xref: /linux/sound/pci/rme32.c (revision 05a54fa773284d1a7923cdfdd8f0c8dabb98bd26)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   ALSA driver for RME Digi32, Digi32/8 and Digi32 PRO audio interfaces
4  *
5  *      Copyright (c) 2002-2004 Martin Langer <martin-langer@gmx.de>,
6  *                              Pilo Chambert <pilo.c@wanadoo.fr>
7  *
8  *      Thanks to :        Anders Torger <torger@ludd.luth.se>,
9  *                         Henk Hesselink <henk@anda.nl>
10  *                         for writing the digi96-driver
11  *                         and RME for all informations.
12  *
13  * ****************************************************************************
14  *
15  * Note #1 "Sek'd models" ................................... martin 2002-12-07
16  *
17  * Identical soundcards by Sek'd were labeled:
18  * RME Digi 32     = Sek'd Prodif 32
19  * RME Digi 32 Pro = Sek'd Prodif 96
20  * RME Digi 32/8   = Sek'd Prodif Gold
21  *
22  * ****************************************************************************
23  *
24  * Note #2 "full duplex mode" ............................... martin 2002-12-07
25  *
26  * Full duplex doesn't work. All cards (32, 32/8, 32Pro) are working identical
27  * in this mode. Rec data and play data are using the same buffer therefore. At
28  * first you have got the playing bits in the buffer and then (after playing
29  * them) they were overwitten by the captured sound of the CS8412/14. Both
30  * modes (play/record) are running harmonically hand in hand in the same buffer
31  * and you have only one start bit plus one interrupt bit to control this
32  * paired action.
33  * This is opposite to the latter rme96 where playing and capturing is totally
34  * separated and so their full duplex mode is supported by alsa (using two
35  * start bits and two interrupts for two different buffers).
36  * But due to the wrong sequence of playing and capturing ALSA shows no solved
37  * full duplex support for the rme32 at the moment. That's bad, but I'm not
38  * able to solve it. Are you motivated enough to solve this problem now? Your
39  * patch would be welcome!
40  *
41  * ****************************************************************************
42  *
43  * "The story after the long seeking" -- tiwai
44  *
45  * Ok, the situation regarding the full duplex is now improved a bit.
46  * In the fullduplex mode (given by the module parameter), the hardware buffer
47  * is split to halves for read and write directions at the DMA pointer.
48  * That is, the half above the current DMA pointer is used for write, and
49  * the half below is used for read.  To mangle this strange behavior, an
50  * software intermediate buffer is introduced.  This is, of course, not good
51  * from the viewpoint of the data transfer efficiency.  However, this allows
52  * you to use arbitrary buffer sizes, instead of the fixed I/O buffer size.
53  *
54  * ****************************************************************************
55  */
56 
57 
58 #include <linux/delay.h>
59 #include <linux/gfp.h>
60 #include <linux/init.h>
61 #include <linux/interrupt.h>
62 #include <linux/pci.h>
63 #include <linux/module.h>
64 #include <linux/io.h>
65 
66 #include <sound/core.h>
67 #include <sound/info.h>
68 #include <sound/control.h>
69 #include <sound/pcm.h>
70 #include <sound/pcm_params.h>
71 #include <sound/pcm-indirect.h>
72 #include <sound/asoundef.h>
73 #include <sound/initval.h>
74 
75 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
76 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
77 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable this card */
78 static bool fullduplex[SNDRV_CARDS]; // = {[0 ... (SNDRV_CARDS - 1)] = 1};
79 
80 module_param_array(index, int, NULL, 0444);
81 MODULE_PARM_DESC(index, "Index value for RME Digi32 soundcard.");
82 module_param_array(id, charp, NULL, 0444);
83 MODULE_PARM_DESC(id, "ID string for RME Digi32 soundcard.");
84 module_param_array(enable, bool, NULL, 0444);
85 MODULE_PARM_DESC(enable, "Enable RME Digi32 soundcard.");
86 module_param_array(fullduplex, bool, NULL, 0444);
87 MODULE_PARM_DESC(fullduplex, "Support full-duplex mode.");
88 MODULE_AUTHOR("Martin Langer <martin-langer@gmx.de>, Pilo Chambert <pilo.c@wanadoo.fr>");
89 MODULE_DESCRIPTION("RME Digi32, Digi32/8, Digi32 PRO");
90 MODULE_LICENSE("GPL");
91 
92 /* Defines for RME Digi32 series */
93 #define RME32_SPDIF_NCHANNELS 2
94 
95 /* Playback and capture buffer size */
96 #define RME32_BUFFER_SIZE 0x20000
97 
98 /* IO area size */
99 #define RME32_IO_SIZE 0x30000
100 
101 /* IO area offsets */
102 #define RME32_IO_DATA_BUFFER        0x0
103 #define RME32_IO_CONTROL_REGISTER   0x20000
104 #define RME32_IO_GET_POS            0x20000
105 #define RME32_IO_CONFIRM_ACTION_IRQ 0x20004
106 #define RME32_IO_RESET_POS          0x20100
107 
108 /* Write control register bits */
109 #define RME32_WCR_START     (1 << 0)    /* startbit */
110 #define RME32_WCR_MONO      (1 << 1)    /* 0=stereo, 1=mono
111                                            Setting the whole card to mono
112                                            doesn't seem to be very useful.
113                                            A software-solution can handle
114                                            full-duplex with one direction in
115                                            stereo and the other way in mono.
116                                            So, the hardware should work all
117                                            the time in stereo! */
118 #define RME32_WCR_MODE24    (1 << 2)    /* 0=16bit, 1=32bit */
119 #define RME32_WCR_SEL       (1 << 3)    /* 0=input on output, 1=normal playback/capture */
120 #define RME32_WCR_FREQ_0    (1 << 4)    /* frequency (play) */
121 #define RME32_WCR_FREQ_1    (1 << 5)
122 #define RME32_WCR_INP_0     (1 << 6)    /* input switch */
123 #define RME32_WCR_INP_1     (1 << 7)
124 #define RME32_WCR_RESET     (1 << 8)    /* Reset address */
125 #define RME32_WCR_MUTE      (1 << 9)    /* digital mute for output */
126 #define RME32_WCR_PRO       (1 << 10)   /* 1=professional, 0=consumer */
127 #define RME32_WCR_DS_BM     (1 << 11)	/* 1=DoubleSpeed (only PRO-Version); 1=BlockMode (only Adat-Version) */
128 #define RME32_WCR_ADAT      (1 << 12)	/* Adat Mode (only Adat-Version) */
129 #define RME32_WCR_AUTOSYNC  (1 << 13)   /* AutoSync */
130 #define RME32_WCR_PD        (1 << 14)	/* DAC Reset (only PRO-Version) */
131 #define RME32_WCR_EMP       (1 << 15)	/* 1=Emphasis on (only PRO-Version) */
132 
133 #define RME32_WCR_BITPOS_FREQ_0 4
134 #define RME32_WCR_BITPOS_FREQ_1 5
135 #define RME32_WCR_BITPOS_INP_0 6
136 #define RME32_WCR_BITPOS_INP_1 7
137 
138 /* Read control register bits */
139 #define RME32_RCR_AUDIO_ADDR_MASK 0x1ffff
140 #define RME32_RCR_LOCK      (1 << 23)   /* 1=locked, 0=not locked */
141 #define RME32_RCR_ERF       (1 << 26)   /* 1=Error, 0=no Error */
142 #define RME32_RCR_FREQ_0    (1 << 27)   /* CS841x frequency (record) */
143 #define RME32_RCR_FREQ_1    (1 << 28)
144 #define RME32_RCR_FREQ_2    (1 << 29)
145 #define RME32_RCR_KMODE     (1 << 30)   /* card mode: 1=PLL, 0=quartz */
146 #define RME32_RCR_IRQ       (1 << 31)   /* interrupt */
147 
148 #define RME32_RCR_BITPOS_F0 27
149 #define RME32_RCR_BITPOS_F1 28
150 #define RME32_RCR_BITPOS_F2 29
151 
152 /* Input types */
153 #define RME32_INPUT_OPTICAL 0
154 #define RME32_INPUT_COAXIAL 1
155 #define RME32_INPUT_INTERNAL 2
156 #define RME32_INPUT_XLR 3
157 
158 /* Clock modes */
159 #define RME32_CLOCKMODE_SLAVE 0
160 #define RME32_CLOCKMODE_MASTER_32 1
161 #define RME32_CLOCKMODE_MASTER_44 2
162 #define RME32_CLOCKMODE_MASTER_48 3
163 
164 /* Block sizes in bytes */
165 #define RME32_BLOCK_SIZE 8192
166 
167 /* Software intermediate buffer (max) size */
168 #define RME32_MID_BUFFER_SIZE (1024*1024)
169 
170 /* Hardware revisions */
171 #define RME32_32_REVISION 192
172 #define RME32_328_REVISION_OLD 100
173 #define RME32_328_REVISION_NEW 101
174 #define RME32_PRO_REVISION_WITH_8412 192
175 #define RME32_PRO_REVISION_WITH_8414 150
176 
177 
178 struct rme32 {
179 	spinlock_t lock;
180 	int irq;
181 	unsigned long port;
182 	void __iomem *iobase;
183 
184 	u32 wcreg;		/* cached write control register value */
