xref: /linux/drivers/gpu/drm/xe/xe_hwmon.c (revision 7abdafd2343ab199367c8243d6a5f06a9aa6976b)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #include <linux/hwmon-sysfs.h>
7 #include <linux/hwmon.h>
8 #include <linux/jiffies.h>
9 #include <linux/types.h>
10 #include <linux/units.h>
11 
12 #include <drm/drm_managed.h>
13 #include "regs/xe_gt_regs.h"
14 #include "regs/xe_mchbar_regs.h"
15 #include "regs/xe_pcode_regs.h"
16 #include "xe_device.h"
17 #include "xe_hwmon.h"
18 #include "xe_mmio.h"
19 #include "xe_pcode.h"
20 #include "xe_pcode_api.h"
21 #include "xe_sriov.h"
22 #include "xe_pm.h"
23 
24 enum xe_hwmon_reg {
25 	REG_TEMP,
26 	REG_PKG_RAPL_LIMIT,
27 	REG_PKG_POWER_SKU,
28 	REG_PKG_POWER_SKU_UNIT,
29 	REG_GT_PERF_STATUS,
30 	REG_PKG_ENERGY_STATUS,
31 	REG_FAN_SPEED,
32 };
33 
34 enum xe_hwmon_reg_operation {
35 	REG_READ32,
36 	REG_RMW32,
37 	REG_READ64,
38 };
39 
40 enum xe_hwmon_channel {
41 	CHANNEL_CARD,
42 	CHANNEL_PKG,
43 	CHANNEL_VRAM,
44 	CHANNEL_MAX,
45 };
46 
47 enum xe_fan_channel {
48 	FAN_1,
49 	FAN_2,
50 	FAN_3,
51 	FAN_MAX,
52 };
53 
54 /*
55  * For platforms that support mailbox commands for power limits, REG_PKG_POWER_SKU_UNIT is
56  * not supported and below are SKU units to be used.
57  */
58 #define PWR_UNIT	0x3
59 #define ENERGY_UNIT	0xe
60 #define TIME_UNIT	0xa
61 
62 /*
63  * SF_* - scale factors for particular quantities according to hwmon spec.
64  */
65 #define SF_POWER	1000000		/* microwatts */
66 #define SF_CURR		1000		/* milliamperes */
67 #define SF_VOLTAGE	1000		/* millivolts */
68 #define SF_ENERGY	1000000		/* microjoules */
69 #define SF_TIME		1000		/* milliseconds */
70 
71 /*
72  * PL*_HWMON_ATTR - mapping of hardware power limits to corresponding hwmon power attribute.
73  */
74 #define PL1_HWMON_ATTR	hwmon_power_max
75 
76 #define PWR_ATTR_TO_STR(attr)	(((attr) == hwmon_power_max) ? "PL1" : "Invalid")
77 
78 /*
79  * Timeout for power limit write mailbox command.
80  */
81 #define PL_WRITE_MBX_TIMEOUT_MS	(1)
82 
83 /**
84  * struct xe_hwmon_energy_info - to accumulate energy
85  */
86 struct xe_hwmon_energy_info {
87 	/** @reg_val_prev: previous energy reg val */
88 	u32 reg_val_prev;
89 	/** @accum_energy: accumulated energy */
90 	long accum_energy;
91 };
92 
93 /**
94  * struct xe_hwmon_fan_info - to cache previous fan reading
95  */
96 struct xe_hwmon_fan_info {
97 	/** @reg_val_prev: previous fan reg val */
98 	u32 reg_val_prev;
99 	/** @time_prev: previous timestamp */
100 	u64 time_prev;
101 };
102 
103 /**
104  * struct xe_hwmon - xe hwmon data structure
105  */
106 struct xe_hwmon {
107 	/** @hwmon_dev: hwmon device for xe */
108 	struct device *hwmon_dev;
109 	/** @xe: Xe device */
110 	struct xe_device *xe;
111 	/** @hwmon_lock: lock for rw attributes*/
112 	struct mutex hwmon_lock;
113 	/** @scl_shift_power: pkg power unit */
114 	int scl_shift_power;
115 	/** @scl_shift_energy: pkg energy unit */
116 	int scl_shift_energy;
117 	/** @scl_shift_time: pkg time unit */
118 	int scl_shift_time;
119 	/** @ei: Energy info for energyN_input */
120 	struct xe_hwmon_energy_info ei[CHANNEL_MAX];
121 	/** @fi: Fan info for fanN_input */
122 	struct xe_hwmon_fan_info fi[FAN_MAX];
123 	/** @boot_power_limit_read: is boot power limits read */
124 	bool boot_power_limit_read;
125 	/** @pl1_on_boot: power limit PL1 on boot */
126 	u32 pl1_on_boot[CHANNEL_MAX];
127 };
128 
xe_hwmon_pcode_read_power_limit(const struct xe_hwmon * hwmon,u32 attr,int channel,u32 * uval)129 static int xe_hwmon_pcode_read_power_limit(const struct xe_hwmon *hwmon, u32 attr, int channel,
130 					   u32 *uval)
131 {
132 	struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
133 	u32 val0 = 0, val1 = 0;
134 	int ret = 0;
135 
136 	ret = xe_pcode_read(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
137 						  (channel == CHANNEL_CARD) ?
138 						  READ_PSYSGPU_POWER_LIMIT :
139 						  READ_PACKAGE_POWER_LIMIT,
140 						  hwmon->boot_power_limit_read ?
141 						  READ_PL_FROM_PCODE : READ_PL_FROM_FW),
142 						  &val0, &val1);
143 
144 	if (ret) {
145 		drm_dbg(&hwmon->xe->drm, "read failed ch %d val0 0x%08x, val1 0x%08x, ret %d\n",
146 			channel, val0, val1, ret);
147 		*uval = 0;
148 		return ret;
149 	}
150 
151 	/* return the value only if limit is enabled */
152 	if (attr == PL1_HWMON_ATTR)
153 		*uval = (val0 & PWR_LIM_EN) ? val0 : 0;
154 	else if (attr == hwmon_power_label)
155 		*uval = (val0 & PWR_LIM_EN) ? 1 : 0;
156 	else
157 		*uval = 0;
158 
159 	return ret;
160 }
161 
xe_hwmon_pcode_rmw_power_limit(const struct xe_hwmon * hwmon,u32 attr,u8 channel,u32 clr,u32 set)162 static int xe_hwmon_pcode_rmw_power_limit(const struct xe_hwmon *hwmon, u32 attr, u8 channel,
163 					  u32 clr, u32 set)
164 {
165 	struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
166 	u32 val0, val1;
167 	int ret = 0;
168 
169 	ret = xe_pcode_read(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
170 						  (channel == CHANNEL_CARD) ?
