xref: /linux/drivers/iommu/iommu.c (revision 53564f400572b1b8d9ee5bafb9c226eb1d38600a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  */
6 
7 #define pr_fmt(fmt)    "iommu: " fmt
8 
9 #include <linux/amba/bus.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/host1x_context_bus.h>
20 #include <linux/iommu.h>
21 #include <linux/iommufd.h>
22 #include <linux/idr.h>
23 #include <linux/err.h>
24 #include <linux/pci.h>
25 #include <linux/pci-ats.h>
26 #include <linux/bitops.h>
27 #include <linux/platform_device.h>
28 #include <linux/property.h>
29 #include <linux/fsl/mc.h>
30 #include <linux/module.h>
31 #include <linux/cc_platform.h>
32 #include <linux/cdx/cdx_bus.h>
33 #include <trace/events/iommu.h>
34 #include <linux/sched/mm.h>
35 #include <linux/msi.h>
36 #include <uapi/linux/iommufd.h>
37 
38 #include "dma-iommu.h"
39 #include "iommu-priv.h"
40 
41 static struct kset *iommu_group_kset;
42 static DEFINE_IDA(iommu_group_ida);
43 static DEFINE_IDA(iommu_global_pasid_ida);
44 
45 static unsigned int iommu_def_domain_type __read_mostly;
46 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
47 static u32 iommu_cmd_line __read_mostly;
48 
49 /* Tags used with xa_tag_pointer() in group->pasid_array */
50 enum { IOMMU_PASID_ARRAY_DOMAIN = 0, IOMMU_PASID_ARRAY_HANDLE = 1 };
51 
52 struct iommu_group {
53 	struct kobject kobj;
54 	struct kobject *devices_kobj;
55 	struct list_head devices;
56 	struct xarray pasid_array;
57 	struct mutex mutex;
58 	void *iommu_data;
59 	void (*iommu_data_release)(void *iommu_data);
60 	char *name;
61 	int id;
62 	struct iommu_domain *default_domain;
63 	struct iommu_domain *blocking_domain;
64 	struct iommu_domain *domain;
65 	struct list_head entry;
66 	unsigned int owner_cnt;
67 	void *owner;
68 };
69 
70 struct group_device {
71 	struct list_head list;
72 	struct device *dev;
73 	char *name;
74 };
75 
76 /* Iterate over each struct group_device in a struct iommu_group */
77 #define for_each_group_device(group, pos) \
78 	list_for_each_entry(pos, &(group)->devices, list)
79 
80 struct iommu_group_attribute {
81 	struct attribute attr;
82 	ssize_t (*show)(struct iommu_group *group, char *buf);
83 	ssize_t (*store)(struct iommu_group *group,
84 			 const char *buf, size_t count);
85 };
86 
87 static const char * const iommu_group_resv_type_string[] = {
88 	[IOMMU_RESV_DIRECT]			= "direct",
89 	[IOMMU_RESV_DIRECT_RELAXABLE]		= "direct-relaxable",
90 	[IOMMU_RESV_RESERVED]			= "reserved",
91 	[IOMMU_RESV_MSI]			= "msi",
92 	[IOMMU_RESV_SW_MSI]			= "msi",
93 };
94 
95 #define IOMMU_CMD_LINE_DMA_API		BIT(0)
96 #define IOMMU_CMD_LINE_STRICT		BIT(1)
97 
98 static int bus_iommu_probe(const struct bus_type *bus);
99 static int iommu_bus_notifier(struct notifier_block *nb,
100 			      unsigned long action, void *data);
101 static void iommu_release_device(struct device *dev);
102 static int __iommu_attach_device(struct iommu_domain *domain,
103 				 struct device *dev);
104 static int __iommu_attach_group(struct iommu_domain *domain,
105 				struct iommu_group *group);
106 static struct iommu_domain *__iommu_paging_domain_alloc_flags(struct device *dev,
107 						       unsigned int type,
108 						       unsigned int flags);
109 
110 enum {
111 	IOMMU_SET_DOMAIN_MUST_SUCCEED = 1 << 0,
112 };
113 
114 static int __iommu_device_set_domain(struct iommu_group *group,
115 				     struct device *dev,
116 				     struct iommu_domain *new_domain,
117 				     unsigned int flags);
118 static int __iommu_group_set_domain_internal(struct iommu_group *group,
119 					     struct iommu_domain *new_domain,
120 					     unsigned int flags);
__iommu_group_set_domain(struct iommu_group * group,struct iommu_domain * new_domain)121 static int __iommu_group_set_domain(struct iommu_group *group,
122 				    struct iommu_domain *new_domain)
123 {
124 	return __iommu_group_set_domain_internal(group, new_domain, 0);
125 }
__iommu_group_set_domain_nofail(struct iommu_group * group,struct iommu_domain * new_domain)126 static void __iommu_group_set_domain_nofail(struct iommu_group *group,
127 					    struct iommu_domain *new_domain)
128 {
129 	WARN_ON(__iommu_group_set_domain_internal(
130 		group, new_domain, IOMMU_SET_DOMAIN_MUST_SUCCEED));
131 }
132 
133 static int iommu_setup_default_domain(struct iommu_group *group,
134 				      int target_type);
135 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
136 					       struct device *dev);
137 static ssize_t iommu_group_store_type(struct iommu_group *group,
138 				      const char *buf, size_t count);
139 static struct group_device *iommu_group_alloc_device(struct iommu_group *group,
140 						     struct device *dev);
141 static void __iommu_group_free_device(struct iommu_group *group,
142 				      struct group_device *grp_dev);
143 static void iommu_domain_init(struct iommu_domain *domain, unsigned int type,
144 			      const struct iommu_ops *ops);
145 
146 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
147 struct iommu_group_attribute iommu_group_attr_##_name =		\
148 	__ATTR(_name, _mode, _show, _store)
149 
150 #define to_iommu_group_attr(_attr)	\
151 	container_of(_attr, struct iommu_group_attribute, attr)
152 #define to_iommu_group(_kobj)		\
153 	container_of(_kobj, struct iommu_group, kobj)
154 
155 static LIST_HEAD(iommu_device_list);
156 static DEFINE_SPINLOCK(iommu_device_lock);
157 
158 static const struct bus_type * const iommu_buses[] = {
159 	&platform_bus_type,
160 #ifdef CONFIG_PCI
161 	&pci_bus_type,
162 #endif
163 #ifdef CONFIG_ARM_AMBA
164 	&amba_bustype,
165 #endif
166 #ifdef CONFIG_FSL_MC_BUS
167 	&fsl_mc_bus_type,
168 #endif
169 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS
170 	&host1x_context_device_bus_type,
171 #endif
172 #ifdef CONFIG_CDX_BUS
173 	&cdx_bus_type,
174 #endif
175 };
176 
177 /*
178  * Use a function instead of an array here because the domain-type is a
179  * bit-field, so an array would waste memory.
180  */
iommu_domain_type_str(unsigned int t)181 static const char *iommu_domain_type_str(unsigned int t)
182 {
183 	switch (t) {
184 	case IOMMU_DOMAIN_BLOCKED:
185 		return "Blocked";
186 	case IOMMU_DOMAIN_IDENTITY:
187 		return "Passthrough";
188 	case IOMMU_DOMAIN_UNMANAGED:
189 		return "Unmanaged";
190 	case IOMMU_DOMAIN_DMA:
191 	case IOMMU_DOMAIN_DMA_FQ:
192 		return "Translated";
193 	case IOMMU_DOMAIN_PLATFORM:
194 		return "Platform";
195 	default:
196 		return "Unknown";
197 	}
198 }
199 
iommu_subsys_init(void)200 static int __init iommu_subsys_init(void)
201 {
202 	struct notifier_block *nb;
203 
204 	if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
205 		if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
206 			iommu_set_default_passthrough(false);
207 		else
208 			iommu_set_default_translated(false);
209 
210 		if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
211 			pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
212 			iommu_set_default_translated(false);
213 		}
214 	}
215 
216 	if (!iommu_default_passthrough() && !iommu_dma_strict)
217 		iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
218 
219 	pr_info("Default domain type: %s%s\n",
220 		iommu_domain_type_str(iommu_def_domain_type),
221 		(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
222 			" (set via kernel command line)" : "");
223 
224 	if (!iommu_default_passthrough())
225 		pr_info("DMA domain TLB invalidation policy: %s mode%s\n",
226 			iommu_dma_strict ? "strict" : "lazy",
227 			(iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
228 				" (set via kernel command line)" : "");
229 
230 	nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL);
231 	if (!nb)
232 		return -ENOMEM;
233 
234 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) {
235 		nb[i].notifier_call = iommu_bus_notifier;
236 		bus_register_notifier(iommu_buses[i], &nb[i]);
237 	}
238 
239 	return 0;
240 }
241 subsys_initcall(iommu_subsys_init);
242 
remove_iommu_group(struct device * dev,void * data)243 static int remove_iommu_group(struct device *dev, void *data)
244 {
245 	if (dev->iommu && dev->iommu->iommu_dev == data)
246 		iommu_release_device(dev);
247 
248 	return 0;
249 }
250 
251 /**
252  * iommu_device_register() - Register an IOMMU hardware instance
253  * @iommu: IOMMU handle for the instance
254  * @ops:   IOMMU ops to associate with the instance
255  * @hwdev: (optional) actual instance device, used for fwnode lookup
256  *
257  * Return: 0 on success, or an error.
258  */
iommu_device_register(struct iommu_device * iommu,const struct iommu_ops * ops,struct device * hwdev)259 int iommu_device_register(struct iommu_device *iommu,
260 			  const struct iommu_ops *ops, struct device *hwdev)
261 {
262 	int err = 0;
263 
264 	/* We need to be able to take module references appropriately */
265 	if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
266 		return -EINVAL;
267 
268 	iommu->ops = ops;
269 	if (hwdev)
270 		iommu->fwnode = dev_fwnode(hwdev);
271 
272 	spin_lock(&iommu_device_lock);
273 	list_add_tail(&iommu->list, &iommu_device_list);
274 	spin_unlock(&iommu_device_lock);
275 
276 	for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++)
277 		err = bus_iommu_probe(iommu_buses[i]);
278 	if (err)
279 		iommu_device_unregister(iommu);
280 	else
281 		WRITE_ONCE(iommu->ready, true);
282 	return err;
283 }
284 EXPORT_SYMBOL_GPL(iommu_device_register);
285 
iommu_device_unregister(struct iommu_device * iommu)286 void iommu_device_unregister(struct iommu_device *iommu)
287 {
288 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++)
289 		bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group);
290 
291 	spin_lock(&iommu_device_lock);
292 	list_del(&iommu->list);
293 	spin_unlock(&iommu_device_lock);
294 
295 	/* Pairs with the alloc in generic_single_device_group() */
296 	iommu_group_put(iommu->singleton_group);
297 	iommu->singleton_group = NULL;
298 }
299 EXPORT_SYMBOL_GPL(iommu_device_unregister);
300 
301 #if IS_ENABLED(CONFIG_IOMMUFD_TEST)
iommu_device_unregister_bus(struct iommu_device * iommu,const struct bus_type * bus,struct notifier_block * nb)302 void iommu_device_unregister_bus(struct iommu_device *iommu,
303 				 const struct bus_type *bus,
304 				 struct notifier_block *nb)
305 {
306 	bus_unregister_notifier(bus, nb);
307 	iommu_device_unregister(iommu);
308 }
309 EXPORT_SYMBOL_GPL(iommu_device_unregister_bus);
310 
311 /*
312  * Register an iommu driver against a single bus. This is only used by iommufd
313  * selftest to create a mock iommu driver. The caller must provide
314  * some memory to hold a notifier_block.
315  */
iommu_device_register_bus(struct iommu_device * iommu,const struct iommu_ops * ops,const struct bus_type * bus,struct notifier_block * nb)316 int iommu_device_register_bus(struct iommu_device *iommu,
317 			      const struct iommu_ops *ops,
318 			      const struct bus_type *bus,
319 			      struct notifier_block *nb)
320 {
321 	int err;
322 
323 	iommu->ops = ops;
324 	nb->notifier_call = iommu_bus_notifier;
325 	err = bus_register_notifier(bus, nb);
326 	if (err)
327 		return err;
328 
329 	spin_lock(&iommu_device_lock);
330 	list_add_tail(&iommu->list, &iommu_device_list);
331 	spin_unlock(&iommu_device_lock);
332 
333 	err = bus_iommu_probe(bus);
334 	if (err) {
335 		iommu_device_unregister_bus(iommu, bus, nb);
336 		return err;
337 	}
338 	return 0;
339 }
340 EXPORT_SYMBOL_GPL(iommu_device_register_bus);
341 #endif
342 
dev_iommu_get(struct device * dev)343 static struct dev_iommu *dev_iommu_get(struct device *dev)
344 {
345 	struct dev_iommu *param = dev->iommu;
346 
347 	lockdep_assert_held(&iommu_probe_device_lock);
348 
349 	if (param)
350 		return param;
351 
352 	param = kzalloc(sizeof(*param), GFP_KERNEL);
353 	if (!param)
354 		return NULL;
355 
356 	mutex_init(&param->lock);
357 	dev->iommu = param;
358 	return param;
359 }
360 
dev_iommu_free(struct device * dev)361 void dev_iommu_free(struct device *dev)
362 {
363 	struct dev_iommu *param = dev->iommu;
364 
365 	dev->iommu = NULL;
366 	if (param->fwspec) {
367 		fwnode_handle_put(param->fwspec->iommu_fwnode);
368 		kfree(param->fwspec);
369 	}
370 	kfree(param);
371 }
372 
373 /*
374  * Internal equivalent of device_iommu_mapped() for when we care that a device
375  * actually has API ops, and don't want false positives from VFIO-only groups.
376  */
dev_has_iommu(struct device * dev)377 static bool dev_has_iommu(struct device *dev)
378 {
379 	return dev->iommu && dev->iommu->iommu_dev;
380 }
381 
dev_iommu_get_max_pasids(struct device * dev)382 static u32 dev_iommu_get_max_pasids(struct device *dev)
383 {
384 	u32 max_pasids = 0, bits = 0;
385 	int ret;
386 
387 	if (dev_is_pci(dev)) {
388 		ret = pci_max_pasids(to_pci_dev(dev));
389 		if (ret > 0)
390 			max_pasids = ret;
391 	} else {
392 		ret = device_property_read_u32(dev, "pasid-num-bits", &bits);
393 		if (!ret)
394 			max_pasids = 1UL << bits;
395 	}
396 
397 	return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids);
398 }
399 
dev_iommu_priv_set(struct device * dev,void * priv)400 void dev_iommu_priv_set(struct device *dev, void *priv)
401 {
402 	/* FSL_PAMU does something weird */
403 	if (!IS_ENABLED(CONFIG_FSL_PAMU))
404 		lockdep_assert_held(&iommu_probe_device_lock);
405 	dev->iommu->priv = priv;
406 }
407 EXPORT_SYMBOL_GPL(dev_iommu_priv_set);
408 
409 /*
410  * Init the dev->iommu and dev->iommu_group in the struct device and get the
411  * driver probed
412  */
iommu_init_device(struct device * dev)413 static int iommu_init_device(struct device *dev)
414 {
415 	const struct iommu_ops *ops;
416 	struct iommu_device *iommu_dev;
417 	struct iommu_group *group;
418 	int ret;
419 
420 	if (!dev_iommu_get(dev))
421 		return -ENOMEM;
422 	/*
423 	 * For FDT-based systems and ACPI IORT/VIOT, the common firmware parsing
424 	 * is buried in the bus dma_configure path. Properly unpicking that is
425 	 * still a big job, so for now just invoke the whole thing. The device
426 	 * already having a driver bound means dma_configure has already run and
427 	 * found no IOMMU to wait for, so there's no point calling it again.
428 	 */
429 	if (!dev->iommu->fwspec && !dev->driver && dev->bus->dma_configure) {
430 		mutex_unlock(&iommu_probe_device_lock);
431 		dev->bus->dma_configure(dev);
432 		mutex_lock(&iommu_probe_device_lock);
433 		/* If another instance finished the job for us, skip it */
434 		if (!dev->iommu || dev->iommu_group)
435 			return -ENODEV;
436 	}
437 	/*
438 	 * At this point, relevant devices either now have a fwspec which will
439 	 * match ops registered with a non-NULL fwnode, or we can reasonably
440 	 * assume that only one of Intel, AMD, s390, PAMU or legacy SMMUv2 can
441 	 * be present, and that any of their registered instances has suitable
442 	 * ops for probing, and thus cheekily co-opt the same mechanism.
443 	 */
444 	ops = iommu_fwspec_ops(dev->iommu->fwspec);
445 	if (!ops) {
446 		ret = -ENODEV;
447 		goto err_free;
448 	}
449 
450 	if (!try_module_get(ops->owner)) {
451 		ret = -EINVAL;
452 		goto err_free;
453 	}
454 
455 	iommu_dev = ops->probe_device(dev);
456 	if (IS_ERR(iommu_dev)) {
457 		ret = PTR_ERR(iommu_dev);
458 		goto err_module_put;
459 	}
460 	dev->iommu->iommu_dev = iommu_dev;
461 
462 	ret = iommu_device_link(iommu_dev, dev);
463 	if (ret)
464 		goto err_release;
465 
466 	group = ops->device_group(dev);
467 	if (WARN_ON_ONCE(group == NULL))
468 		group = ERR_PTR(-EINVAL);
469 	if (IS_ERR(group)) {
470 		ret = PTR_ERR(group);
471 		goto err_unlink;
472 	}
473 	dev->iommu_group = group;
474 
475 	dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev);
476 	if (ops->is_attach_deferred)
477 		dev->iommu->attach_deferred = ops->is_attach_deferred(dev);
478 	return 0;
479 
480 err_unlink:
481 	iommu_device_unlink(iommu_dev, dev);
482 err_release:
483 	if (ops->release_device)
484 		ops->release_device(dev);
485 err_module_put:
486 	module_put(ops->owner);
487 err_free:
488 	dev->iommu->iommu_dev = NULL;
489 	dev_iommu_free(dev);
490 	return ret;
491 }
492 
iommu_deinit_device(struct device * dev)493 static void iommu_deinit_device(struct device *dev)
494 {
495 	struct iommu_group *group = dev->iommu_group;
496 	const struct iommu_ops *ops = dev_iommu_ops(dev);
497 
498 	lockdep_assert_held(&group->mutex);
499 
500 	iommu_device_unlink(dev->iommu->iommu_dev, dev);
501 
502 	/*
503 	 * release_device() must stop using any attached domain on the device.
