1 // SPDX-License-Identifier: GPL-2.0+
2 /* Renesas R-Car CAN FD device driver
3 *
4 * Copyright (C) 2015 Renesas Electronics Corp.
5 */
6
7 /* The R-Car CAN FD controller can operate in either one of the below two modes
8 * - CAN FD only mode
9 * - Classical CAN (CAN 2.0) only mode
10 *
11 * This driver puts the controller in CAN FD only mode by default. In this
12 * mode, the controller acts as a CAN FD node that can also interoperate with
13 * CAN 2.0 nodes.
14 *
15 * To switch the controller to Classical CAN (CAN 2.0) only mode, add
16 * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
17 * also required to switch modes.
18 *
19 * Note: The h/w manual register naming convention is clumsy and not acceptable
20 * to use as it is in the driver. However, those names are added as comments
21 * wherever it is modified to a readable name.
22 */
23
24 #include <linux/bitfield.h>
25 #include <linux/bitmap.h>
26 #include <linux/bitops.h>
27 #include <linux/can/dev.h>
28 #include <linux/clk.h>
29 #include <linux/errno.h>
30 #include <linux/ethtool.h>
31 #include <linux/interrupt.h>
32 #include <linux/iopoll.h>
33 #include <linux/kernel.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/netdevice.h>
37 #include <linux/of.h>
38 #include <linux/phy/phy.h>
39 #include <linux/platform_device.h>
40 #include <linux/reset.h>
41 #include <linux/types.h>
42
43 #define RCANFD_DRV_NAME "rcar_canfd"
44
45 /* Global register bits */
46
47 /* RSCFDnCFDGRMCFG */
48 #define RCANFD_GRMCFG_RCMC BIT(0)
49
50 /* RSCFDnCFDGCFG / RSCFDnGCFG */
51 #define RCANFD_GCFG_EEFE BIT(6)
52 #define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */
53 #define RCANFD_GCFG_DCS BIT(4)
54 #define RCANFD_GCFG_DCE BIT(1)
55 #define RCANFD_GCFG_TPRI BIT(0)
56
57 /* RSCFDnCFDGCTR / RSCFDnGCTR */
58 #define RCANFD_GCTR_TSRST BIT(16)
59 #define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */
60 #define RCANFD_GCTR_THLEIE BIT(10)
61 #define RCANFD_GCTR_MEIE BIT(9)
62 #define RCANFD_GCTR_DEIE BIT(8)
63 #define RCANFD_GCTR_GSLPR BIT(2)
64 #define RCANFD_GCTR_GMDC_MASK (0x3)
65 #define RCANFD_GCTR_GMDC_GOPM (0x0)
66 #define RCANFD_GCTR_GMDC_GRESET (0x1)
67 #define RCANFD_GCTR_GMDC_GTEST (0x2)
68
69 /* RSCFDnCFDGSTS / RSCFDnGSTS */
70 #define RCANFD_GSTS_GRAMINIT BIT(3)
71 #define RCANFD_GSTS_GSLPSTS BIT(2)
72 #define RCANFD_GSTS_GHLTSTS BIT(1)
73 #define RCANFD_GSTS_GRSTSTS BIT(0)
74 /* Non-operational status */
75 #define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3))
76
77 /* RSCFDnCFDGERFL / RSCFDnGERFL */
78 #define RCANFD_GERFL_EEF GENMASK(23, 16)
79 #define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */
80 #define RCANFD_GERFL_THLES BIT(2)
81 #define RCANFD_GERFL_MES BIT(1)
82 #define RCANFD_GERFL_DEF BIT(0)
83
84 #define RCANFD_GERFL_ERR(gpriv, x) \
85 ({\
86 typeof(gpriv) (_gpriv) = (gpriv); \
87 ((x) & ((FIELD_PREP(RCANFD_GERFL_EEF, (_gpriv)->channels_mask)) | \
88 RCANFD_GERFL_MES | ((_gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0))); \
89 })
90
91 /* AFL Rx rules registers */
92
93 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
94 #define RCANFD_GAFLECTR_AFLDAE BIT(8)
95 #define RCANFD_GAFLECTR_AFLPN(gpriv, page_num) ((page_num) & (gpriv)->info->max_aflpn)
96
97 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
98 #define RCANFD_GAFLID_GAFLLB BIT(29)
99
100 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
101 #define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x))
102
103 /* Channel register bits */
104
105 /* RSCFDnCmCFG - Classical CAN only */
106 #define RCANFD_CFG_SJW(x) (((x) & 0x3) << 24)
107 #define RCANFD_CFG_TSEG2(x) (((x) & 0x7) << 20)
108 #define RCANFD_CFG_TSEG1(x) (((x) & 0xf) << 16)
109 #define RCANFD_CFG_BRP(x) (((x) & 0x3ff) << 0)
110
111 /* RSCFDnCFDCmNCFG - CAN FD only */
112 #define RCANFD_NCFG_NTSEG2(gpriv, x) \
113 (((x) & ((gpriv)->info->nom_bittiming->tseg2_max - 1)) << (gpriv)->info->sh->ntseg2)
114
115 #define RCANFD_NCFG_NTSEG1(gpriv, x) \
116 (((x) & ((gpriv)->info->nom_bittiming->tseg1_max - 1)) << (gpriv)->info->sh->ntseg1)
117
118 #define RCANFD_NCFG_NSJW(gpriv, x) \
119 (((x) & ((gpriv)->info->nom_bittiming->sjw_max - 1)) << (gpriv)->info->sh->nsjw)
120
121 #define RCANFD_NCFG_NBRP(x) (((x) & 0x3ff) << 0)
122
123 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
124 #define RCANFD_CCTR_CTME BIT(24)
125 #define RCANFD_CCTR_ERRD BIT(23)
126 #define RCANFD_CCTR_BOM_MASK (0x3 << 21)
127 #define RCANFD_CCTR_BOM_ISO (0x0 << 21)
128 #define RCANFD_CCTR_BOM_BENTRY (0x1 << 21)
129 #define RCANFD_CCTR_BOM_BEND (0x2 << 21)
130 #define RCANFD_CCTR_TDCVFIE BIT(19)
131 #define RCANFD_CCTR_SOCOIE BIT(18)
132 #define RCANFD_CCTR_EOCOIE BIT(17)
133 #define RCANFD_CCTR_TAIE BIT(16)
134 #define RCANFD_CCTR_ALIE BIT(15)
135 #define RCANFD_CCTR_BLIE BIT(14)
136 #define RCANFD_CCTR_OLIE BIT(13)
137 #define RCANFD_CCTR_BORIE BIT(12)
138 #define RCANFD_CCTR_BOEIE BIT(11)
139 #define RCANFD_CCTR_EPIE BIT(10)
140 #define RCANFD_CCTR_EWIE BIT(9)
141 #define RCANFD_CCTR_BEIE BIT(8)
142 #define RCANFD_CCTR_CSLPR BIT(2)
143 #define RCANFD_CCTR_CHMDC_MASK (0x3)
144 #define RCANFD_CCTR_CHDMC_COPM (0x0)
145 #define RCANFD_CCTR_CHDMC_CRESET (0x1)
146 #define RCANFD_CCTR_CHDMC_CHLT (0x2)
147
148 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
149 #define RCANFD_CSTS_COMSTS BIT(7)
150 #define RCANFD_CSTS_RECSTS BIT(6)
151 #define RCANFD_CSTS_TRMSTS BIT(5)
152 #define RCANFD_CSTS_BOSTS BIT(4)
153 #define RCANFD_CSTS_EPSTS BIT(3)
154 #define RCANFD_CSTS_SLPSTS BIT(2)
155 #define RCANFD_CSTS_HLTSTS BIT(1)
156 #define RCANFD_CSTS_CRSTSTS BIT(0)
157
158 #define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff)
159 #define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff)
160
161 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
162 #define RCANFD_CERFL_ADERR BIT(14)
163 #define RCANFD_CERFL_B0ERR BIT(13)
164 #define RCANFD_CERFL_B1ERR BIT(12)
165 #define RCANFD_CERFL_CERR BIT(11)
166 #define RCANFD_CERFL_AERR BIT(10)
167 #define RCANFD_CERFL_FERR BIT(9)
168 #define RCANFD_CERFL_SERR BIT(8)
169 #define RCANFD_CERFL_ALF BIT(7)
170 #define RCANFD_CERFL_BLF BIT(6)
171 #define RCANFD_CERFL_OVLF BIT(5)
172 #define RCANFD_CERFL_BORF BIT(4)
173 #define RCANFD_CERFL_BOEF BIT(3)
174 #define RCANFD_CERFL_EPF BIT(2)
175 #define RCANFD_CERFL_EWF BIT(1)
176 #define RCANFD_CERFL_BEF BIT(0)
177
178 #define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */
179
180 /* RSCFDnCFDCmDCFG */
181 #define RCANFD_DCFG_DSJW(gpriv, x) (((x) & ((gpriv)->info->data_bittiming->sjw_max - 1)) << 24)
182
183 #define RCANFD_DCFG_DTSEG2(gpriv, x) \
184 (((x) & ((gpriv)->info->data_bittiming->tseg2_max - 1)) << (gpriv)->info->sh->dtseg2)
185
186 #define RCANFD_DCFG_DTSEG1(gpriv, x) \
187 (((x) & ((gpriv)->info->data_bittiming->tseg1_max - 1)) << (gpriv)->info->sh->dtseg1)
188
189 #define RCANFD_DCFG_DBRP(x) (((x) & 0xff) << 0)
190
191 /* RSCFDnCFDCmFDCFG */
192 #define RCANFD_GEN4_FDCFG_CLOE BIT(30)
193 #define RCANFD_GEN4_FDCFG_FDOE BIT(28)
194 #define RCANFD_FDCFG_TDCO GENMASK(23, 16)
195 #define RCANFD_FDCFG_TDCE BIT(9)
196 #define RCANFD_FDCFG_TDCOC BIT(8)
197
198 /* RSCFDnCFDCmFDSTS */
199 #define RCANFD_FDSTS_SOC GENMASK(31, 24)
200 #define RCANFD_FDSTS_EOC GENMASK(23, 16)
201 #define RCANFD_GEN4_FDSTS_TDCVF BIT(15)
202 #define RCANFD_GEN4_FDSTS_PNSTS GENMASK(13, 12)
203 #define RCANFD_FDSTS_SOCO BIT(9)
204 #define RCANFD_FDSTS_EOCO BIT(8)
205 #define RCANFD_FDSTS_TDCVF BIT(7)
206 #define RCANFD_FDSTS_TDCR GENMASK(7, 0)
207
208 /* RSCFDnCFDRFCCx */
209 #define RCANFD_RFCC_RFIM BIT(12)
210 #define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8)
211 #define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4)
212 #define RCANFD_RFCC_RFIE BIT(1)
213 #define RCANFD_RFCC_RFE BIT(0)
214
215 /* RSCFDnCFDRFSTSx */
216 #define RCANFD_RFSTS_RFIF BIT(3)
217 #define RCANFD_RFSTS_RFMLT BIT(2)
218 #define RCANFD_RFSTS_RFFLL BIT(1)
219 #define RCANFD_RFSTS_RFEMP BIT(0)
220
221 /* RSCFDnCFDRFIDx */
222 #define RCANFD_RFID_RFIDE BIT(31)
223 #define RCANFD_RFID_RFRTR BIT(30)
224
225 /* RSCFDnCFDRFPTRx */
226 #define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf)
227
228 /* RSCFDnCFDRFFDSTSx */
229 #define RCANFD_RFFDSTS_RFFDF BIT(2)
230 #define RCANFD_RFFDSTS_RFBRS BIT(1)
231 #define RCANFD_RFFDSTS_RFESI BIT(0)
232
233 /* Common FIFO bits */
234
235 /* RSCFDnCFDCFCCk */
236 #define RCANFD_CFCC_CFTML(gpriv, cftml) \
237 ({\
238 typeof(gpriv) (_gpriv) = (gpriv); \
239 (((cftml) & (_gpriv)->info->max_cftml) << (_gpriv)->info->sh->cftml); \
240 })
241 #define RCANFD_CFCC_CFM(gpriv, x) (((x) & 0x3) << (gpriv)->info->sh->cfm)
242 #define RCANFD_CFCC_CFIM BIT(12)
243 #define RCANFD_CFCC_CFDC(gpriv, x) (((x) & 0x7) << (gpriv)->info->sh->cfdc)
244 #define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4)
245 #define RCANFD_CFCC_CFTXIE BIT(2)
246 #define RCANFD_CFCC_CFE BIT(0)
247
248 /* RSCFDnCFDCFSTSk */
249 #define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff)
250 #define RCANFD_CFSTS_CFTXIF BIT(4)
251 #define RCANFD_CFSTS_CFMLT BIT(2)
252 #define RCANFD_CFSTS_CFFLL BIT(1)
253 #define RCANFD_CFSTS_CFEMP BIT(0)
254
255 /* RSCFDnCFDCFIDk */
256 #define RCANFD_CFID_CFIDE BIT(31)
257 #define RCANFD_CFID_CFRTR BIT(30)
258
259 /* RSCFDnCFDCFPTRk */
260 #define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28)
261
262 /* RSCFDnCFDCFFDCSTSk */
263 #define RCANFD_CFFDCSTS_CFFDF BIT(2)
264 #define RCANFD_CFFDCSTS_CFBRS BIT(1)
265 #define RCANFD_CFFDCSTS_CFESI BIT(0)
266
267 /* This controller supports either Classical CAN only mode or CAN FD only mode.