171 						  READ_PSYSGPU_POWER_LIMIT :
172 						  READ_PACKAGE_POWER_LIMIT,
173 						  hwmon->boot_power_limit_read ?
174 						  READ_PL_FROM_PCODE : READ_PL_FROM_FW),
175 						  &val0, &val1);
176 
177 	if (ret)
178 		drm_dbg(&hwmon->xe->drm, "read failed ch %d val0 0x%08x, val1 0x%08x, ret %d\n",
179 			channel, val0, val1, ret);
180 
181 	if (attr == PL1_HWMON_ATTR)
182 		val0 = (val0 & ~clr) | set;
183 	else
184 		return -EIO;
185 
186 	ret = xe_pcode_write64_timeout(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
187 							     (channel == CHANNEL_CARD) ?
188 							     WRITE_PSYSGPU_POWER_LIMIT :
189 							     WRITE_PACKAGE_POWER_LIMIT, 0),
190 							     val0, val1, PL_WRITE_MBX_TIMEOUT_MS);
191 	if (ret)
192 		drm_dbg(&hwmon->xe->drm, "write failed ch %d val0 0x%08x, val1 0x%08x, ret %d\n",
193 			channel, val0, val1, ret);
194 	return ret;
195 }
196 
xe_hwmon_get_reg(struct xe_hwmon * hwmon,enum xe_hwmon_reg hwmon_reg,int channel)197 static struct xe_reg xe_hwmon_get_reg(struct xe_hwmon *hwmon, enum xe_hwmon_reg hwmon_reg,
198 				      int channel)
199 {
200 	struct xe_device *xe = hwmon->xe;
201 
202 	switch (hwmon_reg) {
203 	case REG_TEMP:
204 		if (xe->info.platform == XE_BATTLEMAGE) {
205 			if (channel == CHANNEL_PKG)
206 				return BMG_PACKAGE_TEMPERATURE;
207 			else if (channel == CHANNEL_VRAM)
208 				return BMG_VRAM_TEMPERATURE;
209 		} else if (xe->info.platform == XE_DG2) {
210 			if (channel == CHANNEL_PKG)
211 				return PCU_CR_PACKAGE_TEMPERATURE;
212 			else if (channel == CHANNEL_VRAM)
213 				return BMG_VRAM_TEMPERATURE;
214 		}
215 		break;
216 	case REG_PKG_RAPL_LIMIT:
217 		if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG)
218 			return PVC_GT0_PACKAGE_RAPL_LIMIT;
219 		else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG))
220 			return PCU_CR_PACKAGE_RAPL_LIMIT;
221 		break;
222 	case REG_PKG_POWER_SKU:
223 		if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG)
224 			return PVC_GT0_PACKAGE_POWER_SKU;
225 		else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG))
226 			return PCU_CR_PACKAGE_POWER_SKU;
227 		break;
228 	case REG_PKG_POWER_SKU_UNIT:
229 		if (xe->info.platform == XE_PVC)
230 			return PVC_GT0_PACKAGE_POWER_SKU_UNIT;
231 		else if (xe->info.platform == XE_DG2)
232 			return PCU_CR_PACKAGE_POWER_SKU_UNIT;
233 		break;
234 	case REG_GT_PERF_STATUS:
235 		if (xe->info.platform == XE_DG2 && channel == CHANNEL_PKG)
236 			return GT_PERF_STATUS;
237 		break;
238 	case REG_PKG_ENERGY_STATUS:
239 		if (xe->info.platform == XE_BATTLEMAGE) {
240 			if (channel == CHANNEL_PKG)
241 				return BMG_PACKAGE_ENERGY_STATUS;
242 			else
243 				return BMG_PLATFORM_ENERGY_STATUS;
244 		} else if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG) {
245 			return PVC_GT0_PLATFORM_ENERGY_STATUS;
246 		} else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG)) {
247 			return PCU_CR_PACKAGE_ENERGY_STATUS;
248 		}
249 		break;
250 	case REG_FAN_SPEED:
251 		if (channel == FAN_1)
252 			return BMG_FAN_1_SPEED;
253 		else if (channel == FAN_2)
254 			return BMG_FAN_2_SPEED;
255 		else if (channel == FAN_3)
256 			return BMG_FAN_3_SPEED;
257 		break;
258 	default:
259 		drm_warn(&xe->drm, "Unknown xe hwmon reg id: %d\n", hwmon_reg);
260 		break;
261 	}
262 
263 	return XE_REG(0);
264 }
265 
266 #define PL_DISABLE 0
267 
268 /*
269  * HW allows arbitrary PL1 limits to be set but silently clamps these values to
270  * "typical but not guaranteed" min/max values in REG_PKG_POWER_SKU. Follow the
271  * same pattern for sysfs, allow arbitrary PL1 limits to be set but display
272  * clamped values when read.
273  */
xe_hwmon_power_max_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * value)274 static void xe_hwmon_power_max_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *value)
275 {
276 	u64 reg_val, min, max;
277 	struct xe_device *xe = hwmon->xe;
278 	struct xe_reg rapl_limit, pkg_power_sku;
279 	struct xe_mmio *mmio = xe_root_tile_mmio(xe);
280 
281 	mutex_lock(&hwmon->hwmon_lock);
282 
283 	if (hwmon->xe->info.has_mbx_power_limits) {
284 		xe_hwmon_pcode_read_power_limit(hwmon, attr, channel, (u32 *)&reg_val);
285 	} else {
286 		rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
287 		pkg_power_sku = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
288 
289 		/*
290 		 * Valid check of REG_PKG_RAPL_LIMIT is already done in xe_hwmon_power_is_visible.
291 		 * So not checking it again here.
