xref: /linux/drivers/spi/spi-rockchip.c (revision 8cbd01ba9c38eb16f3a572300da486ac544519b7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2014, Fuzhou Rockchip Electronics Co., Ltd
4  * Author: Addy Ke <addy.ke@rock-chips.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/dmaengine.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/pinctrl/consumer.h>
13 #include <linux/platform_device.h>
14 #include <linux/spi/spi.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/scatterlist.h>
17 
18 #define DRIVER_NAME "rockchip-spi"
19 
20 #define ROCKCHIP_SPI_CLR_BITS(reg, bits) \
21 		writel_relaxed(readl_relaxed(reg) & ~(bits), reg)
22 #define ROCKCHIP_SPI_SET_BITS(reg, bits) \
23 		writel_relaxed(readl_relaxed(reg) | (bits), reg)
24 
25 /* SPI register offsets */
26 #define ROCKCHIP_SPI_CTRLR0			0x0000
27 #define ROCKCHIP_SPI_CTRLR1			0x0004
28 #define ROCKCHIP_SPI_SSIENR			0x0008
29 #define ROCKCHIP_SPI_SER			0x000c
30 #define ROCKCHIP_SPI_BAUDR			0x0010
31 #define ROCKCHIP_SPI_TXFTLR			0x0014
32 #define ROCKCHIP_SPI_RXFTLR			0x0018
33 #define ROCKCHIP_SPI_TXFLR			0x001c
34 #define ROCKCHIP_SPI_RXFLR			0x0020
35 #define ROCKCHIP_SPI_SR				0x0024
36 #define ROCKCHIP_SPI_IPR			0x0028
37 #define ROCKCHIP_SPI_IMR			0x002c
38 #define ROCKCHIP_SPI_ISR			0x0030
39 #define ROCKCHIP_SPI_RISR			0x0034
40 #define ROCKCHIP_SPI_ICR			0x0038
41 #define ROCKCHIP_SPI_DMACR			0x003c
42 #define ROCKCHIP_SPI_DMATDLR			0x0040
43 #define ROCKCHIP_SPI_DMARDLR			0x0044
44 #define ROCKCHIP_SPI_VERSION			0x0048
45 #define ROCKCHIP_SPI_TXDR			0x0400
46 #define ROCKCHIP_SPI_RXDR			0x0800
47 
48 /* Bit fields in CTRLR0 */
49 #define CR0_DFS_OFFSET				0
50 #define CR0_DFS_4BIT				0x0
51 #define CR0_DFS_8BIT				0x1
52 #define CR0_DFS_16BIT				0x2
53 
54 #define CR0_CFS_OFFSET				2
55 
56 #define CR0_SCPH_OFFSET				6
57 
58 #define CR0_SCPOL_OFFSET			7
59 
60 #define CR0_CSM_OFFSET				8
61 #define CR0_CSM_KEEP				0x0
62 /* ss_n be high for half sclk_out cycles */
63 #define CR0_CSM_HALF				0X1
64 /* ss_n be high for one sclk_out cycle */
65 #define CR0_CSM_ONE					0x2
66 
67 /* ss_n to sclk_out delay */
68 #define CR0_SSD_OFFSET				10
69 /*
70  * The period between ss_n active and
71  * sclk_out active is half sclk_out cycles
72  */
73 #define CR0_SSD_HALF				0x0
74 /*
75  * The period between ss_n active and
76  * sclk_out active is one sclk_out cycle
77  */
78 #define CR0_SSD_ONE					0x1
79 
80 #define CR0_EM_OFFSET				11
81 #define CR0_EM_LITTLE				0x0
82 #define CR0_EM_BIG					0x1
83 
84 #define CR0_FBM_OFFSET				12
85 #define CR0_FBM_MSB					0x0
86 #define CR0_FBM_LSB					0x1
87 
88 #define CR0_BHT_OFFSET				13
89 #define CR0_BHT_16BIT				0x0
90 #define CR0_BHT_8BIT				0x1
91 
92 #define CR0_RSD_OFFSET				14
93 #define CR0_RSD_MAX				0x3
94 
95 #define CR0_FRF_OFFSET				16
96 #define CR0_FRF_SPI					0x0
97 #define CR0_FRF_SSP					0x1
98 #define CR0_FRF_MICROWIRE			0x2
99 
100 #define CR0_XFM_OFFSET				18
101 #define CR0_XFM_MASK				(0x03 << SPI_XFM_OFFSET)
102 #define CR0_XFM_TR					0x0
103 #define CR0_XFM_TO					0x1
104 #define CR0_XFM_RO					0x2
105 
106 #define CR0_OPM_OFFSET				20
107 #define CR0_OPM_HOST				0x0
108 #define CR0_OPM_TARGET				0x1
109 
110 #define CR0_SOI_OFFSET				23
111 
112 #define CR0_MTM_OFFSET				0x21
113 
114 /* Bit fields in SER, 2bit */
115 #define SER_MASK					0x3
116 
117 /* Bit fields in BAUDR */
118 #define BAUDR_SCKDV_MIN				2
119 #define BAUDR_SCKDV_MAX				65534
120 
121 /* Bit fields in SR, 6bit */
122 #define SR_MASK						0x3f
123 #define SR_BUSY						(1 << 0)
124 #define SR_TF_FULL					(1 << 1)
125 #define SR_TF_EMPTY					(1 << 2)
126 #define SR_RF_EMPTY					(1 << 3)
127 #define SR_RF_FULL					(1 << 4)
128 #define SR_TARGET_TX_BUSY				(1 << 5)
129 
130 /* Bit fields in ISR, IMR, ISR, RISR, 5bit */
131 #define INT_MASK					0x1f
132 #define INT_TF_EMPTY				(1 << 0)
133 #define INT_TF_OVERFLOW				(1 << 1)
134 #define INT_RF_UNDERFLOW			(1 << 2)
135 #define INT_RF_OVERFLOW				(1 << 3)
136 #define INT_RF_FULL				(1 << 4)
137 #define INT_CS_INACTIVE				(1 << 6)
138 
139 /* Bit fields in ICR, 4bit */
140 #define ICR_MASK					0x0f
141 #define ICR_ALL						(1 << 0)
142 #define ICR_RF_UNDERFLOW			(1 << 1)
143 #define ICR_RF_OVERFLOW				(1 << 2)
144 #define ICR_TF_OVERFLOW				(1 << 3)
145 
146 /* Bit fields in DMACR */
147 #define RF_DMA_EN					(1 << 0)
148 #define TF_DMA_EN					(1 << 1)
149 
150 /* Driver state flags */
151 #define RXDMA					(1 << 0)
152 #define TXDMA					(1 << 1)
153 
154 /* sclk_out: spi host internal logic in rk3x can support 50Mhz */
155 #define MAX_SCLK_OUT				50000000U
156 
157 /*
158  * SPI_CTRLR1 is 16-bits, so we should support lengths of 0xffff + 1. However,
159  * the controller seems to hang when given 0x10000, so stick with this for now.
