xref: /linux/include/linux/blk-mq.h (revision 5e2fde1a9433efc484a5feec36f748aa3ea58c85)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_MQ_H
3 #define BLK_MQ_H
4 
5 #include <linux/blkdev.h>
6 #include <linux/sbitmap.h>
7 #include <linux/lockdep.h>
8 #include <linux/scatterlist.h>
9 #include <linux/prefetch.h>
10 #include <linux/srcu.h>
11 #include <linux/rw_hint.h>
12 #include <linux/rwsem.h>
13 
14 struct blk_mq_tags;
15 struct blk_flush_queue;
16 struct io_comp_batch;
17 
18 #define BLKDEV_MIN_RQ	4
19 #define BLKDEV_DEFAULT_RQ	128
20 
21 enum rq_end_io_ret {
22 	RQ_END_IO_NONE,
23 	RQ_END_IO_FREE,
24 };
25 
26 typedef enum rq_end_io_ret (rq_end_io_fn)(struct request *, blk_status_t,
27 					  const struct io_comp_batch *);
28 
29 /*
30  * request flags */
31 typedef __u32 __bitwise req_flags_t;
32 
33 /* Keep rqf_name[] in sync with the definitions below */
34 enum rqf_flags {
35 	/* drive already may have started this one */
36 	__RQF_STARTED,
37 	/* request for flush sequence */
38 	__RQF_FLUSH_SEQ,
39 	/* merge of different types, fail separately */
40 	__RQF_MIXED_MERGE,
41 	/* don't call prep for this one */
42 	__RQF_DONTPREP,
43 	/* use hctx->sched_tags */
44 	__RQF_SCHED_TAGS,
45 	/* use an I/O scheduler for this request */
46 	__RQF_USE_SCHED,
47 	/* vaguely specified driver internal error.  Ignored by block layer */
48 	__RQF_FAILED,
49 	/* don't warn about errors */
50 	__RQF_QUIET,
51 	/* account into disk and partition IO statistics */
52 	__RQF_IO_STAT,
53 	/* runtime pm request */
54 	__RQF_PM,
55 	/* on IO scheduler merge hash */
56 	__RQF_HASHED,
57 	/* track IO completion time */
58 	__RQF_STATS,
59 	/* Look at ->special_vec for the actual data payload instead of the
60 	   bio chain. */
61 	__RQF_SPECIAL_PAYLOAD,
62 	/* request completion needs to be signaled to zone write plugging. */
63 	__RQF_ZONE_WRITE_PLUGGING,
64 	/* ->timeout has been called, don't expire again */
65 	__RQF_TIMED_OUT,
66 	__RQF_RESV,
67 	__RQF_BITS
68 };
69 
70 #define RQF_STARTED		((__force req_flags_t)(1 << __RQF_STARTED))
71 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << __RQF_FLUSH_SEQ))
72 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << __RQF_MIXED_MERGE))
73 #define RQF_DONTPREP		((__force req_flags_t)(1 << __RQF_DONTPREP))
74 #define RQF_SCHED_TAGS		((__force req_flags_t)(1 << __RQF_SCHED_TAGS))
75 #define RQF_USE_SCHED		((__force req_flags_t)(1 << __RQF_USE_SCHED))
76 #define RQF_FAILED		((__force req_flags_t)(1 << __RQF_FAILED))
77 #define RQF_QUIET		((__force req_flags_t)(1 << __RQF_QUIET))
78 #define RQF_IO_STAT		((__force req_flags_t)(1 << __RQF_IO_STAT))
79 #define RQF_PM			((__force req_flags_t)(1 << __RQF_PM))
80 #define RQF_HASHED		((__force req_flags_t)(1 << __RQF_HASHED))
81 #define RQF_STATS		((__force req_flags_t)(1 << __RQF_STATS))
82 #define RQF_SPECIAL_PAYLOAD	\
83 			((__force req_flags_t)(1 << __RQF_SPECIAL_PAYLOAD))
84 #define RQF_ZONE_WRITE_PLUGGING	\
85 			((__force req_flags_t)(1 << __RQF_ZONE_WRITE_PLUGGING))
86 #define RQF_TIMED_OUT		((__force req_flags_t)(1 << __RQF_TIMED_OUT))
87 #define RQF_RESV		((__force req_flags_t)(1 << __RQF_RESV))
88 
89 /* flags that prevent us from merging requests: */
90 #define RQF_NOMERGE_FLAGS \
91 	(RQF_STARTED | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
92 
93 enum mq_rq_state {
94 	MQ_RQ_IDLE		= 0,
95 	MQ_RQ_IN_FLIGHT		= 1,
96 	MQ_RQ_COMPLETE		= 2,
97 };
98 
99 /*
100  * Try to put the fields that are referenced together in the same cacheline.
101  *
102  * If you modify this structure, make sure to update blk_rq_init() and
103  * especially blk_mq_rq_ctx_init() to take care of the added fields.
104  */
105 struct request {
106 	struct request_queue *q;
107 	struct blk_mq_ctx *mq_ctx;
108 	struct blk_mq_hw_ctx *mq_hctx;
109 
110 	blk_opf_t cmd_flags;		/* op and common flags */
111 	req_flags_t rq_flags;
112 
113 	int tag;
114 	int internal_tag;
115 
116 	unsigned int timeout;
117 
118 	/* the following two fields are internal, NEVER access directly */
119 	unsigned int __data_len;	/* total data len */
120 	sector_t __sector;		/* sector cursor */
121 
122 	struct bio *bio;
123 	struct bio *biotail;
124 
125 	union {
126 		struct list_head queuelist;
127 		struct request *rq_next;
128 	};
129 
130 	struct block_device *part;
131 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
132 	/* Time that the first bio started allocating this request. */
133 	u64 alloc_time_ns;
134 #endif
135 	/* Time that this request was allocated for this IO. */
136 	u64 start_time_ns;
137 	/* Time that I/O was submitted to the device. */
138 	u64 io_start_time_ns;
139 
140 #ifdef CONFIG_BLK_WBT
141 	unsigned short wbt_flags;
142 #endif
143 	/*
144 	 * rq sectors used for blk stats. It has the same value
145 	 * with blk_rq_sectors(rq), except that it never be zeroed
146 	 * by completion.
