xref: /linux/mm/memcontrol-v1.c (revision 136114e0abf03005e182d75761ab694648e6d388)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 #include <linux/memcontrol.h>
4 #include <linux/swap.h>
5 #include <linux/mm_inline.h>
6 #include <linux/pagewalk.h>
7 #include <linux/backing-dev.h>
8 #include <linux/swap_cgroup.h>
9 #include <linux/eventfd.h>
10 #include <linux/poll.h>
11 #include <linux/sort.h>
12 #include <linux/file.h>
13 #include <linux/seq_buf.h>
14 
15 #include "internal.h"
16 #include "swap.h"
17 #include "memcontrol-v1.h"
18 
19 /*
20  * Cgroups above their limits are maintained in a RB-Tree, independent of
21  * their hierarchy representation
22  */
23 
24 struct mem_cgroup_tree_per_node {
25 	struct rb_root rb_root;
26 	struct rb_node *rb_rightmost;
27 	spinlock_t lock;
28 };
29 
30 struct mem_cgroup_tree {
31 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
32 };
33 
34 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
35 
36 /*
37  * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
38  * limit reclaim to prevent infinite loops, if they ever occur.
39  */
40 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
41 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
42 
43 /* for OOM */
44 struct mem_cgroup_eventfd_list {
45 	struct list_head list;
46 	struct eventfd_ctx *eventfd;
47 };
48 
49 /*
50  * cgroup_event represents events which userspace want to receive.
51  */
52 struct mem_cgroup_event {
53 	/*
54 	 * memcg which the event belongs to.
55 	 */
56 	struct mem_cgroup *memcg;
57 	/*
58 	 * eventfd to signal userspace about the event.
59 	 */
60 	struct eventfd_ctx *eventfd;
61 	/*
62 	 * Each of these stored in a list by the cgroup.
63 	 */
64 	struct list_head list;
65 	/*
66 	 * register_event() callback will be used to add new userspace
67 	 * waiter for changes related to this event.  Use eventfd_signal()
68 	 * on eventfd to send notification to userspace.
69 	 */
70 	int (*register_event)(struct mem_cgroup *memcg,
71 			      struct eventfd_ctx *eventfd, const char *args);
72 	/*
73 	 * unregister_event() callback will be called when userspace closes
74 	 * the eventfd or on cgroup removing.  This callback must be set,
75 	 * if you want provide notification functionality.
76 	 */
77 	void (*unregister_event)(struct mem_cgroup *memcg,
78 				 struct eventfd_ctx *eventfd);
79 	/*
80 	 * All fields below needed to unregister event when
81 	 * userspace closes eventfd.
82 	 */
83 	poll_table pt;
84 	wait_queue_head_t *wqh;
85 	wait_queue_entry_t wait;
86 	struct work_struct remove;
87 };
88 
89 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
90 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
91 #define MEMFILE_ATTR(val)	((val) & 0xffff)
92 
93 enum {
94 	RES_USAGE,
95 	RES_LIMIT,
96 	RES_MAX_USAGE,
97 	RES_FAILCNT,
98 	RES_SOFT_LIMIT,
99 };
100 
101 #ifdef CONFIG_LOCKDEP
102 static struct lockdep_map memcg_oom_lock_dep_map = {
103 	.name = "memcg_oom_lock",
104 };
105 #endif
106 
107 DEFINE_SPINLOCK(memcg_oom_lock);
108 
109 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
110 					 struct mem_cgroup_tree_per_node *mctz,
111 					 unsigned long new_usage_in_excess)
112 {
113 	struct rb_node **p = &mctz->rb_root.rb_node;
114 	struct rb_node *parent = NULL;
115 	struct mem_cgroup_per_node *mz_node;
116 	bool rightmost = true;
117 
118 	if (mz->on_tree)
119 		return;
120 
121 	mz->usage_in_excess = new_usage_in_excess;
122 	if (!mz->usage_in_excess)
123 		return;
124 	while (*p) {
125 		parent = *p;
126 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
127 					tree_node);
128 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
129 			p = &(*p)->rb_left;
130 			rightmost = false;
131 		} else {
132 			p = &(*p)->rb_right;
133 		}
134 	}
135 
136 	if (rightmost)
137 		mctz->rb_rightmost = &mz->tree_node;
138 
139 	rb_link_node(&mz->tree_node, parent, p);
140 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
141 	mz->on_tree = true;
142 }
143 
144 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
145 					 struct mem_cgroup_tree_per_node *mctz)
146 {
147 	if (!mz->on_tree)
148 		return;
149 
150 	if (&mz->tree_node == mctz->rb_rightmost)
151 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
152 
153 	rb_erase(&mz->tree_node, &mctz->rb_root);
154 	mz->on_tree = false;
155 }
156 
157 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
158 				       struct mem_cgroup_tree_per_node *mctz)
159 {
160 	unsigned long flags;
161 
162 	spin_lock_irqsave(&mctz->lock, flags);
163 	__mem_cgroup_remove_exceeded(mz, mctz);
164 	spin_unlock_irqrestore(&mctz->lock, flags);
165 }
166 
167 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
168 {
169 	unsigned long nr_pages = page_counter_read(&memcg->memory);
170 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
171 	unsigned long excess = 0;
172 
173 	if (nr_pages > soft_limit)
174 		excess = nr_pages - soft_limit;
175 
176 	return excess;
177 }
178 
179 static void memcg1_update_tree(struct mem_cgroup *memcg, int nid)
180 {
181 	unsigned long excess;
182 	struct mem_cgroup_per_node *mz;
183 	struct mem_cgroup_tree_per_node *mctz;
184 
185 	if (lru_gen_enabled()) {
186 		if (soft_limit_excess(memcg))
187 			lru_gen_soft_reclaim(memcg, nid);
188 		return;
189 	}
190 
191 	mctz = soft_limit_tree.rb_tree_per_node[nid];
192 	if (!mctz)
193 		return;
194 	/*
195 	 * Necessary to update all ancestors when hierarchy is used.
196 	 * because their event counter is not touched.
197 	 */
198 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
199 		mz = memcg->nodeinfo[nid];
200 		excess = soft_limit_excess(memcg);
201 		/*
202 		 * We have to update the tree if mz is on RB-tree or
203 		 * mem is over its softlimit.
204 		 */
205 		if (excess || mz->on_tree) {
206 			unsigned long flags;
207 
208 			spin_lock_irqsave(&mctz->lock, flags);
209 			/* if on-tree, remove it */
210 			if (mz->on_tree)
211 				__mem_cgroup_remove_exceeded(mz, mctz);
212 			/*
213 			 * Insert again. mz->usage_in_excess will be updated.
214 			 * If excess is 0, no tree ops.
215 			 */
216 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
217 			spin_unlock_irqrestore(&mctz->lock, flags);
218 		}
219 	}
220 }
221 
222 void memcg1_remove_from_trees(struct mem_cgroup *memcg)
223 {
224 	struct mem_cgroup_tree_per_node *mctz;
225 	struct mem_cgroup_per_node *mz;
226 	int nid;
227 
228 	for_each_node(nid) {
229 		mz = memcg->nodeinfo[nid];
230 		mctz = soft_limit_tree.rb_tree_per_node[nid];
231 		if (mctz)
232 			mem_cgroup_remove_exceeded(mz, mctz);
233 	}
234 }
235 
236 static struct mem_cgroup_per_node *
237 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
238 {
239 	struct mem_cgroup_per_node *mz;
240 
241 retry:
242 	mz = NULL;
243 	if (!mctz->rb_rightmost)
244 		goto done;		/* Nothing to reclaim from */
245 
246 	mz = rb_entry(mctz->rb_rightmost,
247 		      struct mem_cgroup_per_node, tree_node);
248 	/*
249 	 * Remove the node now but someone else can add it back,
250 	 * we will to add it back at the end of reclaim to its correct
251 	 * position in the tree.
252 	 */
253 	__mem_cgroup_remove_exceeded(mz, mctz);
254 	if (!soft_limit_excess(mz->memcg) ||
255 	    !css_tryget(&mz->memcg->css))
256 		goto retry;
257 done:
258 	return mz;
259 }
260 
261 static struct mem_cgroup_per_node *
262 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
263 {
264 	struct mem_cgroup_per_node *mz;
265 
266 	spin_lock_irq(&mctz->lock);
267 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
268 	spin_unlock_irq(&mctz->lock);
269 	return mz;
270 }
271 
272 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
273 				   pg_data_t *pgdat,
274 				   gfp_t gfp_mask,
275 				   unsigned long *total_scanned)
276 {
277 	struct mem_cgroup *victim = NULL;
278 	int total = 0;
279 	int loop = 0;
280 	unsigned long excess;
281 	unsigned long nr_scanned;
282 	struct mem_cgroup_reclaim_cookie reclaim = {
283 		.pgdat = pgdat,
284 	};
285 
286 	excess = soft_limit_excess(root_memcg);
287 
288 	while (1) {
289 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
290 		if (!victim) {
291 			loop++;
292 			if (loop >= 2) {
293 				/*
294 				 * If we have not been able to reclaim
295 				 * anything, it might because there are
296 				 * no reclaimable pages under this hierarchy
297 				 */
298 				if (!total)
299 					break;
300 				/*
301 				 * We want to do more targeted reclaim.