160  */
161 #define ROCKCHIP_SPI_MAX_TRANLEN		0xffff
162 
163 #define ROCKCHIP_SPI_MAX_NATIVE_CS_NUM		2
164 #define ROCKCHIP_SPI_VER2_TYPE1			0x05EC0002
165 #define ROCKCHIP_SPI_VER2_TYPE2			0x00110002
166 
167 #define ROCKCHIP_AUTOSUSPEND_TIMEOUT		2000
168 
169 struct rockchip_spi {
170 	struct device *dev;
171 
172 	struct clk *spiclk;
173 	struct clk *apb_pclk;
174 
175 	void __iomem *regs;
176 	dma_addr_t dma_addr_rx;
177 	dma_addr_t dma_addr_tx;
178 
179 	const void *tx;
180 	void *rx;
181 	unsigned int tx_left;
182 	unsigned int rx_left;
183 
184 	atomic_t state;
185 
186 	/*depth of the FIFO buffer */
187 	u32 fifo_len;
188 	/* frequency of spiclk */
189 	u32 freq;
190 
191 	u8 n_bytes;
192 	u8 rsd;
193 
194 	bool target_abort;
195 	bool cs_inactive; /* spi target transmission stop when cs inactive */
196 	bool cs_high_supported; /* native CS supports active-high polarity */
197 
198 	struct spi_transfer *xfer; /* Store xfer temporarily */
199 };
200 
spi_enable_chip(struct rockchip_spi * rs,bool enable)201 static inline void spi_enable_chip(struct rockchip_spi *rs, bool enable)
202 {
203 	writel_relaxed((enable ? 1U : 0U), rs->regs + ROCKCHIP_SPI_SSIENR);
204 }
205 
wait_for_tx_idle(struct rockchip_spi * rs,bool target_mode)206 static inline void wait_for_tx_idle(struct rockchip_spi *rs, bool target_mode)
207 {
208 	unsigned long timeout = jiffies + msecs_to_jiffies(5);
209 
210 	do {
211 		if (target_mode) {
212 			if (!(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_TARGET_TX_BUSY) &&
213 			    !((readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY)))
214 				return;
215 		} else {
216 			if (!(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY))
217 				return;
218 		}
219 	} while (!time_after(jiffies, timeout));
220 
221 	dev_warn(rs->dev, "spi controller is in busy state!\n");
222 }
223 
get_fifo_len(struct rockchip_spi * rs)224 static u32 get_fifo_len(struct rockchip_spi *rs)
225 {
226 	u32 ver;
227 
228 	ver = readl_relaxed(rs->regs + ROCKCHIP_SPI_VERSION);
229 
230 	switch (ver) {
231 	case ROCKCHIP_SPI_VER2_TYPE1:
232 	case ROCKCHIP_SPI_VER2_TYPE2:
233 		return 64;
234 	default:
235 		return 32;
236 	}
237 }
238 
rockchip_spi_set_cs(struct spi_device * spi,bool enable)239 static void rockchip_spi_set_cs(struct spi_device *spi, bool enable)
240 {
241 	struct spi_controller *ctlr = spi->controller;
242 	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
243 	bool cs_asserted = spi->mode & SPI_CS_HIGH ? enable : !enable;
244 	bool cs_actual;
245 
246 	/*
247 	 * SPI subsystem tries to avoid no-op calls that would break the PM
248 	 * refcount below. It can't however for the first time it is used.
249 	 * To detect this case we read it here and bail out early for no-ops.
