xref: /linux/drivers/rtc/rtc-rzn1.c (revision 0e287d31b62bb53ad81d5e59778384a40f8b6f56)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Renesas RZ/N1 Real Time Clock interface for Linux
4  *
5  * Copyright:
6  * - 2014 Renesas Electronics Europe Limited
7  * - 2022 Schneider Electric
8  *
9  * Authors:
10  * - Michel Pollet <buserror@gmail.com>
11  * - Miquel Raynal <miquel.raynal@bootlin.com>
12  */
13 
14 #include <linux/bcd.h>
15 #include <linux/init.h>
16 #include <linux/iopoll.h>
17 #include <linux/module.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/rtc.h>
22 
23 #define RZN1_RTC_CTL0 0x00
24 #define   RZN1_RTC_CTL0_SLSB_SUBU 0
25 #define   RZN1_RTC_CTL0_SLSB_SCMP BIT(4)
26 #define   RZN1_RTC_CTL0_AMPM BIT(5)
27 #define   RZN1_RTC_CTL0_CE BIT(7)
28 
29 #define RZN1_RTC_CTL1 0x04
30 #define   RZN1_RTC_CTL1_ALME BIT(4)
31 
32 #define RZN1_RTC_CTL2 0x08
33 #define   RZN1_RTC_CTL2_WAIT BIT(0)
34 #define   RZN1_RTC_CTL2_WST BIT(1)
35 #define   RZN1_RTC_CTL2_WUST BIT(5)
36 #define   RZN1_RTC_CTL2_STOPPED (RZN1_RTC_CTL2_WAIT | RZN1_RTC_CTL2_WST)
37 
38 #define RZN1_RTC_TIME 0x30
39 #define RZN1_RTC_TIME_MIN_SHIFT 8
40 #define RZN1_RTC_TIME_HOUR_SHIFT 16
41 #define RZN1_RTC_CAL 0x34
42 #define RZN1_RTC_CAL_DAY_SHIFT 8
43 #define RZN1_RTC_CAL_MON_SHIFT 16
44 #define RZN1_RTC_CAL_YEAR_SHIFT 24
45 
46 #define RZN1_RTC_SUBU 0x38
47 #define   RZN1_RTC_SUBU_DEV BIT(7)
48 #define   RZN1_RTC_SUBU_DECR BIT(6)
49 
50 #define RZN1_RTC_ALM 0x40
51 #define RZN1_RTC_ALH 0x44
52 #define RZN1_RTC_ALW 0x48
53 
54 #define RZN1_RTC_SECC 0x4c
55 #define RZN1_RTC_TIMEC 0x68
56 #define RZN1_RTC_CALC 0x6c
57 
58 struct rzn1_rtc {
59 	struct rtc_device *rtcdev;
60 	void __iomem *base;
61 };
62 
rzn1_rtc_get_time_snapshot(struct rzn1_rtc * rtc,struct rtc_time * tm)63 static void rzn1_rtc_get_time_snapshot(struct rzn1_rtc *rtc, struct rtc_time *tm)
64 {
65 	u32 val;
66 
67 	val = readl(rtc->base + RZN1_RTC_TIMEC);
68 	tm->tm_sec = bcd2bin(val);
69 	tm->tm_min = bcd2bin(val >> RZN1_RTC_TIME_MIN_SHIFT);
70 	tm->tm_hour = bcd2bin(val >> RZN1_RTC_TIME_HOUR_SHIFT);
71 
72 	val = readl(rtc->base + RZN1_RTC_CALC);
73 	tm->tm_wday = val & 0x0f;
74 	tm->tm_mday = bcd2bin(val >> RZN1_RTC_CAL_DAY_SHIFT);
75 	tm->tm_mon = bcd2bin(val >> RZN1_RTC_CAL_MON_SHIFT) - 1;
76 	tm->tm_year = bcd2bin(val >> RZN1_RTC_CAL_YEAR_SHIFT) + 100;
77 }
78 
rzn1_rtc_read_time(struct device * dev,struct rtc_time * tm)79 static int rzn1_rtc_read_time(struct device *dev, struct rtc_time *tm)
80 {
81 	struct rzn1_rtc *rtc = dev_get_drvdata(dev);
82 	u32 val, secs;
83 
84 	/*
85 	 * The RTC was not started or is stopped and thus does not carry the
86 	 * proper time/date.
