1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 */
6
7 #define pr_fmt(fmt) "iommu: " fmt
8
9 #include <linux/amba/bus.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/host1x_context_bus.h>
20 #include <linux/iommu.h>
21 #include <linux/iommufd.h>
22 #include <linux/idr.h>
23 #include <linux/err.h>
24 #include <linux/pci.h>
25 #include <linux/pci-ats.h>
26 #include <linux/bitops.h>
27 #include <linux/platform_device.h>
28 #include <linux/property.h>
29 #include <linux/fsl/mc.h>
30 #include <linux/module.h>
31 #include <linux/cc_platform.h>
32 #include <linux/cdx/cdx_bus.h>
33 #include <trace/events/iommu.h>
34 #include <linux/sched/mm.h>
35 #include <linux/msi.h>
36 #include <uapi/linux/iommufd.h>
37
38 #include "dma-iommu.h"
39 #include "iommu-priv.h"
40
41 static struct kset *iommu_group_kset;
42 static DEFINE_IDA(iommu_group_ida);
43 static DEFINE_IDA(iommu_global_pasid_ida);
44
45 static unsigned int iommu_def_domain_type __read_mostly;
46 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
47 static u32 iommu_cmd_line __read_mostly;
48
49 /* Tags used with xa_tag_pointer() in group->pasid_array */
50 enum { IOMMU_PASID_ARRAY_DOMAIN = 0, IOMMU_PASID_ARRAY_HANDLE = 1 };
51
52 struct iommu_group {
53 struct kobject kobj;
54 struct kobject *devices_kobj;
55 struct list_head devices;
56 struct xarray pasid_array;
57 struct mutex mutex;
58 void *iommu_data;
59 void (*iommu_data_release)(void *iommu_data);
60 char *name;
61 int id;
62 struct iommu_domain *default_domain;
63 struct iommu_domain *blocking_domain;
64 struct iommu_domain *domain;
65 struct list_head entry;
66 unsigned int owner_cnt;
67 void *owner;
68 };
69
70 struct group_device {
71 struct list_head list;
72 struct device *dev;
73 char *name;
74 };
75
76 /* Iterate over each struct group_device in a struct iommu_group */
77 #define for_each_group_device(group, pos) \
78 list_for_each_entry(pos, &(group)->devices, list)
79
80 struct iommu_group_attribute {
81 struct attribute attr;
82 ssize_t (*show)(struct iommu_group *group, char *buf);
83 ssize_t (*store)(struct iommu_group *group,
84 const char *buf, size_t count);
85 };
86
87 static const char * const iommu_group_resv_type_string[] = {
88 [IOMMU_RESV_DIRECT] = "direct",
89 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable",
90 [IOMMU_RESV_RESERVED] = "reserved",
91 [IOMMU_RESV_MSI] = "msi",
92 [IOMMU_RESV_SW_MSI] = "msi",
93 };
94
95 #define IOMMU_CMD_LINE_DMA_API BIT(0)
96 #define IOMMU_CMD_LINE_STRICT BIT(1)
97
98 static int bus_iommu_probe(const struct bus_type *bus);
99 static int iommu_bus_notifier(struct notifier_block *nb,
100 unsigned long action, void *data);
101 static void iommu_release_device(struct device *dev);
102 static int __iommu_attach_device(struct iommu_domain *domain,
103 struct device *dev);
104 static int __iommu_attach_group(struct iommu_domain *domain,
105 struct iommu_group *group);
106 static struct iommu_domain *__iommu_paging_domain_alloc_flags(struct device *dev,
107 unsigned int type,
108 unsigned int flags);
109
110 enum {
111 IOMMU_SET_DOMAIN_MUST_SUCCEED = 1 << 0,
112 };
113
114 static int __iommu_device_set_domain(struct iommu_group *group,
115 struct device *dev,
116 struct iommu_domain *new_domain,
117 unsigned int flags);
118 static int __iommu_group_set_domain_internal(struct iommu_group *group,
119 struct iommu_domain *new_domain,
120 unsigned int flags);
__iommu_group_set_domain(struct iommu_group * group,struct iommu_domain * new_domain)121 static int __iommu_group_set_domain(struct iommu_group *group,
122 struct iommu_domain *new_domain)
123 {
124 return __iommu_group_set_domain_internal(group, new_domain, 0);
125 }
__iommu_group_set_domain_nofail(struct iommu_group * group,struct iommu_domain * new_domain)126 static void __iommu_group_set_domain_nofail(struct iommu_group *group,
127 struct iommu_domain *new_domain)
128 {
129 WARN_ON(__iommu_group_set_domain_internal(
130 group, new_domain, IOMMU_SET_DOMAIN_MUST_SUCCEED));
131 }
132
133 static int iommu_setup_default_domain(struct iommu_group *group,
134 int target_type);
135 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
136 struct device *dev);
137 static ssize_t iommu_group_store_type(struct iommu_group *group,
138 const char *buf, size_t count);
139 static struct group_device *iommu_group_alloc_device(struct iommu_group *group,
140 struct device *dev);
141 static void __iommu_group_free_device(struct iommu_group *group,
142 struct group_device *grp_dev);
143 static void iommu_domain_init(struct iommu_domain *domain, unsigned int type,
144 const struct iommu_ops *ops);
145
146 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \
147 struct iommu_group_attribute iommu_group_attr_##_name = \
148 __ATTR(_name, _mode, _show, _store)
149
150 #define to_iommu_group_attr(_attr) \
151 container_of(_attr, struct iommu_group_attribute, attr)
152 #define to_iommu_group(_kobj) \
153 container_of(_kobj, struct iommu_group, kobj)
154
155 static LIST_HEAD(iommu_device_list);
156 static DEFINE_SPINLOCK(iommu_device_lock);
157
158 static const struct bus_type * const iommu_buses[] = {
159 &platform_bus_type,
160 #ifdef CONFIG_PCI
161 &pci_bus_type,
162 #endif
163 #ifdef CONFIG_ARM_AMBA
164 &amba_bustype,
165 #endif
166 #ifdef CONFIG_FSL_MC_BUS
167 &fsl_mc_bus_type,
168 #endif
169 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS
170 &host1x_context_device_bus_type,
171 #endif
172 #ifdef CONFIG_CDX_BUS
173 &cdx_bus_type,
174 #endif
175 };
176
177 /*
178 * Use a function instead of an array here because the domain-type is a
179 * bit-field, so an array would waste memory.
180 */
iommu_domain_type_str(unsigned int t)181 static const char *iommu_domain_type_str(unsigned int t)
182 {
183 switch (t) {
184 case IOMMU_DOMAIN_BLOCKED:
185 return "Blocked";
186 case IOMMU_DOMAIN_IDENTITY:
187 return "Passthrough";
188 case IOMMU_DOMAIN_UNMANAGED:
189 return "Unmanaged";
190 case IOMMU_DOMAIN_DMA:
191 case IOMMU_DOMAIN_DMA_FQ:
192 return "Translated";
193 case IOMMU_DOMAIN_PLATFORM:
194 return "Platform";
195 default:
196 return "Unknown";
197 }
198 }
199
iommu_subsys_init(void)200 static int __init iommu_subsys_init(void)
201 {
202 struct notifier_block *nb;
203
204 if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
205 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
206 iommu_set_default_passthrough(false);
207 else
208 iommu_set_default_translated(false);
209
210 if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
211 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
212 iommu_set_default_translated(false);
213 }
214 }
215
216 if (!iommu_default_passthrough() && !iommu_dma_strict)
217 iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
218
219 pr_info("Default domain type: %s%s\n",
220 iommu_domain_type_str(iommu_def_domain_type),
221 (iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
222 " (set via kernel command line)" : "");
223
224 if (!iommu_default_passthrough())
225 pr_info("DMA domain TLB invalidation policy: %s mode%s\n",
226 iommu_dma_strict ? "strict" : "lazy",
227 (iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
228 " (set via kernel command line)" : "");
229
230 nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL);
231 if (!nb)
232 return -ENOMEM;
233
234 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) {
235 nb[i].notifier_call = iommu_bus_notifier;
236 bus_register_notifier(iommu_buses[i], &nb[i]);
237 }
238
239 return 0;
240 }
241 subsys_initcall(iommu_subsys_init);
242
remove_iommu_group(struct device * dev,void * data)243 static int remove_iommu_group(struct device *dev, void *data)
244 {
245 if (dev->iommu && dev->iommu->iommu_dev == data)
246 iommu_release_device(dev);
247
248 return 0;
249 }
250
251 /**
252 * iommu_device_register() - Register an IOMMU hardware instance
253 * @iommu: IOMMU handle for the instance
254 * @ops: IOMMU ops to associate with the instance
255 * @hwdev: (optional) actual instance device, used for fwnode lookup
256 *
257 * Return: 0 on success, or an error.
258 */
iommu_device_register(struct iommu_device * iommu,const struct iommu_ops * ops,struct device * hwdev)259 int iommu_device_register(struct iommu_device *iommu,
260 const struct iommu_ops *ops, struct device *hwdev)
261 {
262 int err = 0;
263
264 /* We need to be able to take module references appropriately */
265 if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
266 return -EINVAL;
267
268 iommu->ops = ops;
269 if (hwdev)
270 iommu->fwnode = dev_fwnode(hwdev);
271
272 spin_lock(&iommu_device_lock);
273 list_add_tail(&iommu->list, &iommu_device_list);
274 spin_unlock(&iommu_device_lock);
275
276 for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++)
277 err = bus_iommu_probe(iommu_buses[i]);
278 if (err)
279 iommu_device_unregister(iommu);
280 else
281 WRITE_ONCE(iommu->ready, true);
282 return err;
283 }
284 EXPORT_SYMBOL_GPL(iommu_device_register);
285
iommu_device_unregister(struct iommu_device * iommu)286 void iommu_device_unregister(struct iommu_device *iommu)
287 {
288 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++)
289 bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group);
290
291 spin_lock(&iommu_device_lock);
292 list_del(&iommu->list);
293 spin_unlock(&iommu_device_lock);
294
295 /* Pairs with the alloc in generic_single_device_group() */
296 iommu_group_put(iommu->singleton_group);
297 iommu->singleton_group = NULL;
298 }
299 EXPORT_SYMBOL_GPL(iommu_device_unregister);
300
301 #if IS_ENABLED(CONFIG_IOMMUFD_TEST)
iommu_device_unregister_bus(struct iommu_device * iommu,const struct bus_type * bus,struct notifier_block * nb)302 void iommu_device_unregister_bus(struct iommu_device *iommu,
303 const struct bus_type *bus,
304 struct notifier_block *nb)
305 {
306 bus_unregister_notifier(bus, nb);
307 iommu_device_unregister(iommu);
308 }
309 EXPORT_SYMBOL_GPL(iommu_device_unregister_bus);
310
311 /*
312 * Register an iommu driver against a single bus. This is only used by iommufd
313 * selftest to create a mock iommu driver. The caller must provide
314 * some memory to hold a notifier_block.
315 */
iommu_device_register_bus(struct iommu_device * iommu,const struct iommu_ops * ops,const struct bus_type * bus,struct notifier_block * nb)316 int iommu_device_register_bus(struct iommu_device *iommu,
317 const struct iommu_ops *ops,
318 const struct bus_type *bus,
319 struct notifier_block *nb)
320 {
321 int err;
322
323 iommu->ops = ops;
324 nb->notifier_call = iommu_bus_notifier;
325 err = bus_register_notifier(bus, nb);
326 if (err)
327 return err;
328
329 spin_lock(&iommu_device_lock);
330 list_add_tail(&iommu->list, &iommu_device_list);
331 spin_unlock(&iommu_device_lock);
332
333 err = bus_iommu_probe(bus);
334 if (err) {
335 iommu_device_unregister_bus(iommu, bus, nb);
336 return err;
337 }
338 return 0;
339 }
340 EXPORT_SYMBOL_GPL(iommu_device_register_bus);
341 #endif
342
dev_iommu_get(struct device * dev)343 static struct dev_iommu *dev_iommu_get(struct device *dev)
344 {
345 struct dev_iommu *param = dev->iommu;
346
347 lockdep_assert_held(&iommu_probe_device_lock);
348
349 if (param)
350 return param;
351
352 param = kzalloc(sizeof(*param), GFP_KERNEL);
353 if (!param)
354 return NULL;
355
356 mutex_init(¶m->lock);
357 dev->iommu = param;
358 return param;
359 }
360
dev_iommu_free(struct device * dev)361 void dev_iommu_free(struct device *dev)
362 {
363 struct dev_iommu *param = dev->iommu;
364
365 dev->iommu = NULL;
366 if (param->fwspec) {
367 fwnode_handle_put(param->fwspec->iommu_fwnode);
368 kfree(param->fwspec);
369 }
370 kfree(param);
371 }
372
373 /*
374 * Internal equivalent of device_iommu_mapped() for when we care that a device
375 * actually has API ops, and don't want false positives from VFIO-only groups.
376 */
dev_has_iommu(struct device * dev)377 static bool dev_has_iommu(struct device *dev)
378 {
379 return dev->iommu && dev->iommu->iommu_dev;
380 }
381
dev_iommu_get_max_pasids(struct device * dev)382 static u32 dev_iommu_get_max_pasids(struct device *dev)
383 {
384 u32 max_pasids = 0, bits = 0;
385 int ret;
386
387 if (dev_is_pci(dev)) {
388 ret = pci_max_pasids(to_pci_dev(dev));
389 if (ret > 0)
390 max_pasids = ret;
391 } else {
392 ret = device_property_read_u32(dev, "pasid-num-bits", &bits);
393 if (!ret)
394 max_pasids = 1UL << bits;
395 }
396
397 return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids);
398 }
399
dev_iommu_priv_set(struct device * dev,void * priv)400 void dev_iommu_priv_set(struct device *dev, void *priv)
401 {
402 /* FSL_PAMU does something weird */
403 if (!IS_ENABLED(CONFIG_FSL_PAMU))
404 lockdep_assert_held(&iommu_probe_device_lock);
405 dev->iommu->priv = priv;
406 }
407 EXPORT_SYMBOL_GPL(dev_iommu_priv_set);
408
409 /*
410 * Init the dev->iommu and dev->iommu_group in the struct device and get the
411 * driver probed
412 */
iommu_init_device(struct device * dev)413 static int iommu_init_device(struct device *dev)
414 {
415 const struct iommu_ops *ops;
416 struct iommu_device *iommu_dev;
417 struct iommu_group *group;
418 int ret;
419
420 if (!dev_iommu_get(dev))
421 return -ENOMEM;
422 /*
423 * For FDT-based systems and ACPI IORT/VIOT, the common firmware parsing
424 * is buried in the bus dma_configure path. Properly unpicking that is
425 * still a big job, so for now just invoke the whole thing. The device
426 * already having a driver bound means dma_configure has already run and
427 * found no IOMMU to wait for, so there's no point calling it again.
428 */
429 if (!dev->iommu->fwspec && !dev->driver && dev->bus->dma_configure) {
430 mutex_unlock(&iommu_probe_device_lock);
431 dev->bus->dma_configure(dev);
432 mutex_lock(&iommu_probe_device_lock);
433 /* If another instance finished the job for us, skip it */
434 if (!dev->iommu || dev->iommu_group)
435 return -ENODEV;
436 }
437 /*
438 * At this point, relevant devices either now have a fwspec which will
439 * match ops registered with a non-NULL fwnode, or we can reasonably
440 * assume that only one of Intel, AMD, s390, PAMU or legacy SMMUv2 can
441 * be present, and that any of their registered instances has suitable
442 * ops for probing, and thus cheekily co-opt the same mechanism.
443 */
444 ops = iommu_fwspec_ops(dev->iommu->fwspec);
445 if (!ops) {
446 ret = -ENODEV;
447 goto err_free;
448 }
449
450 if (!try_module_get(ops->owner)) {
451 ret = -EINVAL;
452 goto err_free;
453 }
454
455 iommu_dev = ops->probe_device(dev);
456 if (IS_ERR(iommu_dev)) {
457 ret = PTR_ERR(iommu_dev);
458 goto err_module_put;
459 }
460 dev->iommu->iommu_dev = iommu_dev;
461
462 ret = iommu_device_link(iommu_dev, dev);
463 if (ret)
464 goto err_release;
465
466 group = ops->device_group(dev);
467 if (WARN_ON_ONCE(group == NULL))
468 group = ERR_PTR(-EINVAL);
469 if (IS_ERR(group)) {
470 ret = PTR_ERR(group);
471 goto err_unlink;
472 }
473 dev->iommu_group = group;
474
475 dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev);
476 if (ops->is_attach_deferred)
477 dev->iommu->attach_deferred = ops->is_attach_deferred(dev);
478 return 0;
479
480 err_unlink:
481 iommu_device_unlink(iommu_dev, dev);
482 err_release:
483 if (ops->release_device)
484 ops->release_device(dev);
485 err_module_put:
486 module_put(ops->owner);
487 err_free:
488 dev->iommu->iommu_dev = NULL;
489 dev_iommu_free(dev);
490 return ret;
491 }
492
iommu_deinit_device(struct device * dev)493 static void iommu_deinit_device(struct device *dev)
494 {
495 struct iommu_group *group = dev->iommu_group;
496 const struct iommu_ops *ops = dev_iommu_ops(dev);
497
498 lockdep_assert_held(&group->mutex);
499
500 iommu_device_unlink(dev->iommu->iommu_dev, dev);
501
502 /*
503 * release_device() must stop using any attached domain on the device.
