1 // SPDX-License-Identifier: GPL-2.0-only
2
3 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
4
5 #include <linux/clk.h>
6 #include <linux/clockchips.h>
7 #include <linux/cpu.h>
8 #include <linux/cpuhotplug.h>
9 #include <linux/cpumask.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/jiffies.h>
13 #include <linux/printk.h>
14 #include <linux/sched_clock.h>
15 #include "timer-of.h"
16
17 #define RTTM_DATA 0x0
18 #define RTTM_CNT 0x4
19 #define RTTM_CTRL 0x8
20 #define RTTM_INT 0xc
21
22 #define RTTM_CTRL_ENABLE BIT(28)
23 #define RTTM_INT_PENDING BIT(16)
24 #define RTTM_INT_ENABLE BIT(20)
25
26 /*
27 * The Otto platform provides multiple 28 bit timers/counters with the following
28 * operating logic. If enabled the timer counts up. Per timer one can set a
29 * maximum counter value as an end marker. If end marker is reached the timer
30 * fires an interrupt. If the timer "overflows" by reaching the end marker or
31 * by adding 1 to 0x0fffffff the counter is reset to 0. When this happens and
32 * the timer is in operating mode COUNTER it stops. In mode TIMER it will
33 * continue to count up.
34 */
35 #define RTTM_CTRL_COUNTER 0
36 #define RTTM_CTRL_TIMER BIT(24)
37
38 #define RTTM_BIT_COUNT 28
39 #define RTTM_MIN_DELTA 8
40 #define RTTM_MAX_DELTA CLOCKSOURCE_MASK(28)
41 #define RTTM_MAX_DIVISOR GENMASK(15, 0)
42
43 /*
44 * Timers are derived from the lexra bus (LXB) clock frequency. This is 175 MHz
45 * on RTL930x and 200 MHz on the other platforms. With 3.125 MHz choose a common
46 * divisor to have enough range and detail. This provides comparability between
47 * the different platforms.
48 */
49 #define RTTM_TICKS_PER_SEC 3125000
50
51 struct rttm_cs {
52 struct timer_of to;
53 struct clocksource cs;
54 };
55
56 /* Simple internal register functions */
rttm_get_counter(void __iomem * base)57 static inline unsigned int rttm_get_counter(void __iomem *base)
58 {
59 return ioread32(base + RTTM_CNT);
60 }
61
rttm_set_period(void __iomem * base,unsigned int period)62 static inline void rttm_set_period(void __iomem *base, unsigned int period)
63 {
64 iowrite32(period, base + RTTM_DATA);
65 }
66
rttm_disable_timer(void __iomem * base)67 static inline void rttm_disable_timer(void __iomem *base)
68 {
69 iowrite32(0, base + RTTM_CTRL);
70 }
71
rttm_enable_timer(void __iomem * base,u32 mode,u32 divisor)72 static inline void rttm_enable_timer(void __iomem *base, u32 mode, u32 divisor)
73 {
74 iowrite32(RTTM_CTRL_ENABLE | mode | divisor, base + RTTM_CTRL);
75 }
76
rttm_ack_irq(void __iomem * base)77 static inline void rttm_ack_irq(void __iomem *base)
78 {
79 iowrite32(ioread32(base + RTTM_INT) | RTTM_INT_PENDING, base + RTTM_INT);
80 }
81
rttm_enable_irq(void __iomem * base)82 static inline void rttm_enable_irq(void __iomem *base)
83 {
84 iowrite32(RTTM_INT_ENABLE, base + RTTM_INT);
85 }
86
rttm_disable_irq(void __iomem * base)87 static inline void rttm_disable_irq(void __iomem *base)
88 {
89 iowrite32(0, base + RTTM_INT);
90 }
91
92 /* Aggregated control functions for kernel clock framework */
93 #define RTTM_DEBUG(base) \
94 pr_debug("------------- %d %p\n", \
95 smp_processor_id(), base)
96
rttm_timer_interrupt(int irq,void * dev_id)97 static irqreturn_t rttm_timer_interrupt(int irq, void *dev_id)
98 {
99 struct clock_event_device *clkevt = dev_id;
100 struct timer_of *to = to_timer_of(clkevt);
101
102 rttm_ack_irq(to->of_base.base);
103 RTTM_DEBUG(to->of_base.base);
104 clkevt->event_handler(clkevt);
105
106 return IRQ_HANDLED;
107 }
108
rttm_bounce_timer(void __iomem * base,u32 mode)109 static void rttm_bounce_timer(void __iomem *base, u32 mode)
110 {
111 /*
112 * When a running timer has less than ~5us left, a stop/start sequence
113 * might fail. While the details are unknown the most evident effect is
114 * that the subsequent interrupt will not be fired.
