1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * emc2103.c - Support for SMSC EMC2103 4 * Copyright (c) 2010 SMSC 5 */ 6 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/jiffies.h> 11 #include <linux/i2c.h> 12 #include <linux/hwmon.h> 13 #include <linux/hwmon-sysfs.h> 14 #include <linux/err.h> 15 #include <linux/mutex.h> 16 17 /* Addresses scanned */ 18 static const unsigned short normal_i2c[] = { 0x2E, I2C_CLIENT_END }; 19 20 static const u8 REG_TEMP[4] = { 0x00, 0x02, 0x04, 0x06 }; 21 static const u8 REG_TEMP_MIN[4] = { 0x3c, 0x38, 0x39, 0x3a }; 22 static const u8 REG_TEMP_MAX[4] = { 0x34, 0x30, 0x31, 0x32 }; 23 24 #define REG_CONF1 0x20 25 #define REG_TEMP_MAX_ALARM 0x24 26 #define REG_TEMP_MIN_ALARM 0x25 27 #define REG_FAN_CONF1 0x42 28 #define REG_FAN_TARGET_LO 0x4c 29 #define REG_FAN_TARGET_HI 0x4d 30 #define REG_FAN_TACH_HI 0x4e 31 #define REG_FAN_TACH_LO 0x4f 32 #define REG_PRODUCT_ID 0xfd 33 #define REG_MFG_ID 0xfe 34 35 /* equation 4 from datasheet: rpm = (3932160 * multipler) / count */ 36 #define FAN_RPM_FACTOR 3932160 37 38 /* 39 * 2103-2 and 2103-4's 3rd temperature sensor can be connected to two diodes 40 * in anti-parallel mode, and in this configuration both can be read 41 * independently (so we have 4 temperature inputs). The device can't 42 * detect if it's connected in this mode, so we have to manually enable 43 * it. Default is to leave the device in the state it's already in (-1). 44 * This parameter allows APD mode to be optionally forced on or off 45 */ 46 static int apd = -1; 47 module_param(apd, bint, 0); 48 MODULE_PARM_DESC(apd, "Set to zero to disable anti-parallel diode mode"); 49 50 struct temperature { 51 s8 degrees; 52 u8 fraction; /* 0-7 multiples of 0.125 */ 53 }; 54 55 struct emc2103_data { 56 struct i2c_client *client; 57 const struct attribute_group *groups[4]; 58 struct mutex update_lock; 59 bool valid; /* registers are valid */ 60 bool fan_rpm_control; 61 int temp_count; /* num of temp sensors */ 62 unsigned long last_updated; /* in jiffies */ 63 struct temperature temp[4]; /* internal + 3 external */ 64 s8 temp_min[4]; /* no fractional part */ 65 s8 temp_max[4]; /* no fractional part */ 66 u8 temp_min_alarm; 67 u8 temp_max_alarm; 68 u8 fan_multiplier; 69 u16 fan_tach; 70 u16 fan_target; 71 }; 72 73 static int read_u8_from_i2c(struct i2c_client *client, u8 i2c_reg, u8 *output) 74 { 75 int status = i2c_smbus_read_byte_data(client, i2c_reg); 76 if (status < 0) { 77 dev_warn(&client->dev, "reg 0x%02x, err %d\n", 78 i2c_reg, status); 79 } else { 80 *output = status; 81 } 82 return status; 83 } 84 85 static void read_temp_from_i2c(struct i2c_client *client, u8 i2c_reg, 86 struct temperature *temp) 87 { 88 u8 degrees, fractional; 89 90 if (read_u8_from_i2c(client, i2c_reg, °rees) < 0) 91 return; 92 93 if (read_u8_from_i2c(client, i2c_reg + 1, &fractional) < 0) 94 return; 95 96 temp->degrees = degrees; 97 temp->fraction = (fractional & 0xe0) >> 5; 98 } 99 100 static void read_fan_from_i2c(struct i2c_client *client, u16 *output, 101 u8 hi_addr, u8 lo_addr) 102 { 103 u8 high_byte, lo_byte; 104 105 if (read_u8_from_i2c(client, hi_addr, &high_byte) < 0) 106 return; 107 108 if (read_u8_from_i2c(client, lo_addr, &lo_byte) < 0) 109 return; 110 111 *output = ((u16)high_byte << 5) | (lo_byte >> 3); 112 } 113 114 static void write_fan_target_to_i2c(struct i2c_client *client, u16 new_target) 115 { 116 u8 high_byte = (new_target & 0x1fe0) >> 5; 117 u8 low_byte = (new_target & 0x001f) << 3; 118 i2c_smbus_write_byte_data(client, REG_FAN_TARGET_LO, low_byte); 119 i2c_smbus_write_byte_data(client, REG_FAN_TARGET_HI, high_byte); 120 } 121 122 static void read_fan_config_from_i2c(struct i2c_client *client) 123 124 { 125 struct emc2103_data *data = i2c_get_clientdata(client); 126 u8 conf1; 127 128 if (read_u8_from_i2c(client, REG_FAN_CONF1, &conf1) < 0) 129 return; 130 131 data->fan_multiplier = 1 << ((conf1 & 0x60) >> 5); 132 data->fan_rpm_control = (conf1 & 0x80) != 0; 133 } 134 135 static struct emc2103_data *emc2103_update_device(struct device *dev) 136 { 137 struct emc2103_data *data = dev_get_drvdata(dev); 138 struct i2c_client *client = data->client; 139 140 mutex_lock(&data->update_lock); 141 142 if (time_after(jiffies, data->last_updated + HZ + HZ / 2) 143 || !data->valid) { 144 int i; 145 146 for (i = 0; i < data->temp_count; i++) { 147 read_temp_from_i2c(client, REG_TEMP[i], &data->temp[i]); 148 read_u8_from_i2c(client, REG_TEMP_MIN[i], 149 &data->temp_min[i]); 150 read_u8_from_i2c(client, REG_TEMP_MAX[i], 151 &data->temp_max[i]); 152 } 153 154 read_u8_from_i2c(client, REG_TEMP_MIN_ALARM, 155 &data->temp_min_alarm); 156 read_u8_from_i2c(client, REG_TEMP_MAX_ALARM, 157 &data->temp_max_alarm); 158 159 read_fan_from_i2c(client, &data->fan_tach, 160 REG_FAN_TACH_HI, REG_FAN_TACH_LO); 161 read_fan_from_i2c(client, &data->fan_target, 162 REG_FAN_TARGET_HI, REG_FAN_TARGET_LO); 163 read_fan_config_from_i2c(client); 164 165 data->last_updated = jiffies; 166 data->valid = true; 167 } 168 169 mutex_unlock(&data->update_lock); 170 171 return data; 172 } 173 174 static ssize_t 175 temp_show(struct device *dev, struct device_attribute *da, char *buf) 176 { 177 int nr = to_sensor_dev_attr(da)->index; 178 struct emc2103_data *data = emc2103_update_device(dev); 179 int millidegrees = data->temp[nr].degrees * 1000 180 + data->temp[nr].fraction * 125; 181 return sprintf(buf, "%d\n", millidegrees); 182 } 183 184 static ssize_t 185 temp_min_show(struct device *dev, struct device_attribute *da, char *buf) 186 { 187 int nr = to_sensor_dev_attr(da)->index; 188 struct emc2103_data *data = emc2103_update_device(dev); 189 int millidegrees = data->temp_min[nr] * 1000; 190 return sprintf(buf, "%d\n", millidegrees); 191 } 192 193 static ssize_t 194 temp_max_show(struct device *dev, struct device_attribute *da, char *buf) 195 { 196 int nr = to_sensor_dev_attr(da)->index; 197 struct emc2103_data *data = emc2103_update_device(dev); 198 int millidegrees = data->temp_max[nr] * 1000; 199 return sprintf(buf, "%d\n", millidegrees); 200 } 201 202 static ssize_t 203 temp_fault_show(struct device *dev, struct device_attribute *da, char *buf) 204 { 205 int nr = to_sensor_dev_attr(da)->index; 206 struct emc2103_data *data = emc2103_update_device(dev); 207 bool fault = (data->temp[nr].degrees == -128); 208 return sprintf(buf, "%d\n", fault ? 1 : 0); 209 } 210 211 static ssize_t 212 temp_min_alarm_show(struct device *dev, struct device_attribute *da, 213 char *buf) 214 { 215 int nr = to_sensor_dev_attr(da)->index; 216 struct emc2103_data *data = emc2103_update_device(dev); 217 bool alarm = data->temp_min_alarm & (1 << nr); 218 return sprintf(buf, "%d\n", alarm ? 1 : 0); 219 } 220 221 static ssize_t 222 temp_max_alarm_show(struct device *dev, struct device_attribute *da, 223 char *buf) 224 { 225 int nr = to_sensor_dev_attr(da)->index; 226 struct emc2103_data *data = emc2103_update_device(dev); 227 bool alarm = data->temp_max_alarm & (1 << nr); 228 return sprintf(buf, "%d\n", alarm ? 