1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update mechanism for mutual exclusion
4 *
5 * Copyright IBM Corporation, 2001
6 *
7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
8 *
9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11 * Papers:
12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14 *
15 * For detailed explanation of Read-Copy Update mechanism see -
16 * http://lse.sourceforge.net/locking/rcupdate.html
17 *
18 */
19
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <linux/cleanup.h>
31 #include <asm/processor.h>
32 #include <linux/context_tracking_irq.h>
33
34 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
35 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
36
37 #define RCU_SEQ_CTR_SHIFT 2
38 #define RCU_SEQ_STATE_MASK ((1 << RCU_SEQ_CTR_SHIFT) - 1)
39
40 /* Exported common interfaces */
41 void call_rcu(struct rcu_head *head, rcu_callback_t func);
42 void rcu_barrier_tasks(void);
43 void synchronize_rcu(void);
44
45 struct rcu_gp_oldstate;
46 unsigned long get_completed_synchronize_rcu(void);
47 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp);
48
49 // Maximum number of unsigned long values corresponding to
50 // not-yet-completed RCU grace periods.
51 #define NUM_ACTIVE_RCU_POLL_OLDSTATE 2
52
53 /**
54 * same_state_synchronize_rcu - Are two old-state values identical?
55 * @oldstate1: First old-state value.
56 * @oldstate2: Second old-state value.
57 *
58 * The two old-state values must have been obtained from either
59 * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or
60 * get_completed_synchronize_rcu(). Returns @true if the two values are
61 * identical and @false otherwise. This allows structures whose lifetimes
62 * are tracked by old-state values to push these values to a list header,
63 * allowing those structures to be slightly smaller.
64 */
same_state_synchronize_rcu(unsigned long oldstate1,unsigned long oldstate2)65 static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2)
66 {
67 return oldstate1 == oldstate2;
68 }
69
70 #ifdef CONFIG_PREEMPT_RCU
71
72 void __rcu_read_lock(void);
73 void __rcu_read_unlock(void);
74
75 /*
76 * Defined as a macro as it is a very low level header included from
77 * areas that don't even know about current. This gives the rcu_read_lock()
78 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
79 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
80 */
81 #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
82
83 #else /* #ifdef CONFIG_PREEMPT_RCU */
84
85 #ifdef CONFIG_TINY_RCU
86 #define rcu_read_unlock_strict() do { } while (0)
87 #else
88 void rcu_read_unlock_strict(void);
89 #endif
90
__rcu_read_lock(void)91 static inline void __rcu_read_lock(void)
92 {
93 preempt_disable();
94 }
95
__rcu_read_unlock(void)96 static inline void __rcu_read_unlock(void)
97 {
98 preempt_enable();
99 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
100 rcu_read_unlock_strict();
101 }
102
rcu_preempt_depth(void)103 static inline int rcu_preempt_depth(void)
104 {
105 return 0;
106 }
107
108 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
109
110 #ifdef CONFIG_RCU_LAZY
111 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func);
112 #else
call_rcu_hurry(struct rcu_head * head,rcu_callback_t func)113 static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
114 {
115 call_rcu(head, func);
116 }
117 #endif
118
119 /* Internal to kernel */
120 void rcu_init(void);
121 extern int rcu_scheduler_active;
122 void rcu_sched_clock_irq(int user);
123
124 #ifdef CONFIG_TASKS_RCU_GENERIC
125 void rcu_init_tasks_generic(void);
126 #else
rcu_init_tasks_generic(void)127 static inline void rcu_init_tasks_generic(void) { }
128 #endif
129
130 #ifdef CONFIG_RCU_STALL_COMMON
131 void rcu_sysrq_start(void);
132 void rcu_sysrq_end(void);
133 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)134 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)135 static inline void rcu_sysrq_end(void) { }
136 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
137
138 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
139 void rcu_irq_work_resched(void);
140 #else
rcu_irq_work_resched(void)141 static inline void rcu_irq_work_resched(void) { }
142 #endif
143
144 #ifdef CONFIG_RCU_NOCB_CPU
145 void rcu_init_nohz(void);
146 int rcu_nocb_cpu_offload(int cpu);
147 int rcu_nocb_cpu_deoffload(int cpu);
148 void rcu_nocb_flush_deferred_wakeup(void);
149
150 #define RCU_NOCB_LOCKDEP_WARN(c, s) RCU_LOCKDEP_WARN(c, s)
151
152 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
153
rcu_init_nohz(void)154 static inline void rcu_init_nohz(void) { }
rcu_nocb_cpu_offload(int cpu)155 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
rcu_nocb_cpu_deoffload(int cpu)156 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
rcu_nocb_flush_deferred_wakeup(void)157 static inline void rcu_nocb_flush_deferred_wakeup(void) { }
158
159 #define RCU_NOCB_LOCKDEP_WARN(c, s)
160
161 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
162
163 /*
164 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
165 * This is a macro rather than an inline function to avoid #include hell.
166 */
167 #ifdef CONFIG_TASKS_RCU_GENERIC
168
169 # ifdef CONFIG_TASKS_RCU
170 # define rcu_tasks_classic_qs(t, preempt) \
171 do { \
172 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \
173 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
174 } while (0)
175 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
176 void synchronize_rcu_tasks(void);
177 void rcu_tasks_torture_stats_print(char *tt, char *tf);
178 # else
179 # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
180 # define call_rcu_tasks call_rcu
181 # define synchronize_rcu_tasks synchronize_rcu
182 # endif
183
184 # ifdef CONFIG_TASKS_TRACE_RCU
185 // Bits for ->trc_reader_special.b.need_qs field.