292 		 */
293 		if (!xe_reg_is_valid(pkg_power_sku)) {
294 			drm_warn(&xe->drm, "pkg_power_sku invalid\n");
295 			*value = 0;
296 			goto unlock;
297 		}
298 		reg_val = xe_mmio_read32(mmio, rapl_limit);
299 	}
300 
301 	/* Check if PL limits are disabled. */
302 	if (!(reg_val & PWR_LIM_EN)) {
303 		*value = PL_DISABLE;
304 		drm_info(&hwmon->xe->drm, "%s disabled for channel %d, val 0x%016llx\n",
305 			 PWR_ATTR_TO_STR(attr), channel, reg_val);
306 		goto unlock;
307 	}
308 
309 	reg_val = REG_FIELD_GET(PWR_LIM_VAL, reg_val);
310 	*value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power);
311 
312 	/* For platforms with mailbox power limit support clamping would be done by pcode. */
313 	if (!hwmon->xe->info.has_mbx_power_limits) {
314 		reg_val = xe_mmio_read64_2x32(mmio, pkg_power_sku);
315 		min = REG_FIELD_GET(PKG_MIN_PWR, reg_val);
316 		max = REG_FIELD_GET(PKG_MAX_PWR, reg_val);
317 		min = mul_u64_u32_shr(min, SF_POWER, hwmon->scl_shift_power);
318 		max = mul_u64_u32_shr(max, SF_POWER, hwmon->scl_shift_power);
319 		if (min && max)
320 			*value = clamp_t(u64, *value, min, max);
321 	}
322 unlock:
323 	mutex_unlock(&hwmon->hwmon_lock);
324 }
325 
xe_hwmon_power_max_write(struct xe_hwmon * hwmon,u32 attr,int channel,long value)326 static int xe_hwmon_power_max_write(struct xe_hwmon *hwmon, u32 attr, int channel, long value)
327 {
328 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
329 	int ret = 0;
330 	u32 reg_val;
331 	struct xe_reg rapl_limit;
332 
333 	mutex_lock(&hwmon->hwmon_lock);
334 
335 	rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
336 
337 	/* Disable Power Limit and verify, as limit cannot be disabled on all platforms. */
338 	if (value == PL_DISABLE) {
339 		if (hwmon->xe->info.has_mbx_power_limits) {
340 			drm_dbg(&hwmon->xe->drm, "disabling %s on channel %d\n",
341 				PWR_ATTR_TO_STR(attr), channel);
342 			xe_hwmon_pcode_rmw_power_limit(hwmon, attr, channel, PWR_LIM_EN, 0);
343 			xe_hwmon_pcode_read_power_limit(hwmon, attr, channel, &reg_val);
344 		} else {
345 			reg_val = xe_mmio_rmw32(mmio, rapl_limit, PWR_LIM_EN, 0);
346 			reg_val = xe_mmio_read32(mmio, rapl_limit);
347 		}
348 
349 		if (reg_val & PWR_LIM_EN) {
350 			drm_warn(&hwmon->xe->drm, "Power limit disable is not supported!\n");
351 			ret = -EOPNOTSUPP;
352 		}
353 		goto unlock;
354 	}
355 
356 	/* Computation in 64-bits to avoid overflow. Round to nearest. */
357 	reg_val = DIV_ROUND_CLOSEST_ULL((u64)value << hwmon->scl_shift_power, SF_POWER);
358 	reg_val = PWR_LIM_EN | REG_FIELD_PREP(PWR_LIM_VAL, reg_val);
359 
360 	/*
361 	 * Clamp power limit to card-firmware default as maximum, as an additional protection to
362 	 * pcode clamp.
363 	 */
364 	if (hwmon->xe->info.has_mbx_power_limits) {
365 		if (reg_val > REG_FIELD_GET(PWR_LIM_VAL, hwmon->pl1_on_boot[channel])) {
366 			reg_val = REG_FIELD_GET(PWR_LIM_VAL, hwmon->pl1_on_boot[channel]);
367 			drm_dbg(&hwmon->xe->drm, "Clamping power limit to firmware default 0x%x\n",
368 				reg_val);
369 		}
370 	}
371 
372 	if (hwmon->xe->info.has_mbx_power_limits)
373 		ret = xe_hwmon_pcode_rmw_power_limit(hwmon, attr, channel, PWR_LIM, reg_val);
374 	else
375 		reg_val = xe_mmio_rmw32(mmio, rapl_limit, PWR_LIM, reg_val);
376 unlock:
377 	mutex_unlock(&hwmon->hwmon_lock);
378 	return ret;
379 }
380 
xe_hwmon_power_rated_max_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * value)381 static void xe_hwmon_power_rated_max_read(struct xe_hwmon *hwmon, u32 attr, int channel,
382 					  long *value)
383 {
384 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
385 	u32 reg_val;
386 
387 	if (hwmon->xe->info.has_mbx_power_limits) {
388 		/* PL1 is rated max if supported. */
389 		xe_hwmon_pcode_read_power_limit(hwmon, PL1_HWMON_ATTR, channel, &reg_val);
390 	} else {
391 		/*
392 		 * This sysfs file won't be visible if REG_PKG_POWER_SKU is invalid, so valid check
393 		 * for this register can be skipped.
394 		 * See xe_hwmon_power_is_visible.
395 		 */
396 		struct xe_reg reg = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
397 
398 		reg_val = xe_mmio_read32(mmio, reg);
399 	}
400 
401 	reg_val = REG_FIELD_GET(PKG_TDP, reg_val);
402 	*value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power);
403 }
404 
405 /*
406  * xe_hwmon_energy_get - Obtain energy value
407  *
408  * The underlying energy hardware register is 32-bits and is subject to
409  * overflow. How long before overflow? For example, with an example
410  * scaling bit shift of 14 bits (see register *PACKAGE_POWER_SKU_UNIT) and
411  * a power draw of 1000 watts, the 32-bit counter will overflow in
412  * approximately 4.36 minutes.
413  *
414  * Examples:
415  *    1 watt:  (2^32 >> 14) /    1 W / (60 * 60 * 24) secs/day -> 3 days
416  * 1000 watts: (2^32 >> 14) / 1000 W / 60             secs/min -> 4.36 minutes
417  *
418  * The function significantly increases overflow duration (from 4.36
419  * minutes) by accumulating the energy register into a 'long' as allowed by
420  * the hwmon API. Using x86_64 128 bit arithmetic (see mul_u64_u32_shr()),
421  * a 'long' of 63 bits, SF_ENERGY of 1e6 (~20 bits) and
422  * hwmon->scl_shift_energy of 14 bits we have 57 (63 - 20 + 14) bits before
423  * energyN_input overflows. This at 1000 W is an overflow duration of 278 years.
