xref: /linux/arch/arm64/kernel/ptrace.c (revision 45bf4bc87c46856c5cf4ac39a0c25c83ccbf3209)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/ptrace.c
4  *
5  * By Ross Biro 1/23/92
6  * edited by Linus Torvalds
7  * ARM modifications Copyright (C) 2000 Russell King
8  * Copyright (C) 2012 ARM Ltd.
9  */
10 
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/elf.h>
31 #include <linux/rseq.h>
32 
33 #include <asm/compat.h>
34 #include <asm/cpufeature.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/fpsimd.h>
37 #include <asm/gcs.h>
38 #include <asm/mte.h>
39 #include <asm/pointer_auth.h>
40 #include <asm/stacktrace.h>
41 #include <asm/syscall.h>
42 #include <asm/traps.h>
43 #include <asm/system_misc.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/syscalls.h>
47 
48 struct pt_regs_offset {
49 	const char *name;
50 	int offset;
51 };
52 
53 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
54 #define REG_OFFSET_END {.name = NULL, .offset = 0}
55 #define GPR_OFFSET_NAME(r) \
56 	{.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
57 
58 static const struct pt_regs_offset regoffset_table[] = {
59 	GPR_OFFSET_NAME(0),
60 	GPR_OFFSET_NAME(1),
61 	GPR_OFFSET_NAME(2),
62 	GPR_OFFSET_NAME(3),
63 	GPR_OFFSET_NAME(4),
64 	GPR_OFFSET_NAME(5),
65 	GPR_OFFSET_NAME(6),
66 	GPR_OFFSET_NAME(7),
67 	GPR_OFFSET_NAME(8),
68 	GPR_OFFSET_NAME(9),
69 	GPR_OFFSET_NAME(10),
70 	GPR_OFFSET_NAME(11),
71 	GPR_OFFSET_NAME(12),
72 	GPR_OFFSET_NAME(13),
73 	GPR_OFFSET_NAME(14),
74 	GPR_OFFSET_NAME(15),
75 	GPR_OFFSET_NAME(16),
76 	GPR_OFFSET_NAME(17),
77 	GPR_OFFSET_NAME(18),
78 	GPR_OFFSET_NAME(19),
79 	GPR_OFFSET_NAME(20),
80 	GPR_OFFSET_NAME(21),
81 	GPR_OFFSET_NAME(22),
82 	GPR_OFFSET_NAME(23),
83 	GPR_OFFSET_NAME(24),
84 	GPR_OFFSET_NAME(25),
85 	GPR_OFFSET_NAME(26),
86 	GPR_OFFSET_NAME(27),
87 	GPR_OFFSET_NAME(28),
88 	GPR_OFFSET_NAME(29),
89 	GPR_OFFSET_NAME(30),
90 	{.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
91 	REG_OFFSET_NAME(sp),
92 	REG_OFFSET_NAME(pc),
93 	REG_OFFSET_NAME(pstate),
94 	REG_OFFSET_END,
95 };
96 
97 /**
98  * regs_query_register_offset() - query register offset from its name
99  * @name:	the name of a register
100  *
101  * regs_query_register_offset() returns the offset of a register in struct
102  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
103  */
104 int regs_query_register_offset(const char *name)
105 {
106 	const struct pt_regs_offset *roff;
107 
108 	for (roff = regoffset_table; roff->name != NULL; roff++)
109 		if (!strcmp(roff->name, name))
110 			return roff->offset;
111 	return -EINVAL;
112 }
113 
114 /**
115  * regs_within_kernel_stack() - check the address in the stack
116  * @regs:      pt_regs which contains kernel stack pointer.
117  * @addr:      address which is checked.
118  *
119  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
120  * If @addr is within the kernel stack, it returns true. If not, returns false.
121  */
122 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
123 {
124 	return ((addr & ~(THREAD_SIZE - 1))  ==
125 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
126 		on_irq_stack(addr, sizeof(unsigned long));
127 }
128 
129 /**
130  * regs_get_kernel_stack_nth() - get Nth entry of the stack
131  * @regs:	pt_regs which contains kernel stack pointer.
132  * @n:		stack entry number.
133  *
134  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
135  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
136  * this returns 0.
137  */
138 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
139 {
140 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
141 
142 	addr += n;
143 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
144 		return READ_ONCE_NOCHECK(*addr);
145 	else
146 		return 0;
147 }
148 
149 /*
150  * TODO: does not yet catch signals sent when the child dies.
151  * in exit.c or in signal.c.
152  */
153 
154 /*
155  * Called by kernel/ptrace.c when detaching..
156  */
157 void ptrace_disable(struct task_struct *child)
158 {
159 	/*
160 	 * This would be better off in core code, but PTRACE_DETACH has
161 	 * grown its fair share of arch-specific worts and changing it
162 	 * is likely to cause regressions on obscure architectures.
163 	 */
164 	user_disable_single_step(child);
165 }
166 
167 #ifdef CONFIG_HAVE_HW_BREAKPOINT
168 /*
169  * Handle hitting a HW-breakpoint.
170  */
171 static void ptrace_hbptriggered(struct perf_event *bp,
172 				struct perf_sample_data *data,
173 				struct pt_regs *regs)
174 {
175 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
176 	const char *desc = "Hardware breakpoint trap (ptrace)";
177 
178 	if (is_compat_task()) {
179 		int si_errno = 0;
180 		int i;
181 
182 		for (i = 0; i < ARM_MAX_BRP; ++i) {
183 			if (current->thread.debug.hbp_break[i] == bp) {
184 				si_errno = (i << 1) + 1;
185 				break;
186 			}
187 		}
188 
189 		for (i = 0; i < ARM_MAX_WRP; ++i) {
190 			if (current->thread.debug.hbp_watch[i] == bp) {
191 				si_errno = -((i << 1) + 1);
192 				break;
193 			}
194 		}
195 		arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
196 						  desc);
197 		return;
198 	}
199 
200 	arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
201 }
202 
203 /*
204  * Unregister breakpoints from this task and reset the pointers in
205  * the thread_struct.
206  */
207 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
208 {
209 	int i;
210 	struct thread_struct *t = &tsk->thread;
211 
212 	for (i = 0; i < ARM_MAX_BRP; i++) {
213 		if (t->debug.hbp_break[i]) {
214 			unregister_hw_breakpoint(t->debug.hbp_break[i]);
215 			t->debug.hbp_break[i] = NULL;
216 		}
217 	}
218 
219 	for (i = 0; i < ARM_MAX_WRP; i++) {
220 		if (t->debug.hbp_watch[i]) {
221 			unregister_hw_breakpoint(t->debug.hbp_watch[i]);
222 			t->debug.hbp_watch[i] = NULL;
223 		}
224 	}
225 }
226 
227 void ptrace_hw_copy_thread(struct task_struct *tsk)
228 {
229 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
230 }
231 
232 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
233 					       struct task_struct *tsk,
234 					       unsigned long idx)
235 {
236 	struct perf_event *bp = ERR_PTR(-EINVAL);
237 
238 	switch (note_type) {
239 	case NT_ARM_HW_BREAK:
240 		if (idx >= ARM_MAX_BRP)
241 			goto out;
242 		idx = array_index_nospec(idx, ARM_MAX_BRP);
243 		bp = tsk->thread.debug.hbp_break[idx];
244 		break;
245 	case NT_ARM_HW_WATCH:
246 		if (idx >= ARM_MAX_WRP)
247 			goto out;
248 		idx = array_index_nospec(idx, ARM_MAX_WRP);
249 		bp = tsk->thread.debug.hbp_watch[idx];
250 		break;
251 	}
252 
253 out:
254 	return bp;
255 }
256 
257 static int ptrace_hbp_set_event(unsigned int note_type,
258 				struct task_struct *tsk,
259 				unsigned long idx,
260 				struct perf_event *bp)
261 {
262 	int err = -EINVAL;
263 
264 	switch (note_type) {
265 	case NT_ARM_HW_BREAK:
266 		if (idx >= ARM_MAX_BRP)
267 			goto out;
268 		idx = array_index_nospec(idx, ARM_MAX_BRP);
269 		tsk->thread.debug.hbp_break[idx] = bp;
270 		err = 0;
271 		break;
272 	case NT_ARM_HW_WATCH:
273 		if (idx >= ARM_MAX_WRP)
274 			goto out;
275 		idx = array_index_nospec(idx, ARM_MAX_WRP);
276 		tsk->thread.debug.hbp_watch[idx] = bp;
277 		err = 0;
278 		break;
279 	}
280 
281 out:
282 	return err;
283 }
284 
285 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
286 					    struct task_struct *tsk,
287 					    unsigned long idx)
288 {
289 	struct perf_event *bp;
290 	struct perf_event_attr attr;
291 	int err, type;
292 
293 	switch (note_type) {
294 	case NT_ARM_HW_BREAK:
295 		type = HW_BREAKPOINT_X;
296 		break;
297 	case NT_ARM_HW_WATCH:
298 		type = HW_BREAKPOINT_RW;
299 		break;
300 	default:
301 		return ERR_PTR(-EINVAL);
302 	}
303 
304 	ptrace_breakpoint_init(&attr);
305 
306 	/*
307 	 * Initialise fields to sane defaults
308 	 * (i.e. values that will pass validation).