504 	 * If there are still other devices in the group, they are not affected
505 	 * by this callback.
506 	 *
507 	 * If the iommu driver provides release_domain, the core code ensures
508 	 * that domain is attached prior to calling release_device. Drivers can
509 	 * use this to enforce a translation on the idle iommu. Typically, the
510 	 * global static blocked_domain is a good choice.
511 	 *
512 	 * Otherwise, the iommu driver must set the device to either an identity
513 	 * or a blocking translation in release_device() and stop using any
514 	 * domain pointer, as it is going to be freed.
515 	 *
516 	 * Regardless, if a delayed attach never occurred, then the release
517 	 * should still avoid touching any hardware configuration either.
518 	 */
519 	if (!dev->iommu->attach_deferred && ops->release_domain)
520 		ops->release_domain->ops->attach_dev(ops->release_domain, dev);
521 
522 	if (ops->release_device)
523 		ops->release_device(dev);
524 
525 	/*
526 	 * If this is the last driver to use the group then we must free the
527 	 * domains before we do the module_put().
528 	 */
529 	if (list_empty(&group->devices)) {
530 		if (group->default_domain) {
531 			iommu_domain_free(group->default_domain);
532 			group->default_domain = NULL;
533 		}
534 		if (group->blocking_domain) {
535 			iommu_domain_free(group->blocking_domain);
536 			group->blocking_domain = NULL;
537 		}
538 		group->domain = NULL;
539 	}
540 
541 	/* Caller must put iommu_group */
542 	dev->iommu_group = NULL;
543 	module_put(ops->owner);
544 	dev_iommu_free(dev);
545 #ifdef CONFIG_IOMMU_DMA
546 	dev->dma_iommu = false;
547 #endif
548 }
549 
pasid_array_entry_to_domain(void * entry)550 static struct iommu_domain *pasid_array_entry_to_domain(void *entry)
551 {
552 	if (xa_pointer_tag(entry) == IOMMU_PASID_ARRAY_DOMAIN)
553 		return xa_untag_pointer(entry);
554 	return ((struct iommu_attach_handle *)xa_untag_pointer(entry))->domain;
555 }
556 
557 DEFINE_MUTEX(iommu_probe_device_lock);
558 
__iommu_probe_device(struct device * dev,struct list_head * group_list)559 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
560 {
561 	struct iommu_group *group;
562 	struct group_device *gdev;
563 	int ret;
564 
565 	/*
566 	 * Serialise to avoid races between IOMMU drivers registering in
567 	 * parallel and/or the "replay" calls from ACPI/OF code via client
568 	 * driver probe. Once the latter have been cleaned up we should
569 	 * probably be able to use device_lock() here to minimise the scope,
570 	 * but for now enforcing a simple global ordering is fine.
571 	 */
572 	lockdep_assert_held(&iommu_probe_device_lock);
573 
574 	/* Device is probed already if in a group */
575 	if (dev->iommu_group)
576 		return 0;
577 
578 	ret = iommu_init_device(dev);
579 	if (ret)
580 		return ret;
581 	/*
582 	 * And if we do now see any replay calls, they would indicate someone
583 	 * misusing the dma_configure path outside bus code.
584 	 */
585 	if (dev->driver)
586 		dev_WARN(dev, "late IOMMU probe at driver bind, something fishy here!\n");
587 
588 	group = dev->iommu_group;
589 	gdev = iommu_group_alloc_device(group, dev);
590 	mutex_lock(&group->mutex);
591 	if (IS_ERR(gdev)) {
592 		ret = PTR_ERR(gdev);
593 		goto err_put_group;
594 	}
595 
596 	/*
597 	 * The gdev must be in the list before calling
598 	 * iommu_setup_default_domain()
599 	 */
600 	list_add_tail(&gdev->list, &group->devices);
601 	WARN_ON(group->default_domain && !group->domain);
602 	if (group->default_domain)
603 		iommu_create_device_direct_mappings(group->default_domain, dev);
604 	if (group->domain) {
605 		ret = __iommu_device_set_domain(group, dev, group->domain, 0);
606 		if (ret)
607 			goto err_remove_gdev;
608 	} else if (!group->default_domain && !group_list) {
609 		ret = iommu_setup_default_domain(group, 0);
610 		if (ret)
611 			goto err_remove_gdev;
612 	} else if (!group->default_domain) {
613 		/*
614 		 * With a group_list argument we defer the default_domain setup
615 		 * to the caller by providing a de-duplicated list of groups
616 		 * that need further setup.
617 		 */
618 		if (list_empty(&group->entry))
619 			list_add_tail(&group->entry, group_list);
620 	}
621 
622 	if (group->default_domain)
623 		iommu_setup_dma_ops(dev);
624 
625 	mutex_unlock(&group->mutex);
626 
627 	return 0;
628 
629 err_remove_gdev:
630 	list_del(&gdev->list);
631 	__iommu_group_free_device(group, gdev);
632 err_put_group:
633 	iommu_deinit_device(dev);
634 	mutex_unlock(&group->mutex);
635 	iommu_group_put(group);
636 
637 	return ret;
638 }
639 
iommu_probe_device(struct device * dev)640 int iommu_probe_device(struct device *dev)
641 {
642 	const struct iommu_ops *ops;
643 	int ret;
644 
645 	mutex_lock(&iommu_probe_device_lock);
646 	ret = __iommu_probe_device(dev, NULL);
647 	mutex_unlock(&iommu_probe_device_lock);
648 	if (ret)
649 		return ret;
650 
651 	ops = dev_iommu_ops(dev);
652 	if (ops->probe_finalize)
653 		ops->probe_finalize(dev);
654 
655 	return 0;
656 }
657 
__iommu_group_free_device(struct iommu_group * group,struct group_device * grp_dev)658 static void __iommu_group_free_device(struct iommu_group *group,
659 				      struct group_device *grp_dev)
660 {
661 	struct device *dev = grp_dev->dev;
662 
663 	sysfs_remove_link(group->devices_kobj, grp_dev->name);
664 	sysfs_remove_link(&dev->kobj, "iommu_group");
665 
666 	trace_remove_device_from_group(group->id, dev);
667 
668 	/*
669 	 * If the group has become empty then ownership must have been
670 	 * released, and the current domain must be set back to NULL or
671 	 * the default domain.
672 	 */
673 	if (list_empty(&group->devices))
674 		WARN_ON(group->owner_cnt ||
675 			group->domain != group->default_domain);
676 
677 	kfree(grp_dev->name);
678 	kfree(grp_dev);
679 }
680 
681 /* Remove the iommu_group from the struct device. */
__iommu_group_remove_device(struct device * dev)682 static void __iommu_group_remove_device(struct device *dev)
683 {
684 	struct iommu_group *group = dev->iommu_group;
685 	struct group_device *device;
686 
687 	mutex_lock(&group->mutex);
688 	for_each_group_device(group, device) {
689 		if (device->dev != dev)
690 			continue;
691 
692 		list_del(&device->list);
693 		__iommu_group_free_device(group, device);
694 		if (dev_has_iommu(dev))
695 			iommu_deinit_device(dev);
696 		else
697 			dev->iommu_group = NULL;
698 		break;
699 	}
700 	mutex_unlock(&group->mutex);
701 
702 	/*
703 	 * Pairs with the get in iommu_init_device() or
704 	 * iommu_group_add_device()
705 	 */
706 	iommu_group_put(group);
707 }
708 
iommu_release_device(struct device * dev)709 static void iommu_release_device(struct device *dev)
710 {
711 	struct iommu_group *group = dev->iommu_group;
712 
713 	if (group)
714 		__iommu_group_remove_device(dev);
715 
716 	/* Free any fwspec if no iommu_driver was ever attached */
717 	if (dev->iommu)
718 		dev_iommu_free(dev);
719 }
720 
iommu_set_def_domain_type(char * str)721 static int __init iommu_set_def_domain_type(char *str)
722 {
723 	bool pt;
724 	int ret;
725 
726 	ret = kstrtobool(str, &pt);
727 	if (ret)
728 		return ret;
729 
730 	if (pt)
731 		iommu_set_default_passthrough(true);
732 	else
733 		iommu_set_default_translated(true);
734 
735 	return 0;
736 }
737 early_param("iommu.passthrough", iommu_set_def_domain_type);
738 
iommu_dma_setup(char * str)739 static int __init iommu_dma_setup(char *str)
740 {
741 	int ret = kstrtobool(str, &iommu_dma_strict);
742 
743 	if (!ret)
744 		iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
745 	return ret;
746 }
747 early_param("iommu.strict", iommu_dma_setup);
748 
iommu_set_dma_strict(void)749 void iommu_set_dma_strict(void)
750 {
751 	iommu_dma_strict = true;
752 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
753 		iommu_def_domain_type = IOMMU_DOMAIN_DMA;
754 }
755 
iommu_group_attr_show(struct kobject * kobj,struct attribute * __attr,char * buf)756 static ssize_t iommu_group_attr_show(struct kobject *kobj,
757 				     struct attribute *__attr, char *buf)
758 {
759 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
760 	struct iommu_group *group = to_iommu_group(kobj);
761 	ssize_t ret = -EIO;
762 
763 	if (attr->show)
764 		ret = attr->show(group, buf);
765 	return ret;
766 }
767 
iommu_group_attr_store(struct kobject * kobj,struct attribute * __attr,const char * buf,size_t count)768 static ssize_t iommu_group_attr_store(struct kobject *kobj,
769 				      struct attribute *__attr,
770 				      const char *buf, size_t count)
771 {
772 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
773 	struct iommu_group *group = to_iommu_group(kobj);
774 	ssize_t ret = -EIO;
775 
776 	if (attr->store)
777 		ret = attr->store(group, buf, count);
778 	return ret;
779 }
780 
781 static const struct sysfs_ops iommu_group_sysfs_ops = {
782 	.show = iommu_group_attr_show,
783 	.store = iommu_group_attr_store,
784 };
785 
iommu_group_create_file(struct iommu_group * group,struct iommu_group_attribute * attr)786 static int iommu_group_create_file(struct iommu_group *group,
787 				   struct iommu_group_attribute *attr)
788 {
789 	return sysfs_create_file(&group->kobj, &attr->attr);
790 }
791 
iommu_group_remove_file(struct iommu_group * group,struct iommu_group_attribute * attr)792 static void iommu_group_remove_file(struct iommu_group *group,
793 				    struct iommu_group_attribute *attr)
794 {
795 	sysfs_remove_file(&group->kobj, &attr->attr);
796 }
797 
iommu_group_show_name(struct iommu_group * group,char * buf)798 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
799 {
800 	return sysfs_emit(buf, "%s\n", group->name);
801 }
802 
803 /**
804  * iommu_insert_resv_region - Insert a new region in the
805  * list of reserved regions.
806  * @new: new region to insert
807  * @regions: list of regions
808  *
809  * Elements are sorted by start address and overlapping segments
810  * of the same type are merged.
811  */
iommu_insert_resv_region(struct iommu_resv_region * new,struct list_head * regions)812 static int iommu_insert_resv_region(struct iommu_resv_region *new,
813 				    struct list_head *regions)
814 {
815 	struct iommu_resv_region *iter, *tmp, *nr, *top;
816 	LIST_HEAD(stack);
817 
818 	nr = iommu_alloc_resv_region(new->start, new->length,
819 				     new->prot, new->type, GFP_KERNEL);
820 	if (!nr)
821 		return -ENOMEM;
822 
823 	/* First add the new element based on start address sorting */
824 	list_for_each_entry(iter, regions, list) {
825 		if (nr->start < iter->start ||
826 		    (nr->start == iter->start && nr->type <= iter->type))
827 			break;
828 	}
829 	list_add_tail(&nr->list, &iter->list);
830 
831 	/* Merge overlapping segments of type nr->type in @regions, if any */
832 	list_for_each_entry_safe(iter, tmp, regions, list) {
833 		phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
834 
835 		/* no merge needed on elements of different types than @new */
836 		if (iter->type != new->type) {
837 			list_move_tail(&iter->list, &stack);
838 			continue;
839 		}
840 
841 		/* look for the last stack element of same type as @iter */
842 		list_for_each_entry_reverse(top, &stack, list)
843 			if (top->type == iter->type)
844 				goto check_overlap;
845 
846 		list_move_tail(&iter->list, &stack);
847 		continue;
848 
849 check_overlap:
850 		top_end = top->start + top->length - 1;
851 
852 		if (iter->start > top_end + 1) {
853 			list_move_tail(&iter->list, &stack);
854 		} else {
855 			top->length = max(top_end, iter_end) - top->start + 1;
856 			list_del(&iter->list);
857 			kfree(iter);
858 		}
859 	}
860 	list_splice(&stack, regions);
861 	return 0;
862 }
863 
864 static int
iommu_insert_device_resv_regions(struct list_head * dev_resv_regions,struct list_head * group_resv_regions)865 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
866 				 struct list_head *group_resv_regions)
867 {
868 	struct iommu_resv_region *entry;
869 	int ret = 0;
870 
871 	list_for_each_entry(entry, dev_resv_regions, list) {
872 		ret = iommu_insert_resv_region(entry, group_resv_regions);
873 		if (ret)
874 			break;
875 	}
876 	return ret;
877 }
878 
iommu_get_group_resv_regions(struct iommu_group * group,struct list_head * head)879 int iommu_get_group_resv_regions(struct iommu_group *group,
880 				 struct list_head *head)
881 {
882 	struct group_device *device;
883 	int ret = 0;
884 
885 	mutex_lock(&group->mutex);
886 	for_each_group_device(group, device) {
887 		struct list_head dev_resv_regions;
888 
889 		/*
890 		 * Non-API groups still expose reserved_regions in sysfs,
891 		 * so filter out calls that get here that way.
892 		 */
893 		if (!dev_has_iommu(device->dev))
894 			break;
895 
896 		INIT_LIST_HEAD(&dev_resv_regions);
897 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
898 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
899 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
900 		if (ret)
901 			break;
902 	}
903 	mutex_unlock(&group->mutex);
904 	return ret;
905 }
906 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
907 
iommu_group_show_resv_regions(struct iommu_group * group,char * buf)908 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
909 					     char *buf)
910 {
911 	struct iommu_resv_region *region, *next;
912 	struct list_head group_resv_regions;
913 	int offset = 0;
914 
915 	INIT_LIST_HEAD(&group_resv_regions);
916 	iommu_get_group_resv_regions(group, &group_resv_regions);
917 
918 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
919 		offset += sysfs_emit_at(buf, offset, "0x%016llx 0x%016llx %s\n",
920 					(long long)region->start,
921 					(long long)(region->start +
922 						    region->length - 1),
923 					iommu_group_resv_type_string[region->type]);
924 		kfree(region);
925 	}
926 
927 	return offset;
928 }
929 
iommu_group_show_type(struct iommu_group * group,char * buf)930 static ssize_t iommu_group_show_type(struct iommu_group *group,
931 				     char *buf)
932 {
933 	char *type = "unknown";
934 
935 	mutex_lock(&group->mutex);
936 	if (group->default_domain) {
937 		switch (group->default_domain->type) {
938 		case IOMMU_DOMAIN_BLOCKED:
939 			type = "blocked";
940 			break;
941 		case IOMMU_DOMAIN_IDENTITY:
942 			type = "identity";
943 			break;
944 		case IOMMU_DOMAIN_UNMANAGED:
945 			type = "unmanaged";
946 			break;
947 		case IOMMU_DOMAIN_DMA:
948 			type = "DMA";
949 			break;
950 		case IOMMU_DOMAIN_DMA_FQ:
951 			type = "DMA-FQ";
952 			break;
953 		}
954 	}
955 	mutex_unlock(&group->mutex);
956 
957 	return sysfs_emit(buf, "%s\n", type);
958 }
959 
960 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
961 
962 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
963 			iommu_group_show_resv_regions, NULL);
964 
965 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
966 			iommu_group_store_type);
967 
iommu_group_release(struct kobject * kobj)968 static void iommu_group_release(struct kobject *kobj)
969 {
970 	struct iommu_group *group = to_iommu_group(kobj);
971 
972 	pr_debug("Releasing group %d\n", group->id);
973 
974 	if (group->iommu_data_release)
975 		group->iommu_data_release(group->iommu_data);
976 
977 	ida_free(&iommu_group_ida, group->id);
978 
979 	/* Domains are free'd by iommu_deinit_device() */
980 	WARN_ON(group->default_domain);
981 	WARN_ON(group->blocking_domain);
982 
983 	kfree(group->name);
984 	kfree(group);
985 }
986 
987 static const struct kobj_type iommu_group_ktype = {
988 	.sysfs_ops = &iommu_group_sysfs_ops,
989 	.release = iommu_group_release,
990 };
991 
992 /**
993  * iommu_group_alloc - Allocate a new group
994  *
995  * This function is called by an iommu driver to allocate a new iommu
996  * group.  The iommu group represents the minimum granularity of the iommu.
