xref: /linux/arch/arm64/kvm/hyp/nvhe/gen-hyprel.c (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 - Google LLC
4  * Author: David Brazdil <dbrazdil@google.com>
5  *
6  * Generates relocation information used by the kernel to convert
7  * absolute addresses in hyp data from kernel VAs to hyp VAs.
8  *
9  * This is necessary because hyp code is linked into the same binary
10  * as the kernel but executes under different memory mappings.
11  * If the compiler used absolute addressing, those addresses need to
12  * be converted before they are used by hyp code.
13  *
14  * The input of this program is the relocatable ELF object containing
15  * all hyp code/data, not yet linked into vmlinux. Hyp section names
16  * should have been prefixed with `.hyp` at this point.
17  *
18  * The output (printed to stdout) is an assembly file containing
19  * an array of 32-bit integers and static relocations that instruct
20  * the linker of `vmlinux` to populate the array entries with offsets
21  * to positions in the kernel binary containing VAs used by hyp code.
22  *
23  * Note that dynamic relocations could be used for the same purpose.
24  * However, those are only generated if CONFIG_RELOCATABLE=y.
25  */
26 
27 #include <elf.h>
28 #include <endian.h>
29 #include <errno.h>
30 #include <fcntl.h>
31 #include <stdbool.h>
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <string.h>
35 #include <sys/mman.h>
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <unistd.h>
39 
40 #include <generated/autoconf.h>
41 
42 #define HYP_SECTION_PREFIX		".hyp"
43 #define HYP_RELOC_SECTION		".hyp.reloc"
44 #define HYP_SECTION_SYMBOL_PREFIX	"__hyp_section_"
45 
46 /*
47  * AArch64 relocation type constants.
48  * Included in case these are not defined in the host toolchain.
49  */
50 #ifndef R_AARCH64_ABS64
51 #define R_AARCH64_ABS64			257
52 #endif
53 #ifndef R_AARCH64_ABS32
54 #define R_AARCH64_ABS32			258
55 #endif
56 #ifndef R_AARCH64_PREL64
57 #define R_AARCH64_PREL64		260
58 #endif
59 #ifndef R_AARCH64_PREL32
60 #define R_AARCH64_PREL32		261
61 #endif
62 #ifndef R_AARCH64_PREL16
63 #define R_AARCH64_PREL16		262
64 #endif
65 #ifndef R_AARCH64_PLT32
66 #define R_AARCH64_PLT32			314
67 #endif
68 #ifndef R_AARCH64_LD_PREL_LO19
69 #define R_AARCH64_LD_PREL_LO19		273
70 #endif
71 #ifndef R_AARCH64_ADR_PREL_LO21
72 #define R_AARCH64_ADR_PREL_LO21		274
73 #endif
74 #ifndef R_AARCH64_ADR_PREL_PG_HI21
75 #define R_AARCH64_ADR_PREL_PG_HI21	275
76 #endif
77 #ifndef R_AARCH64_ADR_PREL_PG_HI21_NC
78 #define R_AARCH64_ADR_PREL_PG_HI21_NC	276
79 #endif
80 #ifndef R_AARCH64_ADD_ABS_LO12_NC
81 #define R_AARCH64_ADD_ABS_LO12_NC	277
82 #endif
83 #ifndef R_AARCH64_LDST8_ABS_LO12_NC
84 #define R_AARCH64_LDST8_ABS_LO12_NC	278
85 #endif
86 #ifndef R_AARCH64_TSTBR14
87 #define R_AARCH64_TSTBR14		279
88 #endif
89 #ifndef R_AARCH64_CONDBR19
90 #define R_AARCH64_CONDBR19		280
91 #endif
92 #ifndef R_AARCH64_JUMP26
93 #define R_AARCH64_JUMP26		282
94 #endif