250 	 */
251 	if (spi_get_csgpiod(spi, 0))
252 		cs_actual = !!(readl_relaxed(rs->regs + ROCKCHIP_SPI_SER) & 1);
253 	else
254 		cs_actual = !!(readl_relaxed(rs->regs + ROCKCHIP_SPI_SER) &
255 			       BIT(spi_get_chipselect(spi, 0)));
256 	if (unlikely(cs_actual == cs_asserted))
257 		return;
258 
259 	if (cs_asserted) {
260 		/* Keep things powered as long as CS is asserted */
261 		pm_runtime_get_sync(rs->dev);
262 
263 		if (spi_get_csgpiod(spi, 0))
264 			ROCKCHIP_SPI_SET_BITS(rs->regs + ROCKCHIP_SPI_SER, 1);
265 		else
266 			ROCKCHIP_SPI_SET_BITS(rs->regs + ROCKCHIP_SPI_SER,
267 					      BIT(spi_get_chipselect(spi, 0)));
268 	} else {
269 		if (spi_get_csgpiod(spi, 0))
270 			ROCKCHIP_SPI_CLR_BITS(rs->regs + ROCKCHIP_SPI_SER, 1);
271 		else
272 			ROCKCHIP_SPI_CLR_BITS(rs->regs + ROCKCHIP_SPI_SER,
273 					      BIT(spi_get_chipselect(spi, 0)));
274 
275 		/* Drop reference from when we first asserted CS */
276 		pm_runtime_put(rs->dev);
277 	}
278 }
279 
rockchip_spi_handle_err(struct spi_controller * ctlr,struct spi_message * msg)280 static void rockchip_spi_handle_err(struct spi_controller *ctlr,
281 				    struct spi_message *msg)
282 {
283 	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
284 
285 	/* stop running spi transfer
286 	 * this also flushes both rx and tx fifos
287 	 */
288 	spi_enable_chip(rs, false);
289 
290 	/* make sure all interrupts are masked and status cleared */
291 	writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
292 	writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR);
293 
294 	if (atomic_read(&rs->state) & TXDMA)
295 		dmaengine_terminate_async(ctlr->dma_tx);
296 
297 	if (atomic_read(&rs->state) & RXDMA)
298 		dmaengine_terminate_async(ctlr->dma_rx);
299 }
300 
rockchip_spi_pio_writer(struct rockchip_spi * rs)301 static void rockchip_spi_pio_writer(struct rockchip_spi *rs)
302 {
303 	u32 tx_free = rs->fifo_len - readl_relaxed(rs->regs + ROCKCHIP_SPI_TXFLR);
304 	u32 words = min(rs->tx_left, tx_free);
305 
306 	rs->tx_left -= words;
307 	for (; words; words--) {
308 		u32 txw;
309 
310 		if (rs->n_bytes == 1)
311 			txw = *(u8 *)rs->tx;
312 		else
313 			txw = *(u16 *)rs->tx;
314 
315 		writel_relaxed(txw, rs->regs + ROCKCHIP_SPI_TXDR);
316 		rs->tx += rs->n_bytes;
317 	}
318 }
319 
rockchip_spi_pio_reader(struct rockchip_spi * rs)320 static void rockchip_spi_pio_reader(struct rockchip_spi *rs)
321 {
322 	u32 words = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR);
323 	u32 rx_left = (rs->rx_left > words) ? rs->rx_left - words : 0;
324 
325 	/* the hardware doesn't allow us to change fifo threshold
326 	 * level while spi is enabled, so instead make sure to leave
327 	 * enough words in the rx fifo to get the last interrupt
328 	 * exactly when all words have been received
329 	 */
330 	if (rx_left) {
331 		u32 ftl = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFTLR) + 1;
332 
333 		if (rx_left < ftl) {
334 			rx_left = ftl;
335 			words = rs->rx_left - rx_left;
336 		}
337 	}
338 
339 	rs->rx_left = rx_left;
340 	for (; words; words--) {
341 		u32 rxw = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR);
342 
343 		if (!rs->rx)
344 			continue;
345 
346 		if (rs->n_bytes == 1)
347 			*(u8 *)rs->rx = (u8)rxw;
348 		else
349 			*(u16 *)rs->rx = (u16)rxw;
350 		rs->rx += rs->n_bytes;
351 	}
352 }
353 
rockchip_spi_isr(int irq,void * dev_id)354 static irqreturn_t rockchip_spi_isr(int irq, void *dev_id)
355 {
356 	struct spi_controller *ctlr = dev_id;
357 	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
358 
359 	/* When int_cs_inactive comes, spi target abort */
360 	if (rs->cs_inactive && readl_relaxed(rs->regs + ROCKCHIP_SPI_IMR) & INT_CS_INACTIVE) {
361 		ctlr->target_abort(ctlr);
362 		writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
363 		writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR);
364 
365 		return IRQ_HANDLED;
366 	}
367 
368 	if (rs->tx_left)
369 		rockchip_spi_pio_writer(rs);
370 
371 	rockchip_spi_pio_reader(rs);
372 	if (!rs->rx_left) {
373 		spi_enable_chip(rs, false);
374 		writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
375 		writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR);
376 		spi_finalize_current_transfer(ctlr);
377 	}
378 
379 	return IRQ_HANDLED;
380 }
381 
