xref: /linux/drivers/net/can/rcar/rcar_canfd.c (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Renesas R-Car CAN FD device driver
3  *
4  * Copyright (C) 2015 Renesas Electronics Corp.
5  */
6 
7 /* The R-Car CAN FD controller can operate in either one of the below two modes
8  *  - CAN FD only mode
9  *  - Classical CAN (CAN 2.0) only mode
10  *
11  * This driver puts the controller in CAN FD only mode by default. In this
12  * mode, the controller acts as a CAN FD node that can also interoperate with
13  * CAN 2.0 nodes.
14  *
15  * To switch the controller to Classical CAN (CAN 2.0) only mode, add
16  * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
17  * also required to switch modes.
18  *
19  * Note: The h/w manual register naming convention is clumsy and not acceptable
20  * to use as it is in the driver. However, those names are added as comments
21  * wherever it is modified to a readable name.
22  */
23 
24 #include <linux/bitfield.h>
25 #include <linux/bitmap.h>
26 #include <linux/bitops.h>
27 #include <linux/can/dev.h>
28 #include <linux/clk.h>
29 #include <linux/errno.h>
30 #include <linux/ethtool.h>
31 #include <linux/interrupt.h>
32 #include <linux/iopoll.h>
33 #include <linux/kernel.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/netdevice.h>
37 #include <linux/of.h>
38 #include <linux/phy/phy.h>
39 #include <linux/platform_device.h>
40 #include <linux/reset.h>
41 #include <linux/types.h>
42 
43 #define RCANFD_DRV_NAME			"rcar_canfd"
44 
45 /* Global register bits */
46 
47 /* RSCFDnCFDGRMCFG */
48 #define RCANFD_GRMCFG_RCMC		BIT(0)
49 
50 /* RSCFDnCFDGCFG / RSCFDnGCFG */
51 #define RCANFD_GCFG_EEFE		BIT(6)
52 #define RCANFD_GCFG_CMPOC		BIT(5)	/* CAN FD only */
53 #define RCANFD_GCFG_DCS			BIT(4)
54 #define RCANFD_GCFG_DCE			BIT(1)
55 #define RCANFD_GCFG_TPRI		BIT(0)
56 
57 /* RSCFDnCFDGCTR / RSCFDnGCTR */
58 #define RCANFD_GCTR_TSRST		BIT(16)
59 #define RCANFD_GCTR_CFMPOFIE		BIT(11)	/* CAN FD only */
60 #define RCANFD_GCTR_THLEIE		BIT(10)
61 #define RCANFD_GCTR_MEIE		BIT(9)
62 #define RCANFD_GCTR_DEIE		BIT(8)
63 #define RCANFD_GCTR_GSLPR		BIT(2)
64 #define RCANFD_GCTR_GMDC_MASK		(0x3)
65 #define RCANFD_GCTR_GMDC_GOPM		(0x0)
66 #define RCANFD_GCTR_GMDC_GRESET		(0x1)
67 #define RCANFD_GCTR_GMDC_GTEST		(0x2)
68 
69 /* RSCFDnCFDGSTS / RSCFDnGSTS */
70 #define RCANFD_GSTS_GRAMINIT		BIT(3)
71 #define RCANFD_GSTS_GSLPSTS		BIT(2)
72 #define RCANFD_GSTS_GHLTSTS		BIT(1)
73 #define RCANFD_GSTS_GRSTSTS		BIT(0)
74 /* Non-operational status */
75 #define RCANFD_GSTS_GNOPM		(BIT(0) | BIT(1) | BIT(2) | BIT(3))
76 
77 /* RSCFDnCFDGERFL / RSCFDnGERFL */
78 #define RCANFD_GERFL_EEF		GENMASK(23, 16)
79 #define RCANFD_GERFL_CMPOF		BIT(3)	/* CAN FD only */
80 #define RCANFD_GERFL_THLES		BIT(2)
81 #define RCANFD_GERFL_MES		BIT(1)
82 #define RCANFD_GERFL_DEF		BIT(0)
83 
84 #define RCANFD_GERFL_ERR(gpriv, x) \
85 ({\
86 	typeof(gpriv) (_gpriv) = (gpriv); \
87 	((x) & ((FIELD_PREP(RCANFD_GERFL_EEF, (_gpriv)->channels_mask)) | \
88 		RCANFD_GERFL_MES | ((_gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0))); \
89 })
90 
91 /* AFL Rx rules registers */
92 
93 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
94 #define RCANFD_GAFLECTR_AFLDAE		BIT(8)
95 #define RCANFD_GAFLECTR_AFLPN(gpriv, page_num)	((page_num) & (gpriv)->info->max_aflpn)
96 
97 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
98 #define RCANFD_GAFLID_GAFLLB		BIT(29)
99 
100 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
101 #define RCANFD_GAFLP1_GAFLFDP(x)	(1 << (x))
102 
103 /* Channel register bits */
104 
105 /* RSCFDnCmCFG - Classical CAN only */
106 #define RCANFD_CFG_SJW(x)		(((x) & 0x3) << 24)
107 #define RCANFD_CFG_TSEG2(x)		(((x) & 0x7) << 20)
108 #define RCANFD_CFG_TSEG1(x)		(((x) & 0xf) << 16)
109 #define RCANFD_CFG_BRP(x)		(((x) & 0x3ff) << 0)
110 
111 /* RSCFDnCFDCmNCFG - CAN FD only */
112 #define RCANFD_NCFG_NTSEG2(gpriv, x) \
113 	(((x) & ((gpriv)->info->nom_bittiming->tseg2_max - 1)) << (gpriv)->info->sh->ntseg2)
114 
115 #define RCANFD_NCFG_NTSEG1(gpriv, x) \
116 	(((x) & ((gpriv)->info->nom_bittiming->tseg1_max - 1)) << (gpriv)->info->sh->ntseg1)
117 
118 #define RCANFD_NCFG_NSJW(gpriv, x) \
119 	(((x) & ((gpriv)->info->nom_bittiming->sjw_max - 1)) << (gpriv)->info->sh->nsjw)
120 
121 #define RCANFD_NCFG_NBRP(x)		(((x) & 0x3ff) << 0)
122 
123 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
124 #define RCANFD_CCTR_CTME		BIT(24)
125 #define RCANFD_CCTR_ERRD		BIT(23)
126 #define RCANFD_CCTR_BOM_MASK		(0x3 << 21)
127 #define RCANFD_CCTR_BOM_ISO		(0x0 << 21)
128 #define RCANFD_CCTR_BOM_BENTRY		(0x1 << 21)
129 #define RCANFD_CCTR_BOM_BEND		(0x2 << 21)
130 #define RCANFD_CCTR_TDCVFIE		BIT(19)
131 #define RCANFD_CCTR_SOCOIE		BIT(18)
132 #define RCANFD_CCTR_EOCOIE		BIT(17)
133 #define RCANFD_CCTR_TAIE		BIT(16)
134 #define RCANFD_CCTR_ALIE		BIT(15)
135 #define RCANFD_CCTR_BLIE		BIT(14)
136 #define RCANFD_CCTR_OLIE		BIT(13)
137 #define RCANFD_CCTR_BORIE		BIT(12)
138 #define RCANFD_CCTR_BOEIE		BIT(11)
139 #define RCANFD_CCTR_EPIE		BIT(10)
140 #define RCANFD_CCTR_EWIE		BIT(9)
141 #define RCANFD_CCTR_BEIE		BIT(8)
142 #define RCANFD_CCTR_CSLPR		BIT(2)
143 #define RCANFD_CCTR_CHMDC_MASK		(0x3)
144 #define RCANFD_CCTR_CHDMC_COPM		(0x0)
145 #define RCANFD_CCTR_CHDMC_CRESET	(0x1)
146 #define RCANFD_CCTR_CHDMC_CHLT		(0x2)
147 
148 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
149 #define RCANFD_CSTS_COMSTS		BIT(7)
150 #define RCANFD_CSTS_RECSTS		BIT(6)
151 #define RCANFD_CSTS_TRMSTS		BIT(5)
152 #define RCANFD_CSTS_BOSTS		BIT(4)
153 #define RCANFD_CSTS_EPSTS		BIT(3)
154 #define RCANFD_CSTS_SLPSTS		BIT(2)
155 #define RCANFD_CSTS_HLTSTS		BIT(1)
156 #define RCANFD_CSTS_CRSTSTS		BIT(0)
157 
158 #define RCANFD_CSTS_TECCNT(x)		(((x) >> 24) & 0xff)
159 #define RCANFD_CSTS_RECCNT(x)		(((x) >> 16) & 0xff)
160 
161 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
162 #define RCANFD_CERFL_ADERR		BIT(14)
163 #define RCANFD_CERFL_B0ERR		BIT(13)
164 #define RCANFD_CERFL_B1ERR		BIT(12)
165 #define RCANFD_CERFL_CERR		BIT(11)
166 #define RCANFD_CERFL_AERR		BIT(10)
167 #define RCANFD_CERFL_FERR		BIT(9)
168 #define RCANFD_CERFL_SERR		BIT(8)
169 #define RCANFD_CERFL_ALF		BIT(7)
170 #define RCANFD_CERFL_BLF		BIT(6)
171 #define RCANFD_CERFL_OVLF		BIT(5)
172 #define RCANFD_CERFL_BORF		BIT(4)
173 #define RCANFD_CERFL_BOEF		BIT(3)
174 #define RCANFD_CERFL_EPF		BIT(2)
175 #define RCANFD_CERFL_EWF		BIT(1)
176 #define RCANFD_CERFL_BEF		BIT(0)
177 
178 #define RCANFD_CERFL_ERR(x)		((x) & (0x7fff)) /* above bits 14:0 */
179 
180 /* RSCFDnCFDCmDCFG */
181 #define RCANFD_DCFG_DSJW(gpriv, x)	(((x) & ((gpriv)->info->data_bittiming->sjw_max - 1)) << 24)
182 
183 #define RCANFD_DCFG_DTSEG2(gpriv, x) \
184 	(((x) & ((gpriv)->info->data_bittiming->tseg2_max - 1)) << (gpriv)->info->sh->dtseg2)
185 
186 #define RCANFD_DCFG_DTSEG1(gpriv, x) \
187 	(((x) & ((gpriv)->info->data_bittiming->tseg1_max - 1)) << (gpriv)->info->sh->dtseg1)
188 
189 #define RCANFD_DCFG_DBRP(x)		(((x) & 0xff) << 0)
190 
191 /* RSCFDnCFDCmFDCFG */
192 #define RCANFD_GEN4_FDCFG_CLOE		BIT(30)
193 #define RCANFD_GEN4_FDCFG_FDOE		BIT(28)
194 #define RCANFD_FDCFG_TDCO		GENMASK(23, 16)
195 #define RCANFD_FDCFG_TDCE		BIT(9)
196 #define RCANFD_FDCFG_TDCOC		BIT(8)
197 
198 /* RSCFDnCFDCmFDSTS */
199 #define RCANFD_FDSTS_SOC		GENMASK(31, 24)
200 #define RCANFD_FDSTS_EOC		GENMASK(23, 16)
201 #define RCANFD_GEN4_FDSTS_TDCVF		BIT(15)
202 #define RCANFD_GEN4_FDSTS_PNSTS		GENMASK(13, 12)
203 #define RCANFD_FDSTS_SOCO		BIT(9)
204 #define RCANFD_FDSTS_EOCO		BIT(8)
205 #define RCANFD_FDSTS_TDCVF		BIT(7)
206 #define RCANFD_FDSTS_TDCR		GENMASK(7, 0)
207 
208 /* RSCFDnCFDRFCCx */
209 #define RCANFD_RFCC_RFIM		BIT(12)
210 #define RCANFD_RFCC_RFDC(x)		(((x) & 0x7) << 8)
211 #define RCANFD_RFCC_RFPLS(x)		(((x) & 0x7) << 4)
212 #define RCANFD_RFCC_RFIE		BIT(1)
213 #define RCANFD_RFCC_RFE			BIT(0)
214 
215 /* RSCFDnCFDRFSTSx */
216 #define RCANFD_RFSTS_RFIF		BIT(3)