95 #ifndef R_AARCH64_CALL26
96 #define R_AARCH64_CALL26		283
97 #endif
98 #ifndef R_AARCH64_LDST16_ABS_LO12_NC
99 #define R_AARCH64_LDST16_ABS_LO12_NC	284
100 #endif
101 #ifndef R_AARCH64_LDST32_ABS_LO12_NC
102 #define R_AARCH64_LDST32_ABS_LO12_NC	285
103 #endif
104 #ifndef R_AARCH64_LDST64_ABS_LO12_NC
105 #define R_AARCH64_LDST64_ABS_LO12_NC	286
106 #endif
107 #ifndef R_AARCH64_MOVW_PREL_G0
108 #define R_AARCH64_MOVW_PREL_G0		287
109 #endif
110 #ifndef R_AARCH64_MOVW_PREL_G0_NC
111 #define R_AARCH64_MOVW_PREL_G0_NC	288
112 #endif
113 #ifndef R_AARCH64_MOVW_PREL_G1
114 #define R_AARCH64_MOVW_PREL_G1		289
115 #endif
116 #ifndef R_AARCH64_MOVW_PREL_G1_NC
117 #define R_AARCH64_MOVW_PREL_G1_NC	290
118 #endif
119 #ifndef R_AARCH64_MOVW_PREL_G2
120 #define R_AARCH64_MOVW_PREL_G2		291
121 #endif
122 #ifndef R_AARCH64_MOVW_PREL_G2_NC
123 #define R_AARCH64_MOVW_PREL_G2_NC	292
124 #endif
125 #ifndef R_AARCH64_MOVW_PREL_G3
126 #define R_AARCH64_MOVW_PREL_G3		293
127 #endif
128 #ifndef R_AARCH64_LDST128_ABS_LO12_NC
129 #define R_AARCH64_LDST128_ABS_LO12_NC	299
130 #endif
131 
132 /* Global state of the processed ELF. */
133 static struct {
134 	const char	*path;
135 	char		*begin;
136 	size_t		size;
137 	Elf64_Ehdr	*ehdr;
138 	Elf64_Shdr	*sh_table;
139 	const char	*sh_string;
140 } elf;
141 
142 #if defined(CONFIG_CPU_LITTLE_ENDIAN)
143 
144 #define elf16toh(x)	le16toh(x)
145 #define elf32toh(x)	le32toh(x)
146 #define elf64toh(x)	le64toh(x)
147 
148 #define ELFENDIAN	ELFDATA2LSB
149 
150 #elif defined(CONFIG_CPU_BIG_ENDIAN)
151 
152 #define elf16toh(x)	be16toh(x)
153 #define elf32toh(x)	be32toh(x)
154 #define elf64toh(x)	be64toh(x)
155 
156 #define ELFENDIAN	ELFDATA2MSB
157 
158 #else
159 
160 #error PDP-endian sadly unsupported...
161 
162 #endif
163 
164 #define fatal_error(fmt, ...)						\
165 	({								\
166 		fprintf(stderr, "error: %s: " fmt "\n",			\
167 			elf.path, ## __VA_ARGS__);			\
168 		exit(EXIT_FAILURE);					\
169 		__builtin_unreachable();				\
170 	})
171 
172 #define fatal_perror(msg)						\
173 	({								\
174 		fprintf(stderr, "error: %s: " msg ": %s\n",		\
175 			elf.path, strerror(errno));			\
176 		exit(EXIT_FAILURE);					\
177 		__builtin_unreachable();				\
178 	})
179 
180 #define assert_op(lhs, rhs, fmt, op)					\
181 	({								\
182 		typeof(lhs) _lhs = (lhs);				\
183 		typeof(rhs) _rhs = (rhs);				\
184 									\
185 		if (!(_lhs op _rhs)) {					\
186 			fatal_error("assertion " #lhs " " #op " " #rhs	\
187 				" failed (lhs=" fmt ", rhs=" fmt	\
188 				", line=%d)", _lhs, _rhs, __LINE__);	\
189 		}							\
190 	})
191 
192 #define assert_eq(lhs, rhs, fmt)	assert_op(lhs, rhs, fmt, ==)
193 #define assert_ne(lhs, rhs, fmt)	assert_op(lhs, rhs, fmt, !=)
194 #define assert_lt(lhs, rhs, fmt)	assert_op(lhs, rhs, fmt, <)
195 #define assert_ge(lhs, rhs, fmt)	assert_op(lhs, rhs, fmt, >=)
196 
197 /*
198  * Return a pointer of a given type at a given offset from
199  * the beginning of the ELF file.