268 * These modes are supported in two separate set of register maps & names.
269 * However, some of the register offsets are common for both modes. Those
270 * offsets are listed below as Common registers.
271 *
272 * The CAN FD only mode specific registers & Classical CAN only mode specific
273 * registers are listed separately. Their register names starts with
274 * RCANFD_F_xxx & RCANFD_C_xxx respectively.
275 */
276
277 /* Common registers */
278
279 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
280 #define RCANFD_CCFG(m) (0x0000 + (0x10 * (m)))
281 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
282 #define RCANFD_CCTR(m) (0x0004 + (0x10 * (m)))
283 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
284 #define RCANFD_CSTS(m) (0x0008 + (0x10 * (m)))
285 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
286 #define RCANFD_CERFL(m) (0x000C + (0x10 * (m)))
287
288 /* RSCFDnCFDGCFG / RSCFDnGCFG */
289 #define RCANFD_GCFG (0x0084)
290 /* RSCFDnCFDGCTR / RSCFDnGCTR */
291 #define RCANFD_GCTR (0x0088)
292 /* RSCFDnCFDGCTS / RSCFDnGCTS */
293 #define RCANFD_GSTS (0x008c)
294 /* RSCFDnCFDGERFL / RSCFDnGERFL */
295 #define RCANFD_GERFL (0x0090)
296 /* RSCFDnCFDGTSC / RSCFDnGTSC */
297 #define RCANFD_GTSC (0x0094)
298 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
299 #define RCANFD_GAFLECTR (0x0098)
300 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */
301 #define RCANFD_GAFLCFG(w) (0x009c + (0x04 * (w)))
302 /* RSCFDnCFDRMNB / RSCFDnRMNB */
303 #define RCANFD_RMNB (0x00a4)
304 /* RSCFDnCFDRMND / RSCFDnRMND */
305 #define RCANFD_RMND(y) (0x00a8 + (0x04 * (y)))
306
307 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */
308 #define RCANFD_RFCC(gpriv, x) ((gpriv)->info->regs->rfcc + (0x04 * (x)))
309 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
310 #define RCANFD_RFSTS(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x20)
311 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
312 #define RCANFD_RFPCTR(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x40)
313
314 /* Common FIFO Control registers */
315
316 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */
317 #define RCANFD_CFCC(gpriv, ch, idx) \
318 ((gpriv)->info->regs->cfcc + (0x0c * (ch)) + (0x04 * (idx)))
319 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
320 #define RCANFD_CFSTS(gpriv, ch, idx) \
321 ((gpriv)->info->regs->cfsts + (0x0c * (ch)) + (0x04 * (idx)))
322 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
323 #define RCANFD_CFPCTR(gpriv, ch, idx) \
324 ((gpriv)->info->regs->cfpctr + (0x0c * (ch)) + (0x04 * (idx)))
325
326 /* RSCFDnCFDGRMCFG */
327 #define RCANFD_GRMCFG (0x04fc)
328
329 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
330 #define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j)))
331 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
332 #define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j)))
333 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
334 #define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j)))
335 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
336 #define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j)))
337
338 /* Classical CAN only mode register map */
339
340 /* RSCFDnGAFLXXXj offset */
341 #define RCANFD_C_GAFL_OFFSET (0x0500)
342
343 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
344 #define RCANFD_C_RFOFFSET (0x0e00)
345 #define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x)))
346 #define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x)))
347 #define RCANFD_C_RFDF(x, df) \
348 (RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df)))
349
350 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
351 #define RCANFD_C_CFOFFSET (0x0e80)
352
353 #define RCANFD_C_CFID(ch, idx) \
354 (RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx)))
355
356 #define RCANFD_C_CFPTR(ch, idx) \
357 (RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx)))
358
359 #define RCANFD_C_CFDF(ch, idx, df) \
360 (RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df)))
361
362 /* R-Car Gen4 Classical and CAN FD mode specific register map */
363 #define RCANFD_GEN4_GAFL_OFFSET (0x1800)
364
365 /* CAN FD mode specific register map */
366
367 /* RSCFDnCFDCmXXX -> gpriv->fcbase[m].xxx */
368 struct rcar_canfd_f_c {
369 u32 dcfg;
370 u32 cfdcfg;
371 u32 cfdctr;
372 u32 cfdsts;
373 u32 cfdcrc;
374 u32 pad[3];
375 };
376
377 /* RSCFDnCFDGAFLXXXj offset */
378 #define RCANFD_F_GAFL_OFFSET (0x1000)
379
380 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
381 #define RCANFD_F_RFOFFSET(gpriv) ((gpriv)->info->regs->rfoffset)
382 #define RCANFD_F_RFID(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x)))
383 #define RCANFD_F_RFPTR(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x)))
384 #define RCANFD_F_RFFDSTS(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x)))
385 #define RCANFD_F_RFDF(gpriv, x, df) \
386 (RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df)))
387
388 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
389 #define RCANFD_F_CFOFFSET(gpriv) ((gpriv)->info->regs->cfoffset)
390
391 #define RCANFD_F_CFID(gpriv, ch, idx) \
392 (RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx)))
393
394 #define RCANFD_F_CFPTR(gpriv, ch, idx) \
395 (RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx)))
396
397 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \
398 (RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx)))
399
400 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \
401 (RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \
402 (0x04 * (df)))
403
404 /* Constants */
405 #define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */
406 #define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */
407
408 #define RCANFD_NUM_CHANNELS 8 /* Eight channels max */
409
410 #define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16)
411 #define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */
412
413 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
414 * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
415 * number is added to RFFIFO index.