186 #define TRC_NEED_QS 0x1 // Task needs a quiescent state.
187 #define TRC_NEED_QS_CHECKED 0x2 // Task has been checked for needing quiescent state.
188
189 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new);
190 void rcu_tasks_trace_qs_blkd(struct task_struct *t);
191
192 # define rcu_tasks_trace_qs(t) \
193 do { \
194 int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting); \
195 \
196 if (unlikely(READ_ONCE((t)->trc_reader_special.b.need_qs) == TRC_NEED_QS) && \
197 likely(!___rttq_nesting)) { \
198 rcu_trc_cmpxchg_need_qs((t), TRC_NEED_QS, TRC_NEED_QS_CHECKED); \
199 } else if (___rttq_nesting && ___rttq_nesting != INT_MIN && \
200 !READ_ONCE((t)->trc_reader_special.b.blocked)) { \
201 rcu_tasks_trace_qs_blkd(t); \
202 } \
203 } while (0)
204 void rcu_tasks_trace_torture_stats_print(char *tt, char *tf);
205 # else
206 # define rcu_tasks_trace_qs(t) do { } while (0)
207 # endif
208
209 #define rcu_tasks_qs(t, preempt) \
210 do { \
211 rcu_tasks_classic_qs((t), (preempt)); \
212 rcu_tasks_trace_qs(t); \
213 } while (0)
214
215 # ifdef CONFIG_TASKS_RUDE_RCU
216 void synchronize_rcu_tasks_rude(void);
217 void rcu_tasks_rude_torture_stats_print(char *tt, char *tf);
218 # endif
219
220 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
221 void exit_tasks_rcu_start(void);
222 void exit_tasks_rcu_finish(void);
223 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
224 #define rcu_tasks_classic_qs(t, preempt) do { } while (0)
225 #define rcu_tasks_qs(t, preempt) do { } while (0)
226 #define rcu_note_voluntary_context_switch(t) do { } while (0)
227 #define call_rcu_tasks call_rcu
228 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)229 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_finish(void)230 static inline void exit_tasks_rcu_finish(void) { }
231 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
232
233 /**
234 * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period?
235 *
236 * As an accident of implementation, an RCU Tasks Trace grace period also
237 * acts as an RCU grace period. However, this could change at any time.
238 * Code relying on this accident must call this function to verify that
239 * this accident is still happening.
240 *
241 * You have been warned!
242 */
rcu_trace_implies_rcu_gp(void)243 static inline bool rcu_trace_implies_rcu_gp(void) { return true; }
244
245 /**
246 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
247 *
248 * This macro resembles cond_resched(), except that it is defined to
249 * report potential quiescent states to RCU-tasks even if the cond_resched()
250 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
251 */
252 #define cond_resched_tasks_rcu_qs() \
253 do { \
254 rcu_tasks_qs(current, false); \
255 cond_resched(); \
256 } while (0)
257
258 /**
259 * rcu_softirq_qs_periodic - Report RCU and RCU-Tasks quiescent states
260 * @old_ts: jiffies at start of processing.
261 *
262 * This helper is for long-running softirq handlers, such as NAPI threads in
263 * networking. The caller should initialize the variable passed in as @old_ts
264 * at the beginning of the softirq handler. When invoked frequently, this macro
265 * will invoke rcu_softirq_qs() every 100 milliseconds thereafter, which will
266 * provide both RCU and RCU-Tasks quiescent states. Note that this macro
267 * modifies its old_ts argument.
268 *
269 * Because regions of code that have disabled softirq act as RCU read-side
270 * critical sections, this macro should be invoked with softirq (and
271 * preemption) enabled.
272 *
273 * The macro is not needed when CONFIG_PREEMPT_RT is defined. RT kernels would
274 * have more chance to invoke schedule() calls and provide necessary quiescent
275 * states. As a contrast, calling cond_resched() only won't achieve the same
276 * effect because cond_resched() does not provide RCU-Tasks quiescent states.
277 */
278 #define rcu_softirq_qs_periodic(old_ts) \
279 do { \
280 if (!IS_ENABLED(CONFIG_PREEMPT_RT) && \
281 time_after(jiffies, (old_ts) + HZ / 10)) { \
282 preempt_disable(); \
283 rcu_softirq_qs(); \
284 preempt_enable(); \
285 (old_ts) = jiffies; \
286 } \
287 } while (0)
288
289 /*
290 * Infrastructure to implement the synchronize_() primitives in
291 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
292 */
293
294 #if defined(CONFIG_TREE_RCU)
295 #include <linux/rcutree.h>
296 #elif defined(CONFIG_TINY_RCU)
297 #include <linux/rcutiny.h>
298 #else
299 #error "Unknown RCU implementation specified to kernel configuration"
300 #endif
301
302 /*
303 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
304 * are needed for dynamic initialization and destruction of rcu_head
305 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
306 * dynamic initialization and destruction of statically allocated rcu_head
307 * structures. However, rcu_head structures allocated dynamically in the
308 * heap don't need any initialization.