200  */
201 #define elf_ptr(type, off) ((type *)(elf.begin + (off)))
202 
203 /* Iterate over all sections in the ELF. */
204 #define for_each_section(var) \
205 	for (var = elf.sh_table; var < elf.sh_table + elf16toh(elf.ehdr->e_shnum); ++var)
206 
207 /* Iterate over all Elf64_Rela relocations in a given section. */
208 #define for_each_rela(shdr, var)					\
209 	for (var = elf_ptr(Elf64_Rela, elf64toh(shdr->sh_offset));	\
210 	     var < elf_ptr(Elf64_Rela, elf64toh(shdr->sh_offset) + elf64toh(shdr->sh_size)); var++)
211 
212 /* True if a string starts with a given prefix. */
starts_with(const char * str,const char * prefix)213 static inline bool starts_with(const char *str, const char *prefix)
214 {
215 	return memcmp(str, prefix, strlen(prefix)) == 0;
216 }
217 
218 /* Returns a string containing the name of a given section. */
section_name(Elf64_Shdr * shdr)219 static inline const char *section_name(Elf64_Shdr *shdr)
220 {
221 	return elf.sh_string + elf32toh(shdr->sh_name);
222 }
223 
224 /* Returns a pointer to the first byte of section data. */
section_begin(Elf64_Shdr * shdr)225 static inline const char *section_begin(Elf64_Shdr *shdr)
226 {
227 	return elf_ptr(char, elf64toh(shdr->sh_offset));
228 }
229 
230 /* Find a section by its offset from the beginning of the file. */
section_by_off(Elf64_Off off)231 static inline Elf64_Shdr *section_by_off(Elf64_Off off)
232 {
233 	assert_ne(off, 0UL, "%lu");
234 	return elf_ptr(Elf64_Shdr, off);
235 }
236 
237 /* Find a section by its index. */
section_by_idx(uint16_t idx)238 static inline Elf64_Shdr *section_by_idx(uint16_t idx)
239 {
240 	assert_ne(idx, SHN_UNDEF, "%u");
241 	return &elf.sh_table[idx];
242 }
243 
244 /*
245  * Memory-map the given ELF file, perform sanity checks, and
246  * populate global state.
247  */
init_elf(const char * path)248 static void init_elf(const char *path)
249 {
250 	int fd, ret;
251 	struct stat stat;
252 
253 	/* Store path in the global struct for error printing. */
254 	elf.path = path;
255 
256 	/* Open the ELF file. */
257 	fd = open(path, O_RDONLY);
258 	if (fd < 0)
259 		fatal_perror("Could not open ELF file");
260 
261 	/* Get status of ELF file to obtain its size. */
262 	ret = fstat(fd, &stat);
263 	if (ret < 0) {
264 		close(fd);
265 		fatal_perror("Could not get status of ELF file");
266 	}
267 
268 	/* mmap() the entire ELF file read-only at an arbitrary address. */
269 	elf.begin = mmap(0, stat.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
270 	if (elf.begin == MAP_FAILED) {
271 		close(fd);
272 		fatal_perror("Could not mmap ELF file");
273 	}
274 
275 	/* mmap() was successful, close the FD. */
276 	close(fd);
277 
278 	/* Get pointer to the ELF header. */
279 	assert_ge(stat.st_size, sizeof(*elf.ehdr), "%lu");
280 	elf.ehdr = elf_ptr(Elf64_Ehdr, 0);
281 
282 	/* Check the ELF magic. */
283 	assert_eq(elf.ehdr->e_ident[EI_MAG0], ELFMAG0, "0x%x");
284 	assert_eq(elf.ehdr->e_ident[EI_MAG1], ELFMAG1, "0x%x");
285 	assert_eq(elf.ehdr->e_ident[EI_MAG2], ELFMAG2, "0x%x");
286 	assert_eq(elf.ehdr->e_ident[EI_MAG3], ELFMAG3, "0x%x");
287 