185 	u32 wcreg_spdif;	/* S/PDIF setup */
186 	u32 wcreg_spdif_stream;	/* S/PDIF setup (temporary) */
187 	u32 rcreg;		/* cached read control register value */
188 
189 	u8 rev;			/* card revision number */
190 
191 	struct snd_pcm_substream *playback_substream;
192 	struct snd_pcm_substream *capture_substream;
193 
194 	int playback_frlog;	/* log2 of framesize */
195 	int capture_frlog;
196 
197 	size_t playback_periodsize;	/* in bytes, zero if not used */
198 	size_t capture_periodsize;	/* in bytes, zero if not used */
199 
200 	unsigned int fullduplex_mode;
201 	int running;
202 
203 	struct snd_pcm_indirect playback_pcm;
204 	struct snd_pcm_indirect capture_pcm;
205 
206 	struct snd_card *card;
207 	struct snd_pcm *spdif_pcm;
208 	struct snd_pcm *adat_pcm;
209 	struct pci_dev *pci;
210 	struct snd_kcontrol *spdif_ctl;
211 };
212 
213 static const struct pci_device_id snd_rme32_ids[] = {
214 	{PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32), 0,},
215 	{PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_8), 0,},
216 	{PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_PRO), 0,},
217 	{0,}
218 };
219 
220 MODULE_DEVICE_TABLE(pci, snd_rme32_ids);
221 
222 #define RME32_ISWORKING(rme32) ((rme32)->wcreg & RME32_WCR_START)
223 #define RME32_PRO_WITH_8414(rme32) ((rme32)->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO && (rme32)->rev == RME32_PRO_REVISION_WITH_8414)
224 
225 static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream);
226 
227 static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream);
228 
229 static int snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd);
230 
231 static void snd_rme32_proc_init(struct rme32 * rme32);
232 
233 static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32);
234 
235 static inline unsigned int snd_rme32_pcm_byteptr(struct rme32 * rme32)
236 {
237 	return (readl(rme32->iobase + RME32_IO_GET_POS)
238 		& RME32_RCR_AUDIO_ADDR_MASK);
239 }
240 
241 /* silence callback for halfduplex mode */
242 static int snd_rme32_playback_silence(struct snd_pcm_substream *substream,
243 				      int channel, unsigned long pos,
244 				      unsigned long count)
245 {
246 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
247 
248 	memset_io(rme32->iobase + RME32_IO_DATA_BUFFER + pos, 0, count);
249 	return 0;
250 }
251 
252 /* copy callback for halfduplex mode */
253 static int snd_rme32_playback_copy(struct snd_pcm_substream *substream,
254 				   int channel, unsigned long pos,
255 				   struct iov_iter *src, unsigned long count)
256 {
257 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
258 
259 	if (copy_from_iter_toio(rme32->iobase + RME32_IO_DATA_BUFFER + pos,
260 				count, src) != count)
261 		return -EFAULT;
262 	return 0;
263 }
264 
265 /* copy callback for halfduplex mode */
266 static int snd_rme32_capture_copy(struct snd_pcm_substream *substream,
267 				  int channel, unsigned long pos,
268 				  struct iov_iter *dst, unsigned long count)
269 {
270 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
271 
272 	if (copy_to_iter_fromio(rme32->iobase + RME32_IO_DATA_BUFFER + pos,
273 				count, dst) != count)
274 		return -EFAULT;
275 	return 0;
276 }
277 
278 /*
279  * SPDIF I/O capabilities (half-duplex mode)
280  */
281 static const struct snd_pcm_hardware snd_rme32_spdif_info = {
282 	.info =		(SNDRV_PCM_INFO_MMAP_IOMEM |
283 			 SNDRV_PCM_INFO_MMAP_VALID |
284 			 SNDRV_PCM_INFO_INTERLEAVED |
285 			 SNDRV_PCM_INFO_PAUSE |
286 			 SNDRV_PCM_INFO_SYNC_START |
287 			 SNDRV_PCM_INFO_SYNC_APPLPTR),
288 	.formats =	(SNDRV_PCM_FMTBIT_S16_LE |
289 			 SNDRV_PCM_FMTBIT_S32_LE),
290 	.rates =	(SNDRV_PCM_RATE_32000 |
291 			 SNDRV_PCM_RATE_44100 |
292 			 SNDRV_PCM_RATE_48000),
293 	.rate_min =	32000,
294 	.rate_max =	48000,
295 	.channels_min =	2,
296 	.channels_max =	2,
297 	.buffer_bytes_max = RME32_BUFFER_SIZE,
298 	.period_bytes_min = RME32_BLOCK_SIZE,
299 	.period_bytes_max = RME32_BLOCK_SIZE,
300 	.periods_min =	RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
301 	.periods_max =	RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
302 	.fifo_size =	0,
303 };
304 
305 /*
306  * ADAT I/O capabilities (half-duplex mode)
307  */
308 static const struct snd_pcm_hardware snd_rme32_adat_info =
309 {
310 	.info =		     (SNDRV_PCM_INFO_MMAP_IOMEM |
311 			      SNDRV_PCM_INFO_MMAP_VALID |
312 			      SNDRV_PCM_INFO_INTERLEAVED |
313 			      SNDRV_PCM_INFO_PAUSE |
314 			      SNDRV_PCM_INFO_SYNC_START |
315 			      SNDRV_PCM_INFO_SYNC_APPLPTR),
316 	.formats=            SNDRV_PCM_FMTBIT_S16_LE,
317 	.rates =             (SNDRV_PCM_RATE_44100 |
318 			      SNDRV_PCM_RATE_48000),
319 	.rate_min =          44100,
320 	.rate_max =          48000,
321 	.channels_min =      8,
322 	.channels_max =	     8,
323 	.buffer_bytes_max =  RME32_BUFFER_SIZE,
324 	.period_bytes_min =  RME32_BLOCK_SIZE,
325 	.period_bytes_max =  RME32_BLOCK_SIZE,
326 	.periods_min =	    RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
327 	.periods_max =	    RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
328 	.fifo_size =	    0,
329 };
330 
331 /*
332  * SPDIF I/O capabilities (full-duplex mode)
333  */
334 static const struct snd_pcm_hardware snd_rme32_spdif_fd_info = {
335 	.info =		(SNDRV_PCM_INFO_MMAP |
336 			 SNDRV_PCM_INFO_MMAP_VALID |
337 			 SNDRV_PCM_INFO_INTERLEAVED |
338 			 SNDRV_PCM_INFO_PAUSE |
339 			 SNDRV_PCM_INFO_SYNC_START |
340 			 SNDRV_PCM_INFO_SYNC_APPLPTR),
341 	.formats =	(SNDRV_PCM_FMTBIT_S16_LE |
342 			 SNDRV_PCM_FMTBIT_S32_LE),
343 	.rates =	(SNDRV_PCM_RATE_32000 |
344 			 SNDRV_PCM_RATE_44100 |
345 			 SNDRV_PCM_RATE_48000),
346 	.rate_min =	32000,
347 	.rate_max =	48000,
348 	.channels_min =	2,
349 	.channels_max =	2,
350 	.buffer_bytes_max = RME32_MID_BUFFER_SIZE,
351 	.period_bytes_min = RME32_BLOCK_SIZE,
352 	.period_bytes_max = RME32_BLOCK_SIZE,
353 	.periods_min =	2,
354 	.periods_max =	RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE,
355 	.fifo_size =	0,
356 };
357 
358 /*
359  * ADAT I/O capabilities (full-duplex mode)
360  */
361 static const struct snd_pcm_hardware snd_rme32_adat_fd_info =
362 {
363 	.info =		     (SNDRV_PCM_INFO_MMAP |
364 			      SNDRV_PCM_INFO_MMAP_VALID |
365 			      SNDRV_PCM_INFO_INTERLEAVED |
366 			      SNDRV_PCM_INFO_PAUSE |
367 			      SNDRV_PCM_INFO_SYNC_START |
368 			      SNDRV_PCM_INFO_SYNC_APPLPTR),
369 	.formats=            SNDRV_PCM_FMTBIT_S16_LE,
370 	.rates =             (SNDRV_PCM_RATE_44100 |
371 			      SNDRV_PCM_RATE_48000),
372 	.rate_min =          44100,
373 	.rate_max =          48000,
374 	.channels_min =      8,
375 	.channels_max =	     8,
376 	.buffer_bytes_max =  RME32_MID_BUFFER_SIZE,
377 	.period_bytes_min =  RME32_BLOCK_SIZE,
378 	.period_bytes_max =  RME32_BLOCK_SIZE,
379 	.periods_min =	    2,
380 	.periods_max =	    RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE,
381 	.fifo_size =	    0,
382 };
383 
384 static void snd_rme32_reset_dac(struct rme32 *rme32)
385 {
386         writel(rme32->wcreg | RME32_WCR_PD,
387                rme32->iobase + RME32_IO_CONTROL_REGISTER);
388         writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
389 }
390 
391 static int snd_rme32_playback_getrate(struct rme32 * rme32)
392 {
393 	int rate;
394 
395 	rate = ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
396 	       (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
397 	switch (rate) {
398 	case 1:
399 		rate = 32000;
400 		break;
401 	case 2:
402 		rate = 44100;
403 		break;
404 	case 3:
405 		rate = 48000;
406 		break;
407 	default:
408 		return -1;
409 	}
410 	return (rme32->wcreg & RME32_WCR_DS_BM) ? rate << 1 : rate;
411 }
412 
413 static int snd_rme32_capture_getrate(struct rme32 * rme32, int *is_adat)
414 {
415 	int n;
416 
417 	*is_adat = 0;
418 	if (rme32->rcreg & RME32_RCR_LOCK) {
419                 /* ADAT rate */
420                 *is_adat = 1;
421 	}
422 	if (rme32->rcreg & RME32_RCR_ERF) {
423 		return -1;
424 	}
425 
426         /* S/PDIF rate */
427 	n = ((rme32->rcreg >> RME32_RCR_BITPOS_F0) & 1) +
428 		(((rme32->rcreg >> RME32_RCR_BITPOS_F1) & 1) << 1) +
429 		(((rme32->rcreg >> RME32_RCR_BITPOS_F2) & 1) << 2);
430 
431 	if (RME32_PRO_WITH_8414(rme32))
432 		switch (n) {	/* supporting the CS8414 */
433 		case 0:
434 		case 1:
