1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_recursion.h> 8 #include <linux/trace_events.h> 9 #include <linux/ring_buffer.h> 10 #include <linux/trace_clock.h> 11 #include <linux/sched/clock.h> 12 #include <linux/cacheflush.h> 13 #include <linux/trace_seq.h> 14 #include <linux/spinlock.h> 15 #include <linux/irq_work.h> 16 #include <linux/security.h> 17 #include <linux/uaccess.h> 18 #include <linux/hardirq.h> 19 #include <linux/kthread.h> /* for self test */ 20 #include <linux/module.h> 21 #include <linux/percpu.h> 22 #include <linux/mutex.h> 23 #include <linux/delay.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/hash.h> 27 #include <linux/list.h> 28 #include <linux/cpu.h> 29 #include <linux/oom.h> 30 #include <linux/mm.h> 31 32 #include <asm/local64.h> 33 #include <asm/local.h> 34 35 #include "trace.h" 36 37 /* 38 * The "absolute" timestamp in the buffer is only 59 bits. 39 * If a clock has the 5 MSBs set, it needs to be saved and 40 * reinserted. 41 */ 42 #define TS_MSB (0xf8ULL << 56) 43 #define ABS_TS_MASK (~TS_MSB) 44 45 static void update_pages_handler(struct work_struct *work); 46 47 #define RING_BUFFER_META_MAGIC 0xBADFEED 48 49 struct ring_buffer_meta { 50 int magic; 51 int struct_size; 52 unsigned long text_addr; 53 unsigned long data_addr; 54 unsigned long first_buffer; 55 unsigned long head_buffer; 56 unsigned long commit_buffer; 57 __u32 subbuf_size; 58 __u32 nr_subbufs; 59 int buffers[]; 60 }; 61 62 /* 63 * The ring buffer header is special. We must manually up keep it. 64 */ 65 int ring_buffer_print_entry_header(struct trace_seq *s) 66 { 67 trace_seq_puts(s, "# compressed entry header\n"); 68 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 69 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 70 trace_seq_puts(s, "\tarray : 32 bits\n"); 71 trace_seq_putc(s, '\n'); 72 trace_seq_printf(s, "\tpadding : type == %d\n", 73 RINGBUF_TYPE_PADDING); 74 trace_seq_printf(s, "\ttime_extend : type == %d\n", 75 RINGBUF_TYPE_TIME_EXTEND); 76 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 77 RINGBUF_TYPE_TIME_STAMP); 78 trace_seq_printf(s, "\tdata max type_len == %d\n", 79 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 80 81 return !trace_seq_has_overflowed(s); 82 } 83 84 /* 85 * The ring buffer is made up of a list of pages. A separate list of pages is 86 * allocated for each CPU. A writer may only write to a buffer that is 87 * associated with the CPU it is currently executing on. A reader may read 88 * from any per cpu buffer. 89 * 90 * The reader is special. For each per cpu buffer, the reader has its own 91 * reader page. When a reader has read the entire reader page, this reader 92 * page is swapped with another page in the ring buffer. 93 * 94 * Now, as long as the writer is off the reader page, the reader can do what 95 * ever it wants with that page. The writer will never write to that page 96 * again (as long as it is out of the ring buffer). 97 * 98 * Here's some silly ASCII art. 99 * 100 * +------+ 101 * |reader| RING BUFFER 102 * |page | 103 * +------+ +---+ +---+ +---+ 104 * | |-->| |-->| | 105 * +---+ +---+ +---+ 106 * ^ | 107 * | | 108 * +---------------+ 109 * 110 * 111 * +------+ 112 * |reader| RING BUFFER 113 * |page |------------------v 114 * +------+ +---+ +---+ +---+ 115 * | |-->| |-->| | 116 * +---+ +---+ +---+ 117 * ^ | 118 * | | 119 * +---------------+ 120 * 121 * 122 * +------+ 123 * |reader| RING BUFFER 124 * |page |------------------v 125 * +------+ +---+ +---+ +---+ 126 * ^ | |-->| |-->| | 127 * | +---+ +---+ +---+ 128 * | | 129 * | | 130 * +------------------------------+ 131 * 132 * 133 * +------+ 134 * |buffer| RING BUFFER 135 * |page |------------------v 136 * +------+ +---+ +---+ +---+ 137 * ^ | | | |-->| | 138 * | New +---+ +---+ +---+ 139 * | Reader------^ | 140 * | page | 141 * +------------------------------+ 142 * 143 * 144 * After we make this swap, the reader can hand this page off to the splice 145 * code and be done with it. It can even allocate a new page if it needs to 146 * and swap that into the ring buffer. 147 * 148 * We will be using cmpxchg soon to make all this lockless. 149 * 150 */ 151 152 /* Used for individual buffers (after the counter) */ 153 #define RB_BUFFER_OFF (1 << 20) 154 155 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 156 157 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 158 #define RB_ALIGNMENT 4U 159 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 160 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 161 162 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 163 # define RB_FORCE_8BYTE_ALIGNMENT 0 164 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 165 #else 166 # define RB_FORCE_8BYTE_ALIGNMENT 1 167 # define RB_ARCH_ALIGNMENT 8U 168 #endif 169 170 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 171 172 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 173 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 174 175 enum { 176 RB_LEN_TIME_EXTEND = 8, 177 RB_LEN_TIME_STAMP = 8, 178 }; 179 180 #define skip_time_extend(event) \ 181 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 182 183 #define extended_time(event) \ 184 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 185 186 static inline bool rb_null_event(struct ring_buffer_event *event) 187 { 188 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 189 } 190 191 static void rb_event_set_padding(struct ring_buffer_event *event) 192 { 193 /* padding has a NULL time_delta */ 194 event->type_len = RINGBUF_TYPE_PADDING; 195 event->time_delta = 0; 196 } 197 198 static unsigned 199 rb_event_data_length(struct ring_buffer_event *event) 200 { 201 unsigned length; 202 203 if (event->type_len) 204 length = event->type_len * RB_ALIGNMENT; 205 else 206 length = event->array[0]; 207 return length + RB_EVNT_HDR_SIZE; 208 } 209 210 /* 211 * Return the length of the given event. Will return 212 * the length of the time extend if the event is a 213 * time extend. 214 */ 215 static inline unsigned 216 rb_event_length(struct ring_buffer_event *event) 217 { 218 switch (event->type_len) { 219 case RINGBUF_TYPE_PADDING: 220 if (rb_null_event(event)) 221 /* undefined */ 222 return -1; 223 return event->array[0] + RB_EVNT_HDR_SIZE; 224 225 case RINGBUF_TYPE_TIME_EXTEND: 226 return RB_LEN_TIME_EXTEND; 227 228 case RINGBUF_TYPE_TIME_STAMP: 229 return RB_LEN_TIME_STAMP; 230 231 case RINGBUF_TYPE_DATA: 232 return rb_event_data_length(event); 233 default: 234 WARN_ON_ONCE(1); 235 } 236 /* not hit */ 237 return 0; 238 } 239 240 /* 241 * Return total length of time extend and data, 242 * or just the event length for all other events. 243 */ 244 static inline unsigned 245 rb_event_ts_length(struct ring_buffer_event *event) 246 { 247 unsigned len = 0; 248 249 if (extended_time(event)) { 250 /* time extends include the data event after it */ 251 len = RB_LEN_TIME_EXTEND; 252 event = skip_time_extend(event); 253 } 254 return len + rb_event_length(event); 255 } 256 257 /** 258 * ring_buffer_event_length - return the length of the event 259 * @event: the event to get the length of 260 * 261 * Returns the size of the data load of a data event. 262 * If the event is something other than a data event, it 263 * returns the size of the event itself. With the exception 264 * of a TIME EXTEND, where it still returns the size of the 265 * data load of the data event after it. 266 */ 267 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 268 { 269 unsigned length; 270 271 if (extended_time(event)) 272 event = skip_time_extend(event); 273 274 length = rb_event_length(event); 275 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 276 return length; 277 length -= RB_EVNT_HDR_SIZE; 278 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 279 length -= sizeof(event->array[0]); 280 return length; 281 } 282 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 283 284 /* inline for ring buffer fast paths */ 285 static __always_inline void * 286 rb_event_data(struct ring_buffer_event *event) 287 { 288 if (extended_time(event)) 289 event = skip_time_extend(event); 290 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 291 /* If length is in len field, then array[0] has the data */ 292 if (event->type_len) 293 return (void *)&event->array[0]; 294 /* Otherwise length is in array[0] and array[1] has the data */ 295 return (void *)&event->array[1]; 296 } 297 298 /** 299 * ring_buffer_event_data - return the data of the event 300 * @event: the event to get the data from 301 */ 302 void *ring_buffer_event_data(struct ring_buffer_event *event) 303 { 304 return rb_event_data(event); 305 } 306 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 307 308 #define for_each_buffer_cpu(buffer, cpu) \ 309 for_each_cpu(cpu, buffer->cpumask) 310 311 #define for_each_online_buffer_cpu(buffer, cpu) \ 312 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask) 313 314 #define TS_SHIFT 27 315 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 316 #define TS_DELTA_TEST (~TS_MASK) 317 318 static u64 rb_event_time_stamp(struct ring_buffer_event *event) 319 { 320 u64 ts; 321 322 ts = event->array[0]; 323 ts <<= TS_SHIFT; 324 ts += event->time_delta; 325 326 return ts; 327 } 328 329 /* Flag when events were overwritten */ 330 #define RB_MISSED_EVENTS (1 << 31) 331 /* Missed count stored at end */ 332 #define RB_MISSED_STORED (1 << 30) 333 334 #define RB_MISSED_MASK (3 << 30) 335 336 struct buffer_data_page { 337 u64 time_stamp; /* page time stamp */ 338 local_t commit; /* write committed index */ 339 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 340 }; 341 342 struct buffer_data_read_page { 343 unsigned order; /* order of the page */ 344 struct buffer_data_page *data; /* actual data, stored in this page */ 345 }; 346 347 /* 348 * Note, the buffer_page list must be first. The buffer pages 349 * are allocated in cache lines, which means that each buffer 350 * page will be at the beginning of a cache line, and thus 351 * the least significant bits will be zero. We use this to 352 * add flags in the list struct pointers, to make the ring buffer 353 * lockless. 354 */ 355 struct buffer_page { 356 struct list_head list; /* list of buffer pages */ 357 local_t write; /* index for next write */ 358 unsigned read; /* index for next read */ 359 local_t entries; /* entries on this page */ 360 unsigned long real_end; /* real end of data */ 361 unsigned order; /* order of the page */ 362 u32 id:30; /* ID for external mapping */ 363 u32 range:1; /* Mapped via a range */ 364 struct buffer_data_page *page; /* Actual data page */ 365 }; 366 367 /* 368 * The buffer page counters, write and entries, must be reset 369 * atomically when crossing page boundaries. To synchronize this 370 * update, two counters are inserted into the number. One is 371 * the actual counter for the write position or count on the page. 372 * 373 * The other is a counter of updaters. Before an update happens 374 * the update partition of the counter is incremented. This will 375 * allow the updater to update the counter atomically. 376 * 377 * The counter is 20 bits, and the state data is 12. 378 */ 379 #define RB_WRITE_MASK 0xfffff 380 #define RB_WRITE_INTCNT (1 << 20) 381 382 static void rb_init_page(struct buffer_data_page *bpage) 383 { 384 local_set(&bpage->commit, 0); 385 } 386 387 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage) 388 { 389 return local_read(&bpage->page->commit); 390 } 391 392 static void free_buffer_page(struct buffer_page *bpage) 393 { 394 /* Range pages are not to be freed */ 395 if (!bpage->range) 396 free_pages((unsigned long)bpage->page, bpage->order); 397 kfree(bpage); 398 } 399 400 /* 401 * We need to fit the time_stamp delta into 27 bits. 402 */ 403 static inline bool test_time_stamp(u64 delta) 404 { 405 return !!(delta & TS_DELTA_TEST); 406 } 407 408 struct rb_irq_work { 409 struct irq_work work; 410 wait_queue_head_t waiters; 411 wait_queue_head_t full_waiters; 412 atomic_t seq; 413 bool waiters_pending; 414 bool full_waiters_pending; 415 bool wakeup_full; 416 }; 417 418 /* 419 * Structure to hold event state and handle nested events. 420 */ 421 struct rb_event_info { 422 u64 ts; 423 u64 delta; 424 u64 before; 425 u64 after; 426 unsigned long length; 427 struct buffer_page *tail_page; 428 int add_timestamp; 429 }; 430 431 /* 432 * Used for the add_timestamp 433 * NONE 434 * EXTEND - wants a time extend 435 * ABSOLUTE - the buffer requests all events to have absolute time stamps 436 * FORCE - force a full time stamp. 437 */ 438 enum { 439 RB_ADD_STAMP_NONE = 0, 440 RB_ADD_STAMP_EXTEND = BIT(1), 441 RB_ADD_STAMP_ABSOLUTE = BIT(2), 442 RB_ADD_STAMP_FORCE = BIT(3) 443 }; 444 /* 445 * Used for which event context the event is in. 446 * TRANSITION = 0 447 * NMI = 1 448 * IRQ = 2 449 * SOFTIRQ = 3 450 * NORMAL = 4 451 * 452 * See trace_recursive_lock() comment below for more details. 453 */ 454 enum { 455 RB_CTX_TRANSITION, 456 RB_CTX_NMI, 457 RB_CTX_IRQ, 458 RB_CTX_SOFTIRQ, 459 RB_CTX_NORMAL, 460 RB_CTX_MAX 461 }; 462 463 struct rb_time_struct { 464 local64_t time; 465 }; 466 typedef struct rb_time_struct rb_time_t; 467 468 #define MAX_NEST 5 469 470 /* 471 * head_page == tail_page && head == tail then buffer is empty. 472 */ 473 struct ring_buffer_per_cpu { 474 int cpu; 475 atomic_t record_disabled; 476 atomic_t resize_disabled; 477 struct trace_buffer *buffer; 478 raw_spinlock_t reader_lock; /* serialize readers */ 479 arch_spinlock_t lock; 480 struct lock_class_key lock_key; 481 struct buffer_data_page *free_page; 482 unsigned long nr_pages; 483 unsigned int current_context; 484 struct list_head *pages; 485 struct buffer_page *head_page; /* read from head */ 486 struct buffer_page *tail_page; /* write to tail */ 487 struct buffer_page *commit_page; /* committed pages */ 488 struct buffer_page *reader_page; 489 unsigned long lost_events; 490 unsigned long last_overrun; 491 unsigned long nest; 492 local_t entries_bytes; 493 local_t entries; 494 local_t overrun; 495 local_t commit_overrun; 496 local_t dropped_events; 497 local_t committing; 498 local_t commits; 499 local_t pages_touched; 500 local_t pages_lost; 501 local_t pages_read; 502 long last_pages_touch; 503 size_t shortest_full; 504 unsigned long read; 505 unsigned long read_bytes; 506 rb_time_t write_stamp; 507 rb_time_t before_stamp; 508 u64 event_stamp[MAX_NEST]; 509 u64 read_stamp; 510 /* pages removed since last reset */ 511 unsigned long pages_removed; 512 513 unsigned int mapped; 514 unsigned int user_mapped; /* user space mapping */ 515 struct mutex mapping_lock; 516 unsigned long *subbuf_ids; /* ID to subbuf VA */ 517 struct trace_buffer_meta *meta_page; 518 struct ring_buffer_meta *ring_meta; 519 520 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 521 long nr_pages_to_update; 522 struct list_head new_pages; /* new pages to add */ 523 struct work_struct update_pages_work; 524 struct completion update_done; 525 526 struct rb_irq_work irq_work; 527 }; 528 529 struct trace_buffer { 530 unsigned flags; 531 int cpus; 532 atomic_t record_disabled; 533 atomic_t resizing; 534 cpumask_var_t cpumask; 535 536 struct lock_class_key *reader_lock_key; 537 538 struct mutex mutex; 539 540 struct ring_buffer_per_cpu **buffers; 541 542 struct hlist_node node; 543 u64 (*clock)(void); 544 545 struct rb_irq_work irq_work; 546 bool time_stamp_abs; 547 548 unsigned long range_addr_start; 549 unsigned long range_addr_end; 550 551 long last_text_delta; 552 long last_data_delta; 553 554 unsigned int subbuf_size; 555 unsigned int subbuf_order; 556 unsigned int max_data_size; 557 }; 558 559 struct ring_buffer_iter { 560 struct ring_buffer_per_cpu *cpu_buffer; 561 unsigned long head; 562 unsigned long next_event; 563 struct buffer_page *head_page; 564 struct buffer_page *cache_reader_page; 565 unsigned long cache_read; 566 unsigned long cache_pages_removed; 567 u64 read_stamp; 568 u64 page_stamp; 569 struct ring_buffer_event *event; 570 size_t event_size; 571 int missed_events; 572 }; 573 574 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s) 575 { 576 struct buffer_data_page field; 577 578 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 579 "offset:0;\tsize:%u;\tsigned:%u;\n", 580 (unsigned int)sizeof(field.time_stamp), 581 (unsigned int)is_signed_type(u64)); 582 583 trace_seq_printf(s, "\tfield: local_t commit;\t" 584 "offset:%u;\tsize:%u;\tsigned:%u;\n", 585 (unsigned int)offsetof(typeof(field), commit), 586 (unsigned int)sizeof(field.commit), 587 (unsigned int)is_signed_type(long)); 588 589 trace_seq_printf(s, "\tfield: int overwrite;\t" 590 "offset:%u;\tsize:%u;\tsigned:%u;\n", 591 (unsigned int)offsetof(typeof(field), commit), 592 1, 593 (unsigned int)is_signed_type(long)); 594 595 trace_seq_printf(s, "\tfield: char data;\t" 596 "offset:%u;\tsize:%u;\tsigned:%u;\n", 597 (unsigned int)offsetof(typeof(field), data), 598 (unsigned int)buffer->subbuf_size, 599 (unsigned int)is_signed_type(char)); 600 601 return !trace_seq_has_overflowed(s); 602 } 603 604 static inline void rb_time_read(rb_time_t *t, u64 *ret) 605 { 606 *ret = local64_read(&t->time); 607 } 608 static void rb_time_set(rb_time_t *t, u64 val) 609 { 610 local64_set(&t->time, val); 611 } 612 613 /* 614 * Enable this to make sure that the event passed to 615 * ring_buffer_event_time_stamp() is not committed and also 616 * is on the buffer that it passed in. 617 */ 618 //#define RB_VERIFY_EVENT 619 #ifdef RB_VERIFY_EVENT 620 static struct list_head *rb_list_head(struct list_head *list); 621 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 622 void *event) 623 { 624 struct buffer_page *page = cpu_buffer->commit_page; 625 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page); 626 struct list_head *next; 627 long commit, write; 628 unsigned long addr = (unsigned long)event; 629 bool done = false; 630 int stop = 0; 631 632 /* Make sure the event exists and is not committed yet */ 633 do { 634 if (page == tail_page || WARN_ON_ONCE(stop++ > 100)) 635 done = true; 636 commit = local_read(&page->page->commit); 637 write = local_read(&page->write); 638 if (addr >= (unsigned long)&page->page->data[commit] && 639 addr < (unsigned long)&page->page->data[write]) 640 return; 641 642 next = rb_list_head(page->list.next); 643 page = list_entry(next, struct buffer_page, list); 644 } while (!done); 645 WARN_ON_ONCE(1); 646 } 647 #else 648 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 649 void *event) 650 { 651 } 652 #endif 653 654 /* 655 * The absolute time stamp drops the 5 MSBs and some clocks may 656 * require them. The rb_fix_abs_ts() will take a previous full 657 * time stamp, and add the 5 MSB of that time stamp on to the 658 * saved absolute time stamp. Then they are compared in case of 659 * the unlikely event that the latest time stamp incremented 660 * the 5 MSB. 661 */ 662 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts) 663 { 664 if (save_ts & TS_MSB) { 665 abs |= save_ts & TS_MSB; 666 /* Check for overflow */ 667 if (unlikely(abs < save_ts)) 668 abs += 1ULL << 59; 669 } 670 return abs; 671 } 672 673 static inline u64 rb_time_stamp(struct trace_buffer *buffer); 674 675 /** 676 * ring_buffer_event_time_stamp - return the event's current time stamp 677 * @buffer: The buffer that the event is on 678 * @event: the event to get the time stamp of 679 * 680 * Note, this must be called after @event is reserved, and before it is 681 * committed to the ring buffer. And must be called from the same 682 * context where the event was reserved (normal, softirq, irq, etc). 