424  */
425 static void
xe_hwmon_energy_get(struct xe_hwmon * hwmon,int channel,long * energy)426 xe_hwmon_energy_get(struct xe_hwmon *hwmon, int channel, long *energy)
427 {
428 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
429 	struct xe_hwmon_energy_info *ei = &hwmon->ei[channel];
430 	u64 reg_val;
431 
432 	reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_PKG_ENERGY_STATUS,
433 							channel));
434 
435 	if (reg_val >= ei->reg_val_prev)
436 		ei->accum_energy += reg_val - ei->reg_val_prev;
437 	else
438 		ei->accum_energy += UINT_MAX - ei->reg_val_prev + reg_val;
439 
440 	ei->reg_val_prev = reg_val;
441 
442 	*energy = mul_u64_u32_shr(ei->accum_energy, SF_ENERGY,
443 				  hwmon->scl_shift_energy);
444 }
445 
446 static ssize_t
xe_hwmon_power_max_interval_show(struct device * dev,struct device_attribute * attr,char * buf)447 xe_hwmon_power_max_interval_show(struct device *dev, struct device_attribute *attr,
448 				 char *buf)
449 {
450 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
451 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
452 	u32 x, y, x_w = 2; /* 2 bits */
453 	u64 r, tau4, out;
454 	int channel = to_sensor_dev_attr(attr)->index;
455 	u32 power_attr = PL1_HWMON_ATTR;
456 	int ret = 0;
457 
458 	xe_pm_runtime_get(hwmon->xe);
459 
460 	mutex_lock(&hwmon->hwmon_lock);
461 
462 	if (hwmon->xe->info.has_mbx_power_limits) {
463 		ret = xe_hwmon_pcode_read_power_limit(hwmon, power_attr, channel, (u32 *)&r);
464 		if (ret) {
465 			drm_err(&hwmon->xe->drm,
466 				"power interval read fail, ch %d, attr %d, r 0%llx, ret %d\n",
467 				channel, power_attr, r, ret);
468 			r = 0;
469 		}
470 	} else {
471 		r = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel));
472 	}
473 
474 	mutex_unlock(&hwmon->hwmon_lock);
475 
476 	xe_pm_runtime_put(hwmon->xe);
477 
478 	x = REG_FIELD_GET(PWR_LIM_TIME_X, r);
479 	y = REG_FIELD_GET(PWR_LIM_TIME_Y, r);
480 
481 	/*
482 	 * tau = (1 + (x / 4)) * power(2,y), x = bits(23:22), y = bits(21:17)
483 	 *     = (4 | x) << (y - 2)
484 	 *
485 	 * Here (y - 2) ensures a 1.x fixed point representation of 1.x
486 	 * As x is 2 bits so 1.x can be 1.0, 1.25, 1.50, 1.75
487 	 *
488 	 * As y can be < 2, we compute tau4 = (4 | x) << y
489 	 * and then add 2 when doing the final right shift to account for units
490 	 */
491 	tau4 = (u64)((1 << x_w) | x) << y;
492 
493 	/* val in hwmon interface units (millisec) */
494 	out = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
495 
496 	return sysfs_emit(buf, "%llu\n", out);
497 }
498 
499 static ssize_t
xe_hwmon_power_max_interval_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)500 xe_hwmon_power_max_interval_store(struct device *dev, struct device_attribute *attr,
501 				  const char *buf, size_t count)
502 {
503 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
504 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
505 	u32 x, y, rxy, x_w = 2; /* 2 bits */
506 	u64 tau4, r, max_win;
507 	unsigned long val;
508 	int ret;
509 	int channel = to_sensor_dev_attr(attr)->index;
510 	u32 power_attr = PL1_HWMON_ATTR;
511 
512 	ret = kstrtoul(buf, 0, &val);
513 	if (ret)
514 		return ret;
515 
516 	/*
517 	 * Max HW supported tau in '(1 + (x / 4)) * power(2,y)' format, x = 0, y = 0x12.
518 	 * The hwmon->scl_shift_time default of 0xa results in a max tau of 256 seconds.
519 	 *
520 	 * The ideal scenario is for PKG_MAX_WIN to be read from the PKG_PWR_SKU register.
521 	 * However, it is observed that existing discrete GPUs does not provide correct
522 	 * PKG_MAX_WIN value, therefore a using default constant value. For future discrete GPUs
523 	 * this may get resolved, in which case PKG_MAX_WIN should be obtained from PKG_PWR_SKU.
524 	 */
525 #define PKG_MAX_WIN_DEFAULT 0x12ull
526 
527 	/*
528 	 * val must be < max in hwmon interface units. The steps below are
529 	 * explained in xe_hwmon_power_max_interval_show()
530 	 */
531 	r = FIELD_PREP(PKG_MAX_WIN, PKG_MAX_WIN_DEFAULT);
532 	x = REG_FIELD_GET(PKG_MAX_WIN_X, r);
533 	y = REG_FIELD_GET(PKG_MAX_WIN_Y, r);
534 	tau4 = (u64)((1 << x_w) | x) << y;
535 	max_win = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
536 
537 	if (val > max_win) {
538 		drm_warn(&hwmon->xe->drm, "power_interval invalid val 0x%lx\n", val);
539 		return -EINVAL;
540 	}
541 
542 	/* val in hw units */
543 	val = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_time, SF_TIME) + 1;
544 
545 	/*
546 	 * Convert val to 1.x * power(2,y)
547 	 * y = ilog2(val)
548 	 * x = (val - (1 << y)) >> (y - 2)
549 	 */
550 	if (!val) {
551 		y = 0;
552 		x = 0;
553 	} else {
554 		y = ilog2(val);
555 		x = (val - (1ul << y)) << x_w >> y;
556 	}
557 
558 	rxy = REG_FIELD_PREP(PWR_LIM_TIME_X, x) |
559 			       REG_FIELD_PREP(PWR_LIM_TIME_Y, y);
560 
561 	xe_pm_runtime_get(hwmon->xe);
562 
563 	mutex_lock(&hwmon->hwmon_lock);
564 
565 	if (hwmon->xe->info.has_mbx_power_limits)
566 		xe_hwmon_pcode_rmw_power_limit(hwmon, power_attr, channel, PWR_LIM_TIME, rxy);
567 	else
568 		r = xe_mmio_rmw32(mmio, xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel),
569 				  PWR_LIM_TIME, rxy);
570 
571 	mutex_unlock(&hwmon->hwmon_lock);
572 
573 	xe_pm_runtime_put(hwmon->xe);
574 
575 	return count;
576 }
577 
578 /* PSYS PL1 */
579 static SENSOR_DEVICE_ATTR(power1_max_interval, 0664,
580 			  xe_hwmon_power_max_interval_show,
581 			  xe_hwmon_power_max_interval_store, CHANNEL_CARD);
582 
583 static SENSOR_DEVICE_ATTR(power2_max_interval, 0664,
584 			  xe_hwmon_power_max_interval_show,
585 			  xe_hwmon_power_max_interval_store, CHANNEL_PKG);
586 
587 static struct attribute *hwmon_attributes[] = {
588 	&sensor_dev_attr_power1_max_interval.dev_attr.attr,
589 	&sensor_dev_attr_power2_max_interval.dev_attr.attr,
590 	NULL
591 };
592 
xe_hwmon_attributes_visible(struct kobject * kobj,struct attribute * attr,int index)593 static umode_t xe_hwmon_attributes_visible(struct kobject *kobj,
594 					   struct attribute *attr, int index)
595 {
596 	struct device *dev = kobj_to_dev(kobj);
597 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
598 	int ret = 0;
599 	int channel = index ? CHANNEL_PKG : CHANNEL_CARD;
600 	u32 power_attr = PL1_HWMON_ATTR;
601 	u32 uval;
602 
603 	xe_pm_runtime_get(hwmon->xe);
604 
605 	if (hwmon->xe->info.has_mbx_power_limits) {