504 * If there are still other devices in the group, they are not affected
505 * by this callback.
506 *
507 * If the iommu driver provides release_domain, the core code ensures
508 * that domain is attached prior to calling release_device. Drivers can
509 * use this to enforce a translation on the idle iommu. Typically, the
510 * global static blocked_domain is a good choice.
511 *
512 * Otherwise, the iommu driver must set the device to either an identity
513 * or a blocking translation in release_device() and stop using any
514 * domain pointer, as it is going to be freed.
515 *
516 * Regardless, if a delayed attach never occurred, then the release
517 * should still avoid touching any hardware configuration either.
518 */
519 if (!dev->iommu->attach_deferred && ops->release_domain)
520 ops->release_domain->ops->attach_dev(ops->release_domain, dev);
521
522 if (ops->release_device)
523 ops->release_device(dev);
524
525 /*
526 * If this is the last driver to use the group then we must free the
527 * domains before we do the module_put().
528 */
529 if (list_empty(&group->devices)) {
530 if (group->default_domain) {
531 iommu_domain_free(group->default_domain);
532 group->default_domain = NULL;
533 }
534 if (group->blocking_domain) {
535 iommu_domain_free(group->blocking_domain);
536 group->blocking_domain = NULL;
537 }
538 group->domain = NULL;
539 }
540
541 /* Caller must put iommu_group */
542 dev->iommu_group = NULL;
543 module_put(ops->owner);
544 dev_iommu_free(dev);
545 #ifdef CONFIG_IOMMU_DMA
546 dev->dma_iommu = false;
547 #endif
548 }
549
pasid_array_entry_to_domain(void * entry)550 static struct iommu_domain *pasid_array_entry_to_domain(void *entry)
551 {
552 if (xa_pointer_tag(entry) == IOMMU_PASID_ARRAY_DOMAIN)
553 return xa_untag_pointer(entry);
554 return ((struct iommu_attach_handle *)xa_untag_pointer(entry))->domain;
555 }
556
557 DEFINE_MUTEX(iommu_probe_device_lock);
558
__iommu_probe_device(struct device * dev,struct list_head * group_list)559 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
560 {
561 struct iommu_group *group;
562 struct group_device *gdev;
563 int ret;
564
565 /*
566 * Serialise to avoid races between IOMMU drivers registering in
567 * parallel and/or the "replay" calls from ACPI/OF code via client
568 * driver probe. Once the latter have been cleaned up we should
569 * probably be able to use device_lock() here to minimise the scope,
570 * but for now enforcing a simple global ordering is fine.
571 */
572 lockdep_assert_held(&iommu_probe_device_lock);
573
574 /* Device is probed already if in a group */
575 if (dev->iommu_group)
576 return 0;
577
578 ret = iommu_init_device(dev);
579 if (ret)
580 return ret;
581 /*
582 * And if we do now see any replay calls, they would indicate someone
583 * misusing the dma_configure path outside bus code.
584 */
585 if (dev->driver)
586 dev_WARN(dev, "late IOMMU probe at driver bind, something fishy here!\n");
587
588 group = dev->iommu_group;
589 gdev = iommu_group_alloc_device(group, dev);
590 mutex_lock(&group->mutex);
591 if (IS_ERR(gdev)) {
592 ret = PTR_ERR(gdev);
593 goto err_put_group;
594 }
595
596 /*
597 * The gdev must be in the list before calling
598 * iommu_setup_default_domain()
599 */
600 list_add_tail(&gdev->list, &group->devices);
601 WARN_ON(group->default_domain && !group->domain);
602 if (group->default_domain)
603 iommu_create_device_direct_mappings(group->default_domain, dev);
604 if (group->domain) {
605 ret = __iommu_device_set_domain(group, dev, group->domain, 0);
606 if (ret)
607 goto err_remove_gdev;
608 } else if (!group->default_domain && !group_list) {
609 ret = iommu_setup_default_domain(group, 0);
610 if (ret)
611 goto err_remove_gdev;
612 } else if (!group->default_domain) {
613 /*
614 * With a group_list argument we defer the default_domain setup
615 * to the caller by providing a de-duplicated list of groups
616 * that need further setup.
617 */
618 if (list_empty(&group->entry))
619 list_add_tail(&group->entry, group_list);
620 }
621
622 if (group->default_domain)
623 iommu_setup_dma_ops(dev);
624
625 mutex_unlock(&group->mutex);
626
627 return 0;
628
629 err_remove_gdev:
630 list_del(&gdev->list);
631 __iommu_group_free_device(group, gdev);
632 err_put_group:
633 iommu_deinit_device(dev);
634 mutex_unlock(&group->mutex);
635 iommu_group_put(group);
636
637 return ret;
638 }
639
iommu_probe_device(struct device * dev)640 int iommu_probe_device(struct device *dev)
641 {
642 const struct iommu_ops *ops;
643 int ret;
644
645 mutex_lock(&iommu_probe_device_lock);
646 ret = __iommu_probe_device(dev, NULL);
647 mutex_unlock(&iommu_probe_device_lock);
648 if (ret)
649 return ret;
650
651 ops = dev_iommu_ops(dev);
652 if (ops->probe_finalize)
653 ops->probe_finalize(dev);
654
655 return 0;
656 }
657
__iommu_group_free_device(struct iommu_group * group,struct group_device * grp_dev)658 static void __iommu_group_free_device(struct iommu_group *group,
659 struct group_device *grp_dev)
660 {
661 struct device *dev = grp_dev->dev;
662
663 sysfs_remove_link(group->devices_kobj, grp_dev->name);
664 sysfs_remove_link(&dev->kobj, "iommu_group");
665
666 trace_remove_device_from_group(group->id, dev);
667
668 /*
669 * If the group has become empty then ownership must have been
670 * released, and the current domain must be set back to NULL or
671 * the default domain.
672 */
673 if (list_empty(&group->devices))
674 WARN_ON(group->owner_cnt ||
675 group->domain != group->default_domain);
676
677 kfree(grp_dev->name);
678 kfree(grp_dev);
679 }
680
681 /* Remove the iommu_group from the struct device. */
__iommu_group_remove_device(struct device * dev)682 static void __iommu_group_remove_device(struct device *dev)
683 {
684 struct iommu_group *group = dev->iommu_group;
685 struct group_device *device;
686
687 mutex_lock(&group->mutex);
688 for_each_group_device(group, device) {
689 if (device->dev != dev)
690 continue;
691
692 list_del(&device->list);
693 __iommu_group_free_device(group, device);
694 if (dev_has_iommu(dev))
695 iommu_deinit_device(dev);
696 else
697 dev->iommu_group = NULL;
698 break;
699 }
700 mutex_unlock(&group->mutex);
701
702 /*
703 * Pairs with the get in iommu_init_device() or
704 * iommu_group_add_device()
705 */
706 iommu_group_put(group);
707 }
708
iommu_release_device(struct device * dev)709 static void iommu_release_device(struct device *dev)
710 {
711 struct iommu_group *group = dev->iommu_group;
712
713 if (group)
714 __iommu_group_remove_device(dev);
715
716 /* Free any fwspec if no iommu_driver was ever attached */
717 if (dev->iommu)
718 dev_iommu_free(dev);
719 }
720
iommu_set_def_domain_type(char * str)721 static int __init iommu_set_def_domain_type(char *str)
722 {
723 bool pt;
724 int ret;
725
726 ret = kstrtobool(str, &pt);
727 if (ret)
728 return ret;
729
730 if (pt)
731 iommu_set_default_passthrough(true);
732 else
733 iommu_set_default_translated(true);
734
735 return 0;
736 }
737 early_param("iommu.passthrough", iommu_set_def_domain_type);
738
iommu_dma_setup(char * str)739 static int __init iommu_dma_setup(char *str)
740 {
741 int ret = kstrtobool(str, &iommu_dma_strict);
742
743 if (!ret)
744 iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
745 return ret;
746 }
747 early_param("iommu.strict", iommu_dma_setup);
748
iommu_set_dma_strict(void)749 void iommu_set_dma_strict(void)
750 {
751 iommu_dma_strict = true;
752 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
753 iommu_def_domain_type = IOMMU_DOMAIN_DMA;
754 }
755
iommu_group_attr_show(struct kobject * kobj,struct attribute * __attr,char * buf)756 static ssize_t iommu_group_attr_show(struct kobject *kobj,
757 struct attribute *__attr, char *buf)
758 {
759 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
760 struct iommu_group *group = to_iommu_group(kobj);
761 ssize_t ret = -EIO;
762
763 if (attr->show)
764 ret = attr->show(group, buf);
765 return ret;
766 }
767
iommu_group_attr_store(struct kobject * kobj,struct attribute * __attr,const char * buf,size_t count)768 static ssize_t iommu_group_attr_store(struct kobject *kobj,
769 struct attribute *__attr,
770 const char *buf, size_t count)
771 {
772 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
773 struct iommu_group *group = to_iommu_group(kobj);
774 ssize_t ret = -EIO;
775
776 if (attr->store)
777 ret = attr->store(group, buf, count);
778 return ret;
779 }
780
781 static const struct sysfs_ops iommu_group_sysfs_ops = {
782 .show = iommu_group_attr_show,
783 .store = iommu_group_attr_store,
784 };
785
iommu_group_create_file(struct iommu_group * group,struct iommu_group_attribute * attr)786 static int iommu_group_create_file(struct iommu_group *group,
787 struct iommu_group_attribute *attr)
788 {
789 return sysfs_create_file(&group->kobj, &attr->attr);
790 }
791
iommu_group_remove_file(struct iommu_group * group,struct iommu_group_attribute * attr)792 static void iommu_group_remove_file(struct iommu_group *group,
793 struct iommu_group_attribute *attr)
794 {
795 sysfs_remove_file(&group->kobj, &attr->attr);
796 }
797
iommu_group_show_name(struct iommu_group * group,char * buf)798 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
799 {
800 return sysfs_emit(buf, "%s\n", group->name);
801 }
802
803 /**
804 * iommu_insert_resv_region - Insert a new region in the
805 * list of reserved regions.
806 * @new: new region to insert
807 * @regions: list of regions
808 *
809 * Elements are sorted by start address and overlapping segments
810 * of the same type are merged.
811 */
iommu_insert_resv_region(struct iommu_resv_region * new,struct list_head * regions)812 static int iommu_insert_resv_region(struct iommu_resv_region *new,
813 struct list_head *regions)
814 {
815 struct iommu_resv_region *iter, *tmp, *nr, *top;
816 LIST_HEAD(stack);
817
818 nr = iommu_alloc_resv_region(new->start, new->length,
819 new->prot, new->type, GFP_KERNEL);
820 if (!nr)
821 return -ENOMEM;
822
823 /* First add the new element based on start address sorting */
824 list_for_each_entry(iter, regions, list) {
825 if (nr->start < iter->start ||
826 (nr->start == iter->start && nr->type <= iter->type))
827 break;
828 }
829 list_add_tail(&nr->list, &iter->list);
830
831 /* Merge overlapping segments of type nr->type in @regions, if any */
832 list_for_each_entry_safe(iter, tmp, regions, list) {
833 phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
834
835 /* no merge needed on elements of different types than @new */
836 if (iter->type != new->type) {
837 list_move_tail(&iter->list, &stack);
838 continue;
839 }
840
841 /* look for the last stack element of same type as @iter */
842 list_for_each_entry_reverse(top, &stack, list)
843 if (top->type == iter->type)
844 goto check_overlap;
845
846 list_move_tail(&iter->list, &stack);
847 continue;
848
849 check_overlap:
850 top_end = top->start + top->length - 1;
851
852 if (iter->start > top_end + 1) {
853 list_move_tail(&iter->list, &stack);
854 } else {
855 top->length = max(top_end, iter_end) - top->start + 1;
856 list_del(&iter->list);
857 kfree(iter);
858 }
859 }
860 list_splice(&stack, regions);
861 return 0;
862 }
863
864 static int
iommu_insert_device_resv_regions(struct list_head * dev_resv_regions,struct list_head * group_resv_regions)865 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
866 struct list_head *group_resv_regions)
867 {
868 struct iommu_resv_region *entry;
869 int ret = 0;
870
871 list_for_each_entry(entry, dev_resv_regions, list) {
872 ret = iommu_insert_resv_region(entry, group_resv_regions);
873 if (ret)
874 break;
875 }
876 return ret;
877 }
878
iommu_get_group_resv_regions(struct iommu_group * group,struct list_head * head)879 int iommu_get_group_resv_regions(struct iommu_group *group,
880 struct list_head *head)
881 {
882 struct group_device *device;
883 int ret = 0;
884
885 mutex_lock(&group->mutex);
886 for_each_group_device(group, device) {
887 struct list_head dev_resv_regions;
888
889 /*
890 * Non-API groups still expose reserved_regions in sysfs,
891 * so filter out calls that get here that way.
892 */
893 if (!dev_has_iommu(device->dev))
894 break;
895
896 INIT_LIST_HEAD(&dev_resv_regions);
897 iommu_get_resv_regions(device->dev, &dev_resv_regions);
898 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
899 iommu_put_resv_regions(device->dev, &dev_resv_regions);
900 if (ret)
901 break;
902 }
903 mutex_unlock(&group->mutex);
904 return ret;
905 }
906 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
907
iommu_group_show_resv_regions(struct iommu_group * group,char * buf)908 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
909 char *buf)
910 {
911 struct iommu_resv_region *region, *next;
912 struct list_head group_resv_regions;
913 int offset = 0;
914
915 INIT_LIST_HEAD(&group_resv_regions);
916 iommu_get_group_resv_regions(group, &group_resv_regions);
917
918 list_for_each_entry_safe(region, next, &group_resv_regions, list) {
919 offset += sysfs_emit_at(buf, offset, "0x%016llx 0x%016llx %s\n",
920 (long long)region->start,
921 (long long)(region->start +
922 region->length - 1),
923 iommu_group_resv_type_string[region->type]);
924 kfree(region);
925 }
926
927 return offset;
928 }
929
iommu_group_show_type(struct iommu_group * group,char * buf)930 static ssize_t iommu_group_show_type(struct iommu_group *group,
931 char *buf)
932 {
933 char *type = "unknown";
934
935 mutex_lock(&group->mutex);
936 if (group->default_domain) {
937 switch (group->default_domain->type) {
938 case IOMMU_DOMAIN_BLOCKED:
939 type = "blocked";
940 break;
941 case IOMMU_DOMAIN_IDENTITY:
942 type = "identity";
943 break;
944 case IOMMU_DOMAIN_UNMANAGED:
945 type = "unmanaged";
946 break;
947 case IOMMU_DOMAIN_DMA:
948 type = "DMA";
949 break;
950 case IOMMU_DOMAIN_DMA_FQ:
951 type = "DMA-FQ";
952 break;
953 }
954 }
955 mutex_unlock(&group->mutex);
956
957 return sysfs_emit(buf, "%s\n", type);
958 }
959
960 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
961
962 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
963 iommu_group_show_resv_regions, NULL);
964
965 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
966 iommu_group_store_type);
967
iommu_group_release(struct kobject * kobj)968 static void iommu_group_release(struct kobject *kobj)
969 {
970 struct iommu_group *group = to_iommu_group(kobj);
971
972 pr_debug("Releasing group %d\n", group->id);
973
974 if (group->iommu_data_release)
975 group->iommu_data_release(group->iommu_data);
976
977 ida_free(&iommu_group_ida, group->id);
978
979 /* Domains are free'd by iommu_deinit_device() */
980 WARN_ON(group->default_domain);
981 WARN_ON(group->blocking_domain);
982
983 kfree(group->name);
984 kfree(group);
985 }
986
987 static const struct kobj_type iommu_group_ktype = {
988 .sysfs_ops = &iommu_group_sysfs_ops,
989 .release = iommu_group_release,
990 };
991
992 /**
993 * iommu_group_alloc - Allocate a new group
994 *
995 * This function is called by an iommu driver to allocate a new iommu
996 * group. The iommu group represents the minimum granularity of the iommu.
997 * Upon successful return, the caller holds a reference to the supplied
998 * group in order to hold the group until devices are added. Use
999 * iommu_group_put() to release this extra reference count, allowing the
1000 * group to be automatically reclaimed once it has no devices or external
1001 * references.