683 * 684 * Returns the time stamp associated with the current event. 685 * If the event has an extended time stamp, then that is used as 686 * the time stamp to return. 687 * In the highly unlikely case that the event was nested more than 688 * the max nesting, then the write_stamp of the buffer is returned, 689 * otherwise current time is returned, but that really neither of 690 * the last two cases should ever happen. 691 */ 692 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer, 693 struct ring_buffer_event *event) 694 { 695 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()]; 696 unsigned int nest; 697 u64 ts; 698 699 /* If the event includes an absolute time, then just use that */ 700 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 701 ts = rb_event_time_stamp(event); 702 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp); 703 } 704 705 nest = local_read(&cpu_buffer->committing); 706 verify_event(cpu_buffer, event); 707 if (WARN_ON_ONCE(!nest)) 708 goto fail; 709 710 /* Read the current saved nesting level time stamp */ 711 if (likely(--nest < MAX_NEST)) 712 return cpu_buffer->event_stamp[nest]; 713 714 /* Shouldn't happen, warn if it does */ 715 WARN_ONCE(1, "nest (%d) greater than max", nest); 716 717 fail: 718 rb_time_read(&cpu_buffer->write_stamp, &ts); 719 720 return ts; 721 } 722 723 /** 724 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer 725 * @buffer: The ring_buffer to get the number of pages from 726 * @cpu: The cpu of the ring_buffer to get the number of pages from 727 * 728 * Returns the number of pages that have content in the ring buffer. 729 */ 730 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) 731 { 732 size_t read; 733 size_t lost; 734 size_t cnt; 735 736 read = local_read(&buffer->buffers[cpu]->pages_read); 737 lost = local_read(&buffer->buffers[cpu]->pages_lost); 738 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 739 740 if (WARN_ON_ONCE(cnt < lost)) 741 return 0; 742 743 cnt -= lost; 744 745 /* The reader can read an empty page, but not more than that */ 746 if (cnt < read) { 747 WARN_ON_ONCE(read > cnt + 1); 748 return 0; 749 } 750 751 return cnt - read; 752 } 753 754 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full) 755 { 756 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 757 size_t nr_pages; 758 size_t dirty; 759 760 nr_pages = cpu_buffer->nr_pages; 761 if (!nr_pages || !full) 762 return true; 763 764 /* 765 * Add one as dirty will never equal nr_pages, as the sub-buffer 766 * that the writer is on is not counted as dirty. 767 * This is needed if "buffer_percent" is set to 100. 768 */ 769 dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1; 770 771 return (dirty * 100) >= (full * nr_pages); 772 } 773 774 /* 775 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 776 * 777 * Schedules a delayed work to wake up any task that is blocked on the 778 * ring buffer waiters queue. 779 */ 780 static void rb_wake_up_waiters(struct irq_work *work) 781 { 782 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 783 784 /* For waiters waiting for the first wake up */ 785 (void)atomic_fetch_inc_release(&rbwork->seq); 786 787 wake_up_all(&rbwork->waiters); 788 if (rbwork->full_waiters_pending || rbwork->wakeup_full) { 789 /* Only cpu_buffer sets the above flags */ 790 struct ring_buffer_per_cpu *cpu_buffer = 791 container_of(rbwork, struct ring_buffer_per_cpu, irq_work); 792 793 /* Called from interrupt context */ 794 raw_spin_lock(&cpu_buffer->reader_lock); 795 rbwork->wakeup_full = false; 796 rbwork->full_waiters_pending = false; 797 798 /* Waking up all waiters, they will reset the shortest full */ 799 cpu_buffer->shortest_full = 0; 800 raw_spin_unlock(&cpu_buffer->reader_lock); 801 802 wake_up_all(&rbwork->full_waiters); 803 } 804 } 805 806 /** 807 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer 808 * @buffer: The ring buffer to wake waiters on 809 * @cpu: The CPU buffer to wake waiters on 810 * 811 * In the case of a file that represents a ring buffer is closing, 812 * it is prudent to wake up any waiters that are on this. 813 */ 814 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu) 815 { 816 struct ring_buffer_per_cpu *cpu_buffer; 817 struct rb_irq_work *rbwork; 818 819 if (!buffer) 820 return; 821 822 if (cpu == RING_BUFFER_ALL_CPUS) { 823 824 /* Wake up individual ones too. One level recursion */ 825 for_each_buffer_cpu(buffer, cpu) 826 ring_buffer_wake_waiters(buffer, cpu); 827 828 rbwork = &buffer->irq_work; 829 } else { 830 if (WARN_ON_ONCE(!buffer->buffers)) 831 return; 832 if (WARN_ON_ONCE(cpu >= nr_cpu_ids)) 833 return; 834 835 cpu_buffer = buffer->buffers[cpu]; 836 /* The CPU buffer may not have been initialized yet */ 837 if (!cpu_buffer) 838 return; 839 rbwork = &cpu_buffer->irq_work; 840 } 841 842 /* This can be called in any context */ 843 irq_work_queue(&rbwork->work); 844 } 845 846 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full) 847 { 848 struct ring_buffer_per_cpu *cpu_buffer; 849 bool ret = false; 850 851 /* Reads of all CPUs always waits for any data */ 852 if (cpu == RING_BUFFER_ALL_CPUS) 853 return !ring_buffer_empty(buffer); 854 855 cpu_buffer = buffer->buffers[cpu]; 856 857 if (!ring_buffer_empty_cpu(buffer, cpu)) { 858 unsigned long flags; 859 bool pagebusy; 860 861 if (!full) 862 return true; 863 864 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 865 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 866 ret = !pagebusy && full_hit(buffer, cpu, full); 867 868 if (!ret && (!cpu_buffer->shortest_full || 869 cpu_buffer->shortest_full > full)) { 870 cpu_buffer->shortest_full = full; 871 } 872 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 873 } 874 return ret; 875 } 876 877 static inline bool 878 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer, 879 int cpu, int full, ring_buffer_cond_fn cond, void *data) 880 { 881 if (rb_watermark_hit(buffer, cpu, full)) 882 return true; 883 884 if (cond(data)) 885 return true; 886 887 /* 888 * The events can happen in critical sections where 889 * checking a work queue can cause deadlocks. 890 * After adding a task to the queue, this flag is set 891 * only to notify events to try to wake up the queue 892 * using irq_work. 893 * 894 * We don't clear it even if the buffer is no longer 895 * empty. The flag only causes the next event to run 896 * irq_work to do the work queue wake up. The worse 897 * that can happen if we race with !trace_empty() is that 898 * an event will cause an irq_work to try to wake up 899 * an empty queue. 900 * 901 * There's no reason to protect this flag either, as 902 * the work queue and irq_work logic will do the necessary 903 * synchronization for the wake ups. The only thing 904 * that is necessary is that the wake up happens after 905 * a task has been queued. It's OK for spurious wake ups. 906 */ 907 if (full) 908 rbwork->full_waiters_pending = true; 909 else 910 rbwork->waiters_pending = true; 911 912 return false; 913 } 914 915 struct rb_wait_data { 916 struct rb_irq_work *irq_work; 917 int seq; 918 }; 919 920 /* 921 * The default wait condition for ring_buffer_wait() is to just to exit the 922 * wait loop the first time it is woken up. 923 */ 924 static bool rb_wait_once(void *data) 925 { 926 struct rb_wait_data *rdata = data; 927 struct rb_irq_work *rbwork = rdata->irq_work; 928 929 return atomic_read_acquire(&rbwork->seq) != rdata->seq; 930 } 931 932 /** 933 * ring_buffer_wait - wait for input to the ring buffer 934 * @buffer: buffer to wait on 935 * @cpu: the cpu buffer to wait on 936 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 937 * @cond: condition function to break out of wait (NULL to run once) 938 * @data: the data to pass to @cond. 939 * 940 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 941 * as data is added to any of the @buffer's cpu buffers. Otherwise 942 * it will wait for data to be added to a specific cpu buffer. 943 */ 944 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full, 945 ring_buffer_cond_fn cond, void *data) 946 { 947 struct ring_buffer_per_cpu *cpu_buffer; 948 struct wait_queue_head *waitq; 949 struct rb_irq_work *rbwork; 950 struct rb_wait_data rdata; 951 int ret = 0; 952 953 /* 954 * Depending on what the caller is waiting for, either any 955 * data in any cpu buffer, or a specific buffer, put the 956 * caller on the appropriate wait queue. 957 */ 958 if (cpu == RING_BUFFER_ALL_CPUS) { 959 rbwork = &buffer->irq_work; 960 /* Full only makes sense on per cpu reads */ 961 full = 0; 962 } else { 963 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 964 return -ENODEV; 965 cpu_buffer = buffer->buffers[cpu]; 966 rbwork = &cpu_buffer->irq_work; 967 } 968 969 if (full) 970 waitq = &rbwork->full_waiters; 971 else 972 waitq = &rbwork->waiters; 973 974 /* Set up to exit loop as soon as it is woken */ 975 if (!cond) { 976 cond = rb_wait_once; 977 rdata.irq_work = rbwork; 978 rdata.seq = atomic_read_acquire(&rbwork->seq); 979 data = &rdata; 980 } 981 982 ret = wait_event_interruptible((*waitq), 983 rb_wait_cond(rbwork, buffer, cpu, full, cond, data)); 984 985 return ret; 986 } 987 988 /** 989 * ring_buffer_poll_wait - poll on buffer input 990 * @buffer: buffer to wait on 991 * @cpu: the cpu buffer to wait on 992 * @filp: the file descriptor 993 * @poll_table: The poll descriptor 994 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 995 * 996 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 997 * as data is added to any of the @buffer's cpu buffers. Otherwise 998 * it will wait for data to be added to a specific cpu buffer. 999 * 1000 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 1001 * zero otherwise. 1002 */ 1003 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, 1004 struct file *filp, poll_table *poll_table, int full) 1005 { 1006 struct ring_buffer_per_cpu *cpu_buffer; 1007 struct rb_irq_work *rbwork; 1008 1009 if (cpu == RING_BUFFER_ALL_CPUS) { 1010 rbwork = &buffer->irq_work; 1011 full = 0; 1012 } else { 1013 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1014 return EPOLLERR; 1015 1016 cpu_buffer = buffer->buffers[cpu]; 1017 rbwork = &cpu_buffer->irq_work; 1018 } 1019 1020 if (full) { 1021 poll_wait(filp, &rbwork->full_waiters, poll_table); 1022 1023 if (rb_watermark_hit(buffer, cpu, full)) 1024 return EPOLLIN | EPOLLRDNORM; 1025 /* 1026 * Only allow full_waiters_pending update to be seen after 1027 * the shortest_full is set (in rb_watermark_hit). If the 1028 * writer sees the full_waiters_pending flag set, it will 1029 * compare the amount in the ring buffer to shortest_full. 1030 * If the amount in the ring buffer is greater than the 1031 * shortest_full percent, it will call the irq_work handler 1032 * to wake up this list. The irq_handler will reset shortest_full 1033 * back to zero. That's done under the reader_lock, but 1034 * the below smp_mb() makes sure that the update to 1035 * full_waiters_pending doesn't leak up into the above. 1036 */ 1037 smp_mb(); 1038 rbwork->full_waiters_pending = true; 1039 return 0; 1040 } 1041 1042 poll_wait(filp, &rbwork->waiters, poll_table); 1043 rbwork->waiters_pending = true; 1044 1045 /* 1046 * There's a tight race between setting the waiters_pending and 1047 * checking if the ring buffer is empty. Once the waiters_pending bit 1048 * is set, the next event will wake the task up, but we can get stuck 1049 * if there's only a single event in. 1050 * 1051 * FIXME: Ideally, we need a memory barrier on the writer side as well, 1052 * but adding a memory barrier to all events will cause too much of a 1053 * performance hit in the fast path. We only need a memory barrier when 1054 * the buffer goes from empty to having content. But as this race is 1055 * extremely small, and it's not a problem if another event comes in, we 1056 * will fix it later. 1057 */ 1058 smp_mb(); 1059 1060 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 1061 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 1062 return EPOLLIN | EPOLLRDNORM; 1063 return 0; 1064 } 1065 1066 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 1067 #define RB_WARN_ON(b, cond) \ 1068 ({ \ 1069 int _____ret = unlikely(cond); \ 1070 if (_____ret) { \ 1071 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 1072 struct ring_buffer_per_cpu *__b = \ 1073 (void *)b; \ 1074 atomic_inc(&__b->buffer->record_disabled); \ 1075 } else \ 1076 atomic_inc(&b->record_disabled); \ 1077 WARN_ON(1); \ 1078 } \ 1079 _____ret; \ 1080 }) 1081 1082 /* Up this if you want to test the TIME_EXTENTS and normalization */ 1083 #define DEBUG_SHIFT 0 1084 1085 static inline u64 rb_time_stamp(struct trace_buffer *buffer) 1086 { 1087 u64 ts; 1088 1089 /* Skip retpolines :-( */ 1090 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local)) 1091 ts = trace_clock_local(); 1092 else 1093 ts = buffer->clock(); 1094 1095 /* shift to debug/test normalization and TIME_EXTENTS */ 1096 return ts << DEBUG_SHIFT; 1097 } 1098 1099 u64 ring_buffer_time_stamp(struct trace_buffer *buffer) 1100 { 1101 u64 time; 1102 1103 preempt_disable_notrace(); 1104 time = rb_time_stamp(buffer); 1105 preempt_enable_notrace(); 1106 1107 return time; 1108 } 1109 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 1110 1111 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, 1112 int cpu, u64 *ts) 1113 { 1114 /* Just stupid testing the normalize function and deltas */ 1115 *ts >>= DEBUG_SHIFT; 1116 } 1117 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 1118 1119 /* 1120 * Making the ring buffer lockless makes things tricky. 1121 * Although writes only happen on the CPU that they are on, 1122 * and they only need to worry about interrupts. Reads can 1123 * happen on any CPU. 1124 * 1125 * The reader page is always off the ring buffer, but when the 1126 * reader finishes with a page, it needs to swap its page with 1127 * a new one from the buffer. The reader needs to take from 1128 * the head (writes go to the tail). But if a writer is in overwrite 1129 * mode and wraps, it must push the head page forward. 1130 * 1131 * Here lies the problem. 1132 * 1133 * The reader must be careful to replace only the head page, and 1134 * not another one. As described at the top of the file in the 1135 * ASCII art, the reader sets its old page to point to the next 1136 * page after head. It then sets the page after head to point to 1137 * the old reader page. But if the writer moves the head page 1138 * during this operation, the reader could end up with the tail. 1139 * 1140 * We use cmpxchg to help prevent this race. We also do something 1141 * special with the page before head. We set the LSB to 1. 