309 	 */
310 	attr.bp_addr	= 0;
311 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
312 	attr.bp_type	= type;
313 	attr.disabled	= 1;
314 
315 	bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
316 	if (IS_ERR(bp))
317 		return bp;
318 
319 	err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
320 	if (err)
321 		return ERR_PTR(err);
322 
323 	return bp;
324 }
325 
326 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
327 				     struct arch_hw_breakpoint_ctrl ctrl,
328 				     struct perf_event_attr *attr)
329 {
330 	int err, len, type, offset, disabled = !ctrl.enabled;
331 
332 	attr->disabled = disabled;
333 	if (disabled)
334 		return 0;
335 
336 	err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
337 	if (err)
338 		return err;
339 
340 	switch (note_type) {
341 	case NT_ARM_HW_BREAK:
342 		if ((type & HW_BREAKPOINT_X) != type)
343 			return -EINVAL;
344 		break;
345 	case NT_ARM_HW_WATCH:
346 		if ((type & HW_BREAKPOINT_RW) != type)
347 			return -EINVAL;
348 		break;
349 	default:
350 		return -EINVAL;
351 	}
352 
353 	attr->bp_len	= len;
354 	attr->bp_type	= type;
355 	attr->bp_addr	+= offset;
356 
357 	return 0;
358 }
359 
360 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
361 {
362 	u8 num;
363 	u32 reg = 0;
364 
365 	switch (note_type) {
366 	case NT_ARM_HW_BREAK:
367 		num = hw_breakpoint_slots(TYPE_INST);
368 		break;
369 	case NT_ARM_HW_WATCH:
370 		num = hw_breakpoint_slots(TYPE_DATA);
371 		break;
372 	default:
373 		return -EINVAL;
374 	}
375 
376 	reg |= debug_monitors_arch();
377 	reg <<= 8;
378 	reg |= num;
379 
380 	*info = reg;
381 	return 0;
382 }
383 
384 static int ptrace_hbp_get_ctrl(unsigned int note_type,
385 			       struct task_struct *tsk,
386 			       unsigned long idx,
387 			       u32 *ctrl)
388 {
389 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
390 
391 	if (IS_ERR(bp))
392 		return PTR_ERR(bp);
393 
394 	*ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
395 	return 0;
396 }
397 
398 static int ptrace_hbp_get_addr(unsigned int note_type,
399 			       struct task_struct *tsk,
400 			       unsigned long idx,
401 			       u64 *addr)
402 {
403 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
404 
405 	if (IS_ERR(bp))
406 		return PTR_ERR(bp);
407 
408 	*addr = bp ? counter_arch_bp(bp)->address : 0;
409 	return 0;
410 }
411 
412 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
413 							struct task_struct *tsk,
414 							unsigned long idx)
415 {
416 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
417 
418 	if (!bp)
419 		bp = ptrace_hbp_create(note_type, tsk, idx);
420 
421 	return bp;
422 }
423 
424 static int ptrace_hbp_set_ctrl(unsigned int note_type,
425 			       struct task_struct *tsk,
426 			       unsigned long idx,
427 			       u32 uctrl)
428 {
429 	int err;
430 	struct perf_event *bp;
431 	struct perf_event_attr attr;
432 	struct arch_hw_breakpoint_ctrl ctrl;
433 
434 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
435 	if (IS_ERR(bp)) {
436 		err = PTR_ERR(bp);
437 		return err;
438 	}
439 
440 	attr = bp->attr;
441 	decode_ctrl_reg(uctrl, &ctrl);
442 	err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
443 	if (err)
444 		return err;
445 
446 	return modify_user_hw_breakpoint(bp, &attr);
447 }
448 
449 static int ptrace_hbp_set_addr(unsigned int note_type,
450 			       struct task_struct *tsk,
451 			       unsigned long idx,
452 			       u64 addr)
453 {
454 	int err;
455 	struct perf_event *bp;
456 	struct perf_event_attr attr;
457 
458 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
459 	if (IS_ERR(bp)) {
460 		err = PTR_ERR(bp);
461 		return err;
462 	}
463 
464 	attr = bp->attr;
465 	attr.bp_addr = addr;
466 	err = modify_user_hw_breakpoint(bp, &attr);
467 	return err;
468 }
469 
470 #define PTRACE_HBP_ADDR_SZ	sizeof(u64)
471 #define PTRACE_HBP_CTRL_SZ	sizeof(u32)
472 #define PTRACE_HBP_PAD_SZ	sizeof(u32)
473 
474 static int hw_break_get(struct task_struct *target,
475 			const struct user_regset *regset,
476 			struct membuf to)
477 {
478 	unsigned int note_type = regset->core_note_type;
479 	int ret, idx = 0;
480 	u32 info, ctrl;
481 	u64 addr;
482 
483 	/* Resource info */
484 	ret = ptrace_hbp_get_resource_info(note_type, &info);
485 	if (ret)
486 		return ret;
487 
488 	membuf_write(&to, &info, sizeof(info));
489 	membuf_zero(&to, sizeof(u32));
490 	/* (address, ctrl) registers */
491 	while (to.left) {
492 		ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
493 		if (ret)
494 			return ret;
495 		ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
496 		if (ret)
497 			return ret;
498 		membuf_store(&to, addr);
499 		membuf_store(&to, ctrl);
500 		membuf_zero(&to, sizeof(u32));
501 		idx++;
502 	}
503 	return 0;
504 }
505 
506 static int hw_break_set(struct task_struct *target,
507 			const struct user_regset *regset,
508 			unsigned int pos, unsigned int count,
509 			const void *kbuf, const void __user *ubuf)
510 {
511 	unsigned int note_type = regset->core_note_type;
512 	int ret, idx = 0, offset, limit;
513 	u32 ctrl;
514 	u64 addr;
515 
516 	/* Resource info and pad */
517 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
518 	user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
519 
520 	/* (address, ctrl) registers */
521 	limit = regset->n * regset->size;
522 	while (count && offset < limit) {
523 		if (count < PTRACE_HBP_ADDR_SZ)
524 			return -EINVAL;
525 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
526 					 offset, offset + PTRACE_HBP_ADDR_SZ);
527 		if (ret)
528 			return ret;
529 		ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
530 		if (ret)
531 			return ret;
532 		offset += PTRACE_HBP_ADDR_SZ;
533 
534 		if (!count)
535 			break;
536 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
537 					 offset, offset + PTRACE_HBP_CTRL_SZ);
538 		if (ret)
539 			return ret;
540 		ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
541 		if (ret)
542 			return ret;
543 		offset += PTRACE_HBP_CTRL_SZ;
544 
545 		user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
546 					  offset, offset + PTRACE_HBP_PAD_SZ);
547 		offset += PTRACE_HBP_PAD_SZ;
548 		idx++;
549 	}
550 
551 	return 0;
552 }
553 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
554 
555 static int gpr_get(struct task_struct *target,
556 		   const struct user_regset *regset,
557 		   struct membuf to)
558 {
559 	struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
560 	return membuf_write(&to, uregs, sizeof(*uregs));
561 }
562 
563 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
564 		   unsigned int pos, unsigned int count,
565 		   const void *kbuf, const void __user *ubuf)
566 {
567 	int ret;
568 	struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
569 
570 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
571 	if (ret)
572 		return ret;
573 
574 	if (!valid_user_regs(&newregs, target))
575 		return -EINVAL;
576 
577 	task_pt_regs(target)->user_regs = newregs;
578 	return 0;
579 }
580 
581 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
582 {
583 	if (!system_supports_fpsimd())
584 		return -ENODEV;
585 	return regset->n;
586 }
587 
588 /*
589  * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
590  */
591 static int __fpr_get(struct task_struct *target,
592 		     const struct user_regset *regset,
593 		     struct membuf to)
594 {
595 	struct user_fpsimd_state *uregs;
596 
597 	fpsimd_sync_from_effective_state(target);
598 
599 	uregs = &target->thread.uw.fpsimd_state;
600 
601 	return membuf_write(&to, uregs, sizeof(*uregs));
602 }
603 
604 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
605 		   struct membuf to)
606 {
607 	if (!system_supports_fpsimd())
608 		return -EINVAL;
609 
610 	if (target == current)
611 		fpsimd_preserve_current_state();
612 
613 	return __fpr_get(target, regset, to);
614 }
615 
616 static int __fpr_set(struct task_struct *target,
617 		     const struct user_regset *regset,
618 		     unsigned int pos, unsigned int count,
619 		     const void *kbuf, const void __user *ubuf,
620 		     unsigned int start_pos)
621 {
622 	int ret;
623 	struct user_fpsimd_state newstate;
624 
625 	/*
626 	 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
627 	 * short copyin can't resurrect stale data.
