1 // SPDX-License-Identifier: GPL-2.0+
2
3 #include <linux/delay.h>
4 #include <linux/gpio/consumer.h>
5 #include <linux/i2c.h>
6 #include <linux/interrupt.h>
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/property.h>
10 #include <linux/regmap.h>
11 #include <linux/regulator/driver.h>
12
13 #define RTMV20_REG_DEVINFO 0x00
14 #define RTMV20_REG_PULSEDELAY 0x01
15 #define RTMV20_REG_PULSEWIDTH 0x03
16 #define RTMV20_REG_LDCTRL1 0x05
17 #define RTMV20_REG_ESPULSEWIDTH 0x06
18 #define RTMV20_REG_ESLDCTRL1 0x08
19 #define RTMV20_REG_LBP 0x0A
20 #define RTMV20_REG_LDCTRL2 0x0B
21 #define RTMV20_REG_FSIN1CTRL1 0x0D
22 #define RTMV20_REG_FSIN1CTRL3 0x0F
23 #define RTMV20_REG_FSIN2CTRL1 0x10
24 #define RTMV20_REG_FSIN2CTRL3 0x12
25 #define RTMV20_REG_ENCTRL 0x13
26 #define RTMV20_REG_STRBVSYNDLYL 0x29
27 #define RTMV20_REG_LDIRQ 0x30
28 #define RTMV20_REG_LDSTAT 0x40
29 #define RTMV20_REG_LDMASK 0x50
30 #define RTMV20_MAX_REGS (RTMV20_REG_LDMASK + 1)
31
32 #define RTMV20_VID_MASK GENMASK(7, 4)
33 #define RICHTEK_VID 0x80
34 #define RTMV20_LDCURR_MASK GENMASK(7, 0)
35 #define RTMV20_DELAY_MASK GENMASK(9, 0)
36 #define RTMV20_WIDTH_MASK GENMASK(13, 0)
37 #define RTMV20_WIDTH2_MASK GENMASK(7, 0)
38 #define RTMV20_LBPLVL_MASK GENMASK(3, 0)
39 #define RTMV20_LBPEN_MASK BIT(7)
40 #define RTMV20_STROBEPOL_MASK BIT(0)
41 #define RTMV20_VSYNPOL_MASK BIT(1)
42 #define RTMV20_FSINEN_MASK BIT(7)
43 #define RTMV20_ESEN_MASK BIT(6)
44 #define RTMV20_FSINOUT_MASK BIT(2)
45 #define LDENABLE_MASK (BIT(3) | BIT(0))
46
47 #define OTPEVT_MASK BIT(4)
48 #define SHORTEVT_MASK BIT(3)
49 #define OPENEVT_MASK BIT(2)
50 #define LBPEVT_MASK BIT(1)
51 #define OCPEVT_MASK BIT(0)
52 #define FAILEVT_MASK (SHORTEVT_MASK | OPENEVT_MASK | LBPEVT_MASK)
53
54 #define RTMV20_LSW_MINUA 0
55 #define RTMV20_LSW_MAXUA 6000000
56 #define RTMV20_LSW_STEPUA 30000
57
58 #define RTMV20_LSW_DEFAULTUA 3000000
59
60 #define RTMV20_I2CRDY_TIMEUS 200
61 #define RTMV20_CSRDY_TIMEUS 2000
62
63 struct rtmv20_priv {
64 struct device *dev;
65 struct regmap *regmap;
66 struct gpio_desc *enable_gpio;
67 struct regulator_dev *rdev;
68 };
69
rtmv20_lsw_enable(struct regulator_dev * rdev)70 static int rtmv20_lsw_enable(struct regulator_dev *rdev)
71 {
72 struct rtmv20_priv *priv = rdev_get_drvdata(rdev);
73 int ret;
74
75 gpiod_set_value(priv->enable_gpio, 1);
76
77 /* Wait for I2C can be accessed */
78 usleep_range(RTMV20_I2CRDY_TIMEUS, RTMV20_I2CRDY_TIMEUS + 100);
79
80 /* HW re-enable, disable cache only and sync regcache here */
81 regcache_cache_only(priv->regmap, false);
82 ret = regcache_sync(priv->regmap);
83 if (ret)
84 return ret;
85
86 return regulator_enable_regmap(rdev);
87 }
88
