1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright 2009-2015 Freescale Semiconductor, Inc. and others
4 *
5 * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
6 * Jason ported to M54418TWR and MVFA5 (VF610).
7 * Authors: Stefan Agner <stefan.agner@toradex.com>
8 * Bill Pringlemeir <bpringlemeir@nbsps.com>
9 * Shaohui Xie <b21989@freescale.com>
10 * Jason Jin <Jason.jin@freescale.com>
11 *
12 * Based on original driver mpc5121_nfc.c.
13 *
14 * Limitations:
15 * - Untested on MPC5125 and M54418.
16 * - DMA and pipelining not used.
17 * - 2K pages or less.
18 * - HW ECC: Only 2K page with 64+ OOB.
19 * - HW ECC: Only 24 and 32-bit error correction implemented.
20 */
21
22 #include <linux/module.h>
23 #include <linux/bitops.h>
24 #include <linux/clk.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/rawnand.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/of.h>
33 #include <linux/platform_device.h>
34 #include <linux/property.h>
35 #include <linux/slab.h>
36 #include <linux/swab.h>
37
38 #define DRV_NAME "vf610_nfc"
39
40 /* Register Offsets */
41 #define NFC_FLASH_CMD1 0x3F00
42 #define NFC_FLASH_CMD2 0x3F04
43 #define NFC_COL_ADDR 0x3F08
44 #define NFC_ROW_ADDR 0x3F0c
45 #define NFC_ROW_ADDR_INC 0x3F14
46 #define NFC_FLASH_STATUS1 0x3F18
47 #define NFC_FLASH_STATUS2 0x3F1c
48 #define NFC_CACHE_SWAP 0x3F28
49 #define NFC_SECTOR_SIZE 0x3F2c
50 #define NFC_FLASH_CONFIG 0x3F30
51 #define NFC_IRQ_STATUS 0x3F38
52
53 /* Addresses for NFC MAIN RAM BUFFER areas */
54 #define NFC_MAIN_AREA(n) ((n) * 0x1000)
55
56 #define PAGE_2K 0x0800
57 #define OOB_64 0x0040
58 #define OOB_MAX 0x0100
59
60 /* NFC_CMD2[CODE] controller cycle bit masks */
61 #define COMMAND_CMD_BYTE1 BIT(14)
62 #define COMMAND_CAR_BYTE1 BIT(13)
63 #define COMMAND_CAR_BYTE2 BIT(12)
64 #define COMMAND_RAR_BYTE1 BIT(11)
65 #define COMMAND_RAR_BYTE2 BIT(10)
66 #define COMMAND_RAR_BYTE3 BIT(9)
67 #define COMMAND_NADDR_BYTES(x) GENMASK(13, 13 - (x) + 1)
68 #define COMMAND_WRITE_DATA BIT(8)
69 #define COMMAND_CMD_BYTE2 BIT(7)
70 #define COMMAND_RB_HANDSHAKE BIT(6)
71 #define COMMAND_READ_DATA BIT(5)
72 #define COMMAND_CMD_BYTE3 BIT(4)
73 #define COMMAND_READ_STATUS BIT(3)
74 #define COMMAND_READ_ID BIT(2)
75
76 /* NFC ECC mode define */
77 #define ECC_BYPASS 0
78 #define ECC_45_BYTE 6
79 #define ECC_60_BYTE 7
80
81 /*** Register Mask and bit definitions */
82
83 /* NFC_FLASH_CMD1 Field */
84 #define CMD_BYTE2_MASK 0xFF000000
85 #define CMD_BYTE2_SHIFT 24
86
87 /* NFC_FLASH_CM2 Field */
88 #define CMD_BYTE1_MASK 0xFF000000
89 #define CMD_BYTE1_SHIFT 24
90 #define CMD_CODE_MASK 0x00FFFF00
91 #define CMD_CODE_SHIFT 8
92 #define BUFNO_MASK 0x00000006
93 #define BUFNO_SHIFT 1
94 #define START_BIT BIT(0)
95
96 /* NFC_COL_ADDR Field */
97 #define COL_ADDR_MASK 0x0000FFFF
98 #define COL_ADDR_SHIFT 0
99 #define COL_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos)))
100
101 /* NFC_ROW_ADDR Field */
102 #define ROW_ADDR_MASK 0x00FFFFFF
103 #define ROW_ADDR_SHIFT 0
104 #define ROW_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos)))
105
106 #define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000
107 #define ROW_ADDR_CHIP_SEL_RB_SHIFT 28
108 #define ROW_ADDR_CHIP_SEL_MASK 0x0F000000
109 #define ROW_ADDR_CHIP_SEL_SHIFT 24
110
111 /* NFC_FLASH_STATUS2 Field */
112 #define STATUS_BYTE1_MASK 0x000000FF
113
114 /* NFC_FLASH_CONFIG Field */
115 #define CONFIG_ECC_SRAM_ADDR_MASK 0x7FC00000
116 #define CONFIG_ECC_SRAM_ADDR_SHIFT 22
117 #define CONFIG_ECC_SRAM_REQ_BIT BIT(21)