628 	 */
629 	fpsimd_sync_from_effective_state(target);
630 
631 	newstate = target->thread.uw.fpsimd_state;
632 
633 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
634 				 start_pos, start_pos + sizeof(newstate));
635 	if (ret)
636 		return ret;
637 
638 	target->thread.uw.fpsimd_state = newstate;
639 
640 	return ret;
641 }
642 
643 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
644 		   unsigned int pos, unsigned int count,
645 		   const void *kbuf, const void __user *ubuf)
646 {
647 	int ret;
648 
649 	if (!system_supports_fpsimd())
650 		return -EINVAL;
651 
652 	ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
653 	if (ret)
654 		return ret;
655 
656 	fpsimd_sync_to_effective_state_zeropad(target);
657 	fpsimd_flush_task_state(target);
658 
659 	return ret;
660 }
661 
662 static int tls_get(struct task_struct *target, const struct user_regset *regset,
663 		   struct membuf to)
664 {
665 	int ret;
666 
667 	if (target == current)
668 		tls_preserve_current_state();
669 
670 	ret = membuf_store(&to, target->thread.uw.tp_value);
671 	if (system_supports_tpidr2())
672 		ret = membuf_store(&to, target->thread.tpidr2_el0);
673 	else
674 		ret = membuf_zero(&to, sizeof(u64));
675 
676 	return ret;
677 }
678 
679 static int tls_set(struct task_struct *target, const struct user_regset *regset,
680 		   unsigned int pos, unsigned int count,
681 		   const void *kbuf, const void __user *ubuf)
682 {
683 	int ret;
684 	unsigned long tls[2];
685 
686 	tls[0] = target->thread.uw.tp_value;
687 	if (system_supports_tpidr2())
688 		tls[1] = target->thread.tpidr2_el0;
689 
690 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, tls, 0, count);
691 	if (ret)
692 		return ret;
693 
694 	target->thread.uw.tp_value = tls[0];
695 	if (system_supports_tpidr2())
696 		target->thread.tpidr2_el0 = tls[1];
697 
698 	return ret;
699 }
700 
701 static int fpmr_get(struct task_struct *target, const struct user_regset *regset,
702 		   struct membuf to)
703 {
704 	if (!system_supports_fpmr())
705 		return -EINVAL;
706 
707 	if (target == current)
708 		fpsimd_preserve_current_state();
709 
710 	return membuf_store(&to, target->thread.uw.fpmr);
711 }
712 
713 static int fpmr_set(struct task_struct *target, const struct user_regset *regset,
714 		   unsigned int pos, unsigned int count,
715 		   const void *kbuf, const void __user *ubuf)
716 {
717 	int ret;
718 	unsigned long fpmr;
719 
720 	if (!system_supports_fpmr())
721 		return -EINVAL;
722 
723 	fpmr = target->thread.uw.fpmr;
724 
725 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpmr, 0, count);
726 	if (ret)
727 		return ret;
728 
729 	target->thread.uw.fpmr = fpmr;
730 
731 	fpsimd_flush_task_state(target);
732 
733 	return 0;
734 }
735 
736 static int system_call_get(struct task_struct *target,
737 			   const struct user_regset *regset,
738 			   struct membuf to)
739 {
740 	return membuf_store(&to, task_pt_regs(target)->syscallno);
741 }
742 
743 static int system_call_set(struct task_struct *target,
744 			   const struct user_regset *regset,
745 			   unsigned int pos, unsigned int count,
746 			   const void *kbuf, const void __user *ubuf)
747 {
748 	int syscallno = task_pt_regs(target)->syscallno;
749 	int ret;
750 
751 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
752 	if (ret)
753 		return ret;
754 
755 	task_pt_regs(target)->syscallno = syscallno;
756 	return ret;
757 }
758 
759 #ifdef CONFIG_ARM64_SVE
760 
761 static void sve_init_header_from_task(struct user_sve_header *header,
762 				      struct task_struct *target,
763 				      enum vec_type type)
764 {
765 	unsigned int vq;
766 	bool active;
767 	enum vec_type task_type;
768 
769 	memset(header, 0, sizeof(*header));
770 
771 	/* Check if the requested registers are active for the task */
772 	if (thread_sm_enabled(&target->thread))
773 		task_type = ARM64_VEC_SME;
774 	else
775 		task_type = ARM64_VEC_SVE;
776 	active = (task_type == type);
777 
778 	if (active && target->thread.fp_type == FP_STATE_SVE)
779 		header->flags = SVE_PT_REGS_SVE;
780 	else
781 		header->flags = SVE_PT_REGS_FPSIMD;
782 
783 	switch (type) {
784 	case ARM64_VEC_SVE:
785 		if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
786 			header->flags |= SVE_PT_VL_INHERIT;
787 		break;
788 	case ARM64_VEC_SME:
789 		if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
790 			header->flags |= SVE_PT_VL_INHERIT;
791 		break;
792 	default:
793 		WARN_ON_ONCE(1);
794 		return;
795 	}
796 
797 	header->vl = task_get_vl(target, type);
798 	vq = sve_vq_from_vl(header->vl);
799 
800 	header->max_vl = vec_max_vl(type);
801 	if (active)
802 		header->size = SVE_PT_SIZE(vq, header->flags);
803 	else
804 		header->size = sizeof(header);
805 	header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
806 				      SVE_PT_REGS_SVE);
807 }
808 
809 static unsigned int sve_size_from_header(struct user_sve_header const *header)
810 {
811 	return ALIGN(header->size, SVE_VQ_BYTES);
812 }
813 
814 static int sve_get_common(struct task_struct *target,
815 			  const struct user_regset *regset,
816 			  struct membuf to,
817 			  enum vec_type type)
818 {
819 	struct user_sve_header header;
820 	unsigned int vq;
821 	unsigned long start, end;
822 
823 	if (target == current)
824 		fpsimd_preserve_current_state();
825 
826 	/* Header */
827 	sve_init_header_from_task(&header, target, type);
828 	vq = sve_vq_from_vl(header.vl);
829 
830 	membuf_write(&to, &header, sizeof(header));
831 
832 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
833 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
834 
835 	/*
836 	 * When the requested vector type is not active, do not present data
837 	 * from the other mode to userspace.
838 	 */
839 	if (header.size == sizeof(header))
840 		return 0;
841 
842 	switch ((header.flags & SVE_PT_REGS_MASK)) {
843 	case SVE_PT_REGS_FPSIMD:
844 		return __fpr_get(target, regset, to);
845 
846 	case SVE_PT_REGS_SVE:
847 		start = SVE_PT_SVE_OFFSET;
848 		end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
849 		membuf_write(&to, target->thread.sve_state, end - start);
850 
851 		start = end;
852 		end = SVE_PT_SVE_FPSR_OFFSET(vq);
853 		membuf_zero(&to, end - start);
854 
855 		/*
856 		 * Copy fpsr, and fpcr which must follow contiguously in
857 		 * struct fpsimd_state:
858 		 */
859 		start = end;
860 		end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
861 		membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr,
862 			     end - start);
863 
864 		start = end;
865 		end = sve_size_from_header(&header);
866 		return membuf_zero(&to, end - start);
867 
868 	default:
869 		BUILD_BUG();
870 	}
871 }
872 
873 static int sve_get(struct task_struct *target,
874 		   const struct user_regset *regset,
875 		   struct membuf to)
876 {
877 	if (!system_supports_sve())
878 		return -EINVAL;
879 
880 	return sve_get_common(target, regset, to, ARM64_VEC_SVE);
881 }
882 
883 static int sve_set_common(struct task_struct *target,
884 			  const struct user_regset *regset,
885 			  unsigned int pos, unsigned int count,
886 			  const void *kbuf, const void __user *ubuf,
887 			  enum vec_type type)
888 {
889 	int ret;
890 	struct user_sve_header header;
891 	unsigned int vq;
892 	unsigned long start, end;
893 	bool fpsimd;
894 
895 	fpsimd_flush_task_state(target);
896 
897 	/* Header */
898 	if (count < sizeof(header))
899 		return -EINVAL;
900 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
901 				 0, sizeof(header));
902 	if (ret)
903 		return ret;
904 
905 	/*
906 	 * Streaming SVE data is always stored and presented in SVE format.
907 	 * Require the user to provide SVE formatted data for consistency, and
908 	 * to avoid the risk that we configure the task into an invalid state.
909 	 */
910 	fpsimd = (header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD;
911 	if (fpsimd && type == ARM64_VEC_SME)
912 		return -EINVAL;
913 
914 	/*
915 	 * On systems without SVE we accept FPSIMD format writes with
916 	 * a VL of 0 to allow exiting streaming mode, otherwise a VL
917 	 * is required.
918 	 */
919 	if (header.vl) {
920 		/*
921 		 * If the system does not support SVE we can't
922 		 * configure a SVE VL.
923 		 */
924 		if (!system_supports_sve() && type == ARM64_VEC_SVE)
925 			return -EINVAL;
926 
927 		/*
928 		 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are
929 		 * consumed by vec_set_vector_length(), which will
930 		 * also validate them for us:
931 		 */
932 		ret = vec_set_vector_length(target, type, header.vl,
933 					    ((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
934 		if (ret)
935 			return ret;
936 	} else {
937 		/* If the system supports SVE we require a VL. */
938 		if (system_supports_sve())
939 			return -EINVAL;
940 
941 		/*
942 		 * Only FPSIMD formatted data with no flags set is
943 		 * supported.
944 		 */
945 		if (header.flags != SVE_PT_REGS_FPSIMD)
946 			return -EINVAL;
947 	}
948 
949 	/* Allocate SME storage if necessary, preserving any existing ZA/ZT state */
950 	if (type == ARM64_VEC_SME) {
951 		sme_alloc(target, false);
952 		if (!target->thread.sme_state)
953 			return -ENOMEM;
954 	}
955 
956 	/* Allocate SVE storage if necessary, zeroing any existing SVE state */
957 	if (!fpsimd) {
958 		sve_alloc(target, true);
959 		if (!target->thread.sve_state)
960 			return -ENOMEM;
961 	}
962 
963 	/*
964 	 * Actual VL set may be different from what the user asked
965 	 * for, or we may have configured the _ONEXEC VL not the
966 	 * current VL:
967 	 */
968 	vq = sve_vq_from_vl(task_get_vl(target, type));
969 
970 	/* Enter/exit streaming mode */
971 	switch (type) {
972 	case ARM64_VEC_SVE:
973 		target->thread.svcr &= ~SVCR_SM_MASK;
974 		set_tsk_thread_flag(target, TIF_SVE);
975 		break;
976 	case ARM64_VEC_SME:
977 		target->thread.svcr |= SVCR_SM_MASK;
978 		set_tsk_thread_flag(target, TIF_SME);
979 		break;
980 	default:
981 		WARN_ON_ONCE(1);
982 		return -EINVAL;
983 	}
984 
985 	/* Always zero V regs, FPSR, and FPCR */
986 	memset(&current->thread.uw.fpsimd_state, 0,
987 	       sizeof(current->thread.uw.fpsimd_state));
988 
989 	/* Registers: FPSIMD-only case */
990 
991 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
992 	if (fpsimd) {
993 		clear_tsk_thread_flag(target, TIF_SVE);
994 		target->thread.fp_type = FP_STATE_FPSIMD;
995 		ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
996 				SVE_PT_FPSIMD_OFFSET);
997 		return ret;
998 	}
999 
1000 	/* Otherwise: no registers or full SVE case. */
1001 
1002 	target->thread.fp_type = FP_STATE_SVE;
1003 
1004 	/*
1005 	 * If setting a different VL from the requested VL and there is
1006 	 * register data, the data layout will be wrong: don't even
1007 	 * try to set the registers in this case.