1 : 0); 229 } 230 231 static ssize_t temp_min_store(struct device *dev, struct device_attribute *da, 232 const char *buf, size_t count) 233 { 234 int nr = to_sensor_dev_attr(da)->index; 235 struct emc2103_data *data = dev_get_drvdata(dev); 236 struct i2c_client *client = data->client; 237 long val; 238 239 int result = kstrtol(buf, 10, &val); 240 if (result < 0) 241 return result; 242 243 val = DIV_ROUND_CLOSEST(clamp_val(val, -63000, 127000), 1000); 244 245 mutex_lock(&data->update_lock); 246 data->temp_min[nr] = val; 247 i2c_smbus_write_byte_data(client, REG_TEMP_MIN[nr], val); 248 mutex_unlock(&data->update_lock); 249 250 return count; 251 } 252 253 static ssize_t temp_max_store(struct device *dev, struct device_attribute *da, 254 const char *buf, size_t count) 255 { 256 int nr = to_sensor_dev_attr(da)->index; 257 struct emc2103_data *data = dev_get_drvdata(dev); 258 struct i2c_client *client = data->client; 259 long val; 260 261 int result = kstrtol(buf, 10, &val); 262 if (result < 0) 263 return result; 264 265 val = DIV_ROUND_CLOSEST(clamp_val(val, -63000, 127000), 1000); 266 267 mutex_lock(&data->update_lock); 268 data->temp_max[nr] = val; 269 i2c_smbus_write_byte_data(client, REG_TEMP_MAX[nr], val); 270 mutex_unlock(&data->update_lock); 271 272 return count; 273 } 274 275 static ssize_t 276 fan1_input_show(struct device *dev, struct device_attribute *da, char *buf) 277 { 278 struct emc2103_data *data = emc2103_update_device(dev); 279 int rpm = 0; 280 mutex_lock(&data->update_lock); 281 if (data->fan_tach != 0) 282 rpm = (FAN_RPM_FACTOR * data->fan_multiplier) / data->fan_tach; 283 mutex_unlock(&data->update_lock); 284 return sprintf(buf, "%d\n", rpm); 285 } 286 287 static ssize_t 288 fan1_div_show(struct device *dev, struct device_attribute *da, char *buf) 289 { 290 struct emc2103_data *data = emc2103_update_device(dev); 291 int fan_div = 8 / data->fan_multiplier; 292 return sprintf(buf, "%d\n", fan_div); 293 } 294 295 /* 296 * Note: we also update the fan target here, because its value is 297 * determined in part by the fan clock divider. This follows the principle 298 * of least surprise; the user doesn't expect the fan target to change just 299 * because the divider changed. 300 */ 301 static ssize_t fan1_div_store(struct device *dev, struct device_attribute *da, 302 const char *buf, size_t count) 303 { 304 struct emc2103_data *data = emc2103_update_device(dev); 305 struct i2c_client *client = data->client; 306 int new_range_bits, old_div = 8 / data->fan_multiplier; 307 long new_div; 308 309 int status = kstrtol(buf, 10, &new_div); 310 if (status < 0) 311 return status; 312 313 if (new_div == old_div) /* No change */ 314 return count; 315 316 switch (new_div) { 317 case 1: 318 new_range_bits = 3; 319 break; 320 case 2: 321 new_range_bits = 2; 322 break; 323 case 4: 324 new_range_bits = 1; 325 break; 326 case 8: 327 new_range_bits = 0; 328 break; 329 default: 330 return -EINVAL; 331 } 332 333 mutex_lock(&data->update_lock); 334 335 status = i2c_smbus_read_byte_data(client, REG_FAN_CONF1); 336 if (status < 0) { 337 dev_dbg(&client->dev, "reg 0x%02x, err %d\n", 338 REG_FAN_CONF1, status); 339 mutex_unlock(&data->update_lock); 340 return status; 341 } 342 status &= 0x9F; 343 status |= (new_range_bits << 5); 344 i2c_smbus_write_byte_data(client, REG_FAN_CONF1, status); 345 346 data->fan_multiplier = 8 / new_div; 