302 				 * excess >> 2 is not to excessive so as to
303 				 * reclaim too much, nor too less that we keep
304 				 * coming back to reclaim from this cgroup
305 				 */
306 				if (total >= (excess >> 2) ||
307 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
308 					break;
309 			}
310 			continue;
311 		}
312 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
313 					pgdat, &nr_scanned);
314 		*total_scanned += nr_scanned;
315 		if (!soft_limit_excess(root_memcg))
316 			break;
317 	}
318 	mem_cgroup_iter_break(root_memcg, victim);
319 	return total;
320 }
321 
322 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
323 					    gfp_t gfp_mask,
324 					    unsigned long *total_scanned)
325 {
326 	unsigned long nr_reclaimed = 0;
327 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
328 	unsigned long reclaimed;
329 	int loop = 0;
330 	struct mem_cgroup_tree_per_node *mctz;
331 	unsigned long excess;
332 
333 	if (lru_gen_enabled())
334 		return 0;
335 
336 	if (order > 0)
337 		return 0;
338 
339 	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
340 
341 	/*
342 	 * Do not even bother to check the largest node if the root
343 	 * is empty. Do it lockless to prevent lock bouncing. Races
344 	 * are acceptable as soft limit is best effort anyway.
345 	 */
346 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
347 		return 0;
348 
349 	/*
350 	 * This loop can run a while, specially if mem_cgroup's continuously
351 	 * keep exceeding their soft limit and putting the system under
352 	 * pressure
353 	 */
354 	do {
355 		if (next_mz)
356 			mz = next_mz;
357 		else
358 			mz = mem_cgroup_largest_soft_limit_node(mctz);
359 		if (!mz)
360 			break;
361 
362 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
363 						    gfp_mask, total_scanned);
364 		nr_reclaimed += reclaimed;
365 		spin_lock_irq(&mctz->lock);
366 
367 		/*
368 		 * If we failed to reclaim anything from this memory cgroup
369 		 * it is time to move on to the next cgroup
370 		 */
371 		next_mz = NULL;
372 		if (!reclaimed)
373 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
374 
375 		excess = soft_limit_excess(mz->memcg);
376 		/*
377 		 * One school of thought says that we should not add
378 		 * back the node to the tree if reclaim returns 0.
379 		 * But our reclaim could return 0, simply because due
380 		 * to priority we are exposing a smaller subset of
381 		 * memory to reclaim from. Consider this as a longer
382 		 * term TODO.
383 		 */
384 		/* If excess == 0, no tree ops */
385 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
386 		spin_unlock_irq(&mctz->lock);
387 		css_put(&mz->memcg->css);
388 		loop++;
389 		/*
390 		 * Could not reclaim anything and there are no more
391 		 * mem cgroups to try or we seem to be looping without
392 		 * reclaiming anything.
393 		 */
394 		if (!nr_reclaimed &&
395 			(next_mz == NULL ||
396 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
397 			break;
398 	} while (!nr_reclaimed);
399 	if (next_mz)
400 		css_put(&next_mz->memcg->css);
401 	return nr_reclaimed;
402 }
403 
404 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
405 				struct cftype *cft)
406 {
407 	return 0;
408 }
409 
410 #ifdef CONFIG_MMU
411 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
412 				 struct cftype *cft, u64 val)
413 {
414 	pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
415 		     "Please report your usecase to linux-mm@kvack.org if you "
416 		     "depend on this functionality.\n");
417 
418 	if (val != 0)
419 		return -EINVAL;
420 	return 0;
421 }
422 #else
423 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
424 				 struct cftype *cft, u64 val)
425 {
426 	return -ENOSYS;
427 }
428 #endif
429 
430 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
431 {
432 	unsigned long val;
433 
434 	if (mem_cgroup_is_root(memcg)) {
435 		/*
436 		 * Approximate root's usage from global state. This isn't
437 		 * perfect, but the root usage was always an approximation.
438 		 */
439 		val = global_node_page_state(NR_FILE_PAGES) +
440 			global_node_page_state(NR_ANON_MAPPED);
441 		if (swap)
442 			val += total_swap_pages - get_nr_swap_pages();
443 	} else {
444 		if (!swap)
445 			val = page_counter_read(&memcg->memory);
446 		else
447 			val = page_counter_read(&memcg->memsw);
448 	}
449 	return val;
450 }
451 
452 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
453 {
454 	struct mem_cgroup_threshold_ary *t;
455 	unsigned long usage;
456 	int i;
457 
458 	rcu_read_lock();
459 	if (!swap)
460 		t = rcu_dereference(memcg->thresholds.primary);
461 	else
462 		t = rcu_dereference(memcg->memsw_thresholds.primary);
463 
464 	if (!t)
465 		goto unlock;
466 
467 	usage = mem_cgroup_usage(memcg, swap);
468 
469 	/*
470 	 * current_threshold points to threshold just below or equal to usage.
471 	 * If it's not true, a threshold was crossed after last
472 	 * call of __mem_cgroup_threshold().
473 	 */
474 	i = t->current_threshold;
475 
476 	/*
477 	 * Iterate backward over array of thresholds starting from
478 	 * current_threshold and check if a threshold is crossed.
479 	 * If none of thresholds below usage is crossed, we read
480 	 * only one element of the array here.
481 	 */
482 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
483 		eventfd_signal(t->entries[i].eventfd);
484 
485 	/* i = current_threshold + 1 */
486 	i++;
487 
488 	/*
489 	 * Iterate forward over array of thresholds starting from
490 	 * current_threshold+1 and check if a threshold is crossed.
491 	 * If none of thresholds above usage is crossed, we read
492 	 * only one element of the array here.
493 	 */
494 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
495 		eventfd_signal(t->entries[i].eventfd);
496 
497 	/* Update current_threshold */
498 	t->current_threshold = i - 1;
499 unlock:
500 	rcu_read_unlock();
501 }
502 
503 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
504 {
505 	while (memcg) {
506 		__mem_cgroup_threshold(memcg, false);
507 		if (do_memsw_account())
508 			__mem_cgroup_threshold(memcg, true);
509 
510 		memcg = parent_mem_cgroup(memcg);
511 	}
512 }
513 
514 /* Cgroup1: threshold notifications & softlimit tree updates */
515 
516 /*
517  * Per memcg event counter is incremented at every pagein/pageout. With THP,
518  * it will be incremented by the number of pages. This counter is used
519  * to trigger some periodic events. This is straightforward and better
520  * than using jiffies etc. to handle periodic memcg event.
521  */
522 enum mem_cgroup_events_target {
523 	MEM_CGROUP_TARGET_THRESH,
524 	MEM_CGROUP_TARGET_SOFTLIMIT,
525 	MEM_CGROUP_NTARGETS,
526 };
527 
528 struct memcg1_events_percpu {
529 	unsigned long nr_page_events;
530 	unsigned long targets[MEM_CGROUP_NTARGETS];
531 };
532 
533 static void memcg1_charge_statistics(struct mem_cgroup *memcg, int nr_pages)
534 {
535 	/* pagein of a big page is an event. So, ignore page size */
536 	if (nr_pages > 0)
537 		count_memcg_events(memcg, PGPGIN, 1);
538 	else {
539 		count_memcg_events(memcg, PGPGOUT, 1);
540 		nr_pages = -nr_pages; /* for event */
541 	}
542 
543 	__this_cpu_add(memcg->events_percpu->nr_page_events, nr_pages);
544 }
545 
546 #define THRESHOLDS_EVENTS_TARGET 128
547 #define SOFTLIMIT_EVENTS_TARGET 1024
548 
549 static bool memcg1_event_ratelimit(struct mem_cgroup *memcg,
550 				enum mem_cgroup_events_target target)
551 {
552 	unsigned long val, next;
553 
554 	val = __this_cpu_read(memcg->events_percpu->nr_page_events);
555 	next = __this_cpu_read(memcg->events_percpu->targets[target]);
556 	/* from time_after() in jiffies.h */
557 	if ((long)(next - val) < 0) {
558 		switch (target) {
559 		case MEM_CGROUP_TARGET_THRESH:
560 			next = val + THRESHOLDS_EVENTS_TARGET;
561 			break;
562 		case MEM_CGROUP_TARGET_SOFTLIMIT:
563 			next = val + SOFTLIMIT_EVENTS_TARGET;
564 			break;
565 		default:
566 			break;
567 		}
568 		__this_cpu_write(memcg->events_percpu->targets[target], next);
569 		return true;
570 	}
571 	return false;
572 }
573 
574 /*
575  * Check events in order.