118 #define CONFIG_DMA_REQ_BIT BIT(20)
119 #define CONFIG_ECC_MODE_MASK 0x000E0000
120 #define CONFIG_ECC_MODE_SHIFT 17
121 #define CONFIG_FAST_FLASH_BIT BIT(16)
122 #define CONFIG_16BIT BIT(7)
123 #define CONFIG_BOOT_MODE_BIT BIT(6)
124 #define CONFIG_ADDR_AUTO_INCR_BIT BIT(5)
125 #define CONFIG_BUFNO_AUTO_INCR_BIT BIT(4)
126 #define CONFIG_PAGE_CNT_MASK 0xF
127 #define CONFIG_PAGE_CNT_SHIFT 0
128
129 /* NFC_IRQ_STATUS Field */
130 #define IDLE_IRQ_BIT BIT(29)
131 #define IDLE_EN_BIT BIT(20)
132 #define CMD_DONE_CLEAR_BIT BIT(18)
133 #define IDLE_CLEAR_BIT BIT(17)
134
135 /*
136 * ECC status - seems to consume 8 bytes (double word). The documented
137 * status byte is located in the lowest byte of the second word (which is
138 * the 4th or 7th byte depending on endianness).
139 * Calculate an offset to store the ECC status at the end of the buffer.
140 */
141 #define ECC_SRAM_ADDR (PAGE_2K + OOB_MAX - 8)
142
143 #define ECC_STATUS 0x4
144 #define ECC_STATUS_MASK 0x80
145 #define ECC_STATUS_ERR_COUNT 0x3F
146
147 enum vf610_nfc_variant {
148 NFC_VFC610 = 1,
149 };
150
151 struct vf610_nfc {
152 struct nand_controller base;
153 struct nand_chip chip;
154 struct device *dev;
155 void __iomem *regs;
156 struct completion cmd_done;
157 /* Status and ID are in alternate locations. */
158 enum vf610_nfc_variant variant;
159 struct clk *clk;
160 /*
161 * Indicate that user data is accessed (full page/oob). This is
162 * useful to indicate the driver whether to swap byte endianness.
163 * See comments in vf610_nfc_rd_from_sram/vf610_nfc_wr_to_sram.
164 */
165 bool data_access;
166 u32 ecc_mode;
167 };
168
chip_to_nfc(struct nand_chip * chip)169 static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip)
170 {
171 return container_of(chip, struct vf610_nfc, chip);
172 }
173
vf610_nfc_read(struct vf610_nfc * nfc,uint reg)174 static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg)
175 {
176 return readl(nfc->regs + reg);
177 }
178
vf610_nfc_write(struct vf610_nfc * nfc,uint reg,u32 val)179 static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val)
180 {
181 writel(val, nfc->regs + reg);
182 }
183
vf610_nfc_set(struct vf610_nfc * nfc,uint reg,u32 bits)184 static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits)
185 {
186 vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits);
187 }
188
vf610_nfc_clear(struct vf610_nfc * nfc,uint reg,u32 bits)189 static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits)
190 {
191 vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits);
192 }
193
vf610_nfc_set_field(struct vf610_nfc * nfc,u32 reg,u32 mask,u32 shift,u32 val)194 static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg,
195 u32 mask, u32 shift, u32 val)
196 {
197 vf610_nfc_write(nfc, reg,
198 (vf610_nfc_read(nfc, reg) & (~mask)) | val << shift);
199 }
200
vf610_nfc_kernel_is_little_endian(void)201 static inline bool vf610_nfc_kernel_is_little_endian(void)
202 {
203 #ifdef __LITTLE_ENDIAN
204 return true;
205 #else
206 return false;
207 #endif
208 }
209
210 /*
211 * Read accessor for internal SRAM buffer
212 * @dst: destination address in regular memory
213 * @src: source address in SRAM buffer
214 * @len: bytes to copy
215 * @fix_endian: Fix endianness if required
216 *
217 * Use this accessor for the internal SRAM buffers. On the ARM
218 * Freescale Vybrid SoC it's known that the driver can treat
219 * the SRAM buffer as if it's memory. Other platform might need
220 * to treat the buffers differently.