347 348 /* update fan target if high byte is not disabled */ 349 if ((data->fan_target & 0x1fe0) != 0x1fe0) { 350 u16 new_target = (data->fan_target * old_div) / new_div; 351 data->fan_target = min(new_target, (u16)0x1fff); 352 write_fan_target_to_i2c(client, data->fan_target); 353 } 354 355 /* invalidate data to force re-read from hardware */ 356 data->valid = false; 357 358 mutex_unlock(&data->update_lock); 359 return count; 360 } 361 362 static ssize_t 363 fan1_target_show(struct device *dev, struct device_attribute *da, char *buf) 364 { 365 struct emc2103_data *data = emc2103_update_device(dev); 366 int rpm = 0; 367 368 mutex_lock(&data->update_lock); 369 /* high byte of 0xff indicates disabled so return 0 */ 370 if ((data->fan_target != 0) && ((data->fan_target & 0x1fe0) != 0x1fe0)) 371 rpm = (FAN_RPM_FACTOR * data->fan_multiplier) 372 / data->fan_target; 373 mutex_unlock(&data->update_lock); 374 375 return sprintf(buf, "%d\n", rpm); 376 } 377 378 static ssize_t fan1_target_store(struct device *dev, 379 struct device_attribute *da, const char *buf, 380 size_t count) 381 { 382 struct emc2103_data *data = emc2103_update_device(dev); 383 struct i2c_client *client = data->client; 384 unsigned long rpm_target; 385 386 int result = kstrtoul(buf, 10, &rpm_target); 387 if (result < 0) 388 return result; 389 390 /* Datasheet states 16384 as maximum RPM target (table 3.2) */ 391 rpm_target = clamp_val(rpm_target, 0, 16384); 392 393 mutex_lock(&data->update_lock); 394 395 if (rpm_target == 0) 396 data->fan_target = 0x1fff; 397 else 398 data->fan_target = clamp_val( 399 (FAN_RPM_FACTOR * data->fan_multiplier) / rpm_target, 400 0, 0x1fff); 401 402 write_fan_target_to_i2c(client, data->fan_target); 403 404 mutex_unlock(&data->update_lock); 405 return count; 406 } 407 408 static ssize_t 409 fan1_fault_show(struct device *dev, struct device_attribute *da, char *buf) 410 { 411 struct emc2103_data *data = emc2103_update_device(dev); 412 bool fault = ((data->fan_tach & 0x1fe0) == 0x1fe0); 413 return sprintf(buf, "%d\n", fault ? 1 : 0); 414 } 415 416 static ssize_t 417 pwm1_enable_show(struct device *dev, struct device_attribute *da, char *buf) 418 { 419 struct emc2103_data *data = emc2103_update_device(dev); 420 return sprintf(buf, "%d\n", data->fan_rpm_control ? 3 : 0); 421 } 422 423 static ssize_t pwm1_enable_store(struct device *dev, 424 struct device_attribute *da, const char *buf, 425 size_t count) 426 { 427 struct emc2103_data *data = dev_get_drvdata(dev); 428 struct i2c_client *client = data->client; 429 long new_value; 430 u8 conf_reg; 431 432 int result = kstrtol(buf, 10, &new_value); 433 if (result < 0) 434 return result; 435 436 mutex_lock(&data->update_lock); 437 switch (new_value) { 438 case 0: 439 data->fan_rpm_control = false; 440 break; 441 case 3: 442 data->fan_rpm_control = true; 443 break; 444 default: 445 count = -EINVAL; 446 goto err; 447 } 448 449 result = read_u8_from_i2c(client, REG_FAN_CONF1, &conf_reg); 450 if (result < 0) { 451 count = result; 452 goto err; 453 } 454 455 if (data->fan_rpm_control) 456 conf_reg |= 0x80; 457 else 458 conf_reg &= ~0x80; 459 460 i2c_smbus_write_byte_data(client, REG_FAN_CONF1, conf_reg); 461 err: 462 mutex_unlock(&data->update_lock); 463 return count; 464 } 465 466 static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0); 467 static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0); 468 static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0); 