416 */
417 #define RCANFD_RFFIFO_IDX 0
418
419 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
420 * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
421 */
422 #define RCANFD_CFFIFO_IDX 0
423
424 struct rcar_canfd_global;
425
426 struct rcar_canfd_regs {
427 u16 rfcc; /* RX FIFO Configuration/Control Register */
428 u16 cfcc; /* Common FIFO Configuration/Control Register */
429 u16 cfsts; /* Common FIFO Status Register */
430 u16 cfpctr; /* Common FIFO Pointer Control Register */
431 u16 coffset; /* Channel Data Bitrate Configuration Register */
432 u16 rfoffset; /* Receive FIFO buffer access ID register */
433 u16 cfoffset; /* Transmit/receive FIFO buffer access ID register */
434 };
435
436 struct rcar_canfd_shift_data {
437 u8 ntseg2; /* Nominal Bit Rate Time Segment 2 Control */
438 u8 ntseg1; /* Nominal Bit Rate Time Segment 1 Control */
439 u8 nsjw; /* Nominal Bit Rate Resynchronization Jump Width Control */
440 u8 dtseg2; /* Data Bit Rate Time Segment 2 Control */
441 u8 dtseg1; /* Data Bit Rate Time Segment 1 Control */
442 u8 cftml; /* Common FIFO TX Message Buffer Link */
443 u8 cfm; /* Common FIFO Mode */
444 u8 cfdc; /* Common FIFO Depth Configuration */
445 };
446
447 struct rcar_canfd_hw_info {
448 const struct can_bittiming_const *nom_bittiming;
449 const struct can_bittiming_const *data_bittiming;
450 const struct can_tdc_const *tdc_const;
451 const struct rcar_canfd_regs *regs;
452 const struct rcar_canfd_shift_data *sh;
453 u8 rnc_field_width;
454 u8 max_aflpn;
455 u8 max_cftml;
456 u8 max_channels;
457 u8 postdiv;
458 /* hardware features */
459 unsigned shared_global_irqs:1; /* Has shared global irqs */
460 unsigned multi_channel_irqs:1; /* Has multiple channel irqs */
461 unsigned ch_interface_mode:1; /* Has channel interface mode */
462 unsigned shared_can_regs:1; /* Has shared classical can registers */
463 unsigned external_clk:1; /* Has external clock */
464 };
465
466 /* Channel priv data */
467 struct rcar_canfd_channel {
468 struct can_priv can; /* Must be the first member */
469 struct net_device *ndev;
470 struct rcar_canfd_global *gpriv; /* Controller reference */
471 void __iomem *base; /* Register base address */
472 struct phy *transceiver; /* Optional transceiver */
473 struct napi_struct napi;
474 u32 tx_head; /* Incremented on xmit */
475 u32 tx_tail; /* Incremented on xmit done */
476 u32 channel; /* Channel number */
477 spinlock_t tx_lock; /* To protect tx path */
478 };
479
480 /* Global priv data */
481 struct rcar_canfd_global {
482 struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
483 void __iomem *base; /* Register base address */
484 struct rcar_canfd_f_c __iomem *fcbase;
485 struct platform_device *pdev; /* Respective platform device */
486 struct clk *clkp; /* Peripheral clock */
487 struct clk *can_clk; /* fCAN clock */
488 unsigned long channels_mask; /* Enabled channels mask */
489 bool extclk; /* CANFD or Ext clock */
490 bool fdmode; /* CAN FD or Classical CAN only mode */
491 struct reset_control *rstc1;
492 struct reset_control *rstc2;
493 const struct rcar_canfd_hw_info *info;
494 };
495
496 /* CAN FD mode nominal rate constants */
497 static const struct can_bittiming_const rcar_canfd_gen3_nom_bittiming_const = {
498 .name = RCANFD_DRV_NAME,
499 .tseg1_min = 2,
500 .tseg1_max = 128,
501 .tseg2_min = 2,
502 .tseg2_max = 32,
503 .sjw_max = 32,
504 .brp_min = 1,
505 .brp_max = 1024,
506 .brp_inc = 1,
507 };
508
509 static const struct can_bittiming_const rcar_canfd_gen4_nom_bittiming_const = {
510 .name = RCANFD_DRV_NAME,
511 .tseg1_min = 2,
512 .tseg1_max = 256,
513 .tseg2_min = 2,
514 .tseg2_max = 128,
515 .sjw_max = 128,
516 .brp_min = 1,
517 .brp_max = 1024,
518 .brp_inc = 1,
519 };
520
521 /* CAN FD mode data rate constants */
522 static const struct can_bittiming_const rcar_canfd_gen3_data_bittiming_const = {
523 .name = RCANFD_DRV_NAME,
524 .tseg1_min = 2,
525 .tseg1_max = 16,
526 .tseg2_min = 2,
527 .tseg2_max = 8,
528 .sjw_max = 8,
529 .brp_min = 1,
530 .brp_max = 256,
531 .brp_inc = 1,
532 };
533
534 static const struct can_bittiming_const rcar_canfd_gen4_data_bittiming_const = {
535 .name = RCANFD_DRV_NAME,
536 .tseg1_min = 2,
537 .tseg1_max = 32,
538 .tseg2_min = 2,
539 .tseg2_max = 16,
540 .sjw_max = 16,
541 .brp_min = 1,
542 .brp_max = 256,
543 .brp_inc = 1,
544 };
545
546 /* Classical CAN mode bitrate constants */
547 static const struct can_bittiming_const rcar_canfd_bittiming_const = {
548 .name = RCANFD_DRV_NAME,
549 .tseg1_min = 4,
550 .tseg1_max = 16,
551 .tseg2_min = 2,
552 .tseg2_max = 8,
553 .sjw_max = 4,
554 .brp_min = 1,
555 .brp_max = 1024,
556 .brp_inc = 1,
557 };
558
559 /* CAN FD Transmission Delay Compensation constants */
560 static const struct can_tdc_const rcar_canfd_gen3_tdc_const = {
561 .tdcv_min = 1,
562 .tdcv_max = 128,
563 .tdco_min = 1,
564 .tdco_max = 128,
565 .tdcf_min = 0, /* Filter window not supported */
566 .tdcf_max = 0,
567 };
568
569 static const struct can_tdc_const rcar_canfd_gen4_tdc_const = {
570 .tdcv_min = 1,
571 .tdcv_max = 256,
572 .tdco_min = 1,
573 .tdco_max = 256,
574 .tdcf_min = 0, /* Filter window not supported */
575 .tdcf_max = 0,
576 };
577
578 static const struct rcar_canfd_regs rcar_gen3_regs = {
579 .rfcc = 0x00b8,
580 .cfcc = 0x0118,
581 .cfsts = 0x0178,
582 .cfpctr = 0x01d8,
583 .coffset = 0x0500,
584 .rfoffset = 0x3000,
585 .cfoffset = 0x3400,
586 };
587
588 static const struct rcar_canfd_regs rcar_gen4_regs = {
589 .rfcc = 0x00c0,
590 .cfcc = 0x0120,
591 .cfsts = 0x01e0,
592 .cfpctr = 0x0240,
593 .coffset = 0x1400,
594 .rfoffset = 0x6000,
595 .cfoffset = 0x6400,
596 };
597
598 static const struct rcar_canfd_shift_data rcar_gen3_shift_data = {
599 .ntseg2 = 24,
600 .ntseg1 = 16,
601 .nsjw = 11,
602 .dtseg2 = 20,
603 .dtseg1 = 16,
604 .cftml = 20,
605 .cfm = 16,
606 .cfdc = 8,
607 };
608
609 static const struct rcar_canfd_shift_data rcar_gen4_shift_data = {
610 .ntseg2 = 25,
611 .ntseg1 = 17,
612 .nsjw = 10,
613 .dtseg2 = 16,
614 .dtseg1 = 8,
615 .cftml = 16,
616 .cfm = 8,
617 .cfdc = 21,
618 };
619
620 static const struct rcar_canfd_hw_info rcar_gen3_hw_info = {
621 .nom_bittiming = &rcar_canfd_gen3_nom_bittiming_const,
622 .data_bittiming = &rcar_canfd_gen3_data_bittiming_const,
623 .tdc_const = &rcar_canfd_gen3_tdc_const,
624 .regs = &rcar_gen3_regs,
625 .sh = &rcar_gen3_shift_data,
626 .rnc_field_width = 8,
627 .max_aflpn = 31,
628 .max_cftml = 15,
629 .max_channels = 2,
630 .postdiv = 2,
631 .shared_global_irqs = 1,
632 .ch_interface_mode = 0,
633 .shared_can_regs = 0,
634 .external_clk = 1,
635 };
636
637 static const struct rcar_canfd_hw_info rcar_gen4_hw_info = {
638 .nom_bittiming = &rcar_canfd_gen4_nom_bittiming_const,
639 .data_bittiming = &rcar_canfd_gen4_data_bittiming_const,
640 .tdc_const = &rcar_canfd_gen4_tdc_const,
641 .regs = &rcar_gen4_regs,
642 .sh = &rcar_gen4_shift_data,
643 .rnc_field_width = 16,
644 .max_aflpn = 127,
645 .max_cftml = 31,
646 .max_channels = 8,
647 .postdiv = 2,
648 .shared_global_irqs = 1,
649 .ch_interface_mode = 1,
650 .shared_can_regs = 1,
651 .external_clk = 1,
652 };
653
654 static const struct rcar_canfd_hw_info rzg2l_hw_info = {
655 .nom_bittiming = &rcar_canfd_gen3_nom_bittiming_const,
656 .data_bittiming = &rcar_canfd_gen3_data_bittiming_const,
657 .tdc_const = &rcar_canfd_gen3_tdc_const,
658 .regs = &rcar_gen3_regs,
659 .sh = &rcar_gen3_shift_data,
660 .rnc_field_width = 8,
661 .max_aflpn = 31,
662 .max_cftml = 15,
663 .max_channels = 2,
664 .postdiv = 1,
665 .multi_channel_irqs = 1,
666 .ch_interface_mode = 0,
667 .shared_can_regs = 0,
668 .external_clk = 1,
669 };
670
671 static const struct rcar_canfd_hw_info r9a09g047_hw_info = {
672 .nom_bittiming = &rcar_canfd_gen4_nom_bittiming_const,
673 .data_bittiming = &rcar_canfd_gen4_data_bittiming_const,
674 .tdc_const = &rcar_canfd_gen4_tdc_const,
675 .regs = &rcar_gen4_regs,
676 .sh = &rcar_gen4_shift_data,
677 .rnc_field_width = 16,
678 .max_aflpn = 63,
679 .max_cftml = 31,
680 .max_channels = 6,
681 .postdiv = 1,
682 .multi_channel_irqs = 1,
683 .ch_interface_mode = 1,
684 .shared_can_regs = 1,
685 .external_clk = 0,
686 };
687
688 /* Helper functions */
rcar_canfd_update(u32 mask,u32 val,u32 __iomem * reg)689 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
690 {
691 u32 data = readl(reg);
692
693 data &= ~mask;
694 data |= (val & mask);
695 writel(data, reg);
696 }
697
rcar_canfd_read(void __iomem * base,u32 offset)698 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
699 {
700 return readl(base + offset);
701 }
702
rcar_canfd_write(void __iomem * base,u32 offset,u32 val)703 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
704 {
705 writel(val, base + offset);
706 }
707
rcar_canfd_set_bit(void __iomem * base,u32 reg,u32 val)708 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
709 {
710 rcar_canfd_update(val, val, base + reg);
711 }
712
rcar_canfd_clear_bit(void __iomem * base,u32 reg,u32 val)713 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
714 {
715 rcar_canfd_update(val, 0, base + reg);
716 }
717
rcar_canfd_update_bit(void __iomem * base,u32 reg,u32 mask,u32 val)718 static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
719 u32 mask, u32 val)
720 {
721 rcar_canfd_update(mask, val, base + reg);
722 }
723
rcar_canfd_set_bit_reg(void __iomem * addr,u32 val)724 static void rcar_canfd_set_bit_reg(void __iomem *addr, u32 val)
725 {
726 rcar_canfd_update(val, val, addr);
727 }
728
rcar_canfd_update_bit_reg(void __iomem * addr,u32 mask,u32 val)729 static void rcar_canfd_update_bit_reg(void __iomem *addr, u32 mask, u32 val)
730 {
731 rcar_canfd_update(mask, val, addr);
732 }
733
rcar_canfd_get_data(struct rcar_canfd_channel * priv,struct canfd_frame * cf,u32 off)734 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
735 struct canfd_frame *cf, u32 off)
736 {
737 u32 *data = (u32 *)cf->data;
738 u32 i, lwords;
739
740 lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
741 for (i = 0; i < lwords; i++)
742 data[i] = rcar_canfd_read(priv->base, off + i * sizeof(u32));
743 }
744
rcar_canfd_put_data(struct rcar_canfd_channel * priv,struct canfd_frame * cf,u32 off)745 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
746 struct canfd_frame *cf, u32 off)
747 {
748 const u32 *data = (u32 *)cf->data;
749 u32 i, lwords;
750
751 lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
752 for (i = 0; i < lwords; i++)
753 rcar_canfd_write(priv->base, off + i * sizeof(u32), data[i]);
754 }
755
rcar_canfd_tx_failure_cleanup(struct net_device * ndev)756 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
757 {
758 u32 i;
759