1142 * 1143 * When the writer must push the page forward, it will clear the 1144 * bit that points to the head page, move the head, and then set 1145 * the bit that points to the new head page. 1146 * 1147 * We also don't want an interrupt coming in and moving the head 1148 * page on another writer. Thus we use the second LSB to catch 1149 * that too. Thus: 1150 * 1151 * head->list->prev->next bit 1 bit 0 1152 * ------- ------- 1153 * Normal page 0 0 1154 * Points to head page 0 1 1155 * New head page 1 0 1156 * 1157 * Note we can not trust the prev pointer of the head page, because: 1158 * 1159 * +----+ +-----+ +-----+ 1160 * | |------>| T |---X--->| N | 1161 * | |<------| | | | 1162 * +----+ +-----+ +-----+ 1163 * ^ ^ | 1164 * | +-----+ | | 1165 * +----------| R |----------+ | 1166 * | |<-----------+ 1167 * +-----+ 1168 * 1169 * Key: ---X--> HEAD flag set in pointer 1170 * T Tail page 1171 * R Reader page 1172 * N Next page 1173 * 1174 * (see __rb_reserve_next() to see where this happens) 1175 * 1176 * What the above shows is that the reader just swapped out 1177 * the reader page with a page in the buffer, but before it 1178 * could make the new header point back to the new page added 1179 * it was preempted by a writer. The writer moved forward onto 1180 * the new page added by the reader and is about to move forward 1181 * again. 1182 * 1183 * You can see, it is legitimate for the previous pointer of 1184 * the head (or any page) not to point back to itself. But only 1185 * temporarily. 1186 */ 1187 1188 #define RB_PAGE_NORMAL 0UL 1189 #define RB_PAGE_HEAD 1UL 1190 #define RB_PAGE_UPDATE 2UL 1191 1192 1193 #define RB_FLAG_MASK 3UL 1194 1195 /* PAGE_MOVED is not part of the mask */ 1196 #define RB_PAGE_MOVED 4UL 1197 1198 /* 1199 * rb_list_head - remove any bit 1200 */ 1201 static struct list_head *rb_list_head(struct list_head *list) 1202 { 1203 unsigned long val = (unsigned long)list; 1204 1205 return (struct list_head *)(val & ~RB_FLAG_MASK); 1206 } 1207 1208 /* 1209 * rb_is_head_page - test if the given page is the head page 1210 * 1211 * Because the reader may move the head_page pointer, we can 1212 * not trust what the head page is (it may be pointing to 1213 * the reader page). But if the next page is a header page, 1214 * its flags will be non zero. 1215 */ 1216 static inline int 1217 rb_is_head_page(struct buffer_page *page, struct list_head *list) 1218 { 1219 unsigned long val; 1220 1221 val = (unsigned long)list->next; 1222 1223 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 1224 return RB_PAGE_MOVED; 1225 1226 return val & RB_FLAG_MASK; 1227 } 1228 1229 /* 1230 * rb_is_reader_page 1231 * 1232 * The unique thing about the reader page, is that, if the 1233 * writer is ever on it, the previous pointer never points 1234 * back to the reader page. 1235 */ 1236 static bool rb_is_reader_page(struct buffer_page *page) 1237 { 1238 struct list_head *list = page->list.prev; 1239 1240 return rb_list_head(list->next) != &page->list; 1241 } 1242 1243 /* 1244 * rb_set_list_to_head - set a list_head to be pointing to head. 1245 */ 1246 static void rb_set_list_to_head(struct list_head *list) 1247 { 1248 unsigned long *ptr; 1249 1250 ptr = (unsigned long *)&list->next; 1251 *ptr |= RB_PAGE_HEAD; 1252 *ptr &= ~RB_PAGE_UPDATE; 1253 } 1254 1255 /* 1256 * rb_head_page_activate - sets up head page 1257 */ 1258 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 1259 { 1260 struct buffer_page *head; 1261 1262 head = cpu_buffer->head_page; 1263 if (!head) 1264 return; 1265 1266 /* 1267 * Set the previous list pointer to have the HEAD flag. 1268 */ 1269 rb_set_list_to_head(head->list.prev); 1270 1271 if (cpu_buffer->ring_meta) { 1272 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 1273 meta->head_buffer = (unsigned long)head->page; 1274 } 1275 } 1276 1277 static void rb_list_head_clear(struct list_head *list) 1278 { 1279 unsigned long *ptr = (unsigned long *)&list->next; 1280 1281 *ptr &= ~RB_FLAG_MASK; 1282 } 1283 1284 /* 1285 * rb_head_page_deactivate - clears head page ptr (for free list) 1286 */ 1287 static void 1288 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 1289 { 1290 struct list_head *hd; 1291 1292 /* Go through the whole list and clear any pointers found. */ 1293 rb_list_head_clear(cpu_buffer->pages); 1294 1295 list_for_each(hd, cpu_buffer->pages) 1296 rb_list_head_clear(hd); 1297 } 1298 1299 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 1300 struct buffer_page *head, 1301 struct buffer_page *prev, 1302 int old_flag, int new_flag) 1303 { 1304 struct list_head *list; 1305 unsigned long val = (unsigned long)&head->list; 1306 unsigned long ret; 1307 1308 list = &prev->list; 1309 1310 val &= ~RB_FLAG_MASK; 1311 1312 ret = cmpxchg((unsigned long *)&list->next, 1313 val | old_flag, val | new_flag); 1314 1315 /* check if the reader took the page */ 1316 if ((ret & ~RB_FLAG_MASK) != val) 1317 return RB_PAGE_MOVED; 1318 1319 return ret & RB_FLAG_MASK; 1320 } 1321 1322 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 1323 struct buffer_page *head, 1324 struct buffer_page *prev, 1325 int old_flag) 1326 { 1327 return rb_head_page_set(cpu_buffer, head, prev, 1328 old_flag, RB_PAGE_UPDATE); 1329 } 1330 1331 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 1332 struct buffer_page *head, 1333 struct buffer_page *prev, 1334 int old_flag) 1335 { 1336 return rb_head_page_set(cpu_buffer, head, prev, 1337 old_flag, RB_PAGE_HEAD); 1338 } 1339 1340 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 1341 struct buffer_page *head, 1342 struct buffer_page *prev, 1343 int old_flag) 1344 { 1345 return rb_head_page_set(cpu_buffer, head, prev, 1346 old_flag, RB_PAGE_NORMAL); 1347 } 1348 1349 static inline void rb_inc_page(struct buffer_page **bpage) 1350 { 1351 struct list_head *p = rb_list_head((*bpage)->list.next); 1352 1353 *bpage = list_entry(p, struct buffer_page, list); 1354 } 1355 1356 static struct buffer_page * 1357 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1358 { 1359 struct buffer_page *head; 1360 struct buffer_page *page; 1361 struct list_head *list; 1362 int i; 1363 1364 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1365 return NULL; 1366 1367 /* sanity check */ 1368 list = cpu_buffer->pages; 1369 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1370 return NULL; 1371 1372 page = head = cpu_buffer->head_page; 1373 /* 1374 * It is possible that the writer moves the header behind 1375 * where we started, and we miss in one loop. 1376 * A second loop should grab the header, but we'll do 1377 * three loops just because I'm paranoid. 1378 */ 1379 for (i = 0; i < 3; i++) { 1380 do { 1381 if (rb_is_head_page(page, page->list.prev)) { 1382 cpu_buffer->head_page = page; 1383 return page; 1384 } 1385 rb_inc_page(&page); 1386 } while (page != head); 1387 } 1388 1389 RB_WARN_ON(cpu_buffer, 1); 1390 1391 return NULL; 1392 } 1393 1394 static bool rb_head_page_replace(struct buffer_page *old, 1395 struct buffer_page *new) 1396 { 1397 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1398 unsigned long val; 1399 1400 val = *ptr & ~RB_FLAG_MASK; 1401 val |= RB_PAGE_HEAD; 1402 1403 return try_cmpxchg(ptr, &val, (unsigned long)&new->list); 1404 } 1405 1406 /* 1407 * rb_tail_page_update - move the tail page forward 1408 */ 1409 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1410 struct buffer_page *tail_page, 1411 struct buffer_page *next_page) 1412 { 1413 unsigned long old_entries; 1414 unsigned long old_write; 1415 1416 /* 1417 * The tail page now needs to be moved forward. 1418 * 1419 * We need to reset the tail page, but without messing 1420 * with possible erasing of data brought in by interrupts 1421 * that have moved the tail page and are currently on it. 1422 * 1423 * We add a counter to the write field to denote this. 1424 */ 1425 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1426 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1427 1428 /* 1429 * Just make sure we have seen our old_write and synchronize 1430 * with any interrupts that come in. 1431 */ 1432 barrier(); 1433 1434 /* 1435 * If the tail page is still the same as what we think 1436 * it is, then it is up to us to update the tail 1437 * pointer. 1438 */ 1439 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1440 /* Zero the write counter */ 1441 unsigned long val = old_write & ~RB_WRITE_MASK; 1442 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1443 1444 /* 1445 * This will only succeed if an interrupt did 1446 * not come in and change it. In which case, we 1447 * do not want to modify it. 1448 * 1449 * We add (void) to let the compiler know that we do not care 1450 * about the return value of these functions. We use the 1451 * cmpxchg to only update if an interrupt did not already 1452 * do it for us. If the cmpxchg fails, we don't care. 1453 */ 1454 (void)local_cmpxchg(&next_page->write, old_write, val); 1455 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1456 1457 /* 1458 * No need to worry about races with clearing out the commit. 1459 * it only can increment when a commit takes place. But that 1460 * only happens in the outer most nested commit. 1461 */ 1462 local_set(&next_page->page->commit, 0); 1463 1464 /* Either we update tail_page or an interrupt does */ 1465 if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page)) 1466 local_inc(&cpu_buffer->pages_touched); 1467 } 1468 } 1469 1470 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1471 struct buffer_page *bpage) 1472 { 1473 unsigned long val = (unsigned long)bpage; 1474 1475 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK); 1476 } 1477 1478 /** 1479 * rb_check_pages - integrity check of buffer pages 1480 * @cpu_buffer: CPU buffer with pages to test 1481 * 1482 * As a safety measure we check to make sure the data pages have not 1483 * been corrupted. 1484 * 1485 * Callers of this function need to guarantee that the list of pages doesn't get 1486 * modified during the check. In particular, if it's possible that the function 1487 * is invoked with concurrent readers which can swap in a new reader page then 1488 * the caller should take cpu_buffer->reader_lock. 1489 */ 1490 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1491 { 1492 struct list_head *head = rb_list_head(cpu_buffer->pages); 1493 struct list_head *tmp; 1494 1495 if (RB_WARN_ON(cpu_buffer, 1496 rb_list_head(rb_list_head(head->next)->prev) != head)) 1497 return; 1498 1499 if (RB_WARN_ON(cpu_buffer, 1500 rb_list_head(rb_list_head(head->prev)->next) != head)) 1501 return; 1502 1503 for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) { 1504 if (RB_WARN_ON(cpu_buffer, 1505 rb_list_head(rb_list_head(tmp->next)->prev) != tmp)) 1506 return; 1507 1508 if (RB_WARN_ON(cpu_buffer, 1509 rb_list_head(rb_list_head(tmp->prev)->next) != tmp)) 1510 return; 1511 } 1512 } 1513 1514 /* 1515 * Take an address, add the meta data size as well as the array of 1516 * array subbuffer indexes, then align it to a subbuffer size. 1517 * 1518 * This is used to help find the next per cpu subbuffer within a mapped range. 1519 */ 1520 static unsigned long 1521 rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs) 1522 { 1523 addr += sizeof(struct ring_buffer_meta) + 1524 sizeof(int) * nr_subbufs; 1525 return ALIGN(addr, subbuf_size); 1526 } 1527 1528 /* 1529 * Return the ring_buffer_meta for a given @cpu. 1530 */ 1531 static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu) 1532 { 1533 int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE; 1534 unsigned long ptr = buffer->range_addr_start; 1535 struct ring_buffer_meta *meta; 1536 int nr_subbufs; 1537 1538 if (!ptr) 1539 return NULL; 1540 1541 /* When nr_pages passed in is zero, the first meta has already been initialized */ 1542 if (!nr_pages) { 1543 meta = (struct ring_buffer_meta *)ptr; 1544 nr_subbufs = meta->nr_subbufs; 1545 } else { 1546 meta = NULL; 1547 /* Include the reader page */ 1548 nr_subbufs = nr_pages + 1; 1549 } 1550 1551 /* 1552 * The first chunk may not be subbuffer aligned, where as 1553 * the rest of the chunks are. 1554 */ 1555 if (cpu) { 1556 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs); 1557 ptr += subbuf_size * nr_subbufs; 1558 1559 /* We can use multiplication to find chunks greater than 1 */ 1560 if (cpu > 1) { 1561 unsigned long size; 1562 unsigned long p; 1563 1564 /* Save the beginning of this CPU chunk */ 1565 p = ptr; 1566 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs); 1567 ptr += subbuf_size * nr_subbufs; 1568 1569 /* Now all chunks after this are the same size */ 1570 size = ptr - p; 1571 ptr += size * (cpu - 2); 1572 } 1573 } 1574 return (void *)ptr; 1575 } 1576 1577 /* Return the start of subbufs given the meta pointer */ 1578 static void *rb_subbufs_from_meta(struct ring_buffer_meta *meta) 1579 { 1580 int subbuf_size = meta->subbuf_size; 1581 unsigned long ptr; 1582 1583 ptr = (unsigned long)meta; 1584 ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs); 1585 1586 return (void *)ptr; 1587 } 1588 1589 /* 1590 * Return a specific sub-buffer for a given @cpu defined by @idx. 1591 */ 1592 static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx) 1593 { 1594 struct ring_buffer_meta *meta; 1595 unsigned long ptr; 1596 int subbuf_size; 1597 1598 meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu); 1599 if (!meta) 1600 return NULL; 1601 1602 if (WARN_ON_ONCE(idx >= meta->nr_subbufs)) 1603 return NULL; 1604 1605 subbuf_size = meta->subbuf_size; 1606 1607 /* Map this buffer to the order that's in meta->buffers[] */ 1608 idx = meta->buffers[idx]; 1609 1610 ptr = (unsigned long)rb_subbufs_from_meta(meta); 1611 1612 ptr += subbuf_size * idx; 1613 if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end) 1614 return NULL; 1615 1616 return (void *)ptr; 1617 } 1618 1619 /* 1620 * See if the existing memory contains valid ring buffer data. 1621 * As the previous kernel must be the same as this kernel, all 1622 * the calculations (size of buffers and number of buffers) 1623 * must be the same. 1624 */ 1625 static bool rb_meta_valid(struct ring_buffer_meta *meta, int cpu, 1626 struct trace_buffer *buffer, int nr_pages) 1627 { 1628 int subbuf_size = PAGE_SIZE; 1629 struct buffer_data_page *subbuf; 1630 unsigned long buffers_start; 1631 unsigned long buffers_end; 1632 int i; 1633 1634 /* Check the meta magic and meta struct size */ 1635 if (meta->magic != RING_BUFFER_META_MAGIC || 1636 meta->struct_size != sizeof(*meta)) { 1637 pr_info("Ring buffer boot meta[%d] mismatch of magic or struct size\n", cpu); 1638 return false; 1639 } 1640 1641 /* The subbuffer's size and number of subbuffers must match */ 1642 if (meta->subbuf_size != subbuf_size || 1643 meta->nr_subbufs != nr_pages + 1) { 1644 pr_info("Ring buffer boot meta [%d] mismatch of subbuf_size/nr_pages\n", cpu); 1645 return false; 1646 } 1647 1648 buffers_start = meta->first_buffer; 1649 buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs); 1650 1651 /* Is the head and commit buffers within the range of buffers? */ 1652 if (meta->head_buffer < buffers_start || 1653 meta->head_buffer >= buffers_end) { 1654 pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu); 1655 return false; 1656 } 1657 1658 if (meta->commit_buffer < buffers_start || 1659 meta->commit_buffer >= buffers_end) { 1660 pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu); 1661 return false; 1662 } 1663 1664 subbuf = rb_subbufs_from_meta(meta); 1665 1666 /* Is the meta buffers and the subbufs themselves have correct data? */ 1667 for (i = 0; i < meta->nr_subbufs; i++) { 1668 if (meta->buffers[i] < 0 || 1669 meta->buffers[i] >= meta->nr_subbufs) { 1670 pr_info("Ring buffer boot meta [%d] array out of range\n", cpu); 1671 return false; 1672 } 1673 1674 if ((unsigned)local_read(&subbuf->commit) > subbuf_size) { 1675 pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu); 1676 return false; 1677 } 1678 1679 subbuf = (void *)subbuf + subbuf_size; 1680 } 1681 1682 return true; 1683 } 1684 1685 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf); 1686 1687 static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu, 1688 unsigned long long *timestamp, u64 *delta_ptr) 1689 { 1690 struct ring_buffer_event *event; 1691 u64 ts, delta; 1692 int events = 0; 1693 int e; 1694 1695 *delta_ptr = 0; 1696 *timestamp = 0; 1697 1698 ts = dpage->time_stamp; 1699 1700 for (e = 0; e < tail; e += rb_event_length(event)) { 1701 1702 event = (struct ring_buffer_event *)(dpage->data + e); 1703 1704 switch (event->type_len) { 1705 1706 case RINGBUF_TYPE_TIME_EXTEND: 1707 delta = rb_event_time_stamp(event); 1708 ts += delta; 1709 break; 1710 1711 case RINGBUF_TYPE_TIME_STAMP: 1712 delta = rb_event_time_stamp(event); 1713 delta = rb_fix_abs_ts(delta, ts); 1714 if (delta < ts) { 1715 *delta_ptr = delta; 1716 *timestamp = ts; 1717 return -1; 1718 } 1719 ts = delta; 1720 break; 1721 1722 case RINGBUF_TYPE_PADDING: 1723 if (event->time_delta == 1) 1724 break; 1725 fallthrough; 1726 case RINGBUF_TYPE_DATA: 1727 events++; 1728 ts += event->time_delta; 1729 break; 1730 1731 default: 1732 return -1; 1733 } 1734 } 1735 *timestamp = ts; 1736 return events; 1737 } 1738 1739 static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu) 1740 { 1741 unsigned long long ts; 1742 u64 delta; 1743 int tail; 1744 1745 tail = local_read(&dpage->commit); 1746 return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta); 1747 } 1748 1749 /* If the meta data has been validated, now validate the events */ 1750 static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer) 1751 { 1752 