1002 */
iommu_group_alloc(void)1003 struct iommu_group *iommu_group_alloc(void)
1004 {
1005 struct iommu_group *group;
1006 int ret;
1007
1008 group = kzalloc(sizeof(*group), GFP_KERNEL);
1009 if (!group)
1010 return ERR_PTR(-ENOMEM);
1011
1012 group->kobj.kset = iommu_group_kset;
1013 mutex_init(&group->mutex);
1014 INIT_LIST_HEAD(&group->devices);
1015 INIT_LIST_HEAD(&group->entry);
1016 xa_init(&group->pasid_array);
1017
1018 ret = ida_alloc(&iommu_group_ida, GFP_KERNEL);
1019 if (ret < 0) {
1020 kfree(group);
1021 return ERR_PTR(ret);
1022 }
1023 group->id = ret;
1024
1025 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
1026 NULL, "%d", group->id);
1027 if (ret) {
1028 kobject_put(&group->kobj);
1029 return ERR_PTR(ret);
1030 }
1031
1032 group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
1033 if (!group->devices_kobj) {
1034 kobject_put(&group->kobj); /* triggers .release & free */
1035 return ERR_PTR(-ENOMEM);
1036 }
1037
1038 /*
1039 * The devices_kobj holds a reference on the group kobject, so
1040 * as long as that exists so will the group. We can therefore
1041 * use the devices_kobj for reference counting.
1042 */
1043 kobject_put(&group->kobj);
1044
1045 ret = iommu_group_create_file(group,
1046 &iommu_group_attr_reserved_regions);
1047 if (ret) {
1048 kobject_put(group->devices_kobj);
1049 return ERR_PTR(ret);
1050 }
1051
1052 ret = iommu_group_create_file(group, &iommu_group_attr_type);
1053 if (ret) {
1054 kobject_put(group->devices_kobj);
1055 return ERR_PTR(ret);
1056 }
1057
1058 pr_debug("Allocated group %d\n", group->id);
1059
1060 return group;
1061 }
1062 EXPORT_SYMBOL_GPL(iommu_group_alloc);
1063
1064 /**
1065 * iommu_group_get_iommudata - retrieve iommu_data registered for a group
1066 * @group: the group
1067 *
1068 * iommu drivers can store data in the group for use when doing iommu
1069 * operations. This function provides a way to retrieve it. Caller
1070 * should hold a group reference.
1071 */
iommu_group_get_iommudata(struct iommu_group * group)1072 void *iommu_group_get_iommudata(struct iommu_group *group)
1073 {
1074 return group->iommu_data;
1075 }
1076 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
1077
1078 /**
1079 * iommu_group_set_iommudata - set iommu_data for a group
1080 * @group: the group
1081 * @iommu_data: new data
1082 * @release: release function for iommu_data
1083 *
1084 * iommu drivers can store data in the group for use when doing iommu
1085 * operations. This function provides a way to set the data after
1086 * the group has been allocated. Caller should hold a group reference.
1087 */
iommu_group_set_iommudata(struct iommu_group * group,void * iommu_data,void (* release)(void * iommu_data))1088 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
1089 void (*release)(void *iommu_data))
1090 {
1091 group->iommu_data = iommu_data;
1092 group->iommu_data_release = release;
1093 }
1094 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
1095
1096 /**
1097 * iommu_group_set_name - set name for a group
1098 * @group: the group
1099 * @name: name
1100 *
1101 * Allow iommu driver to set a name for a group. When set it will
1102 * appear in a name attribute file under the group in sysfs.
1103 */
iommu_group_set_name(struct iommu_group * group,const char * name)1104 int iommu_group_set_name(struct iommu_group *group, const char *name)
1105 {
1106 int ret;
1107
1108 if (group->name) {
1109 iommu_group_remove_file(group, &iommu_group_attr_name);
1110 kfree(group->name);
1111 group->name = NULL;
1112 if (!name)
1113 return 0;
1114 }
1115
1116 group->name = kstrdup(name, GFP_KERNEL);
1117 if (!group->name)
1118 return -ENOMEM;
1119
1120 ret = iommu_group_create_file(group, &iommu_group_attr_name);
1121 if (ret) {
1122 kfree(group->name);
1123 group->name = NULL;
1124 return ret;
1125 }
1126
1127 return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(iommu_group_set_name);
1130
iommu_create_device_direct_mappings(struct iommu_domain * domain,struct device * dev)1131 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
1132 struct device *dev)
1133 {
1134 struct iommu_resv_region *entry;
1135 struct list_head mappings;
1136 unsigned long pg_size;
1137 int ret = 0;
1138
1139 pg_size = domain->pgsize_bitmap ? 1UL << __ffs(domain->pgsize_bitmap) : 0;
1140 INIT_LIST_HEAD(&mappings);
1141
1142 if (WARN_ON_ONCE(iommu_is_dma_domain(domain) && !pg_size))
1143 return -EINVAL;
1144
1145 iommu_get_resv_regions(dev, &mappings);
1146
1147 /* We need to consider overlapping regions for different devices */
1148 list_for_each_entry(entry, &mappings, list) {
1149 dma_addr_t start, end, addr;
1150 size_t map_size = 0;
1151
1152 if (entry->type == IOMMU_RESV_DIRECT)
1153 dev->iommu->require_direct = 1;
1154
1155 if ((entry->type != IOMMU_RESV_DIRECT &&
1156 entry->type != IOMMU_RESV_DIRECT_RELAXABLE) ||
1157 !iommu_is_dma_domain(domain))
1158 continue;
1159
1160 start = ALIGN(entry->start, pg_size);
1161 end = ALIGN(entry->start + entry->length, pg_size);
1162
1163 for (addr = start; addr <= end; addr += pg_size) {
1164 phys_addr_t phys_addr;
1165
1166 if (addr == end)
1167 goto map_end;
1168
1169 phys_addr = iommu_iova_to_phys(domain, addr);
1170 if (!phys_addr) {
1171 map_size += pg_size;
1172 continue;
1173 }
1174
1175 map_end:
1176 if (map_size) {
1177 ret = iommu_map(domain, addr - map_size,
1178 addr - map_size, map_size,
1179 entry->prot, GFP_KERNEL);
1180 if (ret)
1181 goto out;
1182 map_size = 0;
1183 }
1184 }
1185
1186 }
1187 out:
1188 iommu_put_resv_regions(dev, &mappings);
1189
1190 return ret;
1191 }
1192
1193 /* This is undone by __iommu_group_free_device() */
iommu_group_alloc_device(struct iommu_group * group,struct device * dev)1194 static struct group_device *iommu_group_alloc_device(struct iommu_group *group,
1195 struct device *dev)
1196 {
1197 int ret, i = 0;
1198 struct group_device *device;
1199
1200 device = kzalloc(sizeof(*device), GFP_KERNEL);
1201 if (!device)
1202 return ERR_PTR(-ENOMEM);
1203
1204 device->dev = dev;
1205
1206 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
1207 if (ret)
1208 goto err_free_device;
1209
1210 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
1211 rename:
1212 if (!device->name) {
1213 ret = -ENOMEM;
1214 goto err_remove_link;
1215 }
1216
1217 ret = sysfs_create_link_nowarn(group->devices_kobj,
1218 &dev->kobj, device->name);
1219 if (ret) {
1220 if (ret == -EEXIST && i >= 0) {
1221 /*
1222 * Account for the slim chance of collision
1223 * and append an instance to the name.
1224 */
1225 kfree(device->name);
1226 device->name = kasprintf(GFP_KERNEL, "%s.%d",
1227 kobject_name(&dev->kobj), i++);
1228 goto rename;
1229 }
1230 goto err_free_name;
1231 }
1232
1233 trace_add_device_to_group(group->id, dev);
1234
1235 dev_info(dev, "Adding to iommu group %d\n", group->id);
1236
1237 return device;
1238
1239 err_free_name:
1240 kfree(device->name);
1241 err_remove_link:
1242 sysfs_remove_link(&dev->kobj, "iommu_group");
1243 err_free_device:
1244 kfree(device);
1245 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
1246 return ERR_PTR(ret);
1247 }
1248
1249 /**
1250 * iommu_group_add_device - add a device to an iommu group
1251 * @group: the group into which to add the device (reference should be held)
1252 * @dev: the device
1253 *
1254 * This function is called by an iommu driver to add a device into a
1255 * group. Adding a device increments the group reference count.
1256 */
iommu_group_add_device(struct iommu_group * group,struct device * dev)1257 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
1258 {
1259 struct group_device *gdev;
1260
1261 gdev = iommu_group_alloc_device(group, dev);
1262 if (IS_ERR(gdev))
1263 return PTR_ERR(gdev);
1264
1265 iommu_group_ref_get(group);
1266 dev->iommu_group = group;
1267
1268 mutex_lock(&group->mutex);
1269 list_add_tail(&gdev->list, &group->devices);
1270 mutex_unlock(&group->mutex);
1271 return 0;
1272 }
1273 EXPORT_SYMBOL_GPL(iommu_group_add_device);
1274
1275 /**
1276 * iommu_group_remove_device - remove a device from it's current group
1277 * @dev: device to be removed
1278 *
1279 * This function is called by an iommu driver to remove the device from
1280 * it's current group. This decrements the iommu group reference count.
1281 */
iommu_group_remove_device(struct device * dev)1282 void iommu_group_remove_device(struct device *dev)
1283 {
1284 struct iommu_group *group = dev->iommu_group;
1285
1286 if (!group)
1287 return;
1288
1289 dev_info(dev, "Removing from iommu group %d\n", group->id);
1290
1291 __iommu_group_remove_device(dev);
1292 }
1293 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
1294
1295 #if IS_ENABLED(CONFIG_LOCKDEP) && IS_ENABLED(CONFIG_IOMMU_API)
1296 /**
1297 * iommu_group_mutex_assert - Check device group mutex lock
1298 * @dev: the device that has group param set
1299 *
1300 * This function is called by an iommu driver to check whether it holds
1301 * group mutex lock for the given device or not.
1302 *
1303 * Note that this function must be called after device group param is set.
1304 */
iommu_group_mutex_assert(struct device * dev)1305 void iommu_group_mutex_assert(struct device *dev)
1306 {
1307 struct iommu_group *group = dev->iommu_group;
1308
1309 lockdep_assert_held(&group->mutex);
1310 }
1311 EXPORT_SYMBOL_GPL(iommu_group_mutex_assert);
1312 #endif
1313
iommu_group_first_dev(struct iommu_group * group)1314 static struct device *iommu_group_first_dev(struct iommu_group *group)
1315 {
1316 lockdep_assert_held(&group->mutex);
1317 return list_first_entry(&group->devices, struct group_device, list)->dev;
1318 }
1319
1320 /**
1321 * iommu_group_for_each_dev - iterate over each device in the group
1322 * @group: the group
1323 * @data: caller opaque data to be passed to callback function
1324 * @fn: caller supplied callback function
1325 *
1326 * This function is called by group users to iterate over group devices.
1327 * Callers should hold a reference count to the group during callback.
1328 * The group->mutex is held across callbacks, which will block calls to
1329 * iommu_group_add/remove_device.
1330 */
iommu_group_for_each_dev(struct iommu_group * group,void * data,int (* fn)(struct device *,void *))1331 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1332 int (*fn)(struct device *, void *))
1333 {
1334 struct group_device *device;
1335 int ret = 0;
1336
1337 mutex_lock(&group->mutex);
1338 for_each_group_device(group, device) {
1339 ret = fn(device->dev, data);
1340 if (ret)
1341 break;
1342 }
1343 mutex_unlock(&group->mutex);
1344
1345 return ret;
1346 }
1347 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1348
1349 /**
1350 * iommu_group_get - Return the group for a device and increment reference
1351 * @dev: get the group that this device belongs to
1352 *
1353 * This function is called by iommu drivers and users to get the group
1354 * for the specified device. If found, the group is returned and the group
1355 * reference in incremented, else NULL.
1356 */
iommu_group_get(struct device * dev)1357 struct iommu_group *iommu_group_get(struct device *dev)
1358 {
1359 struct iommu_group *group = dev->iommu_group;
1360
1361 if (group)
1362 kobject_get(group->devices_kobj);
1363
1364 return group;
1365 }
1366 EXPORT_SYMBOL_GPL(iommu_group_get);
1367
1368 /**
1369 * iommu_group_ref_get - Increment reference on a group
1370 * @group: the group to use, must not be NULL
1371 *
1372 * This function is called by iommu drivers to take additional references on an
1373 * existing group. Returns the given group for convenience.
1374 */
iommu_group_ref_get(struct iommu_group * group)1375 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1376 {
1377 kobject_get(group->devices_kobj);
1378 return group;
1379 }
1380 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1381
1382 /**
1383 * iommu_group_put - Decrement group reference
1384 * @group: the group to use
1385 *
1386 * This function is called by iommu drivers and users to release the
1387 * iommu group. Once the reference count is zero, the group is released.
1388 */
iommu_group_put(struct iommu_group * group)1389 void iommu_group_put(struct iommu_group *group)
1390 {
1391 if (group)
1392 kobject_put(group->devices_kobj);
1393 }
1394 EXPORT_SYMBOL_GPL(iommu_group_put);
1395
1396 /**
1397 * iommu_group_id - Return ID for a group
1398 * @group: the group to ID
1399 *
1400 * Return the unique ID for the group matching the sysfs group number.
1401 */
iommu_group_id(struct iommu_group * group)1402 int iommu_group_id(struct iommu_group *group)
1403 {
1404 return group->id;
1405 }
1406 EXPORT_SYMBOL_GPL(iommu_group_id);
1407
1408 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1409 unsigned long *devfns);
1410
1411 /*
1412 * To consider a PCI device isolated, we require ACS to support Source
1413 * Validation, Request Redirection, Completer Redirection, and Upstream
1414 * Forwarding. This effectively means that devices cannot spoof their
1415 * requester ID, requests and completions cannot be redirected, and all
1416 * transactions are forwarded upstream, even as it passes through a
1417 * bridge where the target device is downstream.
1418 */
1419 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1420
1421 /*
1422 * For multifunction devices which are not isolated from each other, find
1423 * all the other non-isolated functions and look for existing groups. For
1424 * each function, we also need to look for aliases to or from other devices
1425 * that may already have a group.
1426 */
get_pci_function_alias_group(struct pci_dev * pdev,unsigned long * devfns)1427 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1428 unsigned long *devfns)
1429 {
1430 struct pci_dev *tmp = NULL;
1431 struct iommu_group *group;
1432
1433 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1434 return NULL;
1435
1436 for_each_pci_dev(tmp) {
1437 if (tmp == pdev || tmp->bus != pdev->bus ||
1438 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1439 pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1440 continue;
1441
1442 group = get_pci_alias_group(tmp, devfns);
1443 if (group) {
1444 pci_dev_put(tmp);
1445 return group;
1446 }
1447 }
1448
1449 return NULL;
1450 }
1451
1452 /*
1453 * Look for aliases to or from the given device for existing groups. DMA
1454 * aliases are only supported on the same bus, therefore the search
1455 * space is quite small (especially since we're really only looking at pcie
1456 * device, and therefore only expect multiple slots on the root complex or
1457 * downstream switch ports). It's conceivable though that a pair of
1458 * multifunction devices could have aliases between them that would cause a
1459 * loop. To prevent this, we use a bitmap to track where we've been.
1460 */
get_pci_alias_group(struct pci_dev * pdev,unsigned long * devfns)1461 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1462 unsigned long *devfns)
1463 {
1464 struct pci_dev *tmp = NULL;
1465 struct iommu_group *group;
1466
1467 if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1468 return NULL;
1469
1470 group = iommu_group_get(&pdev->dev);
1471 if (group)
1472 return group;
1473
1474 for_each_pci_dev(tmp) {
1475 if (tmp == pdev || tmp->bus != pdev->bus)
1476 continue;
1477
1478 /* We alias them or they alias us */
1479 if (pci_devs_are_dma_aliases(pdev, tmp)) {
1480 group = get_pci_alias_group(tmp, devfns);
1481 if (group) {
1482 pci_dev_put(tmp);
1483 return group;
1484 }
1485
1486 group = get_pci_function_alias_group(tmp, devfns);
1487 if (group) {
1488 pci_dev_put(tmp);
1489 return group;
1490 }
1491 }
1492 }
1493
1494 return NULL;
1495 }
1496
1497 struct group_for_pci_data {
1498 struct pci_dev *pdev;
1499 struct iommu_group *group;
1500 };
1501
1502 /*
1503 * DMA alias iterator callback, return the last seen device. Stop and return
1504 * the IOMMU group if we find one along the way.
1505 */
get_pci_alias_or_group(struct pci_dev * pdev,u16 alias,void * opaque)1506 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1507 {
1508 struct group_for_pci_data *data = opaque;
1509
1510 data->pdev = pdev;
1511 data->group = iommu_group_get(&pdev->dev);
1512
1513 return data->group != NULL;
1514 }
1515
1516 /*
1517 * Generic device_group call-back function. It just allocates one
1518 * iommu-group per device.