217 #define RCANFD_RFSTS_RFMLT		BIT(2)
218 #define RCANFD_RFSTS_RFFLL		BIT(1)
219 #define RCANFD_RFSTS_RFEMP		BIT(0)
220 
221 /* RSCFDnCFDRFIDx */
222 #define RCANFD_RFID_RFIDE		BIT(31)
223 #define RCANFD_RFID_RFRTR		BIT(30)
224 
225 /* RSCFDnCFDRFPTRx */
226 #define RCANFD_RFPTR_RFDLC(x)		(((x) >> 28) & 0xf)
227 
228 /* RSCFDnCFDRFFDSTSx */
229 #define RCANFD_RFFDSTS_RFFDF		BIT(2)
230 #define RCANFD_RFFDSTS_RFBRS		BIT(1)
231 #define RCANFD_RFFDSTS_RFESI		BIT(0)
232 
233 /* Common FIFO bits */
234 
235 /* RSCFDnCFDCFCCk */
236 #define RCANFD_CFCC_CFTML(gpriv, cftml) \
237 ({\
238 	typeof(gpriv) (_gpriv) = (gpriv); \
239 	(((cftml) & (_gpriv)->info->max_cftml) << (_gpriv)->info->sh->cftml); \
240 })
241 #define RCANFD_CFCC_CFM(gpriv, x)	(((x) & 0x3) << (gpriv)->info->sh->cfm)
242 #define RCANFD_CFCC_CFIM		BIT(12)
243 #define RCANFD_CFCC_CFDC(gpriv, x)	(((x) & 0x7) << (gpriv)->info->sh->cfdc)
244 #define RCANFD_CFCC_CFPLS(x)		(((x) & 0x7) << 4)
245 #define RCANFD_CFCC_CFTXIE		BIT(2)
246 #define RCANFD_CFCC_CFE			BIT(0)
247 
248 /* RSCFDnCFDCFSTSk */
249 #define RCANFD_CFSTS_CFMC(x)		(((x) >> 8) & 0xff)
250 #define RCANFD_CFSTS_CFTXIF		BIT(4)
251 #define RCANFD_CFSTS_CFMLT		BIT(2)
252 #define RCANFD_CFSTS_CFFLL		BIT(1)
253 #define RCANFD_CFSTS_CFEMP		BIT(0)
254 
255 /* RSCFDnCFDCFIDk */
256 #define RCANFD_CFID_CFIDE		BIT(31)
257 #define RCANFD_CFID_CFRTR		BIT(30)
258 
259 /* RSCFDnCFDCFPTRk */
260 #define RCANFD_CFPTR_CFDLC(x)		(((x) & 0xf) << 28)
261 
262 /* RSCFDnCFDCFFDCSTSk */
263 #define RCANFD_CFFDCSTS_CFFDF		BIT(2)
264 #define RCANFD_CFFDCSTS_CFBRS		BIT(1)
265 #define RCANFD_CFFDCSTS_CFESI		BIT(0)
266 
267 /* This controller supports either Classical CAN only mode or CAN FD only mode.
268  * These modes are supported in two separate set of register maps & names.
269  * However, some of the register offsets are common for both modes. Those
270  * offsets are listed below as Common registers.
271  *
272  * The CAN FD only mode specific registers & Classical CAN only mode specific
273  * registers are listed separately. Their register names starts with
274  * RCANFD_F_xxx & RCANFD_C_xxx respectively.
275  */
276 
277 /* Common registers */
278 
279 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
280 #define RCANFD_CCFG(m)			(0x0000 + (0x10 * (m)))
281 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
282 #define RCANFD_CCTR(m)			(0x0004 + (0x10 * (m)))
283 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
284 #define RCANFD_CSTS(m)			(0x0008 + (0x10 * (m)))
285 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
286 #define RCANFD_CERFL(m)			(0x000C + (0x10 * (m)))
287 
288 /* RSCFDnCFDGCFG / RSCFDnGCFG */
289 #define RCANFD_GCFG			(0x0084)
290 /* RSCFDnCFDGCTR / RSCFDnGCTR */
291 #define RCANFD_GCTR			(0x0088)
292 /* RSCFDnCFDGCTS / RSCFDnGCTS */
293 #define RCANFD_GSTS			(0x008c)
294 /* RSCFDnCFDGERFL / RSCFDnGERFL */
295 #define RCANFD_GERFL			(0x0090)
296 /* RSCFDnCFDGTSC / RSCFDnGTSC */
297 #define RCANFD_GTSC			(0x0094)
298 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
299 #define RCANFD_GAFLECTR			(0x0098)
300 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */
301 #define RCANFD_GAFLCFG(w)		(0x009c + (0x04 * (w)))
302 /* RSCFDnCFDRMNB / RSCFDnRMNB */
303 #define RCANFD_RMNB			(0x00a4)
304 /* RSCFDnCFDRMND / RSCFDnRMND */
305 #define RCANFD_RMND(y)			(0x00a8 + (0x04 * (y)))
306 
307 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */
308 #define RCANFD_RFCC(gpriv, x)		((gpriv)->info->regs->rfcc + (0x04 * (x)))
309 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
310 #define RCANFD_RFSTS(gpriv, x)		(RCANFD_RFCC(gpriv, x) + 0x20)
311 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
312 #define RCANFD_RFPCTR(gpriv, x)		(RCANFD_RFCC(gpriv, x) + 0x40)
313 
314 /* Common FIFO Control registers */
315 
316 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */
317 #define RCANFD_CFCC(gpriv, ch, idx) \
318 	((gpriv)->info->regs->cfcc + (0x0c * (ch)) + (0x04 * (idx)))
319 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
320 #define RCANFD_CFSTS(gpriv, ch, idx) \
321 	((gpriv)->info->regs->cfsts + (0x0c * (ch)) + (0x04 * (idx)))
322 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
323 #define RCANFD_CFPCTR(gpriv, ch, idx) \
324 	((gpriv)->info->regs->cfpctr + (0x0c * (ch)) + (0x04 * (idx)))
325 
326 /* RSCFDnCFDGRMCFG */
327 #define RCANFD_GRMCFG			(0x04fc)
328 
329 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
330 #define RCANFD_GAFLID(offset, j)	((offset) + (0x10 * (j)))
331 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
332 #define RCANFD_GAFLM(offset, j)		((offset) + 0x04 + (0x10 * (j)))
333 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
334 #define RCANFD_GAFLP0(offset, j)	((offset) + 0x08 + (0x10 * (j)))
335 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
336 #define RCANFD_GAFLP1(offset, j)	((offset) + 0x0c + (0x10 * (j)))
337 
338 /* Classical CAN only mode register map */
339 
340 /* RSCFDnGAFLXXXj offset */
341 #define RCANFD_C_GAFL_OFFSET		(0x0500)
342 
343 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
344 #define RCANFD_C_RFOFFSET	(0x0e00)
345 #define RCANFD_C_RFID(x)	(RCANFD_C_RFOFFSET + (0x10 * (x)))
346 #define RCANFD_C_RFPTR(x)	(RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x)))
347 #define RCANFD_C_RFDF(x, df) \
348 		(RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df)))
349 
350 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
351 #define RCANFD_C_CFOFFSET		(0x0e80)
352 
353 #define RCANFD_C_CFID(ch, idx) \
354 	(RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx)))
355 
356 #define RCANFD_C_CFPTR(ch, idx)	\
357 	(RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx)))
358 
359 #define RCANFD_C_CFDF(ch, idx, df) \
360 	(RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df)))
361 
362 /* R-Car Gen4 Classical and CAN FD mode specific register map */
363 #define RCANFD_GEN4_GAFL_OFFSET		(0x1800)
364 
365 /* CAN FD mode specific register map */
366 
367 /* RSCFDnCFDCmXXX -> gpriv->fcbase[m].xxx */
368 struct rcar_canfd_f_c {
369 	u32 dcfg;
370 	u32 cfdcfg;
371 	u32 cfdctr;
372 	u32 cfdsts;
373 	u32 cfdcrc;
374 	u32 pad[3];
375 };
376 
377 /* RSCFDnCFDGAFLXXXj offset */
378 #define RCANFD_F_GAFL_OFFSET		(0x1000)
379 
380 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
381 #define RCANFD_F_RFOFFSET(gpriv)	((gpriv)->info->regs->rfoffset)
382 #define RCANFD_F_RFID(gpriv, x)		(RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x)))
383 #define RCANFD_F_RFPTR(gpriv, x)	(RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x)))
384 #define RCANFD_F_RFFDSTS(gpriv, x)	(RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x)))
385 #define RCANFD_F_RFDF(gpriv, x, df) \
386 	(RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df)))
387 
388 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
389 #define RCANFD_F_CFOFFSET(gpriv)	((gpriv)->info->regs->cfoffset)
390 
391 #define RCANFD_F_CFID(gpriv, ch, idx) \
392 	(RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx)))
393 
394 #define RCANFD_F_CFPTR(gpriv, ch, idx) \
395 	(RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx)))
396 
397 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \
398 	(RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx)))
399 
400 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \
401 	(RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \
402 	 (0x04 * (df)))
403 
404 /* Constants */
405 #define RCANFD_FIFO_DEPTH		8	/* Tx FIFO depth */
406 #define RCANFD_NAPI_WEIGHT		8	/* Rx poll quota */
407 
408 #define RCANFD_NUM_CHANNELS		8	/* Eight channels max */
409 
410 #define RCANFD_GAFL_PAGENUM(entry)	((entry) / 16)
411 #define RCANFD_CHANNEL_NUMRULES		1	/* only one rule per channel */
412 
413 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
414  * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
415  * number is added to RFFIFO index.
