xref: /linux/arch/riscv/kernel/elf_kexec.c (revision 3a39d672e7f48b8d6b91a09afa4b55352773b4b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Load ELF vmlinux file for the kexec_file_load syscall.
4  *
5  * Copyright (C) 2021 Huawei Technologies Co, Ltd.
6  *
7  * Author: Liao Chang (liaochang1@huawei.com)
8  *
9  * Based on kexec-tools' kexec-elf-riscv.c, heavily modified
10  * for kernel.
11  */
12 
13 #define pr_fmt(fmt)	"kexec_image: " fmt
14 
15 #include <linux/elf.h>
16 #include <linux/kexec.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/libfdt.h>
20 #include <linux/types.h>
21 #include <linux/memblock.h>
22 #include <linux/vmalloc.h>
23 #include <asm/setup.h>
24 
arch_kimage_file_post_load_cleanup(struct kimage * image)25 int arch_kimage_file_post_load_cleanup(struct kimage *image)
26 {
27 	kvfree(image->arch.fdt);
28 	image->arch.fdt = NULL;
29 
30 	vfree(image->elf_headers);
31 	image->elf_headers = NULL;
32 	image->elf_headers_sz = 0;
33 
34 	return kexec_image_post_load_cleanup_default(image);
35 }
36 
riscv_kexec_elf_load(struct kimage * image,struct elfhdr * ehdr,struct kexec_elf_info * elf_info,unsigned long old_pbase,unsigned long new_pbase)37 static int riscv_kexec_elf_load(struct kimage *image, struct elfhdr *ehdr,
38 				struct kexec_elf_info *elf_info, unsigned long old_pbase,
39 				unsigned long new_pbase)
40 {
41 	int i;
42 	int ret = 0;
43 	size_t size;
44 	struct kexec_buf kbuf;
45 	const struct elf_phdr *phdr;
46 
47 	kbuf.image = image;
48 
49 	for (i = 0; i < ehdr->e_phnum; i++) {
50 		phdr = &elf_info->proghdrs[i];
51 		if (phdr->p_type != PT_LOAD)
52 			continue;
53 
54 		size = phdr->p_filesz;
55 		if (size > phdr->p_memsz)
56 			size = phdr->p_memsz;
57 
58 		kbuf.buffer = (void *) elf_info->buffer + phdr->p_offset;
59 		kbuf.bufsz = size;
60 		kbuf.buf_align = phdr->p_align;
61 		kbuf.mem = phdr->p_paddr - old_pbase + new_pbase;
62 		kbuf.memsz = phdr->p_memsz;
63 		kbuf.top_down = false;
64 		ret = kexec_add_buffer(&kbuf);
65 		if (ret)
66 			break;
67 	}
68 
69 	return ret;
70 }
71 
72 /*
73  * Go through the available phsyical memory regions and find one that hold
74  * an image of the specified size.
75  */
elf_find_pbase(struct kimage * image,unsigned long kernel_len,struct elfhdr * ehdr,struct kexec_elf_info * elf_info,unsigned long * old_pbase,unsigned long * new_pbase)76 static int elf_find_pbase(struct kimage *image, unsigned long kernel_len,
77 			  struct elfhdr *ehdr, struct kexec_elf_info *elf_info,
78 			  unsigned long *old_pbase, unsigned long *new_pbase)
79 {
80 	int i;
81 	int ret;
82 	struct kexec_buf kbuf;
83 	const struct elf_phdr *phdr;
84 	unsigned long lowest_paddr = ULONG_MAX;
85 	unsigned long lowest_vaddr = ULONG_MAX;
86 
87 	for (i = 0; i < ehdr->e_phnum; i++) {
88 		phdr = &elf_info->proghdrs[i];
89 		if (phdr->p_type != PT_LOAD)
90 			continue;
91 
92 		if (lowest_paddr > phdr->p_paddr)
93 			lowest_paddr = phdr->p_paddr;
94 
95 		if (lowest_vaddr > phdr->p_vaddr)
96 			lowest_vaddr = phdr->p_vaddr;
97 	}
98 
99 	kbuf.image = image;
100 	kbuf.buf_min = lowest_paddr;
101 	kbuf.buf_max = ULONG_MAX;
102 
103 	/*