760 for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
761 can_free_echo_skb(ndev, i, NULL);
762 }
763
rcar_canfd_set_rnc(struct rcar_canfd_global * gpriv,unsigned int ch,unsigned int num_rules)764 static void rcar_canfd_set_rnc(struct rcar_canfd_global *gpriv, unsigned int ch,
765 unsigned int num_rules)
766 {
767 unsigned int rnc_stride = 32 / gpriv->info->rnc_field_width;
768 unsigned int shift = 32 - (ch % rnc_stride + 1) * gpriv->info->rnc_field_width;
769 unsigned int w = ch / rnc_stride;
770 u32 rnc = num_rules << shift;
771
772 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(w), rnc);
773 }
774
rcar_canfd_set_mode(struct rcar_canfd_global * gpriv)775 static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv)
776 {
777 if (gpriv->info->ch_interface_mode) {
778 u32 ch, val = gpriv->fdmode ? RCANFD_GEN4_FDCFG_FDOE
779 : RCANFD_GEN4_FDCFG_CLOE;
780
781 for_each_set_bit(ch, &gpriv->channels_mask,
782 gpriv->info->max_channels)
783 rcar_canfd_set_bit_reg(&gpriv->fcbase[ch].cfdcfg, val);
784 } else {
785 if (gpriv->fdmode)
786 rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
787 RCANFD_GRMCFG_RCMC);
788 else
789 rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
790 RCANFD_GRMCFG_RCMC);
791 }
792 }
793
rcar_canfd_reset_controller(struct rcar_canfd_global * gpriv)794 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
795 {
796 struct device *dev = &gpriv->pdev->dev;
797 u32 sts, ch;
798 int err;
799
800 /* Check RAMINIT flag as CAN RAM initialization takes place
801 * after the MCU reset
802 */
803 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
804 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
805 if (err) {
806 dev_dbg(dev, "global raminit failed\n");
807 return err;
808 }
809
810 /* Transition to Global Reset mode */
811 rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
812 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
813 RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
814
815 /* Ensure Global reset mode */
816 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
817 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
818 if (err) {
819 dev_dbg(dev, "global reset failed\n");
820 return err;
821 }
822
823 /* Reset Global error flags */
824 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
825
826 /* Set the controller into appropriate mode */
827 rcar_canfd_set_mode(gpriv);
828
829 /* Transition all Channels to reset mode */
830 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
831 rcar_canfd_clear_bit(gpriv->base,
832 RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
833
834 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
835 RCANFD_CCTR_CHMDC_MASK,
836 RCANFD_CCTR_CHDMC_CRESET);
837
838 /* Ensure Channel reset mode */
839 err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
840 (sts & RCANFD_CSTS_CRSTSTS),
841 2, 500000);
842 if (err) {
843 dev_dbg(dev, "channel %u reset failed\n", ch);
844 return err;
845 }
846 }
847 return 0;
848 }
849
rcar_canfd_configure_controller(struct rcar_canfd_global * gpriv)850 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
851 {
852 u32 cfg, ch;
853
854 /* Global configuration settings */
855
856 /* ECC Error flag Enable */
857 cfg = RCANFD_GCFG_EEFE;
858
859 if (gpriv->fdmode)
860 /* Truncate payload to configured message size RFPLS */
861 cfg |= RCANFD_GCFG_CMPOC;
862
863 /* Set External Clock if selected */
864 if (gpriv->extclk)
865 cfg |= RCANFD_GCFG_DCS;
866
867 rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
868
869 /* Channel configuration settings */
870 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
871 rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
872 RCANFD_CCTR_ERRD);
873 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
874 RCANFD_CCTR_BOM_MASK,
875 RCANFD_CCTR_BOM_BENTRY);
876 }
877 }
878
rcar_canfd_configure_afl_rules(struct rcar_canfd_global * gpriv,u32 ch,u32 rule_entry)879 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
880 u32 ch, u32 rule_entry)
881 {
882 unsigned int offset, page, num_rules = RCANFD_CHANNEL_NUMRULES;
883 u32 rule_entry_index = rule_entry % 16;
884 u32 ridx = ch + RCANFD_RFFIFO_IDX;
885
886 /* Enable write access to entry */
887 page = RCANFD_GAFL_PAGENUM(rule_entry);
888 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
889 (RCANFD_GAFLECTR_AFLPN(gpriv, page) |
890 RCANFD_GAFLECTR_AFLDAE));
891
892 /* Write number of rules for channel */
893 rcar_canfd_set_rnc(gpriv, ch, num_rules);
894 if (gpriv->info->shared_can_regs)
895 offset = RCANFD_GEN4_GAFL_OFFSET;
896 else if (gpriv->fdmode)
897 offset = RCANFD_F_GAFL_OFFSET;
898 else
899 offset = RCANFD_C_GAFL_OFFSET;
900
901 /* Accept all IDs */
902 rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, rule_entry_index), 0);
903 /* IDE or RTR is not considered for matching */
904 rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, rule_entry_index), 0);
905 /* Any data length accepted */
906 rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, rule_entry_index), 0);
907 /* Place the msg in corresponding Rx FIFO entry */
908 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, rule_entry_index),
909 RCANFD_GAFLP1_GAFLFDP(ridx));
910
911 /* Disable write access to page */
912 rcar_canfd_clear_bit(gpriv->base,
913 RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
914 }
915
rcar_canfd_configure_rx(struct rcar_canfd_global * gpriv,u32 ch)916 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
917 {
918 /* Rx FIFO is used for reception */
919 u32 cfg;
920 u16 rfdc, rfpls;
921
922 /* Select Rx FIFO based on channel */
923 u32 ridx = ch + RCANFD_RFFIFO_IDX;
924
925 rfdc = 2; /* b010 - 8 messages Rx FIFO depth */
926 if (gpriv->fdmode)
927 rfpls = 7; /* b111 - Max 64 bytes payload */
928 else
929 rfpls = 0; /* b000 - Max 8 bytes payload */
930
931 cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
932 RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
933 rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg);
934 }
935
rcar_canfd_configure_tx(struct rcar_canfd_global * gpriv,u32 ch)936 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
937 {
938 /* Tx/Rx(Common) FIFO configured in Tx mode is
939 * used for transmission
940 *
941 * Each channel has 3 Common FIFO dedicated to them.
942 * Use the 1st (index 0) out of 3
943 */
944 u32 cfg;
945 u16 cftml, cfm, cfdc, cfpls;
946
947 cftml = 0; /* 0th buffer */
948 cfm = 1; /* b01 - Transmit mode */
949 cfdc = 2; /* b010 - 8 messages Tx FIFO depth */
950 if (gpriv->fdmode)
951 cfpls = 7; /* b111 - Max 64 bytes payload */
952 else
953 cfpls = 0; /* b000 - Max 8 bytes payload */
954
955 cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) |
956 RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) |
957 RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
958 rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg);
959
960 if (gpriv->fdmode)
961 /* Clear FD mode specific control/status register */
962 rcar_canfd_write(gpriv->base,
963 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0);
964 }
965
rcar_canfd_enable_global_interrupts(struct rcar_canfd_global * gpriv)966 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
967 {
968 u32 ctr;
969
970 /* Clear any stray error interrupt flags */
971 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
972
973 /* Global interrupts setup */
974 ctr = RCANFD_GCTR_MEIE;
975 if (gpriv->fdmode)
976 ctr |= RCANFD_GCTR_CFMPOFIE;
977
978 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
979 }
980
rcar_canfd_disable_global_interrupts(struct rcar_canfd_global * gpriv)981 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
982 *gpriv)
983 {
984 /* Disable all interrupts */
985 rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
986
987 /* Clear any stray error interrupt flags */
988 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
989 }
990
rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel * priv)991 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
992 *priv)
993 {
994 u32 ctr, ch = priv->channel;
995
996 /* Clear any stray error flags */
997 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
998
999 /* Channel interrupts setup */
1000 ctr = (RCANFD_CCTR_TAIE |
1001 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
1002 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
1003 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
1004 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
1005 rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
1006 }
1007
rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel * priv)1008 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
1009 *priv)
1010 {
1011 u32 ctr, ch = priv->channel;
1012
1013 ctr = (RCANFD_CCTR_TAIE |
1014 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
1015 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
1016 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
1017 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
1018 rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
1019
1020 /* Clear any stray error flags */
1021 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
1022 }
1023
rcar_canfd_global_error(struct net_device * ndev)1024 static void rcar_canfd_global_error(struct net_device *ndev)
1025 {
1026 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1027 struct rcar_canfd_global *gpriv = priv->gpriv;
1028 struct net_device_stats *stats = &ndev->stats;
1029 u32 ch = priv->channel;
1030 u32 gerfl, sts;
1031 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1032
1033 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1034 if (gerfl & FIELD_PREP(RCANFD_GERFL_EEF, BIT(ch))) {
1035 netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch);
1036 stats->tx_dropped++;
1037 }
1038 if (gerfl & RCANFD_GERFL_MES) {
1039 sts = rcar_canfd_read(priv->base,
1040 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1041 if (sts & RCANFD_CFSTS_CFMLT) {
1042 netdev_dbg(ndev, "Tx Message Lost flag\n");
1043 stats->tx_dropped++;
1044 rcar_canfd_write(priv->base,
1045 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
1046 sts & ~RCANFD_CFSTS_CFMLT);
1047 }
1048
1049 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1050 if (sts & RCANFD_RFSTS_RFMLT) {
1051 netdev_dbg(ndev, "Rx Message Lost flag\n");
1052 stats->rx_dropped++;
1053 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
1054 sts & ~RCANFD_RFSTS_RFMLT);
1055 }
1056 }
1057 if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
1058 /* Message Lost flag will be set for respective channel
1059 * when this condition happens with counters and flags
1060 * already updated.