1008 	 */
1009 	if (count && vq != sve_vq_from_vl(header.vl))
1010 		return -EIO;
1011 
1012 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
1013 	start = SVE_PT_SVE_OFFSET;
1014 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
1015 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1016 				 target->thread.sve_state,
1017 				 start, end);
1018 	if (ret)
1019 		return ret;
1020 
1021 	start = end;
1022 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
1023 	user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, start, end);
1024 
1025 	/*
1026 	 * Copy fpsr, and fpcr which must follow contiguously in
1027 	 * struct fpsimd_state:
1028 	 */
1029 	start = end;
1030 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
1031 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1032 				 &target->thread.uw.fpsimd_state.fpsr,
1033 				 start, end);
1034 
1035 	return ret;
1036 }
1037 
1038 static int sve_set(struct task_struct *target,
1039 		   const struct user_regset *regset,
1040 		   unsigned int pos, unsigned int count,
1041 		   const void *kbuf, const void __user *ubuf)
1042 {
1043 	if (!system_supports_sve() && !system_supports_sme())
1044 		return -EINVAL;
1045 
1046 	return sve_set_common(target, regset, pos, count, kbuf, ubuf,
1047 			      ARM64_VEC_SVE);
1048 }
1049 
1050 #endif /* CONFIG_ARM64_SVE */
1051 
1052 #ifdef CONFIG_ARM64_SME
1053 
1054 static int ssve_get(struct task_struct *target,
1055 		   const struct user_regset *regset,
1056 		   struct membuf to)
1057 {
1058 	if (!system_supports_sme())
1059 		return -EINVAL;
1060 
1061 	return sve_get_common(target, regset, to, ARM64_VEC_SME);
1062 }
1063 
1064 static int ssve_set(struct task_struct *target,
1065 		    const struct user_regset *regset,
1066 		    unsigned int pos, unsigned int count,
1067 		    const void *kbuf, const void __user *ubuf)
1068 {
1069 	if (!system_supports_sme())
1070 		return -EINVAL;
1071 
1072 	return sve_set_common(target, regset, pos, count, kbuf, ubuf,
1073 			      ARM64_VEC_SME);
1074 }
1075 
1076 static int za_get(struct task_struct *target,
1077 		  const struct user_regset *regset,
1078 		  struct membuf to)
1079 {
1080 	struct user_za_header header;
1081 	unsigned int vq;
1082 	unsigned long start, end;
1083 
1084 	if (!system_supports_sme())
1085 		return -EINVAL;
1086 
1087 	/* Header */
1088 	memset(&header, 0, sizeof(header));
1089 
1090 	if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
1091 		header.flags |= ZA_PT_VL_INHERIT;
1092 
1093 	header.vl = task_get_sme_vl(target);
1094 	vq = sve_vq_from_vl(header.vl);
1095 	header.max_vl = sme_max_vl();
1096 	header.max_size = ZA_PT_SIZE(vq);
1097 
1098 	/* If ZA is not active there is only the header */
1099 	if (thread_za_enabled(&target->thread))
1100 		header.size = ZA_PT_SIZE(vq);
1101 	else
1102 		header.size = ZA_PT_ZA_OFFSET;
1103 
1104 	membuf_write(&to, &header, sizeof(header));
1105 
1106 	BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1107 	end = ZA_PT_ZA_OFFSET;
1108 
1109 	if (target == current)
1110 		fpsimd_preserve_current_state();
1111 
1112 	/* Any register data to include? */
1113 	if (thread_za_enabled(&target->thread)) {
1114 		start = end;
1115 		end = ZA_PT_SIZE(vq);
1116 		membuf_write(&to, target->thread.sme_state, end - start);
1117 	}
1118 
1119 	/* Zero any trailing padding */
1120 	start = end;
1121 	end = ALIGN(header.size, SVE_VQ_BYTES);
1122 	return membuf_zero(&to, end - start);
1123 }
1124 
1125 static int za_set(struct task_struct *target,
1126 		  const struct user_regset *regset,
1127 		  unsigned int pos, unsigned int count,
1128 		  const void *kbuf, const void __user *ubuf)
1129 {
1130 	int ret;
1131 	struct user_za_header header;
1132 	unsigned int vq;
1133 	unsigned long start, end;
1134 
1135 	if (!system_supports_sme())
1136 		return -EINVAL;
1137 
1138 	/* Header */
1139 	if (count < sizeof(header))
1140 		return -EINVAL;
1141 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
1142 				 0, sizeof(header));
1143 	if (ret)
1144 		goto out;
1145 
1146 	/*
1147 	 * All current ZA_PT_* flags are consumed by
1148 	 * vec_set_vector_length(), which will also validate them for
1149 	 * us:
1150 	 */
1151 	ret = vec_set_vector_length(target, ARM64_VEC_SME, header.vl,
1152 		((unsigned long)header.flags) << 16);
1153 	if (ret)
1154 		goto out;
1155 
1156 	/*
1157 	 * Actual VL set may be different from what the user asked
1158 	 * for, or we may have configured the _ONEXEC rather than
1159 	 * current VL:
1160 	 */
1161 	vq = sve_vq_from_vl(task_get_sme_vl(target));
1162 
1163 	/* Ensure there is some SVE storage for streaming mode */
1164 	if (!target->thread.sve_state) {
1165 		sve_alloc(target, false);
1166 		if (!target->thread.sve_state) {
1167 			ret = -ENOMEM;
1168 			goto out;
1169 		}
1170 	}
1171 
1172 	/*
1173 	 * Only flush the storage if PSTATE.ZA was not already set,
1174 	 * otherwise preserve any existing data.
1175 	 */
1176 	sme_alloc(target, !thread_za_enabled(&target->thread));
1177 	if (!target->thread.sme_state)
1178 		return -ENOMEM;
1179 
1180 	/* If there is no data then disable ZA */
1181 	if (!count) {
1182 		target->thread.svcr &= ~SVCR_ZA_MASK;
1183 		goto out;
1184 	}
1185 
1186 	/*
1187 	 * If setting a different VL from the requested VL and there is
1188 	 * register data, the data layout will be wrong: don't even
1189 	 * try to set the registers in this case.
1190 	 */
1191 	if (vq != sve_vq_from_vl(header.vl)) {
1192 		ret = -EIO;
1193 		goto out;
1194 	}
1195 
1196 	BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1197 	start = ZA_PT_ZA_OFFSET;
1198 	end = ZA_PT_SIZE(vq);
1199 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1200 				 target->thread.sme_state,
1201 				 start, end);
1202 	if (ret)
1203 		goto out;
1204 
1205 	/* Mark ZA as active and let userspace use it */
1206 	set_tsk_thread_flag(target, TIF_SME);
1207 	target->thread.svcr |= SVCR_ZA_MASK;
1208 
1209 out:
1210 	fpsimd_flush_task_state(target);
1211 	return ret;
1212 }
1213 
1214 static int zt_get(struct task_struct *target,
1215 		  const struct user_regset *regset,
1216 		  struct membuf to)
1217 {
1218 	if (!system_supports_sme2())
1219 		return -EINVAL;
1220 
1221 	/*
1222 	 * If PSTATE.ZA is not set then ZT will be zeroed when it is
1223 	 * enabled so report the current register value as zero.
1224 	 */
1225 	if (thread_za_enabled(&target->thread))
1226 		membuf_write(&to, thread_zt_state(&target->thread),
1227 			     ZT_SIG_REG_BYTES);
1228 	else
1229 		membuf_zero(&to, ZT_SIG_REG_BYTES);
1230 
1231 	return 0;
1232 }
1233 
1234 static int zt_set(struct task_struct *target,
1235 		  const struct user_regset *regset,
1236 		  unsigned int pos, unsigned int count,
1237 		  const void *kbuf, const void __user *ubuf)
1238 {
1239 	int ret;
1240 
1241 	if (!system_supports_sme2())
1242 		return -EINVAL;
1243 
1244 	/* Ensure SVE storage in case this is first use of SME */
1245 	sve_alloc(target, false);
1246 	if (!target->thread.sve_state)
1247 		return -ENOMEM;
1248 
1249 	if (!thread_za_enabled(&target->thread)) {
1250 		sme_alloc(target, true);
1251 		if (!target->thread.sme_state)
1252 			return -ENOMEM;
1253 	}
1254 
1255 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1256 				 thread_zt_state(&target->thread),
1257 				 0, ZT_SIG_REG_BYTES);
1258 	if (ret == 0) {
1259 		target->thread.svcr |= SVCR_ZA_MASK;
1260 		set_tsk_thread_flag(target, TIF_SME);
1261 	}
1262 
1263 	fpsimd_flush_task_state(target);
1264 
1265 	return ret;
1266 }
1267 
1268 #endif /* CONFIG_ARM64_SME */
1269 
1270 #ifdef CONFIG_ARM64_PTR_AUTH
1271 static int pac_mask_get(struct task_struct *target,
1272 			const struct user_regset *regset,
1273 			struct membuf to)
1274 {
1275 	/*
1276 	 * The PAC bits can differ across data and instruction pointers
1277 	 * depending on TCR_EL1.TBID*, which we may make use of in future, so
1278 	 * we expose separate masks.