115 *
116 * As a workaround issue an intermediate restart with a very slow
117 * frequency of ~3kHz keeping the target counter (>=8). So the follow
118 * up restart will always be issued outside the critical window.
119 */
120
121 rttm_disable_timer(base);
122 rttm_enable_timer(base, mode, RTTM_MAX_DIVISOR);
123 }
124
rttm_stop_timer(void __iomem * base)125 static void rttm_stop_timer(void __iomem *base)
126 {
127 rttm_disable_timer(base);
128 rttm_ack_irq(base);
129 }
130
rttm_start_timer(struct timer_of * to,u32 mode)131 static void rttm_start_timer(struct timer_of *to, u32 mode)
132 {
133 rttm_enable_timer(to->of_base.base, mode, to->of_clk.rate / RTTM_TICKS_PER_SEC);
134 }
135
rttm_next_event(unsigned long delta,struct clock_event_device * clkevt)136 static int rttm_next_event(unsigned long delta, struct clock_event_device *clkevt)
137 {
138 struct timer_of *to = to_timer_of(clkevt);
139
140 RTTM_DEBUG(to->of_base.base);
141 rttm_bounce_timer(to->of_base.base, RTTM_CTRL_COUNTER);
142 rttm_disable_timer(to->of_base.base);
143 rttm_set_period(to->of_base.base, delta);
144 rttm_start_timer(to, RTTM_CTRL_COUNTER);
145
146 return 0;
147 }
148
rttm_state_oneshot(struct clock_event_device * clkevt)149 static int rttm_state_oneshot(struct clock_event_device *clkevt)
150 {
151 struct timer_of *to = to_timer_of(clkevt);
152
153 RTTM_DEBUG(to->of_base.base);
154 rttm_bounce_timer(to->of_base.base, RTTM_CTRL_COUNTER);
155 rttm_disable_timer(to->of_base.base);
156 rttm_set_period(to->of_base.base, RTTM_TICKS_PER_SEC / HZ);
157 rttm_start_timer(to, RTTM_CTRL_COUNTER);
158
159 return 0;
160 }
161
rttm_state_periodic(struct clock_event_device * clkevt)162 static int rttm_state_periodic(struct clock_event_device *clkevt)
163 {
164 struct timer_of *to = to_timer_of(clkevt);
165
166 RTTM_DEBUG(to->of_base.base);
167 rttm_bounce_timer(to->of_base.base, RTTM_CTRL_TIMER);
168 rttm_disable_timer(to->of_base.base);
169 rttm_set_period(to->of_base.base, RTTM_TICKS_PER_SEC / HZ);
170 rttm_start_timer(to, RTTM_CTRL_TIMER);
171
172 return 0;
173 }
174
rttm_state_shutdown(struct clock_event_device * clkevt)175 static int rttm_state_shutdown(struct clock_event_device *clkevt)
176 {
177 struct timer_of *to = to_timer_of(clkevt);
178
179 RTTM_DEBUG(to->of_base.base);
180 rttm_stop_timer(to->of_base.base);
181
182 return 0;
183 }
184
rttm_setup_timer(void __iomem * base)185 static void rttm_setup_timer(void __iomem *base)
186 {
187 RTTM_DEBUG(base);
188 rttm_stop_timer(base);
189 rttm_set_period(base, 0);
190 }
191
rttm_read_clocksource(struct clocksource * cs)192 static u64 rttm_read_clocksource(struct clocksource *cs)
193 {
194 struct rttm_cs *rcs = container_of(cs, struct rttm_cs, cs);
195
196 return rttm_get_counter(rcs->to.of_base.base);
197 }
198
199 /* Module initialization part. */
200 static DEFINE_PER_CPU(struct timer_of, rttm_to) = {
201 .flags = TIMER_OF_BASE | TIMER_OF_CLOCK | TIMER_OF_IRQ,
202 .of_irq = {
203 .flags = IRQF_PERCPU | IRQF_TIMER,
204 .handler = rttm_timer_interrupt,
205 },
206 .clkevt = {