147 	 */
148 	unsigned short stats_sectors;
149 
150 	/*
151 	 * Number of scatter-gather DMA addr+len pairs after
152 	 * physical address coalescing is performed.
153 	 */
154 	unsigned short nr_phys_segments;
155 	unsigned short nr_integrity_segments;
156 
157 	/*
158 	 * The lowest set bit for address gaps between physical segments. This
159 	 * provides information necessary for dma optimization opprotunities,
160 	 * like for testing if the segments can be coalesced against the
161 	 * device's iommu granule.
162 	 */
163 	unsigned char phys_gap_bit;
164 
165 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
166 	struct bio_crypt_ctx *crypt_ctx;
167 	struct blk_crypto_keyslot *crypt_keyslot;
168 #endif
169 
170 	enum mq_rq_state state;
171 	atomic_t ref;
172 
173 	unsigned long deadline;
174 
175 	/*
176 	 * The hash is used inside the scheduler, and killed once the
177 	 * request reaches the dispatch list. The ipi_list is only used
178 	 * to queue the request for softirq completion, which is long
179 	 * after the request has been unhashed (and even removed from
180 	 * the dispatch list).
181 	 */
182 	union {
183 		struct hlist_node hash;	/* merge hash */
184 		struct llist_node ipi_list;
185 	};
186 
187 	/*
188 	 * The rb_node is only used inside the io scheduler, requests
189 	 * are pruned when moved to the dispatch queue. special_vec must
190 	 * only be used if RQF_SPECIAL_PAYLOAD is set, and those cannot be
191 	 * insert into an IO scheduler.
192 	 */
193 	union {
194 		struct rb_node rb_node;	/* sort/lookup */
195 		struct bio_vec special_vec;
196 	};
197 
198 	/*
199 	 * Three pointers are available for the IO schedulers, if they need
200 	 * more they have to dynamically allocate it.
201 	 */
202 	struct {
203 		struct io_cq		*icq;
204 		void			*priv[2];
205 	} elv;
206 
207 	struct {
208 		unsigned int		seq;
209 		rq_end_io_fn		*saved_end_io;
210 	} flush;
211 
212 	u64 fifo_time;
213 
214 	/*
215 	 * completion callback.
216 	 */
217 	rq_end_io_fn *end_io;
218 	void *end_io_data;
219 };
220 
221 /*
222  * Returns a mask with all bits starting at req->phys_gap_bit set to 1.
223  */
224 static inline unsigned long req_phys_gap_mask(const struct request *req)
225 {
226 	return ~(((1 << req->phys_gap_bit) >> 1) - 1);
227 }
228 
229 static inline enum req_op req_op(const struct request *req)
230 {
231 	return req->cmd_flags & REQ_OP_MASK;
232 }
233 
234 static inline bool blk_rq_is_passthrough(struct request *rq)
235 {
236 	return blk_op_is_passthrough(rq->cmd_flags);
237 }
238 
239 static inline unsigned short req_get_ioprio(struct request *req)
240 {
241 	if (req->bio)
242 		return req->bio->bi_ioprio;
243 	return 0;
244 }
245 
246 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
247 
248 #define rq_dma_dir(rq) \
249 	(op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
250 
251 static inline int rq_list_empty(const struct rq_list *rl)
252 {
253 	return rl->head == NULL;
254 }
255 
256 static inline void rq_list_init(struct rq_list *rl)
257 {
258 	rl->head = NULL;
259 	rl->tail = NULL;
260 }
261 
262 static inline void rq_list_add_tail(struct rq_list *rl, struct request *rq)
263 {
264 	rq->rq_next = NULL;
265 	if (rl->tail)
266 		rl->tail->rq_next = rq;
267 	else
268 		rl->head = rq;
269 	rl->tail = rq;
270 }
271 
272 static inline void rq_list_add_head(struct rq_list *rl, struct request *rq)
273 {
274 	rq->rq_next = rl->head;
275 	rl->head = rq;
276 	if (!rl->tail)
277 		rl->tail = rq;
278 }
279 
280 static inline struct request *rq_list_pop(struct rq_list *rl)
281 {
282 	struct request *rq = rl->head;
283 
284 	if (rq) {
285 		rl->head = rl->head->rq_next;
286 		if (!rl->head)
287 			rl->tail = NULL;
288 		rq->rq_next = NULL;
289 	}
290 
291 	return rq;
292 }
293 
294 static inline struct request *rq_list_peek(struct rq_list *rl)
295 {
296 	return rl->head;
297 }
298 
299 #define rq_list_for_each(rl, pos)					\
300 	for (pos = rq_list_peek((rl)); (pos); pos = pos->rq_next)
301 
302 #define rq_list_for_each_safe(rl, pos, nxt)				\
303 	for (pos = rq_list_peek((rl)), nxt = pos->rq_next;		\
304 		pos; pos = nxt, nxt = pos ? pos->rq_next : NULL)
305 
306 /**
307  * enum blk_eh_timer_return - How the timeout handler should proceed
308  * @BLK_EH_DONE: The block driver completed the command or will complete it at
309  *	a later time.