1061 */
1062 netdev_dbg(ndev, "global payload overflow interrupt\n");
1063 }
1064
1065 /* Clear all global error interrupts. Only affected channels bits
1066 * get cleared
1067 */
1068 rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
1069 }
1070
rcar_canfd_error(struct net_device * ndev,u32 cerfl,u16 txerr,u16 rxerr)1071 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
1072 u16 txerr, u16 rxerr)
1073 {
1074 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1075 struct net_device_stats *stats = &ndev->stats;
1076 struct can_frame *cf;
1077 struct sk_buff *skb;
1078 u32 ch = priv->channel;
1079
1080 netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
1081
1082 /* Propagate the error condition to the CAN stack */
1083 skb = alloc_can_err_skb(ndev, &cf);
1084 if (!skb) {
1085 stats->rx_dropped++;
1086 return;
1087 }
1088
1089 /* Channel error interrupts */
1090 if (cerfl & RCANFD_CERFL_BEF) {
1091 netdev_dbg(ndev, "Bus error\n");
1092 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
1093 cf->data[2] = CAN_ERR_PROT_UNSPEC;
1094 priv->can.can_stats.bus_error++;
1095 }
1096 if (cerfl & RCANFD_CERFL_ADERR) {
1097 netdev_dbg(ndev, "ACK Delimiter Error\n");
1098 stats->tx_errors++;
1099 cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
1100 }
1101 if (cerfl & RCANFD_CERFL_B0ERR) {
1102 netdev_dbg(ndev, "Bit Error (dominant)\n");
1103 stats->tx_errors++;
1104 cf->data[2] |= CAN_ERR_PROT_BIT0;
1105 }
1106 if (cerfl & RCANFD_CERFL_B1ERR) {
1107 netdev_dbg(ndev, "Bit Error (recessive)\n");
1108 stats->tx_errors++;
1109 cf->data[2] |= CAN_ERR_PROT_BIT1;
1110 }
1111 if (cerfl & RCANFD_CERFL_CERR) {
1112 netdev_dbg(ndev, "CRC Error\n");
1113 stats->rx_errors++;
1114 cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
1115 }
1116 if (cerfl & RCANFD_CERFL_AERR) {
1117 netdev_dbg(ndev, "ACK Error\n");
1118 stats->tx_errors++;
1119 cf->can_id |= CAN_ERR_ACK;
1120 cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
1121 }
1122 if (cerfl & RCANFD_CERFL_FERR) {
1123 netdev_dbg(ndev, "Form Error\n");
1124 stats->rx_errors++;
1125 cf->data[2] |= CAN_ERR_PROT_FORM;
1126 }
1127 if (cerfl & RCANFD_CERFL_SERR) {
1128 netdev_dbg(ndev, "Stuff Error\n");
1129 stats->rx_errors++;
1130 cf->data[2] |= CAN_ERR_PROT_STUFF;
1131 }
1132 if (cerfl & RCANFD_CERFL_ALF) {
1133 netdev_dbg(ndev, "Arbitration lost Error\n");
1134 priv->can.can_stats.arbitration_lost++;
1135 cf->can_id |= CAN_ERR_LOSTARB;
1136 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
1137 }
1138 if (cerfl & RCANFD_CERFL_BLF) {
1139 netdev_dbg(ndev, "Bus Lock Error\n");
1140 stats->rx_errors++;
1141 cf->can_id |= CAN_ERR_BUSERROR;
1142 }
1143 if (cerfl & RCANFD_CERFL_EWF) {
1144 netdev_dbg(ndev, "Error warning interrupt\n");
1145 priv->can.state = CAN_STATE_ERROR_WARNING;
1146 priv->can.can_stats.error_warning++;
1147 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1148 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
1149 CAN_ERR_CRTL_RX_WARNING;
1150 cf->data[6] = txerr;
1151 cf->data[7] = rxerr;
1152 }
1153 if (cerfl & RCANFD_CERFL_EPF) {
1154 netdev_dbg(ndev, "Error passive interrupt\n");
1155 priv->can.state = CAN_STATE_ERROR_PASSIVE;
1156 priv->can.can_stats.error_passive++;
1157 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1158 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
1159 CAN_ERR_CRTL_RX_PASSIVE;
1160 cf->data[6] = txerr;
1161 cf->data[7] = rxerr;
1162 }
1163 if (cerfl & RCANFD_CERFL_BOEF) {
1164 netdev_dbg(ndev, "Bus-off entry interrupt\n");
1165 rcar_canfd_tx_failure_cleanup(ndev);
1166 priv->can.state = CAN_STATE_BUS_OFF;
1167 priv->can.can_stats.bus_off++;
1168 can_bus_off(ndev);
1169 cf->can_id |= CAN_ERR_BUSOFF;
1170 }
1171 if (cerfl & RCANFD_CERFL_OVLF) {
1172 netdev_dbg(ndev,
1173 "Overload Frame Transmission error interrupt\n");
1174 stats->tx_errors++;
1175 cf->can_id |= CAN_ERR_PROT;
1176 cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
1177 }
1178
1179 /* Clear channel error interrupts that are handled */
1180 rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
1181 RCANFD_CERFL_ERR(~cerfl));
1182 netif_rx(skb);
1183 }
1184
rcar_canfd_tx_done(struct net_device * ndev)1185 static void rcar_canfd_tx_done(struct net_device *ndev)
1186 {
1187 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1188 struct rcar_canfd_global *gpriv = priv->gpriv;
1189 struct net_device_stats *stats = &ndev->stats;
1190 u32 sts;
1191 unsigned long flags;
1192 u32 ch = priv->channel;
1193
1194 do {
1195 u8 unsent, sent;
1196
1197 sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
1198 stats->tx_packets++;
1199 stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL);
1200
1201 spin_lock_irqsave(&priv->tx_lock, flags);
1202 priv->tx_tail++;
1203 sts = rcar_canfd_read(priv->base,
1204 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1205 unsent = RCANFD_CFSTS_CFMC(sts);
1206
1207 /* Wake producer only when there is room */
1208 if (unsent != RCANFD_FIFO_DEPTH)
1209 netif_wake_queue(ndev);
1210
1211 if (priv->tx_head - priv->tx_tail <= unsent) {
1212 spin_unlock_irqrestore(&priv->tx_lock, flags);
1213 break;
1214 }
1215 spin_unlock_irqrestore(&priv->tx_lock, flags);
1216
1217 } while (1);
1218
1219 /* Clear interrupt */
1220 rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
1221 sts & ~RCANFD_CFSTS_CFTXIF);
1222 }
1223
rcar_canfd_handle_global_err(struct rcar_canfd_global * gpriv,u32 ch)1224 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch)
1225 {
1226 struct rcar_canfd_channel *priv = gpriv->ch[ch];
1227 struct net_device *ndev = priv->ndev;
1228 u32 gerfl;
1229
1230 /* Handle global error interrupts */
1231 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1232 if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
1233 rcar_canfd_global_error(ndev);
1234 }
1235
rcar_canfd_global_err_interrupt(int irq,void * dev_id)1236 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id)
1237 {
1238 struct rcar_canfd_global *gpriv = dev_id;
1239 u32 ch;
1240
1241 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1242 rcar_canfd_handle_global_err(gpriv, ch);
1243
1244 return IRQ_HANDLED;
1245 }
1246
rcar_canfd_handle_global_receive(struct rcar_canfd_global * gpriv,u32 ch)1247 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch)
1248 {
1249 struct rcar_canfd_channel *priv = gpriv->ch[ch];
1250 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1251 u32 sts, cc;
1252
1253 /* Handle Rx interrupts */
1254 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1255 cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx));
1256 if (likely(sts & RCANFD_RFSTS_RFIF &&
1257 cc & RCANFD_RFCC_RFIE)) {
1258 if (napi_schedule_prep(&priv->napi)) {
1259 /* Disable Rx FIFO interrupts */
1260 rcar_canfd_clear_bit(priv->base,
1261 RCANFD_RFCC(gpriv, ridx),
1262 RCANFD_RFCC_RFIE);
1263 __napi_schedule(&priv->napi);
1264 }
1265 }
1266 }
1267
rcar_canfd_global_receive_fifo_interrupt(int irq,void * dev_id)1268 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id)
1269 {
1270 struct rcar_canfd_global *gpriv = dev_id;
1271 u32 ch;
1272
1273 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1274 rcar_canfd_handle_global_receive(gpriv, ch);
1275
1276 return IRQ_HANDLED;
1277 }
1278
rcar_canfd_global_interrupt(int irq,void * dev_id)1279 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
1280 {
1281 struct rcar_canfd_global *gpriv = dev_id;
1282 u32 ch;
1283
1284 /* Global error interrupts still indicate a condition specific
1285 * to a channel. RxFIFO interrupt is a global interrupt.
1286 */
1287 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1288 rcar_canfd_handle_global_err(gpriv, ch);
1289 rcar_canfd_handle_global_receive(gpriv, ch);
1290 }
1291 return IRQ_HANDLED;
1292 }
1293
rcar_canfd_state_change(struct net_device * ndev,u16 txerr,u16 rxerr)1294 static void rcar_canfd_state_change(struct net_device *ndev,
1295 u16 txerr, u16 rxerr)
1296 {
1297 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1298 struct net_device_stats *stats = &ndev->stats;
1299 enum can_state rx_state, tx_state, state = priv->can.state;
1300 struct can_frame *cf;
1301 struct sk_buff *skb;
1302
1303 /* Handle transition from error to normal states */
1304 if (txerr < 96 && rxerr < 96)
1305 state = CAN_STATE_ERROR_ACTIVE;
1306 else if (txerr < 128 && rxerr < 128)
1307 state = CAN_STATE_ERROR_WARNING;
1308
1309 if (state != priv->can.state) {
1310 netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
1311 state, priv->can.state, txerr, rxerr);
1312 skb = alloc_can_err_skb(ndev, &cf);
1313 if (!skb) {
1314 stats->rx_dropped++;
1315 return;
1316 }
1317 tx_state = txerr >= rxerr ? state : 0;
1318 rx_state = txerr <= rxerr ? state : 0;
1319
1320 can_change_state(ndev, cf, tx_state, rx_state);
1321 netif_rx(skb);
1322 }
1323 }
1324
rcar_canfd_handle_channel_tx(struct rcar_canfd_global * gpriv,u32 ch)1325 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch)
1326 {
1327 struct rcar_canfd_channel *priv = gpriv->ch[ch];
1328 struct net_device *ndev = priv->ndev;
1329 u32 sts;
1330
1331 /* Handle Tx interrupts */
1332 sts = rcar_canfd_read(priv->base,
1333 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1334 if (likely(sts & RCANFD_CFSTS_CFTXIF))
1335 rcar_canfd_tx_done(ndev);
1336 }
1337
rcar_canfd_channel_tx_interrupt(int irq,void * dev_id)1338 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id)
1339 {
1340 struct rcar_canfd_channel *priv = dev_id;
1341
1342 rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel);
1343
1344 return IRQ_HANDLED;
1345 }
1346
rcar_canfd_handle_channel_err(struct rcar_canfd_global * gpriv,u32 ch)1347 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch)
1348 {
1349 struct rcar_canfd_channel *priv = gpriv->ch[ch];