309 */
310 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
311 void init_rcu_head(struct rcu_head *head);
312 void destroy_rcu_head(struct rcu_head *head);
313 void init_rcu_head_on_stack(struct rcu_head *head);
314 void destroy_rcu_head_on_stack(struct rcu_head *head);
315 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)316 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)317 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)318 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)319 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
320 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
321
322 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
323 bool rcu_lockdep_current_cpu_online(void);
324 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)325 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
326 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
327
328 extern struct lockdep_map rcu_lock_map;
329 extern struct lockdep_map rcu_bh_lock_map;
330 extern struct lockdep_map rcu_sched_lock_map;
331 extern struct lockdep_map rcu_callback_map;
332
333 #ifdef CONFIG_DEBUG_LOCK_ALLOC
334
rcu_lock_acquire(struct lockdep_map * map)335 static inline void rcu_lock_acquire(struct lockdep_map *map)
336 {
337 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
338 }
339
rcu_try_lock_acquire(struct lockdep_map * map)340 static inline void rcu_try_lock_acquire(struct lockdep_map *map)
341 {
342 lock_acquire(map, 0, 1, 2, 0, NULL, _THIS_IP_);
343 }
344
rcu_lock_release(struct lockdep_map * map)345 static inline void rcu_lock_release(struct lockdep_map *map)
346 {
347 lock_release(map, _THIS_IP_);
348 }
349
350 int debug_lockdep_rcu_enabled(void);
351 int rcu_read_lock_held(void);
352 int rcu_read_lock_bh_held(void);
353 int rcu_read_lock_sched_held(void);
354 int rcu_read_lock_any_held(void);
355
356 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
357
358 # define rcu_lock_acquire(a) do { } while (0)
359 # define rcu_try_lock_acquire(a) do { } while (0)
360 # define rcu_lock_release(a) do { } while (0)
361
rcu_read_lock_held(void)362 static inline int rcu_read_lock_held(void)
363 {
364 return 1;
365 }
366
rcu_read_lock_bh_held(void)367 static inline int rcu_read_lock_bh_held(void)
368 {
369 return 1;
370 }
371
rcu_read_lock_sched_held(void)372 static inline int rcu_read_lock_sched_held(void)
373 {
374 return !preemptible();
375 }
376
rcu_read_lock_any_held(void)377 static inline int rcu_read_lock_any_held(void)
378 {
379 return !preemptible();
380 }
381
debug_lockdep_rcu_enabled(void)382 static inline int debug_lockdep_rcu_enabled(void)
383 {
384 return 0;
385 }
386
387 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
388
389 #ifdef CONFIG_PROVE_RCU
390
391 /**
392 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
393 * @c: condition to check
394 * @s: informative message
395 *
396 * This checks debug_lockdep_rcu_enabled() before checking (c) to
397 * prevent early boot splats due to lockdep not yet being initialized,
398 * and rechecks it after checking (c) to prevent false-positive splats
399 * due to races with lockdep being disabled. See commit 3066820034b5dd
400 * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail.
401 */
402 #define RCU_LOCKDEP_WARN(c, s) \
403 do { \
404 static bool __section(".data..unlikely") __warned; \
405 if (debug_lockdep_rcu_enabled() && (c) && \
406 debug_lockdep_rcu_enabled() && !__warned) { \
407 __warned = true; \
408 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
409 } \
410 } while (0)
411
412 #ifndef CONFIG_PREEMPT_RCU
rcu_preempt_sleep_check(void)413 static inline void rcu_preempt_sleep_check(void)
414 {
415 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
416 "Illegal context switch in RCU read-side critical section");
417 }
418 #else // #ifndef CONFIG_PREEMPT_RCU
rcu_preempt_sleep_check(void)419 static inline void rcu_preempt_sleep_check(void) { }
420 #endif // #else // #ifndef CONFIG_PREEMPT_RCU
421
422 #define rcu_sleep_check() \
423 do { \
424 rcu_preempt_sleep_check(); \
425 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \
426 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
427 "Illegal context switch in RCU-bh read-side critical section"); \
428 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
429 "Illegal context switch in RCU-sched read-side critical section"); \
430 } while (0)
431
432 // See RCU_LOCKDEP_WARN() for an explanation of the double call to
433 // debug_lockdep_rcu_enabled().
lockdep_assert_rcu_helper(bool c)434 static inline bool lockdep_assert_rcu_helper(bool c)
435 {
436 return debug_lockdep_rcu_enabled() &&
437 (c || !rcu_is_watching() || !rcu_lockdep_current_cpu_online()) &&
438 debug_lockdep_rcu_enabled();
439 }
440
441 /**
442 * lockdep_assert_in_rcu_read_lock - WARN if not protected by rcu_read_lock()
443 *
444 * Splats if lockdep is enabled and there is no rcu_read_lock() in effect.
445 */
446 #define lockdep_assert_in_rcu_read_lock() \
447 WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_lock_map)))
448
449 /**
450 * lockdep_assert_in_rcu_read_lock_bh - WARN if not protected by rcu_read_lock_bh()
451 *
452 * Splats if lockdep is enabled and there is no rcu_read_lock_bh() in effect.
453 * Note that local_bh_disable() and friends do not suffice here, instead an
454 * actual rcu_read_lock_bh() is required.
455 */
456 #define lockdep_assert_in_rcu_read_lock_bh() \
457 WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_bh_lock_map)))
458
459 /**
460 * lockdep_assert_in_rcu_read_lock_sched - WARN if not protected by rcu_read_lock_sched()
461 *
462 * Splats if lockdep is enabled and there is no rcu_read_lock_sched()
463 * in effect. Note that preempt_disable() and friends do not suffice here,
464 * instead an actual rcu_read_lock_sched() is required.