310  * @BLK_EH_RESET_TIMER: Reset the request timer and continue waiting for the
311  *	request to complete.
312  */
313 enum blk_eh_timer_return {
314 	BLK_EH_DONE,
315 	BLK_EH_RESET_TIMER,
316 };
317 
318 /**
319  * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
320  * block device
321  */
322 struct blk_mq_hw_ctx {
323 	struct {
324 		/** @lock: Protects the dispatch list. */
325 		spinlock_t		lock;
326 		/**
327 		 * @dispatch: Used for requests that are ready to be
328 		 * dispatched to the hardware but for some reason (e.g. lack of
329 		 * resources) could not be sent to the hardware. As soon as the
330 		 * driver can send new requests, requests at this list will
331 		 * be sent first for a fairer dispatch.
332 		 */
333 		struct list_head	dispatch;
334 		 /**
335 		  * @state: BLK_MQ_S_* flags. Defines the state of the hw
336 		  * queue (active, scheduled to restart, stopped).
337 		  */
338 		unsigned long		state;
339 	} ____cacheline_aligned_in_smp;
340 
341 	/**
342 	 * @run_work: Used for scheduling a hardware queue run at a later time.
343 	 */
344 	struct delayed_work	run_work;
345 	/** @cpumask: Map of available CPUs where this hctx can run. */
346 	cpumask_var_t		cpumask;
347 	/**
348 	 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
349 	 * selection from @cpumask.
350 	 */
351 	int			next_cpu;
352 	/**
353 	 * @next_cpu_batch: Counter of how many works left in the batch before
354 	 * changing to the next CPU.
355 	 */
356 	int			next_cpu_batch;
357 
358 	/** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
359 	unsigned long		flags;
360 
361 	/**
362 	 * @sched_data: Pointer owned by the IO scheduler attached to a request
363 	 * queue. It's up to the IO scheduler how to use this pointer.
364 	 */
365 	void			*sched_data;
366 	/**
367 	 * @queue: Pointer to the request queue that owns this hardware context.
368 	 */
369 	struct request_queue	*queue;
370 	/** @fq: Queue of requests that need to perform a flush operation. */
371 	struct blk_flush_queue	*fq;
372 
373 	/**
374 	 * @driver_data: Pointer to data owned by the block driver that created
375 	 * this hctx
376 	 */
377 	void			*driver_data;
378 
379 	/**
380 	 * @ctx_map: Bitmap for each software queue. If bit is on, there is a
381 	 * pending request in that software queue.
382 	 */
383 	struct sbitmap		ctx_map;
384 
385 	/**
386 	 * @dispatch_from: Software queue to be used when no scheduler was
387 	 * selected.
388 	 */
389 	struct blk_mq_ctx	*dispatch_from;
390 	/**
391 	 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
392 	 * decide if the hw_queue is busy using Exponential Weighted Moving
393 	 * Average algorithm.
394 	 */
395 	unsigned int		dispatch_busy;
396 
397 	/** @type: HCTX_TYPE_* flags. Type of hardware queue. */
398 	unsigned short		type;
399 	/** @nr_ctx: Number of software queues. */
400 	unsigned short		nr_ctx;
401 	/** @ctxs: Array of software queues. */
402 	struct blk_mq_ctx	**ctxs;
403 
404 	/** @dispatch_wait_lock: Lock for dispatch_wait queue. */
405 	spinlock_t		dispatch_wait_lock;
406 	/**
407 	 * @dispatch_wait: Waitqueue to put requests when there is no tag
408 	 * available at the moment, to wait for another try in the future.
409 	 */
410 	wait_queue_entry_t	dispatch_wait;
411 
412 	/**
413 	 * @wait_index: Index of next available dispatch_wait queue to insert
414 	 * requests.
415 	 */
416 	atomic_t		wait_index;
417 
418 	/**
419 	 * @tags: Tags owned by the block driver. A tag at this set is only
420 	 * assigned when a request is dispatched from a hardware queue.
421 	 */
422 	struct blk_mq_tags	*tags;
423 	/**
424 	 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O
425 	 * scheduler associated with a request queue, a tag is assigned when
426 	 * that request is allocated. Else, this member is not used.
427 	 */
428 	struct blk_mq_tags	*sched_tags;
429 
430 	/** @numa_node: NUMA node the storage adapter has been connected to. */
431 	unsigned int		numa_node;
432 	/** @queue_num: Index of this hardware queue. */
433 	unsigned int		queue_num;
434 
435 	/**
436 	 * @nr_active: Number of active requests. Only used when a tag set is
437 	 * shared across request queues.
438 	 */
439 	atomic_t		nr_active;
440 
441 	/** @cpuhp_online: List to store request if CPU is going to die */
442 	struct hlist_node	cpuhp_online;
443 	/** @cpuhp_dead: List to store request if some CPU die. */
444 	struct hlist_node	cpuhp_dead;
445 	/** @kobj: Kernel object for sysfs. */
446 	struct kobject		kobj;
447 
448 #ifdef CONFIG_BLK_DEBUG_FS
449 	/**
450 	 * @debugfs_dir: debugfs directory for this hardware queue. Named
451 	 * as cpu<cpu_number>.
452 	 */
453 	struct dentry		*debugfs_dir;
454 	/** @sched_debugfs_dir:	debugfs directory for the scheduler. */
455 	struct dentry		*sched_debugfs_dir;
456 #endif
457 
458 	/**
459 	 * @hctx_list: if this hctx is not in use, this is an entry in
460 	 * q->unused_hctx_list.