1350 struct net_device *ndev = priv->ndev;
1351 u16 txerr, rxerr;
1352 u32 sts, cerfl;
1353
1354 /* Handle channel error interrupts */
1355 cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
1356 sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1357 txerr = RCANFD_CSTS_TECCNT(sts);
1358 rxerr = RCANFD_CSTS_RECCNT(sts);
1359 if (unlikely(RCANFD_CERFL_ERR(cerfl)))
1360 rcar_canfd_error(ndev, cerfl, txerr, rxerr);
1361
1362 /* Handle state change to lower states */
1363 if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE &&
1364 priv->can.state != CAN_STATE_BUS_OFF))
1365 rcar_canfd_state_change(ndev, txerr, rxerr);
1366 }
1367
rcar_canfd_channel_err_interrupt(int irq,void * dev_id)1368 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id)
1369 {
1370 struct rcar_canfd_channel *priv = dev_id;
1371
1372 rcar_canfd_handle_channel_err(priv->gpriv, priv->channel);
1373
1374 return IRQ_HANDLED;
1375 }
1376
rcar_canfd_channel_interrupt(int irq,void * dev_id)1377 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
1378 {
1379 struct rcar_canfd_global *gpriv = dev_id;
1380 u32 ch;
1381
1382 /* Common FIFO is a per channel resource */
1383 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1384 rcar_canfd_handle_channel_err(gpriv, ch);
1385 rcar_canfd_handle_channel_tx(gpriv, ch);
1386 }
1387
1388 return IRQ_HANDLED;
1389 }
1390
rcar_canfd_set_bittiming(struct net_device * ndev)1391 static void rcar_canfd_set_bittiming(struct net_device *ndev)
1392 {
1393 u32 mask = RCANFD_FDCFG_TDCO | RCANFD_FDCFG_TDCE | RCANFD_FDCFG_TDCOC;
1394 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1395 struct rcar_canfd_global *gpriv = priv->gpriv;
1396 const struct can_bittiming *bt = &priv->can.bittiming;
1397 const struct can_bittiming *dbt = &priv->can.fd.data_bittiming;
1398 const struct can_tdc_const *tdc_const = priv->can.fd.tdc_const;
1399 const struct can_tdc *tdc = &priv->can.fd.tdc;
1400 u32 cfg, tdcmode = 0, tdco = 0;
1401 u16 brp, sjw, tseg1, tseg2;
1402 u32 ch = priv->channel;
1403
1404 /* Nominal bit timing settings */
1405 brp = bt->brp - 1;
1406 sjw = bt->sjw - 1;
1407 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1408 tseg2 = bt->phase_seg2 - 1;
1409
1410 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) {
1411 cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) |
1412 RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1413 } else {
1414 cfg = (RCANFD_CFG_TSEG1(tseg1) | RCANFD_CFG_BRP(brp) |
1415 RCANFD_CFG_SJW(sjw) | RCANFD_CFG_TSEG2(tseg2));
1416 }
1417
1418 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1419
1420 if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD))
1421 return;
1422
1423 /* Data bit timing settings */
1424 brp = dbt->brp - 1;
1425 sjw = dbt->sjw - 1;
1426 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1427 tseg2 = dbt->phase_seg2 - 1;
1428
1429 cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) |
1430 RCANFD_DCFG_DSJW(gpriv, sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2));
1431
1432 writel(cfg, &gpriv->fcbase[ch].dcfg);
1433
1434 /* Transceiver Delay Compensation */
1435 if (priv->can.ctrlmode & CAN_CTRLMODE_TDC_AUTO) {
1436 /* TDC enabled, measured + offset */
1437 tdcmode = RCANFD_FDCFG_TDCE;
1438 tdco = tdc->tdco - 1;
1439 } else if (priv->can.ctrlmode & CAN_CTRLMODE_TDC_MANUAL) {
1440 /* TDC enabled, offset only */
1441 tdcmode = RCANFD_FDCFG_TDCE | RCANFD_FDCFG_TDCOC;
1442 tdco = min(tdc->tdcv + tdc->tdco, tdc_const->tdco_max) - 1;
1443 }
1444
1445 rcar_canfd_update_bit_reg(&gpriv->fcbase[ch].cfdcfg, mask,
1446 tdcmode | FIELD_PREP(RCANFD_FDCFG_TDCO, tdco));
1447 }
1448
rcar_canfd_start(struct net_device * ndev)1449 static int rcar_canfd_start(struct net_device *ndev)
1450 {
1451 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1452 struct rcar_canfd_global *gpriv = priv->gpriv;
1453 int err = -EOPNOTSUPP;
1454 u32 sts, ch = priv->channel;
1455 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1456
1457 rcar_canfd_set_bittiming(ndev);
1458
1459 rcar_canfd_enable_channel_interrupts(priv);
1460
1461 /* Set channel to Operational mode */
1462 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1463 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
1464
1465 /* Verify channel mode change */
1466 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1467 (sts & RCANFD_CSTS_COMSTS), 2, 500000);
1468 if (err) {
1469 netdev_err(ndev, "channel %u communication state failed\n", ch);
1470 goto fail_mode_change;
1471 }
1472
1473 /* Enable Common & Rx FIFO */
1474 rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1475 RCANFD_CFCC_CFE);
1476 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1477
1478 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1479 return 0;
1480
1481 fail_mode_change:
1482 rcar_canfd_disable_channel_interrupts(priv);
1483 return err;
1484 }
1485
rcar_canfd_open(struct net_device * ndev)1486 static int rcar_canfd_open(struct net_device *ndev)
1487 {
1488 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1489 struct rcar_canfd_global *gpriv = priv->gpriv;
1490 int err;
1491
1492 err = phy_power_on(priv->transceiver);
1493 if (err) {
1494 netdev_err(ndev, "failed to power on PHY: %pe\n", ERR_PTR(err));
1495 return err;
1496 }
1497
1498 /* Peripheral clock is already enabled in probe */
1499 err = clk_prepare_enable(gpriv->can_clk);
1500 if (err) {
1501 netdev_err(ndev, "failed to enable CAN clock: %pe\n", ERR_PTR(err));
1502 goto out_phy;
1503 }
1504
1505 err = open_candev(ndev);
1506 if (err) {
1507 netdev_err(ndev, "open_candev() failed: %pe\n", ERR_PTR(err));
1508 goto out_can_clock;
1509 }
1510
1511 napi_enable(&priv->napi);
1512 err = rcar_canfd_start(ndev);
1513 if (err)
1514 goto out_close;
1515 netif_start_queue(ndev);
1516 return 0;
1517 out_close:
1518 napi_disable(&priv->napi);
1519 close_candev(ndev);
1520 out_can_clock:
1521 clk_disable_unprepare(gpriv->can_clk);
1522 out_phy:
1523 phy_power_off(priv->transceiver);
1524 return err;
1525 }
1526
rcar_canfd_stop(struct net_device * ndev)1527 static void rcar_canfd_stop(struct net_device *ndev)
1528 {
1529 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1530 struct rcar_canfd_global *gpriv = priv->gpriv;
1531 int err;
1532 u32 sts, ch = priv->channel;
1533 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1534
1535 /* Transition to channel reset mode */
1536 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1537 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
1538
1539 /* Check Channel reset mode */
1540 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1541 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
1542 if (err)
1543 netdev_err(ndev, "channel %u reset failed\n", ch);
1544
1545 rcar_canfd_disable_channel_interrupts(priv);
1546
1547 /* Disable Common & Rx FIFO */
1548 rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1549 RCANFD_CFCC_CFE);
1550 rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1551
1552 /* Set the state as STOPPED */
1553 priv->can.state = CAN_STATE_STOPPED;
1554 }
1555
rcar_canfd_close(struct net_device * ndev)1556 static int rcar_canfd_close(struct net_device *ndev)
1557 {
1558 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1559 struct rcar_canfd_global *gpriv = priv->gpriv;
1560
1561 netif_stop_queue(ndev);
1562 rcar_canfd_stop(ndev);
1563 napi_disable(&priv->napi);
1564 clk_disable_unprepare(gpriv->can_clk);
1565 close_candev(ndev);
1566 phy_power_off(priv->transceiver);
1567 return 0;
1568 }
1569
rcar_canfd_start_xmit(struct sk_buff * skb,struct net_device * ndev)1570 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
1571 struct net_device *ndev)
1572 {
1573 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1574 struct rcar_canfd_global *gpriv = priv->gpriv;
1575 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1576 u32 sts = 0, id, dlc;
1577 unsigned long flags;
1578 u32 ch = priv->channel;
1579
1580 if (can_dev_dropped_skb(ndev, skb))
1581 return NETDEV_TX_OK;
1582
1583 if (cf->can_id & CAN_EFF_FLAG) {
1584 id = cf->can_id & CAN_EFF_MASK;
1585 id |= RCANFD_CFID_CFIDE;
1586 } else {
1587 id = cf->can_id & CAN_SFF_MASK;
1588 }
1589
1590 if (cf->can_id & CAN_RTR_FLAG)
1591 id |= RCANFD_CFID_CFRTR;
1592
1593 dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len));
1594
1595 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) {
1596 rcar_canfd_write(priv->base,
1597 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id);
1598 rcar_canfd_write(priv->base,
1599 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc);
1600
1601 if (can_is_canfd_skb(skb)) {
1602 /* CAN FD frame format */
1603 sts |= RCANFD_CFFDCSTS_CFFDF;
1604 if (cf->flags & CANFD_BRS)
1605 sts |= RCANFD_CFFDCSTS_CFBRS;
1606
1607 if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
1608 sts |= RCANFD_CFFDCSTS_CFESI;
1609 }
1610
1611 rcar_canfd_write(priv->base,
1612 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts);
1613
1614 rcar_canfd_put_data(priv, cf,
1615 RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0));
1616 } else {
1617 rcar_canfd_write(priv->base,
1618 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
1619 rcar_canfd_write(priv->base,
1620 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1621 rcar_canfd_put_data(priv, cf,
1622 RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1623 }
1624
1625 can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0);
1626
1627 spin_lock_irqsave(&priv->tx_lock, flags);
1628 priv->tx_head++;
1629
1630 /* Stop the queue if we've filled all FIFO entries */
1631 if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
1632 netif_stop_queue(ndev);
1633
1634 /* Start Tx: Write 0xff to CFPC to increment the CPU-side
1635 * pointer for the Common FIFO