416  */
417 #define RCANFD_RFFIFO_IDX		0
418 
419 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
420  * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
421  */
422 #define RCANFD_CFFIFO_IDX		0
423 
424 struct rcar_canfd_global;
425 
426 struct rcar_canfd_regs {
427 	u16 rfcc;	/* RX FIFO Configuration/Control Register */
428 	u16 cfcc;	/* Common FIFO Configuration/Control Register */
429 	u16 cfsts;	/* Common FIFO Status Register */
430 	u16 cfpctr;	/* Common FIFO Pointer Control Register */
431 	u16 coffset;	/* Channel Data Bitrate Configuration Register */
432 	u16 rfoffset;	/* Receive FIFO buffer access ID register */
433 	u16 cfoffset;	/* Transmit/receive FIFO buffer access ID register */
434 };
435 
436 struct rcar_canfd_shift_data {
437 	u8 ntseg2;	/* Nominal Bit Rate Time Segment 2 Control */
438 	u8 ntseg1;	/* Nominal Bit Rate Time Segment 1 Control */
439 	u8 nsjw;	/* Nominal Bit Rate Resynchronization Jump Width Control */
440 	u8 dtseg2;	/* Data Bit Rate Time Segment 2 Control */
441 	u8 dtseg1;	/* Data Bit Rate Time Segment 1 Control */
442 	u8 cftml;	/* Common FIFO TX Message Buffer Link */
443 	u8 cfm;		/* Common FIFO Mode */
444 	u8 cfdc;	/* Common FIFO Depth Configuration */
445 };
446 
447 struct rcar_canfd_hw_info {
448 	const struct can_bittiming_const *nom_bittiming;
449 	const struct can_bittiming_const *data_bittiming;
450 	const struct can_tdc_const *tdc_const;
451 	const struct rcar_canfd_regs *regs;
452 	const struct rcar_canfd_shift_data *sh;
453 	u8 rnc_field_width;
454 	u8 max_aflpn;
455 	u8 max_cftml;
456 	u8 max_channels;
457 	u8 postdiv;
458 	/* hardware features */
459 	unsigned shared_global_irqs:1;	/* Has shared global irqs */
460 	unsigned multi_channel_irqs:1;	/* Has multiple channel irqs */
461 	unsigned ch_interface_mode:1;	/* Has channel interface mode */
462 	unsigned shared_can_regs:1;	/* Has shared classical can registers */
463 	unsigned external_clk:1;	/* Has external clock */
464 };
465 
466 /* Channel priv data */
467 struct rcar_canfd_channel {
468 	struct can_priv can;			/* Must be the first member */
469 	struct net_device *ndev;
470 	struct rcar_canfd_global *gpriv;	/* Controller reference */
471 	void __iomem *base;			/* Register base address */
472 	struct phy *transceiver;		/* Optional transceiver */
473 	struct napi_struct napi;
474 	u32 tx_head;				/* Incremented on xmit */
475 	u32 tx_tail;				/* Incremented on xmit done */
476 	u32 channel;				/* Channel number */
477 	spinlock_t tx_lock;			/* To protect tx path */
478 };
479 
480 /* Global priv data */
481 struct rcar_canfd_global {
482 	struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
483 	void __iomem *base;		/* Register base address */
484 	struct rcar_canfd_f_c __iomem *fcbase;
485 	struct platform_device *pdev;	/* Respective platform device */
486 	struct clk *clkp;		/* Peripheral clock */
487 	struct clk *can_clk;		/* fCAN clock */
488 	unsigned long channels_mask;	/* Enabled channels mask */
489 	bool extclk;			/* CANFD or Ext clock */
490 	bool fdmode;			/* CAN FD or Classical CAN only mode */
491 	struct reset_control *rstc1;
492 	struct reset_control *rstc2;
493 	const struct rcar_canfd_hw_info *info;
494 };
495 
496 /* CAN FD mode nominal rate constants */
497 static const struct can_bittiming_const rcar_canfd_gen3_nom_bittiming_const = {
498 	.name = RCANFD_DRV_NAME,
499 	.tseg1_min = 2,
500 	.tseg1_max = 128,
501 	.tseg2_min = 2,
502 	.tseg2_max = 32,
503 	.sjw_max = 32,
504 	.brp_min = 1,
505 	.brp_max = 1024,
506 	.brp_inc = 1,
507 };
508 
509 static const struct can_bittiming_const rcar_canfd_gen4_nom_bittiming_const = {
510 	.name = RCANFD_DRV_NAME,
511 	.tseg1_min = 2,
512 	.tseg1_max = 256,
513 	.tseg2_min = 2,
514 	.tseg2_max = 128,
515 	.sjw_max = 128,
516 	.brp_min = 1,
517 	.brp_max = 1024,
518 	.brp_inc = 1,
519 };
520 
521 /* CAN FD mode data rate constants */
522 static const struct can_bittiming_const rcar_canfd_gen3_data_bittiming_const = {
523 	.name = RCANFD_DRV_NAME,
524 	.tseg1_min = 2,
525 	.tseg1_max = 16,
526 	.tseg2_min = 2,
527 	.tseg2_max = 8,
528 	.sjw_max = 8,
529 	.brp_min = 1,
530 	.brp_max = 256,
531 	.brp_inc = 1,
532 };
533 
534 static const struct can_bittiming_const rcar_canfd_gen4_data_bittiming_const = {
535 	.name = RCANFD_DRV_NAME,
536 	.tseg1_min = 2,
537 	.tseg1_max = 32,
538 	.tseg2_min = 2,
539 	.tseg2_max = 16,
540 	.sjw_max = 16,
541 	.brp_min = 1,
542 	.brp_max = 256,
543 	.brp_inc = 1,
544 };
545 
546 /* Classical CAN mode bitrate constants */
547 static const struct can_bittiming_const rcar_canfd_bittiming_const = {
548 	.name = RCANFD_DRV_NAME,
549 	.tseg1_min = 4,
550 	.tseg1_max = 16,
551 	.tseg2_min = 2,
552 	.tseg2_max = 8,
553 	.sjw_max = 4,
554 	.brp_min = 1,
555 	.brp_max = 1024,
556 	.brp_inc = 1,
557 };
558 
559 /* CAN FD Transmission Delay Compensation constants */
560 static const struct can_tdc_const rcar_canfd_gen3_tdc_const = {
561 	.tdcv_min = 1,
562 	.tdcv_max = 128,
563 	.tdco_min = 1,
564 	.tdco_max = 128,
565 	.tdcf_min = 0,	/* Filter window not supported */
566 	.tdcf_max = 0,
567 };
568 
569 static const struct can_tdc_const rcar_canfd_gen4_tdc_const = {
570 	.tdcv_min = 1,
571 	.tdcv_max = 256,
572 	.tdco_min = 1,
573 	.tdco_max = 256,
574 	.tdcf_min = 0,	/* Filter window not supported */
575 	.tdcf_max = 0,
576 };
577 
578 static const struct rcar_canfd_regs rcar_gen3_regs = {
579 	.rfcc = 0x00b8,
580 	.cfcc = 0x0118,
581 	.cfsts = 0x0178,
582 	.cfpctr = 0x01d8,
583 	.coffset = 0x0500,
584 	.rfoffset = 0x3000,
585 	.cfoffset = 0x3400,
586 };
587 
588 static const struct rcar_canfd_regs rcar_gen4_regs = {
589 	.rfcc = 0x00c0,
590 	.cfcc = 0x0120,
591 	.cfsts = 0x01e0,
592 	.cfpctr = 0x0240,
593 	.coffset = 0x1400,
594 	.rfoffset = 0x6000,
595 	.cfoffset = 0x6400,
596 };
597 
598 static const struct rcar_canfd_shift_data rcar_gen3_shift_data = {
599 	.ntseg2 = 24,
600 	.ntseg1 = 16,
601 	.nsjw = 11,
602 	.dtseg2 = 20,
603 	.dtseg1 = 16,
604 	.cftml = 20,
605 	.cfm = 16,
606 	.cfdc = 8,
607 };
608 
609 static const struct rcar_canfd_shift_data rcar_gen4_shift_data = {
610 	.ntseg2 = 25,
611 	.ntseg1 = 17,
612 	.nsjw = 10,
613 	.dtseg2 = 16,
614 	.dtseg1 = 8,
615 	.cftml = 16,
616 	.cfm = 8,
617 	.cfdc = 21,
618 };
619 
620 static const struct rcar_canfd_hw_info rcar_gen3_hw_info = {
621 	.nom_bittiming = &rcar_canfd_gen3_nom_bittiming_const,
622 	.data_bittiming = &rcar_canfd_gen3_data_bittiming_const,
623 	.tdc_const = &rcar_canfd_gen3_tdc_const,
624 	.regs = &rcar_gen3_regs,
625 	.sh = &rcar_gen3_shift_data,
626 	.rnc_field_width = 8,
627 	.max_aflpn = 31,
628 	.max_cftml = 15,
629 	.max_channels = 2,
630 	.postdiv = 2,
631 	.shared_global_irqs = 1,
632 	.ch_interface_mode = 0,
633 	.shared_can_regs = 0,
634 	.external_clk = 1,
635 };
636 
637 static const struct rcar_canfd_hw_info rcar_gen4_hw_info = {
638 	.nom_bittiming = &rcar_canfd_gen4_nom_bittiming_const,
639 	.data_bittiming = &rcar_canfd_gen4_data_bittiming_const,
640 	.tdc_const = &rcar_canfd_gen4_tdc_const,
641 	.regs = &rcar_gen4_regs,
642 	.sh = &rcar_gen4_shift_data,
643 	.rnc_field_width = 16,
644 	.max_aflpn = 127,
645 	.max_cftml = 31,
646 	.max_channels = 8,
647 	.postdiv = 2,
648 	.shared_global_irqs = 1,
649 	.ch_interface_mode = 1,
650 	.shared_can_regs = 1,
651 	.external_clk = 1,
652 };
653 
654 static const struct rcar_canfd_hw_info rzg2l_hw_info = {
655 	.nom_bittiming = &rcar_canfd_gen3_nom_bittiming_const,
656 	.data_bittiming = &rcar_canfd_gen3_data_bittiming_const,
657 	.tdc_const = &rcar_canfd_gen3_tdc_const,
658 	.regs = &rcar_gen3_regs,
659 	.sh = &rcar_gen3_shift_data,
660 	.rnc_field_width = 8,
661 	.max_aflpn = 31,
662 	.max_cftml = 15,
663 	.max_channels = 2,
664 	.postdiv = 1,
665 	.multi_channel_irqs = 1,
666 	.ch_interface_mode = 0,
667 	.shared_can_regs = 0,
668 	.external_clk = 1,
669 };
670 
671 static const struct rcar_canfd_hw_info r9a09g047_hw_info = {
672 	.nom_bittiming = &rcar_canfd_gen4_nom_bittiming_const,
673 	.data_bittiming = &rcar_canfd_gen4_data_bittiming_const,
674 	.tdc_const = &rcar_canfd_gen4_tdc_const,
675 	.regs = &rcar_gen4_regs,
676 	.sh = &rcar_gen4_shift_data,
677 	.rnc_field_width = 16,
678 	.max_aflpn = 63,
679 	.max_cftml = 31,
680 	.max_channels = 6,
681 	.postdiv = 1,
682 	.multi_channel_irqs = 1,
683 	.ch_interface_mode = 1,
684 	.shared_can_regs = 1,
685 	.external_clk = 0,
686 };
687 
688 /* Helper functions */
rcar_canfd_update(u32 mask,u32 val,u32 __iomem * reg)689 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
690 {
691 	u32 data = readl(reg);
692 
693 	data &= ~mask;
694 	data |= (val & mask);
695 	writel(data, reg);
696 }
697 
rcar_canfd_read(void __iomem * base,u32 offset)698 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
699 {
700 	return readl(base + offset);
701 }
702 
rcar_canfd_write(void __iomem * base,u32 offset,u32 val)703 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
704 {
705 	writel(val, base + offset);
706 }
707 
rcar_canfd_set_bit(void __iomem * base,u32 reg,u32 val)708 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
709 {
710 	rcar_canfd_update(val, val, base + reg);
711 }
712 
rcar_canfd_clear_bit(void __iomem * base,u32 reg,u32 val)713 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
714 {
715 	rcar_canfd_update(val, 0, base + reg);
716 }
717 
rcar_canfd_update_bit(void __iomem * base,u32 reg,u32 mask,u32 val)718 static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
719 				  u32 mask, u32 val)
720 {
721 	rcar_canfd_update(mask, val, base + reg);
722 }
723 
rcar_canfd_set_bit_reg(void __iomem * addr,u32 val)724 static void rcar_canfd_set_bit_reg(void __iomem *addr, u32 val)
725 {
726 	rcar_canfd_update(val, val, addr);
727 }
728 
rcar_canfd_update_bit_reg(void __iomem * addr,u32 mask,u32 val)729 static void rcar_canfd_update_bit_reg(void __iomem *addr, u32 mask, u32 val)
730 {
731 	rcar_canfd_update(mask, val, addr);
732 }
733 
rcar_canfd_get_data(struct rcar_canfd_channel * priv,struct canfd_frame * cf,u32 off)734 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
735 				struct canfd_frame *cf, u32 off)
736 {
737 	u32 *data = (u32 *)cf->data;
738 	u32 i, lwords;
739 
740 	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
741 	for (i = 0; i < lwords; i++)
742 		data[i] = rcar_canfd_read(priv->base, off + i * sizeof(u32));
743 }
744 
rcar_canfd_put_data(struct rcar_canfd_channel * priv,struct canfd_frame * cf,u32 off)745 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
746 				struct canfd_frame *cf, u32 off)
747 {
748 	const u32 *data = (u32 *)cf->data;
749 	u32 i, lwords;
750 
751 	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
752 	for (i = 0; i < lwords; i++)
753 		rcar_canfd_write(priv->base, off + i * sizeof(u32), data[i]);
754 }
755 
rcar_canfd_tx_failure_cleanup(struct net_device * ndev)756 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
757 {
758 	u32 i;
759 
760 	for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
761 		can_free_echo_skb(ndev, i, NULL);
762 }
763 