435 		case 2:
436 			return -1;
437 		case 3:
438 			return 96000;
439 		case 4:
440 			return 88200;
441 		case 5:
442 			return 48000;
443 		case 6:
444 			return 44100;
445 		case 7:
446 			return 32000;
447 		default:
448 			return -1;
449 		}
450 	else
451 		switch (n) {	/* supporting the CS8412 */
452 		case 0:
453 			return -1;
454 		case 1:
455 			return 48000;
456 		case 2:
457 			return 44100;
458 		case 3:
459 			return 32000;
460 		case 4:
461 			return 48000;
462 		case 5:
463 			return 44100;
464 		case 6:
465 			return 44056;
466 		case 7:
467 			return 32000;
468 		default:
469 			break;
470 		}
471 	return -1;
472 }
473 
474 static int snd_rme32_playback_setrate(struct rme32 * rme32, int rate)
475 {
476         int ds;
477 
478         ds = rme32->wcreg & RME32_WCR_DS_BM;
479 	switch (rate) {
480 	case 32000:
481 		rme32->wcreg &= ~RME32_WCR_DS_BM;
482 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
483 			~RME32_WCR_FREQ_1;
484 		break;
485 	case 44100:
486 		rme32->wcreg &= ~RME32_WCR_DS_BM;
487 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) &
488 			~RME32_WCR_FREQ_0;
489 		break;
490 	case 48000:
491 		rme32->wcreg &= ~RME32_WCR_DS_BM;
492 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
493 			RME32_WCR_FREQ_1;
494 		break;
495 	case 64000:
496 		if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
497 			return -EINVAL;
498 		rme32->wcreg |= RME32_WCR_DS_BM;
499 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
500 			~RME32_WCR_FREQ_1;
501 		break;
502 	case 88200:
503 		if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
504 			return -EINVAL;
505 		rme32->wcreg |= RME32_WCR_DS_BM;
506 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) &
507 			~RME32_WCR_FREQ_0;
508 		break;
509 	case 96000:
510 		if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
511 			return -EINVAL;
512 		rme32->wcreg |= RME32_WCR_DS_BM;
513 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
514 			RME32_WCR_FREQ_1;
515 		break;
516 	default:
517 		return -EINVAL;
518 	}
519         if ((!ds && rme32->wcreg & RME32_WCR_DS_BM) ||
520             (ds && !(rme32->wcreg & RME32_WCR_DS_BM)))
521         {
522                 /* change to/from double-speed: reset the DAC (if available) */
523                 snd_rme32_reset_dac(rme32);
524         } else {
525                 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
526 	}
527 	return 0;
528 }
529 
530 static int snd_rme32_setclockmode(struct rme32 * rme32, int mode)
531 {
532 	switch (mode) {
533 	case RME32_CLOCKMODE_SLAVE:
534 		/* AutoSync */
535 		rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) &
536 			~RME32_WCR_FREQ_1;
537 		break;
538 	case RME32_CLOCKMODE_MASTER_32:
539 		/* Internal 32.0kHz */
540 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
541 			~RME32_WCR_FREQ_1;
542 		break;
543 	case RME32_CLOCKMODE_MASTER_44:
544 		/* Internal 44.1kHz */
545 		rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) |
546 			RME32_WCR_FREQ_1;
547 		break;
548 	case RME32_CLOCKMODE_MASTER_48:
549 		/* Internal 48.0kHz */
550 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
551 			RME32_WCR_FREQ_1;
552 		break;
553 	default:
554 		return -EINVAL;
555 	}
556 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
557 	return 0;
558 }
559 
560 static int snd_rme32_getclockmode(struct rme32 * rme32)
561 {
562 	return ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
563 	    (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
564 }
565 
566 static int snd_rme32_setinputtype(struct rme32 * rme32, int type)
567 {
568 	switch (type) {
569 	case RME32_INPUT_OPTICAL:
570 		rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) &
571 			~RME32_WCR_INP_1;
572 		break;
573 	case RME32_INPUT_COAXIAL:
574 		rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) &
575 			~RME32_WCR_INP_1;
576 		break;
577 	case RME32_INPUT_INTERNAL:
578 		rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) |
579 			RME32_WCR_INP_1;
580 		break;
581 	case RME32_INPUT_XLR:
582 		rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) |
583 			RME32_WCR_INP_1;
584 		break;
585 	default:
586 		return -EINVAL;
587 	}
588 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
589 	return 0;
590 }
591 
592 static int snd_rme32_getinputtype(struct rme32 * rme32)
593 {
594 	return ((rme32->wcreg >> RME32_WCR_BITPOS_INP_0) & 1) +
595 	    (((rme32->wcreg >> RME32_WCR_BITPOS_INP_1) & 1) << 1);
596 }
597 
598 static void
599 snd_rme32_setframelog(struct rme32 * rme32, int n_channels, int is_playback)
600 {
601 	int frlog;
602 
603 	if (n_channels == 2) {
604 		frlog = 1;
605 	} else {
606 		/* assume 8 channels */
607 		frlog = 3;
608 	}
609 	if (is_playback) {
610 		frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
611 		rme32->playback_frlog = frlog;
612 	} else {
613 		frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
614 		rme32->capture_frlog = frlog;
615 	}
616 }
617 
618 static int snd_rme32_setformat(struct rme32 *rme32, snd_pcm_format_t format)
619 {
620 	switch (format) {
621 	case SNDRV_PCM_FORMAT_S16_LE:
622 		rme32->wcreg &= ~RME32_WCR_MODE24;
623 		break;
624 	case SNDRV_PCM_FORMAT_S32_LE:
625 		rme32->wcreg |= RME32_WCR_MODE24;
626 		break;
627 	default:
628 		return -EINVAL;
629 	}
630 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
631 	return 0;
632 }
633 
634 static int
635 snd_rme32_playback_hw_params(struct snd_pcm_substream *substream,
636 			     struct snd_pcm_hw_params *params)
637 {
638 	int err, rate, dummy;
639 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
640 	struct snd_pcm_runtime *runtime = substream->runtime;
641 
642 	if (!rme32->fullduplex_mode) {
643 		runtime->dma_area = (void __force *)(rme32->iobase +
644 						     RME32_IO_DATA_BUFFER);
645 		runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER;
646 		runtime->dma_bytes = RME32_BUFFER_SIZE;
647 	}
648 
649 	guard(spinlock_irq)(&rme32->lock);
650 	rate = 0;
651 	if (rme32->rcreg & RME32_RCR_KMODE)
652 		rate = snd_rme32_capture_getrate(rme32, &dummy);
653 	if (rate > 0) {
654 		/* AutoSync */
655 		if ((int)params_rate(params) != rate)
656 			return -EIO;
657 	} else {
658 		err = snd_rme32_playback_setrate(rme32, params_rate(params));
659 		if (err < 0)
660 			return err;
661 	}
662 	err = snd_rme32_setformat(rme32, params_format(params));
663 	if (err < 0)
664 		return err;
665 
666 	snd_rme32_setframelog(rme32, params_channels(params), 1);
667 	if (rme32->capture_periodsize != 0) {
668 		if (params_period_size(params) << rme32->playback_frlog != rme32->capture_periodsize)
669 			return -EBUSY;
670 	}
671 	rme32->playback_periodsize = params_period_size(params) << rme32->playback_frlog;
672 	/* S/PDIF setup */
673 	if ((rme32->wcreg & RME32_WCR_ADAT) == 0) {
674 		rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
675 		rme32->wcreg |= rme32->wcreg_spdif_stream;
676 		writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
677 	}
678 
679 	return 0;
680 }
681 
682 static int
683 snd_rme32_capture_hw_params(struct snd_pcm_substream *substream,
684 			    struct snd_pcm_hw_params *params)
685 {
686 	int err, isadat, rate;
687 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
688 	struct snd_pcm_runtime *runtime = substream->runtime;
689 
690 	if (!rme32->fullduplex_mode) {
691 		runtime->dma_area = (void __force *)rme32->iobase +
692 					RME32_IO_DATA_BUFFER;
693 		runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER;
694 		runtime->dma_bytes = RME32_BUFFER_SIZE;
695 	}
696 
697 	guard(spinlock_irq)(&rme32->lock);
698 	/* enable AutoSync for record-preparing */
699 	rme32->wcreg |= RME32_WCR_AUTOSYNC;
700 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
701 
702 	err = snd_rme32_setformat(rme32, params_format(params));
703 	if (err < 0)
704 		return err;
705 	err = snd_rme32_playback_setrate(rme32, params_rate(params));
706 	if (err < 0)
707 		return err;
708 	rate = snd_rme32_capture_getrate(rme32, &isadat);
709 	if (rate > 0) {
710 		if ((int)params_rate(params) != rate)
711                         return -EIO;
712                 if ((isadat && runtime->hw.channels_min == 2) ||
713 		    (!isadat && runtime->hw.channels_min == 8))
714                         return -EIO;
715 	}
716 	/* AutoSync off for recording */