1279 	 */
1280 	unsigned long mask = ptrauth_user_pac_mask();
1281 	struct user_pac_mask uregs = {
1282 		.data_mask = mask,
1283 		.insn_mask = mask,
1284 	};
1285 
1286 	if (!system_supports_address_auth())
1287 		return -EINVAL;
1288 
1289 	return membuf_write(&to, &uregs, sizeof(uregs));
1290 }
1291 
1292 static int pac_enabled_keys_get(struct task_struct *target,
1293 				const struct user_regset *regset,
1294 				struct membuf to)
1295 {
1296 	long enabled_keys = ptrauth_get_enabled_keys(target);
1297 
1298 	if (IS_ERR_VALUE(enabled_keys))
1299 		return enabled_keys;
1300 
1301 	return membuf_write(&to, &enabled_keys, sizeof(enabled_keys));
1302 }
1303 
1304 static int pac_enabled_keys_set(struct task_struct *target,
1305 				const struct user_regset *regset,
1306 				unsigned int pos, unsigned int count,
1307 				const void *kbuf, const void __user *ubuf)
1308 {
1309 	int ret;
1310 	long enabled_keys = ptrauth_get_enabled_keys(target);
1311 
1312 	if (IS_ERR_VALUE(enabled_keys))
1313 		return enabled_keys;
1314 
1315 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0,
1316 				 sizeof(long));
1317 	if (ret)
1318 		return ret;
1319 
1320 	return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK,
1321 					enabled_keys);
1322 }
1323 
1324 #ifdef CONFIG_CHECKPOINT_RESTORE
1325 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
1326 {
1327 	return (__uint128_t)key->hi << 64 | key->lo;
1328 }
1329 
1330 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
1331 {
1332 	struct ptrauth_key key = {
1333 		.lo = (unsigned long)ukey,
1334 		.hi = (unsigned long)(ukey >> 64),
1335 	};
1336 
1337 	return key;
1338 }
1339 
1340 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
1341 				     const struct ptrauth_keys_user *keys)
1342 {
1343 	ukeys->apiakey = pac_key_to_user(&keys->apia);
1344 	ukeys->apibkey = pac_key_to_user(&keys->apib);
1345 	ukeys->apdakey = pac_key_to_user(&keys->apda);
1346 	ukeys->apdbkey = pac_key_to_user(&keys->apdb);
1347 }
1348 
1349 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
1350 				       const struct user_pac_address_keys *ukeys)
1351 {
1352 	keys->apia = pac_key_from_user(ukeys->apiakey);
1353 	keys->apib = pac_key_from_user(ukeys->apibkey);
1354 	keys->apda = pac_key_from_user(ukeys->apdakey);
1355 	keys->apdb = pac_key_from_user(ukeys->apdbkey);
1356 }
1357 
1358 static int pac_address_keys_get(struct task_struct *target,
1359 				const struct user_regset *regset,
1360 				struct membuf to)
1361 {
1362 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1363 	struct user_pac_address_keys user_keys;
1364 
1365 	if (!system_supports_address_auth())
1366 		return -EINVAL;
1367 
1368 	pac_address_keys_to_user(&user_keys, keys);
1369 
1370 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1371 }
1372 
1373 static int pac_address_keys_set(struct task_struct *target,
1374 				const struct user_regset *regset,
1375 				unsigned int pos, unsigned int count,
1376 				const void *kbuf, const void __user *ubuf)
1377 {
1378 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1379 	struct user_pac_address_keys user_keys;
1380 	int ret;
1381 
1382 	if (!system_supports_address_auth())
1383 		return -EINVAL;
1384 
1385 	pac_address_keys_to_user(&user_keys, keys);
1386 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1387 				 &user_keys, 0, -1);
1388 	if (ret)
1389 		return ret;
1390 	pac_address_keys_from_user(keys, &user_keys);
1391 
1392 	return 0;
1393 }
1394 
1395 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1396 				     const struct ptrauth_keys_user *keys)
1397 {
1398 	ukeys->apgakey = pac_key_to_user(&keys->apga);
1399 }
1400 
1401 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
1402 				       const struct user_pac_generic_keys *ukeys)
1403 {
1404 	keys->apga = pac_key_from_user(ukeys->apgakey);
1405 }
1406 
1407 static int pac_generic_keys_get(struct task_struct *target,
1408 				const struct user_regset *regset,
1409 				struct membuf to)
1410 {
1411 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1412 	struct user_pac_generic_keys user_keys;
1413 
1414 	if (!system_supports_generic_auth())
1415 		return -EINVAL;
1416 
1417 	pac_generic_keys_to_user(&user_keys, keys);
1418 
1419 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1420 }
1421 
1422 static int pac_generic_keys_set(struct task_struct *target,
1423 				const struct user_regset *regset,
1424 				unsigned int pos, unsigned int count,
1425 				const void *kbuf, const void __user *ubuf)
1426 {
1427 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1428 	struct user_pac_generic_keys user_keys;
1429 	int ret;
1430 
1431 	if (!system_supports_generic_auth())
1432 		return -EINVAL;
1433 
1434 	pac_generic_keys_to_user(&user_keys, keys);
1435 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1436 				 &user_keys, 0, -1);
1437 	if (ret)
1438 		return ret;
1439 	pac_generic_keys_from_user(keys, &user_keys);
1440 
1441 	return 0;
1442 }
1443 #endif /* CONFIG_CHECKPOINT_RESTORE */
1444 #endif /* CONFIG_ARM64_PTR_AUTH */
1445 
1446 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1447 static int tagged_addr_ctrl_get(struct task_struct *target,
1448 				const struct user_regset *regset,
1449 				struct membuf to)
1450 {
1451 	long ctrl = get_tagged_addr_ctrl(target);
1452 
1453 	if (WARN_ON_ONCE(IS_ERR_VALUE(ctrl)))
1454 		return ctrl;
1455 
1456 	return membuf_write(&to, &ctrl, sizeof(ctrl));
1457 }
1458 
1459 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1460 				user_regset *regset, unsigned int pos,
1461 				unsigned int count, const void *kbuf, const
1462 				void __user *ubuf)
1463 {
1464 	int ret;
1465 	long ctrl;
1466 
1467 	ctrl = get_tagged_addr_ctrl(target);
1468 	if (WARN_ON_ONCE(IS_ERR_VALUE(ctrl)))
1469 		return ctrl;
1470 
1471 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1472 	if (ret)
1473 		return ret;
1474 
1475 	return set_tagged_addr_ctrl(target, ctrl);
1476 }
1477 #endif
1478 
1479 #ifdef CONFIG_ARM64_POE
1480 static int poe_get(struct task_struct *target,
1481 		   const struct user_regset *regset,
1482 		   struct membuf to)
1483 {
1484 	if (!system_supports_poe())
1485 		return -EINVAL;
1486 
1487 	if (target == current)
1488 		current->thread.por_el0 = read_sysreg_s(SYS_POR_EL0);
1489 
1490 	return membuf_write(&to, &target->thread.por_el0,
1491 			    sizeof(target->thread.por_el0));
1492 }
1493 
1494 static int poe_set(struct task_struct *target, const struct
1495 		   user_regset *regset, unsigned int pos,
1496 		   unsigned int count, const void *kbuf, const
1497 		   void __user *ubuf)
1498 {
1499 	int ret;
1500 	long ctrl;
1501 
1502 	if (!system_supports_poe())
1503 		return -EINVAL;
1504 
1505 	ctrl = target->thread.por_el0;
1506 
1507 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1508 	if (ret)
1509 		return ret;
1510 
1511 	target->thread.por_el0 = ctrl;
1512 
1513 	return 0;
1514 }
1515 #endif
1516 
1517 #ifdef CONFIG_ARM64_GCS
1518 static void task_gcs_to_user(struct user_gcs *user_gcs,
1519 			     const struct task_struct *target)
1520 {
1521 	user_gcs->features_enabled = target->thread.gcs_el0_mode;
1522 	user_gcs->features_locked = target->thread.gcs_el0_locked;
1523 	user_gcs->gcspr_el0 = target->thread.gcspr_el0;
1524 }
1525 
1526 static void task_gcs_from_user(struct task_struct *target,
1527 			       const struct user_gcs *user_gcs)
1528 {
1529 	target->thread.gcs_el0_mode = user_gcs->features_enabled;
1530 	target->thread.gcs_el0_locked = user_gcs->features_locked;
1531 	target->thread.gcspr_el0 = user_gcs->gcspr_el0;
1532 }
1533 
1534 static int gcs_get(struct task_struct *target,
1535 		   const struct user_regset *regset,
1536 		   struct membuf to)
1537 {
1538 	struct user_gcs user_gcs;
1539 
1540 	if (!system_supports_gcs())
1541 		return -EINVAL;
1542 
1543 	if (target == current)
1544 		gcs_preserve_current_state();
1545 
1546 	task_gcs_to_user(&user_gcs, target);
1547 
1548 	return membuf_write(&to, &user_gcs, sizeof(user_gcs));
1549 }
1550 
1551 static int gcs_set(struct task_struct *target, const struct
1552 		   user_regset *regset, unsigned int pos,
1553 		   unsigned int count, const void *kbuf, const
1554 		   void __user *ubuf)
1555 {
1556 	int ret;
1557 	struct user_gcs user_gcs;
1558 
1559 	if (!system_supports_gcs())
1560 		return -EINVAL;
1561 
1562 	task_gcs_to_user(&user_gcs, target);
1563 
1564 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &user_gcs, 0, -1);
1565 	if (ret)
1566 		return ret;
1567 
1568 	if (user_gcs.features_enabled & ~PR_SHADOW_STACK_SUPPORTED_STATUS_MASK)
1569 		return -EINVAL;
1570 
1571 	task_gcs_from_user(target, &user_gcs);
1572 
1573 	return 0;
1574 }
1575 #endif
1576 
1577 enum aarch64_regset {
1578 	REGSET_GPR,
1579 	REGSET_FPR,
1580 	REGSET_TLS,
1581 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1582 	REGSET_HW_BREAK,
1583 	REGSET_HW_WATCH,
1584 #endif
1585 	REGSET_FPMR,
1586 	REGSET_SYSTEM_CALL,
1587 #ifdef CONFIG_ARM64_SVE
1588 	REGSET_SVE,
1589 #endif
1590 #ifdef CONFIG_ARM64_SME
1591 	REGSET_SSVE,
1592 	REGSET_ZA,
1593 	REGSET_ZT,
1594 #endif
1595 #ifdef CONFIG_ARM64_PTR_AUTH
1596 	REGSET_PAC_MASK,
1597 	REGSET_PAC_ENABLED_KEYS,
1598 #ifdef CONFIG_CHECKPOINT_RESTORE
1599 	REGSET_PACA_KEYS,
1600 	REGSET_PACG_KEYS,
1601 #endif
1602 #endif
1603 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1604 	REGSET_TAGGED_ADDR_CTRL,
1605 #endif
1606 #ifdef CONFIG_ARM64_POE
1607 	REGSET_POE,
1608 #endif
1609 #ifdef CONFIG_ARM64_GCS
1610 	REGSET_GCS,
1611 #endif
1612 };
1613 
1614 static const struct user_regset aarch64_regsets[] = {
1615 	[REGSET_GPR] = {
1616 		USER_REGSET_NOTE_TYPE(PRSTATUS),
1617 		.n = sizeof(struct user_pt_regs) / sizeof(u64),
1618 		.size = sizeof(u64),
1619 		.align = sizeof(u64),
1620 		.regset_get = gpr_get,
1621 		.set = gpr_set
1622 	},
1623 	[REGSET_FPR] = {
1624 		USER_REGSET_NOTE_TYPE(PRFPREG),
1625 		.n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1626 		/*
1627 		 * We pretend we have 32-bit registers because the fpsr and
1628 		 * fpcr are 32-bits wide.