1519 */
generic_device_group(struct device * dev)1520 struct iommu_group *generic_device_group(struct device *dev)
1521 {
1522 return iommu_group_alloc();
1523 }
1524 EXPORT_SYMBOL_GPL(generic_device_group);
1525
1526 /*
1527 * Generic device_group call-back function. It just allocates one
1528 * iommu-group per iommu driver instance shared by every device
1529 * probed by that iommu driver.
1530 */
generic_single_device_group(struct device * dev)1531 struct iommu_group *generic_single_device_group(struct device *dev)
1532 {
1533 struct iommu_device *iommu = dev->iommu->iommu_dev;
1534
1535 if (!iommu->singleton_group) {
1536 struct iommu_group *group;
1537
1538 group = iommu_group_alloc();
1539 if (IS_ERR(group))
1540 return group;
1541 iommu->singleton_group = group;
1542 }
1543 return iommu_group_ref_get(iommu->singleton_group);
1544 }
1545 EXPORT_SYMBOL_GPL(generic_single_device_group);
1546
1547 /*
1548 * Use standard PCI bus topology, isolation features, and DMA alias quirks
1549 * to find or create an IOMMU group for a device.
1550 */
pci_device_group(struct device * dev)1551 struct iommu_group *pci_device_group(struct device *dev)
1552 {
1553 struct pci_dev *pdev = to_pci_dev(dev);
1554 struct group_for_pci_data data;
1555 struct pci_bus *bus;
1556 struct iommu_group *group = NULL;
1557 u64 devfns[4] = { 0 };
1558
1559 if (WARN_ON(!dev_is_pci(dev)))
1560 return ERR_PTR(-EINVAL);
1561
1562 /*
1563 * Find the upstream DMA alias for the device. A device must not
1564 * be aliased due to topology in order to have its own IOMMU group.
1565 * If we find an alias along the way that already belongs to a
1566 * group, use it.
1567 */
1568 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1569 return data.group;
1570
1571 pdev = data.pdev;
1572
1573 /*
1574 * Continue upstream from the point of minimum IOMMU granularity
1575 * due to aliases to the point where devices are protected from
1576 * peer-to-peer DMA by PCI ACS. Again, if we find an existing
1577 * group, use it.
1578 */
1579 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1580 if (!bus->self)
1581 continue;
1582
1583 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1584 break;
1585
1586 pdev = bus->self;
1587
1588 group = iommu_group_get(&pdev->dev);
1589 if (group)
1590 return group;
1591 }
1592
1593 /*
1594 * Look for existing groups on device aliases. If we alias another
1595 * device or another device aliases us, use the same group.
1596 */
1597 group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1598 if (group)
1599 return group;
1600
1601 /*
1602 * Look for existing groups on non-isolated functions on the same
1603 * slot and aliases of those funcions, if any. No need to clear
1604 * the search bitmap, the tested devfns are still valid.
1605 */
1606 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1607 if (group)
1608 return group;
1609
1610 /* No shared group found, allocate new */
1611 return iommu_group_alloc();
1612 }
1613 EXPORT_SYMBOL_GPL(pci_device_group);
1614
1615 /* Get the IOMMU group for device on fsl-mc bus */
fsl_mc_device_group(struct device * dev)1616 struct iommu_group *fsl_mc_device_group(struct device *dev)
1617 {
1618 struct device *cont_dev = fsl_mc_cont_dev(dev);
1619 struct iommu_group *group;
1620
1621 group = iommu_group_get(cont_dev);
1622 if (!group)
1623 group = iommu_group_alloc();
1624 return group;
1625 }
1626 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1627
__iommu_alloc_identity_domain(struct device * dev)1628 static struct iommu_domain *__iommu_alloc_identity_domain(struct device *dev)
1629 {
1630 const struct iommu_ops *ops = dev_iommu_ops(dev);
1631 struct iommu_domain *domain;
1632
1633 if (ops->identity_domain)
1634 return ops->identity_domain;
1635
1636 if (ops->domain_alloc_identity) {
1637 domain = ops->domain_alloc_identity(dev);
1638 if (IS_ERR(domain))
1639 return domain;
1640 } else {
1641 return ERR_PTR(-EOPNOTSUPP);
1642 }
1643
1644 iommu_domain_init(domain, IOMMU_DOMAIN_IDENTITY, ops);
1645 return domain;
1646 }
1647
1648 static struct iommu_domain *
__iommu_group_alloc_default_domain(struct iommu_group * group,int req_type)1649 __iommu_group_alloc_default_domain(struct iommu_group *group, int req_type)
1650 {
1651 struct device *dev = iommu_group_first_dev(group);
1652 struct iommu_domain *dom;
1653
1654 if (group->default_domain && group->default_domain->type == req_type)
1655 return group->default_domain;
1656
1657 /*
1658 * When allocating the DMA API domain assume that the driver is going to
1659 * use PASID and make sure the RID's domain is PASID compatible.
1660 */
1661 if (req_type & __IOMMU_DOMAIN_PAGING) {
1662 dom = __iommu_paging_domain_alloc_flags(dev, req_type,
1663 dev->iommu->max_pasids ? IOMMU_HWPT_ALLOC_PASID : 0);
1664
1665 /*
1666 * If driver does not support PASID feature then
1667 * try to allocate non-PASID domain
1668 */
1669 if (PTR_ERR(dom) == -EOPNOTSUPP)
1670 dom = __iommu_paging_domain_alloc_flags(dev, req_type, 0);
1671
1672 return dom;
1673 }
1674
1675 if (req_type == IOMMU_DOMAIN_IDENTITY)
1676 return __iommu_alloc_identity_domain(dev);
1677
1678 return ERR_PTR(-EINVAL);
1679 }
1680
1681 /*
1682 * req_type of 0 means "auto" which means to select a domain based on
1683 * iommu_def_domain_type or what the driver actually supports.
1684 */
1685 static struct iommu_domain *
iommu_group_alloc_default_domain(struct iommu_group * group,int req_type)1686 iommu_group_alloc_default_domain(struct iommu_group *group, int req_type)
1687 {
1688 const struct iommu_ops *ops = dev_iommu_ops(iommu_group_first_dev(group));
1689 struct iommu_domain *dom;
1690
1691 lockdep_assert_held(&group->mutex);
1692
1693 /*
1694 * Allow legacy drivers to specify the domain that will be the default
1695 * domain. This should always be either an IDENTITY/BLOCKED/PLATFORM
1696 * domain. Do not use in new drivers.
1697 */
1698 if (ops->default_domain) {
1699 if (req_type != ops->default_domain->type)
1700 return ERR_PTR(-EINVAL);
1701 return ops->default_domain;
1702 }
1703
1704 if (req_type)
1705 return __iommu_group_alloc_default_domain(group, req_type);
1706
1707 /* The driver gave no guidance on what type to use, try the default */
1708 dom = __iommu_group_alloc_default_domain(group, iommu_def_domain_type);
1709 if (!IS_ERR(dom))
1710 return dom;
1711
1712 /* Otherwise IDENTITY and DMA_FQ defaults will try DMA */
1713 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA)
1714 return ERR_PTR(-EINVAL);
1715 dom = __iommu_group_alloc_default_domain(group, IOMMU_DOMAIN_DMA);
1716 if (IS_ERR(dom))
1717 return dom;
1718
1719 pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1720 iommu_def_domain_type, group->name);
1721 return dom;
1722 }
1723
iommu_group_default_domain(struct iommu_group * group)1724 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1725 {
1726 return group->default_domain;
1727 }
1728
probe_iommu_group(struct device * dev,void * data)1729 static int probe_iommu_group(struct device *dev, void *data)
1730 {
1731 struct list_head *group_list = data;
1732 int ret;
1733
1734 mutex_lock(&iommu_probe_device_lock);
1735 ret = __iommu_probe_device(dev, group_list);
1736 mutex_unlock(&iommu_probe_device_lock);
1737 if (ret == -ENODEV)
1738 ret = 0;
1739
1740 return ret;
1741 }
1742
iommu_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)1743 static int iommu_bus_notifier(struct notifier_block *nb,
1744 unsigned long action, void *data)
1745 {
1746 struct device *dev = data;
1747
1748 if (action == BUS_NOTIFY_ADD_DEVICE) {
1749 int ret;
1750
1751 ret = iommu_probe_device(dev);
1752 return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1753 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1754 iommu_release_device(dev);
1755 return NOTIFY_OK;
1756 }
1757
1758 return 0;
1759 }
1760
1761 /*
1762 * Combine the driver's chosen def_domain_type across all the devices in a
1763 * group. Drivers must give a consistent result.
1764 */
iommu_get_def_domain_type(struct iommu_group * group,struct device * dev,int cur_type)1765 static int iommu_get_def_domain_type(struct iommu_group *group,
1766 struct device *dev, int cur_type)
1767 {
1768 const struct iommu_ops *ops = dev_iommu_ops(dev);
1769 int type;
1770
1771 if (ops->default_domain) {
1772 /*
1773 * Drivers that declare a global static default_domain will
1774 * always choose that.
1775 */
1776 type = ops->default_domain->type;
1777 } else {
1778 if (ops->def_domain_type)
1779 type = ops->def_domain_type(dev);
1780 else
1781 return cur_type;
1782 }
1783 if (!type || cur_type == type)
1784 return cur_type;
1785 if (!cur_type)
1786 return type;
1787
1788 dev_err_ratelimited(
1789 dev,
1790 "IOMMU driver error, requesting conflicting def_domain_type, %s and %s, for devices in group %u.\n",
1791 iommu_domain_type_str(cur_type), iommu_domain_type_str(type),
1792 group->id);
1793
1794 /*
1795 * Try to recover, drivers are allowed to force IDENTITY or DMA, IDENTITY
1796 * takes precedence.
1797 */
1798 if (type == IOMMU_DOMAIN_IDENTITY)
1799 return type;
1800 return cur_type;
1801 }
1802
1803 /*
1804 * A target_type of 0 will select the best domain type. 0 can be returned in
1805 * this case meaning the global default should be used.
1806 */
iommu_get_default_domain_type(struct iommu_group * group,int target_type)1807 static int iommu_get_default_domain_type(struct iommu_group *group,
1808 int target_type)
1809 {
1810 struct device *untrusted = NULL;
1811 struct group_device *gdev;
1812 int driver_type = 0;
1813
1814 lockdep_assert_held(&group->mutex);
1815
1816 /*
1817 * ARM32 drivers supporting CONFIG_ARM_DMA_USE_IOMMU can declare an
1818 * identity_domain and it will automatically become their default
1819 * domain. Later on ARM_DMA_USE_IOMMU will install its UNMANAGED domain.
1820 * Override the selection to IDENTITY.
1821 */
1822 if (IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)) {
1823 static_assert(!(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU) &&
1824 IS_ENABLED(CONFIG_IOMMU_DMA)));
1825 driver_type = IOMMU_DOMAIN_IDENTITY;
1826 }
1827
1828 for_each_group_device(group, gdev) {
1829 driver_type = iommu_get_def_domain_type(group, gdev->dev,
1830 driver_type);
1831
1832 if (dev_is_pci(gdev->dev) && to_pci_dev(gdev->dev)->untrusted) {
1833 /*
1834 * No ARM32 using systems will set untrusted, it cannot
1835 * work.
1836 */
1837 if (WARN_ON(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)))
1838 return -1;
1839 untrusted = gdev->dev;
1840 }
1841 }
1842
1843 /*
1844 * If the common dma ops are not selected in kconfig then we cannot use
1845 * IOMMU_DOMAIN_DMA at all. Force IDENTITY if nothing else has been
1846 * selected.
1847 */
1848 if (!IS_ENABLED(CONFIG_IOMMU_DMA)) {
1849 if (WARN_ON(driver_type == IOMMU_DOMAIN_DMA))
1850 return -1;
1851 if (!driver_type)
1852 driver_type = IOMMU_DOMAIN_IDENTITY;
1853 }
1854
1855 if (untrusted) {
1856 if (driver_type && driver_type != IOMMU_DOMAIN_DMA) {
1857 dev_err_ratelimited(
1858 untrusted,
1859 "Device is not trusted, but driver is overriding group %u to %s, refusing to probe.\n",
1860 group->id, iommu_domain_type_str(driver_type));
1861 return -1;
1862 }
1863 driver_type = IOMMU_DOMAIN_DMA;
1864 }
1865
1866 if (target_type) {
1867 if (driver_type && target_type != driver_type)
1868 return -1;
1869 return target_type;
1870 }
1871 return driver_type;
1872 }
1873
iommu_group_do_probe_finalize(struct device * dev)1874 static void iommu_group_do_probe_finalize(struct device *dev)
1875 {
1876 const struct iommu_ops *ops = dev_iommu_ops(dev);
1877
1878 if (ops->probe_finalize)
1879 ops->probe_finalize(dev);
1880 }
1881
bus_iommu_probe(const struct bus_type * bus)1882 static int bus_iommu_probe(const struct bus_type *bus)
1883 {
1884 struct iommu_group *group, *next;
1885 LIST_HEAD(group_list);
1886 int ret;
1887
1888 ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1889 if (ret)
1890 return ret;
1891
1892 list_for_each_entry_safe(group, next, &group_list, entry) {
1893 struct group_device *gdev;
1894
1895 mutex_lock(&group->mutex);
1896
1897 /* Remove item from the list */
1898 list_del_init(&group->entry);
1899
1900 /*
1901 * We go to the trouble of deferred default domain creation so
1902 * that the cross-group default domain type and the setup of the
1903 * IOMMU_RESV_DIRECT will work correctly in non-hotpug scenarios.
1904 */
1905 ret = iommu_setup_default_domain(group, 0);
1906 if (ret) {
1907 mutex_unlock(&group->mutex);
1908 return ret;
1909 }
1910 for_each_group_device(group, gdev)
1911 iommu_setup_dma_ops(gdev->dev);
1912 mutex_unlock(&group->mutex);
1913
1914 /*
1915 * FIXME: Mis-locked because the ops->probe_finalize() call-back
1916 * of some IOMMU drivers calls arm_iommu_attach_device() which
1917 * in-turn might call back into IOMMU core code, where it tries
1918 * to take group->mutex, resulting in a deadlock.
1919 */
1920 for_each_group_device(group, gdev)
1921 iommu_group_do_probe_finalize(gdev->dev);
1922 }
1923
1924 return 0;
1925 }
1926
1927 /**
1928 * device_iommu_capable() - check for a general IOMMU capability
1929 * @dev: device to which the capability would be relevant, if available
1930 * @cap: IOMMU capability
1931 *
1932 * Return: true if an IOMMU is present and supports the given capability
1933 * for the given device, otherwise false.
1934 */
device_iommu_capable(struct device * dev,enum iommu_cap cap)1935 bool device_iommu_capable(struct device *dev, enum iommu_cap cap)
1936 {
1937 const struct iommu_ops *ops;
1938
1939 if (!dev_has_iommu(dev))
1940 return false;
1941
1942 ops = dev_iommu_ops(dev);
1943 if (!ops->capable)
1944 return false;
1945
1946 return ops->capable(dev, cap);
1947 }
1948 EXPORT_SYMBOL_GPL(device_iommu_capable);
1949
1950 /**
1951 * iommu_group_has_isolated_msi() - Compute msi_device_has_isolated_msi()
1952 * for a group
1953 * @group: Group to query
1954 *
1955 * IOMMU groups should not have differing values of
1956 * msi_device_has_isolated_msi() for devices in a group. However nothing
1957 * directly prevents this, so ensure mistakes don't result in isolation failures
1958 * by checking that all the devices are the same.
1959 */
iommu_group_has_isolated_msi(struct iommu_group * group)1960 bool iommu_group_has_isolated_msi(struct iommu_group *group)
1961 {
1962 struct group_device *group_dev;
1963 bool ret = true;
1964
1965 mutex_lock(&group->mutex);
1966 for_each_group_device(group, group_dev)
1967 ret &= msi_device_has_isolated_msi(group_dev->dev);
1968 mutex_unlock(&group->mutex);
1969 return ret;
1970 }
1971 EXPORT_SYMBOL_GPL(iommu_group_has_isolated_msi);
1972
1973 /**
1974 * iommu_set_fault_handler() - set a fault handler for an iommu domain
1975 * @domain: iommu domain
1976 * @handler: fault handler
1977 * @token: user data, will be passed back to the fault handler
1978 *
1979 * This function should be used by IOMMU users which want to be notified
1980 * whenever an IOMMU fault happens.
1981 *
1982 * The fault handler itself should return 0 on success, and an appropriate
1983 * error code otherwise.