rtmv20_lsw_disable(struct regulator_dev * rdev)89 static int rtmv20_lsw_disable(struct regulator_dev *rdev)
90 {
91 struct rtmv20_priv *priv = rdev_get_drvdata(rdev);
92 int ret;
93
94 ret = regulator_disable_regmap(rdev);
95 if (ret)
96 return ret;
97
98 /* Mark the regcache as dirty and cache only before HW disabled */
99 regcache_cache_only(priv->regmap, true);
100 regcache_mark_dirty(priv->regmap);
101
102 gpiod_set_value(priv->enable_gpio, 0);
103
104 return 0;
105 }
106
rtmv20_lsw_set_current_limit(struct regulator_dev * rdev,int min_uA,int max_uA)107 static int rtmv20_lsw_set_current_limit(struct regulator_dev *rdev, int min_uA,
108 int max_uA)
109 {
110 int sel;
111
112 if (min_uA > RTMV20_LSW_MAXUA || max_uA < RTMV20_LSW_MINUA)
113 return -EINVAL;
114
115 if (max_uA > RTMV20_LSW_MAXUA)
116 max_uA = RTMV20_LSW_MAXUA;
117
118 sel = (max_uA - RTMV20_LSW_MINUA) / RTMV20_LSW_STEPUA;
119
120 /* Ensure the selected setting is still in range */
121 if ((sel * RTMV20_LSW_STEPUA + RTMV20_LSW_MINUA) < min_uA)
122 return -EINVAL;
123
124 sel <<= ffs(rdev->desc->csel_mask) - 1;
125
126 return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg,
127 rdev->desc->csel_mask, sel);
128 }
129
rtmv20_lsw_get_current_limit(struct regulator_dev * rdev)130 static int rtmv20_lsw_get_current_limit(struct regulator_dev *rdev)
131 {
132 unsigned int val;
133 int ret;
134
135 ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val);
136 if (ret)
137 return ret;
138
139 val &= rdev->desc->csel_mask;
140 val >>= ffs(rdev->desc->csel_mask) - 1;
141
142 return val * RTMV20_LSW_STEPUA + RTMV20_LSW_MINUA;
143 }
144
145 static const struct regulator_ops rtmv20_regulator_ops = {
146 .set_current_limit = rtmv20_lsw_set_current_limit,
147 .get_current_limit = rtmv20_lsw_get_current_limit,
148 .enable = rtmv20_lsw_enable,
149 .disable = rtmv20_lsw_disable,
150 .is_enabled = regulator_is_enabled_regmap,
151 };
152
153 static const struct regulator_desc rtmv20_lsw_desc = {
154 .name = "rtmv20,lsw",
155 .of_match = of_match_ptr("lsw"),
156 .type = REGULATOR_CURRENT,
157 .owner = THIS_MODULE,
158 .ops = &rtmv20_regulator_ops,
159 .csel_reg = RTMV20_REG_LDCTRL1,
160 .csel_mask = RTMV20_LDCURR_MASK,
161 .enable_reg = RTMV20_REG_ENCTRL,
162 .enable_mask = LDENABLE_MASK,
163 .enable_time = RTMV20_CSRDY_TIMEUS,
164 };
165
rtmv20_irq_handler(int irq,void * data)166 static irqreturn_t rtmv20_irq_handler(int irq, void *data)
167 {
168 struct rtmv20_priv *priv = data;
169 unsigned int val;
170 int ret;
171
172 ret = regmap_read(priv->regmap, RTMV20_REG_LDIRQ, &val);
173 if (ret) {
174 dev_err(priv->dev, "Failed to get irq flags\n");
175 return IRQ_NONE;
176 }
177
178 if (val & OTPEVT_MASK)
179 regulator_notifier_call_chain(priv->rdev, REGULATOR_EVENT_OVER_TEMP, NULL);