rcar_canfd_set_rnc(struct rcar_canfd_global * gpriv,unsigned int ch,unsigned int num_rules)764 static void rcar_canfd_set_rnc(struct rcar_canfd_global *gpriv, unsigned int ch,
765 			       unsigned int num_rules)
766 {
767 	unsigned int rnc_stride = 32 / gpriv->info->rnc_field_width;
768 	unsigned int shift = 32 - (ch % rnc_stride + 1) * gpriv->info->rnc_field_width;
769 	unsigned int w = ch / rnc_stride;
770 	u32 rnc = num_rules << shift;
771 
772 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(w), rnc);
773 }
774 
rcar_canfd_set_mode(struct rcar_canfd_global * gpriv)775 static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv)
776 {
777 	if (gpriv->info->ch_interface_mode) {
778 		u32 ch, val = gpriv->fdmode ? RCANFD_GEN4_FDCFG_FDOE
779 					    : RCANFD_GEN4_FDCFG_CLOE;
780 
781 		for_each_set_bit(ch, &gpriv->channels_mask,
782 				 gpriv->info->max_channels)
783 			rcar_canfd_set_bit_reg(&gpriv->fcbase[ch].cfdcfg, val);
784 	} else {
785 		if (gpriv->fdmode)
786 			rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
787 					   RCANFD_GRMCFG_RCMC);
788 		else
789 			rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
790 					     RCANFD_GRMCFG_RCMC);
791 	}
792 }
793 
rcar_canfd_reset_controller(struct rcar_canfd_global * gpriv)794 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
795 {
796 	struct device *dev = &gpriv->pdev->dev;
797 	u32 sts, ch;
798 	int err;
799 
800 	/* Check RAMINIT flag as CAN RAM initialization takes place
801 	 * after the MCU reset
802 	 */
803 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
804 				 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
805 	if (err) {
806 		dev_dbg(dev, "global raminit failed\n");
807 		return err;
808 	}
809 
810 	/* Transition to Global Reset mode */
811 	rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
812 	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
813 			      RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
814 
815 	/* Ensure Global reset mode */
816 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
817 				 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
818 	if (err) {
819 		dev_dbg(dev, "global reset failed\n");
820 		return err;
821 	}
822 
823 	/* Reset Global error flags */
824 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
825 
826 	/* Set the controller into appropriate mode */
827 	rcar_canfd_set_mode(gpriv);
828 
829 	/* Transition all Channels to reset mode */
830 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
831 		rcar_canfd_clear_bit(gpriv->base,
832 				     RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
833 
834 		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
835 				      RCANFD_CCTR_CHMDC_MASK,
836 				      RCANFD_CCTR_CHDMC_CRESET);
837 
838 		/* Ensure Channel reset mode */
839 		err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
840 					 (sts & RCANFD_CSTS_CRSTSTS),
841 					 2, 500000);
842 		if (err) {
843 			dev_dbg(dev, "channel %u reset failed\n", ch);
844 			return err;
845 		}
846 	}
847 	return 0;
848 }
849 
rcar_canfd_configure_controller(struct rcar_canfd_global * gpriv)850 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
851 {
852 	u32 cfg, ch;
853 
854 	/* Global configuration settings */
855 
856 	/* ECC Error flag Enable */
857 	cfg = RCANFD_GCFG_EEFE;
858 
859 	if (gpriv->fdmode)
860 		/* Truncate payload to configured message size RFPLS */
861 		cfg |= RCANFD_GCFG_CMPOC;
862 
863 	/* Set External Clock if selected */
864 	if (gpriv->extclk)
865 		cfg |= RCANFD_GCFG_DCS;
866 
867 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
868 
869 	/* Channel configuration settings */
870 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
871 		rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
872 				   RCANFD_CCTR_ERRD);
873 		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
874 				      RCANFD_CCTR_BOM_MASK,
875 				      RCANFD_CCTR_BOM_BENTRY);
876 	}
877 }
878 
rcar_canfd_configure_afl_rules(struct rcar_canfd_global * gpriv,u32 ch,u32 rule_entry)879 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
880 					   u32 ch, u32 rule_entry)
881 {
882 	unsigned int offset, page, num_rules = RCANFD_CHANNEL_NUMRULES;
883 	u32 rule_entry_index = rule_entry % 16;
884 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
885 
886 	/* Enable write access to entry */
887 	page = RCANFD_GAFL_PAGENUM(rule_entry);
888 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
889 			   (RCANFD_GAFLECTR_AFLPN(gpriv, page) |
890 			    RCANFD_GAFLECTR_AFLDAE));
891 
892 	/* Write number of rules for channel */
893 	rcar_canfd_set_rnc(gpriv, ch, num_rules);
894 	if (gpriv->info->shared_can_regs)
895 		offset = RCANFD_GEN4_GAFL_OFFSET;
896 	else if (gpriv->fdmode)
897 		offset = RCANFD_F_GAFL_OFFSET;
898 	else
899 		offset = RCANFD_C_GAFL_OFFSET;
900 
901 	/* Accept all IDs */
902 	rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, rule_entry_index), 0);
903 	/* IDE or RTR is not considered for matching */
904 	rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, rule_entry_index), 0);
905 	/* Any data length accepted */
906 	rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, rule_entry_index), 0);
907 	/* Place the msg in corresponding Rx FIFO entry */
908 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, rule_entry_index),
909 			   RCANFD_GAFLP1_GAFLFDP(ridx));
910 
911 	/* Disable write access to page */
912 	rcar_canfd_clear_bit(gpriv->base,
913 			     RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
914 }
915 
rcar_canfd_configure_rx(struct rcar_canfd_global * gpriv,u32 ch)916 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
917 {
918 	/* Rx FIFO is used for reception */
919 	u32 cfg;
920 	u16 rfdc, rfpls;
921 
922 	/* Select Rx FIFO based on channel */
923 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
924 
925 	rfdc = 2;		/* b010 - 8 messages Rx FIFO depth */
926 	if (gpriv->fdmode)
927 		rfpls = 7;	/* b111 - Max 64 bytes payload */
928 	else
929 		rfpls = 0;	/* b000 - Max 8 bytes payload */
930 
931 	cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
932 		RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
933 	rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg);
934 }
935 
rcar_canfd_configure_tx(struct rcar_canfd_global * gpriv,u32 ch)936 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
937 {
938 	/* Tx/Rx(Common) FIFO configured in Tx mode is
939 	 * used for transmission
940 	 *
941 	 * Each channel has 3 Common FIFO dedicated to them.
942 	 * Use the 1st (index 0) out of 3
943 	 */
944 	u32 cfg;
945 	u16 cftml, cfm, cfdc, cfpls;
946 
947 	cftml = 0;		/* 0th buffer */
948 	cfm = 1;		/* b01 - Transmit mode */
949 	cfdc = 2;		/* b010 - 8 messages Tx FIFO depth */
950 	if (gpriv->fdmode)
951 		cfpls = 7;	/* b111 - Max 64 bytes payload */
952 	else
953 		cfpls = 0;	/* b000 - Max 8 bytes payload */
954 
955 	cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) |
956 		RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) |
957 		RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
958 	rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg);
959 
960 	if (gpriv->fdmode)
961 		/* Clear FD mode specific control/status register */
962 		rcar_canfd_write(gpriv->base,
963 				 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0);
964 }
965 
rcar_canfd_enable_global_interrupts(struct rcar_canfd_global * gpriv)966 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
967 {
968 	u32 ctr;
969 
970 	/* Clear any stray error interrupt flags */
971 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
972 
973 	/* Global interrupts setup */
974 	ctr = RCANFD_GCTR_MEIE;
975 	if (gpriv->fdmode)
976 		ctr |= RCANFD_GCTR_CFMPOFIE;
977 
978 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
979 }
980 
rcar_canfd_disable_global_interrupts(struct rcar_canfd_global * gpriv)981 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
982 						 *gpriv)
983 {
984 	/* Disable all interrupts */
985 	rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
986 
987 	/* Clear any stray error interrupt flags */
988 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
989 }
990 
rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel * priv)991 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
992 						 *priv)
993 {
994 	u32 ctr, ch = priv->channel;
995 
996 	/* Clear any stray error flags */
997 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
998 
999 	/* Channel interrupts setup */
1000 	ctr = (RCANFD_CCTR_TAIE |
1001 	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
1002 	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
1003 	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
1004 	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
1005 	rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
1006 }
1007 
rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel * priv)1008 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
1009 						  *priv)
1010 {
1011 	u32 ctr, ch = priv->channel;
1012 
1013 	ctr = (RCANFD_CCTR_TAIE |
1014 	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
1015 	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
1016 	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
1017 	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
1018 	rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
1019 
1020 	/* Clear any stray error flags */
1021 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
1022 }
1023 
rcar_canfd_global_error(struct net_device * ndev)1024 static void rcar_canfd_global_error(struct net_device *ndev)
1025 {
1026 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1027 	struct rcar_canfd_global *gpriv = priv->gpriv;
1028 	struct net_device_stats *stats = &ndev->stats;
1029 	u32 ch = priv->channel;
1030 	u32 gerfl, sts;
1031 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1032 
1033 	gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1034 	if (gerfl & FIELD_PREP(RCANFD_GERFL_EEF, BIT(ch))) {
1035 		netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch);
1036 		stats->tx_dropped++;
1037 	}
1038 	if (gerfl & RCANFD_GERFL_MES) {
1039 		sts = rcar_canfd_read(priv->base,
1040 				      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1041 		if (sts & RCANFD_CFSTS_CFMLT) {
1042 			netdev_dbg(ndev, "Tx Message Lost flag\n");
1043 			stats->tx_dropped++;
1044 			rcar_canfd_write(priv->base,
1045 					 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
1046 					 sts & ~RCANFD_CFSTS_CFMLT);
1047 		}
1048 
1049 		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1050 		if (sts & RCANFD_RFSTS_RFMLT) {
1051 			netdev_dbg(ndev, "Rx Message Lost flag\n");
1052 			stats->rx_dropped++;
1053 			rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
1054 					 sts & ~RCANFD_RFSTS_RFMLT);
1055 		}
1056 	}
1057 	if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
1058 		/* Message Lost flag will be set for respective channel
1059 		 * when this condition happens with counters and flags
1060 		 * already updated.