465 */
466 #define lockdep_assert_in_rcu_read_lock_sched() \
467 WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_sched_lock_map)))
468
469 /**
470 * lockdep_assert_in_rcu_reader - WARN if not within some type of RCU reader
471 *
472 * Splats if lockdep is enabled and there is no RCU reader of any
473 * type in effect. Note that regions of code protected by things like
474 * preempt_disable, local_bh_disable(), and local_irq_disable() all qualify
475 * as RCU readers.
476 *
477 * Note that this will never trigger in PREEMPT_NONE or PREEMPT_VOLUNTARY
478 * kernels that are not also built with PREEMPT_COUNT. But if you have
479 * lockdep enabled, you might as well also enable PREEMPT_COUNT.
480 */
481 #define lockdep_assert_in_rcu_reader() \
482 WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_lock_map) && \
483 !lock_is_held(&rcu_bh_lock_map) && \
484 !lock_is_held(&rcu_sched_lock_map) && \
485 preemptible()))
486
487 #else /* #ifdef CONFIG_PROVE_RCU */
488
489 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
490 #define rcu_sleep_check() do { } while (0)
491
492 #define lockdep_assert_in_rcu_read_lock() do { } while (0)
493 #define lockdep_assert_in_rcu_read_lock_bh() do { } while (0)
494 #define lockdep_assert_in_rcu_read_lock_sched() do { } while (0)
495 #define lockdep_assert_in_rcu_reader() do { } while (0)
496
497 #endif /* #else #ifdef CONFIG_PROVE_RCU */
498
499 /*
500 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
501 * and rcu_assign_pointer(). Some of these could be folded into their
502 * callers, but they are left separate in order to ease introduction of
503 * multiple pointers markings to match different RCU implementations
504 * (e.g., __srcu), should this make sense in the future.
505 */
506
507 #ifdef __CHECKER__
508 #define rcu_check_sparse(p, space) \
509 ((void)(((typeof(*p) space *)p) == p))
510 #else /* #ifdef __CHECKER__ */
511 #define rcu_check_sparse(p, space)
512 #endif /* #else #ifdef __CHECKER__ */
513
514 #define __unrcu_pointer(p, local) \
515 ({ \
516 typeof(*p) *local = (typeof(*p) *__force)(p); \
517 rcu_check_sparse(p, __rcu); \
518 ((typeof(*p) __force __kernel *)(local)); \
519 })
520 /**
521 * unrcu_pointer - mark a pointer as not being RCU protected
522 * @p: pointer needing to lose its __rcu property
523 *
524 * Converts @p from an __rcu pointer to a __kernel pointer.
525 * This allows an __rcu pointer to be used with xchg() and friends.
526 */
527 #define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu))
528
529 #define __rcu_access_pointer(p, local, space) \
530 ({ \
531 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
532 rcu_check_sparse(p, space); \
533 ((typeof(*p) __force __kernel *)(local)); \
534 })
535 #define __rcu_dereference_check(p, local, c, space) \
536 ({ \
537 /* Dependency order vs. p above. */ \
538 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
539 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
540 rcu_check_sparse(p, space); \
541 ((typeof(*p) __force __kernel *)(local)); \
542 })
543 #define __rcu_dereference_protected(p, local, c, space) \
544 ({ \
545 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
546 rcu_check_sparse(p, space); \
547 ((typeof(*p) __force __kernel *)(p)); \
548 })
549 #define __rcu_dereference_raw(p, local) \
550 ({ \
551 /* Dependency order vs. p above. */ \
552 typeof(p) local = READ_ONCE(p); \
553 ((typeof(*p) __force __kernel *)(local)); \
554 })
555 #define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu))
556
557 /**
558 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
559 * @v: The value to statically initialize with.
560 */
561 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
562
563 /**
564 * rcu_assign_pointer() - assign to RCU-protected pointer
565 * @p: pointer to assign to
566 * @v: value to assign (publish)
567 *
568 * Assigns the specified value to the specified RCU-protected
569 * pointer, ensuring that any concurrent RCU readers will see
570 * any prior initialization.
571 *
572 * Inserts memory barriers on architectures that require them
573 * (which is most of them), and also prevents the compiler from
574 * reordering the code that initializes the structure after the pointer
575 * assignment. More importantly, this call documents which pointers
576 * will be dereferenced by RCU read-side code.
577 *
578 * In some special cases, you may use RCU_INIT_POINTER() instead
579 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
580 * to the fact that it does not constrain either the CPU or the compiler.
581 * That said, using RCU_INIT_POINTER() when you should have used
582 * rcu_assign_pointer() is a very bad thing that results in
583 * impossible-to-diagnose memory corruption. So please be careful.
584 * See the RCU_INIT_POINTER() comment header for details.
585 *
586 * Note that rcu_assign_pointer() evaluates each of its arguments only
587 * once, appearances notwithstanding. One of the "extra" evaluations
588 * is in typeof() and the other visible only to sparse (__CHECKER__),
589 * neither of which actually execute the argument. As with most cpp
590 * macros, this execute-arguments-only-once property is important, so
591 * please be careful when making changes to rcu_assign_pointer() and the
592 * other macros that it invokes.