87 	 */
88 	val = readl(rtc->base + RZN1_RTC_CTL2);
89 	if (val & RZN1_RTC_CTL2_STOPPED)
90 		return -EINVAL;
91 
92 	rzn1_rtc_get_time_snapshot(rtc, tm);
93 	secs = readl(rtc->base + RZN1_RTC_SECC);
94 	if (tm->tm_sec != bcd2bin(secs))
95 		rzn1_rtc_get_time_snapshot(rtc, tm);
96 
97 	return 0;
98 }
99 
rzn1_rtc_set_time(struct device * dev,struct rtc_time * tm)100 static int rzn1_rtc_set_time(struct device *dev, struct rtc_time *tm)
101 {
102 	struct rzn1_rtc *rtc = dev_get_drvdata(dev);
103 	u32 val;
104 	int ret;
105 
106 	val = readl(rtc->base + RZN1_RTC_CTL2);
107 	if (!(val & RZN1_RTC_CTL2_STOPPED)) {
108 		/* Hold the counter if it was counting up */
109 		writel(RZN1_RTC_CTL2_WAIT, rtc->base + RZN1_RTC_CTL2);
110 
111 		/* Wait for the counter to stop: two 32k clock cycles */
112 		usleep_range(61, 100);
113 		ret = readl_poll_timeout(rtc->base + RZN1_RTC_CTL2, val,
114 					 val & RZN1_RTC_CTL2_WST, 0, 100);
115 		if (ret)
116 			return ret;
117 	}
118 
119 	val = bin2bcd(tm->tm_sec);
120 	val |= bin2bcd(tm->tm_min) << RZN1_RTC_TIME_MIN_SHIFT;
121 	val |= bin2bcd(tm->tm_hour) << RZN1_RTC_TIME_HOUR_SHIFT;
122 	writel(val, rtc->base + RZN1_RTC_TIME);
123 
124 	val = tm->tm_wday;
125 	val |= bin2bcd(tm->tm_mday) << RZN1_RTC_CAL_DAY_SHIFT;
126 	val |= bin2bcd(tm->tm_mon + 1) << RZN1_RTC_CAL_MON_SHIFT;
127 	val |= bin2bcd(tm->tm_year - 100) << RZN1_RTC_CAL_YEAR_SHIFT;
128 	writel(val, rtc->base + RZN1_RTC_CAL);
129 
130 	writel(0, rtc->base + RZN1_RTC_CTL2);
131 
132 	return 0;
133 }
134 
rzn1_rtc_alarm_irq(int irq,void * dev_id)135 static irqreturn_t rzn1_rtc_alarm_irq(int irq, void *dev_id)
136 {
137 	struct rzn1_rtc *rtc = dev_id;
138 
139 	rtc_update_irq(rtc->rtcdev, 1, RTC_AF | RTC_IRQF);
140 
141 	return IRQ_HANDLED;
142 }
143 
rzn1_rtc_alarm_irq_enable(struct device * dev,unsigned int enable)144 static int rzn1_rtc_alarm_irq_enable(struct device *dev, unsigned int enable)
145 {
146 	struct rzn1_rtc *rtc = dev_get_drvdata(dev);
147 	u32 ctl1 = readl(rtc->base + RZN1_RTC_CTL1);
148 
149 	if (enable)
150 		ctl1 |= RZN1_RTC_CTL1_ALME;
151 	else
152 		ctl1 &= ~RZN1_RTC_CTL1_ALME;
153 
154 	writel(ctl1, rtc->base + RZN1_RTC_CTL1);
155 
156 	return 0;
157 }
158 
rzn1_rtc_read_alarm(struct device * dev,struct rtc_wkalrm * alrm)159 static int rzn1_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
160 {
161 	struct rzn1_rtc *rtc = dev_get_drvdata(dev);
162 	struct rtc_time *tm = &alrm->time;
163 	unsigned int min, hour, wday, delta_days;
164 	time64_t alarm;
165 	u32 ctl1;
166 	int ret;
167 
168 	ret = rzn1_rtc_read_time(dev, tm);
169 	if (ret)
170 		return ret;
171 
172 	min = readl(rtc->base + RZN1_RTC_ALM);
173 	hour = readl(rtc->base + RZN1_RTC_ALH);