221 *
222 * The controller stores bytes from the NAND chip internally in big
223 * endianness. On little endian platforms such as Vybrid this leads
224 * to reversed byte order.
225 * For performance reason (and earlier probably due to unawareness)
226 * the driver avoids correcting endianness where it has control over
227 * write and read side (e.g. page wise data access).
228 */
vf610_nfc_rd_from_sram(void * dst,const void __iomem * src,size_t len,bool fix_endian)229 static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src,
230 size_t len, bool fix_endian)
231 {
232 if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
233 unsigned int i;
234
235 for (i = 0; i < len; i += 4) {
236 u32 val = swab32(__raw_readl(src + i));
237
238 memcpy(dst + i, &val, min(sizeof(val), len - i));
239 }
240 } else {
241 memcpy_fromio(dst, src, len);
242 }
243 }
244
245 /*
246 * Write accessor for internal SRAM buffer
247 * @dst: destination address in SRAM buffer
248 * @src: source address in regular memory
249 * @len: bytes to copy
250 * @fix_endian: Fix endianness if required
251 *
252 * Use this accessor for the internal SRAM buffers. On the ARM
253 * Freescale Vybrid SoC it's known that the driver can treat
254 * the SRAM buffer as if it's memory. Other platform might need
255 * to treat the buffers differently.
256 *
257 * The controller stores bytes from the NAND chip internally in big
258 * endianness. On little endian platforms such as Vybrid this leads
259 * to reversed byte order.
260 * For performance reason (and earlier probably due to unawareness)
261 * the driver avoids correcting endianness where it has control over
262 * write and read side (e.g. page wise data access).
263 */
vf610_nfc_wr_to_sram(void __iomem * dst,const void * src,size_t len,bool fix_endian)264 static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src,
265 size_t len, bool fix_endian)
266 {
267 if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
268 unsigned int i;
269
270 for (i = 0; i < len; i += 4) {
271 u32 val;
272
273 memcpy(&val, src + i, min(sizeof(val), len - i));
274 __raw_writel(swab32(val), dst + i);
275 }
276 } else {
277 memcpy_toio(dst, src, len);
278 }
279 }
280
281 /* Clear flags for upcoming command */
vf610_nfc_clear_status(struct vf610_nfc * nfc)282 static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc)
283 {
284 u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS);
285
286 tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
287 vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp);
288 }
289
vf610_nfc_done(struct vf610_nfc * nfc)290 static void vf610_nfc_done(struct vf610_nfc *nfc)
291 {
292 unsigned long timeout = msecs_to_jiffies(100);
293
294 /*
295 * Barrier is needed after this write. This write need
296 * to be done before reading the next register the first
297 * time.
298 * vf610_nfc_set implicates such a barrier by using writel
299 * to write to the register.