1629 		 */
1630 		.size = sizeof(u32),
1631 		.align = sizeof(u32),
1632 		.active = fpr_active,
1633 		.regset_get = fpr_get,
1634 		.set = fpr_set
1635 	},
1636 	[REGSET_TLS] = {
1637 		USER_REGSET_NOTE_TYPE(ARM_TLS),
1638 		.n = 2,
1639 		.size = sizeof(void *),
1640 		.align = sizeof(void *),
1641 		.regset_get = tls_get,
1642 		.set = tls_set,
1643 	},
1644 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1645 	[REGSET_HW_BREAK] = {
1646 		USER_REGSET_NOTE_TYPE(ARM_HW_BREAK),
1647 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1648 		.size = sizeof(u32),
1649 		.align = sizeof(u32),
1650 		.regset_get = hw_break_get,
1651 		.set = hw_break_set,
1652 	},
1653 	[REGSET_HW_WATCH] = {
1654 		USER_REGSET_NOTE_TYPE(ARM_HW_WATCH),
1655 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1656 		.size = sizeof(u32),
1657 		.align = sizeof(u32),
1658 		.regset_get = hw_break_get,
1659 		.set = hw_break_set,
1660 	},
1661 #endif
1662 	[REGSET_SYSTEM_CALL] = {
1663 		USER_REGSET_NOTE_TYPE(ARM_SYSTEM_CALL),
1664 		.n = 1,
1665 		.size = sizeof(int),
1666 		.align = sizeof(int),
1667 		.regset_get = system_call_get,
1668 		.set = system_call_set,
1669 	},
1670 	[REGSET_FPMR] = {
1671 		USER_REGSET_NOTE_TYPE(ARM_FPMR),
1672 		.n = 1,
1673 		.size = sizeof(u64),
1674 		.align = sizeof(u64),
1675 		.regset_get = fpmr_get,
1676 		.set = fpmr_set,
1677 	},
1678 #ifdef CONFIG_ARM64_SVE
1679 	[REGSET_SVE] = { /* Scalable Vector Extension */
1680 		USER_REGSET_NOTE_TYPE(ARM_SVE),
1681 		.n = DIV_ROUND_UP(SVE_PT_SIZE(ARCH_SVE_VQ_MAX,
1682 					      SVE_PT_REGS_SVE),
1683 				  SVE_VQ_BYTES),
1684 		.size = SVE_VQ_BYTES,
1685 		.align = SVE_VQ_BYTES,
1686 		.regset_get = sve_get,
1687 		.set = sve_set,
1688 	},
1689 #endif
1690 #ifdef CONFIG_ARM64_SME
1691 	[REGSET_SSVE] = { /* Streaming mode SVE */
1692 		USER_REGSET_NOTE_TYPE(ARM_SSVE),
1693 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SME_VQ_MAX, SVE_PT_REGS_SVE),
1694 				  SVE_VQ_BYTES),
1695 		.size = SVE_VQ_BYTES,
1696 		.align = SVE_VQ_BYTES,
1697 		.regset_get = ssve_get,
1698 		.set = ssve_set,
1699 	},
1700 	[REGSET_ZA] = { /* SME ZA */
1701 		USER_REGSET_NOTE_TYPE(ARM_ZA),
1702 		/*
1703 		 * ZA is a single register but it's variably sized and
1704 		 * the ptrace core requires that the size of any data
1705 		 * be an exact multiple of the configured register
1706 		 * size so report as though we had SVE_VQ_BYTES
1707 		 * registers. These values aren't exposed to
1708 		 * userspace.
1709 		 */
1710 		.n = DIV_ROUND_UP(ZA_PT_SIZE(SME_VQ_MAX), SVE_VQ_BYTES),
1711 		.size = SVE_VQ_BYTES,
1712 		.align = SVE_VQ_BYTES,
1713 		.regset_get = za_get,
1714 		.set = za_set,
1715 	},
1716 	[REGSET_ZT] = { /* SME ZT */
1717 		USER_REGSET_NOTE_TYPE(ARM_ZT),
1718 		.n = 1,
1719 		.size = ZT_SIG_REG_BYTES,
1720 		.align = sizeof(u64),
1721 		.regset_get = zt_get,
1722 		.set = zt_set,
1723 	},
1724 #endif
1725 #ifdef CONFIG_ARM64_PTR_AUTH
1726 	[REGSET_PAC_MASK] = {
1727 		USER_REGSET_NOTE_TYPE(ARM_PAC_MASK),
1728 		.n = sizeof(struct user_pac_mask) / sizeof(u64),
1729 		.size = sizeof(u64),
1730 		.align = sizeof(u64),
1731 		.regset_get = pac_mask_get,
1732 		/* this cannot be set dynamically */
1733 	},
1734 	[REGSET_PAC_ENABLED_KEYS] = {
1735 		USER_REGSET_NOTE_TYPE(ARM_PAC_ENABLED_KEYS),
1736 		.n = 1,
1737 		.size = sizeof(long),
1738 		.align = sizeof(long),
1739 		.regset_get = pac_enabled_keys_get,
1740 		.set = pac_enabled_keys_set,
1741 	},
1742 #ifdef CONFIG_CHECKPOINT_RESTORE
1743 	[REGSET_PACA_KEYS] = {
1744 		USER_REGSET_NOTE_TYPE(ARM_PACA_KEYS),
1745 		.n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1746 		.size = sizeof(__uint128_t),
1747 		.align = sizeof(__uint128_t),
1748 		.regset_get = pac_address_keys_get,
1749 		.set = pac_address_keys_set,
1750 	},
1751 	[REGSET_PACG_KEYS] = {
1752 		USER_REGSET_NOTE_TYPE(ARM_PACG_KEYS),
1753 		.n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1754 		.size = sizeof(__uint128_t),
1755 		.align = sizeof(__uint128_t),
1756 		.regset_get = pac_generic_keys_get,
1757 		.set = pac_generic_keys_set,
1758 	},
1759 #endif
1760 #endif
1761 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1762 	[REGSET_TAGGED_ADDR_CTRL] = {
1763 		USER_REGSET_NOTE_TYPE(ARM_TAGGED_ADDR_CTRL),
1764 		.n = 1,
1765 		.size = sizeof(long),
1766 		.align = sizeof(long),
1767 		.regset_get = tagged_addr_ctrl_get,
1768 		.set = tagged_addr_ctrl_set,
1769 	},
1770 #endif
1771 #ifdef CONFIG_ARM64_POE
1772 	[REGSET_POE] = {
1773 		USER_REGSET_NOTE_TYPE(ARM_POE),
1774 		.n = 1,
1775 		.size = sizeof(long),
1776 		.align = sizeof(long),
1777 		.regset_get = poe_get,
1778 		.set = poe_set,
1779 	},
1780 #endif
1781 #ifdef CONFIG_ARM64_GCS
1782 	[REGSET_GCS] = {
1783 		USER_REGSET_NOTE_TYPE(ARM_GCS),
1784 		.n = sizeof(struct user_gcs) / sizeof(u64),
1785 		.size = sizeof(u64),
1786 		.align = sizeof(u64),
1787 		.regset_get = gcs_get,
1788 		.set = gcs_set,
1789 	},
1790 #endif
1791 };
1792 
1793 static const struct user_regset_view user_aarch64_view = {
1794 	.name = "aarch64", .e_machine = EM_AARCH64,
1795 	.regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1796 };
1797 
1798 enum compat_regset {
1799 	REGSET_COMPAT_GPR,
1800 	REGSET_COMPAT_VFP,
1801 };
1802 
1803 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1804 {
1805 	struct pt_regs *regs = task_pt_regs(task);
1806 
1807 	switch (idx) {
1808 	case 15:
1809 		return regs->pc;
1810 	case 16:
1811 		return pstate_to_compat_psr(regs->pstate);
1812 	case 17:
1813 		return regs->orig_x0;
1814 	default:
1815 		return regs->regs[idx];
1816 	}
1817 }
1818 
1819 static int compat_gpr_get(struct task_struct *target,
1820 			  const struct user_regset *regset,
1821 			  struct membuf to)
1822 {
1823 	int i = 0;
1824 
1825 	while (to.left)
1826 		membuf_store(&to, compat_get_user_reg(target, i++));
1827 	return 0;
1828 }
1829 
1830 static int compat_gpr_set(struct task_struct *target,
1831 			  const struct user_regset *regset,
1832 			  unsigned int pos, unsigned int count,
1833 			  const void *kbuf, const void __user *ubuf)
1834 {
1835 	struct pt_regs newregs;
1836 	int ret = 0;
1837 	unsigned int i, start, num_regs;
1838 
1839 	/* Calculate the number of AArch32 registers contained in count */
1840 	num_regs = count / regset->size;
1841 
1842 	/* Convert pos into an register number */
1843 	start = pos / regset->size;
1844 
1845 	if (start + num_regs > regset->n)
1846 		return -EIO;
1847 
1848 	newregs = *task_pt_regs(target);
1849 
1850 	for (i = 0; i < num_regs; ++i) {
1851 		unsigned int idx = start + i;
1852 		compat_ulong_t reg;
1853 
1854 		if (kbuf) {
1855 			memcpy(&reg, kbuf, sizeof(reg));
1856 			kbuf += sizeof(reg);
1857 		} else {
1858 			ret = copy_from_user(&reg, ubuf, sizeof(reg));
1859 			if (ret) {
1860 				ret = -EFAULT;
1861 				break;
1862 			}
1863 
1864 			ubuf += sizeof(reg);
1865 		}
1866 
1867 		switch (idx) {
1868 		case 15:
1869 			newregs.pc = reg;
1870 			break;
1871 		case 16:
1872 			reg = compat_psr_to_pstate(reg);
1873 			newregs.pstate = reg;
1874 			break;
1875 		case 17:
1876 			newregs.orig_x0 = reg;
1877 			break;
1878 		default:
1879 			newregs.regs[idx] = reg;
1880 		}
1881 
1882 	}
1883 
1884 	if (valid_user_regs(&newregs.user_regs, target))
1885 		*task_pt_regs(target) = newregs;
1886 	else
1887 		ret = -EINVAL;
1888 
1889 	return ret;
1890 }
1891 
1892 static int compat_vfp_get(struct task_struct *target,
1893 			  const struct user_regset *regset,
1894 			  struct membuf to)
1895 {
1896 	struct user_fpsimd_state *uregs;
1897 	compat_ulong_t fpscr;
1898 
1899 	if (!system_supports_fpsimd())
1900 		return -EINVAL;
1901 
1902 	uregs = &target->thread.uw.fpsimd_state;
1903 
1904 	if (target == current)
1905 		fpsimd_preserve_current_state();
1906 
1907 	/*
1908 	 * The VFP registers are packed into the fpsimd_state, so they all sit
1909 	 * nicely together for us. We just need to create the fpscr separately.