1061 		 */
1062 		netdev_dbg(ndev, "global payload overflow interrupt\n");
1063 	}
1064 
1065 	/* Clear all global error interrupts. Only affected channels bits
1066 	 * get cleared
1067 	 */
1068 	rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
1069 }
1070 
rcar_canfd_error(struct net_device * ndev,u32 cerfl,u16 txerr,u16 rxerr)1071 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
1072 			     u16 txerr, u16 rxerr)
1073 {
1074 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1075 	struct net_device_stats *stats = &ndev->stats;
1076 	struct can_frame *cf;
1077 	struct sk_buff *skb;
1078 	u32 ch = priv->channel;
1079 
1080 	netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
1081 
1082 	/* Propagate the error condition to the CAN stack */
1083 	skb = alloc_can_err_skb(ndev, &cf);
1084 	if (!skb) {
1085 		stats->rx_dropped++;
1086 		return;
1087 	}
1088 
1089 	/* Channel error interrupts */
1090 	if (cerfl & RCANFD_CERFL_BEF) {
1091 		netdev_dbg(ndev, "Bus error\n");
1092 		cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
1093 		cf->data[2] = CAN_ERR_PROT_UNSPEC;
1094 		priv->can.can_stats.bus_error++;
1095 	}
1096 	if (cerfl & RCANFD_CERFL_ADERR) {
1097 		netdev_dbg(ndev, "ACK Delimiter Error\n");
1098 		stats->tx_errors++;
1099 		cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
1100 	}
1101 	if (cerfl & RCANFD_CERFL_B0ERR) {
1102 		netdev_dbg(ndev, "Bit Error (dominant)\n");
1103 		stats->tx_errors++;
1104 		cf->data[2] |= CAN_ERR_PROT_BIT0;
1105 	}
1106 	if (cerfl & RCANFD_CERFL_B1ERR) {
1107 		netdev_dbg(ndev, "Bit Error (recessive)\n");
1108 		stats->tx_errors++;
1109 		cf->data[2] |= CAN_ERR_PROT_BIT1;
1110 	}
1111 	if (cerfl & RCANFD_CERFL_CERR) {
1112 		netdev_dbg(ndev, "CRC Error\n");
1113 		stats->rx_errors++;
1114 		cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
1115 	}
1116 	if (cerfl & RCANFD_CERFL_AERR) {
1117 		netdev_dbg(ndev, "ACK Error\n");
1118 		stats->tx_errors++;
1119 		cf->can_id |= CAN_ERR_ACK;
1120 		cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
1121 	}
1122 	if (cerfl & RCANFD_CERFL_FERR) {
1123 		netdev_dbg(ndev, "Form Error\n");
1124 		stats->rx_errors++;
1125 		cf->data[2] |= CAN_ERR_PROT_FORM;
1126 	}
1127 	if (cerfl & RCANFD_CERFL_SERR) {
1128 		netdev_dbg(ndev, "Stuff Error\n");
1129 		stats->rx_errors++;
1130 		cf->data[2] |= CAN_ERR_PROT_STUFF;
1131 	}
1132 	if (cerfl & RCANFD_CERFL_ALF) {
1133 		netdev_dbg(ndev, "Arbitration lost Error\n");
1134 		priv->can.can_stats.arbitration_lost++;
1135 		cf->can_id |= CAN_ERR_LOSTARB;
1136 		cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
1137 	}
1138 	if (cerfl & RCANFD_CERFL_BLF) {
1139 		netdev_dbg(ndev, "Bus Lock Error\n");
1140 		stats->rx_errors++;
1141 		cf->can_id |= CAN_ERR_BUSERROR;
1142 	}
1143 	if (cerfl & RCANFD_CERFL_EWF) {
1144 		netdev_dbg(ndev, "Error warning interrupt\n");
1145 		priv->can.state = CAN_STATE_ERROR_WARNING;
1146 		priv->can.can_stats.error_warning++;
1147 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1148 		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
1149 			CAN_ERR_CRTL_RX_WARNING;
1150 		cf->data[6] = txerr;
1151 		cf->data[7] = rxerr;
1152 	}
1153 	if (cerfl & RCANFD_CERFL_EPF) {
1154 		netdev_dbg(ndev, "Error passive interrupt\n");
1155 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
1156 		priv->can.can_stats.error_passive++;
1157 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1158 		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
1159 			CAN_ERR_CRTL_RX_PASSIVE;
1160 		cf->data[6] = txerr;
1161 		cf->data[7] = rxerr;
1162 	}
1163 	if (cerfl & RCANFD_CERFL_BOEF) {
1164 		netdev_dbg(ndev, "Bus-off entry interrupt\n");
1165 		rcar_canfd_tx_failure_cleanup(ndev);
1166 		priv->can.state = CAN_STATE_BUS_OFF;
1167 		priv->can.can_stats.bus_off++;
1168 		can_bus_off(ndev);
1169 		cf->can_id |= CAN_ERR_BUSOFF;
1170 	}
1171 	if (cerfl & RCANFD_CERFL_OVLF) {
1172 		netdev_dbg(ndev,
1173 			   "Overload Frame Transmission error interrupt\n");
1174 		stats->tx_errors++;
1175 		cf->can_id |= CAN_ERR_PROT;
1176 		cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
1177 	}
1178 
1179 	/* Clear channel error interrupts that are handled */
1180 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
1181 			 RCANFD_CERFL_ERR(~cerfl));
1182 	netif_rx(skb);
1183 }
1184 
rcar_canfd_tx_done(struct net_device * ndev)1185 static void rcar_canfd_tx_done(struct net_device *ndev)
1186 {
1187 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1188 	struct rcar_canfd_global *gpriv = priv->gpriv;
1189 	struct net_device_stats *stats = &ndev->stats;
1190 	u32 sts;
1191 	unsigned long flags;
1192 	u32 ch = priv->channel;
1193 
1194 	do {
1195 		u8 unsent, sent;
1196 
1197 		sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
1198 		stats->tx_packets++;
1199 		stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL);
1200 
1201 		spin_lock_irqsave(&priv->tx_lock, flags);
1202 		priv->tx_tail++;
1203 		sts = rcar_canfd_read(priv->base,
1204 				      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1205 		unsent = RCANFD_CFSTS_CFMC(sts);
1206 
1207 		/* Wake producer only when there is room */
1208 		if (unsent != RCANFD_FIFO_DEPTH)
1209 			netif_wake_queue(ndev);
1210 
1211 		if (priv->tx_head - priv->tx_tail <= unsent) {
1212 			spin_unlock_irqrestore(&priv->tx_lock, flags);
1213 			break;
1214 		}
1215 		spin_unlock_irqrestore(&priv->tx_lock, flags);
1216 
1217 	} while (1);
1218 
1219 	/* Clear interrupt */
1220 	rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
1221 			 sts & ~RCANFD_CFSTS_CFTXIF);
1222 }
1223 
rcar_canfd_handle_global_err(struct rcar_canfd_global * gpriv,u32 ch)1224 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch)
1225 {
1226 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1227 	struct net_device *ndev = priv->ndev;
1228 	u32 gerfl;
1229 
1230 	/* Handle global error interrupts */
1231 	gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1232 	if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
1233 		rcar_canfd_global_error(ndev);
1234 }
1235 
rcar_canfd_global_err_interrupt(int irq,void * dev_id)1236 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id)
1237 {
1238 	struct rcar_canfd_global *gpriv = dev_id;
1239 	u32 ch;
1240 
1241 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1242 		rcar_canfd_handle_global_err(gpriv, ch);
1243 
1244 	return IRQ_HANDLED;
1245 }
1246 
rcar_canfd_handle_global_receive(struct rcar_canfd_global * gpriv,u32 ch)1247 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch)
1248 {
1249 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1250 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1251 	u32 sts, cc;
1252 
1253 	/* Handle Rx interrupts */
1254 	sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1255 	cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx));
1256 	if (likely(sts & RCANFD_RFSTS_RFIF &&
1257 		   cc & RCANFD_RFCC_RFIE)) {
1258 		if (napi_schedule_prep(&priv->napi)) {
1259 			/* Disable Rx FIFO interrupts */
1260 			rcar_canfd_clear_bit(priv->base,
1261 					     RCANFD_RFCC(gpriv, ridx),
1262 					     RCANFD_RFCC_RFIE);
1263 			__napi_schedule(&priv->napi);
1264 		}
1265 	}
1266 }
1267 
rcar_canfd_global_receive_fifo_interrupt(int irq,void * dev_id)1268 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id)
1269 {
1270 	struct rcar_canfd_global *gpriv = dev_id;
1271 	u32 ch;
1272 
1273 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1274 		rcar_canfd_handle_global_receive(gpriv, ch);
1275 
1276 	return IRQ_HANDLED;
1277 }
1278 
rcar_canfd_global_interrupt(int irq,void * dev_id)1279 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
1280 {
1281 	struct rcar_canfd_global *gpriv = dev_id;
1282 	u32 ch;
1283 
1284 	/* Global error interrupts still indicate a condition specific
1285 	 * to a channel. RxFIFO interrupt is a global interrupt.