997  * Upon successful return, the caller holds a reference to the supplied
998  * group in order to hold the group until devices are added.  Use
999  * iommu_group_put() to release this extra reference count, allowing the
1000  * group to be automatically reclaimed once it has no devices or external
1001  * references.
1002  */
iommu_group_alloc(void)1003 struct iommu_group *iommu_group_alloc(void)
1004 {
1005 	struct iommu_group *group;
1006 	int ret;
1007 
1008 	group = kzalloc(sizeof(*group), GFP_KERNEL);
1009 	if (!group)
1010 		return ERR_PTR(-ENOMEM);
1011 
1012 	group->kobj.kset = iommu_group_kset;
1013 	mutex_init(&group->mutex);
1014 	INIT_LIST_HEAD(&group->devices);
1015 	INIT_LIST_HEAD(&group->entry);
1016 	xa_init(&group->pasid_array);
1017 
1018 	ret = ida_alloc(&iommu_group_ida, GFP_KERNEL);
1019 	if (ret < 0) {
1020 		kfree(group);
1021 		return ERR_PTR(ret);
1022 	}
1023 	group->id = ret;
1024 
1025 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
1026 				   NULL, "%d", group->id);
1027 	if (ret) {
1028 		kobject_put(&group->kobj);
1029 		return ERR_PTR(ret);
1030 	}
1031 
1032 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
1033 	if (!group->devices_kobj) {
1034 		kobject_put(&group->kobj); /* triggers .release & free */
1035 		return ERR_PTR(-ENOMEM);
1036 	}
1037 
1038 	/*
1039 	 * The devices_kobj holds a reference on the group kobject, so
1040 	 * as long as that exists so will the group.  We can therefore
1041 	 * use the devices_kobj for reference counting.
1042 	 */
1043 	kobject_put(&group->kobj);
1044 
1045 	ret = iommu_group_create_file(group,
1046 				      &iommu_group_attr_reserved_regions);
1047 	if (ret) {
1048 		kobject_put(group->devices_kobj);
1049 		return ERR_PTR(ret);
1050 	}
1051 
1052 	ret = iommu_group_create_file(group, &iommu_group_attr_type);
1053 	if (ret) {
1054 		kobject_put(group->devices_kobj);
1055 		return ERR_PTR(ret);
1056 	}
1057 
1058 	pr_debug("Allocated group %d\n", group->id);
1059 
1060 	return group;
1061 }
1062 EXPORT_SYMBOL_GPL(iommu_group_alloc);
1063 
1064 /**
1065  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
1066  * @group: the group
1067  *
1068  * iommu drivers can store data in the group for use when doing iommu
1069  * operations.  This function provides a way to retrieve it.  Caller
1070  * should hold a group reference.
1071  */
iommu_group_get_iommudata(struct iommu_group * group)1072 void *iommu_group_get_iommudata(struct iommu_group *group)
1073 {
1074 	return group->iommu_data;
1075 }
1076 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
1077 
1078 /**
1079  * iommu_group_set_iommudata - set iommu_data for a group
1080  * @group: the group
1081  * @iommu_data: new data
1082  * @release: release function for iommu_data
1083  *
1084  * iommu drivers can store data in the group for use when doing iommu
1085  * operations.  This function provides a way to set the data after
1086  * the group has been allocated.  Caller should hold a group reference.
1087  */
iommu_group_set_iommudata(struct iommu_group * group,void * iommu_data,void (* release)(void * iommu_data))1088 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
1089 			       void (*release)(void *iommu_data))
1090 {
1091 	group->iommu_data = iommu_data;
1092 	group->iommu_data_release = release;
1093 }
1094 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
1095 
1096 /**
1097  * iommu_group_set_name - set name for a group
1098  * @group: the group
1099  * @name: name
1100  *
1101  * Allow iommu driver to set a name for a group.  When set it will
1102  * appear in a name attribute file under the group in sysfs.
1103  */
iommu_group_set_name(struct iommu_group * group,const char * name)1104 int iommu_group_set_name(struct iommu_group *group, const char *name)
1105 {
1106 	int ret;
1107 
1108 	if (group->name) {
1109 		iommu_group_remove_file(group, &iommu_group_attr_name);
1110 		kfree(group->name);
1111 		group->name = NULL;
1112 		if (!name)
1113 			return 0;
1114 	}
1115 
1116 	group->name = kstrdup(name, GFP_KERNEL);
1117 	if (!group->name)
1118 		return -ENOMEM;
1119 
1120 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
1121 	if (ret) {
1122 		kfree(group->name);
1123 		group->name = NULL;
1124 		return ret;
1125 	}
1126 
1127 	return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(iommu_group_set_name);
1130 
iommu_create_device_direct_mappings(struct iommu_domain * domain,struct device * dev)1131 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
1132 					       struct device *dev)
1133 {
1134 	struct iommu_resv_region *entry;
1135 	struct list_head mappings;
1136 	unsigned long pg_size;
1137 	int ret = 0;
1138 
1139 	pg_size = domain->pgsize_bitmap ? 1UL << __ffs(domain->pgsize_bitmap) : 0;
1140 	INIT_LIST_HEAD(&mappings);
1141 
1142 	if (WARN_ON_ONCE(iommu_is_dma_domain(domain) && !pg_size))
1143 		return -EINVAL;
1144 
1145 	iommu_get_resv_regions(dev, &mappings);
1146 
1147 	/* We need to consider overlapping regions for different devices */
1148 	list_for_each_entry(entry, &mappings, list) {
1149 		dma_addr_t start, end, addr;
1150 		size_t map_size = 0;
1151 
1152 		if (entry->type == IOMMU_RESV_DIRECT)
1153 			dev->iommu->require_direct = 1;
1154 
1155 		if ((entry->type != IOMMU_RESV_DIRECT &&
1156 		     entry->type != IOMMU_RESV_DIRECT_RELAXABLE) ||
1157 		    !iommu_is_dma_domain(domain))
1158 			continue;
1159 
1160 		start = ALIGN(entry->start, pg_size);
1161 		end   = ALIGN(entry->start + entry->length, pg_size);
1162 
1163 		for (addr = start; addr <= end; addr += pg_size) {
1164 			phys_addr_t phys_addr;
1165 
1166 			if (addr == end)
1167 				goto map_end;
1168 
1169 			phys_addr = iommu_iova_to_phys(domain, addr);
1170 			if (!phys_addr) {
1171 				map_size += pg_size;
1172 				continue;
1173 			}
1174 
1175 map_end:
1176 			if (map_size) {
1177 				ret = iommu_map(domain, addr - map_size,
1178 						addr - map_size, map_size,
1179 						entry->prot, GFP_KERNEL);
1180 				if (ret)
1181 					goto out;
1182 				map_size = 0;
1183 			}
1184 		}
1185 
1186 	}
1187 out:
1188 	iommu_put_resv_regions(dev, &mappings);
1189 
1190 	return ret;
1191 }
1192 
1193 /* This is undone by __iommu_group_free_device() */
iommu_group_alloc_device(struct iommu_group * group,struct device * dev)1194 static struct group_device *iommu_group_alloc_device(struct iommu_group *group,
1195 						     struct device *dev)
1196 {
1197 	int ret, i = 0;
1198 	struct group_device *device;
1199 
1200 	device = kzalloc(sizeof(*device), GFP_KERNEL);
1201 	if (!device)
1202 		return ERR_PTR(-ENOMEM);
1203 
1204 	device->dev = dev;
1205 
1206 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
1207 	if (ret)
1208 		goto err_free_device;
1209 
1210 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
1211 rename:
1212 	if (!device->name) {
1213 		ret = -ENOMEM;
1214 		goto err_remove_link;
1215 	}
1216 
1217 	ret = sysfs_create_link_nowarn(group->devices_kobj,
1218 				       &dev->kobj, device->name);
1219 	if (ret) {
1220 		if (ret == -EEXIST && i >= 0) {
1221 			/*
1222 			 * Account for the slim chance of collision
1223 			 * and append an instance to the name.
1224 			 */
1225 			kfree(device->name);
1226 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
1227 						 kobject_name(&dev->kobj), i++);
1228 			goto rename;
1229 		}
1230 		goto err_free_name;
1231 	}
1232 
1233 	trace_add_device_to_group(group->id, dev);
1234 
1235 	dev_info(dev, "Adding to iommu group %d\n", group->id);
1236 
1237 	return device;
1238 
1239 err_free_name:
1240 	kfree(device->name);
1241 err_remove_link:
1242 	sysfs_remove_link(&dev->kobj, "iommu_group");
1243 err_free_device:
1244 	kfree(device);
1245 	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
1246 	return ERR_PTR(ret);
1247 }
1248 
1249 /**
1250  * iommu_group_add_device - add a device to an iommu group
1251  * @group: the group into which to add the device (reference should be held)
1252  * @dev: the device
1253  *
1254  * This function is called by an iommu driver to add a device into a
1255  * group.  Adding a device increments the group reference count.
1256  */
iommu_group_add_device(struct iommu_group * group,struct device * dev)1257 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
1258 {
1259 	struct group_device *gdev;
1260 
1261 	gdev = iommu_group_alloc_device(group, dev);
1262 	if (IS_ERR(gdev))
1263 		return PTR_ERR(gdev);
1264 
1265 	iommu_group_ref_get(group);
1266 	dev->iommu_group = group;
1267 
1268 	mutex_lock(&group->mutex);
1269 	list_add_tail(&gdev->list, &group->devices);
1270 	mutex_unlock(&group->mutex);
1271 	return 0;
1272 }
1273 EXPORT_SYMBOL_GPL(iommu_group_add_device);
1274 
1275 /**
1276  * iommu_group_remove_device - remove a device from it's current group
1277  * @dev: device to be removed
1278  *
1279  * This function is called by an iommu driver to remove the device from
1280  * it's current group.  This decrements the iommu group reference count.
1281  */
iommu_group_remove_device(struct device * dev)1282 void iommu_group_remove_device(struct device *dev)
1283 {
1284 	struct iommu_group *group = dev->iommu_group;
1285 
1286 	if (!group)
1287 		return;
1288 
1289 	dev_info(dev, "Removing from iommu group %d\n", group->id);
1290 
1291 	__iommu_group_remove_device(dev);
1292 }
1293 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
1294 
1295 #if IS_ENABLED(CONFIG_LOCKDEP) && IS_ENABLED(CONFIG_IOMMU_API)
1296 /**
1297  * iommu_group_mutex_assert - Check device group mutex lock
1298  * @dev: the device that has group param set
1299  *
1300  * This function is called by an iommu driver to check whether it holds
1301  * group mutex lock for the given device or not.
1302  *
1303  * Note that this function must be called after device group param is set.
1304  */
iommu_group_mutex_assert(struct device * dev)1305 void iommu_group_mutex_assert(struct device *dev)
1306 {
1307 	struct iommu_group *group = dev->iommu_group;
1308 
1309 	lockdep_assert_held(&group->mutex);
1310 }
1311 EXPORT_SYMBOL_GPL(iommu_group_mutex_assert);
1312 #endif
1313 
iommu_group_first_dev(struct iommu_group * group)1314 static struct device *iommu_group_first_dev(struct iommu_group *group)
1315 {
1316 	lockdep_assert_held(&group->mutex);
1317 	return list_first_entry(&group->devices, struct group_device, list)->dev;
1318 }
1319 
1320 /**
1321  * iommu_group_for_each_dev - iterate over each device in the group
1322  * @group: the group
1323  * @data: caller opaque data to be passed to callback function
1324  * @fn: caller supplied callback function
1325  *
1326  * This function is called by group users to iterate over group devices.
1327  * Callers should hold a reference count to the group during callback.
1328  * The group->mutex is held across callbacks, which will block calls to
1329  * iommu_group_add/remove_device.
1330  */
iommu_group_for_each_dev(struct iommu_group * group,void * data,int (* fn)(struct device *,void *))1331 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1332 			     int (*fn)(struct device *, void *))
1333 {
1334 	struct group_device *device;
1335 	int ret = 0;
1336 
1337 	mutex_lock(&group->mutex);
1338 	for_each_group_device(group, device) {
1339 		ret = fn(device->dev, data);
1340 		if (ret)
1341 			break;
1342 	}
1343 	mutex_unlock(&group->mutex);
1344 
1345 	return ret;
1346 }
1347 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1348 
1349 /**
1350  * iommu_group_get - Return the group for a device and increment reference
1351  * @dev: get the group that this device belongs to
1352  *
1353  * This function is called by iommu drivers and users to get the group
1354  * for the specified device.  If found, the group is returned and the group
1355  * reference in incremented, else NULL.
1356  */
iommu_group_get(struct device * dev)1357 struct iommu_group *iommu_group_get(struct device *dev)
1358 {
1359 	struct iommu_group *group = dev->iommu_group;
1360 
1361 	if (group)
1362 		kobject_get(group->devices_kobj);
1363 
1364 	return group;
1365 }
1366 EXPORT_SYMBOL_GPL(iommu_group_get);
1367 
1368 /**
1369  * iommu_group_ref_get - Increment reference on a group
1370  * @group: the group to use, must not be NULL
1371  *
1372  * This function is called by iommu drivers to take additional references on an
1373  * existing group.  Returns the given group for convenience.
1374  */
iommu_group_ref_get(struct iommu_group * group)1375 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1376 {
1377 	kobject_get(group->devices_kobj);
1378 	return group;
1379 }
1380 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1381 
1382 /**
1383  * iommu_group_put - Decrement group reference
1384  * @group: the group to use
1385  *
1386  * This function is called by iommu drivers and users to release the
1387  * iommu group.  Once the reference count is zero, the group is released.
1388  */
iommu_group_put(struct iommu_group * group)1389 void iommu_group_put(struct iommu_group *group)
1390 {
1391 	if (group)
1392 		kobject_put(group->devices_kobj);
1393 }
1394 EXPORT_SYMBOL_GPL(iommu_group_put);
1395 
1396 /**
1397  * iommu_group_id - Return ID for a group
1398  * @group: the group to ID
1399  *
1400  * Return the unique ID for the group matching the sysfs group number.
1401  */
iommu_group_id(struct iommu_group * group)1402 int iommu_group_id(struct iommu_group *group)
1403 {
1404 	return group->id;
1405 }
1406 EXPORT_SYMBOL_GPL(iommu_group_id);
1407 
1408 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1409 					       unsigned long *devfns);
1410 
1411 /*
1412  * To consider a PCI device isolated, we require ACS to support Source
1413  * Validation, Request Redirection, Completer Redirection, and Upstream
1414  * Forwarding.  This effectively means that devices cannot spoof their
1415  * requester ID, requests and completions cannot be redirected, and all
1416  * transactions are forwarded upstream, even as it passes through a
1417  * bridge where the target device is downstream.
1418  */
1419 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1420 
1421 /*
1422  * For multifunction devices which are not isolated from each other, find
1423  * all the other non-isolated functions and look for existing groups.  For
1424  * each function, we also need to look for aliases to or from other devices
1425  * that may already have a group.
1426  */
get_pci_function_alias_group(struct pci_dev * pdev,unsigned long * devfns)1427 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1428 							unsigned long *devfns)
1429 {
1430 	struct pci_dev *tmp = NULL;
1431 	struct iommu_group *group;
1432 
1433 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1434 		return NULL;
1435 
1436 	for_each_pci_dev(tmp) {
1437 		if (tmp == pdev || tmp->bus != pdev->bus ||
1438 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1439 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1440 			continue;
1441 
1442 		group = get_pci_alias_group(tmp, devfns);
1443 		if (group) {
1444 			pci_dev_put(tmp);
1445 			return group;
1446 		}
1447 	}
1448 
1449 	return NULL;
1450 }
1451 
1452 /*
1453  * Look for aliases to or from the given device for existing groups. DMA
1454  * aliases are only supported on the same bus, therefore the search
1455  * space is quite small (especially since we're really only looking at pcie
1456  * device, and therefore only expect multiple slots on the root complex or
1457  * downstream switch ports).  It's conceivable though that a pair of
1458  * multifunction devices could have aliases between them that would cause a
1459  * loop.  To prevent this, we use a bitmap to track where we've been.
1460  */
get_pci_alias_group(struct pci_dev * pdev,unsigned long * devfns)1461 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1462 					       unsigned long *devfns)
1463 {
1464 	struct pci_dev *tmp = NULL;
1465 	struct iommu_group *group;
1466 
1467 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1468 		return NULL;
1469 
1470 	group = iommu_group_get(&pdev->dev);
1471 	if (group)
1472 		return group;
1473 
1474 	for_each_pci_dev(tmp) {
1475 		if (tmp == pdev || tmp->bus != pdev->bus)
1476 			continue;
1477 
1478 		/* We alias them or they alias us */
1479 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
1480 			group = get_pci_alias_group(tmp, devfns);
1481 			if (group) {
1482 				pci_dev_put(tmp);
1483 				return group;
1484 			}
1485 
1486 			group = get_pci_function_alias_group(tmp, devfns);
1487 			if (group) {
1488 				pci_dev_put(tmp);
1489 				return group;
1490 			}
1491 		}
1492 	}
1493 
1494 	return NULL;
1495 }
1496 
1497 struct group_for_pci_data {
1498 	struct pci_dev *pdev;
1499 	struct iommu_group *group;
1500 };
1501 
1502 /*
1503  * DMA alias iterator callback, return the last seen device.  Stop and return
1504  * the IOMMU group if we find one along the way.
1505  */
get_pci_alias_or_group(struct pci_dev * pdev,u16 alias,void * opaque)1506 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1507 {
1508 	struct group_for_pci_data *data = opaque;
1509 
1510 	data->pdev = pdev;
1511 	data->group = iommu_group_get(&pdev->dev);
1512 
1513 	return data->group != NULL;
1514 }
1515 
1516 /*
1517  * Generic device_group call-back function. It just allocates one
1518  * iommu-group per device.