104 	 * Current riscv boot protocol requires 2MB alignment for
105 	 * RV64 and 4MB alignment for RV32
106 	 *
107 	 */
108 	kbuf.buf_align = PMD_SIZE;
109 	kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
110 	kbuf.memsz = ALIGN(kernel_len, PAGE_SIZE);
111 	kbuf.top_down = false;
112 	ret = arch_kexec_locate_mem_hole(&kbuf);
113 	if (!ret) {
114 		*old_pbase = lowest_paddr;
115 		*new_pbase = kbuf.mem;
116 		image->start = ehdr->e_entry - lowest_vaddr + kbuf.mem;
117 	}
118 	return ret;
119 }
120 
121 #ifdef CONFIG_CRASH_DUMP
get_nr_ram_ranges_callback(struct resource * res,void * arg)122 static int get_nr_ram_ranges_callback(struct resource *res, void *arg)
123 {
124 	unsigned int *nr_ranges = arg;
125 
126 	(*nr_ranges)++;
127 	return 0;
128 }
129 
prepare_elf64_ram_headers_callback(struct resource * res,void * arg)130 static int prepare_elf64_ram_headers_callback(struct resource *res, void *arg)
131 {
132 	struct crash_mem *cmem = arg;
133 
134 	cmem->ranges[cmem->nr_ranges].start = res->start;
135 	cmem->ranges[cmem->nr_ranges].end = res->end;
136 	cmem->nr_ranges++;
137 
138 	return 0;
139 }
140 
prepare_elf_headers(void ** addr,unsigned long * sz)141 static int prepare_elf_headers(void **addr, unsigned long *sz)
142 {
143 	struct crash_mem *cmem;
144 	unsigned int nr_ranges;
145 	int ret;
146 
147 	nr_ranges = 1; /* For exclusion of crashkernel region */
148 	walk_system_ram_res(0, -1, &nr_ranges, get_nr_ram_ranges_callback);
149 
150 	cmem = kmalloc(struct_size(cmem, ranges, nr_ranges), GFP_KERNEL);
151 	if (!cmem)
152 		return -ENOMEM;
153 
154 	cmem->max_nr_ranges = nr_ranges;
155 	cmem->nr_ranges = 0;
156 	ret = walk_system_ram_res(0, -1, cmem, prepare_elf64_ram_headers_callback);
157 	if (ret)
158 		goto out;
159 
160 	/* Exclude crashkernel region */
161 	ret = crash_exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
162 	if (!ret)
163 		ret = crash_prepare_elf64_headers(cmem, true, addr, sz);
164 
165 out:
166 	kfree(cmem);
167 	return ret;
168 }
169 
setup_kdump_cmdline(struct kimage * image,char * cmdline,unsigned long cmdline_len)170 static char *setup_kdump_cmdline(struct kimage *image, char *cmdline,
171 				 unsigned long cmdline_len)
172 {
173 	int elfcorehdr_strlen;
174 	char *cmdline_ptr;
175 
176 	cmdline_ptr = kzalloc(COMMAND_LINE_SIZE, GFP_KERNEL);
177 	if (!cmdline_ptr)
178 		return NULL;
179 
180 	elfcorehdr_strlen = sprintf(cmdline_ptr, "elfcorehdr=0x%lx ",
181 		image->elf_load_addr);
182 
183 	if (elfcorehdr_strlen + cmdline_len > COMMAND_LINE_SIZE) {
184 		pr_err("Appending elfcorehdr=<addr> exceeds cmdline size\n");
185 		kfree(cmdline_ptr);
186 		return NULL;
187 	}
188 
189 	memcpy(cmdline_ptr + elfcorehdr_strlen, cmdline, cmdline_len);
190 	/* Ensure it's nul terminated */
191 	cmdline_ptr[COMMAND_LINE_SIZE - 1] = '\0';
192 	return cmdline_ptr;
193 }
194 #endif
195 
elf_kexec_load(struct kimage * image,char * kernel_buf,unsigned long kernel_len,char * initrd,unsigned long initrd_len,char * cmdline,unsigned long cmdline_len)196 static void *elf_kexec_load(struct kimage *image, char *kernel_buf,
197 			    unsigned long kernel_len, char *initrd,