576  *
577  */
578 static void memcg1_check_events(struct mem_cgroup *memcg, int nid)
579 {
580 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
581 		return;
582 
583 	/* threshold event is triggered in finer grain than soft limit */
584 	if (unlikely(memcg1_event_ratelimit(memcg,
585 						MEM_CGROUP_TARGET_THRESH))) {
586 		bool do_softlimit;
587 
588 		do_softlimit = memcg1_event_ratelimit(memcg,
589 						MEM_CGROUP_TARGET_SOFTLIMIT);
590 		mem_cgroup_threshold(memcg);
591 		if (unlikely(do_softlimit))
592 			memcg1_update_tree(memcg, nid);
593 	}
594 }
595 
596 void memcg1_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
597 {
598 	unsigned long flags;
599 
600 	local_irq_save(flags);
601 	memcg1_charge_statistics(memcg, folio_nr_pages(folio));
602 	memcg1_check_events(memcg, folio_nid(folio));
603 	local_irq_restore(flags);
604 }
605 
606 /**
607  * memcg1_swapout - transfer a memsw charge to swap
608  * @folio: folio whose memsw charge to transfer
609  * @entry: swap entry to move the charge to
610  *
611  * Transfer the memsw charge of @folio to @entry.
612  */
613 void memcg1_swapout(struct folio *folio, swp_entry_t entry)
614 {
615 	struct mem_cgroup *memcg, *swap_memcg;
616 	unsigned int nr_entries;
617 
618 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
619 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
620 
621 	if (mem_cgroup_disabled())
622 		return;
623 
624 	if (!do_memsw_account())
625 		return;
626 
627 	memcg = folio_memcg(folio);
628 
629 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
630 	if (!memcg)
631 		return;
632 
633 	/*
634 	 * In case the memcg owning these pages has been offlined and doesn't
635 	 * have an ID allocated to it anymore, charge the closest online
636 	 * ancestor for the swap instead and transfer the memory+swap charge.
637 	 */
638 	swap_memcg = mem_cgroup_private_id_get_online(memcg);
639 	nr_entries = folio_nr_pages(folio);
640 	/* Get references for the tail pages, too */
641 	if (nr_entries > 1)
642 		mem_cgroup_private_id_get_many(swap_memcg, nr_entries - 1);
643 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
644 
645 	swap_cgroup_record(folio, mem_cgroup_private_id(swap_memcg), entry);
646 
647 	folio_unqueue_deferred_split(folio);
648 	folio->memcg_data = 0;
649 
650 	if (!mem_cgroup_is_root(memcg))
651 		page_counter_uncharge(&memcg->memory, nr_entries);
652 
653 	if (memcg != swap_memcg) {
654 		if (!mem_cgroup_is_root(swap_memcg))
655 			page_counter_charge(&swap_memcg->memsw, nr_entries);
656 		page_counter_uncharge(&memcg->memsw, nr_entries);
657 	}
658 
659 	/*
660 	 * Interrupts should be disabled here because the caller holds the
661 	 * i_pages lock which is taken with interrupts-off. It is
662 	 * important here to have the interrupts disabled because it is the
663 	 * only synchronisation we have for updating the per-CPU variables.
664 	 */
665 	preempt_disable_nested();
666 	VM_WARN_ON_IRQS_ENABLED();
667 	memcg1_charge_statistics(memcg, -folio_nr_pages(folio));
668 	preempt_enable_nested();
669 	memcg1_check_events(memcg, folio_nid(folio));
670 
671 	css_put(&memcg->css);
672 }
673 
674 /*
675  * memcg1_swapin - uncharge swap slot
676  * @entry: the first swap entry for which the pages are charged
677  * @nr_pages: number of pages which will be uncharged
678  *
679  * Call this function after successfully adding the charged page to swapcache.
680  *
681  * Note: This function assumes the page for which swap slot is being uncharged
682  * is order 0 page.
683  */
684 void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages)
685 {
686 	/*
687 	 * Cgroup1's unified memory+swap counter has been charged with the
688 	 * new swapcache page, finish the transfer by uncharging the swap
689 	 * slot. The swap slot would also get uncharged when it dies, but
690 	 * it can stick around indefinitely and we'd count the page twice
691 	 * the entire time.
692 	 *
693 	 * Cgroup2 has separate resource counters for memory and swap,
694 	 * so this is a non-issue here. Memory and swap charge lifetimes
695 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
696 	 * page to memory here, and uncharge swap when the slot is freed.
697 	 */
698 	if (do_memsw_account()) {
699 		/*
700 		 * The swap entry might not get freed for a long time,
701 		 * let's not wait for it.  The page already received a
702 		 * memory+swap charge, drop the swap entry duplicate.
703 		 */
704 		mem_cgroup_uncharge_swap(entry, nr_pages);
705 	}
706 }
707 
708 void memcg1_uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
709 			   unsigned long nr_memory, int nid)
710 {
711 	unsigned long flags;
712 
713 	local_irq_save(flags);
714 	count_memcg_events(memcg, PGPGOUT, pgpgout);
715 	__this_cpu_add(memcg->events_percpu->nr_page_events, nr_memory);
716 	memcg1_check_events(memcg, nid);
717 	local_irq_restore(flags);
718 }
719 
720 static int compare_thresholds(const void *a, const void *b)
721 {
722 	const struct mem_cgroup_threshold *_a = a;
723 	const struct mem_cgroup_threshold *_b = b;
724 
725 	if (_a->threshold > _b->threshold)
726 		return 1;
727 
728 	if (_a->threshold < _b->threshold)
729 		return -1;
730 
731 	return 0;
732 }
733 
734 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
735 {
736 	struct mem_cgroup_eventfd_list *ev;
737 
738 	spin_lock(&memcg_oom_lock);
739 
740 	list_for_each_entry(ev, &memcg->oom_notify, list)
741 		eventfd_signal(ev->eventfd);
742 
743 	spin_unlock(&memcg_oom_lock);
744 	return 0;
745 }
746 
747 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
748 {
749 	struct mem_cgroup *iter;
750 
751 	for_each_mem_cgroup_tree(iter, memcg)
752 		mem_cgroup_oom_notify_cb(iter);
753 }
754 
755 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
756 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
757 {
758 	struct mem_cgroup_thresholds *thresholds;
759 	struct mem_cgroup_threshold_ary *new;
760 	unsigned long threshold;
761 	unsigned long usage;
762 	int i, size, ret;
763 
764 	ret = page_counter_memparse(args, "-1", &threshold);
765 	if (ret)
766 		return ret;
767 
768 	mutex_lock(&memcg->thresholds_lock);
769 
770 	if (type == _MEM) {
771 		thresholds = &memcg->thresholds;
772 		usage = mem_cgroup_usage(memcg, false);
773 	} else if (type == _MEMSWAP) {
774 		thresholds = &memcg->memsw_thresholds;
775 		usage = mem_cgroup_usage(memcg, true);
776 	} else
777 		BUG();
778 
779 	/* Check if a threshold crossed before adding a new one */
780 	if (thresholds->primary)
781 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
782 
783 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
784 
785 	/* Allocate memory for new array of thresholds */
786 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL_ACCOUNT);
787 	if (!new) {
788 		ret = -ENOMEM;
789 		goto unlock;
790 	}
791 	new->size = size;
792 
793 	/* Copy thresholds (if any) to new array */
794 	if (thresholds->primary)
795 		memcpy(new->entries, thresholds->primary->entries,
796 		       flex_array_size(new, entries, size - 1));
797 
798 	/* Add new threshold */
799 	new->entries[size - 1].eventfd = eventfd;
800 	new->entries[size - 1].threshold = threshold;
801 
802 	/* Sort thresholds. Registering of new threshold isn't time-critical */
803 	sort(new->entries, size, sizeof(*new->entries),
804 			compare_thresholds, NULL);
805 
806 	/* Find current threshold */
807 	new->current_threshold = -1;
808 	for (i = 0; i < size; i++) {
809 		if (new->entries[i].threshold <= usage) {
810 			/*
811 			 * new->current_threshold will not be used until
812 			 * rcu_assign_pointer(), so it's safe to increment
813 			 * it here.