606 		xe_hwmon_pcode_read_power_limit(hwmon, power_attr, channel, &uval);
607 		ret = (uval & PWR_LIM_EN) ? attr->mode : 0;
608 	} else {
609 		ret = xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT,
610 						       channel)) ? attr->mode : 0;
611 	}
612 
613 	xe_pm_runtime_put(hwmon->xe);
614 
615 	return ret;
616 }
617 
618 static const struct attribute_group hwmon_attrgroup = {
619 	.attrs = hwmon_attributes,
620 	.is_visible = xe_hwmon_attributes_visible,
621 };
622 
623 static const struct attribute_group *hwmon_groups[] = {
624 	&hwmon_attrgroup,
625 	NULL
626 };
627 
628 static const struct hwmon_channel_info * const hwmon_info[] = {
629 	HWMON_CHANNEL_INFO(temp, HWMON_T_LABEL, HWMON_T_INPUT | HWMON_T_LABEL,
630 			   HWMON_T_INPUT | HWMON_T_LABEL),
631 	HWMON_CHANNEL_INFO(power, HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_LABEL | HWMON_P_CRIT,
632 			   HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_LABEL),
633 	HWMON_CHANNEL_INFO(curr, HWMON_C_LABEL, HWMON_C_CRIT | HWMON_C_LABEL),
634 	HWMON_CHANNEL_INFO(in, HWMON_I_INPUT | HWMON_I_LABEL, HWMON_I_INPUT | HWMON_I_LABEL),
635 	HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT | HWMON_E_LABEL, HWMON_E_INPUT | HWMON_E_LABEL),
636 	HWMON_CHANNEL_INFO(fan, HWMON_F_INPUT, HWMON_F_INPUT, HWMON_F_INPUT),
637 	NULL
638 };
639 
640 /* I1 is exposed as power_crit or as curr_crit depending on bit 31 */
xe_hwmon_pcode_read_i1(const struct xe_hwmon * hwmon,u32 * uval)641 static int xe_hwmon_pcode_read_i1(const struct xe_hwmon *hwmon, u32 *uval)
642 {
643 	struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
644 
645 	/* Avoid Illegal Subcommand error */
646 	if (hwmon->xe->info.platform == XE_DG2)
647 		return -ENXIO;
648 
649 	return xe_pcode_read(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
650 			     POWER_SETUP_SUBCOMMAND_READ_I1, 0),
651 			     uval, NULL);
652 }
653 
xe_hwmon_pcode_write_i1(const struct xe_hwmon * hwmon,u32 uval)654 static int xe_hwmon_pcode_write_i1(const struct xe_hwmon *hwmon, u32 uval)
655 {
656 	struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
657 
658 	return xe_pcode_write(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
659 			      POWER_SETUP_SUBCOMMAND_WRITE_I1, 0),
660 			      (uval & POWER_SETUP_I1_DATA_MASK));
661 }
662 
xe_hwmon_pcode_read_fan_control(const struct xe_hwmon * hwmon,u32 subcmd,u32 * uval)663 static int xe_hwmon_pcode_read_fan_control(const struct xe_hwmon *hwmon, u32 subcmd, u32 *uval)
664 {
665 	struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
666 
667 	/* Platforms that don't return correct value */
668 	if (hwmon->xe->info.platform == XE_DG2 && subcmd == FSC_READ_NUM_FANS) {
669 		*uval = 2;
670 		return 0;
671 	}
672 
673 	return xe_pcode_read(root_tile, PCODE_MBOX(FAN_SPEED_CONTROL, subcmd, 0), uval, NULL);
674 }
675 
xe_hwmon_power_curr_crit_read(struct xe_hwmon * hwmon,int channel,long * value,u32 scale_factor)676 static int xe_hwmon_power_curr_crit_read(struct xe_hwmon *hwmon, int channel,
677 					 long *value, u32 scale_factor)
678 {
679 	int ret;
680 	u32 uval;
681 
682 	mutex_lock(&hwmon->hwmon_lock);
683 
684 	ret = xe_hwmon_pcode_read_i1(hwmon, &uval);
685 	if (ret)
686 		goto unlock;
687 
688 	*value = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval),
689 				 scale_factor, POWER_SETUP_I1_SHIFT);
690 unlock:
691 	mutex_unlock(&hwmon->hwmon_lock);
692 	return ret;
693 }
694 
xe_hwmon_power_curr_crit_write(struct xe_hwmon * hwmon,int channel,long value,u32 scale_factor)695 static int xe_hwmon_power_curr_crit_write(struct xe_hwmon *hwmon, int channel,
696 					  long value, u32 scale_factor)
697 {
698 	int ret;
699 	u32 uval;
700 
701 	mutex_lock(&hwmon->hwmon_lock);
702 
703 	uval = DIV_ROUND_CLOSEST_ULL(value << POWER_SETUP_I1_SHIFT, scale_factor);
704 	ret = xe_hwmon_pcode_write_i1(hwmon, uval);
705 
706 	mutex_unlock(&hwmon->hwmon_lock);
707 	return ret;
708 }
709 
xe_hwmon_get_voltage(struct xe_hwmon * hwmon,int channel,long * value)710 static void xe_hwmon_get_voltage(struct xe_hwmon *hwmon, int channel, long *value)
711 {
712 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
713 	u64 reg_val;
714 
715 	reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_GT_PERF_STATUS, channel));
716 	/* HW register value in units of 2.5 millivolt */
717 	*value = DIV_ROUND_CLOSEST(REG_FIELD_GET(VOLTAGE_MASK, reg_val) * 2500, SF_VOLTAGE);
718 }
719 
720 static umode_t
xe_hwmon_temp_is_visible(struct xe_hwmon * hwmon,u32 attr,int channel)721 xe_hwmon_temp_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
722 {
723 	switch (attr) {
724 	case hwmon_temp_input:
725 	case hwmon_temp_label:
726 		return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_TEMP, channel)) ? 0444 : 0;
727 	default:
728 		return 0;
729 	}
730 }
731 
732 static int
xe_hwmon_temp_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * val)733 xe_hwmon_temp_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
734 {
735 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
736 	u64 reg_val;
737 
738 	switch (attr) {
739 	case hwmon_temp_input:
740 		reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_TEMP, channel));
741 
742 		/* HW register value is in degrees Celsius, convert to millidegrees. */
743 		*val = REG_FIELD_GET(TEMP_MASK, reg_val) * MILLIDEGREE_PER_DEGREE;
744 		return 0;
745 	default:
746 		return -EOPNOTSUPP;
747 	}
748 }
749 
750 static umode_t
xe_hwmon_power_is_visible(struct xe_hwmon * hwmon,u32 attr,int channel)751 xe_hwmon_power_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
752 {
753 	u32 uval;
754 
755 	switch (attr) {
756 	case hwmon_power_max:
757 		if (hwmon->xe->info.has_mbx_power_limits) {
758 			xe_hwmon_pcode_read_power_limit(hwmon, attr, channel, &uval);
759 			return (uval) ? 0664 : 0;
760 		} else {
761 			return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT,
762 				       channel)) ? 0664 : 0;
763 		}
764 	case hwmon_power_rated_max:
765 		if (hwmon->xe->info.has_mbx_power_limits)
766 			return 0;
767 		else
768 			return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU,
769 					       channel)) ? 0444 : 0;
770 	case hwmon_power_crit:
771 	case hwmon_power_label:
772 		if (channel == CHANNEL_CARD) {
773 			xe_hwmon_pcode_read_i1(hwmon, &uval);
774 			return (uval & POWER_SETUP_I1_WATTS) ? (attr == hwmon_power_label) ?