1519  */
generic_device_group(struct device * dev)1520 struct iommu_group *generic_device_group(struct device *dev)
1521 {
1522 	return iommu_group_alloc();
1523 }
1524 EXPORT_SYMBOL_GPL(generic_device_group);
1525 
1526 /*
1527  * Generic device_group call-back function. It just allocates one
1528  * iommu-group per iommu driver instance shared by every device
1529  * probed by that iommu driver.
1530  */
generic_single_device_group(struct device * dev)1531 struct iommu_group *generic_single_device_group(struct device *dev)
1532 {
1533 	struct iommu_device *iommu = dev->iommu->iommu_dev;
1534 
1535 	if (!iommu->singleton_group) {
1536 		struct iommu_group *group;
1537 
1538 		group = iommu_group_alloc();
1539 		if (IS_ERR(group))
1540 			return group;
1541 		iommu->singleton_group = group;
1542 	}
1543 	return iommu_group_ref_get(iommu->singleton_group);
1544 }
1545 EXPORT_SYMBOL_GPL(generic_single_device_group);
1546 
1547 /*
1548  * Use standard PCI bus topology, isolation features, and DMA alias quirks
1549  * to find or create an IOMMU group for a device.
1550  */
pci_device_group(struct device * dev)1551 struct iommu_group *pci_device_group(struct device *dev)
1552 {
1553 	struct pci_dev *pdev = to_pci_dev(dev);
1554 	struct group_for_pci_data data;
1555 	struct pci_bus *bus;
1556 	struct iommu_group *group = NULL;
1557 	u64 devfns[4] = { 0 };
1558 
1559 	if (WARN_ON(!dev_is_pci(dev)))
1560 		return ERR_PTR(-EINVAL);
1561 
1562 	/*
1563 	 * Find the upstream DMA alias for the device.  A device must not
1564 	 * be aliased due to topology in order to have its own IOMMU group.
1565 	 * If we find an alias along the way that already belongs to a
1566 	 * group, use it.
1567 	 */
1568 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1569 		return data.group;
1570 
1571 	pdev = data.pdev;
1572 
1573 	/*
1574 	 * Continue upstream from the point of minimum IOMMU granularity
1575 	 * due to aliases to the point where devices are protected from
1576 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1577 	 * group, use it.
1578 	 */
1579 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1580 		if (!bus->self)
1581 			continue;
1582 
1583 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1584 			break;
1585 
1586 		pdev = bus->self;
1587 
1588 		group = iommu_group_get(&pdev->dev);
1589 		if (group)
1590 			return group;
1591 	}
1592 
1593 	/*
1594 	 * Look for existing groups on device aliases.  If we alias another
1595 	 * device or another device aliases us, use the same group.
1596 	 */
1597 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1598 	if (group)
1599 		return group;
1600 
1601 	/*
1602 	 * Look for existing groups on non-isolated functions on the same
1603 	 * slot and aliases of those funcions, if any.  No need to clear
1604 	 * the search bitmap, the tested devfns are still valid.
1605 	 */
1606 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1607 	if (group)
1608 		return group;
1609 
1610 	/* No shared group found, allocate new */
1611 	return iommu_group_alloc();
1612 }
1613 EXPORT_SYMBOL_GPL(pci_device_group);
1614 
1615 /* Get the IOMMU group for device on fsl-mc bus */
fsl_mc_device_group(struct device * dev)1616 struct iommu_group *fsl_mc_device_group(struct device *dev)
1617 {
1618 	struct device *cont_dev = fsl_mc_cont_dev(dev);
1619 	struct iommu_group *group;
1620 
1621 	group = iommu_group_get(cont_dev);
1622 	if (!group)
1623 		group = iommu_group_alloc();
1624 	return group;
1625 }
1626 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1627 
__iommu_alloc_identity_domain(struct device * dev)1628 static struct iommu_domain *__iommu_alloc_identity_domain(struct device *dev)
1629 {
1630 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1631 	struct iommu_domain *domain;
1632 
1633 	if (ops->identity_domain)
1634 		return ops->identity_domain;
1635 
1636 	if (ops->domain_alloc_identity) {
1637 		domain = ops->domain_alloc_identity(dev);
1638 		if (IS_ERR(domain))
1639 			return domain;
1640 	} else {
1641 		return ERR_PTR(-EOPNOTSUPP);
1642 	}
1643 
1644 	iommu_domain_init(domain, IOMMU_DOMAIN_IDENTITY, ops);
1645 	return domain;
1646 }
1647 
1648 static struct iommu_domain *
__iommu_group_alloc_default_domain(struct iommu_group * group,int req_type)1649 __iommu_group_alloc_default_domain(struct iommu_group *group, int req_type)
1650 {
1651 	struct device *dev = iommu_group_first_dev(group);
1652 	struct iommu_domain *dom;
1653 
1654 	if (group->default_domain && group->default_domain->type == req_type)
1655 		return group->default_domain;
1656 
1657 	/*
1658 	 * When allocating the DMA API domain assume that the driver is going to
1659 	 * use PASID and make sure the RID's domain is PASID compatible.
1660 	 */
1661 	if (req_type & __IOMMU_DOMAIN_PAGING) {
1662 		dom = __iommu_paging_domain_alloc_flags(dev, req_type,
1663 			   dev->iommu->max_pasids ? IOMMU_HWPT_ALLOC_PASID : 0);
1664 
1665 		/*
1666 		 * If driver does not support PASID feature then
1667 		 * try to allocate non-PASID domain
1668 		 */
1669 		if (PTR_ERR(dom) == -EOPNOTSUPP)
1670 			dom = __iommu_paging_domain_alloc_flags(dev, req_type, 0);
1671 
1672 		return dom;
1673 	}
1674 
1675 	if (req_type == IOMMU_DOMAIN_IDENTITY)
1676 		return __iommu_alloc_identity_domain(dev);
1677 
1678 	return ERR_PTR(-EINVAL);
1679 }
1680 
1681 /*
1682  * req_type of 0 means "auto" which means to select a domain based on
1683  * iommu_def_domain_type or what the driver actually supports.
1684  */
1685 static struct iommu_domain *
iommu_group_alloc_default_domain(struct iommu_group * group,int req_type)1686 iommu_group_alloc_default_domain(struct iommu_group *group, int req_type)
1687 {
1688 	const struct iommu_ops *ops = dev_iommu_ops(iommu_group_first_dev(group));
1689 	struct iommu_domain *dom;
1690 
1691 	lockdep_assert_held(&group->mutex);
1692 
1693 	/*
1694 	 * Allow legacy drivers to specify the domain that will be the default
1695 	 * domain. This should always be either an IDENTITY/BLOCKED/PLATFORM
1696 	 * domain. Do not use in new drivers.
1697 	 */
1698 	if (ops->default_domain) {
1699 		if (req_type != ops->default_domain->type)
1700 			return ERR_PTR(-EINVAL);
1701 		return ops->default_domain;
1702 	}
1703 
1704 	if (req_type)
1705 		return __iommu_group_alloc_default_domain(group, req_type);
1706 
1707 	/* The driver gave no guidance on what type to use, try the default */
1708 	dom = __iommu_group_alloc_default_domain(group, iommu_def_domain_type);
1709 	if (!IS_ERR(dom))
1710 		return dom;
1711 
1712 	/* Otherwise IDENTITY and DMA_FQ defaults will try DMA */
1713 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA)
1714 		return ERR_PTR(-EINVAL);
1715 	dom = __iommu_group_alloc_default_domain(group, IOMMU_DOMAIN_DMA);
1716 	if (IS_ERR(dom))
1717 		return dom;
1718 
1719 	pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1720 		iommu_def_domain_type, group->name);
1721 	return dom;
1722 }
1723 
iommu_group_default_domain(struct iommu_group * group)1724 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1725 {
1726 	return group->default_domain;
1727 }
1728 
probe_iommu_group(struct device * dev,void * data)1729 static int probe_iommu_group(struct device *dev, void *data)
1730 {
1731 	struct list_head *group_list = data;
1732 	int ret;
1733 
1734 	mutex_lock(&iommu_probe_device_lock);
1735 	ret = __iommu_probe_device(dev, group_list);
1736 	mutex_unlock(&iommu_probe_device_lock);
1737 	if (ret == -ENODEV)
1738 		ret = 0;
1739 
1740 	return ret;
1741 }
1742 
iommu_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)1743 static int iommu_bus_notifier(struct notifier_block *nb,
1744 			      unsigned long action, void *data)
1745 {
1746 	struct device *dev = data;
1747 
1748 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1749 		int ret;
1750 
1751 		ret = iommu_probe_device(dev);
1752 		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1753 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1754 		iommu_release_device(dev);
1755 		return NOTIFY_OK;
1756 	}
1757 
1758 	return 0;
1759 }
1760 
1761 /*
1762  * Combine the driver's chosen def_domain_type across all the devices in a
1763  * group. Drivers must give a consistent result.
1764  */
iommu_get_def_domain_type(struct iommu_group * group,struct device * dev,int cur_type)1765 static int iommu_get_def_domain_type(struct iommu_group *group,
1766 				     struct device *dev, int cur_type)
1767 {
1768 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1769 	int type;
1770 
1771 	if (ops->default_domain) {
1772 		/*
1773 		 * Drivers that declare a global static default_domain will
1774 		 * always choose that.
1775 		 */
1776 		type = ops->default_domain->type;
1777 	} else {
1778 		if (ops->def_domain_type)
1779 			type = ops->def_domain_type(dev);
1780 		else
1781 			return cur_type;
1782 	}
1783 	if (!type || cur_type == type)
1784 		return cur_type;
1785 	if (!cur_type)
1786 		return type;
1787 
1788 	dev_err_ratelimited(
1789 		dev,
1790 		"IOMMU driver error, requesting conflicting def_domain_type, %s and %s, for devices in group %u.\n",
1791 		iommu_domain_type_str(cur_type), iommu_domain_type_str(type),
1792 		group->id);
1793 
1794 	/*
1795 	 * Try to recover, drivers are allowed to force IDENTITY or DMA, IDENTITY
1796 	 * takes precedence.
1797 	 */
1798 	if (type == IOMMU_DOMAIN_IDENTITY)
1799 		return type;
1800 	return cur_type;
1801 }
1802 
1803 /*
1804  * A target_type of 0 will select the best domain type. 0 can be returned in
1805  * this case meaning the global default should be used.
1806  */
iommu_get_default_domain_type(struct iommu_group * group,int target_type)1807 static int iommu_get_default_domain_type(struct iommu_group *group,
1808 					 int target_type)
1809 {
1810 	struct device *untrusted = NULL;
1811 	struct group_device *gdev;
1812 	int driver_type = 0;
1813 
1814 	lockdep_assert_held(&group->mutex);
1815 
1816 	/*
1817 	 * ARM32 drivers supporting CONFIG_ARM_DMA_USE_IOMMU can declare an
1818 	 * identity_domain and it will automatically become their default
1819 	 * domain. Later on ARM_DMA_USE_IOMMU will install its UNMANAGED domain.
1820 	 * Override the selection to IDENTITY.
1821 	 */
1822 	if (IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)) {
1823 		static_assert(!(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU) &&
1824 				IS_ENABLED(CONFIG_IOMMU_DMA)));
1825 		driver_type = IOMMU_DOMAIN_IDENTITY;
1826 	}
1827 
1828 	for_each_group_device(group, gdev) {
1829 		driver_type = iommu_get_def_domain_type(group, gdev->dev,
1830 							driver_type);
1831 
1832 		if (dev_is_pci(gdev->dev) && to_pci_dev(gdev->dev)->untrusted) {
1833 			/*
1834 			 * No ARM32 using systems will set untrusted, it cannot
1835 			 * work.
1836 			 */
1837 			if (WARN_ON(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)))
1838 				return -1;
1839 			untrusted = gdev->dev;
1840 		}
1841 	}
1842 
1843 	/*
1844 	 * If the common dma ops are not selected in kconfig then we cannot use
1845 	 * IOMMU_DOMAIN_DMA at all. Force IDENTITY if nothing else has been
1846 	 * selected.
1847 	 */
1848 	if (!IS_ENABLED(CONFIG_IOMMU_DMA)) {
1849 		if (WARN_ON(driver_type == IOMMU_DOMAIN_DMA))
1850 			return -1;
1851 		if (!driver_type)
1852 			driver_type = IOMMU_DOMAIN_IDENTITY;
1853 	}
1854 
1855 	if (untrusted) {
1856 		if (driver_type && driver_type != IOMMU_DOMAIN_DMA) {
1857 			dev_err_ratelimited(
1858 				untrusted,
1859 				"Device is not trusted, but driver is overriding group %u to %s, refusing to probe.\n",
1860 				group->id, iommu_domain_type_str(driver_type));
1861 			return -1;
1862 		}
1863 		driver_type = IOMMU_DOMAIN_DMA;
1864 	}
1865 
1866 	if (target_type) {
1867 		if (driver_type && target_type != driver_type)
1868 			return -1;
1869 		return target_type;
1870 	}
1871 	return driver_type;
1872 }
1873 
iommu_group_do_probe_finalize(struct device * dev)1874 static void iommu_group_do_probe_finalize(struct device *dev)
1875 {
1876 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1877 
1878 	if (ops->probe_finalize)
1879 		ops->probe_finalize(dev);
1880 }
1881 
bus_iommu_probe(const struct bus_type * bus)1882 static int bus_iommu_probe(const struct bus_type *bus)
1883 {
1884 	struct iommu_group *group, *next;
1885 	LIST_HEAD(group_list);
1886 	int ret;
1887 
1888 	ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1889 	if (ret)
1890 		return ret;
1891 
1892 	list_for_each_entry_safe(group, next, &group_list, entry) {
1893 		struct group_device *gdev;
1894 
1895 		mutex_lock(&group->mutex);
1896 
1897 		/* Remove item from the list */
1898 		list_del_init(&group->entry);
1899 
1900 		/*
1901 		 * We go to the trouble of deferred default domain creation so
1902 		 * that the cross-group default domain type and the setup of the
1903 		 * IOMMU_RESV_DIRECT will work correctly in non-hotpug scenarios.
1904 		 */
1905 		ret = iommu_setup_default_domain(group, 0);
1906 		if (ret) {
1907 			mutex_unlock(&group->mutex);
1908 			return ret;
1909 		}
1910 		for_each_group_device(group, gdev)
1911 			iommu_setup_dma_ops(gdev->dev);
1912 		mutex_unlock(&group->mutex);
1913 
1914 		/*
1915 		 * FIXME: Mis-locked because the ops->probe_finalize() call-back
1916 		 * of some IOMMU drivers calls arm_iommu_attach_device() which
1917 		 * in-turn might call back into IOMMU core code, where it tries
1918 		 * to take group->mutex, resulting in a deadlock.
1919 		 */
1920 		for_each_group_device(group, gdev)
1921 			iommu_group_do_probe_finalize(gdev->dev);
1922 	}
1923 
1924 	return 0;
1925 }
1926 
1927 /**
1928  * device_iommu_capable() - check for a general IOMMU capability
1929  * @dev: device to which the capability would be relevant, if available
1930  * @cap: IOMMU capability
1931  *
1932  * Return: true if an IOMMU is present and supports the given capability
1933  * for the given device, otherwise false.
1934  */
device_iommu_capable(struct device * dev,enum iommu_cap cap)1935 bool device_iommu_capable(struct device *dev, enum iommu_cap cap)
1936 {
1937 	const struct iommu_ops *ops;
1938 
1939 	if (!dev_has_iommu(dev))
1940 		return false;
1941 
1942 	ops = dev_iommu_ops(dev);
1943 	if (!ops->capable)
1944 		return false;
1945 
1946 	return ops->capable(dev, cap);
1947 }
1948 EXPORT_SYMBOL_GPL(device_iommu_capable);
1949 
1950 /**
1951  * iommu_group_has_isolated_msi() - Compute msi_device_has_isolated_msi()
1952  *       for a group
1953  * @group: Group to query
1954  *
1955  * IOMMU groups should not have differing values of
1956  * msi_device_has_isolated_msi() for devices in a group. However nothing
1957  * directly prevents this, so ensure mistakes don't result in isolation failures
1958  * by checking that all the devices are the same.
1959  */
iommu_group_has_isolated_msi(struct iommu_group * group)1960 bool iommu_group_has_isolated_msi(struct iommu_group *group)
1961 {
1962 	struct group_device *group_dev;
1963 	bool ret = true;
1964 
1965 	mutex_lock(&group->mutex);
1966 	for_each_group_device(group, group_dev)
1967 		ret &= msi_device_has_isolated_msi(group_dev->dev);
1968 	mutex_unlock(&group->mutex);
1969 	return ret;
1970 }
1971 EXPORT_SYMBOL_GPL(iommu_group_has_isolated_msi);
1972 
1973 /**
1974  * iommu_set_fault_handler() - set a fault handler for an iommu domain
1975  * @domain: iommu domain
1976  * @handler: fault handler
1977  * @token: user data, will be passed back to the fault handler
1978  *
1979  * This function should be used by IOMMU users which want to be notified
1980  * whenever an IOMMU fault happens.
1981  *
1982  * The fault handler itself should return 0 on success, and an appropriate
1983  * error code otherwise.