180
181 if (val & OCPEVT_MASK)
182 regulator_notifier_call_chain(priv->rdev, REGULATOR_EVENT_OVER_CURRENT, NULL);
183
184 if (val & FAILEVT_MASK)
185 regulator_notifier_call_chain(priv->rdev, REGULATOR_EVENT_FAIL, NULL);
186
187 return IRQ_HANDLED;
188 }
189
clamp_to_selector(u32 val,u32 min,u32 max,u32 step)190 static u32 clamp_to_selector(u32 val, u32 min, u32 max, u32 step)
191 {
192 u32 retval = clamp_val(val, min, max);
193
194 return (retval - min) / step;
195 }
196
rtmv20_properties_init(struct rtmv20_priv * priv)197 static int rtmv20_properties_init(struct rtmv20_priv *priv)
198 {
199 const struct {
200 const char *name;
201 u32 def;
202 u32 min;
203 u32 max;
204 u32 step;
205 u32 addr;
206 u32 mask;
207 } props[] = {
208 { "richtek,ld-pulse-delay-us", 0, 0, 100000, 100, RTMV20_REG_PULSEDELAY,
209 RTMV20_DELAY_MASK },
210 { "richtek,ld-pulse-width-us", 1200, 0, 10000, 1, RTMV20_REG_PULSEWIDTH,
211 RTMV20_WIDTH_MASK },
212 { "richtek,fsin1-delay-us", 23000, 0, 100000, 100, RTMV20_REG_FSIN1CTRL1,
213 RTMV20_DELAY_MASK },
214 { "richtek,fsin1-width-us", 160, 40, 10000, 40, RTMV20_REG_FSIN1CTRL3,
215 RTMV20_WIDTH2_MASK },
216 { "richtek,fsin2-delay-us", 23000, 0, 100000, 100, RTMV20_REG_FSIN2CTRL1,
217 RTMV20_DELAY_MASK },
218 { "richtek,fsin2-width-us", 160, 40, 10000, 40, RTMV20_REG_FSIN2CTRL3,
219 RTMV20_WIDTH2_MASK },
220 { "richtek,es-pulse-width-us", 1200, 0, 10000, 1, RTMV20_REG_ESPULSEWIDTH,
221 RTMV20_WIDTH_MASK },
222 { "richtek,es-ld-current-microamp", 3000000, 0, 6000000, 30000,
223 RTMV20_REG_ESLDCTRL1, RTMV20_LDCURR_MASK },
224 { "richtek,lbp-level-microvolt", 2700000, 2400000, 3700000, 100000, RTMV20_REG_LBP,
225 RTMV20_LBPLVL_MASK },
226 { "richtek,lbp-enable", 0, 0, 1, 1, RTMV20_REG_LBP, RTMV20_LBPEN_MASK },
227 { "richtek,strobe-polarity-high", 1, 0, 1, 1, RTMV20_REG_LDCTRL2,
228 RTMV20_STROBEPOL_MASK },
229 { "richtek,vsync-polarity-high", 1, 0, 1, 1, RTMV20_REG_LDCTRL2,
230 RTMV20_VSYNPOL_MASK },
231 { "richtek,fsin-enable", 0, 0, 1, 1, RTMV20_REG_ENCTRL, RTMV20_FSINEN_MASK },
232 { "richtek,fsin-output", 0, 0, 1, 1, RTMV20_REG_ENCTRL, RTMV20_FSINOUT_MASK },
233 { "richtek,es-enable", 0, 0, 1, 1, RTMV20_REG_ENCTRL, RTMV20_ESEN_MASK },
234 };
235 int i, ret;
236
237 for (i = 0; i < ARRAY_SIZE(props); i++) {
238 __be16 bval16;
239 u16 val16;
240 u32 temp;
241 int significant_bit = fls(props[i].mask);
242 int shift = ffs(props[i].mask) - 1;
243
244 if (props[i].max > 1) {
245 ret = device_property_read_u32(priv->dev, props[i].name, &temp);
246 if (ret)
247 temp = props[i].def;
248 } else
249 temp = device_property_read_bool(priv->dev, props[i].name);
250
251 temp = clamp_to_selector(temp, props[i].min, props[i].max, props[i].step);