461 	 */
462 	struct list_head	hctx_list;
463 };
464 
465 /**
466  * struct blk_mq_queue_map - Map software queues to hardware queues
467  * @mq_map:       CPU ID to hardware queue index map. This is an array
468  *	with nr_cpu_ids elements. Each element has a value in the range
469  *	[@queue_offset, @queue_offset + @nr_queues).
470  * @nr_queues:    Number of hardware queues to map CPU IDs onto.
471  * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
472  *	driver to map each hardware queue type (enum hctx_type) onto a distinct
473  *	set of hardware queues.
474  */
475 struct blk_mq_queue_map {
476 	unsigned int *mq_map;
477 	unsigned int nr_queues;
478 	unsigned int queue_offset;
479 };
480 
481 /**
482  * enum hctx_type - Type of hardware queue
483  * @HCTX_TYPE_DEFAULT:	All I/O not otherwise accounted for.
484  * @HCTX_TYPE_READ:	Just for READ I/O.
485  * @HCTX_TYPE_POLL:	Polled I/O of any kind.
486  * @HCTX_MAX_TYPES:	Number of types of hctx.
487  */
488 enum hctx_type {
489 	HCTX_TYPE_DEFAULT,
490 	HCTX_TYPE_READ,
491 	HCTX_TYPE_POLL,
492 
493 	HCTX_MAX_TYPES,
494 };
495 
496 /**
497  * struct blk_mq_tag_set - tag set that can be shared between request queues
498  * @ops:	   Pointers to functions that implement block driver behavior.
499  * @map:	   One or more ctx -> hctx mappings. One map exists for each
500  *		   hardware queue type (enum hctx_type) that the driver wishes
501  *		   to support. There are no restrictions on maps being of the
502  *		   same size, and it's perfectly legal to share maps between
503  *		   types.
504  * @nr_maps:	   Number of elements in the @map array. A number in the range
505  *		   [1, HCTX_MAX_TYPES].
506  * @nr_hw_queues:  Number of hardware queues supported by the block driver that
507  *		   owns this data structure.
508  * @queue_depth:   Number of tags per hardware queue, reserved tags included.
509  * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
510  *		   allocations.
511  * @cmd_size:	   Number of additional bytes to allocate per request. The block
512  *		   driver owns these additional bytes.
513  * @numa_node:	   NUMA node the storage adapter has been connected to.
514  * @timeout:	   Request processing timeout in jiffies.
515  * @flags:	   Zero or more BLK_MQ_F_* flags.
516  * @driver_data:   Pointer to data owned by the block driver that created this
517  *		   tag set.
518  * @tags:	   Tag sets. One tag set per hardware queue. Has @nr_hw_queues
519  *		   elements.
520  * @shared_tags:
521  *		   Shared set of tags. Has @nr_hw_queues elements. If set,
522  *		   shared by all @tags.
523  * @tag_list_lock: Serializes tag_list accesses.
524  * @tag_list:	   List of the request queues that use this tag set. See also
525  *		   request_queue.tag_set_list.
526  * @srcu:	   Use as lock when type of the request queue is blocking
527  *		   (BLK_MQ_F_BLOCKING).
528  * @tags_srcu:	   SRCU used to defer freeing of tags page_list to prevent
529  *		   use-after-free when iterating tags.
530  * @update_nr_hwq_lock:
531  * 		   Synchronize updating nr_hw_queues with add/del disk &
532  * 		   switching elevator.
533  */
534 struct blk_mq_tag_set {
535 	const struct blk_mq_ops	*ops;
536 	struct blk_mq_queue_map	map[HCTX_MAX_TYPES];
537 	unsigned int		nr_maps;
538 	unsigned int		nr_hw_queues;
539 	unsigned int		queue_depth;
540 	unsigned int		reserved_tags;
541 	unsigned int		cmd_size;
542 	int			numa_node;
543 	unsigned int		timeout;
544 	unsigned int		flags;
545 	void			*driver_data;
546 
547 	struct blk_mq_tags	**tags;
548 
549 	struct blk_mq_tags	*shared_tags;
550 
551 	struct mutex		tag_list_lock;
552 	struct list_head	tag_list;
553 	struct srcu_struct	*srcu;
554 	struct srcu_struct	tags_srcu;
555 
556 	struct rw_semaphore	update_nr_hwq_lock;
557 };
558 
559 /**
560  * struct blk_mq_queue_data - Data about a request inserted in a queue
561  *
562  * @rq:   Request pointer.
563  * @last: If it is the last request in the queue.
564  */
565 struct blk_mq_queue_data {
566 	struct request *rq;
567 	bool last;
568 };
569 
570 typedef bool (busy_tag_iter_fn)(struct request *, void *);
571 
572 /**
573  * struct blk_mq_ops - Callback functions that implements block driver
574  * behaviour.
575  */
576 struct blk_mq_ops {
577 	/**
578 	 * @queue_rq: Queue a new request from block IO.
579 	 */
580 	blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
581 				 const struct blk_mq_queue_data *);
582 
583 	/**
584 	 * @commit_rqs: If a driver uses bd->last to judge when to submit
585 	 * requests to hardware, it must define this function. In case of errors
586 	 * that make us stop issuing further requests, this hook serves the
587 	 * purpose of kicking the hardware (which the last request otherwise
588 	 * would have done).
589 	 */
590 	void (*commit_rqs)(struct blk_mq_hw_ctx *);
591 
592 	/**
593 	 * @queue_rqs: Queue a list of new requests. Driver is guaranteed
594 	 * that each request belongs to the same queue. If the driver doesn't
595 	 * empty the @rqlist completely, then the rest will be queued
596 	 * individually by the block layer upon return.