1984  */
iommu_set_fault_handler(struct iommu_domain * domain,iommu_fault_handler_t handler,void * token)1985 void iommu_set_fault_handler(struct iommu_domain *domain,
1986 					iommu_fault_handler_t handler,
1987 					void *token)
1988 {
1989 	if (WARN_ON(!domain || domain->cookie_type != IOMMU_COOKIE_NONE))
1990 		return;
1991 
1992 	domain->cookie_type = IOMMU_COOKIE_FAULT_HANDLER;
1993 	domain->handler = handler;
1994 	domain->handler_token = token;
1995 }
1996 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1997 
iommu_domain_init(struct iommu_domain * domain,unsigned int type,const struct iommu_ops * ops)1998 static void iommu_domain_init(struct iommu_domain *domain, unsigned int type,
1999 			      const struct iommu_ops *ops)
2000 {
2001 	domain->type = type;
2002 	domain->owner = ops;
2003 	if (!domain->ops)
2004 		domain->ops = ops->default_domain_ops;
2005 }
2006 
2007 static struct iommu_domain *
__iommu_paging_domain_alloc_flags(struct device * dev,unsigned int type,unsigned int flags)2008 __iommu_paging_domain_alloc_flags(struct device *dev, unsigned int type,
2009 				  unsigned int flags)
2010 {
2011 	const struct iommu_ops *ops;
2012 	struct iommu_domain *domain;
2013 
2014 	if (!dev_has_iommu(dev))
2015 		return ERR_PTR(-ENODEV);
2016 
2017 	ops = dev_iommu_ops(dev);
2018 
2019 	if (ops->domain_alloc_paging && !flags)
2020 		domain = ops->domain_alloc_paging(dev);
2021 	else if (ops->domain_alloc_paging_flags)
2022 		domain = ops->domain_alloc_paging_flags(dev, flags, NULL);
2023 #if IS_ENABLED(CONFIG_FSL_PAMU)
2024 	else if (ops->domain_alloc && !flags)
2025 		domain = ops->domain_alloc(IOMMU_DOMAIN_UNMANAGED);
2026 #endif
2027 	else
2028 		return ERR_PTR(-EOPNOTSUPP);
2029 
2030 	if (IS_ERR(domain))
2031 		return domain;
2032 	if (!domain)
2033 		return ERR_PTR(-ENOMEM);
2034 
2035 	iommu_domain_init(domain, type, ops);
2036 	return domain;
2037 }
2038 
2039 /**
2040  * iommu_paging_domain_alloc_flags() - Allocate a paging domain
2041  * @dev: device for which the domain is allocated
2042  * @flags: Bitmap of iommufd_hwpt_alloc_flags
2043  *
2044  * Allocate a paging domain which will be managed by a kernel driver. Return
2045  * allocated domain if successful, or an ERR pointer for failure.
2046  */
iommu_paging_domain_alloc_flags(struct device * dev,unsigned int flags)2047 struct iommu_domain *iommu_paging_domain_alloc_flags(struct device *dev,
2048 						     unsigned int flags)
2049 {
2050 	return __iommu_paging_domain_alloc_flags(dev,
2051 					 IOMMU_DOMAIN_UNMANAGED, flags);
2052 }
2053 EXPORT_SYMBOL_GPL(iommu_paging_domain_alloc_flags);
2054 
iommu_domain_free(struct iommu_domain * domain)2055 void iommu_domain_free(struct iommu_domain *domain)
2056 {
2057 	switch (domain->cookie_type) {
2058 	case IOMMU_COOKIE_DMA_IOVA:
2059 		iommu_put_dma_cookie(domain);
2060 		break;
2061 	case IOMMU_COOKIE_DMA_MSI:
2062 		iommu_put_msi_cookie(domain);
2063 		break;
2064 	case IOMMU_COOKIE_SVA:
2065 		mmdrop(domain->mm);
2066 		break;
2067 	default:
2068 		break;
2069 	}
2070 	if (domain->ops->free)
2071 		domain->ops->free(domain);
2072 }
2073 EXPORT_SYMBOL_GPL(iommu_domain_free);
2074 
2075 /*
2076  * Put the group's domain back to the appropriate core-owned domain - either the
2077  * standard kernel-mode DMA configuration or an all-DMA-blocked domain.
2078  */
__iommu_group_set_core_domain(struct iommu_group * group)2079 static void __iommu_group_set_core_domain(struct iommu_group *group)
2080 {
2081 	struct iommu_domain *new_domain;
2082 
2083 	if (group->owner)
2084 		new_domain = group->blocking_domain;
2085 	else
2086 		new_domain = group->default_domain;
2087 
2088 	__iommu_group_set_domain_nofail(group, new_domain);
2089 }
2090 
__iommu_attach_device(struct iommu_domain * domain,struct device * dev)2091 static int __iommu_attach_device(struct iommu_domain *domain,
2092 				 struct device *dev)
2093 {
2094 	int ret;
2095 
2096 	if (unlikely(domain->ops->attach_dev == NULL))
2097 		return -ENODEV;
2098 
2099 	ret = domain->ops->attach_dev(domain, dev);
2100 	if (ret)
2101 		return ret;
2102 	dev->iommu->attach_deferred = 0;
2103 	trace_attach_device_to_domain(dev);
2104 	return 0;
2105 }
2106 
2107 /**
2108  * iommu_attach_device - Attach an IOMMU domain to a device
2109  * @domain: IOMMU domain to attach
2110  * @dev: Device that will be attached
2111  *
2112  * Returns 0 on success and error code on failure
2113  *
2114  * Note that EINVAL can be treated as a soft failure, indicating
2115  * that certain configuration of the domain is incompatible with
2116  * the device. In this case attaching a different domain to the
2117  * device may succeed.
2118  */
iommu_attach_device(struct iommu_domain * domain,struct device * dev)2119 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
2120 {
2121 	/* Caller must be a probed driver on dev */
2122 	struct iommu_group *group = dev->iommu_group;
2123 	int ret;
2124 
2125 	if (!group)
2126 		return -ENODEV;
2127 
2128 	/*
2129 	 * Lock the group to make sure the device-count doesn't
2130 	 * change while we are attaching
2131 	 */
2132 	mutex_lock(&group->mutex);
2133 	ret = -EINVAL;
2134 	if (list_count_nodes(&group->devices) != 1)
2135 		goto out_unlock;
2136 
2137 	ret = __iommu_attach_group(domain, group);
2138 
2139 out_unlock:
2140 	mutex_unlock(&group->mutex);
2141 	return ret;
2142 }
2143 EXPORT_SYMBOL_GPL(iommu_attach_device);
2144 
iommu_deferred_attach(struct device * dev,struct iommu_domain * domain)2145 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2146 {
2147 	if (dev->iommu && dev->iommu->attach_deferred)
2148 		return __iommu_attach_device(domain, dev);
2149 
2150 	return 0;
2151 }
2152 
iommu_detach_device(struct iommu_domain * domain,struct device * dev)2153 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2154 {
2155 	/* Caller must be a probed driver on dev */
2156 	struct iommu_group *group = dev->iommu_group;
2157 
2158 	if (!group)
2159 		return;
2160 
2161 	mutex_lock(&group->mutex);
2162 	if (WARN_ON(domain != group->domain) ||
2163 	    WARN_ON(list_count_nodes(&group->devices) != 1))
2164 		goto out_unlock;
2165 	__iommu_group_set_core_domain(group);
2166 
2167 out_unlock:
2168 	mutex_unlock(&group->mutex);
2169 }
2170 EXPORT_SYMBOL_GPL(iommu_detach_device);
2171 
iommu_get_domain_for_dev(struct device * dev)2172 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2173 {
2174 	/* Caller must be a probed driver on dev */
2175 	struct iommu_group *group = dev->iommu_group;
2176 
2177 	if (!group)
2178 		return NULL;
2179 
2180 	return group->domain;
2181 }
2182 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2183 
2184 /*
2185  * For IOMMU_DOMAIN_DMA implementations which already provide their own
2186  * guarantees that the group and its default domain are valid and correct.
2187  */
iommu_get_dma_domain(struct device * dev)2188 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2189 {
2190 	return dev->iommu_group->default_domain;
2191 }
2192 
iommu_make_pasid_array_entry(struct iommu_domain * domain,struct iommu_attach_handle * handle)2193 static void *iommu_make_pasid_array_entry(struct iommu_domain *domain,
2194 					  struct iommu_attach_handle *handle)
2195 {
2196 	if (handle) {
2197 		handle->domain = domain;
2198 		return xa_tag_pointer(handle, IOMMU_PASID_ARRAY_HANDLE);
2199 	}
2200 
2201 	return xa_tag_pointer(domain, IOMMU_PASID_ARRAY_DOMAIN);
2202 }
2203 
domain_iommu_ops_compatible(const struct iommu_ops * ops,struct iommu_domain * domain)2204 static bool domain_iommu_ops_compatible(const struct iommu_ops *ops,
2205 					struct iommu_domain *domain)
2206 {
2207 	if (domain->owner == ops)
2208 		return true;
2209 
2210 	/* For static domains, owner isn't set. */
2211 	if (domain == ops->blocked_domain || domain == ops->identity_domain)
2212 		return true;
2213 
2214 	return false;
2215 }
2216 
__iommu_attach_group(struct iommu_domain * domain,struct iommu_group * group)2217 static int __iommu_attach_group(struct iommu_domain *domain,
2218 				struct iommu_group *group)
2219 {
2220 	struct device *dev;
2221 
2222 	if (group->domain && group->domain != group->default_domain &&
2223 	    group->domain != group->blocking_domain)
2224 		return -EBUSY;
2225 
2226 	dev = iommu_group_first_dev(group);
2227 	if (!dev_has_iommu(dev) ||
2228 	    !domain_iommu_ops_compatible(dev_iommu_ops(dev), domain))
2229 		return -EINVAL;
2230 
2231 	return __iommu_group_set_domain(group, domain);
2232 }
2233 
2234 /**
2235  * iommu_attach_group - Attach an IOMMU domain to an IOMMU group
2236  * @domain: IOMMU domain to attach
2237  * @group: IOMMU group that will be attached
2238  *
2239  * Returns 0 on success and error code on failure
2240  *
2241  * Note that EINVAL can be treated as a soft failure, indicating
2242  * that certain configuration of the domain is incompatible with
2243  * the group. In this case attaching a different domain to the
2244  * group may succeed.
2245  */
iommu_attach_group(struct iommu_domain * domain,struct iommu_group * group)2246 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2247 {
2248 	int ret;
2249 
2250 	mutex_lock(&group->mutex);
2251 	ret = __iommu_attach_group(domain, group);
2252 	mutex_unlock(&group->mutex);
2253 
2254 	return ret;
2255 }
2256 EXPORT_SYMBOL_GPL(iommu_attach_group);
2257 
__iommu_device_set_domain(struct iommu_group * group,struct device * dev,struct iommu_domain * new_domain,unsigned int flags)2258 static int __iommu_device_set_domain(struct iommu_group *group,
2259 				     struct device *dev,
2260 				     struct iommu_domain *new_domain,
2261 				     unsigned int flags)
2262 {
2263 	int ret;
2264 
2265 	/*
2266 	 * If the device requires IOMMU_RESV_DIRECT then we cannot allow
2267 	 * the blocking domain to be attached as it does not contain the
2268 	 * required 1:1 mapping. This test effectively excludes the device
2269 	 * being used with iommu_group_claim_dma_owner() which will block
2270 	 * vfio and iommufd as well.
2271 	 */
2272 	if (dev->iommu->require_direct &&
2273 	    (new_domain->type == IOMMU_DOMAIN_BLOCKED ||
2274 	     new_domain == group->blocking_domain)) {
2275 		dev_warn(dev,
2276 			 "Firmware has requested this device have a 1:1 IOMMU mapping, rejecting configuring the device without a 1:1 mapping. Contact your platform vendor.\n");
2277 		return -EINVAL;
2278 	}
2279 
2280 	if (dev->iommu->attach_deferred) {
2281 		if (new_domain == group->default_domain)
2282 			return 0;
2283 		dev->iommu->attach_deferred = 0;
2284 	}
2285 
2286 	ret = __iommu_attach_device(new_domain, dev);
2287 	if (ret) {
2288 		/*
2289 		 * If we have a blocking domain then try to attach that in hopes
2290 		 * of avoiding a UAF. Modern drivers should implement blocking
2291 		 * domains as global statics that cannot fail.
2292 		 */
2293 		if ((flags & IOMMU_SET_DOMAIN_MUST_SUCCEED) &&
2294 		    group->blocking_domain &&
2295 		    group->blocking_domain != new_domain)
2296 			__iommu_attach_device(group->blocking_domain, dev);
2297 		return ret;
2298 	}
2299 	return 0;
2300 }
2301 
2302 /*
2303  * If 0 is returned the group's domain is new_domain. If an error is returned
2304  * then the group's domain will be set back to the existing domain unless
2305  * IOMMU_SET_DOMAIN_MUST_SUCCEED, otherwise an error is returned and the group's
2306  * domains is left inconsistent. This is a driver bug to fail attach with a
2307  * previously good domain. We try to avoid a kernel UAF because of this.
2308  *
2309  * IOMMU groups are really the natural working unit of the IOMMU, but the IOMMU
2310  * API works on domains and devices.  Bridge that gap by iterating over the
2311  * devices in a group.  Ideally we'd have a single device which represents the
2312  * requestor ID of the group, but we also allow IOMMU drivers to create policy
2313  * defined minimum sets, where the physical hardware may be able to distiguish
2314  * members, but we wish to group them at a higher level (ex. untrusted
2315  * multi-function PCI devices).  Thus we attach each device.
2316  */
__iommu_group_set_domain_internal(struct iommu_group * group,struct iommu_domain * new_domain,unsigned int flags)2317 static int __iommu_group_set_domain_internal(struct iommu_group *group,
2318 					     struct iommu_domain *new_domain,
2319 					     unsigned int flags)
2320 {
2321 	struct group_device *last_gdev;
2322 	struct group_device *gdev;
2323 	int result;
2324 	int ret;
2325 
2326 	lockdep_assert_held(&group->mutex);
2327 
2328 	if (group->domain == new_domain)
2329 		return 0;
2330 
2331 	if (WARN_ON(!new_domain))
2332 		return -EINVAL;
2333 
2334 	/*
2335 	 * Changing the domain is done by calling attach_dev() on the new
2336 	 * domain. This switch does not have to be atomic and DMA can be
2337 	 * discarded during the transition. DMA must only be able to access
2338 	 * either new_domain or group->domain, never something else.
2339 	 */
2340 	result = 0;
2341 	for_each_group_device(group, gdev) {
2342 		ret = __iommu_device_set_domain(group, gdev->dev, new_domain,
2343 						flags);
2344 		if (ret) {
2345 			result = ret;
2346 			/*
2347 			 * Keep trying the other devices in the group. If a
2348 			 * driver fails attach to an otherwise good domain, and
2349 			 * does not support blocking domains, it should at least
2350 			 * drop its reference on the current domain so we don't
2351 			 * UAF.
2352 			 */
2353 			if (flags & IOMMU_SET_DOMAIN_MUST_SUCCEED)
2354 				continue;
2355 			goto err_revert;
2356 		}
2357 	}
2358 	group->domain = new_domain;
2359 	return result;
2360 
2361 err_revert:
2362 	/*
2363 	 * This is called in error unwind paths. A well behaved driver should
2364 	 * always allow us to attach to a domain that was already attached.
2365 	 */
2366 	last_gdev = gdev;
2367 	for_each_group_device(group, gdev) {
2368 		/*
2369 		 * A NULL domain can happen only for first probe, in which case
2370 		 * we leave group->domain as NULL and let release clean
2371 		 * everything up.
2372 		 */
2373 		if (group->domain)
2374 			WARN_ON(__iommu_device_set_domain(
2375 				group, gdev->dev, group->domain,
2376 				IOMMU_SET_DOMAIN_MUST_SUCCEED));
2377 		if (gdev == last_gdev)
2378 			break;
2379 	}
2380 	return ret;
2381 }
2382 
iommu_detach_group(struct iommu_domain * domain,struct iommu_group * group)2383 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2384 {
2385 	mutex_lock(&group->mutex);
2386 	__iommu_group_set_core_domain(group);
2387 	mutex_unlock(&group->mutex);
2388 }
2389 EXPORT_SYMBOL_GPL(iommu_detach_group);
2390 
iommu_iova_to_phys(struct iommu_domain * domain,dma_addr_t iova)2391 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2392 {
2393 	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2394 		return iova;
2395 
2396 	if (domain->type == IOMMU_DOMAIN_BLOCKED)
2397 		return 0;
2398 
2399 	return domain->ops->iova_to_phys(domain, iova);
2400 }
2401 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2402 
iommu_pgsize(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,size_t * count)2403 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2404 			   phys_addr_t paddr, size_t size, size_t *count)
2405 {
2406 	unsigned int pgsize_idx, pgsize_idx_next;
2407 	unsigned long pgsizes;
2408 	size_t offset, pgsize, pgsize_next;
2409 	size_t offset_end;
2410 	unsigned long addr_merge = paddr | iova;
2411 
2412 	/* Page sizes supported by the hardware and small enough for @size */
2413 	pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2414 
2415 	/* Constrain the page sizes further based on the maximum alignment */
2416 	if (likely(addr_merge))
2417 		pgsizes &= GENMASK(__ffs(addr_merge), 0);
2418 
2419 	/* Make sure we have at least one suitable page size */
2420 	BUG_ON(!pgsizes);
2421 
2422 	/* Pick the biggest page size remaining */
2423 	pgsize_idx = __fls(pgsizes);
2424 	pgsize = BIT(pgsize_idx);
2425 	if (!count)
2426 		return pgsize;
2427 
2428 	/* Find the next biggest support page size, if it exists */
2429 	pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2430 	if (!pgsizes)
2431 		goto out_set_count;
2432 
2433 	pgsize_idx_next = __ffs(pgsizes);
2434 	pgsize_next = BIT(pgsize_idx_next);
2435 
2436 	/*
2437 	 * There's no point trying a bigger page size unless the virtual
2438 	 * and physical addresses are similarly offset within the larger page.