300 */
301 vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
302 vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT);
303
304 if (!wait_for_completion_timeout(&nfc->cmd_done, timeout))
305 dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n");
306
307 vf610_nfc_clear_status(nfc);
308 }
309
vf610_nfc_irq(int irq,void * data)310 static irqreturn_t vf610_nfc_irq(int irq, void *data)
311 {
312 struct vf610_nfc *nfc = data;
313
314 vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
315 complete(&nfc->cmd_done);
316
317 return IRQ_HANDLED;
318 }
319
vf610_nfc_ecc_mode(struct vf610_nfc * nfc,int ecc_mode)320 static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode)
321 {
322 vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
323 CONFIG_ECC_MODE_MASK,
324 CONFIG_ECC_MODE_SHIFT, ecc_mode);
325 }
326
vf610_nfc_run(struct vf610_nfc * nfc,u32 col,u32 row,u32 cmd1,u32 cmd2,u32 trfr_sz)327 static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row,
328 u32 cmd1, u32 cmd2, u32 trfr_sz)
329 {
330 vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK,
331 COL_ADDR_SHIFT, col);
332
333 vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK,
334 ROW_ADDR_SHIFT, row);
335
336 vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz);
337 vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1);
338 vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2);
339
340 dev_dbg(nfc->dev,
341 "col 0x%04x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, len %d\n",
342 col, row, cmd1, cmd2, trfr_sz);
343
344 vf610_nfc_done(nfc);
345 }
346
347 static inline const struct nand_op_instr *
vf610_get_next_instr(const struct nand_subop * subop,int * op_id)348 vf610_get_next_instr(const struct nand_subop *subop, int *op_id)
349 {
350 if (*op_id + 1 >= subop->ninstrs)
351 return NULL;
352
353 (*op_id)++;
354
355 return &subop->instrs[*op_id];
356 }
357
vf610_nfc_cmd(struct nand_chip * chip,const struct nand_subop * subop)358 static int vf610_nfc_cmd(struct nand_chip *chip,
359 const struct nand_subop *subop)
360 {
361 const struct nand_op_instr *instr;
362 struct vf610_nfc *nfc = chip_to_nfc(chip);
363 int op_id = -1, trfr_sz = 0, offset = 0;
364 u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0;
365 bool force8bit = false;
366
367 /*
368 * Some ops are optional, but the hardware requires the operations
369 * to be in this exact order.
370 * The op parser enforces the order and makes sure that there isn't
371 * a read and write element in a single operation.
372 */
373 instr = vf610_get_next_instr(subop, &op_id);
374 if (!instr)
375 return -EINVAL;
376
377 if (instr && instr->type == NAND_OP_CMD_INSTR) {
378 cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT;
379 code |= COMMAND_CMD_BYTE1;
380
381 instr = vf610_get_next_instr(subop, &op_id);
382 }
383
384 if (instr && instr->type == NAND_OP_ADDR_INSTR) {
385 int naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
386 int i = nand_subop_get_addr_start_off(subop, op_id);
387
388 for (; i < naddrs; i++) {
389 u8 val = instr->ctx.addr.addrs[i];
390
391 if (i < 2)
392 col |= COL_ADDR(i, val);
393 else
394 row |= ROW_ADDR(i - 2, val);
395 }
396 code |= COMMAND_NADDR_BYTES(naddrs);
397
398 instr = vf610_get_next_instr(subop, &op_id);
399 }
400
401 if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) {
402 trfr_sz = nand_subop_get_data_len(subop, op_id);
403 offset = nand_subop_get_data_start_off(subop, op_id);
404 force8bit = instr->ctx.data.force_8bit;
405
406 /*
407 * Don't fix endianness on page access for historical reasons.
408 * See comment in vf610_nfc_wr_to_sram
409 */
410 vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset,
411 instr->ctx.data.buf.out + offset,
412 trfr_sz, !nfc->data_access);
413 code |= COMMAND_WRITE_DATA;
414
415 instr = vf610_get_next_instr(subop, &op_id);
416 }
417
418 if (instr && instr->type == NAND_OP_CMD_INSTR) {
419 cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT;
420 code |= COMMAND_CMD_BYTE2;
421
422 instr = vf610_get_next_instr(subop, &op_id);
423 }
424
425 if (instr && instr->type == NAND_OP_WAITRDY_INSTR) {
426 code |= COMMAND_RB_HANDSHAKE;
427
428 instr = vf610_get_next_instr(subop, &op_id);
429 }
430
431 if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
432 trfr_sz = nand_subop_get_data_len(subop, op_id);
433 offset = nand_subop_get_data_start_off(subop, op_id);
434 force8bit = instr->ctx.data.force_8bit;
435
436 code |= COMMAND_READ_DATA;
437 }
438
439 if (force8bit && (chip->options & NAND_BUSWIDTH_16))
440 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
441
442 cmd2 |= code << CMD_CODE_SHIFT;
443
444 vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz);
445
446 if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
447 /*
448 * Don't fix endianness on page access for historical reasons.