1286 	 */
1287 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1288 		rcar_canfd_handle_global_err(gpriv, ch);
1289 		rcar_canfd_handle_global_receive(gpriv, ch);
1290 	}
1291 	return IRQ_HANDLED;
1292 }
1293 
rcar_canfd_state_change(struct net_device * ndev,u16 txerr,u16 rxerr)1294 static void rcar_canfd_state_change(struct net_device *ndev,
1295 				    u16 txerr, u16 rxerr)
1296 {
1297 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1298 	struct net_device_stats *stats = &ndev->stats;
1299 	enum can_state rx_state, tx_state, state = priv->can.state;
1300 	struct can_frame *cf;
1301 	struct sk_buff *skb;
1302 
1303 	/* Handle transition from error to normal states */
1304 	if (txerr < 96 && rxerr < 96)
1305 		state = CAN_STATE_ERROR_ACTIVE;
1306 	else if (txerr < 128 && rxerr < 128)
1307 		state = CAN_STATE_ERROR_WARNING;
1308 
1309 	if (state != priv->can.state) {
1310 		netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
1311 			   state, priv->can.state, txerr, rxerr);
1312 		skb = alloc_can_err_skb(ndev, &cf);
1313 		if (!skb) {
1314 			stats->rx_dropped++;
1315 			return;
1316 		}
1317 		tx_state = txerr >= rxerr ? state : 0;
1318 		rx_state = txerr <= rxerr ? state : 0;
1319 
1320 		can_change_state(ndev, cf, tx_state, rx_state);
1321 		netif_rx(skb);
1322 	}
1323 }
1324 
rcar_canfd_handle_channel_tx(struct rcar_canfd_global * gpriv,u32 ch)1325 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch)
1326 {
1327 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1328 	struct net_device *ndev = priv->ndev;
1329 	u32 sts;
1330 
1331 	/* Handle Tx interrupts */
1332 	sts = rcar_canfd_read(priv->base,
1333 			      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1334 	if (likely(sts & RCANFD_CFSTS_CFTXIF))
1335 		rcar_canfd_tx_done(ndev);
1336 }
1337 
rcar_canfd_channel_tx_interrupt(int irq,void * dev_id)1338 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id)
1339 {
1340 	struct rcar_canfd_channel *priv = dev_id;
1341 
1342 	rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel);
1343 
1344 	return IRQ_HANDLED;
1345 }
1346 
rcar_canfd_handle_channel_err(struct rcar_canfd_global * gpriv,u32 ch)1347 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch)
1348 {
1349 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1350 	struct net_device *ndev = priv->ndev;
1351 	u16 txerr, rxerr;
1352 	u32 sts, cerfl;
1353 
1354 	/* Handle channel error interrupts */
1355 	cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
1356 	sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1357 	txerr = RCANFD_CSTS_TECCNT(sts);
1358 	rxerr = RCANFD_CSTS_RECCNT(sts);
1359 	if (unlikely(RCANFD_CERFL_ERR(cerfl)))
1360 		rcar_canfd_error(ndev, cerfl, txerr, rxerr);
1361 
1362 	/* Handle state change to lower states */
1363 	if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE &&
1364 		     priv->can.state != CAN_STATE_BUS_OFF))
1365 		rcar_canfd_state_change(ndev, txerr, rxerr);
1366 }
1367 
rcar_canfd_channel_err_interrupt(int irq,void * dev_id)1368 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id)
1369 {
1370 	struct rcar_canfd_channel *priv = dev_id;
1371 
1372 	rcar_canfd_handle_channel_err(priv->gpriv, priv->channel);
1373 
1374 	return IRQ_HANDLED;
1375 }
1376 
rcar_canfd_channel_interrupt(int irq,void * dev_id)1377 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
1378 {
1379 	struct rcar_canfd_global *gpriv = dev_id;
1380 	u32 ch;
1381 
1382 	/* Common FIFO is a per channel resource */
1383 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1384 		rcar_canfd_handle_channel_err(gpriv, ch);
1385 		rcar_canfd_handle_channel_tx(gpriv, ch);
1386 	}
1387 
1388 	return IRQ_HANDLED;
1389 }
1390 
rcar_canfd_set_bittiming(struct net_device * ndev)1391 static void rcar_canfd_set_bittiming(struct net_device *ndev)
1392 {
1393 	u32 mask = RCANFD_FDCFG_TDCO | RCANFD_FDCFG_TDCE | RCANFD_FDCFG_TDCOC;
1394 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1395 	struct rcar_canfd_global *gpriv = priv->gpriv;
1396 	const struct can_bittiming *bt = &priv->can.bittiming;
1397 	const struct can_bittiming *dbt = &priv->can.fd.data_bittiming;
1398 	const struct can_tdc_const *tdc_const = priv->can.fd.tdc_const;
1399 	const struct can_tdc *tdc = &priv->can.fd.tdc;
1400 	u32 cfg, tdcmode = 0, tdco = 0;
1401 	u16 brp, sjw, tseg1, tseg2;
1402 	u32 ch = priv->channel;
1403 
1404 	/* Nominal bit timing settings */
1405 	brp = bt->brp - 1;
1406 	sjw = bt->sjw - 1;
1407 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1408 	tseg2 = bt->phase_seg2 - 1;
1409 
1410 	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) {
1411 		cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) |
1412 		       RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1413 	} else {
1414 		cfg = (RCANFD_CFG_TSEG1(tseg1) | RCANFD_CFG_BRP(brp) |
1415 		       RCANFD_CFG_SJW(sjw) | RCANFD_CFG_TSEG2(tseg2));
1416 	}
1417 
1418 	rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1419 
1420 	if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD))
1421 		return;
1422 
1423 	/* Data bit timing settings */
1424 	brp = dbt->brp - 1;
1425 	sjw = dbt->sjw - 1;
1426 	tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1427 	tseg2 = dbt->phase_seg2 - 1;
1428 
1429 	cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) |
1430 	       RCANFD_DCFG_DSJW(gpriv, sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2));
1431 
1432 	writel(cfg, &gpriv->fcbase[ch].dcfg);
1433 
1434 	/* Transceiver Delay Compensation */
1435 	if (priv->can.ctrlmode & CAN_CTRLMODE_TDC_AUTO) {
1436 		/* TDC enabled, measured + offset */
1437 		tdcmode = RCANFD_FDCFG_TDCE;
1438 		tdco = tdc->tdco - 1;
1439 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_TDC_MANUAL) {
1440 		/* TDC enabled, offset only */
1441 		tdcmode = RCANFD_FDCFG_TDCE | RCANFD_FDCFG_TDCOC;
1442 		tdco = min(tdc->tdcv + tdc->tdco, tdc_const->tdco_max) - 1;
1443 	}
1444 
1445 	rcar_canfd_update_bit_reg(&gpriv->fcbase[ch].cfdcfg, mask,
1446 				  tdcmode | FIELD_PREP(RCANFD_FDCFG_TDCO, tdco));
1447 }
1448 
rcar_canfd_start(struct net_device * ndev)1449 static int rcar_canfd_start(struct net_device *ndev)
1450 {
1451 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1452 	struct rcar_canfd_global *gpriv = priv->gpriv;
1453 	int err = -EOPNOTSUPP;
1454 	u32 sts, ch = priv->channel;
1455 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1456 
1457 	rcar_canfd_set_bittiming(ndev);
1458 
1459 	rcar_canfd_enable_channel_interrupts(priv);
1460 
1461 	/* Set channel to Operational mode */
1462 	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1463 			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
1464 
1465 	/* Verify channel mode change */
1466 	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1467 				 (sts & RCANFD_CSTS_COMSTS), 2, 500000);
1468 	if (err) {
1469 		netdev_err(ndev, "channel %u communication state failed\n", ch);
1470 		goto fail_mode_change;
1471 	}
1472 
1473 	/* Enable Common & Rx FIFO */
1474 	rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1475 			   RCANFD_CFCC_CFE);
1476 	rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1477 
1478 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1479 	return 0;
1480 
1481 fail_mode_change:
1482 	rcar_canfd_disable_channel_interrupts(priv);
1483 	return err;
1484 }
1485 
rcar_canfd_open(struct net_device * ndev)1486 static int rcar_canfd_open(struct net_device *ndev)
1487 {
1488 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1489 	struct rcar_canfd_global *gpriv = priv->gpriv;
1490 	int err;
1491 
1492 	err = phy_power_on(priv->transceiver);
1493 	if (err) {
1494 		netdev_err(ndev, "failed to power on PHY: %pe\n", ERR_PTR(err));
1495 		return err;
1496 	}
1497 
1498 	/* Peripheral clock is already enabled in probe */
1499 	err = clk_prepare_enable(gpriv->can_clk);
1500 	if (err) {
1501 		netdev_err(ndev, "failed to enable CAN clock: %pe\n", ERR_PTR(err));
1502 		goto out_phy;
1503 	}
1504 
1505 	err = open_candev(ndev);
1506 	if (err) {
1507 		netdev_err(ndev, "open_candev() failed: %pe\n", ERR_PTR(err));
1508 		goto out_can_clock;
1509 	}
1510 
1511 	napi_enable(&priv->napi);
1512 	err = rcar_canfd_start(ndev);
1513 	if (err)
1514 		goto out_close;
1515 	netif_start_queue(ndev);
1516 	return 0;
1517 out_close:
1518 	napi_disable(&priv->napi);
1519 	close_candev(ndev);
1520 out_can_clock:
1521 	clk_disable_unprepare(gpriv->can_clk);
1522 out_phy:
1523 	phy_power_off(priv->transceiver);
1524 	return err;
1525 }
1526 
rcar_canfd_stop(struct net_device * ndev)1527 static void rcar_canfd_stop(struct net_device *ndev)
1528 {
1529 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1530 	struct rcar_canfd_global *gpriv = priv->gpriv;
1531 	int err;
1532 	u32 sts, ch = priv->channel;
1533 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1534 
1535 	/* Transition to channel reset mode  */
1536 	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1537 			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
1538 
1539 	/* Check Channel reset mode */
1540 	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1541 				 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
1542 	if (err)
1543 		netdev_err(ndev, "channel %u reset failed\n", ch);
1544 
1545 	rcar_canfd_disable_channel_interrupts(priv);
1546 
1547 	/* Disable Common & Rx FIFO */
1548 	rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1549 			     RCANFD_CFCC_CFE);
1550 	rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1551 
1552 	/* Set the state as STOPPED */
1553 	priv->can.state = CAN_STATE_STOPPED;
1554 }
1555 
rcar_canfd_close(struct net_device * ndev)1556 static int rcar_canfd_close(struct net_device *ndev)
1557 {
1558 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1559 	struct rcar_canfd_global *gpriv = priv->gpriv;
1560 
1561 	netif_stop_queue(ndev);
1562 	rcar_canfd_stop(ndev);
1563 	napi_disable(&priv->napi);
1564 	clk_disable_unprepare(gpriv->can_clk);
1565 	close_candev(ndev);
1566 	phy_power_off(priv->transceiver);
1567 	return 0;
1568 }
1569 
rcar_canfd_start_xmit(struct sk_buff * skb,struct net_device * ndev)1570 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
1571 					 struct net_device *ndev)
1572 {
1573 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1574 	struct rcar_canfd_global *gpriv = priv->gpriv;
1575 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1576 	u32 sts = 0, id, dlc;
1577 	unsigned long flags;
1578 	u32 ch = priv->channel;
1579 
1580 	if (can_dev_dropped_skb(ndev, skb))
1581 		return NETDEV_TX_OK;
1582 
1583 	if (cf->can_id & CAN_EFF_FLAG) {
1584 		id = cf->can_id & CAN_EFF_MASK;
1585 		id |= RCANFD_CFID_CFIDE;
1586 	} else {
1587 		id = cf->can_id & CAN_SFF_MASK;
1588 	}
1589 
1590 	if (cf->can_id & CAN_RTR_FLAG)
1591 		id |= RCANFD_CFID_CFRTR;
1592 
1593 	dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len));
1594 
1595 	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) {
1596 		rcar_canfd_write(priv->base,