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 1753 struct buffer_page *head_page; 1754 unsigned long entry_bytes = 0; 1755 unsigned long entries = 0; 1756 int ret; 1757 int i; 1758 1759 if (!meta || !meta->head_buffer) 1760 return; 1761 1762 /* Do the reader page first */ 1763 ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu); 1764 if (ret < 0) { 1765 pr_info("Ring buffer reader page is invalid\n"); 1766 goto invalid; 1767 } 1768 entries += ret; 1769 entry_bytes += local_read(&cpu_buffer->reader_page->page->commit); 1770 local_set(&cpu_buffer->reader_page->entries, ret); 1771 1772 head_page = cpu_buffer->head_page; 1773 1774 /* If both the head and commit are on the reader_page then we are done. */ 1775 if (head_page == cpu_buffer->reader_page && 1776 head_page == cpu_buffer->commit_page) 1777 goto done; 1778 1779 /* Iterate until finding the commit page */ 1780 for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) { 1781 1782 /* Reader page has already been done */ 1783 if (head_page == cpu_buffer->reader_page) 1784 continue; 1785 1786 ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu); 1787 if (ret < 0) { 1788 pr_info("Ring buffer meta [%d] invalid buffer page\n", 1789 cpu_buffer->cpu); 1790 goto invalid; 1791 } 1792 entries += ret; 1793 entry_bytes += local_read(&head_page->page->commit); 1794 local_set(&cpu_buffer->head_page->entries, ret); 1795 1796 if (head_page == cpu_buffer->commit_page) 1797 break; 1798 } 1799 1800 if (head_page != cpu_buffer->commit_page) { 1801 pr_info("Ring buffer meta [%d] commit page not found\n", 1802 cpu_buffer->cpu); 1803 goto invalid; 1804 } 1805 done: 1806 local_set(&cpu_buffer->entries, entries); 1807 local_set(&cpu_buffer->entries_bytes, entry_bytes); 1808 1809 pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu); 1810 return; 1811 1812 invalid: 1813 /* The content of the buffers are invalid, reset the meta data */ 1814 meta->head_buffer = 0; 1815 meta->commit_buffer = 0; 1816 1817 /* Reset the reader page */ 1818 local_set(&cpu_buffer->reader_page->entries, 0); 1819 local_set(&cpu_buffer->reader_page->page->commit, 0); 1820 1821 /* Reset all the subbuffers */ 1822 for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) { 1823 local_set(&head_page->entries, 0); 1824 local_set(&head_page->page->commit, 0); 1825 } 1826 } 1827 1828 /* Used to calculate data delta */ 1829 static char rb_data_ptr[] = ""; 1830 1831 #define THIS_TEXT_PTR ((unsigned long)rb_meta_init_text_addr) 1832 #define THIS_DATA_PTR ((unsigned long)rb_data_ptr) 1833 1834 static void rb_meta_init_text_addr(struct ring_buffer_meta *meta) 1835 { 1836 meta->text_addr = THIS_TEXT_PTR; 1837 meta->data_addr = THIS_DATA_PTR; 1838 } 1839 1840 static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages) 1841 { 1842 struct ring_buffer_meta *meta; 1843 unsigned long delta; 1844 void *subbuf; 1845 int cpu; 1846 int i; 1847 1848 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 1849 void *next_meta; 1850 1851 meta = rb_range_meta(buffer, nr_pages, cpu); 1852 1853 if (rb_meta_valid(meta, cpu, buffer, nr_pages)) { 1854 /* Make the mappings match the current address */ 1855 subbuf = rb_subbufs_from_meta(meta); 1856 delta = (unsigned long)subbuf - meta->first_buffer; 1857 meta->first_buffer += delta; 1858 meta->head_buffer += delta; 1859 meta->commit_buffer += delta; 1860 buffer->last_text_delta = THIS_TEXT_PTR - meta->text_addr; 1861 buffer->last_data_delta = THIS_DATA_PTR - meta->data_addr; 1862 continue; 1863 } 1864 1865 if (cpu < nr_cpu_ids - 1) 1866 next_meta = rb_range_meta(buffer, nr_pages, cpu + 1); 1867 else 1868 next_meta = (void *)buffer->range_addr_end; 1869 1870 memset(meta, 0, next_meta - (void *)meta); 1871 1872 meta->magic = RING_BUFFER_META_MAGIC; 1873 meta->struct_size = sizeof(*meta); 1874 1875 meta->nr_subbufs = nr_pages + 1; 1876 meta->subbuf_size = PAGE_SIZE; 1877 1878 subbuf = rb_subbufs_from_meta(meta); 1879 1880 meta->first_buffer = (unsigned long)subbuf; 1881 rb_meta_init_text_addr(meta); 1882 1883 /* 1884 * The buffers[] array holds the order of the sub-buffers 1885 * that are after the meta data. The sub-buffers may 1886 * be swapped out when read and inserted into a different 1887 * location of the ring buffer. Although their addresses 1888 * remain the same, the buffers[] array contains the 1889 * index into the sub-buffers holding their actual order. 1890 */ 1891 for (i = 0; i < meta->nr_subbufs; i++) { 1892 meta->buffers[i] = i; 1893 rb_init_page(subbuf); 1894 subbuf += meta->subbuf_size; 1895 } 1896 } 1897 } 1898 1899 static void *rbm_start(struct seq_file *m, loff_t *pos) 1900 { 1901 struct ring_buffer_per_cpu *cpu_buffer = m->private; 1902 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 1903 unsigned long val; 1904 1905 if (!meta) 1906 return NULL; 1907 1908 if (*pos > meta->nr_subbufs) 1909 return NULL; 1910 1911 val = *pos; 1912 val++; 1913 1914 return (void *)val; 1915 } 1916 1917 static void *rbm_next(struct seq_file *m, void *v, loff_t *pos) 1918 { 1919 (*pos)++; 1920 1921 return rbm_start(m, pos); 1922 } 1923 1924 static int rbm_show(struct seq_file *m, void *v) 1925 { 1926 struct ring_buffer_per_cpu *cpu_buffer = m->private; 1927 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 1928 unsigned long val = (unsigned long)v; 1929 1930 if (val == 1) { 1931 seq_printf(m, "head_buffer: %d\n", 1932 rb_meta_subbuf_idx(meta, (void *)meta->head_buffer)); 1933 seq_printf(m, "commit_buffer: %d\n", 1934 rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer)); 1935 seq_printf(m, "subbuf_size: %d\n", meta->subbuf_size); 1936 seq_printf(m, "nr_subbufs: %d\n", meta->nr_subbufs); 1937 return 0; 1938 } 1939 1940 val -= 2; 1941 seq_printf(m, "buffer[%ld]: %d\n", val, meta->buffers[val]); 1942 1943 return 0; 1944 } 1945 1946 static void rbm_stop(struct seq_file *m, void *p) 1947 { 1948 } 1949 1950 static const struct seq_operations rb_meta_seq_ops = { 1951 .start = rbm_start, 1952 .next = rbm_next, 1953 .show = rbm_show, 1954 .stop = rbm_stop, 1955 }; 1956 1957 int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu) 1958 { 1959 struct seq_file *m; 1960 int ret; 1961 1962 ret = seq_open(file, &rb_meta_seq_ops); 1963 if (ret) 1964 return ret; 1965 1966 m = file->private_data; 1967 m->private = buffer->buffers[cpu]; 1968 1969 return 0; 1970 } 1971 1972 /* Map the buffer_pages to the previous head and commit pages */ 1973 static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer, 1974 struct buffer_page *bpage) 1975 { 1976 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 1977 1978 if (meta->head_buffer == (unsigned long)bpage->page) 1979 cpu_buffer->head_page = bpage; 1980 1981 if (meta->commit_buffer == (unsigned long)bpage->page) { 1982 cpu_buffer->commit_page = bpage; 1983 cpu_buffer->tail_page = bpage; 1984 } 1985 } 1986 1987 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1988 long nr_pages, struct list_head *pages) 1989 { 1990 struct trace_buffer *buffer = cpu_buffer->buffer; 1991 struct ring_buffer_meta *meta = NULL; 1992 struct buffer_page *bpage, *tmp; 1993 bool user_thread = current->mm != NULL; 1994 gfp_t mflags; 1995 long i; 1996 1997 /* 1998 * Check if the available memory is there first. 1999 * Note, si_mem_available() only gives us a rough estimate of available 2000 * memory. It may not be accurate. But we don't care, we just want 2001 * to prevent doing any allocation when it is obvious that it is 2002 * not going to succeed. 2003 */ 2004 i = si_mem_available(); 2005 if (i < nr_pages) 2006 return -ENOMEM; 2007 2008 /* 2009 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 2010 * gracefully without invoking oom-killer and the system is not 2011 * destabilized. 2012 */ 2013 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 2014 2015 /* 2016 * If a user thread allocates too much, and si_mem_available() 2017 * reports there's enough memory, even though there is not. 2018 * Make sure the OOM killer kills this thread. This can happen 2019 * even with RETRY_MAYFAIL because another task may be doing 2020 * an allocation after this task has taken all memory. 2021 * This is the task the OOM killer needs to take out during this 2022 * loop, even if it was triggered by an allocation somewhere else. 2023 */ 2024 if (user_thread) 2025 set_current_oom_origin(); 2026 2027 if (buffer->range_addr_start) 2028 meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu); 2029 2030 for (i = 0; i < nr_pages; i++) { 2031 struct page *page; 2032 2033 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 2034 mflags, cpu_to_node(cpu_buffer->cpu)); 2035 if (!bpage) 2036 goto free_pages; 2037 2038 rb_check_bpage(cpu_buffer, bpage); 2039 2040 /* 2041 * Append the pages as for mapped buffers we want to keep 2042 * the order 2043 */ 2044 list_add_tail(&bpage->list, pages); 2045 2046 if (meta) { 2047 /* A range was given. Use that for the buffer page */ 2048 bpage->page = rb_range_buffer(cpu_buffer, i + 1); 2049 if (!bpage->page) 2050 goto free_pages; 2051 /* If this is valid from a previous boot */ 2052 if (meta->head_buffer) 2053 rb_meta_buffer_update(cpu_buffer, bpage); 2054 bpage->range = 1; 2055 bpage->id = i + 1; 2056 } else { 2057 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), 2058 mflags | __GFP_COMP | __GFP_ZERO, 2059 cpu_buffer->buffer->subbuf_order); 2060 if (!page) 2061 goto free_pages; 2062 bpage->page = page_address(page); 2063 rb_init_page(bpage->page); 2064 } 2065 bpage->order = cpu_buffer->buffer->subbuf_order; 2066 2067 if (user_thread && fatal_signal_pending(current)) 2068 goto free_pages; 2069 } 2070 if (user_thread) 2071 clear_current_oom_origin(); 2072 2073 return 0; 2074 2075 free_pages: 2076 list_for_each_entry_safe(bpage, tmp, pages, list) { 2077 list_del_init(&bpage->list); 2078 free_buffer_page(bpage); 2079 } 2080 if (user_thread) 2081 clear_current_oom_origin(); 2082 2083 return -ENOMEM; 2084 } 2085 2086 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 2087 unsigned long nr_pages) 2088 { 2089 LIST_HEAD(pages); 2090 2091 WARN_ON(!nr_pages); 2092 2093 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages)) 2094 return -ENOMEM; 2095 2096 /* 2097 * The ring buffer page list is a circular list that does not 2098 * start and end with a list head. All page list items point to 2099 * other pages. 2100 */ 2101 cpu_buffer->pages = pages.next; 2102 list_del(&pages); 2103 2104 cpu_buffer->nr_pages = nr_pages; 2105 2106 rb_check_pages(cpu_buffer); 2107 2108 return 0; 2109 } 2110 2111 static struct ring_buffer_per_cpu * 2112 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) 2113 { 2114 struct ring_buffer_per_cpu *cpu_buffer; 2115 struct ring_buffer_meta *meta; 2116 struct buffer_page *bpage; 2117 struct page *page; 2118 int ret; 2119 2120 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 2121 GFP_KERNEL, cpu_to_node(cpu)); 2122 if (!cpu_buffer) 2123 return NULL; 2124 2125 cpu_buffer->cpu = cpu; 2126 cpu_buffer->buffer = buffer; 2127 raw_spin_lock_init(&cpu_buffer->reader_lock); 2128 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 2129 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 2130 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 2131 init_completion(&cpu_buffer->update_done); 2132 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 2133 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 2134 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 2135 mutex_init(&cpu_buffer->mapping_lock); 2136 2137 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 2138 GFP_KERNEL, cpu_to_node(cpu)); 2139 if (!bpage) 2140 goto fail_free_buffer; 2141 2142 rb_check_bpage(cpu_buffer, bpage); 2143 2144 cpu_buffer->reader_page = bpage; 2145 2146 if (buffer->range_addr_start) { 2147 /* 2148 * Range mapped buffers have the same restrictions as memory 2149 * mapped ones do. 2150 */ 2151 cpu_buffer->mapped = 1; 2152 cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu); 2153 bpage->page = rb_range_buffer(cpu_buffer, 0); 2154 if (!bpage->page) 2155 goto fail_free_reader; 2156 if (cpu_buffer->ring_meta->head_buffer) 2157 rb_meta_buffer_update(cpu_buffer, bpage); 2158 bpage->range = 1; 2159 } else { 2160 page = alloc_pages_node(cpu_to_node(cpu), 2161 GFP_KERNEL | __GFP_COMP | __GFP_ZERO, 2162 cpu_buffer->buffer->subbuf_order); 2163 if (!page) 2164 goto fail_free_reader; 2165 bpage->page = page_address(page); 2166 rb_init_page(bpage->page); 2167 } 2168 2169 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 2170 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2171 2172 ret = rb_allocate_pages(cpu_buffer, nr_pages); 2173 if (ret < 0) 2174 goto fail_free_reader; 2175 2176 rb_meta_validate_events(cpu_buffer); 2177 2178 /* If the boot meta was valid then this has already been updated */ 2179 meta = cpu_buffer->ring_meta; 2180 if (!meta || !meta->head_buffer || 2181 !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) { 2182 if (meta && meta->head_buffer && 2183 (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) { 2184 pr_warn("Ring buffer meta buffers not all mapped\n"); 2185 if (!cpu_buffer->head_page) 2186 pr_warn(" Missing head_page\n"); 2187 if (!cpu_buffer->commit_page) 2188 pr_warn(" Missing commit_page\n"); 2189 if (!cpu_buffer->tail_page) 2190 pr_warn(" Missing tail_page\n"); 2191 } 2192 2193 cpu_buffer->head_page 2194 = list_entry(cpu_buffer->pages, struct buffer_page, list); 2195 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 2196 2197 rb_head_page_activate(cpu_buffer); 2198 2199 if (cpu_buffer->ring_meta) 2200 meta->commit_buffer = meta->head_buffer; 2201 } else { 2202 /* The valid meta buffer still needs to activate the head page */ 2203 rb_head_page_activate(cpu_buffer); 2204 } 2205 2206 return cpu_buffer; 2207 2208 fail_free_reader: 2209 free_buffer_page(cpu_buffer->reader_page); 2210 2211 fail_free_buffer: 2212 kfree(cpu_buffer); 2213 return NULL; 2214 } 2215 2216 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 2217 { 2218 struct list_head *head = cpu_buffer->pages; 2219 struct buffer_page *bpage, *tmp; 2220 2221 irq_work_sync(&cpu_buffer->irq_work.work); 2222 2223 free_buffer_page(cpu_buffer->reader_page); 2224 2225 if (head) { 2226 rb_head_page_deactivate(cpu_buffer); 2227 2228 list_for_each_entry_safe(bpage, tmp, head, list) { 2229 list_del_init(&bpage->list); 2230 free_buffer_page(bpage); 2231 } 2232 bpage = list_entry(head, struct buffer_page, list); 2233 free_buffer_page(bpage); 2234 } 2235 2236 free_page((unsigned long)cpu_buffer->free_page); 2237 2238 kfree(cpu_buffer); 2239 } 2240 2241 static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags, 2242 int order, unsigned long start, 2243 unsigned long end, 2244 struct lock_class_key *key) 2245 { 2246 struct trace_buffer *buffer; 2247 long nr_pages; 2248 int subbuf_size; 2249 int bsize; 2250 int cpu; 2251 int ret; 2252 2253 /* keep it in its own cache line */ 2254 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 2255 GFP_KERNEL); 2256 if (!buffer) 2257 return NULL; 2258 2259 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 2260 goto fail_free_buffer; 2261 2262 buffer->subbuf_order = order; 2263 subbuf_size = (PAGE_SIZE << order); 2264 buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE; 2265 2266 /* Max payload is buffer page size - header (8bytes) */ 2267 buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2); 2268 2269 buffer->flags = flags; 2270 buffer->clock = trace_clock_local; 2271 buffer->reader_lock_key = key; 2272 2273 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 2274 init_waitqueue_head(&buffer->irq_work.waiters); 2275 2276 buffer->cpus = nr_cpu_ids; 2277 2278 bsize = sizeof(void *) * nr_cpu_ids; 2279 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 2280 GFP_KERNEL); 2281 if (!buffer->buffers) 2282 goto fail_free_cpumask; 2283 2284 /* If start/end are specified, then that overrides size */ 2285 if (start && end) { 2286 unsigned long ptr; 2287 int n; 2288 2289 size = end - start; 2290 size = size / nr_cpu_ids; 2291 2292 /* 2293 * The number of sub-buffers (nr_pages) is determined by the 2294 * total size allocated minus the meta data size. 2295 * Then that is divided by the number of per CPU buffers 2296 * needed, plus account for the integer array index that 2297 * will be appended to the meta data. 2298 */ 2299 nr_pages = (size - sizeof(struct ring_buffer_meta)) / 2300 (subbuf_size + sizeof(int)); 2301 /* Need at least two pages plus the reader page */ 2302 if (nr_pages < 3) 2303 goto fail_free_buffers; 2304 2305 again: 2306 /* Make sure that the size fits aligned */ 2307 for (n = 0, ptr = start; n < nr_cpu_ids; n++) { 2308 ptr += sizeof(struct ring_buffer_meta) + 2309 sizeof(int) * nr_pages; 2310 ptr = ALIGN(ptr, subbuf_size); 2311 ptr += subbuf_size * nr_pages; 2312 } 2313 if (ptr > end) { 2314 if (nr_pages <= 3) 2315 goto fail_free_buffers; 2316 nr_pages--; 2317 goto again; 2318 } 2319 2320 /* nr_pages should not count the reader page */ 2321 nr_pages--; 2322 buffer->range_addr_start = start; 2323 buffer->range_addr_end = end; 2324 2325 rb_range_meta_init(buffer, nr_pages); 2326 } else { 2327 2328 /* need at least two pages */ 2329 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size); 2330 if (nr_pages < 2) 2331 nr_pages = 2; 2332 } 2333 2334 cpu = raw_smp_processor_id(); 2335 cpumask_set_cpu(cpu, buffer->cpumask); 2336 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 2337 if (!buffer->buffers[cpu]) 2338 goto fail_free_buffers; 2339 2340 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 2341 if (ret < 0) 2342 goto fail_free_buffers; 2343 2344 mutex_init(&buffer->mutex); 2345 2346 return buffer; 2347 2348 fail_free_buffers: 2349 for_each_buffer_cpu(buffer, cpu) { 2350 if (buffer->buffers[cpu]) 2351 rb_free_cpu_buffer(buffer->buffers[cpu]); 2352 } 2353 kfree(buffer->buffers); 2354 2355 fail_free_cpumask: 2356 free_cpumask_var(buffer->cpumask); 2357 2358 fail_free_buffer: 2359 kfree(buffer); 2360 return NULL; 2361 } 2362 2363 /** 2364 * __ring_buffer_alloc - allocate a new ring_buffer 2365 * @size: the size in bytes per cpu that is needed. 