449 * See comment in vf610_nfc_rd_from_sram
450 */
451 vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset,
452 nfc->regs + NFC_MAIN_AREA(0) + offset,
453 trfr_sz, !nfc->data_access);
454 }
455
456 if (force8bit && (chip->options & NAND_BUSWIDTH_16))
457 vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
458
459 return 0;
460 }
461
462 static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER(
463 NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
464 NAND_OP_PARSER_PAT_CMD_ELEM(true),
465 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
466 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX),
467 NAND_OP_PARSER_PAT_CMD_ELEM(true),
468 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
469 NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
470 NAND_OP_PARSER_PAT_CMD_ELEM(true),
471 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
472 NAND_OP_PARSER_PAT_CMD_ELEM(true),
473 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
474 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)),
475 );
476
477 /*
478 * This function supports Vybrid only (MPC5125 would have full RB and four CS)
479 */
vf610_nfc_select_target(struct nand_chip * chip,unsigned int cs)480 static void vf610_nfc_select_target(struct nand_chip *chip, unsigned int cs)
481 {
482 struct vf610_nfc *nfc = chip_to_nfc(chip);
483 u32 tmp;
484
485 /* Vybrid only (MPC5125 would have full RB and four CS) */
486 if (nfc->variant != NFC_VFC610)
487 return;
488
489 tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR);
490 tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
491 tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
492 tmp |= BIT(cs) << ROW_ADDR_CHIP_SEL_SHIFT;
493
494 vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp);
495 }
496
vf610_nfc_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)497 static int vf610_nfc_exec_op(struct nand_chip *chip,
498 const struct nand_operation *op,
499 bool check_only)
500 {
501 if (!check_only)
502 vf610_nfc_select_target(chip, op->cs);
503
504 return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op,
505 check_only);
506 }
507
vf610_nfc_correct_data(struct nand_chip * chip,uint8_t * dat,uint8_t * oob,int page)508 static inline int vf610_nfc_correct_data(struct nand_chip *chip, uint8_t *dat,
509 uint8_t *oob, int page)
510 {
511 struct vf610_nfc *nfc = chip_to_nfc(chip);
512 struct mtd_info *mtd = nand_to_mtd(chip);
513 u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
514 u8 ecc_status;
515 u8 ecc_count;
516 int flips_threshold = nfc->chip.ecc.strength / 2;
517
518 ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff;
519 ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
520
521 if (!(ecc_status & ECC_STATUS_MASK))
522 return ecc_count;
523
524 nfc->data_access = true;
525 nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize);
526 nfc->data_access = false;
527
528 /*
529 * On an erased page, bit count (including OOB) should be zero or
530 * at least less then half of the ECC strength.
531 */
532 return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob,
533 mtd->oobsize, NULL, 0,
534 flips_threshold);
535 }
536
vf610_nfc_fill_row(struct nand_chip * chip,int page,u32 * code,u32 * row)537 static void vf610_nfc_fill_row(struct nand_chip *chip, int page, u32 *code,
538 u32 *row)
539 {
540 *row = ROW_ADDR(0, page & 0xff) | ROW_ADDR(1, page >> 8);
541 *code |= COMMAND_RAR_BYTE1 | COMMAND_RAR_BYTE2;
542
543 if (chip->options & NAND_ROW_ADDR_3) {
544 *row |= ROW_ADDR(2, page >> 16);
545 *code |= COMMAND_RAR_BYTE3;
546 }
547 }
548
vf610_nfc_read_page(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)549 static int vf610_nfc_read_page(struct nand_chip *chip, uint8_t *buf,
550 int oob_required, int page)
551 {
552 struct vf610_nfc *nfc = chip_to_nfc(chip);
553 struct mtd_info *mtd = nand_to_mtd(chip);
554 int trfr_sz = mtd->writesize + mtd->oobsize;
555 u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
556 int stat;
557
558 vf610_nfc_select_target(chip, chip->cur_cs);
559
560 cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT;
561 code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
562
563 vf610_nfc_fill_row(chip, page, &code, &row);
564
565 cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT;
566 code |= COMMAND_CMD_BYTE2 | COMMAND_RB_HANDSHAKE | COMMAND_READ_DATA;
567
568 cmd2 |= code << CMD_CODE_SHIFT;
569
570 vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
571 vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
572 vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
573
574 /*
575 * Don't fix endianness on page access for historical reasons.