597 	 */
598 	void (*queue_rqs)(struct rq_list *rqlist);
599 
600 	/**
601 	 * @get_budget: Reserve budget before queue request, once .queue_rq is
602 	 * run, it is driver's responsibility to release the
603 	 * reserved budget. Also we have to handle failure case
604 	 * of .get_budget for avoiding I/O deadlock.
605 	 */
606 	int (*get_budget)(struct request_queue *);
607 
608 	/**
609 	 * @put_budget: Release the reserved budget.
610 	 */
611 	void (*put_budget)(struct request_queue *, int);
612 
613 	/**
614 	 * @set_rq_budget_token: store rq's budget token
615 	 */
616 	void (*set_rq_budget_token)(struct request *, int);
617 	/**
618 	 * @get_rq_budget_token: retrieve rq's budget token
619 	 */
620 	int (*get_rq_budget_token)(struct request *);
621 
622 	/**
623 	 * @timeout: Called on request timeout.
624 	 */
625 	enum blk_eh_timer_return (*timeout)(struct request *);
626 
627 	/**
628 	 * @poll: Called to poll for completion of a specific tag.
629 	 */
630 	int (*poll)(struct blk_mq_hw_ctx *, struct io_comp_batch *);
631 
632 	/**
633 	 * @complete: Mark the request as complete.
634 	 */
635 	void (*complete)(struct request *);
636 
637 	/**
638 	 * @init_hctx: Called when the block layer side of a hardware queue has
639 	 * been set up, allowing the driver to allocate/init matching
640 	 * structures.
641 	 */
642 	int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);
643 	/**
644 	 * @exit_hctx: Ditto for exit/teardown.
645 	 */
646 	void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
647 
648 	/**
649 	 * @init_request: Called for every command allocated by the block layer
650 	 * to allow the driver to set up driver specific data.
651 	 *
652 	 * Tag greater than or equal to queue_depth is for setting up
653 	 * flush request.
654 	 */
655 	int (*init_request)(struct blk_mq_tag_set *set, struct request *,
656 			    unsigned int, unsigned int);
657 	/**
658 	 * @exit_request: Ditto for exit/teardown.
659 	 */
660 	void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
661 			     unsigned int);
662 
663 	/**
664 	 * @cleanup_rq: Called before freeing one request which isn't completed
665 	 * yet, and usually for freeing the driver private data.
666 	 */
667 	void (*cleanup_rq)(struct request *);
668 
669 	/**
670 	 * @busy: If set, returns whether or not this queue currently is busy.
671 	 */
672 	bool (*busy)(struct request_queue *);
673 
674 	/**
675 	 * @map_queues: This allows drivers specify their own queue mapping by
676 	 * overriding the setup-time function that builds the mq_map.
677 	 */
678 	void (*map_queues)(struct blk_mq_tag_set *set);
679 
680 #ifdef CONFIG_BLK_DEBUG_FS
681 	/**
682 	 * @show_rq: Used by the debugfs implementation to show driver-specific
683 	 * information about a request.
684 	 */
685 	void (*show_rq)(struct seq_file *m, struct request *rq);
686 #endif
687 };
688 
689 /* Keep hctx_flag_name[] in sync with the definitions below */
690 enum {
691 	BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1,
692 	/*
693 	 * Set when this device requires underlying blk-mq device for
694 	 * completing IO:
695 	 */
696 	BLK_MQ_F_STACKING	= 1 << 2,
697 	BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3,
698 	BLK_MQ_F_BLOCKING	= 1 << 4,
699 
700 	/*
701 	 * Alloc tags on a round-robin base instead of the first available one.
702 	 */
703 	BLK_MQ_F_TAG_RR		= 1 << 5,
704 
705 	/*
706 	 * Select 'none' during queue registration in case of a single hwq
707 	 * or shared hwqs instead of 'mq-deadline'.
708 	 */
709 	BLK_MQ_F_NO_SCHED_BY_DEFAULT	= 1 << 6,
710 
711 	BLK_MQ_F_MAX = 1 << 7,
712 };
713 
714 #define BLK_MQ_MAX_DEPTH	(10240)
715 #define BLK_MQ_NO_HCTX_IDX	(-1U)
716 
717 enum {
718 	/* Keep hctx_state_name[] in sync with the definitions below */
719 	BLK_MQ_S_STOPPED,
720 	BLK_MQ_S_TAG_ACTIVE,
721 	BLK_MQ_S_SCHED_RESTART,
722 	/* hw queue is inactive after all its CPUs become offline */
723 	BLK_MQ_S_INACTIVE,
724 	BLK_MQ_S_MAX
725 };
726 
727 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
728 		struct queue_limits *lim, void *queuedata,
729 		struct lock_class_key *lkclass);
730 #define blk_mq_alloc_disk(set, lim, queuedata)				\
731 ({									\
732 	static struct lock_class_key __key;				\
733 									\
734 	__blk_mq_alloc_disk(set, lim, queuedata, &__key);		\
735 })
736 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
737 		struct lock_class_key *lkclass);
738 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
739 		struct queue_limits *lim, void *queuedata);
740 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
741 		struct request_queue *q);
742 void blk_mq_destroy_queue(struct request_queue *);
743 
744 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
745 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
746 		const struct blk_mq_ops *ops, unsigned int queue_depth,
747 		unsigned int set_flags);
748 void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
749 
750 void blk_mq_free_request(struct request *rq);
751 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
752 		unsigned int poll_flags);
753 
754 bool blk_mq_queue_inflight(struct request_queue *q);
755 
756 enum {
757 	/* return when out of requests */
758 	BLK_MQ_REQ_NOWAIT	= (__force blk_mq_req_flags_t)(1 << 0),
759 	/* allocate from reserved pool */
760 	BLK_MQ_REQ_RESERVED	= (__force blk_mq_req_flags_t)(1 << 1),
761 	/* set RQF_PM */
762 	BLK_MQ_REQ_PM		= (__force blk_mq_req_flags_t)(1 << 2),
763 };
764 
765 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
766 		blk_mq_req_flags_t flags);
767 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
768 		blk_opf_t opf, blk_mq_req_flags_t flags,
769 		unsigned int hctx_idx);
770 
771 /*
772  * Tag address space map.