1984 */
iommu_set_fault_handler(struct iommu_domain * domain,iommu_fault_handler_t handler,void * token)1985 void iommu_set_fault_handler(struct iommu_domain *domain,
1986 iommu_fault_handler_t handler,
1987 void *token)
1988 {
1989 if (WARN_ON(!domain || domain->cookie_type != IOMMU_COOKIE_NONE))
1990 return;
1991
1992 domain->cookie_type = IOMMU_COOKIE_FAULT_HANDLER;
1993 domain->handler = handler;
1994 domain->handler_token = token;
1995 }
1996 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1997
iommu_domain_init(struct iommu_domain * domain,unsigned int type,const struct iommu_ops * ops)1998 static void iommu_domain_init(struct iommu_domain *domain, unsigned int type,
1999 const struct iommu_ops *ops)
2000 {
2001 domain->type = type;
2002 domain->owner = ops;
2003 if (!domain->ops)
2004 domain->ops = ops->default_domain_ops;
2005 }
2006
2007 static struct iommu_domain *
__iommu_paging_domain_alloc_flags(struct device * dev,unsigned int type,unsigned int flags)2008 __iommu_paging_domain_alloc_flags(struct device *dev, unsigned int type,
2009 unsigned int flags)
2010 {
2011 const struct iommu_ops *ops;
2012 struct iommu_domain *domain;
2013
2014 if (!dev_has_iommu(dev))
2015 return ERR_PTR(-ENODEV);
2016
2017 ops = dev_iommu_ops(dev);
2018
2019 if (ops->domain_alloc_paging && !flags)
2020 domain = ops->domain_alloc_paging(dev);
2021 else if (ops->domain_alloc_paging_flags)
2022 domain = ops->domain_alloc_paging_flags(dev, flags, NULL);
2023 #if IS_ENABLED(CONFIG_FSL_PAMU)
2024 else if (ops->domain_alloc && !flags)
2025 domain = ops->domain_alloc(IOMMU_DOMAIN_UNMANAGED);
2026 #endif
2027 else
2028 return ERR_PTR(-EOPNOTSUPP);
2029
2030 if (IS_ERR(domain))
2031 return domain;
2032 if (!domain)
2033 return ERR_PTR(-ENOMEM);
2034
2035 iommu_domain_init(domain, type, ops);
2036 return domain;
2037 }
2038
2039 /**
2040 * iommu_paging_domain_alloc_flags() - Allocate a paging domain
2041 * @dev: device for which the domain is allocated
2042 * @flags: Bitmap of iommufd_hwpt_alloc_flags
2043 *
2044 * Allocate a paging domain which will be managed by a kernel driver. Return
2045 * allocated domain if successful, or an ERR pointer for failure.
2046 */
iommu_paging_domain_alloc_flags(struct device * dev,unsigned int flags)2047 struct iommu_domain *iommu_paging_domain_alloc_flags(struct device *dev,
2048 unsigned int flags)
2049 {
2050 return __iommu_paging_domain_alloc_flags(dev,
2051 IOMMU_DOMAIN_UNMANAGED, flags);
2052 }
2053 EXPORT_SYMBOL_GPL(iommu_paging_domain_alloc_flags);
2054
iommu_domain_free(struct iommu_domain * domain)2055 void iommu_domain_free(struct iommu_domain *domain)
2056 {
2057 switch (domain->cookie_type) {
2058 case IOMMU_COOKIE_DMA_IOVA:
2059 iommu_put_dma_cookie(domain);
2060 break;
2061 case IOMMU_COOKIE_DMA_MSI:
2062 iommu_put_msi_cookie(domain);
2063 break;
2064 case IOMMU_COOKIE_SVA:
2065 mmdrop(domain->mm);
2066 break;
2067 default:
2068 break;
2069 }
2070 if (domain->ops->free)
2071 domain->ops->free(domain);
2072 }
2073 EXPORT_SYMBOL_GPL(iommu_domain_free);
2074
2075 /*
2076 * Put the group's domain back to the appropriate core-owned domain - either the
2077 * standard kernel-mode DMA configuration or an all-DMA-blocked domain.
2078 */
__iommu_group_set_core_domain(struct iommu_group * group)2079 static void __iommu_group_set_core_domain(struct iommu_group *group)
2080 {
2081 struct iommu_domain *new_domain;
2082
2083 if (group->owner)
2084 new_domain = group->blocking_domain;
2085 else
2086 new_domain = group->default_domain;
2087
2088 __iommu_group_set_domain_nofail(group, new_domain);
2089 }
2090
__iommu_attach_device(struct iommu_domain * domain,struct device * dev)2091 static int __iommu_attach_device(struct iommu_domain *domain,
2092 struct device *dev)
2093 {
2094 int ret;
2095
2096 if (unlikely(domain->ops->attach_dev == NULL))
2097 return -ENODEV;
2098
2099 ret = domain->ops->attach_dev(domain, dev);
2100 if (ret)
2101 return ret;
2102 dev->iommu->attach_deferred = 0;
2103 trace_attach_device_to_domain(dev);
2104 return 0;
2105 }
2106
2107 /**
2108 * iommu_attach_device - Attach an IOMMU domain to a device
2109 * @domain: IOMMU domain to attach
2110 * @dev: Device that will be attached
2111 *
2112 * Returns 0 on success and error code on failure
2113 *
2114 * Note that EINVAL can be treated as a soft failure, indicating
2115 * that certain configuration of the domain is incompatible with
2116 * the device. In this case attaching a different domain to the
2117 * device may succeed.
2118 */
iommu_attach_device(struct iommu_domain * domain,struct device * dev)2119 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
2120 {
2121 /* Caller must be a probed driver on dev */
2122 struct iommu_group *group = dev->iommu_group;
2123 int ret;
2124
2125 if (!group)
2126 return -ENODEV;
2127
2128 /*
2129 * Lock the group to make sure the device-count doesn't
2130 * change while we are attaching
2131 */
2132 mutex_lock(&group->mutex);
2133 ret = -EINVAL;
2134 if (list_count_nodes(&group->devices) != 1)
2135 goto out_unlock;
2136
2137 ret = __iommu_attach_group(domain, group);
2138
2139 out_unlock:
2140 mutex_unlock(&group->mutex);
2141 return ret;
2142 }
2143 EXPORT_SYMBOL_GPL(iommu_attach_device);
2144
iommu_deferred_attach(struct device * dev,struct iommu_domain * domain)2145 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2146 {
2147 if (dev->iommu && dev->iommu->attach_deferred)
2148 return __iommu_attach_device(domain, dev);
2149
2150 return 0;
2151 }
2152
iommu_detach_device(struct iommu_domain * domain,struct device * dev)2153 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2154 {
2155 /* Caller must be a probed driver on dev */
2156 struct iommu_group *group = dev->iommu_group;
2157
2158 if (!group)
2159 return;
2160
2161 mutex_lock(&group->mutex);
2162 if (WARN_ON(domain != group->domain) ||
2163 WARN_ON(list_count_nodes(&group->devices) != 1))
2164 goto out_unlock;
2165 __iommu_group_set_core_domain(group);
2166
2167 out_unlock:
2168 mutex_unlock(&group->mutex);
2169 }
2170 EXPORT_SYMBOL_GPL(iommu_detach_device);
2171
iommu_get_domain_for_dev(struct device * dev)2172 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2173 {
2174 /* Caller must be a probed driver on dev */
2175 struct iommu_group *group = dev->iommu_group;
2176
2177 if (!group)
2178 return NULL;
2179
2180 return group->domain;
2181 }
2182 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2183
2184 /*
2185 * For IOMMU_DOMAIN_DMA implementations which already provide their own
2186 * guarantees that the group and its default domain are valid and correct.
2187 */
iommu_get_dma_domain(struct device * dev)2188 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2189 {
2190 return dev->iommu_group->default_domain;
2191 }
2192
iommu_make_pasid_array_entry(struct iommu_domain * domain,struct iommu_attach_handle * handle)2193 static void *iommu_make_pasid_array_entry(struct iommu_domain *domain,
2194 struct iommu_attach_handle *handle)
2195 {
2196 if (handle) {
2197 handle->domain = domain;
2198 return xa_tag_pointer(handle, IOMMU_PASID_ARRAY_HANDLE);
2199 }
2200
2201 return xa_tag_pointer(domain, IOMMU_PASID_ARRAY_DOMAIN);
2202 }
2203
domain_iommu_ops_compatible(const struct iommu_ops * ops,struct iommu_domain * domain)2204 static bool domain_iommu_ops_compatible(const struct iommu_ops *ops,
2205 struct iommu_domain *domain)
2206 {
2207 if (domain->owner == ops)
2208 return true;
2209
2210 /* For static domains, owner isn't set. */
2211 if (domain == ops->blocked_domain || domain == ops->identity_domain)
2212 return true;
2213
2214 return false;
2215 }
2216
__iommu_attach_group(struct iommu_domain * domain,struct iommu_group * group)2217 static int __iommu_attach_group(struct iommu_domain *domain,
2218 struct iommu_group *group)
2219 {
2220 struct device *dev;
2221
2222 if (group->domain && group->domain != group->default_domain &&
2223 group->domain != group->blocking_domain)
2224 return -EBUSY;
2225
2226 dev = iommu_group_first_dev(group);
2227 if (!dev_has_iommu(dev) ||
2228 !domain_iommu_ops_compatible(dev_iommu_ops(dev), domain))
2229 return -EINVAL;
2230
2231 return __iommu_group_set_domain(group, domain);
2232 }
2233
2234 /**
2235 * iommu_attach_group - Attach an IOMMU domain to an IOMMU group
2236 * @domain: IOMMU domain to attach
2237 * @group: IOMMU group that will be attached
2238 *
2239 * Returns 0 on success and error code on failure
2240 *
2241 * Note that EINVAL can be treated as a soft failure, indicating
2242 * that certain configuration of the domain is incompatible with
2243 * the group. In this case attaching a different domain to the
2244 * group may succeed.
2245 */
iommu_attach_group(struct iommu_domain * domain,struct iommu_group * group)2246 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2247 {
2248 int ret;
2249
2250 mutex_lock(&group->mutex);
2251 ret = __iommu_attach_group(domain, group);
2252 mutex_unlock(&group->mutex);
2253
2254 return ret;
2255 }
2256 EXPORT_SYMBOL_GPL(iommu_attach_group);
2257
__iommu_device_set_domain(struct iommu_group * group,struct device * dev,struct iommu_domain * new_domain,unsigned int flags)2258 static int __iommu_device_set_domain(struct iommu_group *group,
2259 struct device *dev,
2260 struct iommu_domain *new_domain,
2261 unsigned int flags)
2262 {
2263 int ret;
2264
2265 /*
2266 * If the device requires IOMMU_RESV_DIRECT then we cannot allow
2267 * the blocking domain to be attached as it does not contain the
2268 * required 1:1 mapping. This test effectively excludes the device
2269 * being used with iommu_group_claim_dma_owner() which will block
2270 * vfio and iommufd as well.
2271 */
2272 if (dev->iommu->require_direct &&
2273 (new_domain->type == IOMMU_DOMAIN_BLOCKED ||
2274 new_domain == group->blocking_domain)) {
2275 dev_warn(dev,
2276 "Firmware has requested this device have a 1:1 IOMMU mapping, rejecting configuring the device without a 1:1 mapping. Contact your platform vendor.\n");
2277 return -EINVAL;
2278 }
2279
2280 if (dev->iommu->attach_deferred) {
2281 if (new_domain == group->default_domain)
2282 return 0;
2283 dev->iommu->attach_deferred = 0;
2284 }
2285
2286 ret = __iommu_attach_device(new_domain, dev);
2287 if (ret) {
2288 /*
2289 * If we have a blocking domain then try to attach that in hopes
2290 * of avoiding a UAF. Modern drivers should implement blocking
2291 * domains as global statics that cannot fail.
2292 */
2293 if ((flags & IOMMU_SET_DOMAIN_MUST_SUCCEED) &&
2294 group->blocking_domain &&
2295 group->blocking_domain != new_domain)
2296 __iommu_attach_device(group->blocking_domain, dev);
2297 return ret;
2298 }
2299 return 0;
2300 }
2301
2302 /*
2303 * If 0 is returned the group's domain is new_domain. If an error is returned
2304 * then the group's domain will be set back to the existing domain unless
2305 * IOMMU_SET_DOMAIN_MUST_SUCCEED, otherwise an error is returned and the group's
2306 * domains is left inconsistent. This is a driver bug to fail attach with a
2307 * previously good domain. We try to avoid a kernel UAF because of this.
2308 *
2309 * IOMMU groups are really the natural working unit of the IOMMU, but the IOMMU
2310 * API works on domains and devices. Bridge that gap by iterating over the
2311 * devices in a group. Ideally we'd have a single device which represents the
2312 * requestor ID of the group, but we also allow IOMMU drivers to create policy
2313 * defined minimum sets, where the physical hardware may be able to distiguish
2314 * members, but we wish to group them at a higher level (ex. untrusted
2315 * multi-function PCI devices). Thus we attach each device.
2316 */
__iommu_group_set_domain_internal(struct iommu_group * group,struct iommu_domain * new_domain,unsigned int flags)2317 static int __iommu_group_set_domain_internal(struct iommu_group *group,
2318 struct iommu_domain *new_domain,
2319 unsigned int flags)
2320 {
2321 struct group_device *last_gdev;
2322 struct group_device *gdev;
2323 int result;
2324 int ret;
2325
2326 lockdep_assert_held(&group->mutex);
2327
2328 if (group->domain == new_domain)
2329 return 0;
2330
2331 if (WARN_ON(!new_domain))
2332 return -EINVAL;
2333
2334 /*
2335 * Changing the domain is done by calling attach_dev() on the new
2336 * domain. This switch does not have to be atomic and DMA can be
2337 * discarded during the transition. DMA must only be able to access
2338 * either new_domain or group->domain, never something else.
2339 */
2340 result = 0;
2341 for_each_group_device(group, gdev) {
2342 ret = __iommu_device_set_domain(group, gdev->dev, new_domain,
2343 flags);
2344 if (ret) {
2345 result = ret;
2346 /*
2347 * Keep trying the other devices in the group. If a
2348 * driver fails attach to an otherwise good domain, and
2349 * does not support blocking domains, it should at least
2350 * drop its reference on the current domain so we don't
2351 * UAF.
2352 */
2353 if (flags & IOMMU_SET_DOMAIN_MUST_SUCCEED)
2354 continue;
2355 goto err_revert;
2356 }
2357 }
2358 group->domain = new_domain;
2359 return result;
2360
2361 err_revert:
2362 /*
2363 * This is called in error unwind paths. A well behaved driver should
2364 * always allow us to attach to a domain that was already attached.
2365 */
2366 last_gdev = gdev;
2367 for_each_group_device(group, gdev) {
2368 /*
2369 * A NULL domain can happen only for first probe, in which case
2370 * we leave group->domain as NULL and let release clean
2371 * everything up.
2372 */
2373 if (group->domain)
2374 WARN_ON(__iommu_device_set_domain(
2375 group, gdev->dev, group->domain,
2376 IOMMU_SET_DOMAIN_MUST_SUCCEED));
2377 if (gdev == last_gdev)
2378 break;
2379 }
2380 return ret;
2381 }
2382
iommu_detach_group(struct iommu_domain * domain,struct iommu_group * group)2383 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2384 {
2385 mutex_lock(&group->mutex);
2386 __iommu_group_set_core_domain(group);
2387 mutex_unlock(&group->mutex);
2388 }
2389 EXPORT_SYMBOL_GPL(iommu_detach_group);
2390
iommu_iova_to_phys(struct iommu_domain * domain,dma_addr_t iova)2391 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2392 {
2393 if (domain->type == IOMMU_DOMAIN_IDENTITY)
2394 return iova;
2395
2396 if (domain->type == IOMMU_DOMAIN_BLOCKED)
2397 return 0;
2398
2399 return domain->ops->iova_to_phys(domain, iova);
2400 }
2401 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2402
iommu_pgsize(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,size_t * count)2403 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2404 phys_addr_t paddr, size_t size, size_t *count)
2405 {
2406 unsigned int pgsize_idx, pgsize_idx_next;
2407 unsigned long pgsizes;
2408 size_t offset, pgsize, pgsize_next;
2409 size_t offset_end;
2410 unsigned long addr_merge = paddr | iova;
2411
2412 /* Page sizes supported by the hardware and small enough for @size */
2413 pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2414
2415 /* Constrain the page sizes further based on the maximum alignment */
2416 if (likely(addr_merge))
2417 pgsizes &= GENMASK(__ffs(addr_merge), 0);
2418
2419 /* Make sure we have at least one suitable page size */
2420 BUG_ON(!pgsizes);
2421
2422 /* Pick the biggest page size remaining */
2423 pgsize_idx = __fls(pgsizes);
2424 pgsize = BIT(pgsize_idx);
2425 if (!count)
2426 return pgsize;
2427
2428 /* Find the next biggest support page size, if it exists */
2429 pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2430 if (!pgsizes)
2431 goto out_set_count;
2432
2433 pgsize_idx_next = __ffs(pgsizes);
2434 pgsize_next = BIT(pgsize_idx_next);
2435
2436 /*
2437 * There's no point trying a bigger page size unless the virtual
2438 * and physical addresses are similarly offset within the larger page.
