1236 static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops2 = {
1237 .probe = stm32_sai_dai_probe,
1238 .set_sysclk = stm32_sai_set_sysclk,
1239 .set_fmt = stm32_sai_set_dai_fmt,
1240 .set_tdm_slot = stm32_sai_set_dai_tdm_slot,
1241 .startup = stm32_sai_startup,
1242 .hw_params = stm32_sai_hw_params,
1243 .trigger = stm32_sai_trigger,
1244 .shutdown = stm32_sai_shutdown,
1245 };
1246
stm32_sai_pcm_process_spdif(struct snd_pcm_substream * substream,int channel,unsigned long hwoff,unsigned long bytes)1247 static int stm32_sai_pcm_process_spdif(struct snd_pcm_substream *substream,
1248 int channel, unsigned long hwoff,
1249 unsigned long bytes)
1250 {
1251 struct snd_pcm_runtime *runtime = substream->runtime;
1252 struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
1253 struct snd_soc_dai *cpu_dai = snd_soc_rtd_to_cpu(rtd, 0);
1254 struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1255 int *ptr = (int *)(runtime->dma_area + hwoff +
1256 channel * (runtime->dma_bytes / runtime->channels));
1257 ssize_t cnt = bytes_to_samples(runtime, bytes);
1258 unsigned int frm_cnt = sai->spdif_frm_cnt;
1259 unsigned int byte;
1260 unsigned int mask;
1261
1262 do {
1263 *ptr = ((*ptr >> 8) & 0x00ffffff);
1264
1265 /* Set channel status bit */
1266 byte = frm_cnt >> 3;
1267 mask = 1 << (frm_cnt - (byte << 3));
1268 if (sai->iec958.status[byte] & mask)
1269 *ptr |= 0x04000000;
1270 ptr++;
1271
1272 if (!(cnt % 2))
1273 frm_cnt++;
1274
1275 if (frm_cnt == SAI_IEC60958_BLOCK_FRAMES)
1276 frm_cnt = 0;
1277 } while (--cnt);
1278 sai->spdif_frm_cnt = frm_cnt;
1279
1280 return 0;
1281 }
1282
1283 /* No support of mmap in S/PDIF mode */
1284 static const struct snd_pcm_hardware stm32_sai_pcm_hw_spdif = {
1285 .info = SNDRV_PCM_INFO_INTERLEAVED,
1286 .buffer_bytes_max = 8 * PAGE_SIZE,
1287 .period_bytes_min = 1024,
1288 .period_bytes_max = PAGE_SIZE,
1289 .periods_min = 2,
1290 .periods_max = 8,
1291 };
1292
1293 static const struct snd_pcm_hardware stm32_sai_pcm_hw = {
1294 .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP,
1295 .buffer_bytes_max = 8 * PAGE_SIZE,
1296 .period_bytes_min = 1024, /* 5ms at 48kHz */
1297 .period_bytes_max = PAGE_SIZE,
1298 .periods_min = 2,
1299 .periods_max = 8,
1300 };
1301
1302 static struct snd_soc_dai_driver stm32_sai_playback_dai = {
1303 .id = 1, /* avoid call to fmt_single_name() */
1304 .playback = {
1305 .channels_min = 1,
1306 .channels_max = 16,
1307 .rate_min = 8000,
1308 .rate_max = 192000,
1309 .rates = SNDRV_PCM_RATE_CONTINUOUS,
1310 /* DMA does not support 24 bits transfers */
1311 .formats =
1312 SNDRV_PCM_FMTBIT_S8 |
1313 SNDRV_PCM_FMTBIT_S16_LE |
1314 SNDRV_PCM_FMTBIT_S32_LE,
1315 },
1316 .ops = &stm32_sai_pcm_dai_ops,
1317 };
1318
1319 static struct snd_soc_dai_driver stm32_sai_capture_dai = {
1320 .id = 1, /* avoid call to fmt_single_name() */
1321 .capture = {
1322 .channels_min = 1,
1323 .channels_max = 16,
1324 .rate_min = 8000,
1325 .rate_max = 192000,
1326 .rates = SNDRV_PCM_RATE_CONTINUOUS,
1327 /* DMA does not support 24 bits transfers */