576 * See comment in vf610_nfc_rd_from_sram
577 */
578 vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0),
579 mtd->writesize, false);
580 if (oob_required)
581 vf610_nfc_rd_from_sram(chip->oob_poi,
582 nfc->regs + NFC_MAIN_AREA(0) +
583 mtd->writesize,
584 mtd->oobsize, false);
585
586 stat = vf610_nfc_correct_data(chip, buf, chip->oob_poi, page);
587
588 if (stat < 0) {
589 mtd->ecc_stats.failed++;
590 return 0;
591 } else {
592 mtd->ecc_stats.corrected += stat;
593 return stat;
594 }
595 }
596
vf610_nfc_write_page(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)597 static int vf610_nfc_write_page(struct nand_chip *chip, const uint8_t *buf,
598 int oob_required, int page)
599 {
600 struct vf610_nfc *nfc = chip_to_nfc(chip);
601 struct mtd_info *mtd = nand_to_mtd(chip);
602 int trfr_sz = mtd->writesize + mtd->oobsize;
603 u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
604 u8 status;
605 int ret;
606
607 vf610_nfc_select_target(chip, chip->cur_cs);
608
609 cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT;
610 code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
611
612 vf610_nfc_fill_row(chip, page, &code, &row);
613
614 cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT;
615 code |= COMMAND_CMD_BYTE2 | COMMAND_WRITE_DATA;
616
617 /*
618 * Don't fix endianness on page access for historical reasons.
619 * See comment in vf610_nfc_wr_to_sram
620 */
621 vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf,
622 mtd->writesize, false);
623
624 code |= COMMAND_RB_HANDSHAKE;
625 cmd2 |= code << CMD_CODE_SHIFT;
626
627 vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
628 vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
629 vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
630
631 ret = nand_status_op(chip, &status);
632 if (ret)
633 return ret;
634
635 if (status & NAND_STATUS_FAIL)
636 return -EIO;
637
638 return 0;
639 }
640
vf610_nfc_read_page_raw(struct nand_chip * chip,u8 * buf,int oob_required,int page)641 static int vf610_nfc_read_page_raw(struct nand_chip *chip, u8 *buf,
642 int oob_required, int page)
643 {
644 struct vf610_nfc *nfc = chip_to_nfc(chip);
645 int ret;
646
647 nfc->data_access = true;
648 ret = nand_read_page_raw(chip, buf, oob_required, page);
649 nfc->data_access = false;
650
651 return ret;
652 }
653
vf610_nfc_write_page_raw(struct nand_chip * chip,const u8 * buf,int oob_required,int page)654 static int vf610_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
655 int oob_required, int page)
656 {
657 struct vf610_nfc *nfc = chip_to_nfc(chip);
658 struct mtd_info *mtd = nand_to_mtd(chip);
659 int ret;
660
661 nfc->data_access = true;
662 ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
663 if (!ret && oob_required)
664 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
665 false);
666 nfc->data_access = false;
667
668 if (ret)
669 return ret;
670
671 return nand_prog_page_end_op(chip);
672 }
673
vf610_nfc_read_oob(struct nand_chip * chip,int page)674 static int vf610_nfc_read_oob(struct nand_chip *chip, int page)
675 {
676 struct vf610_nfc *nfc = chip_to_nfc(chip);
677 int ret;
678
679 nfc->data_access = true;
680 ret = nand_read_oob_std(chip, page);
681 nfc->data_access = false;
682
683 return ret;
684 }
685
vf610_nfc_write_oob(struct nand_chip * chip,int page)686 static int vf610_nfc_write_oob(struct nand_chip *chip, int page)
687 {
688 struct mtd_info *mtd = nand_to_mtd(chip);
689 struct vf610_nfc *nfc = chip_to_nfc(chip);
690 int ret;
691
692 nfc->data_access = true;
693 ret = nand_prog_page_begin_op(chip, page, mtd->writesize,
694 chip->oob_poi, mtd->oobsize);
695 nfc->data_access = false;
696
697 if (ret)