593 */
594 #define rcu_assign_pointer(p, v) \
595 do { \
596 uintptr_t _r_a_p__v = (uintptr_t)(v); \
597 rcu_check_sparse(p, __rcu); \
598 \
599 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
600 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
601 else \
602 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
603 } while (0)
604
605 /**
606 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
607 * @rcu_ptr: RCU pointer, whose old value is returned
608 * @ptr: regular pointer
609 * @c: the lockdep conditions under which the dereference will take place
610 *
611 * Perform a replacement, where @rcu_ptr is an RCU-annotated
612 * pointer and @c is the lockdep argument that is passed to the
613 * rcu_dereference_protected() call used to read that pointer. The old
614 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
615 */
616 #define rcu_replace_pointer(rcu_ptr, ptr, c) \
617 ({ \
618 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \
619 rcu_assign_pointer((rcu_ptr), (ptr)); \
620 __tmp; \
621 })
622
623 /**
624 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
625 * @p: The pointer to read
626 *
627 * Return the value of the specified RCU-protected pointer, but omit the
628 * lockdep checks for being in an RCU read-side critical section. This is
629 * useful when the value of this pointer is accessed, but the pointer is
630 * not dereferenced, for example, when testing an RCU-protected pointer
631 * against NULL. Although rcu_access_pointer() may also be used in cases
632 * where update-side locks prevent the value of the pointer from changing,
633 * you should instead use rcu_dereference_protected() for this use case.
634 * Within an RCU read-side critical section, there is little reason to
635 * use rcu_access_pointer().
636 *
637 * It is usually best to test the rcu_access_pointer() return value
638 * directly in order to avoid accidental dereferences being introduced
639 * by later inattentive changes. In other words, assigning the
640 * rcu_access_pointer() return value to a local variable results in an
641 * accident waiting to happen.
642 *
643 * It is also permissible to use rcu_access_pointer() when read-side
644 * access to the pointer was removed at least one grace period ago, as is
645 * the case in the context of the RCU callback that is freeing up the data,
646 * or after a synchronize_rcu() returns. This can be useful when tearing
647 * down multi-linked structures after a grace period has elapsed. However,
648 * rcu_dereference_protected() is normally preferred for this use case.
649 */
650 #define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu)
651
652 /**
653 * rcu_dereference_check() - rcu_dereference with debug checking
654 * @p: The pointer to read, prior to dereferencing
655 * @c: The conditions under which the dereference will take place
656 *
657 * Do an rcu_dereference(), but check that the conditions under which the
658 * dereference will take place are correct. Typically the conditions
659 * indicate the various locking conditions that should be held at that
660 * point. The check should return true if the conditions are satisfied.
661 * An implicit check for being in an RCU read-side critical section
662 * (rcu_read_lock()) is included.
663 *
664 * For example:
665 *
666 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
667 *
668 * could be used to indicate to lockdep that foo->bar may only be dereferenced
669 * if either rcu_read_lock() is held, or that the lock required to replace
670 * the bar struct at foo->bar is held.
671 *
672 * Note that the list of conditions may also include indications of when a lock
673 * need not be held, for example during initialisation or destruction of the
674 * target struct:
675 *
676 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
677 * atomic_read(&foo->usage) == 0);
678 *
679 * Inserts memory barriers on architectures that require them
680 * (currently only the Alpha), prevents the compiler from refetching
681 * (and from merging fetches), and, more importantly, documents exactly
682 * which pointers are protected by RCU and checks that the pointer is
683 * annotated as __rcu.
684 */
685 #define rcu_dereference_check(p, c) \
686 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
687 (c) || rcu_read_lock_held(), __rcu)
688
689 /**
690 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
691 * @p: The pointer to read, prior to dereferencing
692 * @c: The conditions under which the dereference will take place
693 *
694 * This is the RCU-bh counterpart to rcu_dereference_check(). However,
695 * please note that starting in v5.0 kernels, vanilla RCU grace periods
696 * wait for local_bh_disable() regions of code in addition to regions of
697 * code demarked by rcu_read_lock() and rcu_read_unlock(). This means
698 * that synchronize_rcu(), call_rcu, and friends all take not only
699 * rcu_read_lock() but also rcu_read_lock_bh() into account.
700 */
701 #define rcu_dereference_bh_check(p, c) \
702 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
703 (c) || rcu_read_lock_bh_held(), __rcu)
704
705 /**
706 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
707 * @p: The pointer to read, prior to dereferencing
708 * @c: The conditions under which the dereference will take place
709 *
710 * This is the RCU-sched counterpart to rcu_dereference_check().
711 * However, please note that starting in v5.0 kernels, vanilla RCU grace
712 * periods wait for preempt_disable() regions of code in addition to
713 * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
714 * This means that synchronize_rcu(), call_rcu, and friends all take not
715 * only rcu_read_lock() but also rcu_read_lock_sched() into account.
716 */
717 #define rcu_dereference_sched_check(p, c) \
718 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
719 (c) || rcu_read_lock_sched_held(), \
720 __rcu)
721
722 /*
723 * The tracing infrastructure traces RCU (we want that), but unfortunately
724 * some of the RCU checks causes tracing to lock up the system.
725 *
726 * The no-tracing version of rcu_dereference_raw() must not call
727 * rcu_read_lock_held().