2439 */
2440 if ((iova ^ paddr) & (pgsize_next - 1))
2441 goto out_set_count;
2442
2443 /* Calculate the offset to the next page size alignment boundary */
2444 offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2445
2446 /*
2447 * If size is big enough to accommodate the larger page, reduce
2448 * the number of smaller pages.
2449 */
2450 if (!check_add_overflow(offset, pgsize_next, &offset_end) &&
2451 offset_end <= size)
2452 size = offset;
2453
2454 out_set_count:
2455 *count = size >> pgsize_idx;
2456 return pgsize;
2457 }
2458
iommu_map_nosync(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)2459 int iommu_map_nosync(struct iommu_domain *domain, unsigned long iova,
2460 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2461 {
2462 const struct iommu_domain_ops *ops = domain->ops;
2463 unsigned long orig_iova = iova;
2464 unsigned int min_pagesz;
2465 size_t orig_size = size;
2466 phys_addr_t orig_paddr = paddr;
2467 int ret = 0;
2468
2469 might_sleep_if(gfpflags_allow_blocking(gfp));
2470
2471 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2472 return -EINVAL;
2473
2474 if (WARN_ON(!ops->map_pages || domain->pgsize_bitmap == 0UL))
2475 return -ENODEV;
2476
2477 /* Discourage passing strange GFP flags */
2478 if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2479 __GFP_HIGHMEM)))
2480 return -EINVAL;
2481
2482 /* find out the minimum page size supported */
2483 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2484
2485 /*
2486 * both the virtual address and the physical one, as well as
2487 * the size of the mapping, must be aligned (at least) to the
2488 * size of the smallest page supported by the hardware
2489 */
2490 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2491 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2492 iova, &paddr, size, min_pagesz);
2493 return -EINVAL;
2494 }
2495
2496 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2497
2498 while (size) {
2499 size_t pgsize, count, mapped = 0;
2500
2501 pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2502
2503 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2504 iova, &paddr, pgsize, count);
2505 ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2506 gfp, &mapped);
2507 /*
2508 * Some pages may have been mapped, even if an error occurred,
2509 * so we should account for those so they can be unmapped.
2510 */
2511 size -= mapped;
2512
2513 if (ret)
2514 break;
2515
2516 iova += mapped;
2517 paddr += mapped;
2518 }
2519
2520 /* unroll mapping in case something went wrong */
2521 if (ret)
2522 iommu_unmap(domain, orig_iova, orig_size - size);
2523 else
2524 trace_map(orig_iova, orig_paddr, orig_size);
2525
2526 return ret;
2527 }
2528
iommu_sync_map(struct iommu_domain * domain,unsigned long iova,size_t size)2529 int iommu_sync_map(struct iommu_domain *domain, unsigned long iova, size_t size)
2530 {
2531 const struct iommu_domain_ops *ops = domain->ops;
2532
2533 if (!ops->iotlb_sync_map)
2534 return 0;
2535 return ops->iotlb_sync_map(domain, iova, size);
2536 }
2537
iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)2538 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2539 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2540 {
2541 int ret;
2542
2543 ret = iommu_map_nosync(domain, iova, paddr, size, prot, gfp);
2544 if (ret)
2545 return ret;
2546
2547 ret = iommu_sync_map(domain, iova, size);
2548 if (ret)
2549 iommu_unmap(domain, iova, size);
2550
2551 return ret;
2552 }
2553 EXPORT_SYMBOL_GPL(iommu_map);
2554
__iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2555 static size_t __iommu_unmap(struct iommu_domain *domain,
2556 unsigned long iova, size_t size,
2557 struct iommu_iotlb_gather *iotlb_gather)
2558 {
2559 const struct iommu_domain_ops *ops = domain->ops;
2560 size_t unmapped_page, unmapped = 0;
2561 unsigned long orig_iova = iova;
2562 unsigned int min_pagesz;
2563
2564 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2565 return 0;
2566
2567 if (WARN_ON(!ops->unmap_pages || domain->pgsize_bitmap == 0UL))
2568 return 0;
2569
2570 /* find out the minimum page size supported */
2571 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2572
2573 /*
2574 * The virtual address, as well as the size of the mapping, must be
2575 * aligned (at least) to the size of the smallest page supported
2576 * by the hardware
2577 */
2578 if (!IS_ALIGNED(iova | size, min_pagesz)) {
2579 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2580 iova, size, min_pagesz);
2581 return 0;
2582 }
2583
2584 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2585
2586 /*
2587 * Keep iterating until we either unmap 'size' bytes (or more)
2588 * or we hit an area that isn't mapped.
2589 */
2590 while (unmapped < size) {
2591 size_t pgsize, count;
2592
2593 pgsize = iommu_pgsize(domain, iova, iova, size - unmapped, &count);
2594 unmapped_page = ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather);
2595 if (!unmapped_page)
2596 break;
2597
2598 pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2599 iova, unmapped_page);
2600
2601 iova += unmapped_page;
2602 unmapped += unmapped_page;
2603 }
2604
2605 trace_unmap(orig_iova, size, unmapped);
2606 return unmapped;
2607 }
2608
2609 /**
2610 * iommu_unmap() - Remove mappings from a range of IOVA
2611 * @domain: Domain to manipulate
2612 * @iova: IO virtual address to start
2613 * @size: Length of the range starting from @iova
2614 *
2615 * iommu_unmap() will remove a translation created by iommu_map(). It cannot
2616 * subdivide a mapping created by iommu_map(), so it should be called with IOVA
2617 * ranges that match what was passed to iommu_map(). The range can aggregate
2618 * contiguous iommu_map() calls so long as no individual range is split.
2619 *
2620 * Returns: Number of bytes of IOVA unmapped. iova + res will be the point
2621 * unmapping stopped.
2622 */
iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size)2623 size_t iommu_unmap(struct iommu_domain *domain,
2624 unsigned long iova, size_t size)
2625 {
2626 struct iommu_iotlb_gather iotlb_gather;
2627 size_t ret;
2628
2629 iommu_iotlb_gather_init(&iotlb_gather);
2630 ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2631 iommu_iotlb_sync(domain, &iotlb_gather);
2632
2633 return ret;
2634 }
2635 EXPORT_SYMBOL_GPL(iommu_unmap);
2636
2637 /**
2638 * iommu_unmap_fast() - Remove mappings from a range of IOVA without IOTLB sync
2639 * @domain: Domain to manipulate
2640 * @iova: IO virtual address to start
2641 * @size: Length of the range starting from @iova
2642 * @iotlb_gather: range information for a pending IOTLB flush
2643 *
2644 * iommu_unmap_fast() will remove a translation created by iommu_map().
2645 * It can't subdivide a mapping created by iommu_map(), so it should be
2646 * called with IOVA ranges that match what was passed to iommu_map(). The
2647 * range can aggregate contiguous iommu_map() calls so long as no individual
2648 * range is split.
2649 *
2650 * Basically iommu_unmap_fast() is the same as iommu_unmap() but for callers
2651 * which manage the IOTLB flushing externally to perform a batched sync.
2652 *
2653 * Returns: Number of bytes of IOVA unmapped. iova + res will be the point
2654 * unmapping stopped.
2655 */
iommu_unmap_fast(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2656 size_t iommu_unmap_fast(struct iommu_domain *domain,
2657 unsigned long iova, size_t size,
2658 struct iommu_iotlb_gather *iotlb_gather)
2659 {
2660 return __iommu_unmap(domain, iova, size, iotlb_gather);
2661 }
2662 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2663
iommu_map_sg(struct iommu_domain * domain,unsigned long iova,struct scatterlist * sg,unsigned int nents,int prot,gfp_t gfp)2664 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2665 struct scatterlist *sg, unsigned int nents, int prot,
2666 gfp_t gfp)
2667 {
2668 size_t len = 0, mapped = 0;
2669 phys_addr_t start;
2670 unsigned int i = 0;
2671 int ret;
2672
2673 while (i <= nents) {
2674 phys_addr_t s_phys = sg_phys(sg);
2675
2676 if (len && s_phys != start + len) {
2677 ret = iommu_map_nosync(domain, iova + mapped, start,
2678 len, prot, gfp);
2679 if (ret)
2680 goto out_err;
2681
2682 mapped += len;
2683 len = 0;
2684 }
2685
2686 if (sg_dma_is_bus_address(sg))
2687 goto next;
2688
2689 if (len) {
2690 len += sg->length;
2691 } else {
2692 len = sg->length;
2693 start = s_phys;
2694 }
2695
2696 next:
2697 if (++i < nents)
2698 sg = sg_next(sg);
2699 }
2700
2701 ret = iommu_sync_map(domain, iova, mapped);
2702 if (ret)
2703 goto out_err;
2704
2705 return mapped;
2706
2707 out_err:
2708 /* undo mappings already done */
2709 iommu_unmap(domain, iova, mapped);
2710
2711 return ret;
2712 }
2713 EXPORT_SYMBOL_GPL(iommu_map_sg);
2714
2715 /**
2716 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2717 * @domain: the iommu domain where the fault has happened
2718 * @dev: the device where the fault has happened
2719 * @iova: the faulting address
2720 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2721 *
2722 * This function should be called by the low-level IOMMU implementations
2723 * whenever IOMMU faults happen, to allow high-level users, that are
2724 * interested in such events, to know about them.
2725 *
2726 * This event may be useful for several possible use cases:
2727 * - mere logging of the event
2728 * - dynamic TLB/PTE loading
2729 * - if restarting of the faulting device is required
2730 *
2731 * Returns 0 on success and an appropriate error code otherwise (if dynamic
2732 * PTE/TLB loading will one day be supported, implementations will be able
2733 * to tell whether it succeeded or not according to this return value).
2734 *
2735 * Specifically, -ENOSYS is returned if a fault handler isn't installed
2736 * (though fault handlers can also return -ENOSYS, in case they want to
2737 * elicit the default behavior of the IOMMU drivers).
2738 */
report_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags)2739 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2740 unsigned long iova, int flags)
2741 {
2742 int ret = -ENOSYS;
2743
2744 /*
2745 * if upper layers showed interest and installed a fault handler,
2746 * invoke it.
2747 */
2748 if (domain->cookie_type == IOMMU_COOKIE_FAULT_HANDLER &&
2749 domain->handler)
2750 ret = domain->handler(domain, dev, iova, flags,
2751 domain->handler_token);
2752
2753 trace_io_page_fault(dev, iova, flags);
2754 return ret;
2755 }
2756 EXPORT_SYMBOL_GPL(report_iommu_fault);
2757
iommu_init(void)2758 static int __init iommu_init(void)
2759 {
2760 iommu_group_kset = kset_create_and_add("iommu_groups",
2761 NULL, kernel_kobj);
2762 BUG_ON(!iommu_group_kset);
2763
2764 iommu_debugfs_setup();
2765
2766 return 0;
2767 }
2768 core_initcall(iommu_init);
2769
iommu_set_pgtable_quirks(struct iommu_domain * domain,unsigned long quirk)2770 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2771 unsigned long quirk)
2772 {
2773 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2774 return -EINVAL;
2775 if (!domain->ops->set_pgtable_quirks)
2776 return -EINVAL;
2777 return domain->ops->set_pgtable_quirks(domain, quirk);
2778 }
2779 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2780
2781 /**
2782 * iommu_get_resv_regions - get reserved regions
2783 * @dev: device for which to get reserved regions
2784 * @list: reserved region list for device
2785 *
2786 * This returns a list of reserved IOVA regions specific to this device.
2787 * A domain user should not map IOVA in these ranges.
2788 */
iommu_get_resv_regions(struct device * dev,struct list_head * list)2789 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2790 {
2791 const struct iommu_ops *ops = dev_iommu_ops(dev);
2792
2793 if (ops->get_resv_regions)
2794 ops->get_resv_regions(dev, list);
2795 }
2796 EXPORT_SYMBOL_GPL(iommu_get_resv_regions);
2797
2798 /**
2799 * iommu_put_resv_regions - release reserved regions
2800 * @dev: device for which to free reserved regions
2801 * @list: reserved region list for device
2802 *
2803 * This releases a reserved region list acquired by iommu_get_resv_regions().
2804 */
iommu_put_resv_regions(struct device * dev,struct list_head * list)2805 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2806 {
2807 struct iommu_resv_region *entry, *next;
2808
2809 list_for_each_entry_safe(entry, next, list, list) {
2810 if (entry->free)
2811 entry->free(dev, entry);
2812 else
2813 kfree(entry);
2814 }
2815 }
2816 EXPORT_SYMBOL(iommu_put_resv_regions);
2817
iommu_alloc_resv_region(phys_addr_t start,size_t length,int prot,enum iommu_resv_type type,gfp_t gfp)2818 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2819 size_t length, int prot,
2820 enum iommu_resv_type type,
2821 gfp_t gfp)
2822 {
2823 struct iommu_resv_region *region;
2824
2825 region = kzalloc(sizeof(*region), gfp);
2826 if (!region)
2827 return NULL;
2828
2829 INIT_LIST_HEAD(®ion->list);
2830 region->start = start;
2831 region->length = length;
2832 region->prot = prot;
2833 region->type = type;
2834 return region;
2835 }
2836 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2837
iommu_set_default_passthrough(bool cmd_line)2838 void iommu_set_default_passthrough(bool cmd_line)
2839 {
2840 if (cmd_line)
2841 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2842 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2843 }
2844
iommu_set_default_translated(bool cmd_line)2845 void iommu_set_default_translated(bool cmd_line)
2846 {
2847 if (cmd_line)
2848 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2849 iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2850 }
2851
iommu_default_passthrough(void)2852 bool iommu_default_passthrough(void)
2853 {
2854 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2855 }
2856 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2857
iommu_from_fwnode(const struct fwnode_handle * fwnode)2858 static const struct iommu_device *iommu_from_fwnode(const struct fwnode_handle *fwnode)
2859 {
2860 const struct iommu_device *iommu, *ret = NULL;
2861
2862 spin_lock(&iommu_device_lock);
2863 list_for_each_entry(iommu, &iommu_device_list, list)
2864 if (iommu->fwnode == fwnode) {
2865 ret = iommu;
2866 break;
2867 }
2868 spin_unlock(&iommu_device_lock);
2869 return ret;
2870 }
2871
iommu_ops_from_fwnode(const struct fwnode_handle * fwnode)2872 const struct iommu_ops *iommu_ops_from_fwnode(const struct fwnode_handle *fwnode)
2873 {
2874 const struct iommu_device *iommu = iommu_from_fwnode(fwnode);
2875
2876 return iommu ? iommu->ops : NULL;
2877 }
2878
iommu_fwspec_init(struct device * dev,struct fwnode_handle * iommu_fwnode)2879 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode)
2880 {
2881 const struct iommu_device *iommu = iommu_from_fwnode(iommu_fwnode);
2882 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2883
2884 if (!iommu)
2885 return driver_deferred_probe_check_state(dev);
2886 if (!dev->iommu && !READ_ONCE(iommu->ready))
2887 return -EPROBE_DEFER;
2888
2889 if (fwspec)
2890 return iommu->ops == iommu_fwspec_ops(fwspec) ? 0 : -EINVAL;
2891
2892 if (!dev_iommu_get(dev))
2893 return -ENOMEM;
2894
2895 /* Preallocate for the overwhelmingly common case of 1 ID */
2896 fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2897 if (!fwspec)
2898 return -ENOMEM;
2899
2900 fwnode_handle_get(iommu_fwnode);
2901 fwspec->iommu_fwnode = iommu_fwnode;
2902 dev_iommu_fwspec_set(dev, fwspec);
2903 return 0;
2904 }
2905 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2906
iommu_fwspec_free(struct device * dev)2907 void iommu_fwspec_free(struct device *dev)
2908 {
2909 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2910
2911 if (fwspec) {
2912 fwnode_handle_put(fwspec->iommu_fwnode);
2913 kfree(fwspec);
2914 dev_iommu_fwspec_set(dev, NULL);
2915 }
2916 }
2917
iommu_fwspec_add_ids(struct device * dev,const u32 * ids,int num_ids)2918 int iommu_fwspec_add_ids(struct device *dev, const u32 *ids, int num_ids)
2919 {
2920 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2921 int i, new_num;
2922
2923 if (!fwspec)
2924 return -EINVAL;
2925
2926 new_num = fwspec->num_ids + num_ids;
2927 if (new_num > 1) {
2928 fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2929 GFP_KERNEL);
2930 if (!fwspec)
2931 return -ENOMEM;
2932
2933 dev_iommu_fwspec_set(dev, fwspec);
2934 }
2935
2936 for (i = 0; i < num_ids; i++)
2937 fwspec->ids[fwspec->num_ids + i] = ids[i];
2938
2939 fwspec->num_ids = new_num;
2940 return 0;
2941 }
2942 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2943
2944 /**
2945 * iommu_setup_default_domain - Set the default_domain for the group
2946 * @group: Group to change
2947 * @target_type: Domain type to set as the default_domain
2948 *
2949 * Allocate a default domain and set it as the current domain on the group. If
2950 * the group already has a default domain it will be changed to the target_type.