814 			 */
815 			++new->current_threshold;
816 		} else
817 			break;
818 	}
819 
820 	/* Free old spare buffer and save old primary buffer as spare */
821 	kfree(thresholds->spare);
822 	thresholds->spare = thresholds->primary;
823 
824 	rcu_assign_pointer(thresholds->primary, new);
825 
826 	/* To be sure that nobody uses thresholds */
827 	synchronize_rcu();
828 
829 unlock:
830 	mutex_unlock(&memcg->thresholds_lock);
831 
832 	return ret;
833 }
834 
835 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
836 	struct eventfd_ctx *eventfd, const char *args)
837 {
838 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
839 }
840 
841 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
842 	struct eventfd_ctx *eventfd, const char *args)
843 {
844 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
845 }
846 
847 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
848 	struct eventfd_ctx *eventfd, enum res_type type)
849 {
850 	struct mem_cgroup_thresholds *thresholds;
851 	struct mem_cgroup_threshold_ary *new;
852 	unsigned long usage;
853 	int i, j, size, entries;
854 
855 	mutex_lock(&memcg->thresholds_lock);
856 
857 	if (type == _MEM) {
858 		thresholds = &memcg->thresholds;
859 		usage = mem_cgroup_usage(memcg, false);
860 	} else if (type == _MEMSWAP) {
861 		thresholds = &memcg->memsw_thresholds;
862 		usage = mem_cgroup_usage(memcg, true);
863 	} else
864 		BUG();
865 
866 	if (!thresholds->primary)
867 		goto unlock;
868 
869 	/* Check if a threshold crossed before removing */
870 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
871 
872 	/* Calculate new number of threshold */
873 	size = entries = 0;
874 	for (i = 0; i < thresholds->primary->size; i++) {
875 		if (thresholds->primary->entries[i].eventfd != eventfd)
876 			size++;
877 		else
878 			entries++;
879 	}
880 
881 	new = thresholds->spare;
882 
883 	/* If no items related to eventfd have been cleared, nothing to do */
884 	if (!entries)
885 		goto unlock;
886 
887 	/* Set thresholds array to NULL if we don't have thresholds */
888 	if (!size) {
889 		kfree(new);
890 		new = NULL;
891 		goto swap_buffers;
892 	}
893 
894 	new->size = size;
895 
896 	/* Copy thresholds and find current threshold */
897 	new->current_threshold = -1;
898 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
899 		if (thresholds->primary->entries[i].eventfd == eventfd)
900 			continue;
901 
902 		new->entries[j] = thresholds->primary->entries[i];
903 		if (new->entries[j].threshold <= usage) {
904 			/*
905 			 * new->current_threshold will not be used
906 			 * until rcu_assign_pointer(), so it's safe to increment
907 			 * it here.
908 			 */
909 			++new->current_threshold;
910 		}
911 		j++;
912 	}
913 
914 swap_buffers:
915 	/* Swap primary and spare array */
916 	thresholds->spare = thresholds->primary;
917 
918 	rcu_assign_pointer(thresholds->primary, new);
919 
920 	/* To be sure that nobody uses thresholds */
921 	synchronize_rcu();
922 
923 	/* If all events are unregistered, free the spare array */
924 	if (!new) {
925 		kfree(thresholds->spare);
926 		thresholds->spare = NULL;
927 	}
928 unlock:
929 	mutex_unlock(&memcg->thresholds_lock);
930 }
931 
932 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
933 	struct eventfd_ctx *eventfd)
934 {
935 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
936 }
937 
938 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
939 	struct eventfd_ctx *eventfd)
940 {
941 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
942 }
943 
944 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
945 	struct eventfd_ctx *eventfd, const char *args)
946 {
947 	struct mem_cgroup_eventfd_list *event;
948 
949 	event = kmalloc(sizeof(*event),	GFP_KERNEL_ACCOUNT);
950 	if (!event)
951 		return -ENOMEM;
952 
953 	spin_lock(&memcg_oom_lock);
954 
955 	event->eventfd = eventfd;
956 	list_add(&event->list, &memcg->oom_notify);
957 
958 	/* already in OOM ? */
959 	if (memcg->under_oom)
960 		eventfd_signal(eventfd);
961 	spin_unlock(&memcg_oom_lock);
962 
963 	return 0;
964 }
965 
966 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
967 	struct eventfd_ctx *eventfd)
968 {
969 	struct mem_cgroup_eventfd_list *ev, *tmp;
970 
971 	spin_lock(&memcg_oom_lock);
972 
973 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
974 		if (ev->eventfd == eventfd) {
975 			list_del(&ev->list);
976 			kfree(ev);
977 		}
978 	}
979 
980 	spin_unlock(&memcg_oom_lock);
981 }
982 
983 /*
984  * DO NOT USE IN NEW FILES.
985  *
986  * "cgroup.event_control" implementation.
987  *
988  * This is way over-engineered.  It tries to support fully configurable
989  * events for each user.  Such level of flexibility is completely
990  * unnecessary especially in the light of the planned unified hierarchy.
991  *
992  * Please deprecate this and replace with something simpler if at all
993  * possible.
994  */
995 
996 /*
997  * Unregister event and free resources.
998  *
999  * Gets called from workqueue.
1000  */
1001 static void memcg_event_remove(struct work_struct *work)
1002 {
1003 	struct mem_cgroup_event *event =
1004 		container_of(work, struct mem_cgroup_event, remove);
1005 	struct mem_cgroup *memcg = event->memcg;
1006 
1007 	remove_wait_queue(event->wqh, &event->wait);
1008 
1009 	event->unregister_event(memcg, event->eventfd);
1010 
1011 	/* Notify userspace the event is going away. */
1012 	eventfd_signal(event->eventfd);
1013 
1014 	eventfd_ctx_put(event->eventfd);
1015 	kfree(event);
1016 	css_put(&memcg->css);
1017 }
1018 
1019 /*
1020  * Gets called on EPOLLHUP on eventfd when user closes it.
1021  *
1022  * Called with wqh->lock held and interrupts disabled.
1023  */
1024 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned int mode,
1025 			    int sync, void *key)
1026 {
1027 	struct mem_cgroup_event *event =
1028 		container_of(wait, struct mem_cgroup_event, wait);
1029 	struct mem_cgroup *memcg = event->memcg;
1030 	__poll_t flags = key_to_poll(key);
1031 
1032 	if (flags & EPOLLHUP) {
1033 		/*
1034 		 * If the event has been detached at cgroup removal, we
1035 		 * can simply return knowing the other side will cleanup
1036 		 * for us.
1037 		 *
1038 		 * We can't race against event freeing since the other
1039 		 * side will require wqh->lock via remove_wait_queue(),
1040 		 * which we hold.
1041 		 */
1042 		spin_lock(&memcg->event_list_lock);
1043 		if (!list_empty(&event->list)) {
1044 			list_del_init(&event->list);
1045 			/*
1046 			 * We are in atomic context, but cgroup_event_remove()
1047 			 * may sleep, so we have to call it in workqueue.
1048 			 */
1049 			schedule_work(&event->remove);
1050 		}
1051 		spin_unlock(&memcg->event_list_lock);
1052 	}
1053 
1054 	return 0;
1055 }
1056 
1057 static void memcg_event_ptable_queue_proc(struct file *file,
1058 		wait_queue_head_t *wqh, poll_table *pt)
1059 {
1060 	struct mem_cgroup_event *event =
1061 		container_of(pt, struct mem_cgroup_event, pt);
1062 
1063 	event->wqh = wqh;
1064 	add_wait_queue(wqh, &event->wait);
1065 }
1066 
1067 /*
1068  * DO NOT USE IN NEW FILES.
1069  *
1070  * Parse input and register new cgroup event handler.
1071  *
1072  * Input must be in format '<event_fd> <control_fd> <args>'.
1073  * Interpretation of args is defined by control file implementation.
1074  */
1075 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
1076 					 char *buf, size_t nbytes, loff_t off)
1077 {
1078 	struct cgroup_subsys_state *css = of_css(of);
1079 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1080 	struct mem_cgroup_event *event;
1081 	struct cgroup_subsys_state *cfile_css;
1082 	unsigned int efd, cfd;
1083 	struct dentry *cdentry;
1084 	const char *name;
1085 	char *endp;
1086 	int ret;
1087 
1088 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
1089 		return -EOPNOTSUPP;
1090 
1091 	buf = strstrip(buf);
1092 
1093 	efd = simple_strtoul(buf, &endp, 10);
1094 	if (*endp != ' ')
1095 		return -EINVAL;
1096 	buf = endp + 1;
1097 
1098 	cfd = simple_strtoul(buf, &endp, 10);
1099 	if (*endp == '\0')
1100 		buf = endp;
1101 	else if (*endp == ' ')
1102 		buf = endp + 1;
1103 	else
1104 		return -EINVAL;
1105 
1106 	CLASS(fd, efile)(efd);
1107 	if (fd_empty(efile))
1108 		return -EBADF;
1109 
1110 	CLASS(fd, cfile)(cfd);
1111 
1112 	event = kzalloc(sizeof(*event), GFP_KERNEL_ACCOUNT);
1113 	if (!event)
1114 		return -ENOMEM;
1115 
1116 	event->memcg = memcg;
1117 	INIT_LIST_HEAD(&event->list);
1118 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
1119 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
1120 	INIT_WORK(&event->remove, memcg_event_remove);
1121 
1122 	event->eventfd = eventfd_ctx_fileget(fd_file(efile));
1123 	if (IS_ERR(event->eventfd)) {
1124 		ret = PTR_ERR(event->eventfd);
1125 		goto out_kfree;
1126 	}
1127 
1128 	if (fd_empty(cfile)) {
1129 		ret = -EBADF;
1130 		goto out_put_eventfd;
1131 	}
1132 
1133 	/* the process need read permission on control file */
1134 	/* AV: shouldn't we check that it's been opened for read instead? */
1135 	ret = file_permission(fd_file(cfile), MAY_READ);
1136 	if (ret < 0)
1137 		goto out_put_eventfd;
1138 
1139 	/*
1140 	 * The control file must be a regular cgroup1 file. As a regular cgroup
1141 	 * file can't be renamed, it's safe to access its name afterwards.