717 	rme32->wcreg &= ~RME32_WCR_AUTOSYNC;
718 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
719 
720 	snd_rme32_setframelog(rme32, params_channels(params), 0);
721 	if (rme32->playback_periodsize != 0) {
722 		if (params_period_size(params) << rme32->capture_frlog !=
723 		    rme32->playback_periodsize)
724 			return -EBUSY;
725 	}
726 	rme32->capture_periodsize =
727 	    params_period_size(params) << rme32->capture_frlog;
728 
729 	return 0;
730 }
731 
732 static void snd_rme32_pcm_start(struct rme32 * rme32, int from_pause)
733 {
734 	if (!from_pause) {
735 		writel(0, rme32->iobase + RME32_IO_RESET_POS);
736 	}
737 
738 	rme32->wcreg |= RME32_WCR_START;
739 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
740 }
741 
742 static void snd_rme32_pcm_stop(struct rme32 * rme32, int to_pause)
743 {
744 	/*
745 	 * Check if there is an unconfirmed IRQ, if so confirm it, or else
746 	 * the hardware will not stop generating interrupts
747 	 */
748 	rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
749 	if (rme32->rcreg & RME32_RCR_IRQ) {
750 		writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
751 	}
752 	rme32->wcreg &= ~RME32_WCR_START;
753 	if (rme32->wcreg & RME32_WCR_SEL)
754 		rme32->wcreg |= RME32_WCR_MUTE;
755 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
756 	if (! to_pause)
757 		writel(0, rme32->iobase + RME32_IO_RESET_POS);
758 }
759 
760 static irqreturn_t snd_rme32_interrupt(int irq, void *dev_id)
761 {
762 	struct rme32 *rme32 = (struct rme32 *) dev_id;
763 
764 	rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
765 	if (!(rme32->rcreg & RME32_RCR_IRQ)) {
766 		return IRQ_NONE;
767 	} else {
768 		if (rme32->capture_substream) {
769 			snd_pcm_period_elapsed(rme32->capture_substream);
770 		}
771 		if (rme32->playback_substream) {
772 			snd_pcm_period_elapsed(rme32->playback_substream);
773 		}
774 		writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
775 	}
776 	return IRQ_HANDLED;
777 }
778 
779 static const unsigned int period_bytes[] = { RME32_BLOCK_SIZE };
780 
781 static const struct snd_pcm_hw_constraint_list hw_constraints_period_bytes = {
782 	.count = ARRAY_SIZE(period_bytes),
783 	.list = period_bytes,
784 	.mask = 0
785 };
786 
787 static void snd_rme32_set_buffer_constraint(struct rme32 *rme32, struct snd_pcm_runtime *runtime)
788 {
789 	if (! rme32->fullduplex_mode) {
790 		snd_pcm_hw_constraint_single(runtime,
791 					     SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
792 					     RME32_BUFFER_SIZE);
793 		snd_pcm_hw_constraint_list(runtime, 0,
794 					   SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
795 					   &hw_constraints_period_bytes);
796 	}
797 }
798 
799 static int snd_rme32_playback_spdif_open(struct snd_pcm_substream *substream)
800 {
801 	int rate, dummy;
802 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
803 	struct snd_pcm_runtime *runtime = substream->runtime;
804 
805 	snd_pcm_set_sync(substream);
806 
807 	scoped_guard(spinlock_irq, &rme32->lock) {
808 		if (rme32->playback_substream != NULL)
809 			return -EBUSY;
810 		rme32->wcreg &= ~RME32_WCR_ADAT;
811 		writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
812 		rme32->playback_substream = substream;
813 	}
814 
815 	if (rme32->fullduplex_mode)
816 		runtime->hw = snd_rme32_spdif_fd_info;
817 	else
818 		runtime->hw = snd_rme32_spdif_info;
819 	if (rme32->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO) {
820 		runtime->hw.rates |= SNDRV_PCM_RATE_64000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
821 		runtime->hw.rate_max = 96000;
822 	}
823 	rate = 0;
824 	if (rme32->rcreg & RME32_RCR_KMODE)
825 		rate = snd_rme32_capture_getrate(rme32, &dummy);
826 	if (rate > 0) {
827 		/* AutoSync */
828 		runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
829 		runtime->hw.rate_min = rate;
830 		runtime->hw.rate_max = rate;
831 	}
832 
833 	snd_rme32_set_buffer_constraint(rme32, runtime);
834 
835 	rme32->wcreg_spdif_stream = rme32->wcreg_spdif;
836 	rme32->spdif_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
837 	snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
838 		       SNDRV_CTL_EVENT_MASK_INFO, &rme32->spdif_ctl->id);
839 	return 0;
840 }
841 
842 static int snd_rme32_capture_spdif_open(struct snd_pcm_substream *substream)
843 {
844 	int isadat, rate;
845 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
846 	struct snd_pcm_runtime *runtime = substream->runtime;
847 
848 	snd_pcm_set_sync(substream);
849 
850 	scoped_guard(spinlock_irq, &rme32->lock) {
851 		if (rme32->capture_substream != NULL)
852 			return -EBUSY;
853 		rme32->capture_substream = substream;
854 	}
855 
856 	if (rme32->fullduplex_mode)
857 		runtime->hw = snd_rme32_spdif_fd_info;
858 	else
859 		runtime->hw = snd_rme32_spdif_info;
860 	if (RME32_PRO_WITH_8414(rme32)) {
861 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
862 		runtime->hw.rate_max = 96000;
863 	}
864 	rate = snd_rme32_capture_getrate(rme32, &isadat);
865 	if (rate > 0) {
866 		if (isadat) {
867 			return -EIO;
868 		}
869 		runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
870 		runtime->hw.rate_min = rate;
871 		runtime->hw.rate_max = rate;
872 	}
873 
874 	snd_rme32_set_buffer_constraint(rme32, runtime);
875 
876 	return 0;
877 }
878 
879 static int
880 snd_rme32_playback_adat_open(struct snd_pcm_substream *substream)
881 {
882 	int rate, dummy;
883 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
884 	struct snd_pcm_runtime *runtime = substream->runtime;
885 
886 	snd_pcm_set_sync(substream);
887 
888 	scoped_guard(spinlock_irq, &rme32->lock) {
889 		if (rme32->playback_substream != NULL)
890 			return -EBUSY;
891 		rme32->wcreg |= RME32_WCR_ADAT;
892 		writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
893 		rme32->playback_substream = substream;
894 	}
895 
896 	if (rme32->fullduplex_mode)
897 		runtime->hw = snd_rme32_adat_fd_info;
898 	else
899 		runtime->hw = snd_rme32_adat_info;
900 	rate = 0;
901 	if (rme32->rcreg & RME32_RCR_KMODE)
902 		rate = snd_rme32_capture_getrate(rme32, &dummy);
903 	if (rate > 0) {
904                 /* AutoSync */
905                 runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
906                 runtime->hw.rate_min = rate;
907                 runtime->hw.rate_max = rate;
908 	}
909 
910 	snd_rme32_set_buffer_constraint(rme32, runtime);
911 	return 0;
912 }
913 
914 static int
915 snd_rme32_capture_adat_open(struct snd_pcm_substream *substream)
916 {
917 	int isadat, rate;
918 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
919 	struct snd_pcm_runtime *runtime = substream->runtime;
920 
921 	if (rme32->fullduplex_mode)
922 		runtime->hw = snd_rme32_adat_fd_info;
923 	else
924 		runtime->hw = snd_rme32_adat_info;
925 	rate = snd_rme32_capture_getrate(rme32, &isadat);
926 	if (rate > 0) {
927 		if (!isadat) {
928 			return -EIO;
929 		}
930                 runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
931                 runtime->hw.rate_min = rate;
932                 runtime->hw.rate_max = rate;
933         }
934 
935 	snd_pcm_set_sync(substream);
936 
937 	scoped_guard(spinlock_irq, &rme32->lock) {
938 		if (rme32->capture_substream != NULL)
939 			return -EBUSY;
940 		rme32->capture_substream = substream;
941 	}
942 
943 	snd_rme32_set_buffer_constraint(rme32, runtime);
944 	return 0;
945 }
946 
947 static int snd_rme32_playback_close(struct snd_pcm_substream *substream)
948 {
949 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
950 	int spdif = 0;
951 
952 	scoped_guard(spinlock_irq, &rme32->lock) {
953 		rme32->playback_substream = NULL;
954 		rme32->playback_periodsize = 0;
955 		spdif = (rme32->wcreg & RME32_WCR_ADAT) == 0;
956 	}
957 	if (spdif) {
958 		rme32->spdif_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
959 		snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
960 			       SNDRV_CTL_EVENT_MASK_INFO,
961 			       &rme32->spdif_ctl->id);
962 	}
963 	return 0;
964 }
965 
966 static int snd_rme32_capture_close(struct snd_pcm_substream *substream)
967 {
968 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
969 
970 	guard(spinlock_irq)(&rme32->lock);
971 	rme32->capture_substream = NULL;
972 	rme32->capture_periodsize = 0;
973 	return 0;
974 }
975 