2951 * When target_type is 0 the default domain is selected based on driver and
2952 * system preferences.
2953 */
iommu_setup_default_domain(struct iommu_group * group,int target_type)2954 static int iommu_setup_default_domain(struct iommu_group *group,
2955 int target_type)
2956 {
2957 struct iommu_domain *old_dom = group->default_domain;
2958 struct group_device *gdev;
2959 struct iommu_domain *dom;
2960 bool direct_failed;
2961 int req_type;
2962 int ret;
2963
2964 lockdep_assert_held(&group->mutex);
2965
2966 req_type = iommu_get_default_domain_type(group, target_type);
2967 if (req_type < 0)
2968 return -EINVAL;
2969
2970 dom = iommu_group_alloc_default_domain(group, req_type);
2971 if (IS_ERR(dom))
2972 return PTR_ERR(dom);
2973
2974 if (group->default_domain == dom)
2975 return 0;
2976
2977 if (iommu_is_dma_domain(dom)) {
2978 ret = iommu_get_dma_cookie(dom);
2979 if (ret) {
2980 iommu_domain_free(dom);
2981 return ret;
2982 }
2983 }
2984
2985 /*
2986 * IOMMU_RESV_DIRECT and IOMMU_RESV_DIRECT_RELAXABLE regions must be
2987 * mapped before their device is attached, in order to guarantee
2988 * continuity with any FW activity
2989 */
2990 direct_failed = false;
2991 for_each_group_device(group, gdev) {
2992 if (iommu_create_device_direct_mappings(dom, gdev->dev)) {
2993 direct_failed = true;
2994 dev_warn_once(
2995 gdev->dev->iommu->iommu_dev->dev,
2996 "IOMMU driver was not able to establish FW requested direct mapping.");
2997 }
2998 }
2999
3000 /* We must set default_domain early for __iommu_device_set_domain */
3001 group->default_domain = dom;
3002 if (!group->domain) {
3003 /*
3004 * Drivers are not allowed to fail the first domain attach.
3005 * The only way to recover from this is to fail attaching the
3006 * iommu driver and call ops->release_device. Put the domain
3007 * in group->default_domain so it is freed after.
3008 */
3009 ret = __iommu_group_set_domain_internal(
3010 group, dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
3011 if (WARN_ON(ret))
3012 goto out_free_old;
3013 } else {
3014 ret = __iommu_group_set_domain(group, dom);
3015 if (ret)
3016 goto err_restore_def_domain;
3017 }
3018
3019 /*
3020 * Drivers are supposed to allow mappings to be installed in a domain
3021 * before device attachment, but some don't. Hack around this defect by
3022 * trying again after attaching. If this happens it means the device
3023 * will not continuously have the IOMMU_RESV_DIRECT map.
3024 */
3025 if (direct_failed) {
3026 for_each_group_device(group, gdev) {
3027 ret = iommu_create_device_direct_mappings(dom, gdev->dev);
3028 if (ret)
3029 goto err_restore_domain;
3030 }
3031 }
3032
3033 out_free_old:
3034 if (old_dom)
3035 iommu_domain_free(old_dom);
3036 return ret;
3037
3038 err_restore_domain:
3039 if (old_dom)
3040 __iommu_group_set_domain_internal(
3041 group, old_dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
3042 err_restore_def_domain:
3043 if (old_dom) {
3044 iommu_domain_free(dom);
3045 group->default_domain = old_dom;
3046 }
3047 return ret;
3048 }
3049
3050 /*
3051 * Changing the default domain through sysfs requires the users to unbind the
3052 * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
3053 * transition. Return failure if this isn't met.
3054 *
3055 * We need to consider the race between this and the device release path.
3056 * group->mutex is used here to guarantee that the device release path
3057 * will not be entered at the same time.
3058 */
iommu_group_store_type(struct iommu_group * group,const char * buf,size_t count)3059 static ssize_t iommu_group_store_type(struct iommu_group *group,
3060 const char *buf, size_t count)
3061 {
3062 struct group_device *gdev;
3063 int ret, req_type;
3064
3065 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
3066 return -EACCES;
3067
3068 if (WARN_ON(!group) || !group->default_domain)
3069 return -EINVAL;
3070
3071 if (sysfs_streq(buf, "identity"))
3072 req_type = IOMMU_DOMAIN_IDENTITY;
3073 else if (sysfs_streq(buf, "DMA"))
3074 req_type = IOMMU_DOMAIN_DMA;
3075 else if (sysfs_streq(buf, "DMA-FQ"))
3076 req_type = IOMMU_DOMAIN_DMA_FQ;
3077 else if (sysfs_streq(buf, "auto"))
3078 req_type = 0;
3079 else
3080 return -EINVAL;
3081
3082 mutex_lock(&group->mutex);
3083 /* We can bring up a flush queue without tearing down the domain. */
3084 if (req_type == IOMMU_DOMAIN_DMA_FQ &&
3085 group->default_domain->type == IOMMU_DOMAIN_DMA) {
3086 ret = iommu_dma_init_fq(group->default_domain);
3087 if (ret)
3088 goto out_unlock;
3089
3090 group->default_domain->type = IOMMU_DOMAIN_DMA_FQ;
3091 ret = count;
3092 goto out_unlock;
3093 }
3094
3095 /* Otherwise, ensure that device exists and no driver is bound. */
3096 if (list_empty(&group->devices) || group->owner_cnt) {
3097 ret = -EPERM;
3098 goto out_unlock;
3099 }
3100
3101 ret = iommu_setup_default_domain(group, req_type);
3102 if (ret)
3103 goto out_unlock;
3104
3105 /* Make sure dma_ops is appropriatley set */
3106 for_each_group_device(group, gdev)
3107 iommu_setup_dma_ops(gdev->dev);
3108
3109 out_unlock:
3110 mutex_unlock(&group->mutex);
3111 return ret ?: count;
3112 }
3113
3114 /**
3115 * iommu_device_use_default_domain() - Device driver wants to handle device
3116 * DMA through the kernel DMA API.
3117 * @dev: The device.
3118 *
3119 * The device driver about to bind @dev wants to do DMA through the kernel
3120 * DMA API. Return 0 if it is allowed, otherwise an error.
3121 */
iommu_device_use_default_domain(struct device * dev)3122 int iommu_device_use_default_domain(struct device *dev)
3123 {
3124 /* Caller is the driver core during the pre-probe path */
3125 struct iommu_group *group = dev->iommu_group;
3126 int ret = 0;
3127
3128 if (!group)
3129 return 0;
3130
3131 mutex_lock(&group->mutex);
3132 /* We may race against bus_iommu_probe() finalising groups here */
3133 if (!group->default_domain) {
3134 ret = -EPROBE_DEFER;
3135 goto unlock_out;
3136 }
3137 if (group->owner_cnt) {
3138 if (group->domain != group->default_domain || group->owner ||
3139 !xa_empty(&group->pasid_array)) {
3140 ret = -EBUSY;
3141 goto unlock_out;
3142 }
3143 }
3144
3145 group->owner_cnt++;
3146
3147 unlock_out:
3148 mutex_unlock(&group->mutex);
3149 return ret;
3150 }
3151
3152 /**
3153 * iommu_device_unuse_default_domain() - Device driver stops handling device
3154 * DMA through the kernel DMA API.
3155 * @dev: The device.
3156 *
3157 * The device driver doesn't want to do DMA through kernel DMA API anymore.
3158 * It must be called after iommu_device_use_default_domain().
3159 */
iommu_device_unuse_default_domain(struct device * dev)3160 void iommu_device_unuse_default_domain(struct device *dev)
3161 {
3162 /* Caller is the driver core during the post-probe path */
3163 struct iommu_group *group = dev->iommu_group;
3164
3165 if (!group)
3166 return;
3167
3168 mutex_lock(&group->mutex);
3169 if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array)))
3170 group->owner_cnt--;
3171
3172 mutex_unlock(&group->mutex);
3173 }
3174
__iommu_group_alloc_blocking_domain(struct iommu_group * group)3175 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group)
3176 {
3177 struct device *dev = iommu_group_first_dev(group);
3178 const struct iommu_ops *ops = dev_iommu_ops(dev);
3179 struct iommu_domain *domain;
3180
3181 if (group->blocking_domain)
3182 return 0;
3183
3184 if (ops->blocked_domain) {
3185 group->blocking_domain = ops->blocked_domain;
3186 return 0;
3187 }
3188
3189 /*
3190 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED create an
3191 * empty PAGING domain instead.
3192 */
3193 domain = iommu_paging_domain_alloc(dev);
3194 if (IS_ERR(domain))
3195 return PTR_ERR(domain);
3196 group->blocking_domain = domain;
3197 return 0;
3198 }
3199
__iommu_take_dma_ownership(struct iommu_group * group,void * owner)3200 static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner)
3201 {
3202 int ret;
3203
3204 if ((group->domain && group->domain != group->default_domain) ||
3205 !xa_empty(&group->pasid_array))
3206 return -EBUSY;
3207
3208 ret = __iommu_group_alloc_blocking_domain(group);
3209 if (ret)
3210 return ret;
3211 ret = __iommu_group_set_domain(group, group->blocking_domain);
3212 if (ret)
3213 return ret;
3214
3215 group->owner = owner;
3216 group->owner_cnt++;
3217 return 0;
3218 }
3219
3220 /**
3221 * iommu_group_claim_dma_owner() - Set DMA ownership of a group
3222 * @group: The group.
3223 * @owner: Caller specified pointer. Used for exclusive ownership.
3224 *
3225 * This is to support backward compatibility for vfio which manages the dma
3226 * ownership in iommu_group level. New invocations on this interface should be
3227 * prohibited. Only a single owner may exist for a group.
3228 */
iommu_group_claim_dma_owner(struct iommu_group * group,void * owner)3229 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner)
3230 {
3231 int ret = 0;
3232
3233 if (WARN_ON(!owner))
3234 return -EINVAL;
3235
3236 mutex_lock(&group->mutex);
3237 if (group->owner_cnt) {
3238 ret = -EPERM;
3239 goto unlock_out;
3240 }
3241
3242 ret = __iommu_take_dma_ownership(group, owner);
3243 unlock_out:
3244 mutex_unlock(&group->mutex);
3245
3246 return ret;
3247 }
3248 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner);
3249
3250 /**
3251 * iommu_device_claim_dma_owner() - Set DMA ownership of a device
3252 * @dev: The device.
3253 * @owner: Caller specified pointer. Used for exclusive ownership.
3254 *
3255 * Claim the DMA ownership of a device. Multiple devices in the same group may
3256 * concurrently claim ownership if they present the same owner value. Returns 0
3257 * on success and error code on failure
3258 */
iommu_device_claim_dma_owner(struct device * dev,void * owner)3259 int iommu_device_claim_dma_owner(struct device *dev, void *owner)
3260 {
3261 /* Caller must be a probed driver on dev */
3262 struct iommu_group *group = dev->iommu_group;
3263 int ret = 0;
3264
3265 if (WARN_ON(!owner))
3266 return -EINVAL;
3267
3268 if (!group)
3269 return -ENODEV;
3270
3271 mutex_lock(&group->mutex);
3272 if (group->owner_cnt) {
3273 if (group->owner != owner) {
3274 ret = -EPERM;
3275 goto unlock_out;
3276 }
3277 group->owner_cnt++;
3278 goto unlock_out;
3279 }
3280
3281 ret = __iommu_take_dma_ownership(group, owner);
3282 unlock_out:
3283 mutex_unlock(&group->mutex);
3284 return ret;
3285 }
3286 EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner);
3287
__iommu_release_dma_ownership(struct iommu_group * group)3288 static void __iommu_release_dma_ownership(struct iommu_group *group)
3289 {
3290 if (WARN_ON(!group->owner_cnt || !group->owner ||
3291 !xa_empty(&group->pasid_array)))
3292 return;
3293
3294 group->owner_cnt = 0;
3295 group->owner = NULL;
3296 __iommu_group_set_domain_nofail(group, group->default_domain);
3297 }
3298
3299 /**
3300 * iommu_group_release_dma_owner() - Release DMA ownership of a group
3301 * @group: The group
3302 *
3303 * Release the DMA ownership claimed by iommu_group_claim_dma_owner().
3304 */
iommu_group_release_dma_owner(struct iommu_group * group)3305 void iommu_group_release_dma_owner(struct iommu_group *group)
3306 {
3307 mutex_lock(&group->mutex);
3308 __iommu_release_dma_ownership(group);
3309 mutex_unlock(&group->mutex);
3310 }
3311 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner);
3312
3313 /**
3314 * iommu_device_release_dma_owner() - Release DMA ownership of a device
3315 * @dev: The device.
3316 *
3317 * Release the DMA ownership claimed by iommu_device_claim_dma_owner().
3318 */
iommu_device_release_dma_owner(struct device * dev)3319 void iommu_device_release_dma_owner(struct device *dev)
3320 {
3321 /* Caller must be a probed driver on dev */
3322 struct iommu_group *group = dev->iommu_group;
3323
3324 mutex_lock(&group->mutex);
3325 if (group->owner_cnt > 1)
3326 group->owner_cnt--;
3327 else
3328 __iommu_release_dma_ownership(group);
3329 mutex_unlock(&group->mutex);
3330 }
3331 EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner);
3332
3333 /**
3334 * iommu_group_dma_owner_claimed() - Query group dma ownership status
3335 * @group: The group.
3336 *
3337 * This provides status query on a given group. It is racy and only for
3338 * non-binding status reporting.
3339 */
iommu_group_dma_owner_claimed(struct iommu_group * group)3340 bool iommu_group_dma_owner_claimed(struct iommu_group *group)
3341 {
3342 unsigned int user;
3343
3344 mutex_lock(&group->mutex);
3345 user = group->owner_cnt;
3346 mutex_unlock(&group->mutex);
3347
3348 return user;
3349 }
3350 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed);
3351
iommu_remove_dev_pasid(struct device * dev,ioasid_t pasid,struct iommu_domain * domain)3352 static void iommu_remove_dev_pasid(struct device *dev, ioasid_t pasid,
3353 struct iommu_domain *domain)
3354 {
3355 const struct iommu_ops *ops = dev_iommu_ops(dev);
3356 struct iommu_domain *blocked_domain = ops->blocked_domain;
3357
3358 WARN_ON(blocked_domain->ops->set_dev_pasid(blocked_domain,
3359 dev, pasid, domain));
3360 }
3361
__iommu_set_group_pasid(struct iommu_domain * domain,struct iommu_group * group,ioasid_t pasid,struct iommu_domain * old)3362 static int __iommu_set_group_pasid(struct iommu_domain *domain,
3363 struct iommu_group *group, ioasid_t pasid,
3364 struct iommu_domain *old)
3365 {
3366 struct group_device *device, *last_gdev;
3367 int ret;
3368
3369 for_each_group_device(group, device) {
3370 if (device->dev->iommu->max_pasids > 0) {
3371 ret = domain->ops->set_dev_pasid(domain, device->dev,
3372 pasid, old);
3373 if (ret)
3374 goto err_revert;
3375 }
3376 }
3377
3378 return 0;
3379
3380 err_revert:
3381 last_gdev = device;
3382 for_each_group_device(group, device) {
3383 if (device == last_gdev)
3384 break;
3385 if (device->dev->iommu->max_pasids > 0) {
3386 /*
3387 * If no old domain, undo the succeeded devices/pasid.
3388 * Otherwise, rollback the succeeded devices/pasid to
3389 * the old domain. And it is a driver bug to fail
3390 * attaching with a previously good domain.
3391 */
3392 if (!old ||
3393 WARN_ON(old->ops->set_dev_pasid(old, device->dev,
3394 pasid, domain)))
3395 iommu_remove_dev_pasid(device->dev, pasid, domain);
3396 }
3397 }
3398 return ret;
3399 }
3400
__iommu_remove_group_pasid(struct iommu_group * group,ioasid_t pasid,struct iommu_domain * domain)3401 static void __iommu_remove_group_pasid(struct iommu_group *group,
3402 ioasid_t pasid,
3403 struct iommu_domain *domain)
3404 {
3405 struct group_device *device;
3406
3407 for_each_group_device(group, device) {
3408 if (device->dev->iommu->max_pasids > 0)
3409 iommu_remove_dev_pasid(device->dev, pasid, domain);
3410 }
3411 }
3412
3413 /*
3414 * iommu_attach_device_pasid() - Attach a domain to pasid of device
3415 * @domain: the iommu domain.
3416 * @dev: the attached device.
3417 * @pasid: the pasid of the device.
3418 * @handle: the attach handle.