728 */
729 #define rcu_dereference_raw_check(p) \
730 __rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu)
731
732 /**
733 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
734 * @p: The pointer to read, prior to dereferencing
735 * @c: The conditions under which the dereference will take place
736 *
737 * Return the value of the specified RCU-protected pointer, but omit
738 * the READ_ONCE(). This is useful in cases where update-side locks
739 * prevent the value of the pointer from changing. Please note that this
740 * primitive does *not* prevent the compiler from repeating this reference
741 * or combining it with other references, so it should not be used without
742 * protection of appropriate locks.
743 *
744 * This function is only for update-side use. Using this function
745 * when protected only by rcu_read_lock() will result in infrequent
746 * but very ugly failures.
747 */
748 #define rcu_dereference_protected(p, c) \
749 __rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu)
750
751
752 /**
753 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
754 * @p: The pointer to read, prior to dereferencing
755 *
756 * This is a simple wrapper around rcu_dereference_check().
757 */
758 #define rcu_dereference(p) rcu_dereference_check(p, 0)
759
760 /**
761 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
762 * @p: The pointer to read, prior to dereferencing
763 *
764 * Makes rcu_dereference_check() do the dirty work.
765 */
766 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
767
768 /**
769 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
770 * @p: The pointer to read, prior to dereferencing
771 *
772 * Makes rcu_dereference_check() do the dirty work.
773 */
774 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
775
776 /**
777 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
778 * @p: The pointer to hand off
779 *
780 * This is simply an identity function, but it documents where a pointer
781 * is handed off from RCU to some other synchronization mechanism, for
782 * example, reference counting or locking. In C11, it would map to
783 * kill_dependency(). It could be used as follows::
784 *
785 * rcu_read_lock();
786 * p = rcu_dereference(gp);
787 * long_lived = is_long_lived(p);
788 * if (long_lived) {
789 * if (!atomic_inc_not_zero(p->refcnt))
790 * long_lived = false;
791 * else
792 * p = rcu_pointer_handoff(p);
793 * }
794 * rcu_read_unlock();
795 */
796 #define rcu_pointer_handoff(p) (p)
797
798 /**
799 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
800 *
801 * When synchronize_rcu() is invoked on one CPU while other CPUs
802 * are within RCU read-side critical sections, then the
803 * synchronize_rcu() is guaranteed to block until after all the other
804 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
805 * on one CPU while other CPUs are within RCU read-side critical
806 * sections, invocation of the corresponding RCU callback is deferred
807 * until after the all the other CPUs exit their critical sections.
808 *
809 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also
810 * wait for regions of code with preemption disabled, including regions of
811 * code with interrupts or softirqs disabled. In pre-v5.0 kernels, which
812 * define synchronize_sched(), only code enclosed within rcu_read_lock()
813 * and rcu_read_unlock() are guaranteed to be waited for.
814 *
815 * Note, however, that RCU callbacks are permitted to run concurrently
816 * with new RCU read-side critical sections. One way that this can happen
817 * is via the following sequence of events: (1) CPU 0 enters an RCU
818 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
819 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
820 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
821 * callback is invoked. This is legal, because the RCU read-side critical
822 * section that was running concurrently with the call_rcu() (and which
823 * therefore might be referencing something that the corresponding RCU
824 * callback would free up) has completed before the corresponding
825 * RCU callback is invoked.
826 *
827 * RCU read-side critical sections may be nested. Any deferred actions
828 * will be deferred until the outermost RCU read-side critical section
829 * completes.
830 *
831 * You can avoid reading and understanding the next paragraph by
832 * following this rule: don't put anything in an rcu_read_lock() RCU
833 * read-side critical section that would block in a !PREEMPTION kernel.
834 * But if you want the full story, read on!
835 *
836 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
837 * it is illegal to block while in an RCU read-side critical section.
838 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
839 * kernel builds, RCU read-side critical sections may be preempted,
840 * but explicit blocking is illegal. Finally, in preemptible RCU
841 * implementations in real-time (with -rt patchset) kernel builds, RCU
842 * read-side critical sections may be preempted and they may also block, but
843 * only when acquiring spinlocks that are subject to priority inheritance.
844 */
rcu_read_lock(void)845 static __always_inline void rcu_read_lock(void)
846 {
847 __rcu_read_lock();
848 __acquire(RCU);
849 rcu_lock_acquire(&rcu_lock_map);
850 RCU_LOCKDEP_WARN(!rcu_is_watching(),
851 "rcu_read_lock() used illegally while idle");
852 }
853
854 /*
855 * So where is rcu_write_lock()? It does not exist, as there is no
856 * way for writers to lock out RCU readers. This is a feature, not
857 * a bug -- this property is what provides RCU's performance benefits.
858 * Of course, writers must coordinate with each other. The normal
859 * spinlock primitives work well for this, but any other technique may be
860 * used as well. RCU does not care how the writers keep out of each
861 * others' way, as long as they do so.
862 */
863
864 /**
865 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
866 *
867 * In almost all situations, rcu_read_unlock() is immune from deadlock.
868 * In recent kernels that have consolidated synchronize_sched() and
869 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity
870 * also extends to the scheduler's runqueue and priority-inheritance
871 * spinlocks, courtesy of the quiescent-state deferral that is carried
872 * out when rcu_read_unlock() is invoked with interrupts disabled.
873 *
874 * See rcu_read_lock() for more information.