2366 * @flags: attributes to set for the ring buffer. 2367 * @key: ring buffer reader_lock_key. 2368 * 2369 * Currently the only flag that is available is the RB_FL_OVERWRITE 2370 * flag. This flag means that the buffer will overwrite old data 2371 * when the buffer wraps. If this flag is not set, the buffer will 2372 * drop data when the tail hits the head. 2373 */ 2374 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 2375 struct lock_class_key *key) 2376 { 2377 /* Default buffer page size - one system page */ 2378 return alloc_buffer(size, flags, 0, 0, 0,key); 2379 2380 } 2381 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 2382 2383 /** 2384 * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory 2385 * @size: the size in bytes per cpu that is needed. 2386 * @flags: attributes to set for the ring buffer. 2387 * @start: start of allocated range 2388 * @range_size: size of allocated range 2389 * @order: sub-buffer order 2390 * @key: ring buffer reader_lock_key. 2391 * 2392 * Currently the only flag that is available is the RB_FL_OVERWRITE 2393 * flag. This flag means that the buffer will overwrite old data 2394 * when the buffer wraps. If this flag is not set, the buffer will 2395 * drop data when the tail hits the head. 2396 */ 2397 struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags, 2398 int order, unsigned long start, 2399 unsigned long range_size, 2400 struct lock_class_key *key) 2401 { 2402 return alloc_buffer(size, flags, order, start, start + range_size, key); 2403 } 2404 2405 /** 2406 * ring_buffer_last_boot_delta - return the delta offset from last boot 2407 * @buffer: The buffer to return the delta from 2408 * @text: Return text delta 2409 * @data: Return data delta 2410 * 2411 * Returns: The true if the delta is non zero 2412 */ 2413 bool ring_buffer_last_boot_delta(struct trace_buffer *buffer, long *text, 2414 long *data) 2415 { 2416 if (!buffer) 2417 return false; 2418 2419 if (!buffer->last_text_delta) 2420 return false; 2421 2422 *text = buffer->last_text_delta; 2423 *data = buffer->last_data_delta; 2424 2425 return true; 2426 } 2427 2428 /** 2429 * ring_buffer_free - free a ring buffer. 2430 * @buffer: the buffer to free. 2431 */ 2432 void 2433 ring_buffer_free(struct trace_buffer *buffer) 2434 { 2435 int cpu; 2436 2437 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 2438 2439 irq_work_sync(&buffer->irq_work.work); 2440 2441 for_each_buffer_cpu(buffer, cpu) 2442 rb_free_cpu_buffer(buffer->buffers[cpu]); 2443 2444 kfree(buffer->buffers); 2445 free_cpumask_var(buffer->cpumask); 2446 2447 kfree(buffer); 2448 } 2449 EXPORT_SYMBOL_GPL(ring_buffer_free); 2450 2451 void ring_buffer_set_clock(struct trace_buffer *buffer, 2452 u64 (*clock)(void)) 2453 { 2454 buffer->clock = clock; 2455 } 2456 2457 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) 2458 { 2459 buffer->time_stamp_abs = abs; 2460 } 2461 2462 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) 2463 { 2464 return buffer->time_stamp_abs; 2465 } 2466 2467 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 2468 { 2469 return local_read(&bpage->entries) & RB_WRITE_MASK; 2470 } 2471 2472 static inline unsigned long rb_page_write(struct buffer_page *bpage) 2473 { 2474 return local_read(&bpage->write) & RB_WRITE_MASK; 2475 } 2476 2477 static bool 2478 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 2479 { 2480 struct list_head *tail_page, *to_remove, *next_page; 2481 struct buffer_page *to_remove_page, *tmp_iter_page; 2482 struct buffer_page *last_page, *first_page; 2483 unsigned long nr_removed; 2484 unsigned long head_bit; 2485 int page_entries; 2486 2487 head_bit = 0; 2488 2489 raw_spin_lock_irq(&cpu_buffer->reader_lock); 2490 atomic_inc(&cpu_buffer->record_disabled); 2491 /* 2492 * We don't race with the readers since we have acquired the reader 2493 * lock. We also don't race with writers after disabling recording. 2494 * This makes it easy to figure out the first and the last page to be 2495 * removed from the list. We unlink all the pages in between including 2496 * the first and last pages. This is done in a busy loop so that we 2497 * lose the least number of traces. 2498 * The pages are freed after we restart recording and unlock readers. 2499 */ 2500 tail_page = &cpu_buffer->tail_page->list; 2501 2502 /* 2503 * tail page might be on reader page, we remove the next page 2504 * from the ring buffer 2505 */ 2506 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 2507 tail_page = rb_list_head(tail_page->next); 2508 to_remove = tail_page; 2509 2510 /* start of pages to remove */ 2511 first_page = list_entry(rb_list_head(to_remove->next), 2512 struct buffer_page, list); 2513 2514 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 2515 to_remove = rb_list_head(to_remove)->next; 2516 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 2517 } 2518 /* Read iterators need to reset themselves when some pages removed */ 2519 cpu_buffer->pages_removed += nr_removed; 2520 2521 next_page = rb_list_head(to_remove)->next; 2522 2523 /* 2524 * Now we remove all pages between tail_page and next_page. 2525 * Make sure that we have head_bit value preserved for the 2526 * next page 2527 */ 2528 tail_page->next = (struct list_head *)((unsigned long)next_page | 2529 head_bit); 2530 next_page = rb_list_head(next_page); 2531 next_page->prev = tail_page; 2532 2533 /* make sure pages points to a valid page in the ring buffer */ 2534 cpu_buffer->pages = next_page; 2535 2536 /* update head page */ 2537 if (head_bit) 2538 cpu_buffer->head_page = list_entry(next_page, 2539 struct buffer_page, list); 2540 2541 /* pages are removed, resume tracing and then free the pages */ 2542 atomic_dec(&cpu_buffer->record_disabled); 2543 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 2544 2545 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 2546 2547 /* last buffer page to remove */ 2548 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 2549 list); 2550 tmp_iter_page = first_page; 2551 2552 do { 2553 cond_resched(); 2554 2555 to_remove_page = tmp_iter_page; 2556 rb_inc_page(&tmp_iter_page); 2557 2558 /* update the counters */ 2559 page_entries = rb_page_entries(to_remove_page); 2560 if (page_entries) { 2561 /* 2562 * If something was added to this page, it was full 2563 * since it is not the tail page. So we deduct the 2564 * bytes consumed in ring buffer from here. 2565 * Increment overrun to account for the lost events. 2566 */ 2567 local_add(page_entries, &cpu_buffer->overrun); 2568 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes); 2569 local_inc(&cpu_buffer->pages_lost); 2570 } 2571 2572 /* 2573 * We have already removed references to this list item, just 2574 * free up the buffer_page and its page 2575 */ 2576 free_buffer_page(to_remove_page); 2577 nr_removed--; 2578 2579 } while (to_remove_page != last_page); 2580 2581 RB_WARN_ON(cpu_buffer, nr_removed); 2582 2583 return nr_removed == 0; 2584 } 2585 2586 static bool 2587 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 2588 { 2589 struct list_head *pages = &cpu_buffer->new_pages; 2590 unsigned long flags; 2591 bool success; 2592 int retries; 2593 2594 /* Can be called at early boot up, where interrupts must not been enabled */ 2595 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2596 /* 2597 * We are holding the reader lock, so the reader page won't be swapped 2598 * in the ring buffer. Now we are racing with the writer trying to 2599 * move head page and the tail page. 2600 * We are going to adapt the reader page update process where: 2601 * 1. We first splice the start and end of list of new pages between 2602 * the head page and its previous page. 2603 * 2. We cmpxchg the prev_page->next to point from head page to the 2604 * start of new pages list. 2605 * 3. Finally, we update the head->prev to the end of new list. 2606 * 2607 * We will try this process 10 times, to make sure that we don't keep 2608 * spinning. 2609 */ 2610 retries = 10; 2611 success = false; 2612 while (retries--) { 2613 struct list_head *head_page, *prev_page; 2614 struct list_head *last_page, *first_page; 2615 struct list_head *head_page_with_bit; 2616 struct buffer_page *hpage = rb_set_head_page(cpu_buffer); 2617 2618 if (!hpage) 2619 break; 2620 head_page = &hpage->list; 2621 prev_page = head_page->prev; 2622 2623 first_page = pages->next; 2624 last_page = pages->prev; 2625 2626 head_page_with_bit = (struct list_head *) 2627 ((unsigned long)head_page | RB_PAGE_HEAD); 2628 2629 last_page->next = head_page_with_bit; 2630 first_page->prev = prev_page; 2631 2632 /* caution: head_page_with_bit gets updated on cmpxchg failure */ 2633 if (try_cmpxchg(&prev_page->next, 2634 &head_page_with_bit, first_page)) { 2635 /* 2636 * yay, we replaced the page pointer to our new list, 2637 * now, we just have to update to head page's prev 2638 * pointer to point to end of list 2639 */ 2640 head_page->prev = last_page; 2641 success = true; 2642 break; 2643 } 2644 } 2645 2646 if (success) 2647 INIT_LIST_HEAD(pages); 2648 /* 2649 * If we weren't successful in adding in new pages, warn and stop 2650 * tracing 2651 */ 2652 RB_WARN_ON(cpu_buffer, !success); 2653 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2654 2655 /* free pages if they weren't inserted */ 2656 if (!success) { 2657 struct buffer_page *bpage, *tmp; 2658 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2659 list) { 2660 list_del_init(&bpage->list); 2661 free_buffer_page(bpage); 2662 } 2663 } 2664 return success; 2665 } 2666 2667 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 2668 { 2669 bool success; 2670 2671 if (cpu_buffer->nr_pages_to_update > 0) 2672 success = rb_insert_pages(cpu_buffer); 2673 else 2674 success = rb_remove_pages(cpu_buffer, 2675 -cpu_buffer->nr_pages_to_update); 2676 2677 if (success) 2678 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 2679 } 2680 2681 static void update_pages_handler(struct work_struct *work) 2682 { 2683 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 2684 struct ring_buffer_per_cpu, update_pages_work); 2685 rb_update_pages(cpu_buffer); 2686 complete(&cpu_buffer->update_done); 2687 } 2688 2689 /** 2690 * ring_buffer_resize - resize the ring buffer 2691 * @buffer: the buffer to resize. 2692 * @size: the new size. 2693 * @cpu_id: the cpu buffer to resize 2694 * 2695 * Minimum size is 2 * buffer->subbuf_size. 2696 * 2697 * Returns 0 on success and < 0 on failure. 2698 */ 2699 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, 2700 int cpu_id) 2701 { 2702 struct ring_buffer_per_cpu *cpu_buffer; 2703 unsigned long nr_pages; 2704 int cpu, err; 2705 2706 /* 2707 * Always succeed at resizing a non-existent buffer: 2708 */ 2709 if (!buffer) 2710 return 0; 2711 2712 /* Make sure the requested buffer exists */ 2713 if (cpu_id != RING_BUFFER_ALL_CPUS && 2714 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 2715 return 0; 2716 2717 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size); 2718 2719 /* we need a minimum of two pages */ 2720 if (nr_pages < 2) 2721 nr_pages = 2; 2722 2723 /* prevent another thread from changing buffer sizes */ 2724 mutex_lock(&buffer->mutex); 2725 atomic_inc(&buffer->resizing); 2726 2727 if (cpu_id == RING_BUFFER_ALL_CPUS) { 2728 /* 2729 * Don't succeed if resizing is disabled, as a reader might be 2730 * manipulating the ring buffer and is expecting a sane state while 2731 * this is true. 2732 */ 2733 for_each_buffer_cpu(buffer, cpu) { 2734 cpu_buffer = buffer->buffers[cpu]; 2735 if (atomic_read(&cpu_buffer->resize_disabled)) { 2736 err = -EBUSY; 2737 goto out_err_unlock; 2738 } 2739 } 2740 2741 /* calculate the pages to update */ 2742 for_each_buffer_cpu(buffer, cpu) { 2743 cpu_buffer = buffer->buffers[cpu]; 2744 2745 cpu_buffer->nr_pages_to_update = nr_pages - 2746 cpu_buffer->nr_pages; 2747 /* 2748 * nothing more to do for removing pages or no update 2749 */ 2750 if (cpu_buffer->nr_pages_to_update <= 0) 2751 continue; 2752 /* 2753 * to add pages, make sure all new pages can be 2754 * allocated without receiving ENOMEM 2755 */ 2756 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2757 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2758 &cpu_buffer->new_pages)) { 2759 /* not enough memory for new pages */ 2760 err = -ENOMEM; 2761 goto out_err; 2762 } 2763 2764 cond_resched(); 2765 } 2766 2767 cpus_read_lock(); 2768 /* 2769 * Fire off all the required work handlers 2770 * We can't schedule on offline CPUs, but it's not necessary 2771 * since we can change their buffer sizes without any race. 2772 */ 2773 for_each_buffer_cpu(buffer, cpu) { 2774 cpu_buffer = buffer->buffers[cpu]; 2775 if (!cpu_buffer->nr_pages_to_update) 2776 continue; 2777 2778 /* Can't run something on an offline CPU. */ 2779 if (!cpu_online(cpu)) { 2780 rb_update_pages(cpu_buffer); 2781 cpu_buffer->nr_pages_to_update = 0; 2782 } else { 2783 /* Run directly if possible. */ 2784 migrate_disable(); 2785 if (cpu != smp_processor_id()) { 2786 migrate_enable(); 2787 schedule_work_on(cpu, 2788 &cpu_buffer->update_pages_work); 2789 } else { 2790 update_pages_handler(&cpu_buffer->update_pages_work); 2791 migrate_enable(); 2792 } 2793 } 2794 } 2795 2796 /* wait for all the updates to complete */ 2797 for_each_buffer_cpu(buffer, cpu) { 2798 cpu_buffer = buffer->buffers[cpu]; 2799 if (!cpu_buffer->nr_pages_to_update) 2800 continue; 2801 2802 if (cpu_online(cpu)) 2803 wait_for_completion(&cpu_buffer->update_done); 2804 cpu_buffer->nr_pages_to_update = 0; 2805 } 2806 2807 cpus_read_unlock(); 2808 } else { 2809 cpu_buffer = buffer->buffers[cpu_id]; 2810 2811 if (nr_pages == cpu_buffer->nr_pages) 2812 goto out; 2813 2814 /* 2815 * Don't succeed if resizing is disabled, as a reader might be 2816 * manipulating the ring buffer and is expecting a sane state while 2817 * this is true. 2818 */ 2819 if (atomic_read(&cpu_buffer->resize_disabled)) { 2820 err = -EBUSY; 2821 goto out_err_unlock; 2822 } 2823 2824 cpu_buffer->nr_pages_to_update = nr_pages - 2825 cpu_buffer->nr_pages; 2826 2827 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2828 if (cpu_buffer->nr_pages_to_update > 0 && 2829 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2830 &cpu_buffer->new_pages)) { 2831 err = -ENOMEM; 2832 goto out_err; 2833 } 2834 2835 cpus_read_lock(); 2836 2837 /* Can't run something on an offline CPU. */ 2838 if (!cpu_online(cpu_id)) 2839 rb_update_pages(cpu_buffer); 2840 else { 2841 /* Run directly if possible. */ 2842 migrate_disable(); 2843 if (cpu_id == smp_processor_id()) { 2844 rb_update_pages(cpu_buffer); 2845 migrate_enable(); 2846 } else { 2847 migrate_enable(); 2848 schedule_work_on(cpu_id, 2849 &cpu_buffer->update_pages_work); 2850 wait_for_completion(&cpu_buffer->update_done); 2851 } 2852 } 2853 2854 cpu_buffer->nr_pages_to_update = 0; 2855 cpus_read_unlock(); 2856 } 2857 2858 out: 2859 /* 2860 * The ring buffer resize can happen with the ring buffer 2861 * enabled, so that the update disturbs the tracing as little 2862 * as possible. But if the buffer is disabled, we do not need 2863 * to worry about that, and we can take the time to verify 2864 * that the buffer is not corrupt. 2865 */ 2866 if (atomic_read(&buffer->record_disabled)) { 2867 atomic_inc(&buffer->record_disabled); 2868 /* 2869 * Even though the buffer was disabled, we must make sure 2870 * that it is truly disabled before calling rb_check_pages. 