976 static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream)
977 {
978 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
979 
980 	guard(spinlock_irq)(&rme32->lock);
981 	if (rme32->fullduplex_mode) {
982 		memset(&rme32->playback_pcm, 0, sizeof(rme32->playback_pcm));
983 		rme32->playback_pcm.hw_buffer_size = RME32_BUFFER_SIZE;
984 		rme32->playback_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
985 	} else {
986 		writel(0, rme32->iobase + RME32_IO_RESET_POS);
987 	}
988 	if (rme32->wcreg & RME32_WCR_SEL)
989 		rme32->wcreg &= ~RME32_WCR_MUTE;
990 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
991 	return 0;
992 }
993 
994 static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream)
995 {
996 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
997 
998 	guard(spinlock_irq)(&rme32->lock);
999 	if (rme32->fullduplex_mode) {
1000 		memset(&rme32->capture_pcm, 0, sizeof(rme32->capture_pcm));
1001 		rme32->capture_pcm.hw_buffer_size = RME32_BUFFER_SIZE;
1002 		rme32->capture_pcm.hw_queue_size = RME32_BUFFER_SIZE / 2;
1003 		rme32->capture_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
1004 	} else {
1005 		writel(0, rme32->iobase + RME32_IO_RESET_POS);
1006 	}
1007 	return 0;
1008 }
1009 
1010 static int
1011 snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1012 {
1013 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1014 	struct snd_pcm_substream *s;
1015 
1016 	guard(spinlock)(&rme32->lock);
1017 	snd_pcm_group_for_each_entry(s, substream) {
1018 		if (s != rme32->playback_substream &&
1019 		    s != rme32->capture_substream)
1020 			continue;
1021 		switch (cmd) {
1022 		case SNDRV_PCM_TRIGGER_START:
1023 			rme32->running |= (1 << s->stream);
1024 			if (rme32->fullduplex_mode) {
1025 				/* remember the current DMA position */
1026 				if (s == rme32->playback_substream) {
1027 					rme32->playback_pcm.hw_io =
1028 					rme32->playback_pcm.hw_data = snd_rme32_pcm_byteptr(rme32);
1029 				} else {
1030 					rme32->capture_pcm.hw_io =
1031 					rme32->capture_pcm.hw_data = snd_rme32_pcm_byteptr(rme32);
1032 				}
1033 			}
1034 			break;
1035 		case SNDRV_PCM_TRIGGER_STOP:
1036 			rme32->running &= ~(1 << s->stream);
1037 			break;
1038 		}
1039 		snd_pcm_trigger_done(s, substream);
1040 	}
1041 
1042 	switch (cmd) {
1043 	case SNDRV_PCM_TRIGGER_START:
1044 		if (rme32->running && ! RME32_ISWORKING(rme32))
1045 			snd_rme32_pcm_start(rme32, 0);
1046 		break;
1047 	case SNDRV_PCM_TRIGGER_STOP:
1048 		if (! rme32->running && RME32_ISWORKING(rme32))
1049 			snd_rme32_pcm_stop(rme32, 0);
1050 		break;
1051 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1052 		if (rme32->running && RME32_ISWORKING(rme32))
1053 			snd_rme32_pcm_stop(rme32, 1);
1054 		break;
1055 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1056 		if (rme32->running && ! RME32_ISWORKING(rme32))
1057 			snd_rme32_pcm_start(rme32, 1);
1058 		break;
1059 	}
1060 	return 0;
1061 }
1062 
1063 /* pointer callback for halfduplex mode */
1064 static snd_pcm_uframes_t
1065 snd_rme32_playback_pointer(struct snd_pcm_substream *substream)
1066 {
1067 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1068 	return snd_rme32_pcm_byteptr(rme32) >> rme32->playback_frlog;
1069 }
1070 
1071 static snd_pcm_uframes_t
1072 snd_rme32_capture_pointer(struct snd_pcm_substream *substream)
1073 {
1074 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1075 	return snd_rme32_pcm_byteptr(rme32) >> rme32->capture_frlog;
1076 }
1077 
1078 
1079 /* ack and pointer callbacks for fullduplex mode */
1080 static void snd_rme32_pb_trans_copy(struct snd_pcm_substream *substream,
1081 				    struct snd_pcm_indirect *rec, size_t bytes)
1082 {
1083 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1084 	memcpy_toio(rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data,
1085 		    substream->runtime->dma_area + rec->sw_data, bytes);
1086 }
1087 
1088 static int snd_rme32_playback_fd_ack(struct snd_pcm_substream *substream)
1089 {
1090 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1091 	struct snd_pcm_indirect *rec, *cprec;
1092 
1093 	rec = &rme32->playback_pcm;
1094 	cprec = &rme32->capture_pcm;
1095 	scoped_guard(spinlock, &rme32->lock) {
1096 		rec->hw_queue_size = RME32_BUFFER_SIZE;
1097 		if (rme32->running & (1 << SNDRV_PCM_STREAM_CAPTURE))
1098 			rec->hw_queue_size -= cprec->hw_ready;
1099 	}
1100 	return snd_pcm_indirect_playback_transfer(substream, rec,
1101 						  snd_rme32_pb_trans_copy);
1102 }
1103 
1104 static void snd_rme32_cp_trans_copy(struct snd_pcm_substream *substream,
1105 				    struct snd_pcm_indirect *rec, size_t bytes)
1106 {
1107 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1108 	memcpy_fromio(substream->runtime->dma_area + rec->sw_data,
1109 		      rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data,
1110 		      bytes);
1111 }
1112 
1113 static int snd_rme32_capture_fd_ack(struct snd_pcm_substream *substream)
1114 {
1115 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1116 	return snd_pcm_indirect_capture_transfer(substream, &rme32->capture_pcm,
1117 						 snd_rme32_cp_trans_copy);
1118 }
1119 
1120 static snd_pcm_uframes_t
1121 snd_rme32_playback_fd_pointer(struct snd_pcm_substream *substream)
1122 {
1123 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1124 	return snd_pcm_indirect_playback_pointer(substream, &rme32->playback_pcm,
1125 						 snd_rme32_pcm_byteptr(rme32));
1126 }
1127 
1128 static snd_pcm_uframes_t
1129 snd_rme32_capture_fd_pointer(struct snd_pcm_substream *substream)
1130 {
1131 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1132 	return snd_pcm_indirect_capture_pointer(substream, &rme32->capture_pcm,
1133 						snd_rme32_pcm_byteptr(rme32));
1134 }
1135 
1136 /* for halfduplex mode */
1137 static const struct snd_pcm_ops snd_rme32_playback_spdif_ops = {
1138 	.open =		snd_rme32_playback_spdif_open,
1139 	.close =	snd_rme32_playback_close,
1140 	.hw_params =	snd_rme32_playback_hw_params,
1141 	.prepare =	snd_rme32_playback_prepare,
1142 	.trigger =	snd_rme32_pcm_trigger,
1143 	.pointer =	snd_rme32_playback_pointer,
1144 	.copy =		snd_rme32_playback_copy,
1145 	.fill_silence =	snd_rme32_playback_silence,
1146 	.mmap =		snd_pcm_lib_mmap_iomem,
1147 };
1148 
1149 static const struct snd_pcm_ops snd_rme32_capture_spdif_ops = {
1150 	.open =		snd_rme32_capture_spdif_open,
1151 	.close =	snd_rme32_capture_close,
1152 	.hw_params =	snd_rme32_capture_hw_params,
1153 	.prepare =	snd_rme32_capture_prepare,
1154 	.trigger =	snd_rme32_pcm_trigger,
1155 	.pointer =	snd_rme32_capture_pointer,
1156 	.copy =		snd_rme32_capture_copy,
1157 	.mmap =		snd_pcm_lib_mmap_iomem,
1158 };
1159 
1160 static const struct snd_pcm_ops snd_rme32_playback_adat_ops = {
1161 	.open =		snd_rme32_playback_adat_open,
1162 	.close =	snd_rme32_playback_close,
1163 	.hw_params =	snd_rme32_playback_hw_params,
1164 	.prepare =	snd_rme32_playback_prepare,
1165 	.trigger =	snd_rme32_pcm_trigger,
1166 	.pointer =	snd_rme32_playback_pointer,
1167 	.copy =		snd_rme32_playback_copy,
1168 	.fill_silence =	snd_rme32_playback_silence,
1169 	.mmap =		snd_pcm_lib_mmap_iomem,
1170 };
1171 
1172 static const struct snd_pcm_ops snd_rme32_capture_adat_ops = {
1173 	.open =		snd_rme32_capture_adat_open,
1174 	.close =	snd_rme32_capture_close,
1175 	.hw_params =	snd_rme32_capture_hw_params,
1176 	.prepare =	snd_rme32_capture_prepare,
1177 	.trigger =	snd_rme32_pcm_trigger,
1178 	.pointer =	snd_rme32_capture_pointer,
1179 	.copy =		snd_rme32_capture_copy,
1180 	.mmap =		snd_pcm_lib_mmap_iomem,
1181 };
1182 
1183 /* for fullduplex mode */
1184 static const struct snd_pcm_ops snd_rme32_playback_spdif_fd_ops = {
1185 	.open =		snd_rme32_playback_spdif_open,
1186 	.close =	snd_rme32_playback_close,
1187 	.hw_params =	snd_rme32_playback_hw_params,
1188 	.prepare =	snd_rme32_playback_prepare,
1189 	.trigger =	snd_rme32_pcm_trigger,
1190 	.pointer =	snd_rme32_playback_fd_pointer,
1191 	.ack =		snd_rme32_playback_fd_ack,
1192 };
1193 
1194 static const struct snd_pcm_ops snd_rme32_capture_spdif_fd_ops = {
1195 	.open =		snd_rme32_capture_spdif_open,
1196 	.close =	snd_rme32_capture_close,
1197 	.hw_params =	snd_rme32_capture_hw_params,
1198 	.prepare =	snd_rme32_capture_prepare,
1199 	.trigger =	snd_rme32_pcm_trigger,