773  */
774 struct blk_mq_tags {
775 	unsigned int nr_tags;
776 	unsigned int nr_reserved_tags;
777 	unsigned int active_queues;
778 
779 	struct sbitmap_queue bitmap_tags;
780 	struct sbitmap_queue breserved_tags;
781 
782 	struct request **rqs;
783 	struct request **static_rqs;
784 	struct list_head page_list;
785 
786 	/*
787 	 * used to clear request reference in rqs[] before freeing one
788 	 * request pool
789 	 */
790 	spinlock_t lock;
791 	struct rcu_head rcu_head;
792 };
793 
794 static inline struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags,
795 					       unsigned int tag)
796 {
797 	if (tag < tags->nr_tags) {
798 		prefetch(tags->rqs[tag]);
799 		return tags->rqs[tag];
800 	}
801 
802 	return NULL;
803 }
804 
805 enum {
806 	BLK_MQ_UNIQUE_TAG_BITS = 16,
807 	BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
808 };
809 
810 u32 blk_mq_unique_tag(struct request *rq);
811 
812 static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
813 {
814 	return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
815 }
816 
817 static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
818 {
819 	return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
820 }
821 
822 /**
823  * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
824  * @rq: target request.
825  */
826 static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
827 {
828 	return READ_ONCE(rq->state);
829 }
830 
831 static inline int blk_mq_request_started(struct request *rq)
832 {
833 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
834 }
835 
836 static inline int blk_mq_request_completed(struct request *rq)
837 {
838 	return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
839 }
840 
841 /*
842  *
843  * Set the state to complete when completing a request from inside ->queue_rq.
844  * This is used by drivers that want to ensure special complete actions that
845  * need access to the request are called on failure, e.g. by nvme for
846  * multipathing.
847  */
848 static inline void blk_mq_set_request_complete(struct request *rq)
849 {
850 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
851 }
852 
853 /*
854  * Complete the request directly instead of deferring it to softirq or
855  * completing it another CPU. Useful in preemptible instead of an interrupt.
856  */
857 static inline void blk_mq_complete_request_direct(struct request *rq,
858 		   void (*complete)(struct request *rq))
859 {
860 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
861 	complete(rq);
862 }
863 
864 void blk_mq_start_request(struct request *rq);
865 void blk_mq_end_request(struct request *rq, blk_status_t error);
866 void __blk_mq_end_request(struct request *rq, blk_status_t error);
867 void blk_mq_end_request_batch(struct io_comp_batch *ib);
868 
869 /*
870  * Only need start/end time stamping if we have iostat or
871  * blk stats enabled, or using an IO scheduler.
872  */
873 static inline bool blk_mq_need_time_stamp(struct request *rq)
874 {
875 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS | RQF_USE_SCHED));
876 }
877 
878 static inline bool blk_mq_is_reserved_rq(struct request *rq)
879 {
880 	return rq->rq_flags & RQF_RESV;
881 }
882 
883 /**
884  * blk_mq_add_to_batch() - add a request to the completion batch
885  * @req: The request to add to batch
886  * @iob: The batch to add the request
887  * @is_error: Specify true if the request failed with an error
888  * @complete: The completaion handler for the request
889  *
890  * Batched completions only work when there is no I/O error and no special
891  * ->end_io handler.