1910 	 */
1911 	membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1912 	fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1913 		(uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1914 	return membuf_store(&to, fpscr);
1915 }
1916 
1917 static int compat_vfp_set(struct task_struct *target,
1918 			  const struct user_regset *regset,
1919 			  unsigned int pos, unsigned int count,
1920 			  const void *kbuf, const void __user *ubuf)
1921 {
1922 	struct user_fpsimd_state *uregs;
1923 	compat_ulong_t fpscr;
1924 	int ret, vregs_end_pos;
1925 
1926 	if (!system_supports_fpsimd())
1927 		return -EINVAL;
1928 
1929 	uregs = &target->thread.uw.fpsimd_state;
1930 
1931 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1932 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1933 				 vregs_end_pos);
1934 
1935 	if (count && !ret) {
1936 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1937 					 vregs_end_pos, VFP_STATE_SIZE);
1938 		if (!ret) {
1939 			uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1940 			uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1941 		}
1942 	}
1943 
1944 	fpsimd_flush_task_state(target);
1945 	return ret;
1946 }
1947 
1948 static int compat_tls_get(struct task_struct *target,
1949 			  const struct user_regset *regset,
1950 			  struct membuf to)
1951 {
1952 	return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1953 }
1954 
1955 static int compat_tls_set(struct task_struct *target,
1956 			  const struct user_regset *regset, unsigned int pos,
1957 			  unsigned int count, const void *kbuf,
1958 			  const void __user *ubuf)
1959 {
1960 	int ret;
1961 	compat_ulong_t tls = target->thread.uw.tp_value;
1962 
1963 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1964 	if (ret)
1965 		return ret;
1966 
1967 	target->thread.uw.tp_value = tls;
1968 	return ret;
1969 }
1970 
1971 static const struct user_regset aarch32_regsets[] = {
1972 	[REGSET_COMPAT_GPR] = {
1973 		USER_REGSET_NOTE_TYPE(PRSTATUS),
1974 		.n = COMPAT_ELF_NGREG,
1975 		.size = sizeof(compat_elf_greg_t),
1976 		.align = sizeof(compat_elf_greg_t),
1977 		.regset_get = compat_gpr_get,
1978 		.set = compat_gpr_set
1979 	},
1980 	[REGSET_COMPAT_VFP] = {
1981 		USER_REGSET_NOTE_TYPE(ARM_VFP),
1982 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1983 		.size = sizeof(compat_ulong_t),
1984 		.align = sizeof(compat_ulong_t),
1985 		.active = fpr_active,
1986 		.regset_get = compat_vfp_get,
1987 		.set = compat_vfp_set
1988 	},
1989 };
1990 
1991 static const struct user_regset_view user_aarch32_view = {
1992 	.name = "aarch32", .e_machine = EM_ARM,
1993 	.regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1994 };
1995 
1996 static const struct user_regset aarch32_ptrace_regsets[] = {
1997 	[REGSET_GPR] = {
1998 		USER_REGSET_NOTE_TYPE(PRSTATUS),
1999 		.n = COMPAT_ELF_NGREG,
2000 		.size = sizeof(compat_elf_greg_t),
2001 		.align = sizeof(compat_elf_greg_t),
2002 		.regset_get = compat_gpr_get,
2003 		.set = compat_gpr_set
2004 	},
2005 	[REGSET_FPR] = {
2006 		USER_REGSET_NOTE_TYPE(ARM_VFP),
2007 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
2008 		.size = sizeof(compat_ulong_t),
2009 		.align = sizeof(compat_ulong_t),
2010 		.regset_get = compat_vfp_get,
2011 		.set = compat_vfp_set
2012 	},
2013 	[REGSET_TLS] = {
2014 		USER_REGSET_NOTE_TYPE(ARM_TLS),
2015 		.n = 1,
2016 		.size = sizeof(compat_ulong_t),
2017 		.align = sizeof(compat_ulong_t),
2018 		.regset_get = compat_tls_get,
2019 		.set = compat_tls_set,
2020 	},
2021 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2022 	[REGSET_HW_BREAK] = {
2023 		USER_REGSET_NOTE_TYPE(ARM_HW_BREAK),
2024 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
2025 		.size = sizeof(u32),
2026 		.align = sizeof(u32),
2027 		.regset_get = hw_break_get,
2028 		.set = hw_break_set,
2029 	},
2030 	[REGSET_HW_WATCH] = {
2031 		USER_REGSET_NOTE_TYPE(ARM_HW_WATCH),
2032 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
2033 		.size = sizeof(u32),
2034 		.align = sizeof(u32),
2035 		.regset_get = hw_break_get,
2036 		.set = hw_break_set,
2037 	},
2038 #endif
2039 	[REGSET_SYSTEM_CALL] = {
2040 		USER_REGSET_NOTE_TYPE(ARM_SYSTEM_CALL),
2041 		.n = 1,
2042 		.size = sizeof(int),
2043 		.align = sizeof(int),
2044 		.regset_get = system_call_get,
2045 		.set = system_call_set,
2046 	},
2047 };
2048 
2049 static const struct user_regset_view user_aarch32_ptrace_view = {
2050 	.name = "aarch32", .e_machine = EM_ARM,
2051 	.regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
2052 };
2053 
2054 #ifdef CONFIG_COMPAT
2055 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
2056 				   compat_ulong_t __user *ret)
2057 {
2058 	compat_ulong_t tmp;
2059 
2060 	if (off & 3)
2061 		return -EIO;
2062 
2063 	if (off == COMPAT_PT_TEXT_ADDR)
2064 		tmp = tsk->mm->start_code;
2065 	else if (off == COMPAT_PT_DATA_ADDR)
2066 		tmp = tsk->mm->start_data;
2067 	else if (off == COMPAT_PT_TEXT_END_ADDR)
2068 		tmp = tsk->mm->end_code;
2069 	else if (off < sizeof(compat_elf_gregset_t))
2070 		tmp = compat_get_user_reg(tsk, off >> 2);
2071 	else if (off >= COMPAT_USER_SZ)
2072 		return -EIO;
2073 	else
2074 		tmp = 0;
2075 
2076 	return put_user(tmp, ret);
2077 }
2078 
2079 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
2080 				    compat_ulong_t val)
2081 {
2082 	struct pt_regs newregs = *task_pt_regs(tsk);
2083 	unsigned int idx = off / 4;
2084 
2085 	if (off & 3 || off >= COMPAT_USER_SZ)
2086 		return -EIO;
2087 
2088 	if (off >= sizeof(compat_elf_gregset_t))
2089 		return 0;
2090 
2091 	switch (idx) {
2092 	case 15:
2093 		newregs.pc = val;
2094 		break;
2095 	case 16:
2096 		newregs.pstate = compat_psr_to_pstate(val);
2097 		break;
2098 	case 17:
2099 		newregs.orig_x0 = val;
2100 		break;
2101 	default:
2102 		newregs.regs[idx] = val;
2103 	}
2104 
2105 	if (!valid_user_regs(&newregs.user_regs, tsk))
2106 		return -EINVAL;
2107 
2108 	*task_pt_regs(tsk) = newregs;
2109 	return 0;
2110 }
2111 
2112 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2113 
2114 /*
2115  * Convert a virtual register number into an index for a thread_info
2116  * breakpoint array. Breakpoints are identified using positive numbers
2117  * whilst watchpoints are negative. The registers are laid out as pairs
2118  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
2119  * Register 0 is reserved for describing resource information.