1200 	.pointer =	snd_rme32_capture_fd_pointer,
1201 	.ack =		snd_rme32_capture_fd_ack,
1202 };
1203 
1204 static const struct snd_pcm_ops snd_rme32_playback_adat_fd_ops = {
1205 	.open =		snd_rme32_playback_adat_open,
1206 	.close =	snd_rme32_playback_close,
1207 	.hw_params =	snd_rme32_playback_hw_params,
1208 	.prepare =	snd_rme32_playback_prepare,
1209 	.trigger =	snd_rme32_pcm_trigger,
1210 	.pointer =	snd_rme32_playback_fd_pointer,
1211 	.ack =		snd_rme32_playback_fd_ack,
1212 };
1213 
1214 static const struct snd_pcm_ops snd_rme32_capture_adat_fd_ops = {
1215 	.open =		snd_rme32_capture_adat_open,
1216 	.close =	snd_rme32_capture_close,
1217 	.hw_params =	snd_rme32_capture_hw_params,
1218 	.prepare =	snd_rme32_capture_prepare,
1219 	.trigger =	snd_rme32_pcm_trigger,
1220 	.pointer =	snd_rme32_capture_fd_pointer,
1221 	.ack =		snd_rme32_capture_fd_ack,
1222 };
1223 
1224 static void snd_rme32_free(struct rme32 *rme32)
1225 {
1226 	if (rme32->irq >= 0)
1227 		snd_rme32_pcm_stop(rme32, 0);
1228 }
1229 
1230 static void snd_rme32_free_spdif_pcm(struct snd_pcm *pcm)
1231 {
1232 	struct rme32 *rme32 = (struct rme32 *) pcm->private_data;
1233 	rme32->spdif_pcm = NULL;
1234 }
1235 
1236 static void
1237 snd_rme32_free_adat_pcm(struct snd_pcm *pcm)
1238 {
1239 	struct rme32 *rme32 = (struct rme32 *) pcm->private_data;
1240 	rme32->adat_pcm = NULL;
1241 }
1242 
1243 static int snd_rme32_create(struct rme32 *rme32)
1244 {
1245 	struct pci_dev *pci = rme32->pci;
1246 	int err;
1247 
1248 	rme32->irq = -1;
1249 	spin_lock_init(&rme32->lock);
1250 
1251 	err = pcim_enable_device(pci);
1252 	if (err < 0)
1253 		return err;
1254 
1255 	err = pcim_request_all_regions(pci, "RME32");
1256 	if (err < 0)
1257 		return err;
1258 	rme32->port = pci_resource_start(rme32->pci, 0);
1259 
1260 	rme32->iobase = devm_ioremap(&pci->dev, rme32->port, RME32_IO_SIZE);
1261 	if (!rme32->iobase) {
1262 		dev_err(rme32->card->dev,
1263 			"unable to remap memory region 0x%lx-0x%lx\n",
1264 			rme32->port, rme32->port + RME32_IO_SIZE - 1);
1265 		return -ENOMEM;
1266 	}
1267 
1268 	if (devm_request_irq(&pci->dev, pci->irq, snd_rme32_interrupt,
1269 			     IRQF_SHARED, KBUILD_MODNAME, rme32)) {
1270 		dev_err(rme32->card->dev, "unable to grab IRQ %d\n", pci->irq);
1271 		return -EBUSY;
1272 	}
1273 	rme32->irq = pci->irq;
1274 	rme32->card->sync_irq = rme32->irq;
1275 
1276 	/* read the card's revision number */
1277 	pci_read_config_byte(pci, 8, &rme32->rev);
1278 
1279 	/* set up ALSA pcm device for S/PDIF */
1280 	err = snd_pcm_new(rme32->card, "Digi32 IEC958", 0, 1, 1, &rme32->spdif_pcm);
1281 	if (err < 0)
1282 		return err;
1283 	rme32->spdif_pcm->private_data = rme32;
1284 	rme32->spdif_pcm->private_free = snd_rme32_free_spdif_pcm;
1285 	strscpy(rme32->spdif_pcm->name, "Digi32 IEC958");
1286 	if (rme32->fullduplex_mode) {
1287 		snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1288 				&snd_rme32_playback_spdif_fd_ops);
1289 		snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE,
1290 				&snd_rme32_capture_spdif_fd_ops);
1291 		snd_pcm_set_managed_buffer_all(rme32->spdif_pcm, SNDRV_DMA_TYPE_CONTINUOUS,
1292 					       NULL, 0, RME32_MID_BUFFER_SIZE);
1293 		rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
1294 	} else {
1295 		snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1296 				&snd_rme32_playback_spdif_ops);
1297 		snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE,
1298 				&snd_rme32_capture_spdif_ops);
1299 		rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
1300 	}
1301 
1302 	/* set up ALSA pcm device for ADAT */
1303 	if ((pci->device == PCI_DEVICE_ID_RME_DIGI32) ||
1304 	    (pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO)) {
1305 		/* ADAT is not available on DIGI32 and DIGI32 Pro */
1306 		rme32->adat_pcm = NULL;
1307 	}
1308 	else {
1309 		err = snd_pcm_new(rme32->card, "Digi32 ADAT", 1,
1310 				  1, 1, &rme32->adat_pcm);
1311 		if (err < 0)
1312 			return err;
1313 		rme32->adat_pcm->private_data = rme32;
1314 		rme32->adat_pcm->private_free = snd_rme32_free_adat_pcm;
1315 		strscpy(rme32->adat_pcm->name, "Digi32 ADAT");
1316 		if (rme32->fullduplex_mode) {
1317 			snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1318 					&snd_rme32_playback_adat_fd_ops);
1319 			snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE,
1320 					&snd_rme32_capture_adat_fd_ops);
1321 			snd_pcm_set_managed_buffer_all(rme32->adat_pcm, SNDRV_DMA_TYPE_CONTINUOUS,
1322 						       NULL,
1323 						       0, RME32_MID_BUFFER_SIZE);
1324 			rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
1325 		} else {
1326 			snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1327 					&snd_rme32_playback_adat_ops);
1328 			snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE,
1329 					&snd_rme32_capture_adat_ops);
1330 			rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
1331 		}
1332 	}
1333 
1334 
1335 	rme32->playback_periodsize = 0;
1336 	rme32->capture_periodsize = 0;
1337 
1338 	/* make sure playback/capture is stopped, if by some reason active */
1339 	snd_rme32_pcm_stop(rme32, 0);
1340 
1341         /* reset DAC */
1342         snd_rme32_reset_dac(rme32);
1343 
1344 	/* reset buffer pointer */
1345 	writel(0, rme32->iobase + RME32_IO_RESET_POS);
1346 
1347 	/* set default values in registers */
1348 	rme32->wcreg = RME32_WCR_SEL |	 /* normal playback */
1349 		RME32_WCR_INP_0 | /* input select */
1350 		RME32_WCR_MUTE;	 /* muting on */
1351 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
1352 
1353 
1354 	/* init switch interface */
1355 	err = snd_rme32_create_switches(rme32->card, rme32);
1356 	if (err < 0)
1357 		return err;
1358 
1359 	/* init proc interface */
1360 	snd_rme32_proc_init(rme32);
1361 
1362 	rme32->capture_substream = NULL;
1363 	rme32->playback_substream = NULL;
1364 
1365 	return 0;
1366 }
1367 
1368 /*
1369  * proc interface
1370  */
1371 
1372 static void
1373 snd_rme32_proc_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer)
1374 {
1375 	int n;
1376 	struct rme32 *rme32 = (struct rme32 *) entry->private_data;
1377 
1378 	rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
1379 
1380 	snd_iprintf(buffer, rme32->card->longname);
1381 	snd_iprintf(buffer, " (index #%d)\n", rme32->card->number + 1);
1382 
1383 	snd_iprintf(buffer, "\nGeneral settings\n");
1384 	if (rme32->fullduplex_mode)
1385 		snd_iprintf(buffer, "  Full-duplex mode\n");
1386 	else
1387 		snd_iprintf(buffer, "  Half-duplex mode\n");
1388 	if (RME32_PRO_WITH_8414(rme32)) {
1389 		snd_iprintf(buffer, "  receiver: CS8414\n");
1390 	} else {
1391 		snd_iprintf(buffer, "  receiver: CS8412\n");
1392 	}
1393 	if (rme32->wcreg & RME32_WCR_MODE24) {
1394 		snd_iprintf(buffer, "  format: 24 bit");
1395 	} else {
1396 		snd_iprintf(buffer, "  format: 16 bit");
1397 	}
1398 	if (rme32->wcreg & RME32_WCR_MONO) {
1399 		snd_iprintf(buffer, ", Mono\n");
1400 	} else {
1401 		snd_iprintf(buffer, ", Stereo\n");
1402 	}
1403 
1404 	snd_iprintf(buffer, "\nInput settings\n");
1405 	switch (snd_rme32_getinputtype(rme32)) {
1406 	case RME32_INPUT_OPTICAL:
1407 		snd_iprintf(buffer, "  input: optical");
1408 		break;
1409 	case RME32_INPUT_COAXIAL:
1410 		snd_iprintf(buffer, "  input: coaxial");
1411 		break;
1412 	case RME32_INPUT_INTERNAL:
1413 		snd_iprintf(buffer, "  input: internal");
1414 		break;
1415 	case RME32_INPUT_XLR:
1416 		snd_iprintf(buffer, "  input: XLR");
1417 		break;
1418 	}
1419 	if (snd_rme32_capture_getrate(rme32, &n) < 0) {
1420 		snd_iprintf(buffer, "\n  sample rate: no valid signal\n");
1421 	} else {
1422 		if (n) {
1423 			snd_iprintf(buffer, " (8 channels)\n");
1424 		} else {
1425 			snd_iprintf(buffer, " (2 channels)\n");
1426 		}
1427 		snd_iprintf(buffer, "  sample rate: %d Hz\n",
1428 			    snd_rme32_capture_getrate(rme32, &n));
1429 	}
1430 
1431 	snd_iprintf(buffer, "\nOutput settings\n");
1432 	if (rme32->wcreg & RME32_WCR_SEL) {
1433 		snd_iprintf(buffer, "  output signal: normal playback");
1434 	} else {
1435 		snd_iprintf(buffer, "  output signal: same as input");
1436 	}
1437 	if (rme32->wcreg & RME32_WCR_MUTE) {
1438 		snd_iprintf(buffer, " (muted)\n");
1439 	} else {
1440 		snd_iprintf(buffer, "\n");
1441 	}
1442 
1443 	/* master output frequency */
1444 	if (!