892  *
893  * Return: true when the request was added to the batch, otherwise false
894  */
895 static inline bool blk_mq_add_to_batch(struct request *req,
896 				       struct io_comp_batch *iob, bool is_error,
897 				       void (*complete)(struct io_comp_batch *))
898 {
899 	/*
900 	 * Check various conditions that exclude batch processing:
901 	 * 1) No batch container
902 	 * 2) Has scheduler data attached
903 	 * 3) Not a passthrough request and end_io set
904 	 * 4) Not a passthrough request and failed with an error
905 	 */
906 	if (!iob)
907 		return false;
908 	if (req->rq_flags & RQF_SCHED_TAGS)
909 		return false;
910 	if (!blk_rq_is_passthrough(req)) {
911 		if (req->end_io)
912 			return false;
913 		if (is_error)
914 			return false;
915 	}
916 
917 	if (!iob->complete)
918 		iob->complete = complete;
919 	else if (iob->complete != complete)
920 		return false;
921 	iob->need_ts |= blk_mq_need_time_stamp(req);
922 	rq_list_add_tail(&iob->req_list, req);
923 	return true;
924 }
925 
926 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
927 void blk_mq_kick_requeue_list(struct request_queue *q);
928 void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
929 void blk_mq_complete_request(struct request *rq);
930 bool blk_mq_complete_request_remote(struct request *rq);
931 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
932 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
933 void blk_mq_stop_hw_queues(struct request_queue *q);
934 void blk_mq_start_hw_queues(struct request_queue *q);
935 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
936 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
937 void blk_mq_quiesce_queue(struct request_queue *q);
938 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set);
939 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set);
940 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set);
941 void blk_mq_unquiesce_queue(struct request_queue *q);
942 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
943 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
944 void blk_mq_run_hw_queues(struct request_queue *q, bool async);
945 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs);
946 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
947 		busy_tag_iter_fn *fn, void *priv);
948 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
949 void blk_mq_freeze_queue_nomemsave(struct request_queue *q);
950 void blk_mq_unfreeze_queue_nomemrestore(struct request_queue *q);
951 static inline unsigned int __must_check
952 blk_mq_freeze_queue(struct request_queue *q)
953 {
954 	unsigned int memflags = memalloc_noio_save();
955 
956 	blk_mq_freeze_queue_nomemsave(q);
957 	return memflags;
958 }
959 static inline void
960 blk_mq_unfreeze_queue(struct request_queue *q, unsigned int memflags)
961 {
962 	blk_mq_unfreeze_queue_nomemrestore(q);
963 	memalloc_noio_restore(memflags);
964 }
965 void blk_freeze_queue_start(struct request_queue *q);
966 void blk_mq_freeze_queue_wait(struct request_queue *q);
967 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
968 				     unsigned long timeout);
969 void blk_mq_unfreeze_queue_non_owner(struct request_queue *q);
970 void blk_freeze_queue_start_non_owner(struct request_queue *q);
971 
972 unsigned int blk_mq_num_possible_queues(unsigned int max_queues);
973 unsigned int blk_mq_num_online_queues(unsigned int max_queues);
974 void blk_mq_map_queues(struct blk_mq_queue_map *qmap);
975 void blk_mq_map_hw_queues(struct blk_mq_queue_map *qmap,
976 			  struct device *dev, unsigned int offset);
977 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
978 
979 void blk_mq_quiesce_queue_nowait(struct request_queue *q);
980 
981 unsigned int blk_mq_rq_cpu(struct request *rq);
982 
983 bool __blk_should_fake_timeout(struct request_queue *q);
984 static inline bool blk_should_fake_timeout(struct request_queue *q)
985 {
986 	if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) &&
987 	    test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
988 		return __blk_should_fake_timeout(q);
989 	return false;
990 }
991 
992 /**
993  * blk_mq_rq_from_pdu - cast a PDU to a request
994  * @pdu: the PDU (Protocol Data Unit) to be casted
995  *
996  * Return: request
997  *
998  * Driver command data is immediately after the request. So subtract request
999  * size to get back to the original request.
1000  */
1001 static inline struct request *blk_mq_rq_from_pdu(void *pdu)
1002 {
1003 	return pdu - sizeof(struct request);
1004 }
1005 
1006 /**
1007  * blk_mq_rq_to_pdu - cast a request to a PDU
1008  * @rq: the request to be casted
1009  *
1010  * Return: pointer to the PDU
1011  *
1012  * Driver command data is immediately after the request. So add request to get
1013  * the PDU.
1014  */
1015 static inline void *blk_mq_rq_to_pdu(struct request *rq)
1016 {
1017 	return rq + 1;
1018 }
1019 
1020 static inline struct blk_mq_hw_ctx *queue_hctx(struct request_queue *q, int id)
1021 {
1022 	struct blk_mq_hw_ctx *hctx;
1023 
1024 	rcu_read_lock();
1025 	hctx = rcu_dereference(q->queue_hw_ctx)[id];
1026 	rcu_read_unlock();
1027 
1028 	return hctx;
1029 }
1030 
1031 #define queue_for_each_hw_ctx(q, hctx, i)				\
1032 	for ((i) = 0; (i) < (q)->nr_hw_queues &&			\
1033 	     ({ hctx = queue_hctx((q), i); 1; }); (i)++)
1034 
1035 #define hctx_for_each_ctx(hctx, ctx, i)					\
1036 	for ((i) = 0; (i) < (hctx)->nr_ctx &&				\
1037 	     ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
1038 
1039 static inline void blk_mq_cleanup_rq(struct request *rq)
1040 {
1041 	if (rq->q->mq_ops->cleanup_rq)
1042 		rq->q->mq_ops->cleanup_rq(rq);
1043 }
1044 
1045 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
1046 		struct lock_class_key *key);
1047 
1048 static inline bool rq_is_sync(struct request *rq)
1049 {
1050 	return op_is_sync(rq->cmd_flags);
1051 }
1052 
1053 void blk_rq_init(struct request_queue *q, struct request *rq);
1054 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1055 		struct bio_set *bs, gfp_t gfp_mask,
1056 		int (*bio_ctr)(struct bio *, struct bio *, void *), void *data);
1057 void blk_rq_unprep_clone(struct request *rq);
1058 blk_status_t blk_insert_cloned_request(struct request *rq);
1059 
1060 struct rq_map_data {