1142 	 */
1143 	cdentry = fd_file(cfile)->f_path.dentry;
1144 	if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
1145 		ret = -EINVAL;
1146 		goto out_put_eventfd;
1147 	}
1148 
1149 	/*
1150 	 * Determine the event callbacks and set them in @event.  This used
1151 	 * to be done via struct cftype but cgroup core no longer knows
1152 	 * about these events.  The following is crude but the whole thing
1153 	 * is for compatibility anyway.
1154 	 *
1155 	 * DO NOT ADD NEW FILES.
1156 	 */
1157 	name = cdentry->d_name.name;
1158 
1159 	if (!strcmp(name, "memory.usage_in_bytes")) {
1160 		event->register_event = mem_cgroup_usage_register_event;
1161 		event->unregister_event = mem_cgroup_usage_unregister_event;
1162 	} else if (!strcmp(name, "memory.oom_control")) {
1163 		pr_warn_once("oom_control is deprecated and will be removed. "
1164 			     "Please report your usecase to linux-mm-@kvack.org"
1165 			     " if you depend on this functionality.\n");
1166 		event->register_event = mem_cgroup_oom_register_event;
1167 		event->unregister_event = mem_cgroup_oom_unregister_event;
1168 	} else if (!strcmp(name, "memory.pressure_level")) {
1169 		pr_warn_once("pressure_level is deprecated and will be removed. "
1170 			     "Please report your usecase to linux-mm-@kvack.org "
1171 			     "if you depend on this functionality.\n");
1172 		event->register_event = vmpressure_register_event;
1173 		event->unregister_event = vmpressure_unregister_event;
1174 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
1175 		event->register_event = memsw_cgroup_usage_register_event;
1176 		event->unregister_event = memsw_cgroup_usage_unregister_event;
1177 	} else {
1178 		ret = -EINVAL;
1179 		goto out_put_eventfd;
1180 	}
1181 
1182 	/*
1183 	 * Verify @cfile should belong to @css.  Also, remaining events are
1184 	 * automatically removed on cgroup destruction but the removal is
1185 	 * asynchronous, so take an extra ref on @css.
1186 	 */
1187 	cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
1188 					       &memory_cgrp_subsys);
1189 	ret = -EINVAL;
1190 	if (IS_ERR(cfile_css))
1191 		goto out_put_eventfd;
1192 	if (cfile_css != css)
1193 		goto out_put_css;
1194 
1195 	ret = event->register_event(memcg, event->eventfd, buf);
1196 	if (ret)
1197 		goto out_put_css;
1198 
1199 	vfs_poll(fd_file(efile), &event->pt);
1200 
1201 	spin_lock_irq(&memcg->event_list_lock);
1202 	list_add(&event->list, &memcg->event_list);
1203 	spin_unlock_irq(&memcg->event_list_lock);
1204 	return nbytes;
1205 
1206 out_put_css:
1207 	css_put(cfile_css);
1208 out_put_eventfd:
1209 	eventfd_ctx_put(event->eventfd);
1210 out_kfree:
1211 	kfree(event);
1212 	return ret;
1213 }
1214 
1215 void memcg1_memcg_init(struct mem_cgroup *memcg)
1216 {
1217 	INIT_LIST_HEAD(&memcg->oom_notify);
1218 	mutex_init(&memcg->thresholds_lock);
1219 	INIT_LIST_HEAD(&memcg->event_list);
1220 	spin_lock_init(&memcg->event_list_lock);
1221 }
1222 
1223 void memcg1_css_offline(struct mem_cgroup *memcg)
1224 {
1225 	struct mem_cgroup_event *event, *tmp;
1226 
1227 	/*
1228 	 * Unregister events and notify userspace.
1229 	 * Notify userspace about cgroup removing only after rmdir of cgroup
1230 	 * directory to avoid race between userspace and kernelspace.
1231 	 */
1232 	spin_lock_irq(&memcg->event_list_lock);
1233 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
1234 		list_del_init(&event->list);
1235 		schedule_work(&event->remove);
1236 	}
1237 	spin_unlock_irq(&memcg->event_list_lock);
1238 }
1239 
1240 /*
1241  * Check OOM-Killer is already running under our hierarchy.
1242  * If someone is running, return false.
1243  */
1244 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1245 {
1246 	struct mem_cgroup *iter, *failed = NULL;
1247 
1248 	spin_lock(&memcg_oom_lock);
1249 
1250 	for_each_mem_cgroup_tree(iter, memcg) {
1251 		if (iter->oom_lock) {
1252 			/*
1253 			 * this subtree of our hierarchy is already locked
1254 			 * so we cannot give a lock.
1255 			 */
1256 			failed = iter;
1257 			mem_cgroup_iter_break(memcg, iter);
1258 			break;
1259 		}
1260 		iter->oom_lock = true;
1261 	}
1262 
1263 	if (failed) {
1264 		/*
1265 		 * OK, we failed to lock the whole subtree so we have
1266 		 * to clean up what we set up to the failing subtree
1267 		 */
1268 		for_each_mem_cgroup_tree(iter, memcg) {
1269 			if (iter == failed) {
1270 				mem_cgroup_iter_break(memcg, iter);
1271 				break;
1272 			}
1273 			iter->oom_lock = false;
1274 		}
1275 	} else
1276 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1277 
1278 	spin_unlock(&memcg_oom_lock);
1279 
1280 	return !failed;
1281 }
1282 
1283 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1284 {
1285 	struct mem_cgroup *iter;
1286 
1287 	spin_lock(&memcg_oom_lock);
1288 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1289 	for_each_mem_cgroup_tree(iter, memcg)
1290 		iter->oom_lock = false;
1291 	spin_unlock(&memcg_oom_lock);
1292 }
1293 
1294 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1295 {
1296 	struct mem_cgroup *iter;
1297 
1298 	spin_lock(&memcg_oom_lock);
1299 	for_each_mem_cgroup_tree(iter, memcg)
1300 		iter->under_oom++;
1301 	spin_unlock(&memcg_oom_lock);
1302 }
1303 
1304 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1305 {
1306 	struct mem_cgroup *iter;
1307 
1308 	/*
1309 	 * Be careful about under_oom underflows because a child memcg
1310 	 * could have been added after mem_cgroup_mark_under_oom.
1311 	 */
1312 	spin_lock(&memcg_oom_lock);
1313 	for_each_mem_cgroup_tree(iter, memcg)
1314 		if (iter->under_oom > 0)
1315 			iter->under_oom--;
1316 	spin_unlock(&memcg_oom_lock);
1317 }
1318 
1319 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1320 
1321 struct oom_wait_info {
1322 	struct mem_cgroup *memcg;
1323 	wait_queue_entry_t	wait;
1324 };
1325 
1326 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1327 	unsigned int mode, int sync, void *arg)
1328 {
1329 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1330 	struct mem_cgroup *oom_wait_memcg;
1331 	struct oom_wait_info *oom_wait_info;
1332 
1333 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1334 	oom_wait_memcg = oom_wait_info->memcg;
1335 
1336 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1337 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1338 		return 0;
1339 	return autoremove_wake_function(wait, mode, sync, arg);
1340 }
1341 
1342 void memcg1_oom_recover(struct mem_cgroup *memcg)
1343 {
1344 	/*
1345 	 * For the following lockless ->under_oom test, the only required
1346 	 * guarantee is that it must see the state asserted by an OOM when
1347 	 * this function is called as a result of userland actions
1348 	 * triggered by the notification of the OOM.  This is trivially
1349 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1350 	 * triggering notification.
1351 	 */
1352 	if (memcg && memcg->under_oom)
1353 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1354 }
1355 
1356 /**
1357  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1358  * @handle: actually kill/wait or just clean up the OOM state
1359  *
1360  * This has to be called at the end of a page fault if the memcg OOM
1361  * handler was enabled.
1362  *
1363  * Memcg supports userspace OOM handling where failed allocations must
1364  * sleep on a waitqueue until the userspace task resolves the
1365  * situation.  Sleeping directly in the charge context with all kinds
1366  * of locks held is not a good idea, instead we remember an OOM state
1367  * in the task and mem_cgroup_oom_synchronize() has to be called at
1368  * the end of the page fault to complete the OOM handling.
1369  *
1370  * Returns %true if an ongoing memcg OOM situation was detected and
1371  * completed, %false otherwise.