469 static SENSOR_DEVICE_ATTR_RO(temp1_fault, temp_fault, 0); 470 static SENSOR_DEVICE_ATTR_RO(temp1_min_alarm, temp_min_alarm, 0); 471 static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, temp_max_alarm, 0); 472 473 static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1); 474 static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1); 475 static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1); 476 static SENSOR_DEVICE_ATTR_RO(temp2_fault, temp_fault, 1); 477 static SENSOR_DEVICE_ATTR_RO(temp2_min_alarm, temp_min_alarm, 1); 478 static SENSOR_DEVICE_ATTR_RO(temp2_max_alarm, temp_max_alarm, 1); 479 480 static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2); 481 static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2); 482 static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2); 483 static SENSOR_DEVICE_ATTR_RO(temp3_fault, temp_fault, 2); 484 static SENSOR_DEVICE_ATTR_RO(temp3_min_alarm, temp_min_alarm, 2); 485 static SENSOR_DEVICE_ATTR_RO(temp3_max_alarm, temp_max_alarm, 2); 486 487 static SENSOR_DEVICE_ATTR_RO(temp4_input, temp, 3); 488 static SENSOR_DEVICE_ATTR_RW(temp4_min, temp_min, 3); 489 static SENSOR_DEVICE_ATTR_RW(temp4_max, temp_max, 3); 490 static SENSOR_DEVICE_ATTR_RO(temp4_fault, temp_fault, 3); 491 static SENSOR_DEVICE_ATTR_RO(temp4_min_alarm, temp_min_alarm, 3); 492 static SENSOR_DEVICE_ATTR_RO(temp4_max_alarm, temp_max_alarm, 3); 493 494 static DEVICE_ATTR_RO(fan1_input); 495 static DEVICE_ATTR_RW(fan1_div); 496 static DEVICE_ATTR_RW(fan1_target); 497 static DEVICE_ATTR_RO(fan1_fault); 498 499 static DEVICE_ATTR_RW(pwm1_enable); 500 501 /* sensors present on all models */ 502 static struct attribute *emc2103_attributes[] = { 503 &sensor_dev_attr_temp1_input.dev_attr.attr, 504 &sensor_dev_attr_temp1_min.dev_attr.attr, 505 &sensor_dev_attr_temp1_max.dev_attr.attr, 506 &sensor_dev_attr_temp1_fault.dev_attr.attr, 507 &sensor_dev_attr_temp1_min_alarm.dev_attr.attr, 508 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr, 509 &sensor_dev_attr_temp2_input.dev_attr.attr, 510 &sensor_dev_attr_temp2_min.dev_attr.attr, 511 &sensor_dev_attr_temp2_max.dev_attr.attr, 512 &sensor_dev_attr_temp2_fault.dev_attr.attr, 513 &sensor_dev_attr_temp2_min_alarm.dev_attr.attr, 514 &sensor_dev_attr_temp2_max_alarm.dev_attr.attr, 515 &dev_attr_fan1_input.attr, 516 &dev_attr_fan1_div.attr, 517 &dev_attr_fan1_target.attr, 518 &dev_attr_fan1_fault.attr, 519 &dev_attr_pwm1_enable.attr, 520 NULL 521 }; 522 523 /* extra temperature sensors only present on 2103-2 and 2103-4 */ 524 static struct attribute *emc2103_attributes_temp3[] = { 525 &sensor_dev_attr_temp3_input.dev_attr.attr, 526 &sensor_dev_attr_temp3_min.dev_attr.attr, 527 &sensor_dev_attr_temp3_max.dev_attr.attr, 528 &sensor_dev_attr_temp3_fault.dev_attr.attr, 529 &sensor_dev_attr_temp3_min_alarm.dev_attr.attr, 530 &sensor_dev_attr_temp3_max_alarm.dev_attr.attr, 531 NULL 532 }; 533 534 /* extra temperature sensors only present on 2103-2 and 2103-4 in APD mode */ 535 static struct attribute *emc2103_attributes_temp4[] = { 536 &sensor_dev_attr_temp4_input.dev_attr.attr, 537 &sensor_dev_attr_temp4_min.dev_attr.attr, 538 &sensor_dev_attr_temp4_max.dev_attr.attr, 539 &sensor_dev_attr_temp4_fault.dev_attr.attr, 540 &sensor_dev_attr_temp4_min_alarm.dev_attr.attr, 541 &sensor_dev_attr_temp4_max_alarm.dev_attr.attr, 542 NULL 543 }; 544 545 static const struct attribute_group emc2103_group = { 546 .attrs = emc2103_attributes, 547 }; 548 549 static const struct attribute_group emc2103_temp3_group = { 550 .attrs = emc2103_attributes_temp3, 551 }; 552 553 static const struct attribute_group emc2103_temp4_group = { 554 .attrs = emc2103_attributes_temp4, 555 }; 556 557 static int 558 emc2103_probe(struct i2c_client *client) 559 { 560 struct emc2103_data *data; 561 struct device *hwmon_dev; 562 int status, idx = 0; 563 564 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 565 return -EIO; 566 567 data = devm_kzalloc(&client->dev, sizeof(struct emc2103_data), 568 GFP_KERNEL); 569 if (!data) 570 return -ENOMEM; 571 572 i2c_set_clientdata(client, data); 573 data->client = client; 574 mutex_init(&data->update_lock); 575 576 /* 2103-2 and 2103-4 have 3 external diodes, 2103-1 has 1 */ 577 status = i2c_smbus_read_byte_data(client, REG_PRODUCT_ID); 578 if (status == 0x24) { 579 /* 2103-1 only has 1 external diode */ 580 data->temp_count = 2; 581 } else { 582 /* 2103-2 and 2103-4 have 3 or 4 external diodes */ 583 status = i2c_smbus_read_byte_data(client, REG_CONF1); 584 if (status < 0) { 585 dev_dbg(&client->dev, "reg 0x%02x, err %d\n", REG_CONF1, 586 status); 587 return status; 588 } 589 590 /* detect current state of hardware */ 591 data->temp_count = (status & 0x01) ? 4 : 3; 592 593 /* force APD state if module parameter is set */ 594 if (apd == 0) { 595 /* force APD mode off */ 596 data->temp_count = 3; 597 status &= ~(0x01); 598 i2c_smbus_write_byte_data(client, REG_CONF1, status); 599 } else if (apd == 1) { 600 /* force APD mode on */ 601 data->temp_count = 4; 602 status |= 0x01; 603 i2c_smbus_write_byte_data(client, REG_CONF1, status); 604 } 605 } 606 607 /* sysfs hooks */ 608 data->groups[idx++] = &emc2103_group; 609 if (data->temp_count >= 3) 610 data->groups[idx++] = &emc2103_temp3_group; 611 if (data->temp_count == 4) 612 data->groups[idx++] = &emc2103_temp4_group; 613 614 hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev, 615 client->name, data, 616 data->groups); 617 if (IS_ERR(hwmon_dev)) 618 return PTR_ERR(hwmon_dev); 619 620 dev_info(&client->dev, "%s: sensor '%s'\n", 621 dev_name(hwmon_dev), client->name); 622 623 return 0; 624 } 625 626 static const struct i2c_device_id emc2103_ids[] = { 627 { "emc2103" }, 628 { /* LIST END */ } 629 }; 630 MODULE_DEVICE_TABLE(i2c, emc2103_ids); 631 632 /* Return 0 if detection is successful, -ENODEV otherwise */ 633 static int 634 emc2103_detect(struct i2c_client *new_client, struct i2c_board_info *info) 635 { 636 struct i2c_adapter *adapter = new_client->adapter; 637 int manufacturer, product; 638 639 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 640 return -ENODEV; 641 642 manufacturer = i2c_smbus_read_byte_data(new_client, REG_MFG_ID); 643 if (manufacturer != 0x5D) 644 return -ENODEV; 645 646 product = i2c_smbus_read_byte_data(new_client, REG_PRODUCT_ID); 647 if ((product != 0x24) && (product != 0x26)) 648 return -ENODEV; 649 650 strscpy(info->type, "emc2103", I2C_NAME_SIZE); 651 652 return 0; 653 } 654 655 static struct i2c_driver emc2103_driver = { 656 .class = I2C_CLASS_HWMON, 657 .driver = { 658 .name = "emc2103", 659 }, 660 .probe = emc2103_probe, 661 .id_table = emc2103_ids, 662 .detect = emc2103_detect, 663 .address_list = normal_i2c, 664 }; 665 666 module_i2c_driver(emc2103_driver); 667 668 MODULE_AUTHOR("Steve Glendinning <steve.glendinning@shawell.net>"); 669 MODULE_DESCRIPTION("SMSC EMC2103 hwmon driver"); 670 MODULE_LICENSE("GPL"); 671