198 			    unsigned long initrd_len, char *cmdline,
199 			    unsigned long cmdline_len)
200 {
201 	int ret;
202 	void *fdt;
203 	unsigned long old_kernel_pbase = ULONG_MAX;
204 	unsigned long new_kernel_pbase = 0UL;
205 	unsigned long initrd_pbase = 0UL;
206 	unsigned long kernel_start;
207 	struct elfhdr ehdr;
208 	struct kexec_buf kbuf;
209 	struct kexec_elf_info elf_info;
210 	char *modified_cmdline = NULL;
211 
212 	ret = kexec_build_elf_info(kernel_buf, kernel_len, &ehdr, &elf_info);
213 	if (ret)
214 		return ERR_PTR(ret);
215 
216 	ret = elf_find_pbase(image, kernel_len, &ehdr, &elf_info,
217 			     &old_kernel_pbase, &new_kernel_pbase);
218 	if (ret)
219 		goto out;
220 	kernel_start = image->start;
221 
222 	/* Add the kernel binary to the image */
223 	ret = riscv_kexec_elf_load(image, &ehdr, &elf_info,
224 				   old_kernel_pbase, new_kernel_pbase);
225 	if (ret)
226 		goto out;
227 
228 	kbuf.image = image;
229 	kbuf.buf_min = new_kernel_pbase + kernel_len;
230 	kbuf.buf_max = ULONG_MAX;
231 
232 #ifdef CONFIG_CRASH_DUMP
233 	/* Add elfcorehdr */
234 	if (image->type == KEXEC_TYPE_CRASH) {
235 		void *headers;
236 		unsigned long headers_sz;
237 		ret = prepare_elf_headers(&headers, &headers_sz);
238 		if (ret) {
239 			pr_err("Preparing elf core header failed\n");
240 			goto out;
241 		}
242 
243 		kbuf.buffer = headers;
244 		kbuf.bufsz = headers_sz;
245 		kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
246 		kbuf.memsz = headers_sz;
247 		kbuf.buf_align = ELF_CORE_HEADER_ALIGN;
248 		kbuf.top_down = true;
249 
250 		ret = kexec_add_buffer(&kbuf);
251 		if (ret) {
252 			vfree(headers);
253 			goto out;
254 		}
255 		image->elf_headers = headers;
256 		image->elf_load_addr = kbuf.mem;
257 		image->elf_headers_sz = headers_sz;
258 
259 		kexec_dprintk("Loaded elf core header at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
260 			      image->elf_load_addr, kbuf.bufsz, kbuf.memsz);
261 
262 		/* Setup cmdline for kdump kernel case */
263 		modified_cmdline = setup_kdump_cmdline(image, cmdline,
264 						       cmdline_len);
265 		if (!modified_cmdline) {
266 			pr_err("Setting up cmdline for kdump kernel failed\n");
267 			ret = -EINVAL;
268 			goto out;
269 		}
270 		cmdline = modified_cmdline;
271 	}
272 #endif
273 
274 #ifdef CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY
275 	/* Add purgatory to the image */
276 	kbuf.top_down = true;
277 	kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
278 	ret = kexec_load_purgatory(image, &kbuf);
279 	if (ret) {
280 		pr_err("Error loading purgatory ret=%d\n", ret);
281 		goto out;
282 	}
283 	kexec_dprintk("Loaded purgatory at 0x%lx\n", kbuf.mem);
284 
285 	ret = kexec_purgatory_get_set_symbol(image, "riscv_kernel_entry",
286 					     &kernel_start,
287 					     sizeof(kernel_start), 0);
288 	if (ret)
289 		pr_err("Error update purgatory ret=%d\n", ret);
290 #endif /* CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY */
291 
292 	/* Add the initrd to the image */
293 	if (initrd != NULL) {
294 		kbuf.buffer = initrd;
295 		kbuf.bufsz = kbuf.memsz = initrd_len;