1061 	struct page **pages;
1062 	unsigned long offset;
1063 	unsigned short page_order;
1064 	unsigned short nr_entries;
1065 	bool null_mapped;
1066 	bool from_user;
1067 };
1068 
1069 int blk_rq_map_user(struct request_queue *, struct request *,
1070 		struct rq_map_data *, void __user *, unsigned long, gfp_t);
1071 int blk_rq_map_user_io(struct request *, struct rq_map_data *,
1072 		void __user *, unsigned long, gfp_t, bool, int, bool, int);
1073 int blk_rq_map_user_iov(struct request_queue *, struct request *,
1074 		struct rq_map_data *, const struct iov_iter *, gfp_t);
1075 int blk_rq_unmap_user(struct bio *);
1076 int blk_rq_map_kern(struct request *rq, void *kbuf, unsigned int len,
1077 		gfp_t gfp);
1078 int blk_rq_append_bio(struct request *rq, struct bio *bio);
1079 void blk_execute_rq_nowait(struct request *rq, bool at_head);
1080 blk_status_t blk_execute_rq(struct request *rq, bool at_head);
1081 bool blk_rq_is_poll(struct request *rq);
1082 
1083 struct req_iterator {
1084 	struct bvec_iter iter;
1085 	struct bio *bio;
1086 };
1087 
1088 #define __rq_for_each_bio(_bio, rq)	\
1089 	if ((rq->bio))			\
1090 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
1091 
1092 #define rq_for_each_segment(bvl, _rq, _iter)			\
1093 	__rq_for_each_bio(_iter.bio, _rq)			\
1094 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
1095 
1096 #define rq_for_each_bvec(bvl, _rq, _iter)			\
1097 	__rq_for_each_bio(_iter.bio, _rq)			\
1098 		bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
1099 
1100 #define rq_iter_last(bvec, _iter)				\
1101 		(_iter.bio->bi_next == NULL &&			\
1102 		 bio_iter_last(bvec, _iter.iter))
1103 
1104 /*
1105  * blk_rq_pos()			: the current sector
1106  * blk_rq_bytes()		: bytes left in the entire request
1107  * blk_rq_cur_bytes()		: bytes left in the current segment
1108  * blk_rq_sectors()		: sectors left in the entire request
1109  * blk_rq_cur_sectors()		: sectors left in the current segment
1110  * blk_rq_stats_sectors()	: sectors of the entire request used for stats
1111  */
1112 static inline sector_t blk_rq_pos(const struct request *rq)
1113 {
1114 	return rq->__sector;
1115 }
1116 
1117 static inline unsigned int blk_rq_bytes(const struct request *rq)
1118 {
1119 	return rq->__data_len;
1120 }
1121 
1122 static inline int blk_rq_cur_bytes(const struct request *rq)
1123 {
1124 	if (!rq->bio)
1125 		return 0;
1126 	if (!bio_has_data(rq->bio))	/* dataless requests such as discard */
1127 		return rq->bio->bi_iter.bi_size;
1128 	return bio_iovec(rq->bio).bv_len;
1129 }
1130 
1131 static inline unsigned int blk_rq_sectors(const struct request *rq)
1132 {
1133 	return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1134 }
1135 
1136 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1137 {
1138 	return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1139 }
1140 
1141 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1142 {
1143 	return rq->stats_sectors;
1144 }
1145 
1146 /*
1147  * Some commands like WRITE SAME have a payload or data transfer size which
1148  * is different from the size of the request.  Any driver that supports such
1149  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1150  * calculate the data transfer size.
1151  */
1152 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1153 {
1154 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1155 		return rq->special_vec.bv_len;
1156 	return blk_rq_bytes(rq);
1157 }
1158 
1159 /*
1160  * Return the first full biovec in the request.  The caller needs to check that
1161  * there are any bvecs before calling this helper.
1162  */
1163 static inline struct bio_vec req_bvec(struct request *rq)
1164 {
1165 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1166 		return rq->special_vec;
1167 	return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1168 }
1169 
1170 static inline unsigned int blk_rq_count_bios(struct request *rq)
1171 {
1172 	unsigned int nr_bios = 0;
1173 	struct bio *bio;
1174 
1175 	__rq_for_each_bio(bio, rq)
1176 		nr_bios++;
1177 
1178 	return nr_bios;
1179 }
1180 
1181 void blk_steal_bios(struct bio_list *list, struct request *rq);
1182 
1183 /*
1184  * Request completion related functions.
1185  *
1186  * blk_update_request() completes given number of bytes and updates
1187  * the request without completing it.
1188  */
1189 bool blk_update_request(struct request *rq, blk_status_t error,
1190 			       unsigned int nr_bytes);
1191 void blk_abort_request(struct request *);
1192 
1193 /*
1194  * Number of physical segments as sent to the device.
1195  *
1196  * Normally this is the number of discontiguous data segments sent by the
1197  * submitter.  But for data-less command like discard we might have no
1198  * actual data segments submitted, but the driver might have to add it's
1199  * own special payload.  In that case we still return 1 here so that this
1200  * special payload will be mapped.
1201  */
1202 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1203 {
1204 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1205 		return 1;
1206 	return rq->nr_phys_segments;
1207 }
1208 
1209 /*
1210  * Number of discard segments (or ranges) the driver needs to fill in.
1211  * Each discard bio merged into a request is counted as one segment.
1212  */
1213 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1214 {
1215 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1216 }
1217 
1218 /**
1219  * blk_rq_nr_bvec - return number of bvecs in a request
1220  * @rq: request to calculate bvecs for
1221  *
1222  * Returns the number of bvecs.
1223  */
1224 static inline unsigned int blk_rq_nr_bvec(struct request *rq)
1225 {
1226 	struct req_iterator rq_iter;
1227 	struct bio_vec bv;
1228 	unsigned int nr_bvec = 0;
1229 
1230 	rq_for_each_bvec(bv, rq, rq_iter)
1231 		nr_bvec++;
1232 
1233 	return nr_bvec;
1234 }
1235 
1236 int __blk_rq_map_sg(struct request *rq, struct scatterlist *sglist,
1237 		struct scatterlist **last_sg);
1238 static inline int blk_rq_map_sg(struct request *rq, struct scatterlist *sglist)
1239 {
1240 	struct scatterlist *last_sg = NULL;
1241 
1242 	return __blk_rq_map_sg(rq, sglist, &last_sg);
1243 }
1244 void blk_dump_rq_flags(struct request *, char *);
1245 
1246 #endif /* BLK_MQ_H */
1247