1328 .formats =
1329 SNDRV_PCM_FMTBIT_S8 |
1330 SNDRV_PCM_FMTBIT_S16_LE |
1331 SNDRV_PCM_FMTBIT_S32_LE,
1332 },
1333 .ops = &stm32_sai_pcm_dai_ops2,
1334 };
1335
1336 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config = {
1337 .pcm_hardware = &stm32_sai_pcm_hw,
1338 .prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1339 };
1340
1341 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config_spdif = {
1342 .pcm_hardware = &stm32_sai_pcm_hw_spdif,
1343 .prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1344 .process = stm32_sai_pcm_process_spdif,
1345 };
1346
1347 static const struct snd_soc_component_driver stm32_component = {
1348 .name = "stm32-sai",
1349 .legacy_dai_naming = 1,
1350 };
1351
1352 static const struct of_device_id stm32_sai_sub_ids[] = {
1353 { .compatible = "st,stm32-sai-sub-a",
1354 .data = (void *)STM_SAI_A_ID},
1355 { .compatible = "st,stm32-sai-sub-b",
1356 .data = (void *)STM_SAI_B_ID},
1357 {}
1358 };
1359 MODULE_DEVICE_TABLE(of, stm32_sai_sub_ids);
1360
stm32_sai_sub_parse_of(struct platform_device * pdev,struct stm32_sai_sub_data * sai)1361 static int stm32_sai_sub_parse_of(struct platform_device *pdev,
1362 struct stm32_sai_sub_data *sai)
1363 {
1364 struct device_node *np = pdev->dev.of_node;
1365 struct resource *res;
1366 void __iomem *base;
1367 struct of_phandle_args args;
1368 int ret;
1369
1370 if (!np)
1371 return -ENODEV;
1372
1373 base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1374 if (IS_ERR(base))
1375 return PTR_ERR(base);
1376
1377 sai->phys_addr = res->start;
1378
1379 sai->regmap_config = &stm32_sai_sub_regmap_config_f4;
1380 /* Note: PDM registers not available for sub-block B */
1381 if (STM_SAI_HAS_PDM(sai) && STM_SAI_IS_SUB_A(sai))
1382 sai->regmap_config = &stm32_sai_sub_regmap_config_h7;
1383
1384 /*
1385 * Do not manage peripheral clock through regmap framework as this
1386 * can lead to circular locking issue with sai master clock provider.
1387 * Manage peripheral clock directly in driver instead.
1388 */
1389 sai->regmap = devm_regmap_init_mmio(&pdev->dev, base,
1390 sai->regmap_config);
1391 if (IS_ERR(sai->regmap))
1392 return dev_err_probe(&pdev->dev, PTR_ERR(sai->regmap),
1393 "Regmap init error\n");
1394
1395 /* Get direction property */
1396 if (of_property_match_string(np, "dma-names", "tx") >= 0) {
1397 sai->dir = SNDRV_PCM_STREAM_PLAYBACK;
1398 } else if (of_property_match_string(np, "dma-names", "rx") >= 0) {
1399 sai->dir = SNDRV_PCM_STREAM_CAPTURE;
1400 } else {
1401 dev_err(&pdev->dev, "Unsupported direction\n");
1402 return -EINVAL;
1403 }
1404
1405 /* Get spdif iec60958 property */
1406 sai->spdif = false;
1407 if (of_property_present(np, "st,iec60958")) {
1408 if (!STM_SAI_HAS_SPDIF(sai) ||
1409 sai->dir == SNDRV_PCM_STREAM_CAPTURE) {
1410 dev_err(&pdev->dev, "S/PDIF IEC60958 not supported\n");
1411 return -EINVAL;
1412 }
1413 stm32_sai_init_iec958_status(sai);
1414 sai->spdif = true;
1415 sai->master = true;
1416 }
1417
1418 /* Get synchronization property */
1419 args.np = NULL;