rockchip_spi_prepare_irq(struct rockchip_spi * rs,struct spi_controller * ctlr,struct spi_transfer * xfer)382 static int rockchip_spi_prepare_irq(struct rockchip_spi *rs,
383 				    struct spi_controller *ctlr,
384 				    struct spi_transfer *xfer)
385 {
386 	rs->tx = xfer->tx_buf;
387 	rs->rx = xfer->rx_buf;
388 	rs->tx_left = rs->tx ? xfer->len / rs->n_bytes : 0;
389 	rs->rx_left = xfer->len / rs->n_bytes;
390 
391 	writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR);
392 
393 	spi_enable_chip(rs, true);
394 
395 	if (rs->tx_left)
396 		rockchip_spi_pio_writer(rs);
397 
398 	if (rs->cs_inactive)
399 		writel_relaxed(INT_RF_FULL | INT_CS_INACTIVE, rs->regs + ROCKCHIP_SPI_IMR);
400 	else
401 		writel_relaxed(INT_RF_FULL, rs->regs + ROCKCHIP_SPI_IMR);
402 
403 	/* 1 means the transfer is in progress */
404 	return 1;
405 }
406 
rockchip_spi_dma_rxcb(void * data)407 static void rockchip_spi_dma_rxcb(void *data)
408 {
409 	struct spi_controller *ctlr = data;
410 	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
411 	int state = atomic_fetch_andnot(RXDMA, &rs->state);
412 
413 	if (state & TXDMA && !rs->target_abort)
414 		return;
415 
416 	if (rs->cs_inactive)
417 		writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
418 
419 	spi_enable_chip(rs, false);
420 	spi_finalize_current_transfer(ctlr);
421 }
422 
rockchip_spi_dma_txcb(void * data)423 static void rockchip_spi_dma_txcb(void *data)
424 {
425 	struct spi_controller *ctlr = data;
426 	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
427 	int state = atomic_fetch_andnot(TXDMA, &rs->state);
428 
429 	if (state & RXDMA && !rs->target_abort)
430 		return;
431 
432 	/* Wait until the FIFO data completely. */
433 	wait_for_tx_idle(rs, ctlr->target);
434 
435 	spi_enable_chip(rs, false);
436 	spi_finalize_current_transfer(ctlr);
437 }
438 
rockchip_spi_calc_burst_size(u32 data_len)439 static u32 rockchip_spi_calc_burst_size(u32 data_len)
440 {
441 	u32 i;
442 
443 	/* burst size: 1, 2, 4, 8 */
444 	for (i = 1; i < 8; i <<= 1) {
445 		if (data_len & i)
446 			break;
447 	}
448 
449 	return i;
450 }
451 
rockchip_spi_prepare_dma(struct rockchip_spi * rs,struct spi_controller * ctlr,struct spi_transfer * xfer)452 static int rockchip_spi_prepare_dma(struct rockchip_spi *rs,
453 		struct spi_controller *ctlr, struct spi_transfer *xfer)
454 {
455 	struct dma_async_tx_descriptor *rxdesc, *txdesc;
456 
457 	atomic_set(&rs->state, 0);
458 
459 	rs->tx = xfer->tx_buf;
460 	rs->rx = xfer->rx_buf;
461 
462 	rxdesc = NULL;
463 	if (xfer->rx_buf) {
464 		struct dma_slave_config rxconf = {
465 			.direction = DMA_DEV_TO_MEM,
466 			.src_addr = rs->dma_addr_rx,
467 			.src_addr_width = rs->n_bytes,
468 			.src_maxburst = rockchip_spi_calc_burst_size(xfer->len / rs->n_bytes),
469 		};
470 
471 		dmaengine_slave_config(ctlr->dma_rx, &rxconf);
472 
473 		rxdesc = dmaengine_prep_slave_sg(
474 				ctlr->dma_rx,
475 				xfer->rx_sg.sgl, xfer->rx_sg.nents,
476 				DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
477 		if (!rxdesc)
478 			return -EINVAL;
479 
480 		rxdesc->callback = rockchip_spi_dma_rxcb;
481 		rxdesc->callback_param = ctlr;
482 	}
483 
484 	txdesc = NULL;
485 	if (xfer->tx_buf) {
486 		struct dma_slave_config txconf = {
487 			.direction = DMA_MEM_TO_DEV,
488 			.dst_addr = rs->dma_addr_tx,
489 			.dst_addr_width = rs->n_bytes,
490 			.dst_maxburst = rs->fifo_len / 4,
491 		};
492 
493 		dmaengine_slave_config(ctlr->dma_tx, &txconf);
494 
495 		txdesc = dmaengine_prep_slave_sg(
496 				ctlr->dma_tx,
497 				xfer->tx_sg.sgl, xfer->tx_sg.nents,
498 				DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
499 		if (!txdesc) {
500 			if (rxdesc)
501 				dmaengine_terminate_sync(ctlr->dma_rx);
502 			return -EINVAL;
503 		}
504 
505 		txdesc->callback = rockchip_spi_dma_txcb;
506 		txdesc->callback_param = ctlr;
507 	}
508 
509 	/* rx must be started before tx due to spi instinct */
510 	if (rxdesc) {
511 		atomic_or(RXDMA, &rs->state);
512 		ctlr->dma_rx->cookie = dmaengine_submit(rxdesc);
513 		dma_async_issue_pending(ctlr->dma_rx);
514 	}
515 
516 	if (rs->cs_inactive)
517 		writel_relaxed(INT_CS_INACTIVE, rs->regs + ROCKCHIP_SPI_IMR);
518 
519 	spi_enable_chip(rs, true);
520 
521 	if (txdesc) {
522 		atomic_or(TXDMA, &rs->state);
523 		dmaengine_submit(txdesc);
524 		dma_async_issue_pending(ctlr->dma_tx);
525 	}
526 
527 	/* 1 means the transfer is in progress */