2871 * There could have been a race between checking 2872 * record_disable and incrementing it. 2873 */ 2874 synchronize_rcu(); 2875 for_each_buffer_cpu(buffer, cpu) { 2876 unsigned long flags; 2877 2878 cpu_buffer = buffer->buffers[cpu]; 2879 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2880 rb_check_pages(cpu_buffer); 2881 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2882 } 2883 atomic_dec(&buffer->record_disabled); 2884 } 2885 2886 atomic_dec(&buffer->resizing); 2887 mutex_unlock(&buffer->mutex); 2888 return 0; 2889 2890 out_err: 2891 for_each_buffer_cpu(buffer, cpu) { 2892 struct buffer_page *bpage, *tmp; 2893 2894 cpu_buffer = buffer->buffers[cpu]; 2895 cpu_buffer->nr_pages_to_update = 0; 2896 2897 if (list_empty(&cpu_buffer->new_pages)) 2898 continue; 2899 2900 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2901 list) { 2902 list_del_init(&bpage->list); 2903 free_buffer_page(bpage); 2904 } 2905 } 2906 out_err_unlock: 2907 atomic_dec(&buffer->resizing); 2908 mutex_unlock(&buffer->mutex); 2909 return err; 2910 } 2911 EXPORT_SYMBOL_GPL(ring_buffer_resize); 2912 2913 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) 2914 { 2915 mutex_lock(&buffer->mutex); 2916 if (val) 2917 buffer->flags |= RB_FL_OVERWRITE; 2918 else 2919 buffer->flags &= ~RB_FL_OVERWRITE; 2920 mutex_unlock(&buffer->mutex); 2921 } 2922 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 2923 2924 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 2925 { 2926 return bpage->page->data + index; 2927 } 2928 2929 static __always_inline struct ring_buffer_event * 2930 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 2931 { 2932 return __rb_page_index(cpu_buffer->reader_page, 2933 cpu_buffer->reader_page->read); 2934 } 2935 2936 static struct ring_buffer_event * 2937 rb_iter_head_event(struct ring_buffer_iter *iter) 2938 { 2939 struct ring_buffer_event *event; 2940 struct buffer_page *iter_head_page = iter->head_page; 2941 unsigned long commit; 2942 unsigned length; 2943 2944 if (iter->head != iter->next_event) 2945 return iter->event; 2946 2947 /* 2948 * When the writer goes across pages, it issues a cmpxchg which 2949 * is a mb(), which will synchronize with the rmb here. 2950 * (see rb_tail_page_update() and __rb_reserve_next()) 2951 */ 2952 commit = rb_page_commit(iter_head_page); 2953 smp_rmb(); 2954 2955 /* An event needs to be at least 8 bytes in size */ 2956 if (iter->head > commit - 8) 2957 goto reset; 2958 2959 event = __rb_page_index(iter_head_page, iter->head); 2960 length = rb_event_length(event); 2961 2962 /* 2963 * READ_ONCE() doesn't work on functions and we don't want the 2964 * compiler doing any crazy optimizations with length. 2965 */ 2966 barrier(); 2967 2968 if ((iter->head + length) > commit || length > iter->event_size) 2969 /* Writer corrupted the read? */ 2970 goto reset; 2971 2972 memcpy(iter->event, event, length); 2973 /* 2974 * If the page stamp is still the same after this rmb() then the 2975 * event was safely copied without the writer entering the page. 2976 */ 2977 smp_rmb(); 2978 2979 /* Make sure the page didn't change since we read this */ 2980 if (iter->page_stamp != iter_head_page->page->time_stamp || 2981 commit > rb_page_commit(iter_head_page)) 2982 goto reset; 2983 2984 iter->next_event = iter->head + length; 2985 return iter->event; 2986 reset: 2987 /* Reset to the beginning */ 2988 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2989 iter->head = 0; 2990 iter->next_event = 0; 2991 iter->missed_events = 1; 2992 return NULL; 2993 } 2994 2995 /* Size is determined by what has been committed */ 2996 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 2997 { 2998 return rb_page_commit(bpage) & ~RB_MISSED_MASK; 2999 } 3000 3001 static __always_inline unsigned 3002 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 3003 { 3004 return rb_page_commit(cpu_buffer->commit_page); 3005 } 3006 3007 static __always_inline unsigned 3008 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event) 3009 { 3010 unsigned long addr = (unsigned long)event; 3011 3012 addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1; 3013 3014 return addr - BUF_PAGE_HDR_SIZE; 3015 } 3016 3017 static void rb_inc_iter(struct ring_buffer_iter *iter) 3018 { 3019 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3020 3021 /* 3022 * The iterator could be on the reader page (it starts there). 3023 * But the head could have moved, since the reader was 3024 * found. Check for this case and assign the iterator 3025 * to the head page instead of next. 3026 */ 3027 if (iter->head_page == cpu_buffer->reader_page) 3028 iter->head_page = rb_set_head_page(cpu_buffer); 3029 else 3030 rb_inc_page(&iter->head_page); 3031 3032 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 3033 iter->head = 0; 3034 iter->next_event = 0; 3035 } 3036 3037 /* Return the index into the sub-buffers for a given sub-buffer */ 3038 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf) 3039 { 3040 void *subbuf_array; 3041 3042 subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs; 3043 subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size); 3044 return (subbuf - subbuf_array) / meta->subbuf_size; 3045 } 3046 3047 static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer, 3048 struct buffer_page *next_page) 3049 { 3050 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 3051 unsigned long old_head = (unsigned long)next_page->page; 3052 unsigned long new_head; 3053 3054 rb_inc_page(&next_page); 3055 new_head = (unsigned long)next_page->page; 3056 3057 /* 3058 * Only move it forward once, if something else came in and 3059 * moved it forward, then we don't want to touch it. 3060 */ 3061 (void)cmpxchg(&meta->head_buffer, old_head, new_head); 3062 } 3063 3064 static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer, 3065 struct buffer_page *reader) 3066 { 3067 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 3068 void *old_reader = cpu_buffer->reader_page->page; 3069 void *new_reader = reader->page; 3070 int id; 3071 3072 id = reader->id; 3073 cpu_buffer->reader_page->id = id; 3074 reader->id = 0; 3075 3076 meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader); 3077 meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader); 3078 3079 /* The head pointer is the one after the reader */ 3080 rb_update_meta_head(cpu_buffer, reader); 3081 } 3082 3083 /* 3084 * rb_handle_head_page - writer hit the head page 3085 * 3086 * Returns: +1 to retry page 3087 * 0 to continue 3088 * -1 on error 3089 */ 3090 static int 3091 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 3092 struct buffer_page *tail_page, 3093 struct buffer_page *next_page) 3094 { 3095 struct buffer_page *new_head; 3096 int entries; 3097 int type; 3098 int ret; 3099 3100 entries = rb_page_entries(next_page); 3101 3102 /* 3103 * The hard part is here. We need to move the head 3104 * forward, and protect against both readers on 3105 * other CPUs and writers coming in via interrupts. 3106 */ 3107 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 3108 RB_PAGE_HEAD); 3109 3110 /* 3111 * type can be one of four: 3112 * NORMAL - an interrupt already moved it for us 3113 * HEAD - we are the first to get here. 3114 * UPDATE - we are the interrupt interrupting 3115 * a current move. 3116 * MOVED - a reader on another CPU moved the next 3117 * pointer to its reader page. Give up 3118 * and try again. 3119 */ 3120 3121 switch (type) { 3122 case RB_PAGE_HEAD: 3123 /* 3124 * We changed the head to UPDATE, thus 3125 * it is our responsibility to update 3126 * the counters. 3127 */ 3128 local_add(entries, &cpu_buffer->overrun); 3129 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes); 3130 local_inc(&cpu_buffer->pages_lost); 3131 3132 if (cpu_buffer->ring_meta) 3133 rb_update_meta_head(cpu_buffer, next_page); 3134 /* 3135 * The entries will be zeroed out when we move the 3136 * tail page. 3137 */ 3138 3139 /* still more to do */ 3140 break; 3141 3142 case RB_PAGE_UPDATE: 3143 /* 3144 * This is an interrupt that interrupt the 3145 * previous update. Still more to do. 3146 */ 3147 break; 3148 case RB_PAGE_NORMAL: 3149 /* 3150 * An interrupt came in before the update 3151 * and processed this for us. 3152 * Nothing left to do. 3153 */ 3154 return 1; 3155 case RB_PAGE_MOVED: 3156 /* 3157 * The reader is on another CPU and just did 3158 * a swap with our next_page. 3159 * Try again. 3160 */ 3161 return 1; 3162 default: 3163 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 3164 return -1; 3165 } 3166 3167 /* 3168 * Now that we are here, the old head pointer is 3169 * set to UPDATE. This will keep the reader from 3170 * swapping the head page with the reader page. 3171 * The reader (on another CPU) will spin till 3172 * we are finished. 3173 * 3174 * We just need to protect against interrupts 3175 * doing the job. We will set the next pointer 3176 * to HEAD. After that, we set the old pointer 3177 * to NORMAL, but only if it was HEAD before. 3178 * otherwise we are an interrupt, and only 3179 * want the outer most commit to reset it. 3180 */ 3181 new_head = next_page; 3182 rb_inc_page(&new_head); 3183 3184 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 3185 RB_PAGE_NORMAL); 3186 3187 /* 3188 * Valid returns are: 3189 * HEAD - an interrupt came in and already set it. 3190 * NORMAL - One of two things: 3191 * 1) We really set it. 3192 * 2) A bunch of interrupts came in and moved 3193 * the page forward again. 3194 */ 3195 switch (ret) { 3196 case RB_PAGE_HEAD: 3197 case RB_PAGE_NORMAL: 3198 /* OK */ 3199 break; 3200 default: 3201 RB_WARN_ON(cpu_buffer, 1); 3202 return -1; 3203 } 3204 3205 /* 3206 * It is possible that an interrupt came in, 3207 * set the head up, then more interrupts came in 3208 * and moved it again. When we get back here, 3209 * the page would have been set to NORMAL but we 3210 * just set it back to HEAD. 3211 * 3212 * How do you detect this? Well, if that happened 3213 * the tail page would have moved. 3214 */ 3215 if (ret == RB_PAGE_NORMAL) { 3216 struct buffer_page *buffer_tail_page; 3217 3218 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 3219 /* 3220 * If the tail had moved passed next, then we need 3221 * to reset the pointer. 3222 */ 3223 if (buffer_tail_page != tail_page && 3224 buffer_tail_page != next_page) 3225 rb_head_page_set_normal(cpu_buffer, new_head, 3226 next_page, 3227 RB_PAGE_HEAD); 3228 } 3229 3230 /* 3231 * If this was the outer most commit (the one that 3232 * changed the original pointer from HEAD to UPDATE), 3233 * then it is up to us to reset it to NORMAL. 3234 */ 3235 if (type == RB_PAGE_HEAD) { 3236 ret = rb_head_page_set_normal(cpu_buffer, next_page, 3237 tail_page, 3238 RB_PAGE_UPDATE); 3239 if (RB_WARN_ON(cpu_buffer, 3240 ret != RB_PAGE_UPDATE)) 3241 return -1; 3242 } 3243 3244 return 0; 3245 } 3246 3247 static inline void 3248 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 3249 unsigned long tail, struct rb_event_info *info) 3250 { 3251 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size); 3252 struct buffer_page *tail_page = info->tail_page; 3253 struct ring_buffer_event *event; 3254 unsigned long length = info->length; 3255 3256 /* 3257 * Only the event that crossed the page boundary 3258 * must fill the old tail_page with padding. 3259 */ 3260 if (tail >= bsize) { 3261 /* 3262 * If the page was filled, then we still need 3263 * to update the real_end. Reset it to zero 3264 * and the reader will ignore it. 3265 */ 3266 if (tail == bsize) 3267 tail_page->real_end = 0; 3268 3269 local_sub(length, &tail_page->write); 3270 return; 3271 } 3272 3273 event = __rb_page_index(tail_page, tail); 3274 3275 /* 3276 * Save the original length to the meta data. 3277 * This will be used by the reader to add lost event 3278 * counter. 3279 */ 3280 tail_page->real_end = tail; 3281 3282 /* 3283 * If this event is bigger than the minimum size, then 3284 * we need to be careful that we don't subtract the 3285 * write counter enough to allow another writer to slip 3286 * in on this page. 3287 * We put in a discarded commit instead, to make sure 3288 * that this space is not used again, and this space will 3289 * not be accounted into 'entries_bytes'. 3290 * 3291 * If we are less than the minimum size, we don't need to 3292 * worry about it. 3293 */ 3294 if (tail > (bsize - RB_EVNT_MIN_SIZE)) { 3295 /* No room for any events */ 3296 3297 /* Mark the rest of the page with padding */ 3298 rb_event_set_padding(event); 3299 3300 /* Make sure the padding is visible before the write update */ 3301 smp_wmb(); 3302 3303 /* Set the write back to the previous setting */ 3304 local_sub(length, &tail_page->write); 3305 return; 3306 } 3307 3308 /* Put in a discarded event */ 3309 event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE; 3310 event->type_len = RINGBUF_TYPE_PADDING; 3311 /* time delta must be non zero */ 3312 event->time_delta = 1; 3313 3314 /* account for padding bytes */ 3315 local_add(bsize - tail, &cpu_buffer->entries_bytes); 3316 3317 /* Make sure the padding is visible before the tail_page->write update */ 3318 smp_wmb(); 3319 3320 /* Set write to end of buffer */ 3321 length = (tail + length) - bsize; 3322 local_sub(length, &tail_page->write); 3323 } 3324 3325 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 3326 3327 /* 3328 * This is the slow path, force gcc not to inline it. 3329 */ 3330 static noinline struct ring_buffer_event * 3331 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 3332 unsigned long tail, struct rb_event_info *info) 3333 { 3334 struct buffer_page *tail_page = info->tail_page; 3335 struct buffer_page *commit_page = cpu_buffer->commit_page; 3336 struct trace_buffer *buffer = cpu_buffer->buffer; 3337 struct buffer_page *next_page; 3338 int ret; 3339 3340 next_page = tail_page; 3341 3342 rb_inc_page(&next_page); 3343 3344 /* 3345 * If for some reason, we had an interrupt storm that made 3346 * it all the way around the buffer, bail, and warn 3347 * about it. 3348 */ 3349 if (unlikely(next_page == commit_page)) { 3350 local_inc(&cpu_buffer->commit_overrun); 3351 goto out_reset; 3352 } 3353 3354 /* 3355 * This is where the fun begins! 3356 * 3357 * We are fighting against races between a reader that 3358 * could be on another CPU trying to swap its reader 3359 * page with the buffer head. 3360 * 3361 * We are also fighting against interrupts coming in and 3362 * moving the head or tail on us as well. 3363 * 3364 * If the next page is the head page then we have filled 3365 * the buffer, unless the commit page is still on the 3366 * reader page. 3367 */ 3368 if (rb_is_head_page(next_page, &tail_page->list)) { 3369 3370 /* 3371 * If the commit is not on the reader page, then 3372 * move the header page. 3373 */ 3374 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 3375 /* 3376 * If we are not in overwrite mode, 3377 * this is easy, just stop here. 3378 */ 3379 if (!(buffer->flags & RB_FL_OVERWRITE)) { 3380 local_inc(&cpu_buffer->dropped_events); 3381 goto out_reset; 3382 } 3383 3384 ret = rb_handle_head_page(cpu_buffer, 3385 tail_page, 3386 next_page); 3387 if (ret < 0) 3388 goto out_reset; 3389 if (ret) 3390 goto out_again; 3391 } else { 3392 /* 3393 * We need to be careful here too. The 3394 * commit page could still be on the reader 3395 * page. We could have a small buffer, and 3396 * have filled up the buffer with events 3397 * from interrupts and such, and wrapped. 3398 * 3399 * Note, if the tail page is also on the 3400 * reader_page, we let it move out. 3401 */ 3402 if (unlikely((cpu_buffer->commit_page != 3403 cpu_buffer->tail_page) && 3404 (cpu_buffer->commit_page == 3405 cpu_buffer->reader_page))) { 3406 local_inc(&cpu_buffer->commit_overrun); 3407 goto out_reset; 3408 } 3409 } 3410 } 3411 3412 rb_tail_page_update(cpu_buffer, tail_page, next_page); 3413 3414 out_again: 3415 3416 rb_reset_tail(cpu_buffer, tail, info); 3417 3418 /* Commit what we have for now. */ 3419 rb_end_commit(cpu_buffer); 3420 /* rb_end_commit() decs committing */ 3421 local_inc(&cpu_buffer->committing); 3422 3423 /* fail and let the caller try again */ 3424 return ERR_PTR(-EAGAIN); 3425 3426 out_reset: 3427 /* reset write */ 3428 rb_reset_tail(cpu_buffer, tail, info); 3429 3430 return NULL; 3431 } 3432 3433 /* Slow path */ 3434 static struct ring_buffer_event * 3435 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3436 struct ring_buffer_event *event, u64 delta, bool abs) 3437 { 3438 if (abs) 3439 event->type_len = RINGBUF_TYPE_TIME_STAMP; 3440 else 3441 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 3442 3443 /* Not the first event on the page, or not delta? */ 3444 if (abs || rb_event_index(cpu_buffer, event)) { 3445 event->time_delta = delta & TS_MASK; 3446 event->array[0] = delta >> TS_SHIFT; 3447 } else { 3448 /* nope, just zero it */ 3449 event->time_delta = 0; 3450 event->array[0] = 0; 3451 } 3452 3453 return skip_time_extend(event); 3454 } 3455 3456 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 3457 static inline bool sched_clock_stable(void) 3458 { 3459 return true; 3460 } 3461 #endif 3462 3463 static void 3464 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 3465 struct rb_event_info *info) 3466 { 3467 u64 write_stamp; 3468 3469 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s", 3470 (unsigned long long)info->delta, 3471 (unsigned long long)info->ts, 3472 (unsigned long long)info->before, 3473 (unsigned long long)info->after, 3474 (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}), 3475 sched_clock_stable() ? "" : 3476 "If you just came from a suspend/resume,\n" 3477 "please switch to the trace global clock:\n" 3478 " echo global > /sys/kernel/tracing/trace_clock\n" 3479 "or add trace_clock=global to the kernel command line\n"); 3480 } 3481 3482 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 3483 struct ring_buffer_event **event, 3484 struct rb_event_info *info, 3485 u64 *delta, 3486 unsigned int *length) 3487 { 3488 bool abs = info->add_timestamp & 3489 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE); 3490 3491 if (unlikely(info->delta > (1ULL << 59))) { 3492 /* 3493 * Some timers can use more than 59 bits, and when a timestamp 3494 * is added to the buffer, it will lose those bits. 3495 */ 3496 if (abs && (info->ts & TS_MSB)) { 3497 info->delta &= ABS_TS_MASK; 3498 3499 /* did the clock go backwards */ 3500 } else if (info->before == info->after && info->before > info->ts) { 3501 /* not interrupted */ 3502 static int once; 3503 3504 /* 3505 * This is possible with a recalibrating of the TSC. 3506 * Do not produce a call stack, but just report it. 3507 */ 3508 if (!once) { 3509 once++; 3510 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n", 3511 info->before, info->ts); 3512 } 3513 } else 3514 rb_check_timestamp(cpu_buffer, info); 3515 if (!abs) 3516 info->delta = 0; 3517 } 3518 *event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs); 3519 *length -= RB_LEN_TIME_EXTEND; 3520 *delta = 0; 3521 } 3522 3523 /** 3524 * rb_update_event - update event type and data 3525 * @cpu_buffer: The per cpu buffer of the @event 3526 * @event: the event to update 3527 * @info: The info to update the @event with (contains length and delta) 3528 * 3529 * Update the type and data fields of the @event. The length 3530 * is the actual size that is written to the ring buffer, 3531 * and with this, we can determine what to place into the 3532 * data field. 