1420 ret = of_parse_phandle_with_fixed_args(np, "st,sync", 1, 0, &args);
1421 if (ret < 0 && ret != -ENOENT) {
1422 dev_err(&pdev->dev, "Failed to get st,sync property\n");
1423 return ret;
1424 }
1425
1426 sai->sync = SAI_SYNC_NONE;
1427 if (args.np) {
1428 if (args.np == np) {
1429 dev_err(&pdev->dev, "%pOFn sync own reference\n", np);
1430 of_node_put(args.np);
1431 return -EINVAL;
1432 }
1433
1434 sai->np_sync_provider = of_get_parent(args.np);
1435 if (!sai->np_sync_provider) {
1436 dev_err(&pdev->dev, "%pOFn parent node not found\n",
1437 np);
1438 of_node_put(args.np);
1439 return -ENODEV;
1440 }
1441
1442 sai->sync = SAI_SYNC_INTERNAL;
1443 if (sai->np_sync_provider != sai->pdata->pdev->dev.of_node) {
1444 if (!STM_SAI_HAS_EXT_SYNC(sai)) {
1445 dev_err(&pdev->dev,
1446 "External synchro not supported\n");
1447 of_node_put(args.np);
1448 return -EINVAL;
1449 }
1450 sai->sync = SAI_SYNC_EXTERNAL;
1451
1452 sai->synci = args.args[0];
1453 if (sai->synci < 1 ||
1454 (sai->synci > (SAI_GCR_SYNCIN_MAX + 1))) {
1455 dev_err(&pdev->dev, "Wrong SAI index\n");
1456 of_node_put(args.np);
1457 return -EINVAL;
1458 }
1459
1460 if (of_property_match_string(args.np, "compatible",
1461 "st,stm32-sai-sub-a") >= 0)
1462 sai->synco = STM_SAI_SYNC_OUT_A;
1463
1464 if (of_property_match_string(args.np, "compatible",
1465 "st,stm32-sai-sub-b") >= 0)
1466 sai->synco = STM_SAI_SYNC_OUT_B;
1467
1468 if (!sai->synco) {
1469 dev_err(&pdev->dev, "Unknown SAI sub-block\n");
1470 of_node_put(args.np);
1471 return -EINVAL;
1472 }
1473 }
1474
1475 dev_dbg(&pdev->dev, "%s synchronized with %s\n",
1476 pdev->name, args.np->full_name);
1477 }
1478
1479 of_node_put(args.np);
1480 sai->sai_ck = devm_clk_get(&pdev->dev, "sai_ck");
1481 if (IS_ERR(sai->sai_ck))
1482 return dev_err_probe(&pdev->dev, PTR_ERR(sai->sai_ck),
1483 "Missing kernel clock sai_ck\n");
1484
1485 ret = clk_prepare(sai->pdata->pclk);
1486 if (ret < 0)
1487 return ret;
1488
1489 if (STM_SAI_IS_F4(sai->pdata))
1490 return 0;
1491
1492 /* Register mclk provider if requested */
1493 if (of_property_present(np, "#clock-cells")) {
1494 ret = stm32_sai_add_mclk_provider(sai);
1495 if (ret < 0)
1496 return ret;
1497 } else {
1498 sai->sai_mclk = devm_clk_get_optional(&pdev->dev, "MCLK");
1499 if (IS_ERR(sai->sai_mclk))
1500 return PTR_ERR(sai->sai_mclk);
1501 }
1502
1503 return 0;
1504 }
1505
stm32_sai_sub_probe(struct platform_device * pdev)1506 static int stm32_sai_sub_probe(struct platform_device *pdev)
1507 {
1508 struct stm32_sai_sub_data *sai;
1509 const struct snd_dmaengine_pcm_config *conf = &stm32_sai_pcm_config;
1510 int ret;
1511
1512 sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
1513 if (!sai)
1514 return -ENOMEM;
1515
1516 sai->id = (uintptr_t)device_get_match_data(&pdev->dev);
1517
1518 sai->pdev = pdev;
1519 mutex_init(&sai->ctrl_lock);
1520 spin_lock_init(&sai->irq_lock);
1521 platform_set_drvdata(pdev, sai);
1522
1523 sai->pdata = dev_get_drvdata(pdev->dev.parent);
1524 if (!sai->pdata) {
1525 dev_err(&pdev->dev, "Parent device data not available\n");