528 	return 1;
529 }
530 
rockchip_spi_config(struct rockchip_spi * rs,struct spi_device * spi,struct spi_transfer * xfer,bool use_dma,bool target_mode)531 static int rockchip_spi_config(struct rockchip_spi *rs,
532 		struct spi_device *spi, struct spi_transfer *xfer,
533 		bool use_dma, bool target_mode)
534 {
535 	u32 cr0 = CR0_FRF_SPI  << CR0_FRF_OFFSET
536 		| CR0_BHT_8BIT << CR0_BHT_OFFSET
537 		| CR0_SSD_ONE  << CR0_SSD_OFFSET
538 		| CR0_EM_BIG   << CR0_EM_OFFSET;
539 	u32 cr1;
540 	u32 dmacr = 0;
541 
542 	if (target_mode)
543 		cr0 |= CR0_OPM_TARGET << CR0_OPM_OFFSET;
544 	rs->target_abort = false;
545 
546 	cr0 |= rs->rsd << CR0_RSD_OFFSET;
547 	cr0 |= (spi->mode & 0x3U) << CR0_SCPH_OFFSET;
548 	if (spi->mode & SPI_LSB_FIRST)
549 		cr0 |= CR0_FBM_LSB << CR0_FBM_OFFSET;
550 	if (spi->mode & SPI_CS_HIGH)
551 		cr0 |= BIT(spi_get_chipselect(spi, 0)) << CR0_SOI_OFFSET;
552 
553 	if (xfer->rx_buf && xfer->tx_buf)
554 		cr0 |= CR0_XFM_TR << CR0_XFM_OFFSET;
555 	else if (xfer->rx_buf)
556 		cr0 |= CR0_XFM_RO << CR0_XFM_OFFSET;
557 	else if (use_dma)
558 		cr0 |= CR0_XFM_TO << CR0_XFM_OFFSET;
559 
560 	switch (xfer->bits_per_word) {
561 	case 4:
562 		cr0 |= CR0_DFS_4BIT << CR0_DFS_OFFSET;
563 		cr1 = xfer->len - 1;
564 		break;
565 	case 8:
566 		cr0 |= CR0_DFS_8BIT << CR0_DFS_OFFSET;
567 		cr1 = xfer->len - 1;
568 		break;
569 	case 16:
570 		cr0 |= CR0_DFS_16BIT << CR0_DFS_OFFSET;
571 		cr1 = xfer->len / 2 - 1;
572 		break;
573 	default:
574 		/* we only whitelist 4, 8 and 16 bit words in
575 		 * ctlr->bits_per_word_mask, so this shouldn't
576 		 * happen
577 		 */
578 		dev_err(rs->dev, "unknown bits per word: %d\n",
579 			xfer->bits_per_word);
580 		return -EINVAL;
581 	}
582 
583 	if (use_dma) {
584 		if (xfer->tx_buf)
585 			dmacr |= TF_DMA_EN;
586 		if (xfer->rx_buf)
587 			dmacr |= RF_DMA_EN;
588 	}
589 
590 	writel_relaxed(cr0, rs->regs + ROCKCHIP_SPI_CTRLR0);
591 	writel_relaxed(cr1, rs->regs + ROCKCHIP_SPI_CTRLR1);
592 
593 	/* unfortunately setting the fifo threshold level to generate an
594 	 * interrupt exactly when the fifo is full doesn't seem to work,
595 	 * so we need the strict inequality here
596 	 */
597 	if ((xfer->len / rs->n_bytes) < rs->fifo_len)
598 		writel_relaxed(xfer->len / rs->n_bytes - 1, rs->regs + ROCKCHIP_SPI_RXFTLR);
599 	else
600 		writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_RXFTLR);
601 
602 	writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_DMATDLR);
603 	writel_relaxed(rockchip_spi_calc_burst_size(xfer->len / rs->n_bytes) - 1,
604 		       rs->regs + ROCKCHIP_SPI_DMARDLR);
605 	writel_relaxed(dmacr, rs->regs + ROCKCHIP_SPI_DMACR);
606 
607 	/* the hardware only supports an even clock divisor, so
608 	 * round divisor = spiclk / speed up to nearest even number
609 	 * so that the resulting speed is <= the requested speed
610 	 */
611 	writel_relaxed(2 * DIV_ROUND_UP(rs->freq, 2 * xfer->speed_hz),
612 			rs->regs + ROCKCHIP_SPI_BAUDR);
613 
614 	return 0;
615 }
616 
rockchip_spi_max_transfer_size(struct spi_device * spi)617 static size_t rockchip_spi_max_transfer_size(struct spi_device *spi)
618 {
619 	return ROCKCHIP_SPI_MAX_TRANLEN;
620 }
621 
rockchip_spi_target_abort(struct spi_controller * ctlr)622 static int rockchip_spi_target_abort(struct spi_controller *ctlr)
623 {
624 	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
625 	u32 rx_fifo_left;
626 	struct dma_tx_state state;
627 	enum dma_status status;
628 
629 	/* Get current dma rx point */
630 	if (atomic_read(&rs->state) & RXDMA) {
631 		dmaengine_pause(ctlr->dma_rx);
632 		status = dmaengine_tx_status(ctlr->dma_rx, ctlr->dma_rx->cookie, &state);
633 		if (status == DMA_ERROR) {
634 			rs->rx = rs->xfer->rx_buf;
635 			rs->xfer->len = 0;
636 			rx_fifo_left = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR);
637 			for (; rx_fifo_left; rx_fifo_left--)
638 				readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR);
639 			goto out;
640 		} else {
641 			rs->rx += rs->xfer->len - rs->n_bytes * state.residue;
642 		}
643 	}
644 
645 	/* Get the valid data left in rx fifo and set rs->xfer->len real rx size */
646 	if (rs->rx) {
647 		rx_fifo_left = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR);
648 		for (; rx_fifo_left; rx_fifo_left--) {
649 			u32 rxw = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR);
650 