3419 *
3420 * Caller should always provide a new handle to avoid race with the paths
3421 * that have lockless reference to handle if it intends to pass a valid handle.
3422 *
3423 * Return: 0 on success, or an error.
3424 */
iommu_attach_device_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid,struct iommu_attach_handle * handle)3425 int iommu_attach_device_pasid(struct iommu_domain *domain,
3426 struct device *dev, ioasid_t pasid,
3427 struct iommu_attach_handle *handle)
3428 {
3429 /* Caller must be a probed driver on dev */
3430 struct iommu_group *group = dev->iommu_group;
3431 struct group_device *device;
3432 const struct iommu_ops *ops;
3433 void *entry;
3434 int ret;
3435
3436 if (!group)
3437 return -ENODEV;
3438
3439 ops = dev_iommu_ops(dev);
3440
3441 if (!domain->ops->set_dev_pasid ||
3442 !ops->blocked_domain ||
3443 !ops->blocked_domain->ops->set_dev_pasid)
3444 return -EOPNOTSUPP;
3445
3446 if (!domain_iommu_ops_compatible(ops, domain) ||
3447 pasid == IOMMU_NO_PASID)
3448 return -EINVAL;
3449
3450 mutex_lock(&group->mutex);
3451 for_each_group_device(group, device) {
3452 /*
3453 * Skip PASID validation for devices without PASID support
3454 * (max_pasids = 0). These devices cannot issue transactions
3455 * with PASID, so they don't affect group's PASID usage.
3456 */
3457 if ((device->dev->iommu->max_pasids > 0) &&
3458 (pasid >= device->dev->iommu->max_pasids)) {
3459 ret = -EINVAL;
3460 goto out_unlock;
3461 }
3462 }
3463
3464 entry = iommu_make_pasid_array_entry(domain, handle);
3465
3466 /*
3467 * Entry present is a failure case. Use xa_insert() instead of
3468 * xa_reserve().
3469 */
3470 ret = xa_insert(&group->pasid_array, pasid, XA_ZERO_ENTRY, GFP_KERNEL);
3471 if (ret)
3472 goto out_unlock;
3473
3474 ret = __iommu_set_group_pasid(domain, group, pasid, NULL);
3475 if (ret) {
3476 xa_release(&group->pasid_array, pasid);
3477 goto out_unlock;
3478 }
3479
3480 /*
3481 * The xa_insert() above reserved the memory, and the group->mutex is
3482 * held, this cannot fail. The new domain cannot be visible until the
3483 * operation succeeds as we cannot tolerate PRIs becoming concurrently
3484 * queued and then failing attach.
3485 */
3486 WARN_ON(xa_is_err(xa_store(&group->pasid_array,
3487 pasid, entry, GFP_KERNEL)));
3488
3489 out_unlock:
3490 mutex_unlock(&group->mutex);
3491 return ret;
3492 }
3493 EXPORT_SYMBOL_GPL(iommu_attach_device_pasid);
3494
3495 /**
3496 * iommu_replace_device_pasid - Replace the domain that a specific pasid
3497 * of the device is attached to
3498 * @domain: the new iommu domain
3499 * @dev: the attached device.
3500 * @pasid: the pasid of the device.
3501 * @handle: the attach handle.
3502 *
3503 * This API allows the pasid to switch domains. The @pasid should have been
3504 * attached. Otherwise, this fails. The pasid will keep the old configuration
3505 * if replacement failed.
3506 *
3507 * Caller should always provide a new handle to avoid race with the paths
3508 * that have lockless reference to handle if it intends to pass a valid handle.
3509 *
3510 * Return 0 on success, or an error.
3511 */
iommu_replace_device_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid,struct iommu_attach_handle * handle)3512 int iommu_replace_device_pasid(struct iommu_domain *domain,
3513 struct device *dev, ioasid_t pasid,
3514 struct iommu_attach_handle *handle)
3515 {
3516 /* Caller must be a probed driver on dev */
3517 struct iommu_group *group = dev->iommu_group;
3518 struct iommu_attach_handle *entry;
3519 struct iommu_domain *curr_domain;
3520 void *curr;
3521 int ret;
3522
3523 if (!group)
3524 return -ENODEV;
3525
3526 if (!domain->ops->set_dev_pasid)
3527 return -EOPNOTSUPP;
3528
3529 if (!domain_iommu_ops_compatible(dev_iommu_ops(dev), domain) ||
3530 pasid == IOMMU_NO_PASID || !handle)
3531 return -EINVAL;
3532
3533 mutex_lock(&group->mutex);
3534 entry = iommu_make_pasid_array_entry(domain, handle);
3535 curr = xa_cmpxchg(&group->pasid_array, pasid, NULL,
3536 XA_ZERO_ENTRY, GFP_KERNEL);
3537 if (xa_is_err(curr)) {
3538 ret = xa_err(curr);
3539 goto out_unlock;
3540 }
3541
3542 /*
3543 * No domain (with or without handle) attached, hence not
3544 * a replace case.
3545 */
3546 if (!curr) {
3547 xa_release(&group->pasid_array, pasid);
3548 ret = -EINVAL;
3549 goto out_unlock;
3550 }
3551
3552 /*
3553 * Reusing handle is problematic as there are paths that refers
3554 * the handle without lock. To avoid race, reject the callers that
3555 * attempt it.
3556 */
3557 if (curr == entry) {
3558 WARN_ON(1);
3559 ret = -EINVAL;
3560 goto out_unlock;
3561 }
3562
3563 curr_domain = pasid_array_entry_to_domain(curr);
3564 ret = 0;
3565
3566 if (curr_domain != domain) {
3567 ret = __iommu_set_group_pasid(domain, group,
3568 pasid, curr_domain);
3569 if (ret)
3570 goto out_unlock;
3571 }
3572
3573 /*
3574 * The above xa_cmpxchg() reserved the memory, and the
3575 * group->mutex is held, this cannot fail.
3576 */
3577 WARN_ON(xa_is_err(xa_store(&group->pasid_array,
3578 pasid, entry, GFP_KERNEL)));
3579
3580 out_unlock:
3581 mutex_unlock(&group->mutex);
3582 return ret;
3583 }
3584 EXPORT_SYMBOL_NS_GPL(iommu_replace_device_pasid, "IOMMUFD_INTERNAL");
3585
3586 /*
3587 * iommu_detach_device_pasid() - Detach the domain from pasid of device
3588 * @domain: the iommu domain.
3589 * @dev: the attached device.
3590 * @pasid: the pasid of the device.
3591 *
3592 * The @domain must have been attached to @pasid of the @dev with
3593 * iommu_attach_device_pasid().
3594 */
iommu_detach_device_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid)3595 void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev,
3596 ioasid_t pasid)
3597 {
3598 /* Caller must be a probed driver on dev */
3599 struct iommu_group *group = dev->iommu_group;
3600
3601 mutex_lock(&group->mutex);
3602 __iommu_remove_group_pasid(group, pasid, domain);
3603 xa_erase(&group->pasid_array, pasid);
3604 mutex_unlock(&group->mutex);
3605 }
3606 EXPORT_SYMBOL_GPL(iommu_detach_device_pasid);
3607
iommu_alloc_global_pasid(struct device * dev)3608 ioasid_t iommu_alloc_global_pasid(struct device *dev)
3609 {
3610 int ret;
3611
3612 /* max_pasids == 0 means that the device does not support PASID */
3613 if (!dev->iommu->max_pasids)
3614 return IOMMU_PASID_INVALID;
3615
3616 /*
3617 * max_pasids is set up by vendor driver based on number of PASID bits
3618 * supported but the IDA allocation is inclusive.
3619 */
3620 ret = ida_alloc_range(&iommu_global_pasid_ida, IOMMU_FIRST_GLOBAL_PASID,
3621 dev->iommu->max_pasids - 1, GFP_KERNEL);
3622 return ret < 0 ? IOMMU_PASID_INVALID : ret;
3623 }
3624 EXPORT_SYMBOL_GPL(iommu_alloc_global_pasid);
3625
iommu_free_global_pasid(ioasid_t pasid)3626 void iommu_free_global_pasid(ioasid_t pasid)
3627 {
3628 if (WARN_ON(pasid == IOMMU_PASID_INVALID))
3629 return;
3630
3631 ida_free(&iommu_global_pasid_ida, pasid);
3632 }
3633 EXPORT_SYMBOL_GPL(iommu_free_global_pasid);
3634
3635 /**
3636 * iommu_attach_handle_get - Return the attach handle
3637 * @group: the iommu group that domain was attached to
3638 * @pasid: the pasid within the group
3639 * @type: matched domain type, 0 for any match
3640 *
3641 * Return handle or ERR_PTR(-ENOENT) on none, ERR_PTR(-EBUSY) on mismatch.
3642 *
3643 * Return the attach handle to the caller. The life cycle of an iommu attach
3644 * handle is from the time when the domain is attached to the time when the
3645 * domain is detached. Callers are required to synchronize the call of
3646 * iommu_attach_handle_get() with domain attachment and detachment. The attach
3647 * handle can only be used during its life cycle.
3648 */
3649 struct iommu_attach_handle *
iommu_attach_handle_get(struct iommu_group * group,ioasid_t pasid,unsigned int type)3650 iommu_attach_handle_get(struct iommu_group *group, ioasid_t pasid, unsigned int type)
3651 {
3652 struct iommu_attach_handle *handle;
3653 void *entry;
3654
3655 xa_lock(&group->pasid_array);
3656 entry = xa_load(&group->pasid_array, pasid);
3657 if (!entry || xa_pointer_tag(entry) != IOMMU_PASID_ARRAY_HANDLE) {
3658 handle = ERR_PTR(-ENOENT);
3659 } else {
3660 handle = xa_untag_pointer(entry);
3661 if (type && handle->domain->type != type)
3662 handle = ERR_PTR(-EBUSY);
3663 }
3664 xa_unlock(&group->pasid_array);
3665
3666 return handle;
3667 }
3668 EXPORT_SYMBOL_NS_GPL(iommu_attach_handle_get, "IOMMUFD_INTERNAL");
3669
3670 /**
3671 * iommu_attach_group_handle - Attach an IOMMU domain to an IOMMU group
3672 * @domain: IOMMU domain to attach
3673 * @group: IOMMU group that will be attached
3674 * @handle: attach handle
3675 *
3676 * Returns 0 on success and error code on failure.
3677 *
3678 * This is a variant of iommu_attach_group(). It allows the caller to provide
3679 * an attach handle and use it when the domain is attached. This is currently
3680 * used by IOMMUFD to deliver the I/O page faults.
3681 *
3682 * Caller should always provide a new handle to avoid race with the paths
3683 * that have lockless reference to handle.
3684 */
iommu_attach_group_handle(struct iommu_domain * domain,struct iommu_group * group,struct iommu_attach_handle * handle)3685 int iommu_attach_group_handle(struct iommu_domain *domain,
3686 struct iommu_group *group,
3687 struct iommu_attach_handle *handle)
3688 {
3689 void *entry;
3690 int ret;
3691
3692 if (!handle)
3693 return -EINVAL;
3694
3695 mutex_lock(&group->mutex);
3696 entry = iommu_make_pasid_array_entry(domain, handle);
3697 ret = xa_insert(&group->pasid_array,
3698 IOMMU_NO_PASID, XA_ZERO_ENTRY, GFP_KERNEL);
3699 if (ret)
3700 goto out_unlock;
3701
3702 ret = __iommu_attach_group(domain, group);
3703 if (ret) {
3704 xa_release(&group->pasid_array, IOMMU_NO_PASID);
3705 goto out_unlock;
3706 }
3707
3708 /*
3709 * The xa_insert() above reserved the memory, and the group->mutex is
3710 * held, this cannot fail. The new domain cannot be visible until the
3711 * operation succeeds as we cannot tolerate PRIs becoming concurrently
3712 * queued and then failing attach.
3713 */
3714 WARN_ON(xa_is_err(xa_store(&group->pasid_array,
3715 IOMMU_NO_PASID, entry, GFP_KERNEL)));
3716
3717 out_unlock:
3718 mutex_unlock(&group->mutex);
3719 return ret;
3720 }
3721 EXPORT_SYMBOL_NS_GPL(iommu_attach_group_handle, "IOMMUFD_INTERNAL");
3722
3723 /**
3724 * iommu_detach_group_handle - Detach an IOMMU domain from an IOMMU group
3725 * @domain: IOMMU domain to attach
3726 * @group: IOMMU group that will be attached
3727 *
3728 * Detach the specified IOMMU domain from the specified IOMMU group.
3729 * It must be used in conjunction with iommu_attach_group_handle().
3730 */
iommu_detach_group_handle(struct iommu_domain * domain,struct iommu_group * group)3731 void iommu_detach_group_handle(struct iommu_domain *domain,
3732 struct iommu_group *group)
3733 {
3734 mutex_lock(&group->mutex);
3735 __iommu_group_set_core_domain(group);
3736 xa_erase(&group->pasid_array, IOMMU_NO_PASID);
3737 mutex_unlock(&group->mutex);
3738 }
3739 EXPORT_SYMBOL_NS_GPL(iommu_detach_group_handle, "IOMMUFD_INTERNAL");
3740
3741 /**
3742 * iommu_replace_group_handle - replace the domain that a group is attached to
3743 * @group: IOMMU group that will be attached to the new domain
3744 * @new_domain: new IOMMU domain to replace with
3745 * @handle: attach handle
3746 *
3747 * This API allows the group to switch domains without being forced to go to
3748 * the blocking domain in-between. It allows the caller to provide an attach
3749 * handle for the new domain and use it when the domain is attached.
3750 *
3751 * If the currently attached domain is a core domain (e.g. a default_domain),
3752 * it will act just like the iommu_attach_group_handle().
3753 *
3754 * Caller should always provide a new handle to avoid race with the paths
3755 * that have lockless reference to handle.
3756 */
iommu_replace_group_handle(struct iommu_group * group,struct iommu_domain * new_domain,struct iommu_attach_handle * handle)3757 int iommu_replace_group_handle(struct iommu_group *group,
3758 struct iommu_domain *new_domain,
3759 struct iommu_attach_handle *handle)
3760 {
3761 void *curr, *entry;
3762 int ret;
3763
3764 if (!new_domain || !handle)
3765 return -EINVAL;
3766
3767 mutex_lock(&group->mutex);
3768 entry = iommu_make_pasid_array_entry(new_domain, handle);
3769 ret = xa_reserve(&group->pasid_array, IOMMU_NO_PASID, GFP_KERNEL);
3770 if (ret)
3771 goto err_unlock;
3772
3773 ret = __iommu_group_set_domain(group, new_domain);
3774 if (ret)
3775 goto err_release;
3776
3777 curr = xa_store(&group->pasid_array, IOMMU_NO_PASID, entry, GFP_KERNEL);
3778 WARN_ON(xa_is_err(curr));
3779
3780 mutex_unlock(&group->mutex);
3781
3782 return 0;
3783 err_release:
3784 xa_release(&group->pasid_array, IOMMU_NO_PASID);
3785 err_unlock:
3786 mutex_unlock(&group->mutex);
3787 return ret;
3788 }
3789 EXPORT_SYMBOL_NS_GPL(iommu_replace_group_handle, "IOMMUFD_INTERNAL");
3790
3791 #if IS_ENABLED(CONFIG_IRQ_MSI_IOMMU)
3792 /**
3793 * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain
3794 * @desc: MSI descriptor, will store the MSI page
3795 * @msi_addr: MSI target address to be mapped
3796 *
3797 * The implementation of sw_msi() should take msi_addr and map it to
3798 * an IOVA in the domain and call msi_desc_set_iommu_msi_iova() with the
3799 * mapping information.
3800 *
3801 * Return: 0 on success or negative error code if the mapping failed.
3802 */
iommu_dma_prepare_msi(struct msi_desc * desc,phys_addr_t msi_addr)3803 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
3804 {
3805 struct device *dev = msi_desc_to_dev(desc);
3806 struct iommu_group *group = dev->iommu_group;
3807 int ret = 0;
3808
3809 if (!group)
3810 return 0;
3811
3812 mutex_lock(&group->mutex);
3813 /* An IDENTITY domain must pass through */
3814 if (group->domain && group->domain->type != IOMMU_DOMAIN_IDENTITY) {
3815 switch (group->domain->cookie_type) {
3816 case IOMMU_COOKIE_DMA_MSI:
3817 case IOMMU_COOKIE_DMA_IOVA:
3818 ret = iommu_dma_sw_msi(group->domain, desc, msi_addr);
3819 break;
3820 case IOMMU_COOKIE_IOMMUFD:
3821 ret = iommufd_sw_msi(group->domain, desc, msi_addr);
3822 break;
3823 default:
3824 ret = -EOPNOTSUPP;
3825 break;
3826 }
3827 }
3828 mutex_unlock(&group->mutex);
3829 return ret;
3830 }
3831 #endif /* CONFIG_IRQ_MSI_IOMMU */
3832