174 	wday = readl(rtc->base + RZN1_RTC_ALW);
175 
176 	tm->tm_sec = 0;
177 	tm->tm_min = bcd2bin(min);
178 	tm->tm_hour = bcd2bin(hour);
179 	delta_days = ((fls(wday) - 1) - tm->tm_wday + 7) % 7;
180 	tm->tm_wday = fls(wday) - 1;
181 
182 	if (delta_days) {
183 		alarm = rtc_tm_to_time64(tm) + (delta_days * 86400);
184 		rtc_time64_to_tm(alarm, tm);
185 	}
186 
187 	ctl1 = readl(rtc->base + RZN1_RTC_CTL1);
188 	alrm->enabled = !!(ctl1 & RZN1_RTC_CTL1_ALME);
189 
190 	return 0;
191 }
192 
rzn1_rtc_set_alarm(struct device * dev,struct rtc_wkalrm * alrm)193 static int rzn1_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
194 {
195 	struct rzn1_rtc *rtc = dev_get_drvdata(dev);
196 	struct rtc_time *tm = &alrm->time, tm_now;
197 	unsigned long alarm, farest;
198 	unsigned int days_ahead, wday;
199 	int ret;
200 
201 	ret = rzn1_rtc_read_time(dev, &tm_now);
202 	if (ret)
203 		return ret;
204 
205 	/* We cannot set alarms more than one week ahead */
206 	farest = rtc_tm_to_time64(&tm_now) + rtc->rtcdev->alarm_offset_max;
207 	alarm = rtc_tm_to_time64(tm);
208 	if (time_after(alarm, farest))
209 		return -ERANGE;
210 
211 	/* Convert alarm day into week day */
212 	days_ahead = tm->tm_mday - tm_now.tm_mday;
213 	wday = (tm_now.tm_wday + days_ahead) % 7;
214 
215 	writel(bin2bcd(tm->tm_min), rtc->base + RZN1_RTC_ALM);
216 	writel(bin2bcd(tm->tm_hour), rtc->base + RZN1_RTC_ALH);
217 	writel(BIT(wday), rtc->base + RZN1_RTC_ALW);
218 
219 	rzn1_rtc_alarm_irq_enable(dev, alrm->enabled);
220 
221 	return 0;
222 }
223 
rzn1_rtc_read_offset(struct device * dev,long * offset)224 static int rzn1_rtc_read_offset(struct device *dev, long *offset)
225 {
226 	struct rzn1_rtc *rtc = dev_get_drvdata(dev);
227 	unsigned int ppb_per_step;
228 	bool subtract;
229 	u32 val;
230 
231 	val = readl(rtc->base + RZN1_RTC_SUBU);
232 	ppb_per_step = val & RZN1_RTC_SUBU_DEV ? 1017 : 3051;
233 	subtract = val & RZN1_RTC_SUBU_DECR;
234 	val &= 0x3F;
235 
236 	if (!val)
237 		*offset = 0;
238 	else if (subtract)
239 		*offset = -(((~val) & 0x3F) + 1) * ppb_per_step;
240 	else
241 		*offset = (val - 1) * ppb_per_step;
242 
243 	return 0;
244 }
245 
rzn1_rtc_set_offset(struct device * dev,long offset)246 static int rzn1_rtc_set_offset(struct device *dev, long offset)
247 {
248 	struct rzn1_rtc *rtc = dev_get_drvdata(dev);
249 	int stepsh, stepsl, steps;
250 	u32 subu = 0, ctl2;
251 	int ret;
252 
253 	/*
254 	 * Check which resolution mode (every 20 or 60s) can be used.
255 	 * Between 2 and 124 clock pulses can be added or substracted.
256 	 *
257 	 * In 20s mode, the minimum resolution is 2 / (32768 * 20) which is
258 	 * close to 3051 ppb. In 60s mode, the resolution is closer to 1017.