775 				0444 : 0644 : 0;
776 		}
777 		break;
778 	default:
779 		return 0;
780 	}
781 	return 0;
782 }
783 
784 static int
xe_hwmon_power_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * val)785 xe_hwmon_power_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
786 {
787 	switch (attr) {
788 	case hwmon_power_max:
789 		xe_hwmon_power_max_read(hwmon, attr, channel, val);
790 		return 0;
791 	case hwmon_power_rated_max:
792 		xe_hwmon_power_rated_max_read(hwmon, attr, channel, val);
793 		return 0;
794 	case hwmon_power_crit:
795 		return xe_hwmon_power_curr_crit_read(hwmon, channel, val, SF_POWER);
796 	default:
797 		return -EOPNOTSUPP;
798 	}
799 }
800 
801 static int
xe_hwmon_power_write(struct xe_hwmon * hwmon,u32 attr,int channel,long val)802 xe_hwmon_power_write(struct xe_hwmon *hwmon, u32 attr, int channel, long val)
803 {
804 	switch (attr) {
805 	case hwmon_power_max:
806 		return xe_hwmon_power_max_write(hwmon, attr, channel, val);
807 	case hwmon_power_crit:
808 		return xe_hwmon_power_curr_crit_write(hwmon, channel, val, SF_POWER);
809 	default:
810 		return -EOPNOTSUPP;
811 	}
812 }
813 
814 static umode_t
xe_hwmon_curr_is_visible(const struct xe_hwmon * hwmon,u32 attr,int channel)815 xe_hwmon_curr_is_visible(const struct xe_hwmon *hwmon, u32 attr, int channel)
816 {
817 	u32 uval;
818 
819 	/* hwmon sysfs attribute of current available only for package */
820 	if (channel != CHANNEL_PKG)
821 		return 0;
822 
823 	switch (attr) {
824 	case hwmon_curr_crit:
825 			return (xe_hwmon_pcode_read_i1(hwmon, &uval) ||
826 				(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
827 	case hwmon_curr_label:
828 			return (xe_hwmon_pcode_read_i1(hwmon, &uval) ||
829 				(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0444;
830 		break;
831 	default:
832 		return 0;
833 	}
834 	return 0;
835 }
836 
837 static int
xe_hwmon_curr_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * val)838 xe_hwmon_curr_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
839 {
840 	switch (attr) {
841 	case hwmon_curr_crit:
842 		return xe_hwmon_power_curr_crit_read(hwmon, channel, val, SF_CURR);
843 	default:
844 		return -EOPNOTSUPP;
845 	}
846 }
847 
848 static int
xe_hwmon_curr_write(struct xe_hwmon * hwmon,u32 attr,int channel,long val)849 xe_hwmon_curr_write(struct xe_hwmon *hwmon, u32 attr, int channel, long val)
850 {
851 	switch (attr) {
852 	case hwmon_curr_crit:
853 		return xe_hwmon_power_curr_crit_write(hwmon, channel, val, SF_CURR);
854 	default:
855 		return -EOPNOTSUPP;
856 	}
857 }
858 
859 static umode_t
xe_hwmon_in_is_visible(struct xe_hwmon * hwmon,u32 attr,int channel)860 xe_hwmon_in_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
861 {
862 	switch (attr) {
863 	case hwmon_in_input:
864 	case hwmon_in_label:
865 		return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_GT_PERF_STATUS,
866 				       channel)) ? 0444 : 0;
867 	default:
868 		return 0;
869 	}
870 }
871 
872 static int
xe_hwmon_in_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * val)873 xe_hwmon_in_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
874 {
875 	switch (attr) {
876 	case hwmon_in_input:
877 		xe_hwmon_get_voltage(hwmon, channel, val);
878 		return 0;
879 	default:
880 		return -EOPNOTSUPP;
881 	}
882 }
883 
884 static umode_t
xe_hwmon_energy_is_visible(struct xe_hwmon * hwmon,u32 attr,int channel)885 xe_hwmon_energy_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
886 {
887 	switch (attr) {
888 	case hwmon_energy_input:
889 	case hwmon_energy_label:
890 		return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_ENERGY_STATUS,
891 				       channel)) ? 0444 : 0;
892 	default:
893 		return 0;
894 	}
895 }
896 
897 static int
xe_hwmon_energy_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * val)898 xe_hwmon_energy_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
899 {
900 	switch (attr) {
901 	case hwmon_energy_input:
902 		xe_hwmon_energy_get(hwmon, channel, val);
903 		return 0;
904 	default:
905 		return -EOPNOTSUPP;
906 	}
907 }
908 
909 static umode_t
xe_hwmon_fan_is_visible(struct xe_hwmon * hwmon,u32 attr,int channel)910 xe_hwmon_fan_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
911 {
912 	u32 uval;
913 
914 	if (!hwmon->xe->info.has_fan_control)
915 		return 0;
916 
917 	switch (attr) {
918 	case hwmon_fan_input:
919 		if (xe_hwmon_pcode_read_fan_control(hwmon, FSC_READ_NUM_FANS, &uval))
920 			return 0;
921 
922 		return channel < uval ? 0444 : 0;
923 	default:
924 		return 0;
925 	}
926 }
927 
928 static int
xe_hwmon_fan_input_read(struct xe_hwmon * hwmon,int channel,long * val)929 xe_hwmon_fan_input_read(struct xe_hwmon *hwmon, int channel, long *val)
930 {
931 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
932 	struct xe_hwmon_fan_info *fi = &hwmon->fi[channel];
933 	u64 rotations, time_now, time;
934 	u32 reg_val;
935 	int ret = 0;
936 
937 	mutex_lock(&hwmon->hwmon_lock);
938 
939 	reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_FAN_SPEED, channel));
940 	time_now = get_jiffies_64();
941 
942 	/*
943 	 * HW register value is accumulated count of pulses from PWM fan with the scale
944 	 * of 2 pulses per rotation.