1526 return -EINVAL;
1527 }
1528
1529 ret = stm32_sai_sub_parse_of(pdev, sai);
1530 if (ret)
1531 return ret;
1532
1533 if (STM_SAI_IS_PLAYBACK(sai))
1534 sai->cpu_dai_drv = stm32_sai_playback_dai;
1535 else
1536 sai->cpu_dai_drv = stm32_sai_capture_dai;
1537 sai->cpu_dai_drv.name = dev_name(&pdev->dev);
1538
1539 ret = devm_request_irq(&pdev->dev, sai->pdata->irq, stm32_sai_isr,
1540 IRQF_SHARED, dev_name(&pdev->dev), sai);
1541 if (ret) {
1542 dev_err(&pdev->dev, "IRQ request returned %d\n", ret);
1543 return ret;
1544 }
1545
1546 if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1547 conf = &stm32_sai_pcm_config_spdif;
1548
1549 ret = snd_dmaengine_pcm_register(&pdev->dev, conf, 0);
1550 if (ret)
1551 return dev_err_probe(&pdev->dev, ret, "Could not register pcm dma\n");
1552
1553 ret = snd_soc_register_component(&pdev->dev, &stm32_component,
1554 &sai->cpu_dai_drv, 1);
1555 if (ret) {
1556 snd_dmaengine_pcm_unregister(&pdev->dev);
1557 return ret;
1558 }
1559
1560 pm_runtime_enable(&pdev->dev);
1561
1562 return 0;
1563 }
1564
stm32_sai_sub_remove(struct platform_device * pdev)1565 static void stm32_sai_sub_remove(struct platform_device *pdev)
1566 {
1567 struct stm32_sai_sub_data *sai = dev_get_drvdata(&pdev->dev);
1568
1569 clk_unprepare(sai->pdata->pclk);
1570 snd_dmaengine_pcm_unregister(&pdev->dev);
1571 snd_soc_unregister_component(&pdev->dev);
1572 pm_runtime_disable(&pdev->dev);
1573 }
1574
1575 #ifdef CONFIG_PM_SLEEP
stm32_sai_sub_suspend(struct device * dev)1576 static int stm32_sai_sub_suspend(struct device *dev)
1577 {
1578 struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1579 int ret;
1580
1581 ret = clk_enable(sai->pdata->pclk);
1582 if (ret < 0)
1583 return ret;
1584
1585 regcache_cache_only(sai->regmap, true);
1586 regcache_mark_dirty(sai->regmap);
1587
1588 clk_disable(sai->pdata->pclk);
1589
1590 return 0;
1591 }
1592
stm32_sai_sub_resume(struct device * dev)1593 static int stm32_sai_sub_resume(struct device *dev)
1594 {
1595 struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1596 int ret;
1597
1598 ret = clk_enable(sai->pdata->pclk);
1599 if (ret < 0)
1600 return ret;
1601
1602 regcache_cache_only(sai->regmap, false);
1603 ret = regcache_sync(sai->regmap);
1604
1605 clk_disable(sai->pdata->pclk);
1606
1607 return ret;
1608 }
1609 #endif /* CONFIG_PM_SLEEP */
1610
1611 static const struct dev_pm_ops stm32_sai_sub_pm_ops = {
1612 SET_SYSTEM_SLEEP_PM_OPS(stm32_sai_sub_suspend, stm32_sai_sub_resume)
1613 };
1614
1615 static struct platform_driver stm32_sai_sub_driver = {
1616 .driver = {
1617 .name = "st,stm32-sai-sub",
1618 .of_match_table = stm32_sai_sub_ids,
1619 .pm = &stm32_sai_sub_pm_ops,
1620 },
1621 .probe = stm32_sai_sub_probe,
1622 .remove = stm32_sai_sub_remove,
1623 };
1624
1625 module_platform_driver(stm32_sai_sub_driver);
1626
1627 MODULE_DESCRIPTION("STM32 Soc SAI sub-block Interface");
1628 MODULE_AUTHOR("Olivier Moysan <olivier.moysan@st.com>");
1629 MODULE_ALIAS("platform:st,stm32-sai-sub");
1630 MODULE_LICENSE("GPL v2");
1631