1372  */
1373 bool mem_cgroup_oom_synchronize(bool handle)
1374 {
1375 	struct mem_cgroup *memcg = current->memcg_in_oom;
1376 	struct oom_wait_info owait;
1377 	bool locked;
1378 
1379 	/* OOM is global, do not handle */
1380 	if (!memcg)
1381 		return false;
1382 
1383 	if (!handle)
1384 		goto cleanup;
1385 
1386 	owait.memcg = memcg;
1387 	owait.wait.flags = 0;
1388 	owait.wait.func = memcg_oom_wake_function;
1389 	owait.wait.private = current;
1390 	INIT_LIST_HEAD(&owait.wait.entry);
1391 
1392 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1393 	mem_cgroup_mark_under_oom(memcg);
1394 
1395 	locked = mem_cgroup_oom_trylock(memcg);
1396 
1397 	if (locked)
1398 		mem_cgroup_oom_notify(memcg);
1399 
1400 	schedule();
1401 	mem_cgroup_unmark_under_oom(memcg);
1402 	finish_wait(&memcg_oom_waitq, &owait.wait);
1403 
1404 	if (locked)
1405 		mem_cgroup_oom_unlock(memcg);
1406 cleanup:
1407 	current->memcg_in_oom = NULL;
1408 	css_put(&memcg->css);
1409 	return true;
1410 }
1411 
1412 
1413 bool memcg1_oom_prepare(struct mem_cgroup *memcg, bool *locked)
1414 {
1415 	/*
1416 	 * We are in the middle of the charge context here, so we
1417 	 * don't want to block when potentially sitting on a callstack
1418 	 * that holds all kinds of filesystem and mm locks.
1419 	 *
1420 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1421 	 * handling until the charge can succeed; remember the context and put
1422 	 * the task to sleep at the end of the page fault when all locks are
1423 	 * released.
1424 	 *
1425 	 * On the other hand, in-kernel OOM killer allows for an async victim
1426 	 * memory reclaim (oom_reaper) and that means that we are not solely
1427 	 * relying on the oom victim to make a forward progress and we can
1428 	 * invoke the oom killer here.
1429 	 *
1430 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1431 	 * victim and then we have to bail out from the charge path.
1432 	 */
1433 	if (READ_ONCE(memcg->oom_kill_disable)) {
1434 		if (current->in_user_fault) {
1435 			css_get(&memcg->css);
1436 			current->memcg_in_oom = memcg;
1437 		}
1438 		return false;
1439 	}
1440 
1441 	mem_cgroup_mark_under_oom(memcg);
1442 
1443 	*locked = mem_cgroup_oom_trylock(memcg);
1444 
1445 	if (*locked)
1446 		mem_cgroup_oom_notify(memcg);
1447 
1448 	mem_cgroup_unmark_under_oom(memcg);
1449 
1450 	return true;
1451 }
1452 
1453 void memcg1_oom_finish(struct mem_cgroup *memcg, bool locked)
1454 {
1455 	if (locked)
1456 		mem_cgroup_oom_unlock(memcg);
1457 }
1458 
1459 static DEFINE_MUTEX(memcg_max_mutex);
1460 
1461 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
1462 				 unsigned long max, bool memsw)
1463 {
1464 	bool enlarge = false;
1465 	bool drained = false;
1466 	int ret;
1467 	bool limits_invariant;
1468 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
1469 
1470 	do {
1471 		if (signal_pending(current)) {
1472 			ret = -EINTR;
1473 			break;
1474 		}
1475 
1476 		mutex_lock(&memcg_max_mutex);
1477 		/*
1478 		 * Make sure that the new limit (memsw or memory limit) doesn't
1479 		 * break our basic invariant rule memory.max <= memsw.max.
1480 		 */
1481 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
1482 					   max <= memcg->memsw.max;
1483 		if (!limits_invariant) {
1484 			mutex_unlock(&memcg_max_mutex);
1485 			ret = -EINVAL;
1486 			break;
1487 		}
1488 		if (max > counter->max)
1489 			enlarge = true;
1490 		ret = page_counter_set_max(counter, max);
1491 		mutex_unlock(&memcg_max_mutex);
1492 
1493 		if (!ret)
1494 			break;
1495 
1496 		if (!drained) {
1497 			drain_all_stock(memcg);
1498 			drained = true;
1499 			continue;
1500 		}
1501 
1502 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
1503 				memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP, NULL)) {
1504 			ret = -EBUSY;
1505 			break;
1506 		}
1507 	} while (true);
1508 
1509 	if (!ret && enlarge)
1510 		memcg1_oom_recover(memcg);
1511 
1512 	return ret;
1513 }
1514 
1515 /*
1516  * Reclaims as many pages from the given memcg as possible.
1517  *
1518  * Caller is responsible for holding css reference for memcg.
1519  */
1520 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
1521 {
1522 	int nr_retries = MAX_RECLAIM_RETRIES;
1523 
1524 	/* we call try-to-free pages for make this cgroup empty */
1525 	lru_add_drain_all();
1526 
1527 	drain_all_stock(memcg);
1528 
1529 	/* try to free all pages in this cgroup */
1530 	while (nr_retries && page_counter_read(&memcg->memory)) {
1531 		if (signal_pending(current))
1532 			return -EINTR;
1533 
1534 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
1535 						  MEMCG_RECLAIM_MAY_SWAP, NULL))
1536 			nr_retries--;
1537 	}
1538 
1539 	return 0;
1540 }
1541 
1542 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
1543 					    char *buf, size_t nbytes,
1544 					    loff_t off)
1545 {
1546 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
1547 
1548 	if (mem_cgroup_is_root(memcg))
1549 		return -EINVAL;
1550 	return mem_cgroup_force_empty(memcg) ?: nbytes;
1551 }
1552 
1553 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
1554 				     struct cftype *cft)
1555 {
1556 	return 1;
1557 }
1558 
1559 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
1560 				      struct cftype *cft, u64 val)
1561 {
1562 	if (val == 1)
1563 		return 0;
1564 
1565 	pr_warn_once("Non-hierarchical mode is deprecated. "
1566 		     "Please report your usecase to linux-mm@kvack.org if you "
1567 		     "depend on this functionality.\n");
1568 
1569 	return -EINVAL;
1570 }
1571 
1572 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
1573 			       struct cftype *cft)
1574 {
1575 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1576 	struct page_counter *counter;
1577 
1578 	switch (MEMFILE_TYPE(cft->private)) {
1579 	case _MEM:
1580 		counter = &memcg->memory;
1581 		break;
1582 	case _MEMSWAP:
1583 		counter = &memcg->memsw;
1584 		break;
1585 	case _KMEM:
1586 		counter = &memcg->kmem;
1587 		break;
1588 	case _TCP:
1589 		counter = &memcg->tcpmem;
1590 		break;
1591 	default:
1592 		BUG();
1593 	}
1594 
1595 	switch (MEMFILE_ATTR(cft->private)) {
1596 	case RES_USAGE:
1597 		if (counter == &memcg->memory)
1598 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
1599 		if (counter == &memcg->memsw)
1600 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
1601 		return (u64)page_counter_read(counter) * PAGE_SIZE;
1602 	case RES_LIMIT:
1603 		return (u64)counter->max * PAGE_SIZE;
1604 	case RES_MAX_USAGE:
1605 		return (u64)counter->watermark * PAGE_SIZE;
1606 	case RES_FAILCNT:
1607 		return counter->failcnt;
1608 	case RES_SOFT_LIMIT:
1609 		return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
1610 	default:
1611 		BUG();
1612 	}
1613 }
1614 
1615 /*
1616  * This function doesn't do anything useful. Its only job is to provide a read
1617  * handler for a file so that cgroup_file_mode() will add read permissions.
1618  */
1619 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
1620 				     __always_unused void *v)
1621 {
1622 	return -EINVAL;
1623 }
1624 
1625 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
1626 {
1627 	int ret;
1628 
1629 	mutex_lock(&memcg_max_mutex);
1630 
1631 	ret = page_counter_set_max(&memcg->tcpmem, max);
1632 	if (ret)
1633 		goto out;
1634 
1635 	if (!memcg->tcpmem_active) {
1636 		/*
1637 		 * The active flag needs to be written after the static_key
1638 		 * update. This is what guarantees that the socket activation
1639 		 * function is the last one to run. See mem_cgroup_sk_alloc()
1640 		 * for details, and note that we don't mark any socket as
1641 		 * belonging to this memcg until that flag is up.
1642 		 *
1643 		 * We need to do this, because static_keys will span multiple
1644 		 * sites, but we can't control their order. If we mark a socket
1645 		 * as accounted, but the accounting functions are not patched in
1646 		 * yet, we'll lose accounting.
1647 		 *
1648 		 * We never race with the readers in mem_cgroup_sk_alloc(),
1649 		 * because when this value change, the code to process it is not
1650 		 * patched in yet.
1651 		 */
1652 		static_branch_inc(&memcg_sockets_enabled_key);
1653 		memcg->tcpmem_active = true;
1654 	}
1655 out:
1656 	mutex_unlock(&memcg_max_mutex);
1657 	return ret;
1658 }
1659 
1660 /*
1661  * The user of this function is...