2439 	 */
2440 	if ((iova ^ paddr) & (pgsize_next - 1))
2441 		goto out_set_count;
2442 
2443 	/* Calculate the offset to the next page size alignment boundary */
2444 	offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2445 
2446 	/*
2447 	 * If size is big enough to accommodate the larger page, reduce
2448 	 * the number of smaller pages.
2449 	 */
2450 	if (!check_add_overflow(offset, pgsize_next, &offset_end) &&
2451 	    offset_end <= size)
2452 		size = offset;
2453 
2454 out_set_count:
2455 	*count = size >> pgsize_idx;
2456 	return pgsize;
2457 }
2458 
iommu_map_nosync(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)2459 int iommu_map_nosync(struct iommu_domain *domain, unsigned long iova,
2460 		phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2461 {
2462 	const struct iommu_domain_ops *ops = domain->ops;
2463 	unsigned long orig_iova = iova;
2464 	unsigned int min_pagesz;
2465 	size_t orig_size = size;
2466 	phys_addr_t orig_paddr = paddr;
2467 	int ret = 0;
2468 
2469 	might_sleep_if(gfpflags_allow_blocking(gfp));
2470 
2471 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2472 		return -EINVAL;
2473 
2474 	if (WARN_ON(!ops->map_pages || domain->pgsize_bitmap == 0UL))
2475 		return -ENODEV;
2476 
2477 	/* Discourage passing strange GFP flags */
2478 	if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2479 				__GFP_HIGHMEM)))
2480 		return -EINVAL;
2481 
2482 	/* find out the minimum page size supported */
2483 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2484 
2485 	/*
2486 	 * both the virtual address and the physical one, as well as
2487 	 * the size of the mapping, must be aligned (at least) to the
2488 	 * size of the smallest page supported by the hardware
2489 	 */
2490 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2491 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2492 		       iova, &paddr, size, min_pagesz);
2493 		return -EINVAL;
2494 	}
2495 
2496 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2497 
2498 	while (size) {
2499 		size_t pgsize, count, mapped = 0;
2500 
2501 		pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2502 
2503 		pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2504 			 iova, &paddr, pgsize, count);
2505 		ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2506 				     gfp, &mapped);
2507 		/*
2508 		 * Some pages may have been mapped, even if an error occurred,
2509 		 * so we should account for those so they can be unmapped.
2510 		 */
2511 		size -= mapped;
2512 
2513 		if (ret)
2514 			break;
2515 
2516 		iova += mapped;
2517 		paddr += mapped;
2518 	}
2519 
2520 	/* unroll mapping in case something went wrong */
2521 	if (ret)
2522 		iommu_unmap(domain, orig_iova, orig_size - size);
2523 	else
2524 		trace_map(orig_iova, orig_paddr, orig_size);
2525 
2526 	return ret;
2527 }
2528 
iommu_sync_map(struct iommu_domain * domain,unsigned long iova,size_t size)2529 int iommu_sync_map(struct iommu_domain *domain, unsigned long iova, size_t size)
2530 {
2531 	const struct iommu_domain_ops *ops = domain->ops;
2532 
2533 	if (!ops->iotlb_sync_map)
2534 		return 0;
2535 	return ops->iotlb_sync_map(domain, iova, size);
2536 }
2537 
iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)2538 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2539 	      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2540 {
2541 	int ret;
2542 
2543 	ret = iommu_map_nosync(domain, iova, paddr, size, prot, gfp);
2544 	if (ret)
2545 		return ret;
2546 
2547 	ret = iommu_sync_map(domain, iova, size);
2548 	if (ret)
2549 		iommu_unmap(domain, iova, size);
2550 
2551 	return ret;
2552 }
2553 EXPORT_SYMBOL_GPL(iommu_map);
2554 
__iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2555 static size_t __iommu_unmap(struct iommu_domain *domain,
2556 			    unsigned long iova, size_t size,
2557 			    struct iommu_iotlb_gather *iotlb_gather)
2558 {
2559 	const struct iommu_domain_ops *ops = domain->ops;
2560 	size_t unmapped_page, unmapped = 0;
2561 	unsigned long orig_iova = iova;
2562 	unsigned int min_pagesz;
2563 
2564 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2565 		return 0;
2566 
2567 	if (WARN_ON(!ops->unmap_pages || domain->pgsize_bitmap == 0UL))
2568 		return 0;
2569 
2570 	/* find out the minimum page size supported */
2571 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2572 
2573 	/*
2574 	 * The virtual address, as well as the size of the mapping, must be
2575 	 * aligned (at least) to the size of the smallest page supported
2576 	 * by the hardware
2577 	 */
2578 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
2579 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2580 		       iova, size, min_pagesz);
2581 		return 0;
2582 	}
2583 
2584 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2585 
2586 	/*
2587 	 * Keep iterating until we either unmap 'size' bytes (or more)
2588 	 * or we hit an area that isn't mapped.
2589 	 */
2590 	while (unmapped < size) {
2591 		size_t pgsize, count;
2592 
2593 		pgsize = iommu_pgsize(domain, iova, iova, size - unmapped, &count);
2594 		unmapped_page = ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather);
2595 		if (!unmapped_page)
2596 			break;
2597 
2598 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2599 			 iova, unmapped_page);
2600 
2601 		iova += unmapped_page;
2602 		unmapped += unmapped_page;
2603 	}
2604 
2605 	trace_unmap(orig_iova, size, unmapped);
2606 	return unmapped;
2607 }
2608 
2609 /**
2610  * iommu_unmap() - Remove mappings from a range of IOVA
2611  * @domain: Domain to manipulate
2612  * @iova: IO virtual address to start
2613  * @size: Length of the range starting from @iova
2614  *
2615  * iommu_unmap() will remove a translation created by iommu_map(). It cannot
2616  * subdivide a mapping created by iommu_map(), so it should be called with IOVA
2617  * ranges that match what was passed to iommu_map(). The range can aggregate
2618  * contiguous iommu_map() calls so long as no individual range is split.
2619  *
2620  * Returns: Number of bytes of IOVA unmapped. iova + res will be the point
2621  * unmapping stopped.
2622  */
iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size)2623 size_t iommu_unmap(struct iommu_domain *domain,
2624 		   unsigned long iova, size_t size)
2625 {
2626 	struct iommu_iotlb_gather iotlb_gather;
2627 	size_t ret;
2628 
2629 	iommu_iotlb_gather_init(&iotlb_gather);
2630 	ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2631 	iommu_iotlb_sync(domain, &iotlb_gather);
2632 
2633 	return ret;
2634 }
2635 EXPORT_SYMBOL_GPL(iommu_unmap);
2636 
2637 /**
2638  * iommu_unmap_fast() - Remove mappings from a range of IOVA without IOTLB sync
2639  * @domain: Domain to manipulate
2640  * @iova: IO virtual address to start
2641  * @size: Length of the range starting from @iova
2642  * @iotlb_gather: range information for a pending IOTLB flush
2643  *
2644  * iommu_unmap_fast() will remove a translation created by iommu_map().
2645  * It can't subdivide a mapping created by iommu_map(), so it should be
2646  * called with IOVA ranges that match what was passed to iommu_map(). The
2647  * range can aggregate contiguous iommu_map() calls so long as no individual
2648  * range is split.
2649  *
2650  * Basically iommu_unmap_fast() is the same as iommu_unmap() but for callers
2651  * which manage the IOTLB flushing externally to perform a batched sync.
2652  *
2653  * Returns: Number of bytes of IOVA unmapped. iova + res will be the point
2654  * unmapping stopped.
2655  */
iommu_unmap_fast(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2656 size_t iommu_unmap_fast(struct iommu_domain *domain,
2657 			unsigned long iova, size_t size,
2658 			struct iommu_iotlb_gather *iotlb_gather)
2659 {
2660 	return __iommu_unmap(domain, iova, size, iotlb_gather);
2661 }
2662 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2663 
iommu_map_sg(struct iommu_domain * domain,unsigned long iova,struct scatterlist * sg,unsigned int nents,int prot,gfp_t gfp)2664 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2665 		     struct scatterlist *sg, unsigned int nents, int prot,
2666 		     gfp_t gfp)
2667 {
2668 	size_t len = 0, mapped = 0;
2669 	phys_addr_t start;
2670 	unsigned int i = 0;
2671 	int ret;
2672 
2673 	while (i <= nents) {
2674 		phys_addr_t s_phys = sg_phys(sg);
2675 
2676 		if (len && s_phys != start + len) {
2677 			ret = iommu_map_nosync(domain, iova + mapped, start,
2678 					len, prot, gfp);
2679 			if (ret)
2680 				goto out_err;
2681 
2682 			mapped += len;
2683 			len = 0;
2684 		}
2685 
2686 		if (sg_dma_is_bus_address(sg))
2687 			goto next;
2688 
2689 		if (len) {
2690 			len += sg->length;
2691 		} else {
2692 			len = sg->length;
2693 			start = s_phys;
2694 		}
2695 
2696 next:
2697 		if (++i < nents)
2698 			sg = sg_next(sg);
2699 	}
2700 
2701 	ret = iommu_sync_map(domain, iova, mapped);
2702 	if (ret)
2703 		goto out_err;
2704 
2705 	return mapped;
2706 
2707 out_err:
2708 	/* undo mappings already done */
2709 	iommu_unmap(domain, iova, mapped);
2710 
2711 	return ret;
2712 }
2713 EXPORT_SYMBOL_GPL(iommu_map_sg);
2714 
2715 /**
2716  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2717  * @domain: the iommu domain where the fault has happened
2718  * @dev: the device where the fault has happened
2719  * @iova: the faulting address
2720  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2721  *
2722  * This function should be called by the low-level IOMMU implementations
2723  * whenever IOMMU faults happen, to allow high-level users, that are
2724  * interested in such events, to know about them.
2725  *
2726  * This event may be useful for several possible use cases:
2727  * - mere logging of the event
2728  * - dynamic TLB/PTE loading
2729  * - if restarting of the faulting device is required
2730  *
2731  * Returns 0 on success and an appropriate error code otherwise (if dynamic
2732  * PTE/TLB loading will one day be supported, implementations will be able
2733  * to tell whether it succeeded or not according to this return value).
2734  *
2735  * Specifically, -ENOSYS is returned if a fault handler isn't installed
2736  * (though fault handlers can also return -ENOSYS, in case they want to
2737  * elicit the default behavior of the IOMMU drivers).
2738  */
report_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags)2739 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2740 		       unsigned long iova, int flags)
2741 {
2742 	int ret = -ENOSYS;
2743 
2744 	/*
2745 	 * if upper layers showed interest and installed a fault handler,
2746 	 * invoke it.
2747 	 */
2748 	if (domain->cookie_type == IOMMU_COOKIE_FAULT_HANDLER &&
2749 	    domain->handler)
2750 		ret = domain->handler(domain, dev, iova, flags,
2751 						domain->handler_token);
2752 
2753 	trace_io_page_fault(dev, iova, flags);
2754 	return ret;
2755 }
2756 EXPORT_SYMBOL_GPL(report_iommu_fault);
2757 
iommu_init(void)2758 static int __init iommu_init(void)
2759 {
2760 	iommu_group_kset = kset_create_and_add("iommu_groups",
2761 					       NULL, kernel_kobj);
2762 	BUG_ON(!iommu_group_kset);
2763 
2764 	iommu_debugfs_setup();
2765 
2766 	return 0;
2767 }
2768 core_initcall(iommu_init);
2769 
iommu_set_pgtable_quirks(struct iommu_domain * domain,unsigned long quirk)2770 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2771 		unsigned long quirk)
2772 {
2773 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2774 		return -EINVAL;
2775 	if (!domain->ops->set_pgtable_quirks)
2776 		return -EINVAL;
2777 	return domain->ops->set_pgtable_quirks(domain, quirk);
2778 }
2779 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2780 
2781 /**
2782  * iommu_get_resv_regions - get reserved regions
2783  * @dev: device for which to get reserved regions
2784  * @list: reserved region list for device
2785  *
2786  * This returns a list of reserved IOVA regions specific to this device.
2787  * A domain user should not map IOVA in these ranges.
2788  */
iommu_get_resv_regions(struct device * dev,struct list_head * list)2789 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2790 {
2791 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2792 
2793 	if (ops->get_resv_regions)
2794 		ops->get_resv_regions(dev, list);
2795 }
2796 EXPORT_SYMBOL_GPL(iommu_get_resv_regions);
2797 
2798 /**
2799  * iommu_put_resv_regions - release reserved regions
2800  * @dev: device for which to free reserved regions
2801  * @list: reserved region list for device
2802  *
2803  * This releases a reserved region list acquired by iommu_get_resv_regions().
2804  */
iommu_put_resv_regions(struct device * dev,struct list_head * list)2805 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2806 {
2807 	struct iommu_resv_region *entry, *next;
2808 
2809 	list_for_each_entry_safe(entry, next, list, list) {
2810 		if (entry->free)
2811 			entry->free(dev, entry);
2812 		else
2813 			kfree(entry);
2814 	}
2815 }
2816 EXPORT_SYMBOL(iommu_put_resv_regions);
2817 
iommu_alloc_resv_region(phys_addr_t start,size_t length,int prot,enum iommu_resv_type type,gfp_t gfp)2818 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2819 						  size_t length, int prot,
2820 						  enum iommu_resv_type type,
2821 						  gfp_t gfp)
2822 {
2823 	struct iommu_resv_region *region;
2824 
2825 	region = kzalloc(sizeof(*region), gfp);
2826 	if (!region)
2827 		return NULL;
2828 
2829 	INIT_LIST_HEAD(&region->list);
2830 	region->start = start;
2831 	region->length = length;
2832 	region->prot = prot;
2833 	region->type = type;
2834 	return region;
2835 }
2836 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2837 
iommu_set_default_passthrough(bool cmd_line)2838 void iommu_set_default_passthrough(bool cmd_line)
2839 {
2840 	if (cmd_line)
2841 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2842 	iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2843 }
2844 
iommu_set_default_translated(bool cmd_line)2845 void iommu_set_default_translated(bool cmd_line)
2846 {
2847 	if (cmd_line)
2848 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2849 	iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2850 }
2851 
iommu_default_passthrough(void)2852 bool iommu_default_passthrough(void)
2853 {
2854 	return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2855 }
2856 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2857 
iommu_from_fwnode(const struct fwnode_handle * fwnode)2858 static const struct iommu_device *iommu_from_fwnode(const struct fwnode_handle *fwnode)
2859 {
2860 	const struct iommu_device *iommu, *ret = NULL;
2861 
2862 	spin_lock(&iommu_device_lock);
2863 	list_for_each_entry(iommu, &iommu_device_list, list)
2864 		if (iommu->fwnode == fwnode) {
2865 			ret = iommu;
2866 			break;
2867 		}
2868 	spin_unlock(&iommu_device_lock);
2869 	return ret;
2870 }
2871 
iommu_ops_from_fwnode(const struct fwnode_handle * fwnode)2872 const struct iommu_ops *iommu_ops_from_fwnode(const struct fwnode_handle *fwnode)
2873 {
2874 	const struct iommu_device *iommu = iommu_from_fwnode(fwnode);
2875 
2876 	return iommu ? iommu->ops : NULL;
2877 }
2878 
iommu_fwspec_init(struct device * dev,struct fwnode_handle * iommu_fwnode)2879 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode)
2880 {
2881 	const struct iommu_device *iommu = iommu_from_fwnode(iommu_fwnode);
2882 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2883 
2884 	if (!iommu)
2885 		return driver_deferred_probe_check_state(dev);
2886 	if (!dev->iommu && !READ_ONCE(iommu->ready))
2887 		return -EPROBE_DEFER;
2888 
2889 	if (fwspec)
2890 		return iommu->ops == iommu_fwspec_ops(fwspec) ? 0 : -EINVAL;
2891 
2892 	if (!dev_iommu_get(dev))
2893 		return -ENOMEM;
2894 
2895 	/* Preallocate for the overwhelmingly common case of 1 ID */
2896 	fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2897 	if (!fwspec)
2898 		return -ENOMEM;
2899 
2900 	fwnode_handle_get(iommu_fwnode);
2901 	fwspec->iommu_fwnode = iommu_fwnode;
2902 	dev_iommu_fwspec_set(dev, fwspec);
2903 	return 0;
2904 }
2905 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2906 
iommu_fwspec_free(struct device * dev)2907 void iommu_fwspec_free(struct device *dev)
2908 {
2909 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2910 
2911 	if (fwspec) {
2912 		fwnode_handle_put(fwspec->iommu_fwnode);
2913 		kfree(fwspec);
2914 		dev_iommu_fwspec_set(dev, NULL);
2915 	}
2916 }
2917 
iommu_fwspec_add_ids(struct device * dev,const u32 * ids,int num_ids)2918 int iommu_fwspec_add_ids(struct device *dev, const u32 *ids, int num_ids)
2919 {
2920 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2921 	int i, new_num;
2922 
2923 	if (!fwspec)
2924 		return -EINVAL;
2925 
2926 	new_num = fwspec->num_ids + num_ids;
2927 	if (new_num > 1) {
2928 		fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2929 				  GFP_KERNEL);
2930 		if (!fwspec)
2931 			return -ENOMEM;
2932 
2933 		dev_iommu_fwspec_set(dev, fwspec);
2934 	}
2935 
2936 	for (i = 0; i < num_ids; i++)
2937 		fwspec->ids[fwspec->num_ids + i] = ids[i];
2938 
2939 	fwspec->num_ids = new_num;
2940 	return 0;
2941 }
2942 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2943 
2944 /**
2945  * iommu_setup_default_domain - Set the default_domain for the group
2946  * @group: Group to change
2947  * @target_type: Domain type to set as the default_domain
2948  *
2949  * Allocate a default domain and set it as the current domain on the group. If
2950  * the group already has a default domain it will be changed to the target_type.