698 return ret;
699
700 return nand_prog_page_end_op(chip);
701 }
702
703 static const struct of_device_id vf610_nfc_dt_ids[] = {
704 { .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 },
705 { /* sentinel */ }
706 };
707 MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids);
708
vf610_nfc_preinit_controller(struct vf610_nfc * nfc)709 static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc)
710 {
711 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
712 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
713 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
714 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
715 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
716 vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
717 vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
718
719 /* Disable virtual pages, only one elementary transfer unit */
720 vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
721 CONFIG_PAGE_CNT_SHIFT, 1);
722 }
723
vf610_nfc_init_controller(struct vf610_nfc * nfc)724 static void vf610_nfc_init_controller(struct vf610_nfc *nfc)
725 {
726 if (nfc->chip.options & NAND_BUSWIDTH_16)
727 vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
728 else
729 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
730
731 if (nfc->chip.ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
732 /* Set ECC status offset in SRAM */
733 vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
734 CONFIG_ECC_SRAM_ADDR_MASK,
735 CONFIG_ECC_SRAM_ADDR_SHIFT,
736 ECC_SRAM_ADDR >> 3);
737
738 /* Enable ECC status in SRAM */
739 vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
740 }
741 }
742
vf610_nfc_attach_chip(struct nand_chip * chip)743 static int vf610_nfc_attach_chip(struct nand_chip *chip)
744 {
745 struct mtd_info *mtd = nand_to_mtd(chip);
746 struct vf610_nfc *nfc = chip_to_nfc(chip);
747
748 vf610_nfc_init_controller(nfc);
749
750 /* Bad block options. */
751 if (chip->bbt_options & NAND_BBT_USE_FLASH)
752 chip->bbt_options |= NAND_BBT_NO_OOB;
753
754 /* Single buffer only, max 256 OOB minus ECC status */
755 if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
756 dev_err(nfc->dev, "Unsupported flash page size\n");
757 return -ENXIO;
758 }
759
760 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
761 return 0;
762
763 if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
764 dev_err(nfc->dev, "Unsupported flash with hwecc\n");
765 return -ENXIO;
766 }
767
768 if (chip->ecc.size != mtd->writesize) {
769 dev_err(nfc->dev, "Step size needs to be page size\n");
770 return -ENXIO;
771 }
772
773 /* Only 64 byte ECC layouts known */
774 if (mtd->oobsize > 64)
775 mtd->oobsize = 64;
776
777 /* Use default large page ECC layout defined in NAND core */
778 mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
779 if (chip->ecc.strength == 32) {
780 nfc->ecc_mode = ECC_60_BYTE;
781 chip->ecc.bytes = 60;
782 } else if (chip->ecc.strength == 24) {
783 nfc->ecc_mode = ECC_45_BYTE;
784 chip->ecc.bytes = 45;
785 } else {
786 dev_err(nfc->dev, "Unsupported ECC strength\n");
787 return -ENXIO;
788 }
789
790 chip->ecc.read_page = vf610_nfc_read_page;
791 chip->ecc.write_page = vf610_nfc_write_page;
792 chip->ecc.read_page_raw = vf610_nfc_read_page_raw;
793 chip->ecc.write_page_raw = vf610_nfc_write_page_raw;
794 chip->ecc.read_oob = vf610_nfc_read_oob;
795 chip->ecc.write_oob = vf610_nfc_write_oob;
796
797 chip->ecc.size = PAGE_2K;
798
799 return 0;
800 }
801
802 static const struct nand_controller_ops vf610_nfc_controller_ops = {
803 .attach_chip = vf610_nfc_attach_chip,
804 .exec_op = vf610_nfc_exec_op,
805
806 };
807