945 	 */
946 	rotations = (reg_val - fi->reg_val_prev) / 2;
947 
948 	time = jiffies_delta_to_msecs(time_now - fi->time_prev);
949 	if (unlikely(!time)) {
950 		ret = -EAGAIN;
951 		goto unlock;
952 	}
953 
954 	/*
955 	 * Calculate fan speed in RPM by time averaging two subsequent readings in minutes.
956 	 * RPM = number of rotations * msecs per minute / time in msecs
957 	 */
958 	*val = DIV_ROUND_UP_ULL(rotations * (MSEC_PER_SEC * 60), time);
959 
960 	fi->reg_val_prev = reg_val;
961 	fi->time_prev = time_now;
962 unlock:
963 	mutex_unlock(&hwmon->hwmon_lock);
964 	return ret;
965 }
966 
967 static int
xe_hwmon_fan_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * val)968 xe_hwmon_fan_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
969 {
970 	switch (attr) {
971 	case hwmon_fan_input:
972 		return xe_hwmon_fan_input_read(hwmon, channel, val);
973 	default:
974 		return -EOPNOTSUPP;
975 	}
976 }
977 
978 static umode_t
xe_hwmon_is_visible(const void * drvdata,enum hwmon_sensor_types type,u32 attr,int channel)979 xe_hwmon_is_visible(const void *drvdata, enum hwmon_sensor_types type,
980 		    u32 attr, int channel)
981 {
982 	struct xe_hwmon *hwmon = (struct xe_hwmon *)drvdata;
983 	int ret;
984 
985 	xe_pm_runtime_get(hwmon->xe);
986 
987 	switch (type) {
988 	case hwmon_temp:
989 		ret = xe_hwmon_temp_is_visible(hwmon, attr, channel);
990 		break;
991 	case hwmon_power:
992 		ret = xe_hwmon_power_is_visible(hwmon, attr, channel);
993 		break;
994 	case hwmon_curr:
995 		ret = xe_hwmon_curr_is_visible(hwmon, attr, channel);
996 		break;
997 	case hwmon_in:
998 		ret = xe_hwmon_in_is_visible(hwmon, attr, channel);
999 		break;
1000 	case hwmon_energy:
1001 		ret = xe_hwmon_energy_is_visible(hwmon, attr, channel);
1002 		break;
1003 	case hwmon_fan:
1004 		ret = xe_hwmon_fan_is_visible(hwmon, attr, channel);
1005 		break;
1006 	default:
1007 		ret = 0;
1008 		break;
1009 	}
1010 
1011 	xe_pm_runtime_put(hwmon->xe);
1012 
1013 	return ret;
1014 }
1015 
1016 static int
xe_hwmon_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * val)1017 xe_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
1018 	      int channel, long *val)
1019 {
1020 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
1021 	int ret;
1022 
1023 	xe_pm_runtime_get(hwmon->xe);
1024 
1025 	switch (type) {
1026 	case hwmon_temp:
1027 		ret = xe_hwmon_temp_read(hwmon, attr, channel, val);
1028 		break;
1029 	case hwmon_power:
1030 		ret = xe_hwmon_power_read(hwmon, attr, channel, val);
1031 		break;
1032 	case hwmon_curr:
1033 		ret = xe_hwmon_curr_read(hwmon, attr, channel, val);
1034 		break;
1035 	case hwmon_in:
1036 		ret = xe_hwmon_in_read(hwmon, attr, channel, val);
1037 		break;
1038 	case hwmon_energy:
1039 		ret = xe_hwmon_energy_read(hwmon, attr, channel, val);
1040 		break;
1041 	case hwmon_fan:
1042 		ret = xe_hwmon_fan_read(hwmon, attr, channel, val);
1043 		break;
1044 	default:
1045 		ret = -EOPNOTSUPP;
1046 		break;
1047 	}
1048 
1049 	xe_pm_runtime_put(hwmon->xe);
1050 
1051 	return ret;
1052 }
1053 
1054 static int
xe_hwmon_write(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long val)1055 xe_hwmon_write(struct device *dev, enum hwmon_sensor_types type, u32 attr,
1056 	       int channel, long val)
1057 {
1058 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
1059 	int ret;
1060 
1061 	xe_pm_runtime_get(hwmon->xe);
1062 
1063 	switch (type) {
1064 	case hwmon_power:
1065 		ret = xe_hwmon_power_write(hwmon, attr, channel, val);
1066 		break;
1067 	case hwmon_curr:
1068 		ret = xe_hwmon_curr_write(hwmon, attr, channel, val);
1069 		break;
1070 	default:
1071 		ret = -EOPNOTSUPP;
1072 		break;
1073 	}
1074 
1075 	xe_pm_runtime_put(hwmon->xe);
1076 
1077 	return ret;
1078 }
1079 
xe_hwmon_read_label(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,const char ** str)1080 static int xe_hwmon_read_label(struct device *dev,
1081 			       enum hwmon_sensor_types type,
1082 			       u32 attr, int channel, const char **str)
1083 {
1084 	switch (type) {
1085 	case hwmon_temp:
1086 		if (channel == CHANNEL_PKG)
1087 			*str = "pkg";
1088 		else if (channel == CHANNEL_VRAM)
1089 			*str = "vram";
1090 		return 0;
1091 	case hwmon_power:
1092 	case hwmon_energy:
1093 	case hwmon_curr:
1094 	case hwmon_in:
1095 		if (channel == CHANNEL_CARD)
1096 			*str = "card";
1097 		else if (channel == CHANNEL_PKG)
1098 			*str = "pkg";
1099 		return 0;
1100 	default:
1101 		return -EOPNOTSUPP;
1102 	}
1103 }
1104 
1105 static const struct hwmon_ops hwmon_ops = {