296 		kbuf.buf_align = PAGE_SIZE;
297 		kbuf.top_down = true;
298 		kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
299 		ret = kexec_add_buffer(&kbuf);
300 		if (ret)
301 			goto out;
302 		initrd_pbase = kbuf.mem;
303 		kexec_dprintk("Loaded initrd at 0x%lx\n", initrd_pbase);
304 	}
305 
306 	/* Add the DTB to the image */
307 	fdt = of_kexec_alloc_and_setup_fdt(image, initrd_pbase,
308 					   initrd_len, cmdline, 0);
309 	if (!fdt) {
310 		pr_err("Error setting up the new device tree.\n");
311 		ret = -EINVAL;
312 		goto out;
313 	}
314 
315 	fdt_pack(fdt);
316 	kbuf.buffer = fdt;
317 	kbuf.bufsz = kbuf.memsz = fdt_totalsize(fdt);
318 	kbuf.buf_align = PAGE_SIZE;
319 	kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
320 	kbuf.top_down = true;
321 	ret = kexec_add_buffer(&kbuf);
322 	if (ret) {
323 		pr_err("Error add DTB kbuf ret=%d\n", ret);
324 		goto out_free_fdt;
325 	}
326 	/* Cache the fdt buffer address for memory cleanup */
327 	image->arch.fdt = fdt;
328 	kexec_dprintk("Loaded device tree at 0x%lx\n", kbuf.mem);
329 	goto out;
330 
331 out_free_fdt:
332 	kvfree(fdt);
333 out:
334 	kfree(modified_cmdline);
335 	kexec_free_elf_info(&elf_info);
336 	return ret ? ERR_PTR(ret) : NULL;
337 }
338 
339 #define RV_X(x, s, n)  (((x) >> (s)) & ((1 << (n)) - 1))
340 #define RISCV_IMM_BITS 12
341 #define RISCV_IMM_REACH (1LL << RISCV_IMM_BITS)
342 #define RISCV_CONST_HIGH_PART(x) \
343 	(((x) + (RISCV_IMM_REACH >> 1)) & ~(RISCV_IMM_REACH - 1))
344 #define RISCV_CONST_LOW_PART(x) ((x) - RISCV_CONST_HIGH_PART(x))
345 
346 #define ENCODE_ITYPE_IMM(x) \
347 	(RV_X(x, 0, 12) << 20)
348 #define ENCODE_BTYPE_IMM(x) \
349 	((RV_X(x, 1, 4) << 8) | (RV_X(x, 5, 6) << 25) | \
350 	(RV_X(x, 11, 1) << 7) | (RV_X(x, 12, 1) << 31))
351 #define ENCODE_UTYPE_IMM(x) \
352 	(RV_X(x, 12, 20) << 12)
353 #define ENCODE_JTYPE_IMM(x) \
354 	((RV_X(x, 1, 10) << 21) | (RV_X(x, 11, 1) << 20) | \
355 	(RV_X(x, 12, 8) << 12) | (RV_X(x, 20, 1) << 31))
356 #define ENCODE_CBTYPE_IMM(x) \
357 	((RV_X(x, 1, 2) << 3) | (RV_X(x, 3, 2) << 10) | (RV_X(x, 5, 1) << 2) | \
358 	(RV_X(x, 6, 2) << 5) | (RV_X(x, 8, 1) << 12))
359 #define ENCODE_CJTYPE_IMM(x) \
360 	((RV_X(x, 1, 3) << 3) | (RV_X(x, 4, 1) << 11) | (RV_X(x, 5, 1) << 2) | \
361 	(RV_X(x, 6, 1) << 7) | (RV_X(x, 7, 1) << 6) | (RV_X(x, 8, 2) << 9) | \
362 	(RV_X(x, 10, 1) << 8) | (RV_X(x, 11, 1) << 12))
363 #define ENCODE_UJTYPE_IMM(x) \
364 	(ENCODE_UTYPE_IMM(RISCV_CONST_HIGH_PART(x)) | \
365 	(ENCODE_ITYPE_IMM(RISCV_CONST_LOW_PART(x)) << 32))
366 #define ENCODE_UITYPE_IMM(x) \
367 	(ENCODE_UTYPE_IMM(x) | (ENCODE_ITYPE_IMM(x) << 32))
368 
369 #define CLEAN_IMM(type, x) \
370 	((~ENCODE_##type##_IMM((uint64_t)(-1))) & (x))
371 
arch_kexec_apply_relocations_add(struct purgatory_info * pi,Elf_Shdr * section,const Elf_Shdr * relsec,const Elf_Shdr * symtab)372 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
373 				     Elf_Shdr *section,
374 				     const Elf_Shdr *relsec,
375 				     const Elf_Shdr *symtab)
376 {
377 	const char *strtab, *name, *shstrtab;
378 	const Elf_Shdr *sechdrs;
379 	Elf64_Rela *relas;
380 	int i, r_type;
381 