252
253 /* If significant bit is over 8, two byte access, others one */
254 if (significant_bit > 8) {
255 ret = regmap_raw_read(priv->regmap, props[i].addr, &bval16, sizeof(bval16));
256 if (ret)
257 return ret;
258
259 val16 = be16_to_cpu(bval16);
260 val16 &= ~props[i].mask;
261 val16 |= (temp << shift);
262 bval16 = cpu_to_be16(val16);
263
264 ret = regmap_raw_write(priv->regmap, props[i].addr, &bval16,
265 sizeof(bval16));
266 } else {
267 ret = regmap_update_bits(priv->regmap, props[i].addr, props[i].mask,
268 temp << shift);
269 }
270
271 if (ret)
272 return ret;
273 }
274
275 return 0;
276 }
277
rtmv20_check_chip_exist(struct rtmv20_priv * priv)278 static int rtmv20_check_chip_exist(struct rtmv20_priv *priv)
279 {
280 unsigned int val;
281 int ret;
282
283 ret = regmap_read(priv->regmap, RTMV20_REG_DEVINFO, &val);
284 if (ret)
285 return ret;
286
287 if ((val & RTMV20_VID_MASK) != RICHTEK_VID)
288 return -ENODEV;
289
290 return 0;
291 }
292
rtmv20_is_accessible_reg(struct device * dev,unsigned int reg)293 static bool rtmv20_is_accessible_reg(struct device *dev, unsigned int reg)
294 {
295 switch (reg) {
296 case RTMV20_REG_DEVINFO ... RTMV20_REG_STRBVSYNDLYL:
297 case RTMV20_REG_LDIRQ:
298 case RTMV20_REG_LDSTAT:
299 case RTMV20_REG_LDMASK:
300 return true;
301 }
302 return false;
303 }
304
rtmv20_is_volatile_reg(struct device * dev,unsigned int reg)305 static bool rtmv20_is_volatile_reg(struct device *dev, unsigned int reg)
306 {
307 if (reg == RTMV20_REG_LDIRQ || reg == RTMV20_REG_LDSTAT)
308 return true;
309 return false;
310 }
311
312 static const struct regmap_config rtmv20_regmap_config = {
313 .reg_bits = 8,
314 .val_bits = 8,
315 .cache_type = REGCACHE_MAPLE,
316 .max_register = RTMV20_REG_LDMASK,
317 .num_reg_defaults_raw = RTMV20_MAX_REGS,
318
319 .writeable_reg = rtmv20_is_accessible_reg,
320 .readable_reg = rtmv20_is_accessible_reg,
321 .volatile_reg = rtmv20_is_volatile_reg,
322 };
323
rtmv20_probe(struct i2c_client * i2c)324 static int rtmv20_probe(struct i2c_client *i2c)
325 {
326 struct rtmv20_priv *priv;
327 struct regulator_config config = {};
328 int ret;
329
330 priv = devm_kzalloc(&i2c->dev, sizeof(*priv), GFP_KERNEL);
331 if (!priv)
332 return -ENOMEM;
333
334 priv->dev = &i2c->dev;
335
336 /* Before regmap register, configure HW enable to make I2C accessible */
337 priv->enable_gpio = devm_gpiod_get(&i2c->dev, "enable", GPIOD_OUT_HIGH);
338 if (IS_ERR(priv->enable_gpio)) {
339 dev_err(&i2c->dev, "Failed to get enable gpio\n");
340 return PTR_ERR(priv->enable_gpio);
341 }
342
343 /* Wait for I2C can be accessed */
344 usleep_range(RTMV20_I2CRDY_TIMEUS, RTMV20_I2CRDY_TIMEUS + 100);
345