2951  * When target_type is 0 the default domain is selected based on driver and
2952  * system preferences.
2953  */
iommu_setup_default_domain(struct iommu_group * group,int target_type)2954 static int iommu_setup_default_domain(struct iommu_group *group,
2955 				      int target_type)
2956 {
2957 	struct iommu_domain *old_dom = group->default_domain;
2958 	struct group_device *gdev;
2959 	struct iommu_domain *dom;
2960 	bool direct_failed;
2961 	int req_type;
2962 	int ret;
2963 
2964 	lockdep_assert_held(&group->mutex);
2965 
2966 	req_type = iommu_get_default_domain_type(group, target_type);
2967 	if (req_type < 0)
2968 		return -EINVAL;
2969 
2970 	dom = iommu_group_alloc_default_domain(group, req_type);
2971 	if (IS_ERR(dom))
2972 		return PTR_ERR(dom);
2973 
2974 	if (group->default_domain == dom)
2975 		return 0;
2976 
2977 	if (iommu_is_dma_domain(dom)) {
2978 		ret = iommu_get_dma_cookie(dom);
2979 		if (ret) {
2980 			iommu_domain_free(dom);
2981 			return ret;
2982 		}
2983 	}
2984 
2985 	/*
2986 	 * IOMMU_RESV_DIRECT and IOMMU_RESV_DIRECT_RELAXABLE regions must be
2987 	 * mapped before their device is attached, in order to guarantee
2988 	 * continuity with any FW activity
2989 	 */
2990 	direct_failed = false;
2991 	for_each_group_device(group, gdev) {
2992 		if (iommu_create_device_direct_mappings(dom, gdev->dev)) {
2993 			direct_failed = true;
2994 			dev_warn_once(
2995 				gdev->dev->iommu->iommu_dev->dev,
2996 				"IOMMU driver was not able to establish FW requested direct mapping.");
2997 		}
2998 	}
2999 
3000 	/* We must set default_domain early for __iommu_device_set_domain */
3001 	group->default_domain = dom;
3002 	if (!group->domain) {
3003 		/*
3004 		 * Drivers are not allowed to fail the first domain attach.
3005 		 * The only way to recover from this is to fail attaching the
3006 		 * iommu driver and call ops->release_device. Put the domain
3007 		 * in group->default_domain so it is freed after.
3008 		 */
3009 		ret = __iommu_group_set_domain_internal(
3010 			group, dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
3011 		if (WARN_ON(ret))
3012 			goto out_free_old;
3013 	} else {
3014 		ret = __iommu_group_set_domain(group, dom);
3015 		if (ret)
3016 			goto err_restore_def_domain;
3017 	}
3018 
3019 	/*
3020 	 * Drivers are supposed to allow mappings to be installed in a domain
3021 	 * before device attachment, but some don't. Hack around this defect by
3022 	 * trying again after attaching. If this happens it means the device
3023 	 * will not continuously have the IOMMU_RESV_DIRECT map.
3024 	 */
3025 	if (direct_failed) {
3026 		for_each_group_device(group, gdev) {
3027 			ret = iommu_create_device_direct_mappings(dom, gdev->dev);
3028 			if (ret)
3029 				goto err_restore_domain;
3030 		}
3031 	}
3032 
3033 out_free_old:
3034 	if (old_dom)
3035 		iommu_domain_free(old_dom);
3036 	return ret;
3037 
3038 err_restore_domain:
3039 	if (old_dom)
3040 		__iommu_group_set_domain_internal(
3041 			group, old_dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
3042 err_restore_def_domain:
3043 	if (old_dom) {
3044 		iommu_domain_free(dom);
3045 		group->default_domain = old_dom;
3046 	}
3047 	return ret;
3048 }
3049 
3050 /*
3051  * Changing the default domain through sysfs requires the users to unbind the
3052  * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
3053  * transition. Return failure if this isn't met.
3054  *
3055  * We need to consider the race between this and the device release path.
3056  * group->mutex is used here to guarantee that the device release path
3057  * will not be entered at the same time.
3058  */
iommu_group_store_type(struct iommu_group * group,const char * buf,size_t count)3059 static ssize_t iommu_group_store_type(struct iommu_group *group,
3060 				      const char *buf, size_t count)
3061 {
3062 	struct group_device *gdev;
3063 	int ret, req_type;
3064 
3065 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
3066 		return -EACCES;
3067 
3068 	if (WARN_ON(!group) || !group->default_domain)
3069 		return -EINVAL;
3070 
3071 	if (sysfs_streq(buf, "identity"))
3072 		req_type = IOMMU_DOMAIN_IDENTITY;
3073 	else if (sysfs_streq(buf, "DMA"))
3074 		req_type = IOMMU_DOMAIN_DMA;
3075 	else if (sysfs_streq(buf, "DMA-FQ"))
3076 		req_type = IOMMU_DOMAIN_DMA_FQ;
3077 	else if (sysfs_streq(buf, "auto"))
3078 		req_type = 0;
3079 	else
3080 		return -EINVAL;
3081 
3082 	mutex_lock(&group->mutex);
3083 	/* We can bring up a flush queue without tearing down the domain. */
3084 	if (req_type == IOMMU_DOMAIN_DMA_FQ &&
3085 	    group->default_domain->type == IOMMU_DOMAIN_DMA) {
3086 		ret = iommu_dma_init_fq(group->default_domain);
3087 		if (ret)
3088 			goto out_unlock;
3089 
3090 		group->default_domain->type = IOMMU_DOMAIN_DMA_FQ;
3091 		ret = count;
3092 		goto out_unlock;
3093 	}
3094 
3095 	/* Otherwise, ensure that device exists and no driver is bound. */
3096 	if (list_empty(&group->devices) || group->owner_cnt) {
3097 		ret = -EPERM;
3098 		goto out_unlock;
3099 	}
3100 
3101 	ret = iommu_setup_default_domain(group, req_type);
3102 	if (ret)
3103 		goto out_unlock;
3104 
3105 	/* Make sure dma_ops is appropriatley set */
3106 	for_each_group_device(group, gdev)
3107 		iommu_setup_dma_ops(gdev->dev);
3108 
3109 out_unlock:
3110 	mutex_unlock(&group->mutex);
3111 	return ret ?: count;
3112 }
3113 
3114 /**
3115  * iommu_device_use_default_domain() - Device driver wants to handle device
3116  *                                     DMA through the kernel DMA API.
3117  * @dev: The device.
3118  *
3119  * The device driver about to bind @dev wants to do DMA through the kernel
3120  * DMA API. Return 0 if it is allowed, otherwise an error.
3121  */
iommu_device_use_default_domain(struct device * dev)3122 int iommu_device_use_default_domain(struct device *dev)
3123 {
3124 	/* Caller is the driver core during the pre-probe path */
3125 	struct iommu_group *group = dev->iommu_group;
3126 	int ret = 0;
3127 
3128 	if (!group)
3129 		return 0;
3130 
3131 	mutex_lock(&group->mutex);
3132 	/* We may race against bus_iommu_probe() finalising groups here */
3133 	if (!group->default_domain) {
3134 		ret = -EPROBE_DEFER;
3135 		goto unlock_out;
3136 	}
3137 	if (group->owner_cnt) {
3138 		if (group->domain != group->default_domain || group->owner ||
3139 		    !xa_empty(&group->pasid_array)) {
3140 			ret = -EBUSY;
3141 			goto unlock_out;
3142 		}
3143 	}
3144 
3145 	group->owner_cnt++;
3146 
3147 unlock_out:
3148 	mutex_unlock(&group->mutex);
3149 	return ret;
3150 }
3151 
3152 /**
3153  * iommu_device_unuse_default_domain() - Device driver stops handling device
3154  *                                       DMA through the kernel DMA API.
3155  * @dev: The device.
3156  *
3157  * The device driver doesn't want to do DMA through kernel DMA API anymore.
3158  * It must be called after iommu_device_use_default_domain().
3159  */
iommu_device_unuse_default_domain(struct device * dev)3160 void iommu_device_unuse_default_domain(struct device *dev)
3161 {
3162 	/* Caller is the driver core during the post-probe path */
3163 	struct iommu_group *group = dev->iommu_group;
3164 
3165 	if (!group)
3166 		return;
3167 
3168 	mutex_lock(&group->mutex);
3169 	if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array)))
3170 		group->owner_cnt--;
3171 
3172 	mutex_unlock(&group->mutex);
3173 }
3174 
__iommu_group_alloc_blocking_domain(struct iommu_group * group)3175 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group)
3176 {
3177 	struct device *dev = iommu_group_first_dev(group);
3178 	const struct iommu_ops *ops = dev_iommu_ops(dev);
3179 	struct iommu_domain *domain;
3180 
3181 	if (group->blocking_domain)
3182 		return 0;
3183 
3184 	if (ops->blocked_domain) {
3185 		group->blocking_domain = ops->blocked_domain;
3186 		return 0;
3187 	}
3188 
3189 	/*
3190 	 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED create an
3191 	 * empty PAGING domain instead.
3192 	 */
3193 	domain = iommu_paging_domain_alloc(dev);
3194 	if (IS_ERR(domain))
3195 		return PTR_ERR(domain);
3196 	group->blocking_domain = domain;
3197 	return 0;
3198 }
3199 
__iommu_take_dma_ownership(struct iommu_group * group,void * owner)3200 static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner)
3201 {
3202 	int ret;
3203 
3204 	if ((group->domain && group->domain != group->default_domain) ||
3205 	    !xa_empty(&group->pasid_array))
3206 		return -EBUSY;
3207 
3208 	ret = __iommu_group_alloc_blocking_domain(group);
3209 	if (ret)
3210 		return ret;
3211 	ret = __iommu_group_set_domain(group, group->blocking_domain);
3212 	if (ret)
3213 		return ret;
3214 
3215 	group->owner = owner;
3216 	group->owner_cnt++;
3217 	return 0;
3218 }
3219 
3220 /**
3221  * iommu_group_claim_dma_owner() - Set DMA ownership of a group
3222  * @group: The group.
3223  * @owner: Caller specified pointer. Used for exclusive ownership.
3224  *
3225  * This is to support backward compatibility for vfio which manages the dma
3226  * ownership in iommu_group level. New invocations on this interface should be
3227  * prohibited. Only a single owner may exist for a group.
3228  */
iommu_group_claim_dma_owner(struct iommu_group * group,void * owner)3229 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner)
3230 {
3231 	int ret = 0;
3232 
3233 	if (WARN_ON(!owner))
3234 		return -EINVAL;
3235 
3236 	mutex_lock(&group->mutex);
3237 	if (group->owner_cnt) {
3238 		ret = -EPERM;
3239 		goto unlock_out;
3240 	}
3241 
3242 	ret = __iommu_take_dma_ownership(group, owner);
3243 unlock_out:
3244 	mutex_unlock(&group->mutex);
3245 
3246 	return ret;
3247 }
3248 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner);
3249 
3250 /**
3251  * iommu_device_claim_dma_owner() - Set DMA ownership of a device
3252  * @dev: The device.
3253  * @owner: Caller specified pointer. Used for exclusive ownership.
3254  *
3255  * Claim the DMA ownership of a device. Multiple devices in the same group may
3256  * concurrently claim ownership if they present the same owner value. Returns 0
3257  * on success and error code on failure
3258  */
iommu_device_claim_dma_owner(struct device * dev,void * owner)3259 int iommu_device_claim_dma_owner(struct device *dev, void *owner)
3260 {
3261 	/* Caller must be a probed driver on dev */
3262 	struct iommu_group *group = dev->iommu_group;
3263 	int ret = 0;
3264 
3265 	if (WARN_ON(!owner))
3266 		return -EINVAL;
3267 
3268 	if (!group)
3269 		return -ENODEV;
3270 
3271 	mutex_lock(&group->mutex);
3272 	if (group->owner_cnt) {
3273 		if (group->owner != owner) {
3274 			ret = -EPERM;
3275 			goto unlock_out;
3276 		}
3277 		group->owner_cnt++;
3278 		goto unlock_out;
3279 	}
3280 
3281 	ret = __iommu_take_dma_ownership(group, owner);
3282 unlock_out:
3283 	mutex_unlock(&group->mutex);
3284 	return ret;
3285 }
3286 EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner);
3287 
__iommu_release_dma_ownership(struct iommu_group * group)3288 static void __iommu_release_dma_ownership(struct iommu_group *group)
3289 {
3290 	if (WARN_ON(!group->owner_cnt || !group->owner ||
3291 		    !xa_empty(&group->pasid_array)))
3292 		return;
3293 
3294 	group->owner_cnt = 0;
3295 	group->owner = NULL;
3296 	__iommu_group_set_domain_nofail(group, group->default_domain);
3297 }
3298 
3299 /**
3300  * iommu_group_release_dma_owner() - Release DMA ownership of a group
3301  * @group: The group
3302  *
3303  * Release the DMA ownership claimed by iommu_group_claim_dma_owner().
3304  */
iommu_group_release_dma_owner(struct iommu_group * group)3305 void iommu_group_release_dma_owner(struct iommu_group *group)
3306 {
3307 	mutex_lock(&group->mutex);
3308 	__iommu_release_dma_ownership(group);
3309 	mutex_unlock(&group->mutex);
3310 }
3311 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner);
3312 
3313 /**
3314  * iommu_device_release_dma_owner() - Release DMA ownership of a device
3315  * @dev: The device.
3316  *
3317  * Release the DMA ownership claimed by iommu_device_claim_dma_owner().
3318  */
iommu_device_release_dma_owner(struct device * dev)3319 void iommu_device_release_dma_owner(struct device *dev)
3320 {
3321 	/* Caller must be a probed driver on dev */
3322 	struct iommu_group *group = dev->iommu_group;
3323 
3324 	mutex_lock(&group->mutex);
3325 	if (group->owner_cnt > 1)
3326 		group->owner_cnt--;
3327 	else
3328 		__iommu_release_dma_ownership(group);
3329 	mutex_unlock(&group->mutex);
3330 }
3331 EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner);
3332 
3333 /**
3334  * iommu_group_dma_owner_claimed() - Query group dma ownership status
3335  * @group: The group.
3336  *
3337  * This provides status query on a given group. It is racy and only for
3338  * non-binding status reporting.
3339  */
iommu_group_dma_owner_claimed(struct iommu_group * group)3340 bool iommu_group_dma_owner_claimed(struct iommu_group *group)
3341 {
3342 	unsigned int user;
3343 
3344 	mutex_lock(&group->mutex);
3345 	user = group->owner_cnt;
3346 	mutex_unlock(&group->mutex);
3347 
3348 	return user;
3349 }
3350 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed);
3351 
iommu_remove_dev_pasid(struct device * dev,ioasid_t pasid,struct iommu_domain * domain)3352 static void iommu_remove_dev_pasid(struct device *dev, ioasid_t pasid,
3353 				   struct iommu_domain *domain)
3354 {
3355 	const struct iommu_ops *ops = dev_iommu_ops(dev);
3356 	struct iommu_domain *blocked_domain = ops->blocked_domain;
3357 
3358 	WARN_ON(blocked_domain->ops->set_dev_pasid(blocked_domain,
3359 						   dev, pasid, domain));
3360 }
3361 
__iommu_set_group_pasid(struct iommu_domain * domain,struct iommu_group * group,ioasid_t pasid,struct iommu_domain * old)3362 static int __iommu_set_group_pasid(struct iommu_domain *domain,
3363 				   struct iommu_group *group, ioasid_t pasid,
3364 				   struct iommu_domain *old)
3365 {
3366 	struct group_device *device, *last_gdev;
3367 	int ret;
3368 
3369 	for_each_group_device(group, device) {
3370 		if (device->dev->iommu->max_pasids > 0) {
3371 			ret = domain->ops->set_dev_pasid(domain, device->dev,
3372 							 pasid, old);
3373 			if (ret)
3374 				goto err_revert;
3375 		}
3376 	}
3377 
3378 	return 0;
3379 
3380 err_revert:
3381 	last_gdev = device;
3382 	for_each_group_device(group, device) {
3383 		if (device == last_gdev)
3384 			break;
3385 		if (device->dev->iommu->max_pasids > 0) {
3386 			/*
3387 			 * If no old domain, undo the succeeded devices/pasid.
3388 			 * Otherwise, rollback the succeeded devices/pasid to
3389 			 * the old domain. And it is a driver bug to fail
3390 			 * attaching with a previously good domain.
3391 			 */
3392 			if (!old ||
3393 			    WARN_ON(old->ops->set_dev_pasid(old, device->dev,
3394 							    pasid, domain)))
3395 				iommu_remove_dev_pasid(device->dev, pasid, domain);
3396 		}
3397 	}
3398 	return ret;
3399 }
3400 
__iommu_remove_group_pasid(struct iommu_group * group,ioasid_t pasid,struct iommu_domain * domain)3401 static void __iommu_remove_group_pasid(struct iommu_group *group,
3402 				       ioasid_t pasid,
3403 				       struct iommu_domain *domain)
3404 {
3405 	struct group_device *device;
3406 
3407 	for_each_group_device(group, device) {
3408 		if (device->dev->iommu->max_pasids > 0)
3409 			iommu_remove_dev_pasid(device->dev, pasid, domain);
3410 	}
3411 }
3412 
3413 /*
3414  * iommu_attach_device_pasid() - Attach a domain to pasid of device
3415  * @domain: the iommu domain.
3416  * @dev: the attached device.
3417  * @pasid: the pasid of the device.
3418  * @handle: the attach handle.