288 	/* Sanity check that this is an ELF64 relocatable object for AArch64. */
289 	assert_eq(elf.ehdr->e_ident[EI_CLASS], ELFCLASS64, "%u");
290 	assert_eq(elf.ehdr->e_ident[EI_DATA], ELFENDIAN, "%u");
291 	assert_eq(elf16toh(elf.ehdr->e_type), ET_REL, "%u");
292 	assert_eq(elf16toh(elf.ehdr->e_machine), EM_AARCH64, "%u");
293 
294 	/* Populate fields of the global struct. */
295 	elf.sh_table = section_by_off(elf64toh(elf.ehdr->e_shoff));
296 	elf.sh_string = section_begin(section_by_idx(elf16toh(elf.ehdr->e_shstrndx)));
297 }
298 
299 /* Print the prologue of the output ASM file. */
emit_prologue(void)300 static void emit_prologue(void)
301 {
302 	printf(".data\n"
303 	       ".pushsection " HYP_RELOC_SECTION ", \"a\"\n");
304 }
305 
306 /* Print ASM statements needed as a prologue to a processed hyp section. */
emit_section_prologue(const char * sh_orig_name)307 static void emit_section_prologue(const char *sh_orig_name)
308 {
309 	/* Declare the hyp section symbol. */
310 	printf(".global %s%s\n", HYP_SECTION_SYMBOL_PREFIX, sh_orig_name);
311 }
312 
313 /*
314  * Print ASM statements to create a hyp relocation entry for a given
315  * R_AARCH64_ABS64 relocation.
316  *
317  * The linker of vmlinux will populate the position given by `rela` with
318  * an absolute 64-bit kernel VA. If the kernel is relocatable, it will
319  * also generate a dynamic relocation entry so that the kernel can shift
320  * the address at runtime for KASLR.
321  *
322  * Emit a 32-bit offset from the current address to the position given
323  * by `rela`. This way the kernel can iterate over all kernel VAs used
324  * by hyp at runtime and convert them to hyp VAs. However, that offset
325  * will not be known until linking of `vmlinux`, so emit a PREL32
326  * relocation referencing a symbol that the hyp linker script put at
327  * the beginning of the relocated section + the offset from `rela`.
328  */
emit_rela_abs64(Elf64_Rela * rela,const char * sh_orig_name)329 static void emit_rela_abs64(Elf64_Rela *rela, const char *sh_orig_name)
330 {
331 	/* Offset of this reloc from the beginning of HYP_RELOC_SECTION. */
332 	static size_t reloc_offset;
333 
334 	/* Create storage for the 32-bit offset. */
335 	printf(".word 0\n");
336 
337 	/*
338 	 * Create a PREL32 relocation which instructs the linker of `vmlinux`
339 	 * to insert offset to position <base> + <offset>, where <base> is
340 	 * a symbol at the beginning of the relocated section, and <offset>
341 	 * is `rela->r_offset`.
342 	 */
343 	printf(".reloc %lu, R_AARCH64_PREL32, %s%s + 0x%lx\n",
344 	       reloc_offset, HYP_SECTION_SYMBOL_PREFIX, sh_orig_name,
345 	       elf64toh(rela->r_offset));
346 
347 	reloc_offset += 4;
348 }
349 
350 /* Print the epilogue of the output ASM file. */
emit_epilogue(void)351 static void emit_epilogue(void)
352 {
353 	printf(".popsection\n");
354 }
355 
356 /*
357  * Iterate over all RELA relocations in a given section and emit
358  * hyp relocation data for all absolute addresses in hyp code/data.
359  *
360  * Static relocations that generate PC-relative-addressing are ignored.
361  * Failure is reported for unexpected relocation types.