1636 */
1637 rcar_canfd_write(priv->base,
1638 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff);
1639
1640 spin_unlock_irqrestore(&priv->tx_lock, flags);
1641 return NETDEV_TX_OK;
1642 }
1643
rcar_canfd_rx_pkt(struct rcar_canfd_channel * priv)1644 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
1645 {
1646 struct net_device *ndev = priv->ndev;
1647 struct net_device_stats *stats = &ndev->stats;
1648 struct rcar_canfd_global *gpriv = priv->gpriv;
1649 struct canfd_frame *cf;
1650 struct sk_buff *skb;
1651 u32 sts = 0, id, dlc;
1652 u32 ch = priv->channel;
1653 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1654
1655 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || gpriv->info->shared_can_regs) {
1656 id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx));
1657 dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx));
1658
1659 sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx));
1660
1661 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) &&
1662 sts & RCANFD_RFFDSTS_RFFDF)
1663 skb = alloc_canfd_skb(ndev, &cf);
1664 else
1665 skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
1666 } else {
1667 id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
1668 dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
1669 skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
1670 }
1671
1672 if (!skb) {
1673 stats->rx_dropped++;
1674 return;
1675 }
1676
1677 if (id & RCANFD_RFID_RFIDE)
1678 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
1679 else
1680 cf->can_id = id & CAN_SFF_MASK;
1681
1682 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1683 if (sts & RCANFD_RFFDSTS_RFFDF)
1684 cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1685 else
1686 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1687
1688 if (sts & RCANFD_RFFDSTS_RFESI) {
1689 cf->flags |= CANFD_ESI;
1690 netdev_dbg(ndev, "ESI Error\n");
1691 }
1692
1693 if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
1694 cf->can_id |= CAN_RTR_FLAG;
1695 } else {
1696 if (sts & RCANFD_RFFDSTS_RFBRS)
1697 cf->flags |= CANFD_BRS;
1698
1699 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1700 }
1701 } else {
1702 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1703 if (id & RCANFD_RFID_RFRTR)
1704 cf->can_id |= CAN_RTR_FLAG;
1705 else if (gpriv->info->shared_can_regs)
1706 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1707 else
1708 rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
1709 }
1710
1711 /* Write 0xff to RFPC to increment the CPU-side
1712 * pointer of the Rx FIFO
1713 */
1714 rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff);
1715
1716 if (!(cf->can_id & CAN_RTR_FLAG))
1717 stats->rx_bytes += cf->len;
1718 stats->rx_packets++;
1719 netif_receive_skb(skb);
1720 }
1721
rcar_canfd_rx_poll(struct napi_struct * napi,int quota)1722 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
1723 {
1724 struct rcar_canfd_channel *priv =
1725 container_of(napi, struct rcar_canfd_channel, napi);
1726 struct rcar_canfd_global *gpriv = priv->gpriv;
1727 int num_pkts;
1728 u32 sts;
1729 u32 ch = priv->channel;
1730 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1731
1732 for (num_pkts = 0; num_pkts < quota; num_pkts++) {
1733 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1734 /* Check FIFO empty condition */
1735 if (sts & RCANFD_RFSTS_RFEMP)
1736 break;
1737
1738 rcar_canfd_rx_pkt(priv);
1739
1740 /* Clear interrupt bit */
1741 if (sts & RCANFD_RFSTS_RFIF)
1742 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
1743 sts & ~RCANFD_RFSTS_RFIF);
1744 }
1745
1746 /* All packets processed */
1747 if (num_pkts < quota) {
1748 if (napi_complete_done(napi, num_pkts)) {
1749 /* Enable Rx FIFO interrupts */
1750 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx),
1751 RCANFD_RFCC_RFIE);
1752 }
1753 }
1754 return num_pkts;
1755 }
1756
rcar_canfd_get_tdcr(struct rcar_canfd_global * gpriv,unsigned int ch)1757 static unsigned int rcar_canfd_get_tdcr(struct rcar_canfd_global *gpriv,
1758 unsigned int ch)
1759 {
1760 u32 sts = readl(&gpriv->fcbase[ch].cfdsts);
1761 u32 tdcr = FIELD_GET(RCANFD_FDSTS_TDCR, sts);
1762
1763 return tdcr & (gpriv->info->tdc_const->tdcv_max - 1);
1764 }
1765
rcar_canfd_get_auto_tdcv(const struct net_device * ndev,u32 * tdcv)1766 static int rcar_canfd_get_auto_tdcv(const struct net_device *ndev, u32 *tdcv)
1767 {
1768 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1769 u32 tdco = priv->can.fd.tdc.tdco;
1770 u32 tdcr;
1771
1772 /* Transceiver Delay Compensation Result */
1773 tdcr = rcar_canfd_get_tdcr(priv->gpriv, priv->channel) + 1;
1774
1775 *tdcv = tdcr < tdco ? 0 : tdcr - tdco;
1776
1777 return 0;
1778 }
1779
rcar_canfd_do_set_mode(struct net_device * ndev,enum can_mode mode)1780 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
1781 {
1782 int err;
1783
1784 switch (mode) {
1785 case CAN_MODE_START:
1786 err = rcar_canfd_start(ndev);
1787 if (err)
1788 return err;
1789 netif_wake_queue(ndev);
1790 return 0;
1791 default:
1792 return -EOPNOTSUPP;
1793 }
1794 }
1795
rcar_canfd_get_berr_counter(const struct net_device * ndev,struct can_berr_counter * bec)1796 static int rcar_canfd_get_berr_counter(const struct net_device *ndev,
1797 struct can_berr_counter *bec)
1798 {
1799 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1800 u32 val, ch = priv->channel;
1801
1802 /* Peripheral clock is already enabled in probe */
1803 val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1804 bec->txerr = RCANFD_CSTS_TECCNT(val);
1805 bec->rxerr = RCANFD_CSTS_RECCNT(val);
1806 return 0;
1807 }
1808
1809 static const struct net_device_ops rcar_canfd_netdev_ops = {
1810 .ndo_open = rcar_canfd_open,
1811 .ndo_stop = rcar_canfd_close,
1812 .ndo_start_xmit = rcar_canfd_start_xmit,
1813 .ndo_change_mtu = can_change_mtu,
1814 };
1815
1816 static const struct ethtool_ops rcar_canfd_ethtool_ops = {
1817 .get_ts_info = ethtool_op_get_ts_info,
1818 };
1819
rcar_canfd_channel_probe(struct rcar_canfd_global * gpriv,u32 ch,u32 fcan_freq,struct phy * transceiver)1820 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
1821 u32 fcan_freq, struct phy *transceiver)
1822 {
1823 const struct rcar_canfd_hw_info *info = gpriv->info;
1824 struct platform_device *pdev = gpriv->pdev;
1825 struct device *dev = &pdev->dev;
1826 struct rcar_canfd_channel *priv;
1827 struct net_device *ndev;
1828 int err = -ENODEV;
1829
1830 ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
1831 if (!ndev)
1832 return -ENOMEM;
1833
1834 priv = netdev_priv(ndev);
1835
1836 ndev->netdev_ops = &rcar_canfd_netdev_ops;
1837 ndev->ethtool_ops = &rcar_canfd_ethtool_ops;
1838 ndev->flags |= IFF_ECHO;
1839 priv->ndev = ndev;
1840 priv->base = gpriv->base;
1841 priv->transceiver = transceiver;
1842 priv->channel = ch;
1843 priv->gpriv = gpriv;
1844 if (transceiver)
1845 priv->can.bitrate_max = transceiver->attrs.max_link_rate;
1846 priv->can.clock.freq = fcan_freq;
1847 dev_info(dev, "can_clk rate is %u\n", priv->can.clock.freq);
1848
1849 if (info->multi_channel_irqs) {
1850 char *irq_name;
1851 char name[10];
1852 int err_irq;
1853 int tx_irq;
1854
1855 scnprintf(name, sizeof(name), "ch%u_err", ch);
1856 err_irq = platform_get_irq_byname(pdev, name);
1857 if (err_irq < 0) {
1858 err = err_irq;
1859 goto fail;
1860 }
1861
1862 scnprintf(name, sizeof(name), "ch%u_trx", ch);
1863 tx_irq = platform_get_irq_byname(pdev, name);
1864 if (tx_irq < 0) {
1865 err = tx_irq;
1866 goto fail;
1867 }
1868
1869 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_err",
1870 ch);
1871 if (!irq_name) {
1872 err = -ENOMEM;
1873 goto fail;
1874 }
1875 err = devm_request_irq(dev, err_irq,
1876 rcar_canfd_channel_err_interrupt, 0,
1877 irq_name, priv);
1878 if (err) {
1879 dev_err(dev, "devm_request_irq CH Err %d failed: %pe\n",
1880 err_irq, ERR_PTR(err));
1881 goto fail;
1882 }
1883 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_trx",
1884 ch);
1885 if (!irq_name) {
1886 err = -ENOMEM;
1887 goto fail;
1888 }
1889 err = devm_request_irq(dev, tx_irq,
1890 rcar_canfd_channel_tx_interrupt, 0,
1891 irq_name, priv);
1892 if (err) {
1893 dev_err(dev, "devm_request_irq Tx %d failed: %pe\n",
1894 tx_irq, ERR_PTR(err));
1895 goto fail;
1896 }
1897 }
1898
1899 if (gpriv->fdmode) {
1900 priv->can.bittiming_const = gpriv->info->nom_bittiming;
1901 priv->can.fd.data_bittiming_const = gpriv->info->data_bittiming;
1902 priv->can.fd.tdc_const = gpriv->info->tdc_const;
1903
1904 /* Controller starts in CAN FD only mode */
1905 err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
1906 if (err)
1907 goto fail;
1908
1909 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING |
1910 CAN_CTRLMODE_TDC_AUTO |
1911 CAN_CTRLMODE_TDC_MANUAL;
1912 priv->can.fd.do_get_auto_tdcv = rcar_canfd_get_auto_tdcv;
1913 } else {
1914 /* Controller starts in Classical CAN only mode */
1915 priv->can.bittiming_const = &rcar_canfd_bittiming_const;
1916 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1917 }
1918
1919 priv->can.do_set_mode = rcar_canfd_do_set_mode;
1920 priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
1921 SET_NETDEV_DEV(ndev, dev);
1922
1923 netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll,
1924 RCANFD_NAPI_WEIGHT);
1925 spin_lock_init(&priv->tx_lock);
1926 gpriv->ch[priv->channel] = priv;
1927 err = register_candev(ndev);
1928 if (err) {
1929 dev_err(dev, "register_candev() failed: %pe\n", ERR_PTR(err));
1930 goto fail_candev;
1931 }
1932 dev_info(dev, "device registered (channel %u)\n", priv->channel);
1933 return 0;
1934
1935 fail_candev:
1936 netif_napi_del(&priv->napi);
1937 fail:
1938 free_candev(ndev);
1939 return err;
1940 }
1941
rcar_canfd_channel_remove(struct rcar_canfd_global * gpriv,u32 ch)1942 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