346 priv->regmap = devm_regmap_init_i2c(i2c, &rtmv20_regmap_config);
347 if (IS_ERR(priv->regmap)) {
348 dev_err(&i2c->dev, "Failed to allocate register map\n");
349 return PTR_ERR(priv->regmap);
350 }
351
352 ret = rtmv20_check_chip_exist(priv);
353 if (ret) {
354 dev_err(&i2c->dev, "Chip vendor info is not matched\n");
355 return ret;
356 }
357
358 ret = rtmv20_properties_init(priv);
359 if (ret) {
360 dev_err(&i2c->dev, "Failed to init properties\n");
361 return ret;
362 }
363
364 /*
365 * keep in shutdown mode to minimize the current consumption
366 * and also mark regcache as dirty
367 */
368 regcache_cache_only(priv->regmap, true);
369 regcache_mark_dirty(priv->regmap);
370 gpiod_set_value(priv->enable_gpio, 0);
371
372 config.dev = &i2c->dev;
373 config.regmap = priv->regmap;
374 config.driver_data = priv;
375 priv->rdev = devm_regulator_register(&i2c->dev, &rtmv20_lsw_desc, &config);
376 if (IS_ERR(priv->rdev)) {
377 dev_err(&i2c->dev, "Failed to register regulator\n");
378 return PTR_ERR(priv->rdev);
379 }
380
381 /* Unmask all events before IRQ registered */
382 ret = regmap_write(priv->regmap, RTMV20_REG_LDMASK, 0);
383 if (ret)
384 return ret;
385
386 return devm_request_threaded_irq(&i2c->dev, i2c->irq, NULL, rtmv20_irq_handler,
387 IRQF_ONESHOT, dev_name(&i2c->dev), priv);
388 }
389
rtmv20_suspend(struct device * dev)390 static int __maybe_unused rtmv20_suspend(struct device *dev)
391 {
392 struct i2c_client *i2c = to_i2c_client(dev);
393
394 /*
395 * When system suspend, disable irq to prevent interrupt trigger
396 * during I2C bus suspend
397 */
398 disable_irq(i2c->irq);
399 if (device_may_wakeup(dev))
400 enable_irq_wake(i2c->irq);
401
402 return 0;
403 }
404
rtmv20_resume(struct device * dev)405 static int __maybe_unused rtmv20_resume(struct device *dev)
406 {
407 struct i2c_client *i2c = to_i2c_client(dev);
408
409 /* Enable irq after I2C bus already resume */
410 enable_irq(i2c->irq);
411 if (device_may_wakeup(dev))
412 disable_irq_wake(i2c->irq);
413
414 return 0;
415 }
416
417 static SIMPLE_DEV_PM_OPS(rtmv20_pm, rtmv20_suspend, rtmv20_resume);
418
419 static const struct of_device_id __maybe_unused rtmv20_of_id[] = {
420 { .compatible = "richtek,rtmv20", },
421 {}
422 };
423 MODULE_DEVICE_TABLE(of, rtmv20_of_id);
424
425 static struct i2c_driver rtmv20_driver = {
426 .driver = {
427 .name = "rtmv20",
428 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
429 .of_match_table = of_match_ptr(rtmv20_of_id),
430 .pm = &rtmv20_pm,
431 },
432 .probe = rtmv20_probe,
433 };
434 module_i2c_driver(rtmv20_driver);
435
436 MODULE_AUTHOR("ChiYuan Huang <cy_huang@richtek.com>");
437 MODULE_DESCRIPTION("Richtek RTMV20 Regulator Driver");
438 MODULE_LICENSE("GPL v2");
439