1597 				 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id);
1598 		rcar_canfd_write(priv->base,
1599 				 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc);
1600 
1601 		if (can_is_canfd_skb(skb)) {
1602 			/* CAN FD frame format */
1603 			sts |= RCANFD_CFFDCSTS_CFFDF;
1604 			if (cf->flags & CANFD_BRS)
1605 				sts |= RCANFD_CFFDCSTS_CFBRS;
1606 
1607 			if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
1608 				sts |= RCANFD_CFFDCSTS_CFESI;
1609 		}
1610 
1611 		rcar_canfd_write(priv->base,
1612 				 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts);
1613 
1614 		rcar_canfd_put_data(priv, cf,
1615 				    RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0));
1616 	} else {
1617 		rcar_canfd_write(priv->base,
1618 				 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
1619 		rcar_canfd_write(priv->base,
1620 				 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1621 		rcar_canfd_put_data(priv, cf,
1622 				    RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1623 	}
1624 
1625 	can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0);
1626 
1627 	spin_lock_irqsave(&priv->tx_lock, flags);
1628 	priv->tx_head++;
1629 
1630 	/* Stop the queue if we've filled all FIFO entries */
1631 	if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
1632 		netif_stop_queue(ndev);
1633 
1634 	/* Start Tx: Write 0xff to CFPC to increment the CPU-side
1635 	 * pointer for the Common FIFO
1636 	 */
1637 	rcar_canfd_write(priv->base,
1638 			 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff);
1639 
1640 	spin_unlock_irqrestore(&priv->tx_lock, flags);
1641 	return NETDEV_TX_OK;
1642 }
1643 
rcar_canfd_rx_pkt(struct rcar_canfd_channel * priv)1644 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
1645 {
1646 	struct net_device *ndev = priv->ndev;
1647 	struct net_device_stats *stats = &ndev->stats;
1648 	struct rcar_canfd_global *gpriv = priv->gpriv;
1649 	struct canfd_frame *cf;
1650 	struct sk_buff *skb;
1651 	u32 sts = 0, id, dlc;
1652 	u32 ch = priv->channel;
1653 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1654 
1655 	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) {
1656 		id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx));
1657 		dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx));
1658 
1659 		sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx));
1660 
1661 		if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) &&
1662 		    sts & RCANFD_RFFDSTS_RFFDF)
1663 			skb = alloc_canfd_skb(ndev, &cf);
1664 		else
1665 			skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
1666 	} else {
1667 		id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
1668 		dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
1669 		skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
1670 	}
1671 
1672 	if (!skb) {
1673 		stats->rx_dropped++;
1674 		return;
1675 	}
1676 
1677 	if (id & RCANFD_RFID_RFIDE)
1678 		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
1679 	else
1680 		cf->can_id = id & CAN_SFF_MASK;
1681 
1682 	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1683 		if (sts & RCANFD_RFFDSTS_RFFDF)
1684 			cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1685 		else
1686 			cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1687 
1688 		if (sts & RCANFD_RFFDSTS_RFESI) {
1689 			cf->flags |= CANFD_ESI;
1690 			netdev_dbg(ndev, "ESI Error\n");
1691 		}
1692 
1693 		if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
1694 			cf->can_id |= CAN_RTR_FLAG;
1695 		} else {
1696 			if (sts & RCANFD_RFFDSTS_RFBRS)
1697 				cf->flags |= CANFD_BRS;
1698 
1699 			rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1700 		}
1701 	} else {
1702 		cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1703 		if (id & RCANFD_RFID_RFRTR)
1704 			cf->can_id |= CAN_RTR_FLAG;
1705 		else if (gpriv->info->shared_can_regs)
1706 			rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1707 		else
1708 			rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
1709 	}
1710 
1711 	/* Write 0xff to RFPC to increment the CPU-side
1712 	 * pointer of the Rx FIFO
1713 	 */
1714 	rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff);
1715 
1716 	if (!(cf->can_id & CAN_RTR_FLAG))
1717 		stats->rx_bytes += cf->len;
1718 	stats->rx_packets++;
1719 	netif_receive_skb(skb);
1720 }
1721 
rcar_canfd_rx_poll(struct napi_struct * napi,int quota)1722 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
1723 {
1724 	struct rcar_canfd_channel *priv =
1725 		container_of(napi, struct rcar_canfd_channel, napi);
1726 	struct rcar_canfd_global *gpriv = priv->gpriv;
1727 	int num_pkts;
1728 	u32 sts;
1729 	u32 ch = priv->channel;
1730 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1731 
1732 	for (num_pkts = 0; num_pkts < quota; num_pkts++) {
1733 		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1734 		/* Check FIFO empty condition */
1735 		if (sts & RCANFD_RFSTS_RFEMP)
1736 			break;
1737 
1738 		rcar_canfd_rx_pkt(priv);
1739 
1740 		/* Clear interrupt bit */
1741 		if (sts & RCANFD_RFSTS_RFIF)
1742 			rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
1743 					 sts & ~RCANFD_RFSTS_RFIF);
1744 	}
1745 
1746 	/* All packets processed */
1747 	if (num_pkts < quota) {
1748 		if (napi_complete_done(napi, num_pkts)) {
1749 			/* Enable Rx FIFO interrupts */
1750 			rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx),
1751 					   RCANFD_RFCC_RFIE);
1752 		}
1753 	}
1754 	return num_pkts;
1755 }
1756 
rcar_canfd_get_tdcr(struct rcar_canfd_global * gpriv,unsigned int ch)1757 static unsigned int rcar_canfd_get_tdcr(struct rcar_canfd_global *gpriv,
1758 					unsigned int ch)
1759 {
1760 	u32 sts = readl(&gpriv->fcbase[ch].cfdsts);
1761 	u32 tdcr = FIELD_GET(RCANFD_FDSTS_TDCR, sts);
1762 
1763 	return tdcr & (gpriv->info->tdc_const->tdcv_max - 1);
1764 }
1765 
rcar_canfd_get_auto_tdcv(const struct net_device * ndev,u32 * tdcv)1766 static int rcar_canfd_get_auto_tdcv(const struct net_device *ndev, u32 *tdcv)
1767 {
1768 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1769 	u32 tdco = priv->can.fd.tdc.tdco;
1770 	u32 tdcr;
1771 
1772 	/* Transceiver Delay Compensation Result */
1773 	tdcr = rcar_canfd_get_tdcr(priv->gpriv, priv->channel) + 1;
1774 
1775 	*tdcv = tdcr < tdco ? 0 : tdcr - tdco;
1776 
1777 	return 0;
1778 }
1779 
rcar_canfd_do_set_mode(struct net_device * ndev,enum can_mode mode)1780 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
1781 {
1782 	int err;
1783 
1784 	switch (mode) {
1785 	case CAN_MODE_START:
1786 		err = rcar_canfd_start(ndev);
1787 		if (err)
1788 			return err;
1789 		netif_wake_queue(ndev);
1790 		return 0;
1791 	default:
1792 		return -EOPNOTSUPP;
1793 	}
1794 }
1795 
rcar_canfd_get_berr_counter(const struct net_device * ndev,struct can_berr_counter * bec)1796 static int rcar_canfd_get_berr_counter(const struct net_device *ndev,
1797 				       struct can_berr_counter *bec)
1798 {
1799 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1800 	u32 val, ch = priv->channel;
1801 
1802 	/* Peripheral clock is already enabled in probe */
1803 	val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1804 	bec->txerr = RCANFD_CSTS_TECCNT(val);
1805 	bec->rxerr = RCANFD_CSTS_RECCNT(val);
1806 	return 0;
1807 }
1808 
1809 static const struct net_device_ops rcar_canfd_netdev_ops = {
1810 	.ndo_open = rcar_canfd_open,
1811 	.ndo_stop = rcar_canfd_close,
1812 	.ndo_start_xmit = rcar_canfd_start_xmit,
1813 	.ndo_change_mtu = can_change_mtu,
1814 };
1815 
1816 static const struct ethtool_ops rcar_canfd_ethtool_ops = {
1817 	.get_ts_info = ethtool_op_get_ts_info,
1818 };
1819 
rcar_canfd_channel_probe(struct rcar_canfd_global * gpriv,u32 ch,u32 fcan_freq,struct phy * transceiver)1820 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
1821 				    u32 fcan_freq, struct phy *transceiver)
1822 {
1823 	const struct rcar_canfd_hw_info *info = gpriv->info;
1824 	struct platform_device *pdev = gpriv->pdev;
1825 	struct device *dev = &pdev->dev;
1826 	struct rcar_canfd_channel *priv;
1827 	struct net_device *ndev;
1828 	int err = -ENODEV;
1829 
1830 	ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
1831 	if (!ndev)
1832 		return -ENOMEM;
1833 
1834 	priv = netdev_priv(ndev);
1835 
1836 	ndev->netdev_ops = &rcar_canfd_netdev_ops;
1837 	ndev->ethtool_ops = &rcar_canfd_ethtool_ops;
1838 	ndev->flags |= IFF_ECHO;
1839 	priv->ndev = ndev;
1840 	priv->base = gpriv->base;
1841 	priv->transceiver = transceiver;
1842 	priv->channel = ch;
1843 	priv->gpriv = gpriv;
1844 	if (transceiver)
1845 		priv->can.bitrate_max = transceiver->attrs.max_link_rate;
1846 	priv->can.clock.freq = fcan_freq;
1847 	dev_info(dev, "can_clk rate is %u\n", priv->can.clock.freq);
1848 
1849 	if (info->multi_channel_irqs) {
1850 		char *irq_name;
1851 		char name[10];
1852 		int err_irq;
1853 		int tx_irq;
1854 
1855 		scnprintf(name, sizeof(name), "ch%u_err", ch);
1856 		err_irq = platform_get_irq_byname(pdev, name);
1857 		if (err_irq < 0) {
1858 			err = err_irq;
1859 			goto fail;
1860 		}
1861 
1862 		scnprintf(name, sizeof(name), "ch%u_trx", ch);
1863 		tx_irq = platform_get_irq_byname(pdev, name);
1864 		if (tx_irq < 0) {
1865 			err = tx_irq;
1866 			goto fail;
1867 		}
1868 
1869 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_err",
1870 					  ch);
1871 		if (!irq_name) {
1872 			err = -ENOMEM;
1873 			goto fail;
1874 		}
1875 		err = devm_request_irq(dev, err_irq,
1876 				       rcar_canfd_channel_err_interrupt, 0,
1877 				       irq_name, priv);
1878 		if (err) {
1879 			dev_err(dev, "devm_request_irq CH Err %d failed: %pe\n",
1880 				err_irq, ERR_PTR(err));
1881 			goto fail;
1882 		}
1883 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_trx",
1884 					  ch);
1885 		if (!irq_name) {
1886 			err = -ENOMEM;
1887 			goto fail;
1888 		}
1889 		err = devm_request_irq(dev, tx_irq,
1890 				       rcar_canfd_channel_tx_interrupt, 0,
1891 				       irq_name, priv);
1892 		if (err) {
1893 			dev_err(dev, "devm_request_irq Tx %d failed: %pe\n",
1894 				tx_irq, ERR_PTR(err));
1895 			goto fail;
1896 		}
1897 	}
1898 
1899 	if (gpriv->fdmode) {
1900 		priv->can.bittiming_const = gpriv->info->nom_bittiming;
1901 		priv->can.fd.data_bittiming_const = gpriv->info->data_bittiming;
1902 		priv->can.fd.tdc_const = gpriv->info->tdc_const;
1903 
1904 		/* Controller starts in CAN FD only mode */
1905 		err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
1906 		if (err)
1907 			goto fail;
1908 
1909 		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING |
1910 					       CAN_CTRLMODE_TDC_AUTO |
1911 					       CAN_CTRLMODE_TDC_MANUAL;
1912 		priv->can.fd.do_get_auto_tdcv = rcar_canfd_get_auto_tdcv;
1913 	} else {
1914 		/* Controller starts in Classical CAN only mode */
1915 		priv->can.bittiming_const = &rcar_canfd_bittiming_const;
1916 		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1917 	}
1918 
1919 	priv->can.do_set_mode = rcar_canfd_do_set_mode;
1920 	priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