1943 {
1944 struct rcar_canfd_channel *priv = gpriv->ch[ch];
1945
1946 if (priv) {
1947 unregister_candev(priv->ndev);
1948 netif_napi_del(&priv->napi);
1949 free_candev(priv->ndev);
1950 }
1951 }
1952
rcar_canfd_probe(struct platform_device * pdev)1953 static int rcar_canfd_probe(struct platform_device *pdev)
1954 {
1955 struct phy *transceivers[RCANFD_NUM_CHANNELS] = { NULL, };
1956 const struct rcar_canfd_hw_info *info;
1957 struct device *dev = &pdev->dev;
1958 void __iomem *addr;
1959 u32 sts, ch, fcan_freq;
1960 struct rcar_canfd_global *gpriv;
1961 struct device_node *of_child;
1962 unsigned long channels_mask = 0;
1963 int err, ch_irq, g_irq;
1964 int g_err_irq, g_recc_irq;
1965 u32 rule_entry = 0;
1966 bool fdmode = true; /* CAN FD only mode - default */
1967 char name[9] = "channelX";
1968 struct clk *clk_ram;
1969 int i;
1970
1971 info = of_device_get_match_data(dev);
1972
1973 if (of_property_read_bool(dev->of_node, "renesas,no-can-fd"))
1974 fdmode = false; /* Classical CAN only mode */
1975
1976 for (i = 0; i < info->max_channels; ++i) {
1977 name[7] = '0' + i;
1978 of_child = of_get_available_child_by_name(dev->of_node, name);
1979 if (of_child) {
1980 channels_mask |= BIT(i);
1981 transceivers[i] = devm_of_phy_optional_get(dev,
1982 of_child, NULL);
1983 of_node_put(of_child);
1984 }
1985 if (IS_ERR(transceivers[i]))
1986 return PTR_ERR(transceivers[i]);
1987 }
1988
1989 if (info->shared_global_irqs) {
1990 ch_irq = platform_get_irq_byname_optional(pdev, "ch_int");
1991 if (ch_irq < 0) {
1992 /* For backward compatibility get irq by index */
1993 ch_irq = platform_get_irq(pdev, 0);
1994 if (ch_irq < 0)
1995 return ch_irq;
1996 }
1997
1998 g_irq = platform_get_irq_byname_optional(pdev, "g_int");
1999 if (g_irq < 0) {
2000 /* For backward compatibility get irq by index */
2001 g_irq = platform_get_irq(pdev, 1);
2002 if (g_irq < 0)
2003 return g_irq;
2004 }
2005 } else {
2006 g_err_irq = platform_get_irq_byname(pdev, "g_err");
2007 if (g_err_irq < 0)
2008 return g_err_irq;
2009
2010 g_recc_irq = platform_get_irq_byname(pdev, "g_recc");
2011 if (g_recc_irq < 0)
2012 return g_recc_irq;
2013 }
2014
2015 /* Global controller context */
2016 gpriv = devm_kzalloc(dev, sizeof(*gpriv), GFP_KERNEL);
2017 if (!gpriv)
2018 return -ENOMEM;
2019
2020 gpriv->pdev = pdev;
2021 gpriv->channels_mask = channels_mask;
2022 gpriv->fdmode = fdmode;
2023 gpriv->info = info;
2024
2025 gpriv->rstc1 = devm_reset_control_get_optional_exclusive(dev, "rstp_n");
2026 if (IS_ERR(gpriv->rstc1))
2027 return dev_err_probe(dev, PTR_ERR(gpriv->rstc1),
2028 "failed to get rstp_n\n");
2029
2030 gpriv->rstc2 = devm_reset_control_get_optional_exclusive(dev, "rstc_n");
2031 if (IS_ERR(gpriv->rstc2))
2032 return dev_err_probe(dev, PTR_ERR(gpriv->rstc2),
2033 "failed to get rstc_n\n");
2034
2035 /* Peripheral clock */
2036 gpriv->clkp = devm_clk_get(dev, "fck");
2037 if (IS_ERR(gpriv->clkp))
2038 return dev_err_probe(dev, PTR_ERR(gpriv->clkp),
2039 "cannot get peripheral clock\n");
2040
2041 /* fCAN clock: Pick External clock. If not available fallback to
2042 * CANFD clock
2043 */
2044 gpriv->can_clk = devm_clk_get(dev, "can_clk");
2045 if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
2046 gpriv->can_clk = devm_clk_get(dev, "canfd");
2047 if (IS_ERR(gpriv->can_clk))
2048 return dev_err_probe(dev, PTR_ERR(gpriv->can_clk),
2049 "cannot get canfd clock\n");
2050
2051 /* CANFD clock may be further divided within the IP */
2052 fcan_freq = clk_get_rate(gpriv->can_clk) / info->postdiv;
2053 } else {
2054 fcan_freq = clk_get_rate(gpriv->can_clk);
2055 gpriv->extclk = gpriv->info->external_clk;
2056 }
2057
2058 clk_ram = devm_clk_get_optional_enabled(dev, "ram_clk");
2059 if (IS_ERR(clk_ram))
2060 return dev_err_probe(dev, PTR_ERR(clk_ram),
2061 "cannot get enabled ram clock\n");
2062
2063 addr = devm_platform_ioremap_resource(pdev, 0);
2064 if (IS_ERR(addr)) {
2065 err = PTR_ERR(addr);
2066 goto fail_dev;
2067 }
2068 gpriv->base = addr;
2069 gpriv->fcbase = addr + gpriv->info->regs->coffset;
2070
2071 /* Request IRQ that's common for both channels */
2072 if (info->shared_global_irqs) {
2073 err = devm_request_irq(dev, ch_irq,
2074 rcar_canfd_channel_interrupt, 0,
2075 "canfd.ch_int", gpriv);
2076 if (err) {
2077 dev_err(dev, "devm_request_irq %d failed: %pe\n",
2078 ch_irq, ERR_PTR(err));
2079 goto fail_dev;
2080 }
2081
2082 err = devm_request_irq(dev, g_irq, rcar_canfd_global_interrupt,
2083 0, "canfd.g_int", gpriv);
2084 if (err) {
2085 dev_err(dev, "devm_request_irq %d failed: %pe\n",
2086 g_irq, ERR_PTR(err));
2087 goto fail_dev;
2088 }
2089 } else {
2090 err = devm_request_irq(dev, g_recc_irq,
2091 rcar_canfd_global_receive_fifo_interrupt, 0,
2092 "canfd.g_recc", gpriv);
2093
2094 if (err) {
2095 dev_err(dev, "devm_request_irq %d failed: %pe\n",
2096 g_recc_irq, ERR_PTR(err));
2097 goto fail_dev;
2098 }
2099
2100 err = devm_request_irq(dev, g_err_irq,
2101 rcar_canfd_global_err_interrupt, 0,
2102 "canfd.g_err", gpriv);
2103 if (err) {
2104 dev_err(dev, "devm_request_irq %d failed: %pe\n",
2105 g_err_irq, ERR_PTR(err));
2106 goto fail_dev;
2107 }
2108 }
2109
2110 err = reset_control_reset(gpriv->rstc1);
2111 if (err)
2112 goto fail_dev;
2113 err = reset_control_reset(gpriv->rstc2);
2114 if (err) {
2115 reset_control_assert(gpriv->rstc1);
2116 goto fail_dev;
2117 }
2118
2119 /* Enable peripheral clock for register access */
2120 err = clk_prepare_enable(gpriv->clkp);
2121 if (err) {
2122 dev_err(dev, "failed to enable peripheral clock: %pe\n",
2123 ERR_PTR(err));
2124 goto fail_reset;
2125 }
2126
2127 err = rcar_canfd_reset_controller(gpriv);
2128 if (err) {
2129 dev_err(dev, "reset controller failed: %pe\n", ERR_PTR(err));
2130 goto fail_clk;
2131 }
2132
2133 /* Controller in Global reset & Channel reset mode */
2134 rcar_canfd_configure_controller(gpriv);
2135
2136 /* Configure per channel attributes */
2137 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
2138 /* Configure Channel's Rx fifo */
2139 rcar_canfd_configure_rx(gpriv, ch);
2140
2141 /* Configure Channel's Tx (Common) fifo */
2142 rcar_canfd_configure_tx(gpriv, ch);
2143
2144 /* Configure receive rules */
2145 rcar_canfd_configure_afl_rules(gpriv, ch, rule_entry);
2146 rule_entry += RCANFD_CHANNEL_NUMRULES;
2147 }
2148
2149 /* Configure common interrupts */
2150 rcar_canfd_enable_global_interrupts(gpriv);
2151
2152 /* Start Global operation mode */
2153 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
2154 RCANFD_GCTR_GMDC_GOPM);
2155
2156 /* Verify mode change */
2157 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
2158 !(sts & RCANFD_GSTS_GNOPM), 2, 500000);
2159 if (err) {
2160 dev_err(dev, "global operational mode failed\n");
2161 goto fail_mode;
2162 }
2163
2164 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
2165 err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq,
2166 transceivers[ch]);
2167 if (err)
2168 goto fail_channel;
2169 }
2170
2171 platform_set_drvdata(pdev, gpriv);
2172 dev_info(dev, "global operational state (%s clk, %s mode)\n",
2173 gpriv->extclk ? "ext" : "canfd",
2174 gpriv->fdmode ? "fd" : "classical");
2175 return 0;
2176
2177 fail_channel:
2178 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels)
2179 rcar_canfd_channel_remove(gpriv, ch);
2180 fail_mode:
2181 rcar_canfd_disable_global_interrupts(gpriv);
2182 fail_clk:
2183 clk_disable_unprepare(gpriv->clkp);
2184 fail_reset:
2185 reset_control_assert(gpriv->rstc1);
2186 reset_control_assert(gpriv->rstc2);
2187 fail_dev:
2188 return err;
2189 }
2190
rcar_canfd_remove(struct platform_device * pdev)2191 static void rcar_canfd_remove(struct platform_device *pdev)
2192 {
2193 struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
2194 u32 ch;
2195
2196 rcar_canfd_reset_controller(gpriv);
2197 rcar_canfd_disable_global_interrupts(gpriv);
2198
2199 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
2200 rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
2201 rcar_canfd_channel_remove(gpriv, ch);
2202 }
2203
2204 /* Enter global sleep mode */
2205 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
2206 clk_disable_unprepare(gpriv->clkp);
2207 reset_control_assert(gpriv->rstc1);
2208 reset_control_assert(gpriv->rstc2);
2209 }
2210
rcar_canfd_suspend(struct device * dev)2211 static int __maybe_unused rcar_canfd_suspend(struct device *dev)
2212 {
2213 return 0;
2214 }
2215
rcar_canfd_resume(struct device * dev)2216 static int __maybe_unused rcar_canfd_resume(struct device *dev)
2217 {
2218 return 0;
2219 }
2220
2221 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
2222 rcar_canfd_resume);
2223
2224 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = {
2225 { .compatible = "renesas,r8a779a0-canfd", .data = &rcar_gen4_hw_info },
2226 { .compatible = "renesas,r9a09g047-canfd", .data = &r9a09g047_hw_info },
2227 { .compatible = "renesas,rcar-gen3-canfd", .data = &rcar_gen3_hw_info },
2228 { .compatible = "renesas,rcar-gen4-canfd", .data = &rcar_gen4_hw_info },
2229 { .compatible = "renesas,rzg2l-canfd", .data = &rzg2l_hw_info },
2230 { }
2231 };
2232
2233 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
2234
2235 static struct platform_driver rcar_canfd_driver = {
2236 .driver = {
2237 .name = RCANFD_DRV_NAME,
2238 .of_match_table = of_match_ptr(rcar_canfd_of_table),
2239 .pm = &rcar_canfd_pm_ops,
2240 },
2241 .probe = rcar_canfd_probe,
2242 .remove = rcar_canfd_remove,
2243 };
2244
2245 module_platform_driver(rcar_canfd_driver);
2246
2247 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
2248 MODULE_LICENSE("GPL");
2249 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
2250 MODULE_ALIAS("platform:" RCANFD_DRV_NAME);
2251