1445 	    ((!(rme32->wcreg & RME32_WCR_FREQ_0))
1446 	     && (!(rme32->wcreg & RME32_WCR_FREQ_1)))) {
1447 		snd_iprintf(buffer, "  sample rate: %d Hz\n",
1448 			    snd_rme32_playback_getrate(rme32));
1449 	}
1450 	if (rme32->rcreg & RME32_RCR_KMODE) {
1451 		snd_iprintf(buffer, "  sample clock source: AutoSync\n");
1452 	} else {
1453 		snd_iprintf(buffer, "  sample clock source: Internal\n");
1454 	}
1455 	if (rme32->wcreg & RME32_WCR_PRO) {
1456 		snd_iprintf(buffer, "  format: AES/EBU (professional)\n");
1457 	} else {
1458 		snd_iprintf(buffer, "  format: IEC958 (consumer)\n");
1459 	}
1460 	if (rme32->wcreg & RME32_WCR_EMP) {
1461 		snd_iprintf(buffer, "  emphasis: on\n");
1462 	} else {
1463 		snd_iprintf(buffer, "  emphasis: off\n");
1464 	}
1465 }
1466 
1467 static void snd_rme32_proc_init(struct rme32 *rme32)
1468 {
1469 	snd_card_ro_proc_new(rme32->card, "rme32", rme32, snd_rme32_proc_read);
1470 }
1471 
1472 /*
1473  * control interface
1474  */
1475 
1476 #define snd_rme32_info_loopback_control		snd_ctl_boolean_mono_info
1477 
1478 static int
1479 snd_rme32_get_loopback_control(struct snd_kcontrol *kcontrol,
1480 			       struct snd_ctl_elem_value *ucontrol)
1481 {
1482 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1483 
1484 	guard(spinlock_irq)(&rme32->lock);
1485 	ucontrol->value.integer.value[0] =
1486 	    rme32->wcreg & RME32_WCR_SEL ? 0 : 1;
1487 	return 0;
1488 }
1489 static int
1490 snd_rme32_put_loopback_control(struct snd_kcontrol *kcontrol,
1491 			       struct snd_ctl_elem_value *ucontrol)
1492 {
1493 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1494 	unsigned int val;
1495 	int change;
1496 
1497 	val = ucontrol->value.integer.value[0] ? 0 : RME32_WCR_SEL;
1498 	guard(spinlock_irq)(&rme32->lock);
1499 	val = (rme32->wcreg & ~RME32_WCR_SEL) | val;
1500 	change = val != rme32->wcreg;
1501 	if (ucontrol->value.integer.value[0])
1502 		val &= ~RME32_WCR_MUTE;
1503 	else
1504 		val |= RME32_WCR_MUTE;
1505 	rme32->wcreg = val;
1506 	writel(val, rme32->iobase + RME32_IO_CONTROL_REGISTER);
1507 	return change;
1508 }
1509 
1510 static int
1511 snd_rme32_info_inputtype_control(struct snd_kcontrol *kcontrol,
1512 				 struct snd_ctl_elem_info *uinfo)
1513 {
1514 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1515 	static const char * const texts[4] = {
1516 		"Optical", "Coaxial", "Internal", "XLR"
1517 	};
1518 	int num_items;
1519 
1520 	switch (rme32->pci->device) {
1521 	case PCI_DEVICE_ID_RME_DIGI32:
1522 	case PCI_DEVICE_ID_RME_DIGI32_8:
1523 		num_items = 3;
1524 		break;
1525 	case PCI_DEVICE_ID_RME_DIGI32_PRO:
1526 		num_items = 4;
1527 		break;
1528 	default:
1529 		snd_BUG();
1530 		return -EINVAL;
1531 	}
1532 	return snd_ctl_enum_info(uinfo, 1, num_items, texts);
1533 }
1534 static int
1535 snd_rme32_get_inputtype_control(struct snd_kcontrol *kcontrol,
1536 				struct snd_ctl_elem_value *ucontrol)
1537 {
1538 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1539 	unsigned int items = 3;
1540 
1541 	guard(spinlock_irq)(&rme32->lock);
1542 	ucontrol->value.enumerated.item[0] = snd_rme32_getinputtype(rme32);
1543 
1544 	switch (rme32->pci->device) {
1545 	case PCI_DEVICE_ID_RME_DIGI32:
1546 	case PCI_DEVICE_ID_RME_DIGI32_8:
1547 		items = 3;
1548 		break;
1549 	case PCI_DEVICE_ID_RME_DIGI32_PRO:
1550 		items = 4;
1551 		break;
1552 	default:
1553 		snd_BUG();
1554 		break;
1555 	}
1556 	if (ucontrol->value.enumerated.item[0] >= items) {
1557 		ucontrol->value.enumerated.item[0] = items - 1;
1558 	}
1559 
1560 	return 0;
1561 }
1562 static int
1563 snd_rme32_put_inputtype_control(struct snd_kcontrol *kcontrol,
1564 				struct snd_ctl_elem_value *ucontrol)
1565 {
1566 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1567 	unsigned int val;
1568 	int change, items = 3;
1569 
1570 	switch (rme32->pci->device) {
1571 	case PCI_DEVICE_ID_RME_DIGI32:
1572 	case PCI_DEVICE_ID_RME_DIGI32_8:
1573 		items = 3;
1574 		break;
1575 	case PCI_DEVICE_ID_RME_DIGI32_PRO:
1576 		items = 4;
1577 		break;
1578 	default:
1579 		snd_BUG();
1580 		break;
1581 	}
1582 	val = ucontrol->value.enumerated.item[0] % items;
1583 
1584 	guard(spinlock_irq)(&rme32->lock);
1585 	change = val != (unsigned int)snd_rme32_getinputtype(rme32);
1586 	snd_rme32_setinputtype(rme32, val);
1587 	return change;
1588 }
1589 
1590 static int
1591 snd_rme32_info_clockmode_control(struct snd_kcontrol *kcontrol,
1592 				 struct snd_ctl_elem_info *uinfo)
1593 {
1594 	static const char * const texts[4] = { "AutoSync",
1595 				  "Internal 32.0kHz",
1596 				  "Internal 44.1kHz",
1597 				  "Internal 48.0kHz" };
1598 
1599 	return snd_ctl_enum_info(uinfo, 1, 4, texts);
1600 }
1601 static int
1602 snd_rme32_get_clockmode_control(struct snd_kcontrol *kcontrol,
1603 				struct snd_ctl_elem_value *ucontrol)
1604 {
1605 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1606 
1607 	guard(spinlock_irq)(&rme32->lock);
1608 	ucontrol->value.enumerated.item[0] = snd_rme32_getclockmode(rme32);
1609 	return 0;
1610 }
1611 static int
1612 snd_rme32_put_clockmode_control(struct snd_kcontrol *kcontrol,
1613 				struct snd_ctl_elem_value *ucontrol)
1614 {
1615 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1616 	unsigned int val;
1617 	int change;
1618 
1619 	val = ucontrol->value.enumerated.item[0] % 3;
1620 	guard(spinlock_irq)(&rme32->lock);
1621 	change = val != (unsigned int)snd_rme32_getclockmode(rme32);
1622 	snd_rme32_setclockmode(rme32, val);
1623 	return change;
1624 }
1625 
1626 static u32 snd_rme32_convert_from_aes(struct snd_aes_iec958 * aes)
1627 {
1628 	u32 val = 0;
1629 	val |= (aes->status[0] & IEC958_AES0_PROFESSIONAL) ? RME32_WCR_PRO : 0;
1630 	if (val & RME32_WCR_PRO)
1631 		val |= (aes->status[0] & IEC958_AES0_PRO_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
1632 	else
1633 		val |= (aes->status[0] & IEC958_AES0_CON_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
1634 	return val;
1635 }
1636 
1637 static void snd_rme32_convert_to_aes(struct snd_aes_iec958 * aes, u32 val)
1638 {
1639 	aes->status[0] = ((val & RME32_WCR_PRO) ? IEC958_AES0_PROFESSIONAL : 0);
1640 	if (val & RME32_WCR_PRO)
1641 		aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_PRO_EMPHASIS_5015 : 0;
1642 	else
1643 		aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_CON_EMPHASIS_5015 : 0;
1644 }
1645 
1646 static int snd_rme32_control_spdif_info(struct snd_kcontrol *kcontrol,
1647 					struct snd_ctl_elem_info *uinfo)
1648 {
1649 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1650 	uinfo->count = 1;
1651 	return 0;
1652 }
1653 
1654 static int snd_rme32_control_spdif_get(struct snd_kcontrol *kcontrol,
1655 				       struct snd_ctl_elem_value *ucontrol)
1656 {
1657 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1658 
1659 	snd_rme32_convert_to_aes(&ucontrol->value.iec958,
1660 				 rme32->wcreg_spdif);
1661 	return 0;
1662 }