875 */
rcu_read_unlock(void)876 static inline void rcu_read_unlock(void)
877 {
878 RCU_LOCKDEP_WARN(!rcu_is_watching(),
879 "rcu_read_unlock() used illegally while idle");
880 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
881 __release(RCU);
882 __rcu_read_unlock();
883 }
884
885 /**
886 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
887 *
888 * This is equivalent to rcu_read_lock(), but also disables softirqs.
889 * Note that anything else that disables softirqs can also serve as an RCU
890 * read-side critical section. However, please note that this equivalence
891 * applies only to v5.0 and later. Before v5.0, rcu_read_lock() and
892 * rcu_read_lock_bh() were unrelated.
893 *
894 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
895 * must occur in the same context, for example, it is illegal to invoke
896 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
897 * was invoked from some other task.
898 */
rcu_read_lock_bh(void)899 static inline void rcu_read_lock_bh(void)
900 {
901 local_bh_disable();
902 __acquire(RCU_BH);
903 rcu_lock_acquire(&rcu_bh_lock_map);
904 RCU_LOCKDEP_WARN(!rcu_is_watching(),
905 "rcu_read_lock_bh() used illegally while idle");
906 }
907
908 /**
909 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
910 *
911 * See rcu_read_lock_bh() for more information.
912 */
rcu_read_unlock_bh(void)913 static inline void rcu_read_unlock_bh(void)
914 {
915 RCU_LOCKDEP_WARN(!rcu_is_watching(),
916 "rcu_read_unlock_bh() used illegally while idle");
917 rcu_lock_release(&rcu_bh_lock_map);
918 __release(RCU_BH);
919 local_bh_enable();
920 }
921
922 /**
923 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
924 *
925 * This is equivalent to rcu_read_lock(), but also disables preemption.
926 * Read-side critical sections can also be introduced by anything else that
927 * disables preemption, including local_irq_disable() and friends. However,
928 * please note that the equivalence to rcu_read_lock() applies only to
929 * v5.0 and later. Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
930 * were unrelated.
931 *
932 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
933 * must occur in the same context, for example, it is illegal to invoke
934 * rcu_read_unlock_sched() from process context if the matching
935 * rcu_read_lock_sched() was invoked from an NMI handler.
936 */
rcu_read_lock_sched(void)937 static inline void rcu_read_lock_sched(void)
938 {
939 preempt_disable();
940 __acquire(RCU_SCHED);
941 rcu_lock_acquire(&rcu_sched_lock_map);
942 RCU_LOCKDEP_WARN(!rcu_is_watching(),
943 "rcu_read_lock_sched() used illegally while idle");
944 }
945
946 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)947 static inline notrace void rcu_read_lock_sched_notrace(void)
948 {
949 preempt_disable_notrace();
950 __acquire(RCU_SCHED);
951 }
952
953 /**
954 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
955 *
956 * See rcu_read_lock_sched() for more information.
957 */
rcu_read_unlock_sched(void)958 static inline void rcu_read_unlock_sched(void)
959 {
960 RCU_LOCKDEP_WARN(!rcu_is_watching(),
961 "rcu_read_unlock_sched() used illegally while idle");
962 rcu_lock_release(&rcu_sched_lock_map);
963 __release(RCU_SCHED);
964 preempt_enable();
965 }
966
967 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)968 static inline notrace void rcu_read_unlock_sched_notrace(void)
969 {
970 __release(RCU_SCHED);
971 preempt_enable_notrace();
972 }
973
974 /**
975 * RCU_INIT_POINTER() - initialize an RCU protected pointer
976 * @p: The pointer to be initialized.
977 * @v: The value to initialized the pointer to.
978 *
979 * Initialize an RCU-protected pointer in special cases where readers
980 * do not need ordering constraints on the CPU or the compiler. These
981 * special cases are:
982 *
983 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
984 * 2. The caller has taken whatever steps are required to prevent
985 * RCU readers from concurrently accessing this pointer *or*
986 * 3. The referenced data structure has already been exposed to
987 * readers either at compile time or via rcu_assign_pointer() *and*
988 *
989 * a. You have not made *any* reader-visible changes to
990 * this structure since then *or*
991 * b. It is OK for readers accessing this structure from its
992 * new location to see the old state of the structure. (For
993 * example, the changes were to statistical counters or to
994 * other state where exact synchronization is not required.)
995 *
996 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
997 * result in impossible-to-diagnose memory corruption. As in the structures
998 * will look OK in crash dumps, but any concurrent RCU readers might
999 * see pre-initialized values of the referenced data structure. So
1000 * please be very careful how you use RCU_INIT_POINTER()!!!
1001 *
1002 * If you are creating an RCU-protected linked structure that is accessed
1003 * by a single external-to-structure RCU-protected pointer, then you may
1004 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1005 * pointers, but you must use rcu_assign_pointer() to initialize the
1006 * external-to-structure pointer *after* you have completely initialized
1007 * the reader-accessible portions of the linked structure.
1008 *
1009 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1010 * ordering guarantees for either the CPU or the compiler.
1011 */
1012 #define RCU_INIT_POINTER(p, v) \
1013 do { \
1014 rcu_check_sparse(p, __rcu); \
1015 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
1016 } while (0)
1017
1018 /**
1019 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1020 * @p: The pointer to be initialized.
1021 * @v: The value to initialized the pointer to.
1022 *
1023 * GCC-style initialization for an RCU-protected pointer in a structure field.