382 	/* String & section header string table */
383 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
384 	strtab = (char *)pi->ehdr + sechdrs[symtab->sh_link].sh_offset;
385 	shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
386 
387 	relas = (void *)pi->ehdr + relsec->sh_offset;
388 
389 	for (i = 0; i < relsec->sh_size / sizeof(*relas); i++) {
390 		const Elf_Sym *sym;	/* symbol to relocate */
391 		unsigned long addr;	/* final location after relocation */
392 		unsigned long val;	/* relocated symbol value */
393 		unsigned long sec_base;	/* relocated symbol value */
394 		void *loc;		/* tmp location to modify */
395 
396 		sym = (void *)pi->ehdr + symtab->sh_offset;
397 		sym += ELF64_R_SYM(relas[i].r_info);
398 
399 		if (sym->st_name)
400 			name = strtab + sym->st_name;
401 		else
402 			name = shstrtab + sechdrs[sym->st_shndx].sh_name;
403 
404 		loc = pi->purgatory_buf;
405 		loc += section->sh_offset;
406 		loc += relas[i].r_offset;
407 
408 		if (sym->st_shndx == SHN_ABS)
409 			sec_base = 0;
410 		else if (sym->st_shndx >= pi->ehdr->e_shnum) {
411 			pr_err("Invalid section %d for symbol %s\n",
412 			       sym->st_shndx, name);
413 			return -ENOEXEC;
414 		} else
415 			sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
416 
417 		val = sym->st_value;
418 		val += sec_base;
419 		val += relas[i].r_addend;
420 
421 		addr = section->sh_addr + relas[i].r_offset;
422 
423 		r_type = ELF64_R_TYPE(relas[i].r_info);
424 
425 		switch (r_type) {
426 		case R_RISCV_BRANCH:
427 			*(u32 *)loc = CLEAN_IMM(BTYPE, *(u32 *)loc) |
428 				 ENCODE_BTYPE_IMM(val - addr);
429 			break;
430 		case R_RISCV_JAL:
431 			*(u32 *)loc = CLEAN_IMM(JTYPE, *(u32 *)loc) |
432 				 ENCODE_JTYPE_IMM(val - addr);
433 			break;
434 		/*
435 		 * With no R_RISCV_PCREL_LO12_S, R_RISCV_PCREL_LO12_I
436 		 * sym is expected to be next to R_RISCV_PCREL_HI20
437 		 * in purgatory relsec. Handle it like R_RISCV_CALL
438 		 * sym, instead of searching the whole relsec.
439 		 */
440 		case R_RISCV_PCREL_HI20:
441 		case R_RISCV_CALL_PLT:
442 		case R_RISCV_CALL:
443 			*(u64 *)loc = CLEAN_IMM(UITYPE, *(u64 *)loc) |
444 				 ENCODE_UJTYPE_IMM(val - addr);
445 			break;
446 		case R_RISCV_RVC_BRANCH:
447 			*(u32 *)loc = CLEAN_IMM(CBTYPE, *(u32 *)loc) |
448 				 ENCODE_CBTYPE_IMM(val - addr);
449 			break;
450 		case R_RISCV_RVC_JUMP:
451 			*(u32 *)loc = CLEAN_IMM(CJTYPE, *(u32 *)loc) |
452 				 ENCODE_CJTYPE_IMM(val - addr);
453 			break;
454 		case R_RISCV_ADD16:
455 			*(u16 *)loc += val;
456 			break;
457 		case R_RISCV_SUB16:
458 			*(u16 *)loc -= val;
459 			break;
460 		case R_RISCV_ADD32:
461 			*(u32 *)loc += val;
462 			break;
463 		case R_RISCV_SUB32:
464 			*(u32 *)loc -= val;
465 			break;
466 		/* It has been applied by R_RISCV_PCREL_HI20 sym */
467 		case R_RISCV_PCREL_LO12_I:
468 		case R_RISCV_ALIGN:
469 		case R_RISCV_RELAX:
470 			break;
471 		default:
472 			pr_err("Unknown rela relocation: %d\n", r_type);
473 			return -ENOEXEC;
474 		}
475 	}
476 	return 0;
477 }
478 
479 const struct kexec_file_ops elf_kexec_ops = {
480 	.probe = kexec_elf_probe,
481 	.load  = elf_kexec_load,
482 };
483