3533 */ 3534 static void 3535 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 3536 struct ring_buffer_event *event, 3537 struct rb_event_info *info) 3538 { 3539 unsigned length = info->length; 3540 u64 delta = info->delta; 3541 unsigned int nest = local_read(&cpu_buffer->committing) - 1; 3542 3543 if (!WARN_ON_ONCE(nest >= MAX_NEST)) 3544 cpu_buffer->event_stamp[nest] = info->ts; 3545 3546 /* 3547 * If we need to add a timestamp, then we 3548 * add it to the start of the reserved space. 3549 */ 3550 if (unlikely(info->add_timestamp)) 3551 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length); 3552 3553 event->time_delta = delta; 3554 length -= RB_EVNT_HDR_SIZE; 3555 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 3556 event->type_len = 0; 3557 event->array[0] = length; 3558 } else 3559 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 3560 } 3561 3562 static unsigned rb_calculate_event_length(unsigned length) 3563 { 3564 struct ring_buffer_event event; /* Used only for sizeof array */ 3565 3566 /* zero length can cause confusions */ 3567 if (!length) 3568 length++; 3569 3570 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 3571 length += sizeof(event.array[0]); 3572 3573 length += RB_EVNT_HDR_SIZE; 3574 length = ALIGN(length, RB_ARCH_ALIGNMENT); 3575 3576 /* 3577 * In case the time delta is larger than the 27 bits for it 3578 * in the header, we need to add a timestamp. If another 3579 * event comes in when trying to discard this one to increase 3580 * the length, then the timestamp will be added in the allocated 3581 * space of this event. If length is bigger than the size needed 3582 * for the TIME_EXTEND, then padding has to be used. The events 3583 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 3584 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 3585 * As length is a multiple of 4, we only need to worry if it 3586 * is 12 (RB_LEN_TIME_EXTEND + 4). 3587 */ 3588 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 3589 length += RB_ALIGNMENT; 3590 3591 return length; 3592 } 3593 3594 static inline bool 3595 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 3596 struct ring_buffer_event *event) 3597 { 3598 unsigned long new_index, old_index; 3599 struct buffer_page *bpage; 3600 unsigned long addr; 3601 3602 new_index = rb_event_index(cpu_buffer, event); 3603 old_index = new_index + rb_event_ts_length(event); 3604 addr = (unsigned long)event; 3605 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1); 3606 3607 bpage = READ_ONCE(cpu_buffer->tail_page); 3608 3609 /* 3610 * Make sure the tail_page is still the same and 3611 * the next write location is the end of this event 3612 */ 3613 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 3614 unsigned long write_mask = 3615 local_read(&bpage->write) & ~RB_WRITE_MASK; 3616 unsigned long event_length = rb_event_length(event); 3617 3618 /* 3619 * For the before_stamp to be different than the write_stamp 3620 * to make sure that the next event adds an absolute 3621 * value and does not rely on the saved write stamp, which 3622 * is now going to be bogus. 3623 * 3624 * By setting the before_stamp to zero, the next event 3625 * is not going to use the write_stamp and will instead 3626 * create an absolute timestamp. This means there's no 3627 * reason to update the wirte_stamp! 3628 */ 3629 rb_time_set(&cpu_buffer->before_stamp, 0); 3630 3631 /* 3632 * If an event were to come in now, it would see that the 3633 * write_stamp and the before_stamp are different, and assume 3634 * that this event just added itself before updating 3635 * the write stamp. The interrupting event will fix the 3636 * write stamp for us, and use an absolute timestamp. 3637 */ 3638 3639 /* 3640 * This is on the tail page. It is possible that 3641 * a write could come in and move the tail page 3642 * and write to the next page. That is fine 3643 * because we just shorten what is on this page. 3644 */ 3645 old_index += write_mask; 3646 new_index += write_mask; 3647 3648 /* caution: old_index gets updated on cmpxchg failure */ 3649 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) { 3650 /* update counters */ 3651 local_sub(event_length, &cpu_buffer->entries_bytes); 3652 return true; 3653 } 3654 } 3655 3656 /* could not discard */ 3657 return false; 3658 } 3659 3660 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 3661 { 3662 local_inc(&cpu_buffer->committing); 3663 local_inc(&cpu_buffer->commits); 3664 } 3665 3666 static __always_inline void 3667 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 3668 { 3669 unsigned long max_count; 3670 3671 /* 3672 * We only race with interrupts and NMIs on this CPU. 3673 * If we own the commit event, then we can commit 3674 * all others that interrupted us, since the interruptions 3675 * are in stack format (they finish before they come 3676 * back to us). This allows us to do a simple loop to 3677 * assign the commit to the tail. 3678 */ 3679 again: 3680 max_count = cpu_buffer->nr_pages * 100; 3681 3682 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 3683 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 3684 return; 3685 if (RB_WARN_ON(cpu_buffer, 3686 rb_is_reader_page(cpu_buffer->tail_page))) 3687 return; 3688 /* 3689 * No need for a memory barrier here, as the update 3690 * of the tail_page did it for this page. 3691 */ 3692 local_set(&cpu_buffer->commit_page->page->commit, 3693 rb_page_write(cpu_buffer->commit_page)); 3694 rb_inc_page(&cpu_buffer->commit_page); 3695 if (cpu_buffer->ring_meta) { 3696 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 3697 meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page; 3698 } 3699 /* add barrier to keep gcc from optimizing too much */ 3700 barrier(); 3701 } 3702 while (rb_commit_index(cpu_buffer) != 3703 rb_page_write(cpu_buffer->commit_page)) { 3704 3705 /* Make sure the readers see the content of what is committed. */ 3706 smp_wmb(); 3707 local_set(&cpu_buffer->commit_page->page->commit, 3708 rb_page_write(cpu_buffer->commit_page)); 3709 RB_WARN_ON(cpu_buffer, 3710 local_read(&cpu_buffer->commit_page->page->commit) & 3711 ~RB_WRITE_MASK); 3712 barrier(); 3713 } 3714 3715 /* again, keep gcc from optimizing */ 3716 barrier(); 3717 3718 /* 3719 * If an interrupt came in just after the first while loop 3720 * and pushed the tail page forward, we will be left with 3721 * a dangling commit that will never go forward. 3722 */ 3723 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 3724 goto again; 3725 } 3726 3727 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 3728 { 3729 unsigned long commits; 3730 3731 if (RB_WARN_ON(cpu_buffer, 3732 !local_read(&cpu_buffer->committing))) 3733 return; 3734 3735 again: 3736 commits = local_read(&cpu_buffer->commits); 3737 /* synchronize with interrupts */ 3738 barrier(); 3739 if (local_read(&cpu_buffer->committing) == 1) 3740 rb_set_commit_to_write(cpu_buffer); 3741 3742 local_dec(&cpu_buffer->committing); 3743 3744 /* synchronize with interrupts */ 3745 barrier(); 3746 3747 /* 3748 * Need to account for interrupts coming in between the 3749 * updating of the commit page and the clearing of the 3750 * committing counter. 3751 */ 3752 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 3753 !local_read(&cpu_buffer->committing)) { 3754 local_inc(&cpu_buffer->committing); 3755 goto again; 3756 } 3757 } 3758 3759 static inline void rb_event_discard(struct ring_buffer_event *event) 3760 { 3761 if (extended_time(event)) 3762 event = skip_time_extend(event); 3763 3764 /* array[0] holds the actual length for the discarded event */ 3765 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 3766 event->type_len = RINGBUF_TYPE_PADDING; 3767 /* time delta must be non zero */ 3768 if (!event->time_delta) 3769 event->time_delta = 1; 3770 } 3771 3772 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer) 3773 { 3774 local_inc(&cpu_buffer->entries); 3775 rb_end_commit(cpu_buffer); 3776 } 3777 3778 static __always_inline void 3779 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 3780 { 3781 if (buffer->irq_work.waiters_pending) { 3782 buffer->irq_work.waiters_pending = false; 3783 /* irq_work_queue() supplies it's own memory barriers */ 3784 irq_work_queue(&buffer->irq_work.work); 3785 } 3786 3787 if (cpu_buffer->irq_work.waiters_pending) { 3788 cpu_buffer->irq_work.waiters_pending = false; 3789 /* irq_work_queue() supplies it's own memory barriers */ 3790 irq_work_queue(&cpu_buffer->irq_work.work); 3791 } 3792 3793 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 3794 return; 3795 3796 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 3797 return; 3798 3799 if (!cpu_buffer->irq_work.full_waiters_pending) 3800 return; 3801 3802 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 3803 3804 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full)) 3805 return; 3806 3807 cpu_buffer->irq_work.wakeup_full = true; 3808 cpu_buffer->irq_work.full_waiters_pending = false; 3809 /* irq_work_queue() supplies it's own memory barriers */ 3810 irq_work_queue(&cpu_buffer->irq_work.work); 3811 } 3812 3813 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION 3814 # define do_ring_buffer_record_recursion() \ 3815 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_) 3816 #else 3817 # define do_ring_buffer_record_recursion() do { } while (0) 3818 #endif 3819 3820 /* 3821 * The lock and unlock are done within a preempt disable section. 3822 * The current_context per_cpu variable can only be modified 3823 * by the current task between lock and unlock. But it can 3824 * be modified more than once via an interrupt. To pass this 3825 * information from the lock to the unlock without having to 3826 * access the 'in_interrupt()' functions again (which do show 3827 * a bit of overhead in something as critical as function tracing, 3828 * we use a bitmask trick. 3829 * 3830 * bit 1 = NMI context 3831 * bit 2 = IRQ context 3832 * bit 3 = SoftIRQ context 3833 * bit 4 = normal context. 3834 * 3835 * This works because this is the order of contexts that can 3836 * preempt other contexts. A SoftIRQ never preempts an IRQ 3837 * context. 3838 * 3839 * When the context is determined, the corresponding bit is 3840 * checked and set (if it was set, then a recursion of that context 3841 * happened). 3842 * 3843 * On unlock, we need to clear this bit. To do so, just subtract 3844 * 1 from the current_context and AND it to itself. 3845 * 3846 * (binary) 3847 * 101 - 1 = 100 3848 * 101 & 100 = 100 (clearing bit zero) 3849 * 3850 * 1010 - 1 = 1001 3851 * 1010 & 1001 = 1000 (clearing bit 1) 3852 * 3853 * The least significant bit can be cleared this way, and it 3854 * just so happens that it is the same bit corresponding to 3855 * the current context. 3856 * 3857 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit 3858 * is set when a recursion is detected at the current context, and if 3859 * the TRANSITION bit is already set, it will fail the recursion. 3860 * This is needed because there's a lag between the changing of 3861 * interrupt context and updating the preempt count. In this case, 3862 * a false positive will be found. To handle this, one extra recursion 3863 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION 3864 * bit is already set, then it is considered a recursion and the function 3865 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned. 3866 * 3867 * On the trace_recursive_unlock(), the TRANSITION bit will be the first 3868 * to be cleared. Even if it wasn't the context that set it. That is, 3869 * if an interrupt comes in while NORMAL bit is set and the ring buffer 3870 * is called before preempt_count() is updated, since the check will 3871 * be on the NORMAL bit, the TRANSITION bit will then be set. If an 3872 * NMI then comes in, it will set the NMI bit, but when the NMI code 3873 * does the trace_recursive_unlock() it will clear the TRANSITION bit 3874 * and leave the NMI bit set. But this is fine, because the interrupt 3875 * code that set the TRANSITION bit will then clear the NMI bit when it 3876 * calls trace_recursive_unlock(). If another NMI comes in, it will 3877 * set the TRANSITION bit and continue. 3878 * 3879 * Note: The TRANSITION bit only handles a single transition between context. 3880 */ 3881 3882 static __always_inline bool 3883 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 3884 { 3885 unsigned int val = cpu_buffer->current_context; 3886 int bit = interrupt_context_level(); 3887 3888 bit = RB_CTX_NORMAL - bit; 3889 3890 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) { 3891 /* 3892 * It is possible that this was called by transitioning 3893 * between interrupt context, and preempt_count() has not 3894 * been updated yet. In this case, use the TRANSITION bit. 3895 */ 3896 bit = RB_CTX_TRANSITION; 3897 if (val & (1 << (bit + cpu_buffer->nest))) { 3898 do_ring_buffer_record_recursion(); 3899 return true; 3900 } 3901 } 3902 3903 val |= (1 << (bit + cpu_buffer->nest)); 3904 cpu_buffer->current_context = val; 3905 3906 return false; 3907 } 3908 3909 static __always_inline void 3910 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 3911 { 3912 cpu_buffer->current_context &= 3913 cpu_buffer->current_context - (1 << cpu_buffer->nest); 3914 } 3915 3916 /* The recursive locking above uses 5 bits */ 3917 #define NESTED_BITS 5 3918 3919 /** 3920 * ring_buffer_nest_start - Allow to trace while nested 3921 * @buffer: The ring buffer to modify 3922 * 3923 * The ring buffer has a safety mechanism to prevent recursion. 3924 * But there may be a case where a trace needs to be done while 3925 * tracing something else. In this case, calling this function 3926 * will allow this function to nest within a currently active 3927 * ring_buffer_lock_reserve(). 3928 * 3929 * Call this function before calling another ring_buffer_lock_reserve() and 3930 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 3931 */ 3932 void ring_buffer_nest_start(struct trace_buffer *buffer) 3933 { 3934 struct ring_buffer_per_cpu *cpu_buffer; 3935 int cpu; 3936 3937 /* Enabled by ring_buffer_nest_end() */ 3938 preempt_disable_notrace(); 3939 cpu = raw_smp_processor_id(); 3940 cpu_buffer = buffer->buffers[cpu]; 3941 /* This is the shift value for the above recursive locking */ 3942 cpu_buffer->nest += NESTED_BITS; 3943 } 3944 3945 /** 3946 * ring_buffer_nest_end - Allow to trace while nested 3947 * @buffer: The ring buffer to modify 3948 * 3949 * Must be called after ring_buffer_nest_start() and after the 3950 * ring_buffer_unlock_commit(). 3951 */ 3952 void ring_buffer_nest_end(struct trace_buffer *buffer) 3953 { 3954 struct ring_buffer_per_cpu *cpu_buffer; 3955 int cpu; 3956 3957 /* disabled by ring_buffer_nest_start() */ 3958 cpu = raw_smp_processor_id(); 3959 cpu_buffer = buffer->buffers[cpu]; 3960 /* This is the shift value for the above recursive locking */ 3961 cpu_buffer->nest -= NESTED_BITS; 3962 preempt_enable_notrace(); 3963 } 3964 3965 /** 3966 * ring_buffer_unlock_commit - commit a reserved 3967 * @buffer: The buffer to commit to 3968 * 3969 * This commits the data to the ring buffer, and releases any locks held. 3970 * 3971 * Must be paired with ring_buffer_lock_reserve. 