259 	 */
260 	stepsh = DIV_ROUND_CLOSEST(offset, 1017);
261 	stepsl = DIV_ROUND_CLOSEST(offset, 3051);
262 
263 	if (stepsh >= -0x3E && stepsh <= 0x3E) {
264 		/* 1017 ppb per step */
265 		steps = stepsh;
266 		subu |= RZN1_RTC_SUBU_DEV;
267 	} else if (stepsl >= -0x3E && stepsl <= 0x3E) {
268 		/* 3051 ppb per step */
269 		steps = stepsl;
270 	} else {
271 		return -ERANGE;
272 	}
273 
274 	if (!steps)
275 		return 0;
276 
277 	if (steps > 0) {
278 		subu |= steps + 1;
279 	} else {
280 		subu |= RZN1_RTC_SUBU_DECR;
281 		subu |= (~(-steps - 1)) & 0x3F;
282 	}
283 
284 	ret = readl_poll_timeout(rtc->base + RZN1_RTC_CTL2, ctl2,
285 				 !(ctl2 & RZN1_RTC_CTL2_WUST), 100, 2000000);
286 	if (ret)
287 		return ret;
288 
289 	writel(subu, rtc->base + RZN1_RTC_SUBU);
290 
291 	return 0;
292 }
293 
294 static const struct rtc_class_ops rzn1_rtc_ops = {
295 	.read_time = rzn1_rtc_read_time,
296 	.set_time = rzn1_rtc_set_time,
297 	.read_alarm = rzn1_rtc_read_alarm,
298 	.set_alarm = rzn1_rtc_set_alarm,
299 	.alarm_irq_enable = rzn1_rtc_alarm_irq_enable,
300 	.read_offset = rzn1_rtc_read_offset,
301 	.set_offset = rzn1_rtc_set_offset,
302 };
303 
rzn1_rtc_probe(struct platform_device * pdev)304 static int rzn1_rtc_probe(struct platform_device *pdev)
305 {
306 	struct rzn1_rtc *rtc;
307 	int alarm_irq;
308 	int ret;
309 
310 	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
311 	if (!rtc)
312 		return -ENOMEM;
313 
314 	platform_set_drvdata(pdev, rtc);
315 
316 	rtc->base = devm_platform_ioremap_resource(pdev, 0);
317 	if (IS_ERR(rtc->base))
318 		return dev_err_probe(&pdev->dev, PTR_ERR(rtc->base), "Missing reg\n");
319 
320 	alarm_irq = platform_get_irq(pdev, 0);
321 	if (alarm_irq < 0)
322 		return alarm_irq;
323 
324 	rtc->rtcdev = devm_rtc_allocate_device(&pdev->dev);
325 	if (IS_ERR(rtc->rtcdev))
326 		return PTR_ERR(rtc->rtcdev);
327 
328 	rtc->rtcdev->range_min = RTC_TIMESTAMP_BEGIN_2000;
329 	rtc->rtcdev->range_max = RTC_TIMESTAMP_END_2099;
330 	rtc->rtcdev->alarm_offset_max = 7 * 86400;
331 	rtc->rtcdev->ops = &rzn1_rtc_ops;
332 	set_bit(RTC_FEATURE_ALARM_RES_MINUTE, rtc->rtcdev->features);
333 	clear_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc->rtcdev->features);
334 
335 	ret = devm_pm_runtime_enable(&pdev->dev);
336 	if (ret < 0)
337 		return ret;
338 	ret = pm_runtime_resume_and_get(&pdev->dev);
339 	if (ret < 0)
340 		return ret;
341 
342 	/*
343 	 * Ensure the clock counter is enabled.
344 	 * Set 24-hour mode and possible oscillator offset compensation in SUBU mode.
345 	 */
346 	writel(RZN1_RTC_CTL0_CE | RZN1_RTC_CTL0_AMPM | RZN1_RTC_CTL0_SLSB_SUBU,
347 	       rtc->base + RZN1_RTC_CTL0);
348 
349 	/* Disable all interrupts */
350 	writel(0, rtc->base + RZN1_RTC_CTL1);
351 
352 	ret = devm_request_irq(&pdev->dev, alarm_irq, rzn1_rtc_alarm_irq, 0,
353 			       dev_name(&pdev->dev), rtc);
354 	if (ret) {
355 		dev_err(&pdev->dev, "RTC timer interrupt not available\n");
356 		goto dis_runtime_pm;
357 	}
358 
359 	ret = devm_rtc_register_device(rtc->rtcdev);
360 	if (ret)
361 		goto dis_runtime_pm;
362 
363 	return 0;
364 
365 dis_runtime_pm:
366 	pm_runtime_put(&pdev->dev);
367 
368 	return ret;
369 }
370 
rzn1_rtc_remove(struct platform_device * pdev)371 static void rzn1_rtc_remove(struct platform_device *pdev)
372 {
373 	pm_runtime_put(&pdev->dev);
374 }
375 
376 static const struct of_device_id rzn1_rtc_of_match[] = {
377 	{ .compatible	= "renesas,rzn1-rtc" },
378 	{},
379 };
380 MODULE_DEVICE_TABLE(of, rzn1_rtc_of_match);
381 
382 static struct platform_driver rzn1_rtc_driver = {
383 	.probe = rzn1_rtc_probe,
384 	.remove = rzn1_rtc_remove,
385 	.driver = {
386 		.name	= "rzn1-rtc",
387 		.of_match_table = rzn1_rtc_of_match,
388 	},
389 };
390 module_platform_driver(rzn1_rtc_driver);
391 
392 MODULE_AUTHOR("Michel Pollet <buserror@gmail.com>");
393 MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com");
394 MODULE_DESCRIPTION("RZ/N1 RTC driver");
395 MODULE_LICENSE("GPL");
396