1662  * RES_LIMIT.
1663  */
1664 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
1665 				char *buf, size_t nbytes, loff_t off)
1666 {
1667 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
1668 	unsigned long nr_pages;
1669 	int ret;
1670 
1671 	buf = strstrip(buf);
1672 	ret = page_counter_memparse(buf, "-1", &nr_pages);
1673 	if (ret)
1674 		return ret;
1675 
1676 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
1677 	case RES_LIMIT:
1678 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
1679 			ret = -EINVAL;
1680 			break;
1681 		}
1682 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
1683 		case _MEM:
1684 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
1685 			break;
1686 		case _MEMSWAP:
1687 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
1688 			break;
1689 		case _KMEM:
1690 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
1691 				     "Writing any value to this file has no effect. "
1692 				     "Please report your usecase to linux-mm@kvack.org if you "
1693 				     "depend on this functionality.\n");
1694 			ret = 0;
1695 			break;
1696 		case _TCP:
1697 			pr_warn_once("kmem.tcp.limit_in_bytes is deprecated and will be removed. "
1698 				     "Please report your usecase to linux-mm@kvack.org if you "
1699 				     "depend on this functionality.\n");
1700 			ret = memcg_update_tcp_max(memcg, nr_pages);
1701 			break;
1702 		}
1703 		break;
1704 	case RES_SOFT_LIMIT:
1705 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1706 			ret = -EOPNOTSUPP;
1707 		} else {
1708 			pr_warn_once("soft_limit_in_bytes is deprecated and will be removed. "
1709 				     "Please report your usecase to linux-mm@kvack.org if you "
1710 				     "depend on this functionality.\n");
1711 			WRITE_ONCE(memcg->soft_limit, nr_pages);
1712 			ret = 0;
1713 		}
1714 		break;
1715 	}
1716 	return ret ?: nbytes;
1717 }
1718 
1719 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
1720 				size_t nbytes, loff_t off)
1721 {
1722 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
1723 	struct page_counter *counter;
1724 
1725 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
1726 	case _MEM:
1727 		counter = &memcg->memory;
1728 		break;
1729 	case _MEMSWAP:
1730 		counter = &memcg->memsw;
1731 		break;
1732 	case _KMEM:
1733 		counter = &memcg->kmem;
1734 		break;
1735 	case _TCP:
1736 		counter = &memcg->tcpmem;
1737 		break;
1738 	default:
1739 		BUG();
1740 	}
1741 
1742 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
1743 	case RES_MAX_USAGE:
1744 		page_counter_reset_watermark(counter);
1745 		break;
1746 	case RES_FAILCNT:
1747 		counter->failcnt = 0;
1748 		break;
1749 	default:
1750 		BUG();
1751 	}
1752 
1753 	return nbytes;
1754 }
1755 
1756 #ifdef CONFIG_NUMA
1757 
1758 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
1759 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
1760 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
1761 
1762 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
1763 				int nid, unsigned int lru_mask, bool tree)
1764 {
1765 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
1766 	unsigned long nr = 0;
1767 	enum lru_list lru;
1768 
1769 	VM_BUG_ON((unsigned int)nid >= nr_node_ids);
1770 
1771 	for_each_lru(lru) {
1772 		if (!(BIT(lru) & lru_mask))
1773 			continue;
1774 		if (tree)
1775 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
1776 		else
1777 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
1778 	}
1779 	return nr;
1780 }
1781 
1782 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
1783 					     unsigned int lru_mask,
1784 					     bool tree)
1785 {
1786 	unsigned long nr = 0;
1787 	enum lru_list lru;
1788 
1789 	for_each_lru(lru) {
1790 		if (!(BIT(lru) & lru_mask))
1791 			continue;
1792 		if (tree)
1793 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
1794 		else
1795 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
1796 	}
1797 	return nr;
1798 }
1799 
1800 static int memcg_numa_stat_show(struct seq_file *m, void *v)
1801 {
1802 	struct numa_stat {
1803 		const char *name;
1804 		unsigned int lru_mask;
1805 	};
1806 
1807 	static const struct numa_stat stats[] = {
1808 		{ "total", LRU_ALL },
1809 		{ "file", LRU_ALL_FILE },
1810 		{ "anon", LRU_ALL_ANON },
1811 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
1812 	};
1813 	const struct numa_stat *stat;
1814 	int nid;
1815 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1816 
1817 	mem_cgroup_flush_stats(memcg);
1818 
1819 	for (stat = stats; stat < ARRAY_END(stats); stat++) {
1820 		seq_printf(m, "%s=%lu", stat->name,
1821 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
1822 						   false));
1823 		for_each_node_state(nid, N_MEMORY)
1824 			seq_printf(m, " N%d=%lu", nid,
1825 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
1826 							stat->lru_mask, false));
1827 		seq_putc(m, '\n');
1828 	}
1829 
1830 	for (stat = stats; stat < ARRAY_END(stats); stat++) {
1831 
1832 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
1833 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
1834 						   true));
1835 		for_each_node_state(nid, N_MEMORY)
1836 			seq_printf(m, " N%d=%lu", nid,
1837 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
1838 							stat->lru_mask, true));
1839 		seq_putc(m, '\n');
1840 	}
1841 
1842 	return 0;
1843 }
1844 #endif /* CONFIG_NUMA */
1845 
1846 static const unsigned int memcg1_stats[] = {
1847 	NR_FILE_PAGES,
1848 	NR_ANON_MAPPED,
1849 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1850 	NR_ANON_THPS,
1851 #endif
1852 	NR_SHMEM,
1853 	NR_FILE_MAPPED,
1854 	NR_FILE_DIRTY,
1855 	NR_WRITEBACK,
1856 	WORKINGSET_REFAULT_ANON,
1857 	WORKINGSET_REFAULT_FILE,
1858 #ifdef CONFIG_SWAP
1859 	MEMCG_SWAP,
1860 	NR_SWAPCACHE,
1861 #endif
1862 };
1863 
1864 static const char *const memcg1_stat_names[] = {
1865 	"cache",
1866 	"rss",
1867 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1868 	"rss_huge",
1869 #endif
1870 	"shmem",
1871 	"mapped_file",
1872 	"dirty",
1873 	"writeback",
1874 	"workingset_refault_anon",
1875 	"workingset_refault_file",
1876 #ifdef CONFIG_SWAP
1877 	"swap",
1878 	"swapcached",
1879 #endif
1880 };
1881 
1882 /* Universal VM events cgroup1 shows, original sort order */
1883 static const unsigned int memcg1_events[] = {
1884 	PGPGIN,
1885 	PGPGOUT,
1886 	PGFAULT,
1887 	PGMAJFAULT,
1888 };
1889 
1890 void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1891 {
1892 	unsigned long memory, memsw;
1893 	struct mem_cgroup *mi;
1894 	unsigned int i;
1895 
1896 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
1897 
1898 	mem_cgroup_flush_stats(memcg);
1899 
1900 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1901 		unsigned long nr;
1902 
1903 		nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
1904 		seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
1905 	}
1906 
1907 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
1908 		seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
1909 			       memcg_events_local(memcg, memcg1_events[i]));
1910 
1911 	for (i = 0; i < NR_LRU_LISTS; i++)
1912 		seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
1913 			       memcg_page_state_local(memcg, NR_LRU_BASE + i) *
1914 			       PAGE_SIZE);
1915 
1916 	/* Hierarchical information */
1917 	memory = memsw = PAGE_COUNTER_MAX;
1918 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
1919 		memory = min(memory, READ_ONCE(mi->memory.max));
1920 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
1921 	}
1922 	seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
1923 		       (u64)memory * PAGE_SIZE);
1924 	seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
1925 		       (u64)memsw * PAGE_SIZE);
1926 
1927 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1928 		unsigned long nr;
1929 
1930 		nr = memcg_page_state_output(memcg, memcg1_stats[i]);
1931 		seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
1932 			       (u64)nr);
1933 	}
1934 
1935 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
1936 		seq_buf_printf(s, "total_%s %llu\n",
1937 			       vm_event_name(memcg1_events[i]),
1938 			       (u64)memcg_events(memcg, memcg1_events[i]));
1939 
1940 	for (i = 0; i < NR_LRU_LISTS; i++)
1941 		seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
1942 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1943 			       PAGE_SIZE);
1944 
1945 #ifdef CONFIG_DEBUG_VM
1946 	{
1947 		pg_data_t *pgdat;
1948 		struct mem_cgroup_per_node *mz;
1949 		unsigned long anon_cost = 0;
1950 		unsigned long file_cost = 0;
1951 
1952 		for_each_online_pgdat(pgdat) {
1953 			mz = memcg->nodeinfo[pgdat->node_id];
1954 
1955 			anon_cost += mz->lruvec.anon_cost;
1956 			file_cost += mz->lruvec.file_cost;
1957 		}
1958 		seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
1959 		seq_buf_printf(s, "file_cost %lu\n", file_cost);
1960 	}
1961 #endif
1962 }
1963 
1964 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
1965 				      struct cftype *cft)
1966 {
1967 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1968 
1969 	return mem_cgroup_swappiness(memcg);
1970 }
1971 
1972 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
1973 				       struct cftype *cft, u64 val)
1974 {
1975 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1976 
1977 	if (val > MAX_SWAPPINESS)
1978 		return -EINVAL;
1979 
1980 	if (!mem_cgroup_is_root(memcg)) {
1981 		pr_info_once("Per memcg swappiness does not exist in cgroup v2. "
1982 			     "See memory.reclaim or memory.swap.max there\n ");
1983 		WRITE_ONCE(memcg->swappiness, val);
1984 	} else
1985 		WRITE_ONCE(vm_swappiness, val);
1986 
1987 	return 0;
1988 }
1989 
1990 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
1991 {
1992 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
1993 
1994 	seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
1995 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
1996 	seq_printf(sf, "oom_kill %lu\n",
1997 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
1998 	return 0;
1999 }
2000 
2001 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
2002 	struct cftype *cft, u64 val)
2003 {
2004 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2005 
2006 	pr_warn_once("oom_control is deprecated and will be removed. "
2007 		     "Please report your usecase to linux-mm-@kvack.org if you "
2008 		     "depend on this functionality.\n");
2009 
2010 	/* cannot set to root cgroup and only 0 and 1 are allowed */
2011 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
2012 		return -EINVAL;
2013 
2014 	WRITE_ONCE(memcg->oom_kill_disable, val);
2015 	if (!val)
2016 		memcg1_oom_recover(memcg);
2017 
2018 	return 0;
2019 }
2020 
2021 #ifdef CONFIG_SLUB_DEBUG
2022 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
2023 {
2024 	/*
2025 	 * Deprecated.