651 			if (rs->n_bytes == 1)
652 				*(u8 *)rs->rx = (u8)rxw;
653 			else
654 				*(u16 *)rs->rx = (u16)rxw;
655 			rs->rx += rs->n_bytes;
656 		}
657 		rs->xfer->len = (unsigned int)(rs->rx - rs->xfer->rx_buf);
658 	}
659 
660 out:
661 	if (atomic_read(&rs->state) & RXDMA)
662 		dmaengine_terminate_sync(ctlr->dma_rx);
663 	if (atomic_read(&rs->state) & TXDMA)
664 		dmaengine_terminate_sync(ctlr->dma_tx);
665 	atomic_set(&rs->state, 0);
666 	spi_enable_chip(rs, false);
667 	rs->target_abort = true;
668 	spi_finalize_current_transfer(ctlr);
669 
670 	return 0;
671 }
672 
rockchip_spi_transfer_one(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * xfer)673 static int rockchip_spi_transfer_one(
674 		struct spi_controller *ctlr,
675 		struct spi_device *spi,
676 		struct spi_transfer *xfer)
677 {
678 	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
679 	int ret;
680 	bool use_dma;
681 
682 	/* Zero length transfers won't trigger an interrupt on completion */
683 	if (!xfer->len) {
684 		spi_finalize_current_transfer(ctlr);
685 		return 1;
686 	}
687 
688 	WARN_ON(readl_relaxed(rs->regs + ROCKCHIP_SPI_SSIENR) &&
689 		(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY));
690 
691 	if (!xfer->tx_buf && !xfer->rx_buf) {
692 		dev_err(rs->dev, "No buffer for transfer\n");
693 		return -EINVAL;
694 	}
695 
696 	if (xfer->len > ROCKCHIP_SPI_MAX_TRANLEN) {
697 		dev_err(rs->dev, "Transfer is too long (%d)\n", xfer->len);
698 		return -EINVAL;
699 	}
700 
701 	rs->n_bytes = xfer->bits_per_word <= 8 ? 1 : 2;
702 	rs->xfer = xfer;
703 	use_dma = ctlr->can_dma ? ctlr->can_dma(ctlr, spi, xfer) : false;
704 
705 	ret = rockchip_spi_config(rs, spi, xfer, use_dma, ctlr->target);
706 	if (ret)
707 		return ret;
708 
709 	if (use_dma)
710 		return rockchip_spi_prepare_dma(rs, ctlr, xfer);
711 
712 	return rockchip_spi_prepare_irq(rs, ctlr, xfer);
713 }
714 
rockchip_spi_can_dma(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * xfer)715 static bool rockchip_spi_can_dma(struct spi_controller *ctlr,
716 				 struct spi_device *spi,
717 				 struct spi_transfer *xfer)
718 {
719 	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
720 	unsigned int bytes_per_word = xfer->bits_per_word <= 8 ? 1 : 2;
721 
722 	/* if the numbor of spi words to transfer is less than the fifo
723 	 * length we can just fill the fifo and wait for a single irq,
724 	 * so don't bother setting up dma
725 	 */
726 	return xfer->len / bytes_per_word >= rs->fifo_len;
727 }
728 
rockchip_spi_setup(struct spi_device * spi)729 static int rockchip_spi_setup(struct spi_device *spi)
730 {
731 	struct rockchip_spi *rs = spi_controller_get_devdata(spi->controller);
732 	u32 cr0;
733 
734 	if (!spi_get_csgpiod(spi, 0) && (spi->mode & SPI_CS_HIGH) && !rs->cs_high_supported) {
735 		dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
736 		return -EINVAL;
737 	}
738 
739 	pm_runtime_get_sync(rs->dev);
740 
741 	cr0 = readl_relaxed(rs->regs + ROCKCHIP_SPI_CTRLR0);
742 
743 	cr0 &= ~(0x3 << CR0_SCPH_OFFSET);
744 	cr0 |= ((spi->mode & 0x3) << CR0_SCPH_OFFSET);
745 	if (spi->mode & SPI_CS_HIGH && spi_get_chipselect(spi, 0) <= 1)
746 		cr0 |= BIT(spi_get_chipselect(spi, 0)) << CR0_SOI_OFFSET;
747 	else if (spi_get_chipselect(spi, 0) <= 1)
748 		cr0 &= ~(BIT(spi_get_chipselect(spi, 0)) << CR0_SOI_OFFSET);
749 
750 	writel_relaxed(cr0, rs->regs + ROCKCHIP_SPI_CTRLR0);
751 
752 	pm_runtime_put(rs->dev);
753 
754 	return 0;
755 }
756 
rockchip_spi_probe(struct platform_device * pdev)757 static int rockchip_spi_probe(struct platform_device *pdev)
758 {
759 	struct device_node *np = pdev->dev.of_node;
760 	struct spi_controller *ctlr;
761 	struct rockchip_spi *rs;
762 	struct resource *mem;
763 	u32 rsd_nsecs, num_cs;
764 	bool target_mode;
765 	int ret;
766 
767 	target_mode = of_property_read_bool(np, "spi-slave");
768 
769 	if (target_mode)
770 		ctlr = spi_alloc_target(&pdev->dev, sizeof(struct rockchip_spi));
771 	else
772 		ctlr = spi_alloc_host(&pdev->dev, sizeof(struct rockchip_spi));
773 
774 	if (!ctlr)
775 		return -ENOMEM;
776 
777 	platform_set_drvdata(pdev, ctlr);
778 
779 	rs = spi_controller_get_devdata(ctlr);
780 
781 	/* Get basic io resource and map it */
782 	rs->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
783 	if (IS_ERR(rs->regs)) {
784 		ret = PTR_ERR(rs->regs);
785 		goto err_put_ctlr;
786 	}