1106 	.is_visible = xe_hwmon_is_visible,
1107 	.read = xe_hwmon_read,
1108 	.write = xe_hwmon_write,
1109 	.read_string = xe_hwmon_read_label,
1110 };
1111 
1112 static const struct hwmon_chip_info hwmon_chip_info = {
1113 	.ops = &hwmon_ops,
1114 	.info = hwmon_info,
1115 };
1116 
1117 static void
xe_hwmon_get_preregistration_info(struct xe_hwmon * hwmon)1118 xe_hwmon_get_preregistration_info(struct xe_hwmon *hwmon)
1119 {
1120 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
1121 	long energy, fan_speed;
1122 	u64 val_sku_unit = 0;
1123 	int channel;
1124 	struct xe_reg pkg_power_sku_unit;
1125 
1126 	if (hwmon->xe->info.has_mbx_power_limits) {
1127 		/* Check if card firmware support mailbox power limits commands. */
1128 		if (xe_hwmon_pcode_read_power_limit(hwmon, PL1_HWMON_ATTR, CHANNEL_CARD,
1129 						    &hwmon->pl1_on_boot[CHANNEL_CARD]) |
1130 		    xe_hwmon_pcode_read_power_limit(hwmon, PL1_HWMON_ATTR, CHANNEL_PKG,
1131 						    &hwmon->pl1_on_boot[CHANNEL_PKG])) {
1132 			drm_warn(&hwmon->xe->drm,
1133 				 "Failed to read power limits, check card firmware !\n");
1134 		} else {
1135 			drm_info(&hwmon->xe->drm, "Using mailbox commands for power limits\n");
1136 			/* Write default limits to read from pcode from now on. */
1137 			xe_hwmon_pcode_rmw_power_limit(hwmon, PL1_HWMON_ATTR,
1138 						       CHANNEL_CARD, PWR_LIM | PWR_LIM_TIME,
1139 						       hwmon->pl1_on_boot[CHANNEL_CARD]);
1140 			xe_hwmon_pcode_rmw_power_limit(hwmon, PL1_HWMON_ATTR,
1141 						       CHANNEL_PKG, PWR_LIM | PWR_LIM_TIME,
1142 						       hwmon->pl1_on_boot[CHANNEL_PKG]);
1143 			hwmon->scl_shift_power = PWR_UNIT;
1144 			hwmon->scl_shift_energy = ENERGY_UNIT;
1145 			hwmon->scl_shift_time = TIME_UNIT;
1146 			hwmon->boot_power_limit_read = true;
1147 		}
1148 	} else {
1149 		drm_info(&hwmon->xe->drm, "Using register for power limits\n");
1150 		/*
1151 		 * The contents of register PKG_POWER_SKU_UNIT do not change,
1152 		 * so read it once and store the shift values.
1153 		 */
1154 		pkg_power_sku_unit = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU_UNIT, 0);
1155 		if (xe_reg_is_valid(pkg_power_sku_unit)) {
1156 			val_sku_unit = xe_mmio_read32(mmio, pkg_power_sku_unit);
1157 			hwmon->scl_shift_power = REG_FIELD_GET(PKG_PWR_UNIT, val_sku_unit);
1158 			hwmon->scl_shift_energy = REG_FIELD_GET(PKG_ENERGY_UNIT, val_sku_unit);
1159 			hwmon->scl_shift_time = REG_FIELD_GET(PKG_TIME_UNIT, val_sku_unit);
1160 		}
1161 	}
1162 	/*
1163 	 * Initialize 'struct xe_hwmon_energy_info', i.e. set fields to the
1164 	 * first value of the energy register read
1165 	 */
1166 	for (channel = 0; channel < CHANNEL_MAX; channel++)
1167 		if (xe_hwmon_is_visible(hwmon, hwmon_energy, hwmon_energy_input, channel))
1168 			xe_hwmon_energy_get(hwmon, channel, &energy);
1169 
1170 	/* Initialize 'struct xe_hwmon_fan_info' with initial fan register reading. */
1171 	for (channel = 0; channel < FAN_MAX; channel++)
1172 		if (xe_hwmon_is_visible(hwmon, hwmon_fan, hwmon_fan_input, channel))
1173 			xe_hwmon_fan_input_read(hwmon, channel, &fan_speed);
1174 }
1175 
xe_hwmon_mutex_destroy(void * arg)1176 static void xe_hwmon_mutex_destroy(void *arg)
1177 {
1178 	struct xe_hwmon *hwmon = arg;
1179 
1180 	mutex_destroy(&hwmon->hwmon_lock);
1181 }
1182 
xe_hwmon_register(struct xe_device * xe)1183 int xe_hwmon_register(struct xe_device *xe)
1184 {
1185 	struct device *dev = xe->drm.dev;
1186 	struct xe_hwmon *hwmon;
1187 	int ret;
1188 
1189 	/* hwmon is available only for dGfx */
1190 	if (!IS_DGFX(xe))
1191 		return 0;
1192 
1193 	/* hwmon is not available on VFs */
1194 	if (IS_SRIOV_VF(xe))
1195 		return 0;
1196 
1197 	hwmon = devm_kzalloc(dev, sizeof(*hwmon), GFP_KERNEL);
1198 	if (!hwmon)
1199 		return -ENOMEM;
1200 
1201 	mutex_init(&hwmon->hwmon_lock);
1202 	ret = devm_add_action_or_reset(dev, xe_hwmon_mutex_destroy, hwmon);
1203 	if (ret)
1204 		return ret;
1205 
1206 	/* There's only one instance of hwmon per device */
1207 	hwmon->xe = xe;
1208 	xe->hwmon = hwmon;
1209 
1210 	xe_hwmon_get_preregistration_info(hwmon);
1211 
1212 	drm_dbg(&xe->drm, "Register xe hwmon interface\n");
1213 
1214 	/*  hwmon_dev points to device hwmon<i> */
1215 	hwmon->hwmon_dev = devm_hwmon_device_register_with_info(dev, "xe", hwmon,
1216 								&hwmon_chip_info,
1217 								hwmon_groups);
1218 	if (IS_ERR(hwmon->hwmon_dev)) {
1219 		drm_err(&xe->drm, "Failed to register xe hwmon (%pe)\n", hwmon->hwmon_dev);
1220 		xe->hwmon = NULL;
1221 		return PTR_ERR(hwmon->hwmon_dev);
1222 	}
1223 
1224 	return 0;
1225 }
1226 
1227