207 .rating = 400,
208 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
209 .set_state_periodic = rttm_state_periodic,
210 .set_state_shutdown = rttm_state_shutdown,
211 .set_state_oneshot = rttm_state_oneshot,
212 .set_next_event = rttm_next_event
213 },
214 };
215
rttm_enable_clocksource(struct clocksource * cs)216 static int rttm_enable_clocksource(struct clocksource *cs)
217 {
218 struct rttm_cs *rcs = container_of(cs, struct rttm_cs, cs);
219
220 rttm_disable_irq(rcs->to.of_base.base);
221 rttm_setup_timer(rcs->to.of_base.base);
222 rttm_enable_timer(rcs->to.of_base.base, RTTM_CTRL_TIMER,
223 rcs->to.of_clk.rate / RTTM_TICKS_PER_SEC);
224
225 return 0;
226 }
227
228 struct rttm_cs rttm_cs = {
229 .to = {
230 .flags = TIMER_OF_BASE | TIMER_OF_CLOCK,
231 },
232 .cs = {
233 .name = "realtek_otto_timer",
234 .rating = 400,
235 .mask = CLOCKSOURCE_MASK(RTTM_BIT_COUNT),
236 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
237 .read = rttm_read_clocksource,
238 }
239 };
240
rttm_read_clock(void)241 static u64 notrace rttm_read_clock(void)
242 {
243 return rttm_get_counter(rttm_cs.to.of_base.base);
244 }
245
rttm_cpu_starting(unsigned int cpu)246 static int rttm_cpu_starting(unsigned int cpu)
247 {
248 struct timer_of *to = per_cpu_ptr(&rttm_to, cpu);
249
250 RTTM_DEBUG(to->of_base.base);
251 to->clkevt.cpumask = cpumask_of(cpu);
252 irq_force_affinity(to->of_irq.irq, to->clkevt.cpumask);
253 clockevents_config_and_register(&to->clkevt, RTTM_TICKS_PER_SEC,
254 RTTM_MIN_DELTA, RTTM_MAX_DELTA);
255 rttm_enable_irq(to->of_base.base);
256
257 return 0;
258 }
259
rttm_probe(struct device_node * np)260 static int __init rttm_probe(struct device_node *np)
261 {
262 unsigned int cpu, cpu_rollback;
263 struct timer_of *to;
264 unsigned int clkidx = num_possible_cpus();
265
266 /* Use the first n timers as per CPU clock event generators */
267 for_each_possible_cpu(cpu) {
268 to = per_cpu_ptr(&rttm_to, cpu);
269 to->of_irq.index = to->of_base.index = cpu;
270 if (timer_of_init(np, to)) {
271 pr_err("setup of timer %d failed\n", cpu);
272 goto rollback;
273 }
274 rttm_setup_timer(to->of_base.base);
275 }
276
277 /* Activate the n'th + 1 timer as a stable CPU clocksource. */
278 to = &rttm_cs.to;
279 to->of_base.index = clkidx;
280 timer_of_init(np, to);
281 if (rttm_cs.to.of_base.base && rttm_cs.to.of_clk.rate) {
282 rttm_enable_clocksource(&rttm_cs.cs);
283 clocksource_register_hz(&rttm_cs.cs, RTTM_TICKS_PER_SEC);
284 sched_clock_register(rttm_read_clock, RTTM_BIT_COUNT, RTTM_TICKS_PER_SEC);
285 } else
286 pr_err(" setup of timer %d as clocksource failed", clkidx);
287
288 return cpuhp_setup_state(CPUHP_AP_REALTEK_TIMER_STARTING,
289 "timer/realtek:online",
290 rttm_cpu_starting, NULL);
291 rollback:
292 pr_err("timer registration failed\n");
293 for_each_possible_cpu(cpu_rollback) {
294 if (cpu_rollback == cpu)
295 break;
296 to = per_cpu_ptr(&rttm_to, cpu_rollback);
297 timer_of_cleanup(to);
298 }
299
300 return -EINVAL;
301 }
302
303 TIMER_OF_DECLARE(otto_timer, "realtek,otto-timer", rttm_probe);
304