787 
788 	rs->apb_pclk = devm_clk_get_enabled(&pdev->dev, "apb_pclk");
789 	if (IS_ERR(rs->apb_pclk)) {
790 		ret = dev_err_probe(&pdev->dev, PTR_ERR(rs->apb_pclk),
791 				    "Failed to get apb_pclk\n");
792 		goto err_put_ctlr;
793 	}
794 
795 	rs->spiclk = devm_clk_get_enabled(&pdev->dev, "spiclk");
796 	if (IS_ERR(rs->spiclk)) {
797 		ret = dev_err_probe(&pdev->dev, PTR_ERR(rs->spiclk),
798 				    "Failed to get spi_pclk\n");
799 		goto err_put_ctlr;
800 	}
801 
802 	spi_enable_chip(rs, false);
803 
804 	ret = platform_get_irq(pdev, 0);
805 	if (ret < 0)
806 		goto err_put_ctlr;
807 
808 	ret = devm_request_threaded_irq(&pdev->dev, ret, rockchip_spi_isr, NULL,
809 					IRQF_ONESHOT, dev_name(&pdev->dev), ctlr);
810 	if (ret)
811 		goto err_put_ctlr;
812 
813 	rs->dev = &pdev->dev;
814 	rs->freq = clk_get_rate(rs->spiclk);
815 
816 	if (!of_property_read_u32(pdev->dev.of_node, "rx-sample-delay-ns",
817 				  &rsd_nsecs)) {
818 		/* rx sample delay is expressed in parent clock cycles (max 3) */
819 		u32 rsd = DIV_ROUND_CLOSEST(rsd_nsecs * (rs->freq >> 8), 1000000000 >> 8);
820 		if (!rsd) {
821 			dev_warn(rs->dev, "%u Hz are too slow to express %u ns delay\n",
822 				 rs->freq, rsd_nsecs);
823 		} else if (rsd > CR0_RSD_MAX) {
824 			rsd = CR0_RSD_MAX;
825 			dev_warn(rs->dev,
826 				 "%u Hz are too fast to express %u ns delay, clamping at %u ns\n",
827 				 rs->freq, rsd_nsecs, CR0_RSD_MAX * 1000000000U / rs->freq);
828 		}
829 		rs->rsd = rsd;
830 	}
831 
832 	rs->fifo_len = get_fifo_len(rs);
833 	if (!rs->fifo_len) {
834 		ret = dev_err_probe(&pdev->dev, -EINVAL, "Failed to get fifo length\n");
835 		goto err_put_ctlr;
836 	}
837 
838 	pm_runtime_set_autosuspend_delay(&pdev->dev, ROCKCHIP_AUTOSUSPEND_TIMEOUT);
839 	pm_runtime_use_autosuspend(&pdev->dev);
840 	pm_runtime_set_active(&pdev->dev);
841 	pm_runtime_enable(&pdev->dev);
842 
843 	ctlr->auto_runtime_pm = true;
844 	ctlr->bus_num = pdev->id;
845 	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_LSB_FIRST;
846 	if (target_mode) {
847 		ctlr->mode_bits |= SPI_NO_CS;
848 		ctlr->target_abort = rockchip_spi_target_abort;
849 	} else {
850 		ctlr->flags = SPI_CONTROLLER_GPIO_SS;
851 		ctlr->max_native_cs = ROCKCHIP_SPI_MAX_NATIVE_CS_NUM;
852 		/*
853 		 * rk spi0 has two native cs, spi1..5 one cs only
854 		 * if num-cs is missing in the dts, default to 1
855 		 */
856 		if (of_property_read_u32(np, "num-cs", &num_cs))
857 			num_cs = 1;
858 		ctlr->num_chipselect = num_cs;
859 		ctlr->use_gpio_descriptors = true;
860 	}
861 	ctlr->dev.of_node = pdev->dev.of_node;
862 	ctlr->bits_per_word_mask = SPI_BPW_MASK(16) | SPI_BPW_MASK(8) | SPI_BPW_MASK(4);
863 	ctlr->min_speed_hz = rs->freq / BAUDR_SCKDV_MAX;
864 	ctlr->max_speed_hz = min(rs->freq / BAUDR_SCKDV_MIN, MAX_SCLK_OUT);
865 
866 	ctlr->setup = rockchip_spi_setup;
867 	ctlr->set_cs = rockchip_spi_set_cs;
868 	ctlr->transfer_one = rockchip_spi_transfer_one;
869 	ctlr->max_transfer_size = rockchip_spi_max_transfer_size;
870 	ctlr->handle_err = rockchip_spi_handle_err;
871 
872 	ctlr->dma_tx = dma_request_chan(rs->dev, "tx");
873 	if (IS_ERR(ctlr->dma_tx)) {
874 		/* Check tx to see if we need to defer driver probing */
875 		ret = dev_warn_probe(rs->dev, PTR_ERR(ctlr->dma_tx),
876 				     "Failed to request optional TX DMA channel\n");
877 		if (ret == -EPROBE_DEFER)
878 			goto err_disable_pm_runtime;
879 		ctlr->dma_tx = NULL;
880 	}
881 
882 	ctlr->dma_rx = dma_request_chan(rs->dev, "rx");
883 	if (IS_ERR(ctlr->dma_rx)) {
884 		/* Check rx to see if we need to defer driver probing */
885 		ret = dev_warn_probe(rs->dev, PTR_ERR(ctlr->dma_rx),
886 				     "Failed to request optional RX DMA channel\n");
887 		if (ret == -EPROBE_DEFER)
888 			goto err_free_dma_tx;
889 		ctlr->dma_rx = NULL;
890 	}
891 
892 	if (ctlr->dma_tx && ctlr->dma_rx) {
893 		rs->dma_addr_tx = mem->start + ROCKCHIP_SPI_TXDR;
894 		rs->dma_addr_rx = mem->start + ROCKCHIP_SPI_RXDR;
895 		ctlr->can_dma = rockchip_spi_can_dma;
896 	}
897 
898 	switch (readl_relaxed(rs->regs + ROCKCHIP_SPI_VERSION)) {
899 	case ROCKCHIP_SPI_VER2_TYPE2:
900 		rs->cs_high_supported = true;
901 		ctlr->mode_bits |= SPI_CS_HIGH;
902 		if (ctlr->can_dma && target_mode)
903 			rs->cs_inactive = true;
904 		else
905 			rs->cs_inactive = false;
906 		break;
907 	default:
908 		rs->cs_inactive = false;