1921 	SET_NETDEV_DEV(ndev, dev);
1922 
1923 	netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll,
1924 			      RCANFD_NAPI_WEIGHT);
1925 	spin_lock_init(&priv->tx_lock);
1926 	gpriv->ch[priv->channel] = priv;
1927 	err = register_candev(ndev);
1928 	if (err) {
1929 		dev_err(dev, "register_candev() failed: %pe\n", ERR_PTR(err));
1930 		goto fail_candev;
1931 	}
1932 	dev_info(dev, "device registered (channel %u)\n", priv->channel);
1933 	return 0;
1934 
1935 fail_candev:
1936 	netif_napi_del(&priv->napi);
1937 fail:
1938 	free_candev(ndev);
1939 	return err;
1940 }
1941 
rcar_canfd_channel_remove(struct rcar_canfd_global * gpriv,u32 ch)1942 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
1943 {
1944 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1945 
1946 	if (priv) {
1947 		unregister_candev(priv->ndev);
1948 		netif_napi_del(&priv->napi);
1949 		free_candev(priv->ndev);
1950 	}
1951 }
1952 
rcar_canfd_probe(struct platform_device * pdev)1953 static int rcar_canfd_probe(struct platform_device *pdev)
1954 {
1955 	struct phy *transceivers[RCANFD_NUM_CHANNELS] = { NULL, };
1956 	const struct rcar_canfd_hw_info *info;
1957 	struct device *dev = &pdev->dev;
1958 	void __iomem *addr;
1959 	u32 sts, ch, fcan_freq;
1960 	struct rcar_canfd_global *gpriv;
1961 	struct device_node *of_child;
1962 	unsigned long channels_mask = 0;
1963 	int err, ch_irq, g_irq;
1964 	int g_err_irq, g_recc_irq;
1965 	u32 rule_entry = 0;
1966 	bool fdmode = true;			/* CAN FD only mode - default */
1967 	char name[9] = "channelX";
1968 	struct clk *clk_ram;
1969 	int i;
1970 
1971 	info = of_device_get_match_data(dev);
1972 
1973 	if (of_property_read_bool(dev->of_node, "renesas,no-can-fd"))
1974 		fdmode = false;			/* Classical CAN only mode */
1975 
1976 	for (i = 0; i < info->max_channels; ++i) {
1977 		name[7] = '0' + i;
1978 		of_child = of_get_available_child_by_name(dev->of_node, name);
1979 		if (of_child) {
1980 			channels_mask |= BIT(i);
1981 			transceivers[i] = devm_of_phy_optional_get(dev,
1982 							of_child, NULL);
1983 			of_node_put(of_child);
1984 		}
1985 		if (IS_ERR(transceivers[i]))
1986 			return PTR_ERR(transceivers[i]);
1987 	}
1988 
1989 	if (info->shared_global_irqs) {
1990 		ch_irq = platform_get_irq_byname_optional(pdev, "ch_int");
1991 		if (ch_irq < 0) {
1992 			/* For backward compatibility get irq by index */
1993 			ch_irq = platform_get_irq(pdev, 0);
1994 			if (ch_irq < 0)
1995 				return ch_irq;
1996 		}
1997 
1998 		g_irq = platform_get_irq_byname_optional(pdev, "g_int");
1999 		if (g_irq < 0) {
2000 			/* For backward compatibility get irq by index */
2001 			g_irq = platform_get_irq(pdev, 1);
2002 			if (g_irq < 0)
2003 				return g_irq;
2004 		}
2005 	} else {
2006 		g_err_irq = platform_get_irq_byname(pdev, "g_err");
2007 		if (g_err_irq < 0)
2008 			return g_err_irq;
2009 
2010 		g_recc_irq = platform_get_irq_byname(pdev, "g_recc");
2011 		if (g_recc_irq < 0)
2012 			return g_recc_irq;
2013 	}
2014 
2015 	/* Global controller context */
2016 	gpriv = devm_kzalloc(dev, sizeof(*gpriv), GFP_KERNEL);
2017 	if (!gpriv)
2018 		return -ENOMEM;
2019 
2020 	gpriv->pdev = pdev;
2021 	gpriv->channels_mask = channels_mask;
2022 	gpriv->fdmode = fdmode;
2023 	gpriv->info = info;
2024 
2025 	gpriv->rstc1 = devm_reset_control_get_optional_exclusive(dev, "rstp_n");
2026 	if (IS_ERR(gpriv->rstc1))
2027 		return dev_err_probe(dev, PTR_ERR(gpriv->rstc1),
2028 				     "failed to get rstp_n\n");
2029 
2030 	gpriv->rstc2 = devm_reset_control_get_optional_exclusive(dev, "rstc_n");
2031 	if (IS_ERR(gpriv->rstc2))
2032 		return dev_err_probe(dev, PTR_ERR(gpriv->rstc2),
2033 				     "failed to get rstc_n\n");
2034 
2035 	/* Peripheral clock */
2036 	gpriv->clkp = devm_clk_get(dev, "fck");
2037 	if (IS_ERR(gpriv->clkp))
2038 		return dev_err_probe(dev, PTR_ERR(gpriv->clkp),
2039 				     "cannot get peripheral clock\n");
2040 
2041 	/* fCAN clock: Pick External clock. If not available fallback to
2042 	 * CANFD clock
2043 	 */
2044 	gpriv->can_clk = devm_clk_get(dev, "can_clk");
2045 	if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
2046 		gpriv->can_clk = devm_clk_get(dev, "canfd");
2047 		if (IS_ERR(gpriv->can_clk))
2048 			return dev_err_probe(dev, PTR_ERR(gpriv->can_clk),
2049 					     "cannot get canfd clock\n");
2050 
2051 		/* CANFD clock may be further divided within the IP */
2052 		fcan_freq = clk_get_rate(gpriv->can_clk) / info->postdiv;
2053 	} else {
2054 		fcan_freq = clk_get_rate(gpriv->can_clk);
2055 		gpriv->extclk = gpriv->info->external_clk;
2056 	}
2057 
2058 	clk_ram = devm_clk_get_optional_enabled(dev, "ram_clk");
2059 	if (IS_ERR(clk_ram))
2060 		return dev_err_probe(dev, PTR_ERR(clk_ram),
2061 				     "cannot get enabled ram clock\n");
2062 
2063 	addr = devm_platform_ioremap_resource(pdev, 0);
2064 	if (IS_ERR(addr)) {
2065 		err = PTR_ERR(addr);
2066 		goto fail_dev;
2067 	}
2068 	gpriv->base = addr;
2069 	gpriv->fcbase = addr + gpriv->info->regs->coffset;
2070 
2071 	/* Request IRQ that's common for both channels */
2072 	if (info->shared_global_irqs) {
2073 		err = devm_request_irq(dev, ch_irq,
2074 				       rcar_canfd_channel_interrupt, 0,
2075 				       "canfd.ch_int", gpriv);
2076 		if (err) {
2077 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
2078 				ch_irq, ERR_PTR(err));
2079 			goto fail_dev;
2080 		}
2081 
2082 		err = devm_request_irq(dev, g_irq, rcar_canfd_global_interrupt,
2083 				       0, "canfd.g_int", gpriv);
2084 		if (err) {
2085 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
2086 				g_irq, ERR_PTR(err));
2087 			goto fail_dev;
2088 		}
2089 	} else {
2090 		err = devm_request_irq(dev, g_recc_irq,
2091 				       rcar_canfd_global_receive_fifo_interrupt, 0,
2092 				       "canfd.g_recc", gpriv);
2093 
2094 		if (err) {
2095 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
2096 				g_recc_irq, ERR_PTR(err));
2097 			goto fail_dev;
2098 		}
2099 
2100 		err = devm_request_irq(dev, g_err_irq,
2101 				       rcar_canfd_global_err_interrupt, 0,
2102 				       "canfd.g_err", gpriv);
2103 		if (err) {
2104 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
2105 				g_err_irq, ERR_PTR(err));
2106 			goto fail_dev;
2107 		}
2108 	}
2109 
2110 	err = reset_control_reset(gpriv->rstc1);
2111 	if (err)
2112 		goto fail_dev;
2113 	err = reset_control_reset(gpriv->rstc2);
2114 	if (err) {
2115 		reset_control_assert(gpriv->rstc1);
2116 		goto fail_dev;
2117 	}
2118 
2119 	/* Enable peripheral clock for register access */
2120 	err = clk_prepare_enable(gpriv->clkp);
2121 	if (err) {
2122 		dev_err(dev, "failed to enable peripheral clock: %pe\n",
2123 			ERR_PTR(err));
2124 		goto fail_reset;
2125 	}
2126 
2127 	err = rcar_canfd_reset_controller(gpriv);
2128 	if (err) {
2129 		dev_err(dev, "reset controller failed: %pe\n", ERR_PTR(err));
2130 		goto fail_clk;
2131 	}
2132 
2133 	/* Controller in Global reset & Channel reset mode */
2134 	rcar_canfd_configure_controller(gpriv);
2135 
2136 	/* Configure per channel attributes */
2137 	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
2138 		/* Configure Channel's Rx fifo */
2139 		rcar_canfd_configure_rx(gpriv, ch);
2140 
2141 		/* Configure Channel's Tx (Common) fifo */
2142 		rcar_canfd_configure_tx(gpriv, ch);
2143 
2144 		/* Configure receive rules */
2145 		rcar_canfd_configure_afl_rules(gpriv, ch, rule_entry);
2146 		rule_entry += RCANFD_CHANNEL_NUMRULES;
2147 	}
2148 
2149 	/* Configure common interrupts */
2150 	rcar_canfd_enable_global_interrupts(gpriv);
2151 
2152 	/* Start Global operation mode */
2153 	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
2154 			      RCANFD_GCTR_GMDC_GOPM);
2155 
2156 	/* Verify mode change */
2157 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
2158 				 !(sts & RCANFD_GSTS_GNOPM), 2, 500000);
2159 	if (err) {
2160 		dev_err(dev, "global operational mode failed\n");
2161 		goto fail_mode;
2162 	}
2163 
2164 	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
2165 		err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq,
2166 					       transceivers[ch]);
2167 		if (err)
2168 			goto fail_channel;
2169 	}
2170 
2171 	platform_set_drvdata(pdev, gpriv);
2172 	dev_info(dev, "global operational state (%s clk, %s mode)\n",
2173 		 gpriv->extclk ? "ext" : "canfd",
2174 		 gpriv->fdmode ? "fd" : "classical");
2175 	return 0;
2176 
2177 fail_channel:
2178 	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels)
2179 		rcar_canfd_channel_remove(gpriv, ch);
2180 fail_mode:
2181 	rcar_canfd_disable_global_interrupts(gpriv);
2182 fail_clk:
2183 	clk_disable_unprepare(gpriv->clkp);
2184 fail_reset:
2185 	reset_control_assert(gpriv->rstc1);
2186 	reset_control_assert(gpriv->rstc2);
2187 fail_dev:
2188 	return err;
2189 }
2190 
rcar_canfd_remove(struct platform_device * pdev)2191 static void rcar_canfd_remove(struct platform_device *pdev)
2192 {
2193 	struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
2194 	u32 ch;
2195 
2196 	rcar_canfd_reset_controller(gpriv);
2197 	rcar_canfd_disable_global_interrupts(gpriv);
2198 
2199 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
2200 		rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
2201 		rcar_canfd_channel_remove(gpriv, ch);
2202 	}
2203 
2204 	/* Enter global sleep mode */
2205 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
2206 	clk_disable_unprepare(gpriv->clkp);
2207 	reset_control_assert(gpriv->rstc1);
2208 	reset_control_assert(gpriv->rstc2);
2209 }
2210 
rcar_canfd_suspend(struct device * dev)2211 static int __maybe_unused rcar_canfd_suspend(struct device *dev)
2212 {
2213 	return 0;
2214 }
2215 
rcar_canfd_resume(struct device * dev)2216 static int __maybe_unused rcar_canfd_resume(struct device *dev)
2217 {
2218 	return 0;
2219 }
2220 
2221 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
2222 			 rcar_canfd_resume);
2223 
2224 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = {
2225 	{ .compatible = "renesas,r8a779a0-canfd", .data = &rcar_gen4_hw_info },
2226 	{ .compatible = "renesas,r9a09g047-canfd", .data = &r9a09g047_hw_info },
2227 	{ .compatible = "renesas,rcar-gen3-canfd", .data = &rcar_gen3_hw_info },
2228 	{ .compatible = "renesas,rcar-gen4-canfd", .data = &rcar_gen4_hw_info },
2229 	{ .compatible = "renesas,rzg2l-canfd", .data = &rzg2l_hw_info },
2230 	{ }
2231 };
2232 
2233 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
2234 
2235 static struct platform_driver rcar_canfd_driver = {
2236 	.driver = {
2237 		.name = RCANFD_DRV_NAME,
2238 		.of_match_table = of_match_ptr(rcar_canfd_of_table),
2239 		.pm = &rcar_canfd_pm_ops,
2240 	},
2241 	.probe = rcar_canfd_probe,
2242 	.remove = rcar_canfd_remove,
2243 };
2244 
2245 module_platform_driver(rcar_canfd_driver);
2246 
2247 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
2248 MODULE_LICENSE("GPL");
2249 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
2250 MODULE_ALIAS("platform:" RCANFD_DRV_NAME);
2251