3419  *
3420  * Caller should always provide a new handle to avoid race with the paths
3421  * that have lockless reference to handle if it intends to pass a valid handle.
3422  *
3423  * Return: 0 on success, or an error.
3424  */
iommu_attach_device_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid,struct iommu_attach_handle * handle)3425 int iommu_attach_device_pasid(struct iommu_domain *domain,
3426 			      struct device *dev, ioasid_t pasid,
3427 			      struct iommu_attach_handle *handle)
3428 {
3429 	/* Caller must be a probed driver on dev */
3430 	struct iommu_group *group = dev->iommu_group;
3431 	struct group_device *device;
3432 	const struct iommu_ops *ops;
3433 	void *entry;
3434 	int ret;
3435 
3436 	if (!group)
3437 		return -ENODEV;
3438 
3439 	ops = dev_iommu_ops(dev);
3440 
3441 	if (!domain->ops->set_dev_pasid ||
3442 	    !ops->blocked_domain ||
3443 	    !ops->blocked_domain->ops->set_dev_pasid)
3444 		return -EOPNOTSUPP;
3445 
3446 	if (!domain_iommu_ops_compatible(ops, domain) ||
3447 	    pasid == IOMMU_NO_PASID)
3448 		return -EINVAL;
3449 
3450 	mutex_lock(&group->mutex);
3451 	for_each_group_device(group, device) {
3452 		/*
3453 		 * Skip PASID validation for devices without PASID support
3454 		 * (max_pasids = 0). These devices cannot issue transactions
3455 		 * with PASID, so they don't affect group's PASID usage.
3456 		 */
3457 		if ((device->dev->iommu->max_pasids > 0) &&
3458 		    (pasid >= device->dev->iommu->max_pasids)) {
3459 			ret = -EINVAL;
3460 			goto out_unlock;
3461 		}
3462 	}
3463 
3464 	entry = iommu_make_pasid_array_entry(domain, handle);
3465 
3466 	/*
3467 	 * Entry present is a failure case. Use xa_insert() instead of
3468 	 * xa_reserve().
3469 	 */
3470 	ret = xa_insert(&group->pasid_array, pasid, XA_ZERO_ENTRY, GFP_KERNEL);
3471 	if (ret)
3472 		goto out_unlock;
3473 
3474 	ret = __iommu_set_group_pasid(domain, group, pasid, NULL);
3475 	if (ret) {
3476 		xa_release(&group->pasid_array, pasid);
3477 		goto out_unlock;
3478 	}
3479 
3480 	/*
3481 	 * The xa_insert() above reserved the memory, and the group->mutex is
3482 	 * held, this cannot fail. The new domain cannot be visible until the
3483 	 * operation succeeds as we cannot tolerate PRIs becoming concurrently
3484 	 * queued and then failing attach.
3485 	 */
3486 	WARN_ON(xa_is_err(xa_store(&group->pasid_array,
3487 				   pasid, entry, GFP_KERNEL)));
3488 
3489 out_unlock:
3490 	mutex_unlock(&group->mutex);
3491 	return ret;
3492 }
3493 EXPORT_SYMBOL_GPL(iommu_attach_device_pasid);
3494 
3495 /**
3496  * iommu_replace_device_pasid - Replace the domain that a specific pasid
3497  *                              of the device is attached to
3498  * @domain: the new iommu domain
3499  * @dev: the attached device.
3500  * @pasid: the pasid of the device.
3501  * @handle: the attach handle.
3502  *
3503  * This API allows the pasid to switch domains. The @pasid should have been
3504  * attached. Otherwise, this fails. The pasid will keep the old configuration
3505  * if replacement failed.
3506  *
3507  * Caller should always provide a new handle to avoid race with the paths
3508  * that have lockless reference to handle if it intends to pass a valid handle.
3509  *
3510  * Return 0 on success, or an error.
3511  */
iommu_replace_device_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid,struct iommu_attach_handle * handle)3512 int iommu_replace_device_pasid(struct iommu_domain *domain,
3513 			       struct device *dev, ioasid_t pasid,
3514 			       struct iommu_attach_handle *handle)
3515 {
3516 	/* Caller must be a probed driver on dev */
3517 	struct iommu_group *group = dev->iommu_group;
3518 	struct iommu_attach_handle *entry;
3519 	struct iommu_domain *curr_domain;
3520 	void *curr;
3521 	int ret;
3522 
3523 	if (!group)
3524 		return -ENODEV;
3525 
3526 	if (!domain->ops->set_dev_pasid)
3527 		return -EOPNOTSUPP;
3528 
3529 	if (!domain_iommu_ops_compatible(dev_iommu_ops(dev), domain) ||
3530 	    pasid == IOMMU_NO_PASID || !handle)
3531 		return -EINVAL;
3532 
3533 	mutex_lock(&group->mutex);
3534 	entry = iommu_make_pasid_array_entry(domain, handle);
3535 	curr = xa_cmpxchg(&group->pasid_array, pasid, NULL,
3536 			  XA_ZERO_ENTRY, GFP_KERNEL);
3537 	if (xa_is_err(curr)) {
3538 		ret = xa_err(curr);
3539 		goto out_unlock;
3540 	}
3541 
3542 	/*
3543 	 * No domain (with or without handle) attached, hence not
3544 	 * a replace case.
3545 	 */
3546 	if (!curr) {
3547 		xa_release(&group->pasid_array, pasid);
3548 		ret = -EINVAL;
3549 		goto out_unlock;
3550 	}
3551 
3552 	/*
3553 	 * Reusing handle is problematic as there are paths that refers
3554 	 * the handle without lock. To avoid race, reject the callers that
3555 	 * attempt it.
3556 	 */
3557 	if (curr == entry) {
3558 		WARN_ON(1);
3559 		ret = -EINVAL;
3560 		goto out_unlock;
3561 	}
3562 
3563 	curr_domain = pasid_array_entry_to_domain(curr);
3564 	ret = 0;
3565 
3566 	if (curr_domain != domain) {
3567 		ret = __iommu_set_group_pasid(domain, group,
3568 					      pasid, curr_domain);
3569 		if (ret)
3570 			goto out_unlock;
3571 	}
3572 
3573 	/*
3574 	 * The above xa_cmpxchg() reserved the memory, and the
3575 	 * group->mutex is held, this cannot fail.
3576 	 */
3577 	WARN_ON(xa_is_err(xa_store(&group->pasid_array,
3578 				   pasid, entry, GFP_KERNEL)));
3579 
3580 out_unlock:
3581 	mutex_unlock(&group->mutex);
3582 	return ret;
3583 }
3584 EXPORT_SYMBOL_NS_GPL(iommu_replace_device_pasid, "IOMMUFD_INTERNAL");
3585 
3586 /*
3587  * iommu_detach_device_pasid() - Detach the domain from pasid of device
3588  * @domain: the iommu domain.
3589  * @dev: the attached device.
3590  * @pasid: the pasid of the device.
3591  *
3592  * The @domain must have been attached to @pasid of the @dev with
3593  * iommu_attach_device_pasid().
3594  */
iommu_detach_device_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid)3595 void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev,
3596 			       ioasid_t pasid)
3597 {
3598 	/* Caller must be a probed driver on dev */
3599 	struct iommu_group *group = dev->iommu_group;
3600 
3601 	mutex_lock(&group->mutex);
3602 	__iommu_remove_group_pasid(group, pasid, domain);
3603 	xa_erase(&group->pasid_array, pasid);
3604 	mutex_unlock(&group->mutex);
3605 }
3606 EXPORT_SYMBOL_GPL(iommu_detach_device_pasid);
3607 
iommu_alloc_global_pasid(struct device * dev)3608 ioasid_t iommu_alloc_global_pasid(struct device *dev)
3609 {
3610 	int ret;
3611 
3612 	/* max_pasids == 0 means that the device does not support PASID */
3613 	if (!dev->iommu->max_pasids)
3614 		return IOMMU_PASID_INVALID;
3615 
3616 	/*
3617 	 * max_pasids is set up by vendor driver based on number of PASID bits
3618 	 * supported but the IDA allocation is inclusive.
3619 	 */
3620 	ret = ida_alloc_range(&iommu_global_pasid_ida, IOMMU_FIRST_GLOBAL_PASID,
3621 			      dev->iommu->max_pasids - 1, GFP_KERNEL);
3622 	return ret < 0 ? IOMMU_PASID_INVALID : ret;
3623 }
3624 EXPORT_SYMBOL_GPL(iommu_alloc_global_pasid);
3625 
iommu_free_global_pasid(ioasid_t pasid)3626 void iommu_free_global_pasid(ioasid_t pasid)
3627 {
3628 	if (WARN_ON(pasid == IOMMU_PASID_INVALID))
3629 		return;
3630 
3631 	ida_free(&iommu_global_pasid_ida, pasid);
3632 }
3633 EXPORT_SYMBOL_GPL(iommu_free_global_pasid);
3634 
3635 /**
3636  * iommu_attach_handle_get - Return the attach handle
3637  * @group: the iommu group that domain was attached to
3638  * @pasid: the pasid within the group
3639  * @type: matched domain type, 0 for any match
3640  *
3641  * Return handle or ERR_PTR(-ENOENT) on none, ERR_PTR(-EBUSY) on mismatch.
3642  *
3643  * Return the attach handle to the caller. The life cycle of an iommu attach
3644  * handle is from the time when the domain is attached to the time when the
3645  * domain is detached. Callers are required to synchronize the call of
3646  * iommu_attach_handle_get() with domain attachment and detachment. The attach
3647  * handle can only be used during its life cycle.
3648  */
3649 struct iommu_attach_handle *
iommu_attach_handle_get(struct iommu_group * group,ioasid_t pasid,unsigned int type)3650 iommu_attach_handle_get(struct iommu_group *group, ioasid_t pasid, unsigned int type)
3651 {
3652 	struct iommu_attach_handle *handle;
3653 	void *entry;
3654 
3655 	xa_lock(&group->pasid_array);
3656 	entry = xa_load(&group->pasid_array, pasid);
3657 	if (!entry || xa_pointer_tag(entry) != IOMMU_PASID_ARRAY_HANDLE) {
3658 		handle = ERR_PTR(-ENOENT);
3659 	} else {
3660 		handle = xa_untag_pointer(entry);
3661 		if (type && handle->domain->type != type)
3662 			handle = ERR_PTR(-EBUSY);
3663 	}
3664 	xa_unlock(&group->pasid_array);
3665 
3666 	return handle;
3667 }
3668 EXPORT_SYMBOL_NS_GPL(iommu_attach_handle_get, "IOMMUFD_INTERNAL");
3669 
3670 /**
3671  * iommu_attach_group_handle - Attach an IOMMU domain to an IOMMU group
3672  * @domain: IOMMU domain to attach
3673  * @group: IOMMU group that will be attached
3674  * @handle: attach handle
3675  *
3676  * Returns 0 on success and error code on failure.
3677  *
3678  * This is a variant of iommu_attach_group(). It allows the caller to provide
3679  * an attach handle and use it when the domain is attached. This is currently
3680  * used by IOMMUFD to deliver the I/O page faults.
3681  *
3682  * Caller should always provide a new handle to avoid race with the paths
3683  * that have lockless reference to handle.
3684  */
iommu_attach_group_handle(struct iommu_domain * domain,struct iommu_group * group,struct iommu_attach_handle * handle)3685 int iommu_attach_group_handle(struct iommu_domain *domain,
3686 			      struct iommu_group *group,
3687 			      struct iommu_attach_handle *handle)
3688 {
3689 	void *entry;
3690 	int ret;
3691 
3692 	if (!handle)
3693 		return -EINVAL;
3694 
3695 	mutex_lock(&group->mutex);
3696 	entry = iommu_make_pasid_array_entry(domain, handle);
3697 	ret = xa_insert(&group->pasid_array,
3698 			IOMMU_NO_PASID, XA_ZERO_ENTRY, GFP_KERNEL);
3699 	if (ret)
3700 		goto out_unlock;
3701 
3702 	ret = __iommu_attach_group(domain, group);
3703 	if (ret) {
3704 		xa_release(&group->pasid_array, IOMMU_NO_PASID);
3705 		goto out_unlock;
3706 	}
3707 
3708 	/*
3709 	 * The xa_insert() above reserved the memory, and the group->mutex is
3710 	 * held, this cannot fail. The new domain cannot be visible until the
3711 	 * operation succeeds as we cannot tolerate PRIs becoming concurrently
3712 	 * queued and then failing attach.
3713 	 */
3714 	WARN_ON(xa_is_err(xa_store(&group->pasid_array,
3715 				   IOMMU_NO_PASID, entry, GFP_KERNEL)));
3716 
3717 out_unlock:
3718 	mutex_unlock(&group->mutex);
3719 	return ret;
3720 }
3721 EXPORT_SYMBOL_NS_GPL(iommu_attach_group_handle, "IOMMUFD_INTERNAL");
3722 
3723 /**
3724  * iommu_detach_group_handle - Detach an IOMMU domain from an IOMMU group
3725  * @domain: IOMMU domain to attach
3726  * @group: IOMMU group that will be attached
3727  *
3728  * Detach the specified IOMMU domain from the specified IOMMU group.
3729  * It must be used in conjunction with iommu_attach_group_handle().
3730  */
iommu_detach_group_handle(struct iommu_domain * domain,struct iommu_group * group)3731 void iommu_detach_group_handle(struct iommu_domain *domain,
3732 			       struct iommu_group *group)
3733 {
3734 	mutex_lock(&group->mutex);
3735 	__iommu_group_set_core_domain(group);
3736 	xa_erase(&group->pasid_array, IOMMU_NO_PASID);
3737 	mutex_unlock(&group->mutex);
3738 }
3739 EXPORT_SYMBOL_NS_GPL(iommu_detach_group_handle, "IOMMUFD_INTERNAL");
3740 
3741 /**
3742  * iommu_replace_group_handle - replace the domain that a group is attached to
3743  * @group: IOMMU group that will be attached to the new domain
3744  * @new_domain: new IOMMU domain to replace with
3745  * @handle: attach handle
3746  *
3747  * This API allows the group to switch domains without being forced to go to
3748  * the blocking domain in-between. It allows the caller to provide an attach
3749  * handle for the new domain and use it when the domain is attached.
3750  *
3751  * If the currently attached domain is a core domain (e.g. a default_domain),
3752  * it will act just like the iommu_attach_group_handle().
3753  *
3754  * Caller should always provide a new handle to avoid race with the paths
3755  * that have lockless reference to handle.
3756  */
iommu_replace_group_handle(struct iommu_group * group,struct iommu_domain * new_domain,struct iommu_attach_handle * handle)3757 int iommu_replace_group_handle(struct iommu_group *group,
3758 			       struct iommu_domain *new_domain,
3759 			       struct iommu_attach_handle *handle)
3760 {
3761 	void *curr, *entry;
3762 	int ret;
3763 
3764 	if (!new_domain || !handle)
3765 		return -EINVAL;
3766 
3767 	mutex_lock(&group->mutex);
3768 	entry = iommu_make_pasid_array_entry(new_domain, handle);
3769 	ret = xa_reserve(&group->pasid_array, IOMMU_NO_PASID, GFP_KERNEL);
3770 	if (ret)
3771 		goto err_unlock;
3772 
3773 	ret = __iommu_group_set_domain(group, new_domain);
3774 	if (ret)
3775 		goto err_release;
3776 
3777 	curr = xa_store(&group->pasid_array, IOMMU_NO_PASID, entry, GFP_KERNEL);
3778 	WARN_ON(xa_is_err(curr));
3779 
3780 	mutex_unlock(&group->mutex);
3781 
3782 	return 0;
3783 err_release:
3784 	xa_release(&group->pasid_array, IOMMU_NO_PASID);
3785 err_unlock:
3786 	mutex_unlock(&group->mutex);
3787 	return ret;
3788 }
3789 EXPORT_SYMBOL_NS_GPL(iommu_replace_group_handle, "IOMMUFD_INTERNAL");
3790 
3791 #if IS_ENABLED(CONFIG_IRQ_MSI_IOMMU)
3792 /**
3793  * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain
3794  * @desc: MSI descriptor, will store the MSI page
3795  * @msi_addr: MSI target address to be mapped
3796  *
3797  * The implementation of sw_msi() should take msi_addr and map it to
3798  * an IOVA in the domain and call msi_desc_set_iommu_msi_iova() with the
3799  * mapping information.
3800  *
3801  * Return: 0 on success or negative error code if the mapping failed.
3802  */
iommu_dma_prepare_msi(struct msi_desc * desc,phys_addr_t msi_addr)3803 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
3804 {
3805 	struct device *dev = msi_desc_to_dev(desc);
3806 	struct iommu_group *group = dev->iommu_group;
3807 	int ret = 0;
3808 
3809 	if (!group)
3810 		return 0;
3811 
3812 	mutex_lock(&group->mutex);
3813 	/* An IDENTITY domain must pass through */
3814 	if (group->domain && group->domain->type != IOMMU_DOMAIN_IDENTITY) {
3815 		switch (group->domain->cookie_type) {
3816 		case IOMMU_COOKIE_DMA_MSI:
3817 		case IOMMU_COOKIE_DMA_IOVA:
3818 			ret = iommu_dma_sw_msi(group->domain, desc, msi_addr);
3819 			break;
3820 		case IOMMU_COOKIE_IOMMUFD:
3821 			ret = iommufd_sw_msi(group->domain, desc, msi_addr);
3822 			break;
3823 		default:
3824 			ret = -EOPNOTSUPP;
3825 			break;
3826 		}
3827 	}
3828 	mutex_unlock(&group->mutex);
3829 	return ret;
3830 }
3831 #endif /* CONFIG_IRQ_MSI_IOMMU */
3832