909 		break;
910 	}
911 
912 	ret = devm_spi_register_controller(&pdev->dev, ctlr);
913 	if (ret < 0) {
914 		dev_err(&pdev->dev, "Failed to register controller\n");
915 		goto err_free_dma_rx;
916 	}
917 
918 	return 0;
919 
920 err_free_dma_rx:
921 	if (ctlr->dma_rx)
922 		dma_release_channel(ctlr->dma_rx);
923 err_free_dma_tx:
924 	if (ctlr->dma_tx)
925 		dma_release_channel(ctlr->dma_tx);
926 err_disable_pm_runtime:
927 	pm_runtime_disable(&pdev->dev);
928 err_put_ctlr:
929 	spi_controller_put(ctlr);
930 
931 	return ret;
932 }
933 
rockchip_spi_remove(struct platform_device * pdev)934 static void rockchip_spi_remove(struct platform_device *pdev)
935 {
936 	struct spi_controller *ctlr = spi_controller_get(platform_get_drvdata(pdev));
937 
938 	pm_runtime_get_sync(&pdev->dev);
939 
940 	pm_runtime_put_noidle(&pdev->dev);
941 	pm_runtime_disable(&pdev->dev);
942 	pm_runtime_set_suspended(&pdev->dev);
943 
944 	if (ctlr->dma_tx)
945 		dma_release_channel(ctlr->dma_tx);
946 	if (ctlr->dma_rx)
947 		dma_release_channel(ctlr->dma_rx);
948 
949 	spi_controller_put(ctlr);
950 }
951 
952 #ifdef CONFIG_PM_SLEEP
rockchip_spi_suspend(struct device * dev)953 static int rockchip_spi_suspend(struct device *dev)
954 {
955 	int ret;
956 	struct spi_controller *ctlr = dev_get_drvdata(dev);
957 
958 	ret = spi_controller_suspend(ctlr);
959 	if (ret < 0)
960 		return ret;
961 
962 	ret = pm_runtime_force_suspend(dev);
963 	if (ret < 0) {
964 		spi_controller_resume(ctlr);
965 		return ret;
966 	}
967 
968 	pinctrl_pm_select_sleep_state(dev);
969 
970 	return 0;
971 }
972 
rockchip_spi_resume(struct device * dev)973 static int rockchip_spi_resume(struct device *dev)
974 {
975 	int ret;
976 	struct spi_controller *ctlr = dev_get_drvdata(dev);
977 
978 	pinctrl_pm_select_default_state(dev);
979 
980 	ret = pm_runtime_force_resume(dev);
981 	if (ret < 0)
982 		return ret;
983 
984 	return spi_controller_resume(ctlr);
985 }
986 #endif /* CONFIG_PM_SLEEP */
987 
988 #ifdef CONFIG_PM
rockchip_spi_runtime_suspend(struct device * dev)989 static int rockchip_spi_runtime_suspend(struct device *dev)
990 {
991 	struct spi_controller *ctlr = dev_get_drvdata(dev);
992 	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
993 
994 	clk_disable_unprepare(rs->spiclk);
995 	clk_disable_unprepare(rs->apb_pclk);
996 
997 	return 0;
998 }
999 
rockchip_spi_runtime_resume(struct device * dev)1000 static int rockchip_spi_runtime_resume(struct device *dev)
1001 {
1002 	int ret;
1003 	struct spi_controller *ctlr = dev_get_drvdata(dev);
1004 	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
1005 
1006 	ret = clk_prepare_enable(rs->apb_pclk);
1007 	if (ret < 0)
1008 		return ret;
1009 
1010 	ret = clk_prepare_enable(rs->spiclk);
1011 	if (ret < 0)
1012 		clk_disable_unprepare(rs->apb_pclk);
1013 
1014 	return 0;
1015 }
1016 #endif /* CONFIG_PM */
1017 
1018 static const struct dev_pm_ops rockchip_spi_pm = {
1019 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(rockchip_spi_suspend, rockchip_spi_resume)
1020 	SET_RUNTIME_PM_OPS(rockchip_spi_runtime_suspend,
1021 			   rockchip_spi_runtime_resume, NULL)
1022 };
1023 
1024 static const struct of_device_id rockchip_spi_dt_match[] = {
1025 	{ .compatible = "rockchip,px30-spi", },
1026 	{ .compatible = "rockchip,rk3036-spi", },
1027 	{ .compatible = "rockchip,rk3066-spi", },
1028 	{ .compatible = "rockchip,rk3188-spi", },
1029 	{ .compatible = "rockchip,rk3228-spi", },
1030 	{ .compatible = "rockchip,rk3288-spi", },
1031 	{ .compatible = "rockchip,rk3308-spi", },
1032 	{ .compatible = "rockchip,rk3328-spi", },
1033 	{ .compatible = "rockchip,rk3368-spi", },
1034 	{ .compatible = "rockchip,rk3399-spi", },
1035 	{ .compatible = "rockchip,rv1108-spi", },
1036 	{ .compatible = "rockchip,rv1126-spi", },
1037 	{ },
1038 };
1039 MODULE_DEVICE_TABLE(of, rockchip_spi_dt_match);
1040 
1041 static struct platform_driver rockchip_spi_driver = {
1042 	.driver = {
1043 		.name	= DRIVER_NAME,
1044 		.pm = &rockchip_spi_pm,
1045 		.of_match_table = of_match_ptr(rockchip_spi_dt_match),
1046 	},
1047 	.probe = rockchip_spi_probe,
1048 	.remove = rockchip_spi_remove,
1049 };
1050 
1051 module_platform_driver(rockchip_spi_driver);
1052 
1053 MODULE_AUTHOR("Addy Ke <addy.ke@rock-chips.com>");
1054 MODULE_DESCRIPTION("ROCKCHIP SPI Controller Driver");
1055 MODULE_LICENSE("GPL v2");
1056