2026 	 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
2027 	 */
2028 	return 0;
2029 }
2030 #endif
2031 
2032 struct cftype mem_cgroup_legacy_files[] = {
2033 	{
2034 		.name = "usage_in_bytes",
2035 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2036 		.read_u64 = mem_cgroup_read_u64,
2037 	},
2038 	{
2039 		.name = "max_usage_in_bytes",
2040 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2041 		.write = mem_cgroup_reset,
2042 		.read_u64 = mem_cgroup_read_u64,
2043 	},
2044 	{
2045 		.name = "limit_in_bytes",
2046 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2047 		.write = mem_cgroup_write,
2048 		.read_u64 = mem_cgroup_read_u64,
2049 	},
2050 	{
2051 		.name = "soft_limit_in_bytes",
2052 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
2053 		.write = mem_cgroup_write,
2054 		.read_u64 = mem_cgroup_read_u64,
2055 	},
2056 	{
2057 		.name = "failcnt",
2058 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2059 		.write = mem_cgroup_reset,
2060 		.read_u64 = mem_cgroup_read_u64,
2061 	},
2062 	{
2063 		.name = "stat",
2064 		.seq_show = memory_stat_show,
2065 	},
2066 	{
2067 		.name = "force_empty",
2068 		.write = mem_cgroup_force_empty_write,
2069 	},
2070 	{
2071 		.name = "use_hierarchy",
2072 		.write_u64 = mem_cgroup_hierarchy_write,
2073 		.read_u64 = mem_cgroup_hierarchy_read,
2074 	},
2075 	{
2076 		.name = "cgroup.event_control",		/* XXX: for compat */
2077 		.write = memcg_write_event_control,
2078 		.flags = CFTYPE_NO_PREFIX,
2079 	},
2080 	{
2081 		.name = "swappiness",
2082 		.read_u64 = mem_cgroup_swappiness_read,
2083 		.write_u64 = mem_cgroup_swappiness_write,
2084 	},
2085 	{
2086 		.name = "move_charge_at_immigrate",
2087 		.read_u64 = mem_cgroup_move_charge_read,
2088 		.write_u64 = mem_cgroup_move_charge_write,
2089 	},
2090 	{
2091 		.name = "oom_control",
2092 		.seq_show = mem_cgroup_oom_control_read,
2093 		.write_u64 = mem_cgroup_oom_control_write,
2094 	},
2095 	{
2096 		.name = "pressure_level",
2097 		.seq_show = mem_cgroup_dummy_seq_show,
2098 	},
2099 #ifdef CONFIG_NUMA
2100 	{
2101 		.name = "numa_stat",
2102 		.seq_show = memcg_numa_stat_show,
2103 	},
2104 #endif
2105 	{
2106 		.name = "kmem.limit_in_bytes",
2107 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
2108 		.write = mem_cgroup_write,
2109 		.read_u64 = mem_cgroup_read_u64,
2110 	},
2111 	{
2112 		.name = "kmem.usage_in_bytes",
2113 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
2114 		.read_u64 = mem_cgroup_read_u64,
2115 	},
2116 	{
2117 		.name = "kmem.failcnt",
2118 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
2119 		.write = mem_cgroup_reset,
2120 		.read_u64 = mem_cgroup_read_u64,
2121 	},
2122 	{
2123 		.name = "kmem.max_usage_in_bytes",
2124 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
2125 		.write = mem_cgroup_reset,
2126 		.read_u64 = mem_cgroup_read_u64,
2127 	},
2128 #ifdef CONFIG_SLUB_DEBUG
2129 	{
2130 		.name = "kmem.slabinfo",
2131 		.seq_show = mem_cgroup_slab_show,
2132 	},
2133 #endif
2134 	{
2135 		.name = "kmem.tcp.limit_in_bytes",
2136 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
2137 		.write = mem_cgroup_write,
2138 		.read_u64 = mem_cgroup_read_u64,
2139 	},
2140 	{
2141 		.name = "kmem.tcp.usage_in_bytes",
2142 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
2143 		.read_u64 = mem_cgroup_read_u64,
2144 	},
2145 	{
2146 		.name = "kmem.tcp.failcnt",
2147 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
2148 		.write = mem_cgroup_reset,
2149 		.read_u64 = mem_cgroup_read_u64,
2150 	},
2151 	{
2152 		.name = "kmem.tcp.max_usage_in_bytes",
2153 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
2154 		.write = mem_cgroup_reset,
2155 		.read_u64 = mem_cgroup_read_u64,
2156 	},
2157 	{ },	/* terminate */
2158 };
2159 
2160 struct cftype memsw_files[] = {
2161 	{
2162 		.name = "memsw.usage_in_bytes",
2163 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2164 		.read_u64 = mem_cgroup_read_u64,
2165 	},
2166 	{
2167 		.name = "memsw.max_usage_in_bytes",
2168 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2169 		.write = mem_cgroup_reset,
2170 		.read_u64 = mem_cgroup_read_u64,
2171 	},
2172 	{
2173 		.name = "memsw.limit_in_bytes",
2174 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2175 		.write = mem_cgroup_write,
2176 		.read_u64 = mem_cgroup_read_u64,
2177 	},
2178 	{
2179 		.name = "memsw.failcnt",
2180 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2181 		.write = mem_cgroup_reset,
2182 		.read_u64 = mem_cgroup_read_u64,
2183 	},
2184 	{ },	/* terminate */
2185 };
2186 
2187 void memcg1_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2188 {
2189 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
2190 		if (nr_pages > 0)
2191 			page_counter_charge(&memcg->kmem, nr_pages);
2192 		else
2193 			page_counter_uncharge(&memcg->kmem, -nr_pages);
2194 	}
2195 }
2196 
2197 bool memcg1_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
2198 			 gfp_t gfp_mask)
2199 {
2200 	struct page_counter *fail;
2201 
2202 	if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
2203 		memcg->tcpmem_pressure = 0;
2204 		return true;
2205 	}
2206 	memcg->tcpmem_pressure = 1;
2207 	if (gfp_mask & __GFP_NOFAIL) {
2208 		page_counter_charge(&memcg->tcpmem, nr_pages);
2209 		return true;
2210 	}
2211 	return false;
2212 }
2213 
2214 bool memcg1_alloc_events(struct mem_cgroup *memcg)
2215 {
2216 	memcg->events_percpu = alloc_percpu_gfp(struct memcg1_events_percpu,
2217 						GFP_KERNEL_ACCOUNT);
2218 	return !!memcg->events_percpu;
2219 }
2220 
2221 void memcg1_free_events(struct mem_cgroup *memcg)
2222 {
2223 	free_percpu(memcg->events_percpu);
2224 }
2225 
2226 static int __init memcg1_init(void)
2227 {
2228 	int node;
2229 
2230 	for_each_node(node) {
2231 		struct mem_cgroup_tree_per_node *rtpn;
2232 
2233 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
2234 
2235 		rtpn->rb_root = RB_ROOT;
2236 		rtpn->rb_rightmost = NULL;
2237 		spin_lock_init(&rtpn->lock);
2238 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
2239 	}
2240 
2241 	return 0;
2242 }
2243 subsys_initcall(memcg1_init);
2244