1024 */
1025 #define RCU_POINTER_INITIALIZER(p, v) \
1026 .p = RCU_INITIALIZER(v)
1027
1028 /*
1029 * Does the specified offset indicate that the corresponding rcu_head
1030 * structure can be handled by kvfree_rcu()?
1031 */
1032 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
1033
1034 /**
1035 * kfree_rcu() - kfree an object after a grace period.
1036 * @ptr: pointer to kfree for double-argument invocations.
1037 * @rhf: the name of the struct rcu_head within the type of @ptr.
1038 *
1039 * Many rcu callbacks functions just call kfree() on the base structure.
1040 * These functions are trivial, but their size adds up, and furthermore
1041 * when they are used in a kernel module, that module must invoke the
1042 * high-latency rcu_barrier() function at module-unload time.
1043 *
1044 * The kfree_rcu() function handles this issue. Rather than encoding a
1045 * function address in the embedded rcu_head structure, kfree_rcu() instead
1046 * encodes the offset of the rcu_head structure within the base structure.
1047 * Because the functions are not allowed in the low-order 4096 bytes of
1048 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1049 * If the offset is larger than 4095 bytes, a compile-time error will
1050 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
1051 * either fall back to use of call_rcu() or rearrange the structure to
1052 * position the rcu_head structure into the first 4096 bytes.
1053 *
1054 * The object to be freed can be allocated either by kmalloc() or
1055 * kmem_cache_alloc().
1056 *
1057 * Note that the allowable offset might decrease in the future.
1058 *
1059 * The BUILD_BUG_ON check must not involve any function calls, hence the
1060 * checks are done in macros here.
1061 */
1062 #define kfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
1063 #define kvfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
1064
1065 /**
1066 * kfree_rcu_mightsleep() - kfree an object after a grace period.
1067 * @ptr: pointer to kfree for single-argument invocations.
1068 *
1069 * When it comes to head-less variant, only one argument
1070 * is passed and that is just a pointer which has to be
1071 * freed after a grace period. Therefore the semantic is
1072 *
1073 * kfree_rcu_mightsleep(ptr);
1074 *
1075 * where @ptr is the pointer to be freed by kvfree().
1076 *
1077 * Please note, head-less way of freeing is permitted to
1078 * use from a context that has to follow might_sleep()
1079 * annotation. Otherwise, please switch and embed the
1080 * rcu_head structure within the type of @ptr.
1081 */
1082 #define kfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
1083 #define kvfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
1084
1085 #define kvfree_rcu_arg_2(ptr, rhf) \
1086 do { \
1087 typeof (ptr) ___p = (ptr); \
1088 \
1089 if (___p) { \
1090 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \
1091 kvfree_call_rcu(&((___p)->rhf), (void *) (___p)); \
1092 } \
1093 } while (0)
1094
1095 #define kvfree_rcu_arg_1(ptr) \
1096 do { \
1097 typeof(ptr) ___p = (ptr); \
1098 \
1099 if (___p) \
1100 kvfree_call_rcu(NULL, (void *) (___p)); \
1101 } while (0)
1102
1103 /*
1104 * Place this after a lock-acquisition primitive to guarantee that
1105 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies
1106 * if the UNLOCK and LOCK are executed by the same CPU or if the
1107 * UNLOCK and LOCK operate on the same lock variable.
1108 */
1109 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
1110 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */
1111 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1112 #define smp_mb__after_unlock_lock() do { } while (0)
1113 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1114
1115
1116 /* Has the specified rcu_head structure been handed to call_rcu()? */
1117
1118 /**
1119 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
1120 * @rhp: The rcu_head structure to initialize.
1121 *
1122 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
1123 * given rcu_head structure has already been passed to call_rcu(), then
1124 * you must also invoke this rcu_head_init() function on it just after
1125 * allocating that structure. Calls to this function must not race with
1126 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
1127 */
rcu_head_init(struct rcu_head * rhp)1128 static inline void rcu_head_init(struct rcu_head *rhp)
1129 {
1130 rhp->func = (rcu_callback_t)~0L;
1131 }
1132
1133 /**
1134 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
1135 * @rhp: The rcu_head structure to test.
1136 * @f: The function passed to call_rcu() along with @rhp.
1137 *
1138 * Returns @true if the @rhp has been passed to call_rcu() with @func,
1139 * and @false otherwise. Emits a warning in any other case, including
1140 * the case where @rhp has already been invoked after a grace period.
1141 * Calls to this function must not race with callback invocation. One way
1142 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
1143 * in an RCU read-side critical section that includes a read-side fetch
1144 * of the pointer to the structure containing @rhp.
1145 */
1146 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)1147 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
1148 {
1149 rcu_callback_t func = READ_ONCE(rhp->func);
1150
1151 if (func == f)
1152 return true;
1153 WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1154 return false;
1155 }
1156
1157 /* kernel/ksysfs.c definitions */
1158 extern int rcu_expedited;
1159 extern int rcu_normal;
1160
1161 DEFINE_LOCK_GUARD_0(rcu,
1162 do {
1163 rcu_read_lock();
1164 /*
1165 * sparse doesn't call the cleanup function,
1166 * so just release immediately and don't track
1167 * the context. We don't need to anyway, since
1168 * the whole point of the guard is to not need
1169 * the explicit unlock.
1170 */
1171 __release(RCU);
1172 } while (0),
1173 rcu_read_unlock())
1174
1175 #endif /* __LINUX_RCUPDATE_H */
1176