362  */
emit_rela_section(Elf64_Shdr * sh_rela)363 static void emit_rela_section(Elf64_Shdr *sh_rela)
364 {
365 	Elf64_Shdr *sh_orig = &elf.sh_table[elf32toh(sh_rela->sh_info)];
366 	const char *sh_orig_name = section_name(sh_orig);
367 	Elf64_Rela *rela;
368 
369 	/* Skip all non-hyp sections. */
370 	if (!starts_with(sh_orig_name, HYP_SECTION_PREFIX))
371 		return;
372 
373 	emit_section_prologue(sh_orig_name);
374 
375 	for_each_rela(sh_rela, rela) {
376 		uint32_t type = (uint32_t)elf64toh(rela->r_info);
377 
378 		/* Check that rela points inside the relocated section. */
379 		assert_lt(elf64toh(rela->r_offset), elf64toh(sh_orig->sh_size), "0x%lx");
380 
381 		switch (type) {
382 		/*
383 		 * Data relocations to generate absolute addressing.
384 		 * Emit a hyp relocation.
385 		 */
386 		case R_AARCH64_ABS64:
387 			emit_rela_abs64(rela, sh_orig_name);
388 			break;
389 		/* Allow 32-bit absolute relocation, for kCFI type hashes. */
390 		case R_AARCH64_ABS32:
391 			break;
392 		/* Allow position-relative data relocations. */
393 		case R_AARCH64_PREL64:
394 		case R_AARCH64_PREL32:
395 		case R_AARCH64_PREL16:
396 		case R_AARCH64_PLT32:
397 			break;
398 		/* Allow relocations to generate PC-relative addressing. */
399 		case R_AARCH64_LD_PREL_LO19:
400 		case R_AARCH64_ADR_PREL_LO21:
401 		case R_AARCH64_ADR_PREL_PG_HI21:
402 		case R_AARCH64_ADR_PREL_PG_HI21_NC:
403 		case R_AARCH64_ADD_ABS_LO12_NC:
404 		case R_AARCH64_LDST8_ABS_LO12_NC:
405 		case R_AARCH64_LDST16_ABS_LO12_NC:
406 		case R_AARCH64_LDST32_ABS_LO12_NC:
407 		case R_AARCH64_LDST64_ABS_LO12_NC:
408 		case R_AARCH64_LDST128_ABS_LO12_NC:
409 			break;
410 		/* Allow relative relocations for control-flow instructions. */
411 		case R_AARCH64_TSTBR14:
412 		case R_AARCH64_CONDBR19:
413 		case R_AARCH64_JUMP26:
414 		case R_AARCH64_CALL26:
415 			break;
416 		/* Allow group relocations to create PC-relative offset inline. */
417 		case R_AARCH64_MOVW_PREL_G0:
418 		case R_AARCH64_MOVW_PREL_G0_NC:
419 		case R_AARCH64_MOVW_PREL_G1:
420 		case R_AARCH64_MOVW_PREL_G1_NC:
421 		case R_AARCH64_MOVW_PREL_G2:
422 		case R_AARCH64_MOVW_PREL_G2_NC:
423 		case R_AARCH64_MOVW_PREL_G3:
424 			break;
425 		default:
426 			fatal_error("Unexpected RELA type %u", type);
427 		}
428 	}
429 }
430 
431 /* Iterate over all sections and emit hyp relocation data for RELA sections. */
emit_all_relocs(void)432 static void emit_all_relocs(void)
433 {
434 	Elf64_Shdr *shdr;
435 
436 	for_each_section(shdr) {
437 		switch (elf32toh(shdr->sh_type)) {
438 		case SHT_REL:
439 			fatal_error("Unexpected SHT_REL section \"%s\"",
440 				section_name(shdr));
441 		case SHT_RELA:
442 			emit_rela_section(shdr);
443 			break;
444 		}
445 	}
446 }
447 
main(int argc,const char ** argv)448 int main(int argc, const char **argv)
449 {
450 	if (argc != 2) {
451 		fprintf(stderr, "Usage: %s <elf_input>\n", argv[0]);
452 		return EXIT_FAILURE;
453 	}
454 
455 	init_elf(argv[1]);
456 
457 	emit_prologue();
458 	emit_all_relocs();
459 	emit_epilogue();
460 
461 	return EXIT_SUCCESS;
462 }
463