2120  */
2121 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
2122 {
2123 	return (abs(num) - 1) >> 1;
2124 }
2125 
2126 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
2127 {
2128 	u8 num_brps, num_wrps, debug_arch, wp_len;
2129 	u32 reg = 0;
2130 
2131 	num_brps	= hw_breakpoint_slots(TYPE_INST);
2132 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
2133 
2134 	debug_arch	= debug_monitors_arch();
2135 	wp_len		= 8;
2136 	reg		|= debug_arch;
2137 	reg		<<= 8;
2138 	reg		|= wp_len;
2139 	reg		<<= 8;
2140 	reg		|= num_wrps;
2141 	reg		<<= 8;
2142 	reg		|= num_brps;
2143 
2144 	*kdata = reg;
2145 	return 0;
2146 }
2147 
2148 static int compat_ptrace_hbp_get(unsigned int note_type,
2149 				 struct task_struct *tsk,
2150 				 compat_long_t num,
2151 				 u32 *kdata)
2152 {
2153 	u64 addr = 0;
2154 	u32 ctrl = 0;
2155 
2156 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
2157 
2158 	if (num & 1) {
2159 		err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
2160 		*kdata = (u32)addr;
2161 	} else {
2162 		err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
2163 		*kdata = ctrl;
2164 	}
2165 
2166 	return err;
2167 }
2168 
2169 static int compat_ptrace_hbp_set(unsigned int note_type,
2170 				 struct task_struct *tsk,
2171 				 compat_long_t num,
2172 				 u32 *kdata)
2173 {
2174 	u64 addr;
2175 	u32 ctrl;
2176 
2177 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
2178 
2179 	if (num & 1) {
2180 		addr = *kdata;
2181 		err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
2182 	} else {
2183 		ctrl = *kdata;
2184 		err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
2185 	}
2186 
2187 	return err;
2188 }
2189 
2190 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
2191 				    compat_ulong_t __user *data)
2192 {
2193 	int ret;
2194 	u32 kdata;
2195 
2196 	/* Watchpoint */
2197 	if (num < 0) {
2198 		ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
2199 	/* Resource info */
2200 	} else if (num == 0) {
2201 		ret = compat_ptrace_hbp_get_resource_info(&kdata);
2202 	/* Breakpoint */
2203 	} else {
2204 		ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
2205 	}
2206 
2207 	if (!ret)
2208 		ret = put_user(kdata, data);
2209 
2210 	return ret;
2211 }
2212 
2213 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
2214 				    compat_ulong_t __user *data)
2215 {
2216 	int ret;
2217 	u32 kdata = 0;
2218 
2219 	if (num == 0)
2220 		return 0;
2221 
2222 	ret = get_user(kdata, data);
2223 	if (ret)
2224 		return ret;
2225 
2226 	if (num < 0)
2227 		ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
2228 	else
2229 		ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
2230 
2231 	return ret;
2232 }
2233 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
2234 
2235 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
2236 			compat_ulong_t caddr, compat_ulong_t cdata)
2237 {
2238 	unsigned long addr = caddr;
2239 	unsigned long data = cdata;
2240 	void __user *datap = compat_ptr(data);
2241 	int ret;
2242 
2243 	switch (request) {
2244 		case PTRACE_PEEKUSR:
2245 			ret = compat_ptrace_read_user(child, addr, datap);
2246 			break;
2247 
2248 		case PTRACE_POKEUSR:
2249 			ret = compat_ptrace_write_user(child, addr, data);
2250 			break;
2251 
2252 		case COMPAT_PTRACE_GETREGS:
2253 			ret = copy_regset_to_user(child,
2254 						  &user_aarch32_view,
2255 						  REGSET_COMPAT_GPR,
2256 						  0, sizeof(compat_elf_gregset_t),
2257 						  datap);
2258 			break;
2259 
2260 		case COMPAT_PTRACE_SETREGS:
2261 			ret = copy_regset_from_user(child,
2262 						    &user_aarch32_view,
2263 						    REGSET_COMPAT_GPR,
2264 						    0, sizeof(compat_elf_gregset_t),
2265 						    datap);
2266 			break;
2267 
2268 		case COMPAT_PTRACE_GET_THREAD_AREA:
2269 			ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
2270 				       (compat_ulong_t __user *)datap);
2271 			break;
2272 
2273 		case COMPAT_PTRACE_SET_SYSCALL:
2274 			task_pt_regs(child)->syscallno = data;
2275 			ret = 0;
2276 			break;
2277 
2278 		case COMPAT_PTRACE_GETVFPREGS:
2279 			ret = copy_regset_to_user(child,
2280 						  &user_aarch32_view,
2281 						  REGSET_COMPAT_VFP,
2282 						  0, VFP_STATE_SIZE,
2283 						  datap);
2284 			break;
2285 
2286 		case COMPAT_PTRACE_SETVFPREGS:
2287 			ret = copy_regset_from_user(child,
2288 						    &user_aarch32_view,
2289 						    REGSET_COMPAT_VFP,
2290 						    0, VFP_STATE_SIZE,
2291 						    datap);
2292 			break;
2293 
2294 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2295 		case COMPAT_PTRACE_GETHBPREGS:
2296 			ret = compat_ptrace_gethbpregs(child, addr, datap);
2297 			break;
2298 
2299 		case COMPAT_PTRACE_SETHBPREGS:
2300 			ret = compat_ptrace_sethbpregs(child, addr, datap);
2301 			break;
2302 #endif
2303 
2304 		default:
2305 			ret = compat_ptrace_request(child, request, addr,
2306 						    data);
2307 			break;
2308 	}
2309 
2310 	return ret;
2311 }
2312 #endif /* CONFIG_COMPAT */
2313 
2314 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2315 {
2316 	/*
2317 	 * Core dumping of 32-bit tasks or compat ptrace requests must use the
2318 	 * user_aarch32_view compatible with arm32. Native ptrace requests on
2319 	 * 32-bit children use an extended user_aarch32_ptrace_view to allow
2320 	 * access to the TLS register.
2321 	 */
2322 	if (is_compat_task())
2323 		return &user_aarch32_view;
2324 	else if (is_compat_thread(task_thread_info(task)))
2325 		return &user_aarch32_ptrace_view;
2326 
2327 	return &user_aarch64_view;
2328 }
2329 
2330 long arch_ptrace(struct task_struct *child, long request,
2331 		 unsigned long addr, unsigned long data)
2332 {
2333 	switch (request) {
2334 	case PTRACE_PEEKMTETAGS:
2335 	case PTRACE_POKEMTETAGS:
2336 		return mte_ptrace_copy_tags(child, request, addr, data);
2337 	}
2338 
2339 	return ptrace_request(child, request, addr, data);
2340 }
2341 
2342 enum ptrace_syscall_dir {
2343 	PTRACE_SYSCALL_ENTER = 0,
2344 	PTRACE_SYSCALL_EXIT,
2345 };
2346 
2347 static __always_inline unsigned long ptrace_save_reg(struct pt_regs *regs,
2348 						     enum ptrace_syscall_dir dir,
2349 						     int *regno)
2350 {
2351 	unsigned long saved_reg;
2352 
2353 	/*
2354 	 * We have some ABI weirdness here in the way that we handle syscall
2355 	 * exit stops because we indicate whether or not the stop has been
2356 	 * signalled from syscall entry or syscall exit by clobbering a general
2357 	 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
2358 	 * and restoring its old value after the stop. This means that:
2359 	 *
2360 	 * - Any writes by the tracer to this register during the stop are
2361 	 *   ignored/discarded.
2362 	 *
2363 	 * - The actual value of the register is not available during the stop,
2364 	 *   so the tracer cannot save it and restore it later.
2365 	 *
2366 	 * - Syscall stops behave differently to seccomp and pseudo-step traps
2367 	 *   (the latter do not nobble any registers).
2368 	 */
2369 	*regno = (is_compat_task() ? 12 : 7);
2370 	saved_reg = regs->regs[*regno];
2371 	regs->regs[*regno] = dir;
2372 
2373 	return saved_reg;
2374 }
2375 
2376 static int report_syscall_entry(struct pt_regs *regs)
2377 {
2378 	unsigned long saved_reg;
2379 	int regno, ret;
2380 
2381 	saved_reg = ptrace_save_reg(regs, PTRACE_SYSCALL_ENTER, &regno);
2382 	ret = ptrace_report_syscall_entry(regs);
2383 	if (ret)
2384 		forget_syscall(regs);
2385 	regs->regs[regno] = saved_reg;
2386 
2387 	return ret;
2388 }
2389 
2390 static void report_syscall_exit(struct pt_regs *regs)
2391 {
2392 	unsigned long saved_reg;
2393 	int regno;
2394 
2395 	saved_reg = ptrace_save_reg(regs, PTRACE_SYSCALL_EXIT, &regno);
2396 	if (!test_thread_flag(TIF_SINGLESTEP)) {
2397 		ptrace_report_syscall_exit(regs, 0);
2398 		regs->regs[regno] = saved_reg;
2399 	} else {
2400 		regs->regs[regno] = saved_reg;
2401 
2402 		/*
2403 		 * Signal a pseudo-step exception since we are stepping but
2404 		 * tracer modifications to the registers may have rewound the
2405 		 * state machine.
2406 		 */
2407 		ptrace_report_syscall_exit(regs, 1);
2408 	}
2409 }
2410 
2411 int syscall_trace_enter(struct pt_regs *regs)
2412 {
2413 	unsigned long flags = read_thread_flags();
2414 	int ret;
2415 
2416 	if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
2417 		ret = report_syscall_entry(regs);
2418 		if (ret || (flags & _TIF_SYSCALL_EMU))
2419 			return NO_SYSCALL;
2420 	}
2421 
2422 	/* Do the secure computing after ptrace; failures should be fast. */
2423 	if (secure_computing() == -1)
2424 		return NO_SYSCALL;
2425 
2426 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
2427 		trace_sys_enter(regs, regs->syscallno);
2428 
2429 	audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
2430 			    regs->regs[2], regs->regs[3]);
2431 
2432 	return regs->syscallno;
2433 }
2434 
2435 void syscall_trace_exit(struct pt_regs *regs)
2436 {
2437 	unsigned long flags = read_thread_flags();
2438 
2439 	audit_syscall_exit(regs);
2440 
2441 	if (flags & _TIF_SYSCALL_TRACEPOINT)
2442 		trace_sys_exit(regs, syscall_get_return_value(current, regs));
2443 
2444 	if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
2445 		report_syscall_exit(regs);
2446 
2447 	rseq_syscall(regs);
2448 }
2449 
2450 /*
2451  * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
2452  * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
2453  * not described in ARM DDI 0487D.a.
2454  * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
2455  * be allocated an EL0 meaning in future.
2456  * Userspace cannot use these until they have an architectural meaning.
2457  * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
2458  * We also reserve IL for the kernel; SS is handled dynamically.
2459  */
2460 #define SPSR_EL1_AARCH64_RES0_BITS \
2461 	(GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
2462 	 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
2463 #define SPSR_EL1_AARCH32_RES0_BITS \
2464 	(GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
2465 
2466 static int valid_compat_regs(struct user_pt_regs *regs)
2467 {
2468 	regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
2469 
2470 	if (!system_supports_mixed_endian_el0()) {
2471 		if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
2472 			regs->pstate |= PSR_AA32_E_BIT;
2473 		else
2474 			regs->pstate &= ~PSR_AA32_E_BIT;
2475 	}
2476 
2477 	if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
2478 	    (regs->pstate & PSR_AA32_A_BIT) == 0 &&
2479 	    (regs->pstate & PSR_AA32_I_BIT) == 0 &&
2480 	    (regs->pstate & PSR_AA32_F_BIT) == 0) {
2481 		return 1;
2482 	}
2483 
2484 	/*
2485 	 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
2486 	 * arch/arm.
2487 	 */
2488 	regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
2489 			PSR_AA32_C_BIT | PSR_AA32_V_BIT |
2490 			PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
2491 			PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
2492 			PSR_AA32_T_BIT;
2493 	regs->pstate |= PSR_MODE32_BIT;
2494 
2495 	return 0;
2496 }
2497 
2498 static int valid_native_regs(struct user_pt_regs *regs)
2499 {
2500 	regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
2501 
2502 	if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
2503 	    (regs->pstate & PSR_D_BIT) == 0 &&
2504 	    (regs->pstate & PSR_A_BIT) == 0 &&
2505 	    (regs->pstate & PSR_I_BIT) == 0 &&
2506 	    (regs->pstate & PSR_F_BIT) == 0) {
2507 		return 1;
2508 	}
2509 
2510 	/* Force PSR to a valid 64-bit EL0t */
2511 	regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
2512 
2513 	return 0;
2514 }
2515 
2516 /*
2517  * Are the current registers suitable for user mode? (used to maintain
2518  * security in signal handlers)
2519  */
2520 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
2521 {
2522 	/* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
2523 	user_regs_reset_single_step(regs, task);
2524 
2525 	if (is_compat_thread(task_thread_info(task)))
2526 		return valid_compat_regs(regs);
2527 	else
2528 		return valid_native_regs(regs);
2529 }
2530