1663 
1664 static int snd_rme32_control_spdif_put(struct snd_kcontrol *kcontrol,
1665 				       struct snd_ctl_elem_value *ucontrol)
1666 {
1667 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1668 	int change;
1669 	u32 val;
1670 
1671 	val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
1672 	guard(spinlock_irq)(&rme32->lock);
1673 	change = val != rme32->wcreg_spdif;
1674 	rme32->wcreg_spdif = val;
1675 	return change;
1676 }
1677 
1678 static int snd_rme32_control_spdif_stream_info(struct snd_kcontrol *kcontrol,
1679 					       struct snd_ctl_elem_info *uinfo)
1680 {
1681 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1682 	uinfo->count = 1;
1683 	return 0;
1684 }
1685 
1686 static int snd_rme32_control_spdif_stream_get(struct snd_kcontrol *kcontrol,
1687 					      struct snd_ctl_elem_value *
1688 					      ucontrol)
1689 {
1690 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1691 
1692 	snd_rme32_convert_to_aes(&ucontrol->value.iec958,
1693 				 rme32->wcreg_spdif_stream);
1694 	return 0;
1695 }
1696 
1697 static int snd_rme32_control_spdif_stream_put(struct snd_kcontrol *kcontrol,
1698 					      struct snd_ctl_elem_value *
1699 					      ucontrol)
1700 {
1701 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1702 	int change;
1703 	u32 val;
1704 
1705 	val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
1706 	guard(spinlock_irq)(&rme32->lock);
1707 	change = val != rme32->wcreg_spdif_stream;
1708 	rme32->wcreg_spdif_stream = val;
1709 	rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
1710 	rme32->wcreg |= val;
1711 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
1712 	return change;
1713 }
1714 
1715 static int snd_rme32_control_spdif_mask_info(struct snd_kcontrol *kcontrol,
1716 					     struct snd_ctl_elem_info *uinfo)
1717 {
1718 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1719 	uinfo->count = 1;
1720 	return 0;
1721 }
1722 
1723 static int snd_rme32_control_spdif_mask_get(struct snd_kcontrol *kcontrol,
1724 					    struct snd_ctl_elem_value *
1725 					    ucontrol)
1726 {
1727 	ucontrol->value.iec958.status[0] = kcontrol->private_value;
1728 	return 0;
1729 }
1730 
1731 static const struct snd_kcontrol_new snd_rme32_controls[] = {
1732 	{
1733 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1734 		.name =	SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1735 		.info =	snd_rme32_control_spdif_info,
1736 		.get =	snd_rme32_control_spdif_get,
1737 		.put =	snd_rme32_control_spdif_put
1738 	},
1739 	{
1740 		.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1741 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1742 		.name =	SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
1743 		.info =	snd_rme32_control_spdif_stream_info,
1744 		.get =	snd_rme32_control_spdif_stream_get,
1745 		.put =	snd_rme32_control_spdif_stream_put
1746 	},
1747 	{
1748 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1749 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1750 		.name =	SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
1751 		.info =	snd_rme32_control_spdif_mask_info,
1752 		.get =	snd_rme32_control_spdif_mask_get,
1753 		.private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_CON_EMPHASIS
1754 	},
1755 	{
1756 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1757 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1758 		.name =	SNDRV_CTL_NAME_IEC958("", PLAYBACK, PRO_MASK),
1759 		.info =	snd_rme32_control_spdif_mask_info,
1760 		.get =	snd_rme32_control_spdif_mask_get,
1761 		.private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_PRO_EMPHASIS
1762 	},
1763 	{
1764 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1765 		.name =	"Input Connector",
1766 		.info =	snd_rme32_info_inputtype_control,
1767 		.get =	snd_rme32_get_inputtype_control,
1768 		.put =	snd_rme32_put_inputtype_control
1769 	},
1770 	{
1771 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1772 		.name =	"Loopback Input",
1773 		.info =	snd_rme32_info_loopback_control,
1774 		.get =	snd_rme32_get_loopback_control,
1775 		.put =	snd_rme32_put_loopback_control
1776 	},
1777 	{
1778 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1779 		.name =	"Sample Clock Source",
1780 		.info =	snd_rme32_info_clockmode_control,
1781 		.get =	snd_rme32_get_clockmode_control,
1782 		.put =	snd_rme32_put_clockmode_control
1783 	}
1784 };
1785 
1786 static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32)
1787 {
1788 	int idx, err;
1789 	struct snd_kcontrol *kctl;
1790 
1791 	for (idx = 0; idx < (int)ARRAY_SIZE(snd_rme32_controls); idx++) {
1792 		kctl = snd_ctl_new1(&snd_rme32_controls[idx], rme32);
1793 		err = snd_ctl_add(card, kctl);
1794 		if (err < 0)
1795 			return err;
1796 		if (idx == 1)	/* IEC958 (S/PDIF) Stream */
1797 			rme32->spdif_ctl = kctl;
1798 	}
1799 
1800 	return 0;
1801 }
1802 
1803 /*
1804  * Card initialisation
1805  */
1806 
1807 static void snd_rme32_card_free(struct snd_card *card)
1808 {
1809 	snd_rme32_free(card->private_data);
1810 }
1811 
1812 static int
1813 __snd_rme32_probe(struct pci_dev *pci, const struct pci_device_id *pci_id)
1814 {
1815 	static int dev;
1816 	struct rme32 *rme32;
1817 	struct snd_card *card;
1818 	int err;
1819 
1820 	if (dev >= SNDRV_CARDS) {
1821 		return -ENODEV;
1822 	}
1823 	if (!enable[dev]) {
1824 		dev++;
1825 		return -ENOENT;
1826 	}
1827 
1828 	err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
1829 				sizeof(*rme32), &card);
1830 	if (err < 0)
1831 		return err;
1832 	card->private_free = snd_rme32_card_free;
1833 	rme32 = (struct rme32 *) card->private_data;
1834 	rme32->card = card;
1835 	rme32->pci = pci;
1836         if (fullduplex[dev])
1837 		rme32->fullduplex_mode = 1;
1838 	err = snd_rme32_create(rme32);
1839 	if (err < 0)
1840 		return err;
1841 
1842 	strscpy(card->driver, "Digi32");
1843 	switch (rme32->pci->device) {
1844 	case PCI_DEVICE_ID_RME_DIGI32:
1845 		strscpy(card->shortname, "RME Digi32");
1846 		break;
1847 	case PCI_DEVICE_ID_RME_DIGI32_8:
1848 		strscpy(card->shortname, "RME Digi32/8");
1849 		break;
1850 	case PCI_DEVICE_ID_RME_DIGI32_PRO:
1851 		strscpy(card->shortname, "RME Digi32 PRO");
1852 		break;
1853 	}
1854 	sprintf(card->longname, "%s (Rev. %d) at 0x%lx, irq %d",
1855 		card->shortname, rme32->rev, rme32->port, rme32->irq);
1856 
1857 	err = snd_card_register(card);
1858 	if (err < 0)
1859 		return err;
1860 	pci_set_drvdata(pci, card);
1861 	dev++;
1862 	return 0;
1863 }
1864 
1865 static int
1866 snd_rme32_probe(struct pci_dev *pci, const struct pci_device_id *pci_id)
1867 {
1868 	return snd_card_free_on_error(&pci->dev, __snd_rme32_probe(pci, pci_id));
1869 }
1870 
1871 static struct pci_driver rme32_driver = {
1872 	.name =		KBUILD_MODNAME,
1873 	.id_table =	snd_rme32_ids,
1874 	.probe =	snd_rme32_probe,
1875 };
1876 
1877 module_pci_driver(rme32_driver);
1878