vf610_nfc_probe(struct platform_device * pdev)808 static int vf610_nfc_probe(struct platform_device *pdev)
809 {
810 struct vf610_nfc *nfc;
811 struct mtd_info *mtd;
812 struct nand_chip *chip;
813 struct device_node *child;
814 int err;
815 int irq;
816
817 nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
818 if (!nfc)
819 return -ENOMEM;
820
821 nfc->dev = &pdev->dev;
822 chip = &nfc->chip;
823 mtd = nand_to_mtd(chip);
824
825 mtd->owner = THIS_MODULE;
826 mtd->dev.parent = nfc->dev;
827 mtd->name = DRV_NAME;
828
829 irq = platform_get_irq(pdev, 0);
830 if (irq < 0)
831 return irq;
832
833 nfc->regs = devm_platform_ioremap_resource(pdev, 0);
834 if (IS_ERR(nfc->regs))
835 return PTR_ERR(nfc->regs);
836
837 nfc->clk = devm_clk_get_enabled(&pdev->dev, NULL);
838 if (IS_ERR(nfc->clk)) {
839 dev_err(nfc->dev, "Unable to get and enable clock!\n");
840 return PTR_ERR(nfc->clk);
841 }
842
843 nfc->variant = (enum vf610_nfc_variant)device_get_match_data(&pdev->dev);
844 if (!nfc->variant)
845 return -ENODEV;
846
847 for_each_available_child_of_node(nfc->dev->of_node, child) {
848 if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) {
849
850 if (nand_get_flash_node(chip)) {
851 dev_err(nfc->dev,
852 "Only one NAND chip supported!\n");
853 of_node_put(child);
854 return -EINVAL;
855 }
856
857 nand_set_flash_node(chip, child);
858 }
859 }
860
861 if (!nand_get_flash_node(chip)) {
862 dev_err(nfc->dev, "NAND chip sub-node missing!\n");
863 return -ENODEV;
864 }
865
866 chip->options |= NAND_NO_SUBPAGE_WRITE;
867
868 init_completion(&nfc->cmd_done);
869
870 err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, nfc);
871 if (err) {
872 dev_err(nfc->dev, "Error requesting IRQ!\n");
873 return err;
874 }
875
876 vf610_nfc_preinit_controller(nfc);
877
878 nand_controller_init(&nfc->base);
879 nfc->base.ops = &vf610_nfc_controller_ops;
880 chip->controller = &nfc->base;
881
882 /* Scan the NAND chip */
883 err = nand_scan(chip, 1);
884 if (err)
885 return err;
886
887 platform_set_drvdata(pdev, nfc);
888
889 /* Register device in MTD */
890 err = mtd_device_register(mtd, NULL, 0);
891 if (err)
892 goto err_cleanup_nand;
893 return 0;
894
895 err_cleanup_nand:
896 nand_cleanup(chip);
897 return err;
898 }
899
vf610_nfc_remove(struct platform_device * pdev)900 static void vf610_nfc_remove(struct platform_device *pdev)
901 {
902 struct vf610_nfc *nfc = platform_get_drvdata(pdev);
903 struct nand_chip *chip = &nfc->chip;
904 int ret;
905
906 ret = mtd_device_unregister(nand_to_mtd(chip));
907 WARN_ON(ret);
908 nand_cleanup(chip);
909 }
910
911 #ifdef CONFIG_PM_SLEEP
vf610_nfc_suspend(struct device * dev)912 static int vf610_nfc_suspend(struct device *dev)
913 {
914 struct vf610_nfc *nfc = dev_get_drvdata(dev);
915
916 clk_disable_unprepare(nfc->clk);
917 return 0;
918 }
919
vf610_nfc_resume(struct device * dev)920 static int vf610_nfc_resume(struct device *dev)
921 {
922 struct vf610_nfc *nfc = dev_get_drvdata(dev);
923 int err;
924
925 err = clk_prepare_enable(nfc->clk);
926 if (err)
927 return err;
928
929 vf610_nfc_preinit_controller(nfc);
930 vf610_nfc_init_controller(nfc);
931 return 0;
932 }
933 #endif
934
935 static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume);
936
937 static struct platform_driver vf610_nfc_driver = {
938 .driver = {
939 .name = DRV_NAME,
940 .of_match_table = vf610_nfc_dt_ids,
941 .pm = &vf610_nfc_pm_ops,
942 },
943 .probe = vf610_nfc_probe,
944 .remove = vf610_nfc_remove,
945 };
946
947 module_platform_driver(vf610_nfc_driver);
948
949 MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>");
950 MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver");
951 MODULE_LICENSE("GPL");
952