3972 */ 3973 int ring_buffer_unlock_commit(struct trace_buffer *buffer) 3974 { 3975 struct ring_buffer_per_cpu *cpu_buffer; 3976 int cpu = raw_smp_processor_id(); 3977 3978 cpu_buffer = buffer->buffers[cpu]; 3979 3980 rb_commit(cpu_buffer); 3981 3982 rb_wakeups(buffer, cpu_buffer); 3983 3984 trace_recursive_unlock(cpu_buffer); 3985 3986 preempt_enable_notrace(); 3987 3988 return 0; 3989 } 3990 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 3991 3992 /* Special value to validate all deltas on a page. */ 3993 #define CHECK_FULL_PAGE 1L 3994 3995 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS 3996 3997 static const char *show_irq_str(int bits) 3998 { 3999 const char *type[] = { 4000 ".", // 0 4001 "s", // 1 4002 "h", // 2 4003 "Hs", // 3 4004 "n", // 4 4005 "Ns", // 5 4006 "Nh", // 6 4007 "NHs", // 7 4008 }; 4009 4010 return type[bits]; 4011 } 4012 4013 /* Assume this is an trace event */ 4014 static const char *show_flags(struct ring_buffer_event *event) 4015 { 4016 struct trace_entry *entry; 4017 int bits = 0; 4018 4019 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry)) 4020 return "X"; 4021 4022 entry = ring_buffer_event_data(event); 4023 4024 if (entry->flags & TRACE_FLAG_SOFTIRQ) 4025 bits |= 1; 4026 4027 if (entry->flags & TRACE_FLAG_HARDIRQ) 4028 bits |= 2; 4029 4030 if (entry->flags & TRACE_FLAG_NMI) 4031 bits |= 4; 4032 4033 return show_irq_str(bits); 4034 } 4035 4036 static const char *show_irq(struct ring_buffer_event *event) 4037 { 4038 struct trace_entry *entry; 4039 4040 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry)) 4041 return ""; 4042 4043 entry = ring_buffer_event_data(event); 4044 if (entry->flags & TRACE_FLAG_IRQS_OFF) 4045 return "d"; 4046 return ""; 4047 } 4048 4049 static const char *show_interrupt_level(void) 4050 { 4051 unsigned long pc = preempt_count(); 4052 unsigned char level = 0; 4053 4054 if (pc & SOFTIRQ_OFFSET) 4055 level |= 1; 4056 4057 if (pc & HARDIRQ_MASK) 4058 level |= 2; 4059 4060 if (pc & NMI_MASK) 4061 level |= 4; 4062 4063 return show_irq_str(level); 4064 } 4065 4066 static void dump_buffer_page(struct buffer_data_page *bpage, 4067 struct rb_event_info *info, 4068 unsigned long tail) 4069 { 4070 struct ring_buffer_event *event; 4071 u64 ts, delta; 4072 int e; 4073 4074 ts = bpage->time_stamp; 4075 pr_warn(" [%lld] PAGE TIME STAMP\n", ts); 4076 4077 for (e = 0; e < tail; e += rb_event_length(event)) { 4078 4079 event = (struct ring_buffer_event *)(bpage->data + e); 4080 4081 switch (event->type_len) { 4082 4083 case RINGBUF_TYPE_TIME_EXTEND: 4084 delta = rb_event_time_stamp(event); 4085 ts += delta; 4086 pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n", 4087 e, ts, delta); 4088 break; 4089 4090 case RINGBUF_TYPE_TIME_STAMP: 4091 delta = rb_event_time_stamp(event); 4092 ts = rb_fix_abs_ts(delta, ts); 4093 pr_warn(" 0x%x: [%lld] absolute:%lld TIME STAMP\n", 4094 e, ts, delta); 4095 break; 4096 4097 case RINGBUF_TYPE_PADDING: 4098 ts += event->time_delta; 4099 pr_warn(" 0x%x: [%lld] delta:%d PADDING\n", 4100 e, ts, event->time_delta); 4101 break; 4102 4103 case RINGBUF_TYPE_DATA: 4104 ts += event->time_delta; 4105 pr_warn(" 0x%x: [%lld] delta:%d %s%s\n", 4106 e, ts, event->time_delta, 4107 show_flags(event), show_irq(event)); 4108 break; 4109 4110 default: 4111 break; 4112 } 4113 } 4114 pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e); 4115 } 4116 4117 static DEFINE_PER_CPU(atomic_t, checking); 4118 static atomic_t ts_dump; 4119 4120 #define buffer_warn_return(fmt, ...) \ 4121 do { \ 4122 /* If another report is happening, ignore this one */ \ 4123 if (atomic_inc_return(&ts_dump) != 1) { \ 4124 atomic_dec(&ts_dump); \ 4125 goto out; \ 4126 } \ 4127 atomic_inc(&cpu_buffer->record_disabled); \ 4128 pr_warn(fmt, ##__VA_ARGS__); \ 4129 dump_buffer_page(bpage, info, tail); \ 4130 atomic_dec(&ts_dump); \ 4131 /* There's some cases in boot up that this can happen */ \ 4132 if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING)) \ 4133 /* Do not re-enable checking */ \ 4134 return; \ 4135 } while (0) 4136 4137 /* 4138 * Check if the current event time stamp matches the deltas on 4139 * the buffer page. 4140 */ 4141 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 4142 struct rb_event_info *info, 4143 unsigned long tail) 4144 { 4145 struct buffer_data_page *bpage; 4146 u64 ts, delta; 4147 bool full = false; 4148 int ret; 4149 4150 bpage = info->tail_page->page; 4151 4152 if (tail == CHECK_FULL_PAGE) { 4153 full = true; 4154 tail = local_read(&bpage->commit); 4155 } else if (info->add_timestamp & 4156 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) { 4157 /* Ignore events with absolute time stamps */ 4158 return; 4159 } 4160 4161 /* 4162 * Do not check the first event (skip possible extends too). 4163 * Also do not check if previous events have not been committed. 4164 */ 4165 if (tail <= 8 || tail > local_read(&bpage->commit)) 4166 return; 4167 4168 /* 4169 * If this interrupted another event, 4170 */ 4171 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1) 4172 goto out; 4173 4174 ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta); 4175 if (ret < 0) { 4176 if (delta < ts) { 4177 buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n", 4178 cpu_buffer->cpu, ts, delta); 4179 goto out; 4180 } 4181 } 4182 if ((full && ts > info->ts) || 4183 (!full && ts + info->delta != info->ts)) { 4184 buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n", 4185 cpu_buffer->cpu, 4186 ts + info->delta, info->ts, info->delta, 4187 info->before, info->after, 4188 full ? " (full)" : "", show_interrupt_level()); 4189 } 4190 out: 4191 atomic_dec(this_cpu_ptr(&checking)); 4192 } 4193 #else 4194 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 4195 struct rb_event_info *info, 4196 unsigned long tail) 4197 { 4198 } 4199 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */ 4200 4201 static struct ring_buffer_event * 4202 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 4203 struct rb_event_info *info) 4204 { 4205 struct ring_buffer_event *event; 4206 struct buffer_page *tail_page; 4207 unsigned long tail, write, w; 4208 4209 /* Don't let the compiler play games with cpu_buffer->tail_page */ 4210 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 4211 4212 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK; 4213 barrier(); 4214 rb_time_read(&cpu_buffer->before_stamp, &info->before); 4215 rb_time_read(&cpu_buffer->write_stamp, &info->after); 4216 barrier(); 4217 info->ts = rb_time_stamp(cpu_buffer->buffer); 4218 4219 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) { 4220 info->delta = info->ts; 4221 } else { 4222 /* 4223 * If interrupting an event time update, we may need an 4224 * absolute timestamp. 4225 * Don't bother if this is the start of a new page (w == 0). 4226 */ 4227 if (!w) { 4228 /* Use the sub-buffer timestamp */ 4229 info->delta = 0; 4230 } else if (unlikely(info->before != info->after)) { 4231 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND; 4232 info->length += RB_LEN_TIME_EXTEND; 4233 } else { 4234 info->delta = info->ts - info->after; 4235 if (unlikely(test_time_stamp(info->delta))) { 4236 info->add_timestamp |= RB_ADD_STAMP_EXTEND; 4237 info->length += RB_LEN_TIME_EXTEND; 4238 } 4239 } 4240 } 4241 4242 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts); 4243 4244 /*C*/ write = local_add_return(info->length, &tail_page->write); 4245 4246 /* set write to only the index of the write */ 4247 write &= RB_WRITE_MASK; 4248 4249 tail = write - info->length; 4250 4251 /* See if we shot pass the end of this buffer page */ 4252 if (unlikely(write > cpu_buffer->buffer->subbuf_size)) { 4253 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE); 4254 return rb_move_tail(cpu_buffer, tail, info); 4255 } 4256 4257 if (likely(tail == w)) { 4258 /* Nothing interrupted us between A and C */ 4259 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts); 4260 /* 4261 * If something came in between C and D, the write stamp 4262 * may now not be in sync. But that's fine as the before_stamp 4263 * will be different and then next event will just be forced 4264 * to use an absolute timestamp. 4265 */ 4266 if (likely(!(info->add_timestamp & 4267 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 4268 /* This did not interrupt any time update */ 4269 info->delta = info->ts - info->after; 4270 else 4271 /* Just use full timestamp for interrupting event */ 4272 info->delta = info->ts; 4273 check_buffer(cpu_buffer, info, tail); 4274 } else { 4275 u64 ts; 4276 /* SLOW PATH - Interrupted between A and C */ 4277 4278 /* Save the old before_stamp */ 4279 rb_time_read(&cpu_buffer->before_stamp, &info->before); 4280 4281 /* 4282 * Read a new timestamp and update the before_stamp to make 4283 * the next event after this one force using an absolute 4284 * timestamp. This is in case an interrupt were to come in 4285 * between E and F. 4286 */ 4287 ts = rb_time_stamp(cpu_buffer->buffer); 4288 rb_time_set(&cpu_buffer->before_stamp, ts); 4289 4290 barrier(); 4291 /*E*/ rb_time_read(&cpu_buffer->write_stamp, &info->after); 4292 barrier(); 4293 /*F*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) && 4294 info->after == info->before && info->after < ts) { 4295 /* 4296 * Nothing came after this event between C and F, it is 4297 * safe to use info->after for the delta as it 4298 * matched info->before and is still valid. 4299 */ 4300 info->delta = ts - info->after; 4301 } else { 4302 /* 4303 * Interrupted between C and F: 4304 * Lost the previous events time stamp. Just set the 4305 * delta to zero, and this will be the same time as 4306 * the event this event interrupted. And the events that 4307 * came after this will still be correct (as they would 4308 * have built their delta on the previous event. 4309 */ 4310 info->delta = 0; 4311 } 4312 info->ts = ts; 4313 info->add_timestamp &= ~RB_ADD_STAMP_FORCE; 4314 } 4315 4316 /* 4317 * If this is the first commit on the page, then it has the same 4318 * timestamp as the page itself. 4319 */ 4320 if (unlikely(!tail && !(info->add_timestamp & 4321 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 4322 info->delta = 0; 4323 4324 /* We reserved something on the buffer */ 4325 4326 event = __rb_page_index(tail_page, tail); 4327 rb_update_event(cpu_buffer, event, info); 4328 4329 local_inc(&tail_page->entries); 4330 4331 /* 4332 * If this is the first commit on the page, then update 4333 * its timestamp. 4334 */ 4335 if (unlikely(!tail)) 4336 tail_page->page->time_stamp = info->ts; 4337 4338 /* account for these added bytes */ 4339 local_add(info->length, &cpu_buffer->entries_bytes); 4340 4341 return event; 4342 } 4343 4344 static __always_inline struct ring_buffer_event * 4345 rb_reserve_next_event(struct trace_buffer *buffer, 4346 struct ring_buffer_per_cpu *cpu_buffer, 4347 unsigned long length) 4348 { 4349 struct ring_buffer_event *event; 4350 struct rb_event_info info; 4351 int nr_loops = 0; 4352 int add_ts_default; 4353 4354 /* ring buffer does cmpxchg, make sure it is safe in NMI context */ 4355 if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) && 4356 (unlikely(in_nmi()))) { 4357 return NULL; 4358 } 4359 4360 rb_start_commit(cpu_buffer); 4361 /* The commit page can not change after this */ 4362 4363 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4364 /* 4365 * Due to the ability to swap a cpu buffer from a buffer 4366 * it is possible it was swapped before we committed. 4367 * (committing stops a swap). We check for it here and 4368 * if it happened, we have to fail the write. 4369 */ 4370 barrier(); 4371 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 4372 local_dec(&cpu_buffer->committing); 4373 local_dec(&cpu_buffer->commits); 4374 return NULL; 4375 } 4376 #endif 4377 4378 info.length = rb_calculate_event_length(length); 4379 4380 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) { 4381 add_ts_default = RB_ADD_STAMP_ABSOLUTE; 4382 info.length += RB_LEN_TIME_EXTEND; 4383 if (info.length > cpu_buffer->buffer->max_data_size) 4384 goto out_fail; 4385 } else { 4386 add_ts_default = RB_ADD_STAMP_NONE; 4387 } 4388 4389 again: 4390 info.add_timestamp = add_ts_default; 4391 info.delta = 0; 4392 4393 /* 4394 * We allow for interrupts to reenter here and do a trace. 4395 * If one does, it will cause this original code to loop 4396 * back here. Even with heavy interrupts happening, this 4397 * should only happen a few times in a row. If this happens 4398 * 1000 times in a row, there must be either an interrupt 4399 * storm or we have something buggy. 4400 * Bail! 4401 */ 4402 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 4403 goto out_fail; 4404 4405 event = __rb_reserve_next(cpu_buffer, &info); 4406 4407 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 4408 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND)) 4409 info.length -= RB_LEN_TIME_EXTEND; 4410 goto again; 4411 } 4412 4413 if (likely(event)) 4414 return event; 4415 out_fail: 4416 rb_end_commit(cpu_buffer); 4417 return NULL; 4418 } 4419 4420 /** 4421 * ring_buffer_lock_reserve - reserve a part of the buffer 4422 * @buffer: the ring buffer to reserve from 4423 * @length: the length of the data to reserve (excluding event header) 4424 * 4425 * Returns a reserved event on the ring buffer to copy directly to. 4426 * The user of this interface will need to get the body to write into 4427 * and can use the ring_buffer_event_data() interface. 4428 * 4429 * The length is the length of the data needed, not the event length 4430 * which also includes the event header. 4431 * 4432 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 4433 * If NULL is returned, then nothing has been allocated or locked. 4434 */ 4435 struct ring_buffer_event * 4436 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) 4437 { 4438 struct ring_buffer_per_cpu *cpu_buffer; 4439 struct ring_buffer_event *event; 4440 int cpu; 4441 4442 /* If we are tracing schedule, we don't want to recurse */ 4443 preempt_disable_notrace(); 4444 4445 if (unlikely(atomic_read(&buffer->record_disabled))) 4446 goto out; 4447 4448 cpu = raw_smp_processor_id(); 4449 4450 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 4451 goto out; 4452 4453 cpu_buffer = buffer->buffers[cpu]; 4454 4455 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 4456 goto out; 4457 4458 if (unlikely(length > buffer->max_data_size)) 4459 goto out; 4460 4461 if (unlikely(trace_recursive_lock(cpu_buffer))) 4462 goto out; 4463 4464 event = rb_reserve_next_event(buffer, cpu_buffer, length); 4465 if (!event) 4466 goto out_unlock; 4467 4468 return event; 4469 4470 out_unlock: 4471 trace_recursive_unlock(cpu_buffer); 4472 out: 4473 preempt_enable_notrace(); 4474 return NULL; 4475 } 4476 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 4477 4478 /* 4479 * Decrement the entries to the page that an event is on. 4480 * The event does not even need to exist, only the pointer 4481 * to the page it is on. This may only be called before the commit 4482 * takes place. 4483 */ 4484 static inline void 4485 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 4486 struct ring_buffer_event *event) 4487 { 4488 unsigned long addr = (unsigned long)event; 4489 struct buffer_page *bpage = cpu_buffer->commit_page; 4490 struct buffer_page *start; 4491 4492 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1); 4493 4494 /* Do the likely case first */ 4495 if (likely(bpage->page == (void *)addr)) { 4496 local_dec(&bpage->entries); 4497 return; 4498 } 4499 4500 /* 4501 * Because the commit page may be on the reader page we 4502 * start with the next page and check the end loop there. 4503 */ 4504 rb_inc_page(&bpage); 4505 start = bpage; 4506 do { 4507 if (bpage->page == (void *)addr) { 4508 local_dec(&bpage->entries); 4509 return; 4510 } 4511 rb_inc_page(&bpage); 4512 } while (bpage != start); 4513 4514 /* commit not part of this buffer?? */ 4515 RB_WARN_ON(cpu_buffer, 1); 4516 } 4517 4518 /** 4519 * ring_buffer_discard_commit - discard an event that has not been committed 4520 * @buffer: the ring buffer 4521 * @event: non committed event to discard 4522 * 4523 * Sometimes an event that is in the ring buffer needs to be ignored. 4524 * This function lets the user discard an event in the ring buffer 4525 * and then that event will not be read later. 4526 * 4527 * This function only works if it is called before the item has been 4528 * committed. It will try to free the event from the ring buffer 4529 * if another event has not been added behind it. 4530 * 4531 * If another event has been added behind it, it will set the event 4532 * up as discarded, and perform the commit. 4533 * 4534 * If this function is called, do not call ring_buffer_unlock_commit on 4535 * the event. 4536 */ 4537 void ring_buffer_discard_commit(struct trace_buffer *buffer, 4538 struct ring_buffer_event *event) 4539 { 4540 struct ring_buffer_per_cpu *cpu_buffer; 4541 int cpu; 4542 4543 /* The event is discarded regardless */ 4544 rb_event_discard(event); 4545 4546 cpu = smp_processor_id(); 4547 cpu_buffer = buffer->buffers[cpu]; 4548 4549 /* 4550 * This must only be called if the event has not been 4551 * committed yet. Thus we can assume that preemption 4552 * is still disabled. 4553 */ 4554 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 4555 4556 rb_decrement_entry(cpu_buffer, event); 4557 if (rb_try_to_discard(cpu_buffer, event)) 4558 goto out; 4559 4560 out: 4561 rb_end_commit(cpu_buffer); 4562 4563 trace_recursive_unlock(cpu_buffer); 4564 4565 preempt_enable_notrace(); 4566 4567 } 4568 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 4569 4570 /** 4571 * ring_buffer_write - write data to the buffer without reserving 4572 * @buffer: The ring buffer to write to. 4573 * @length: The length of the data being written (excluding the event header) 4574 * @data: The data to write to the buffer. 4575 * 4576 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 4577 * one function. If you already have the data to write to the buffer, it 4578 * may be easier to simply call this function. 4579 * 4580 * Note, like ring_buffer_lock_reserve, the length is the length of the data 4581 * and not the length of the event which would hold the header. 4582 */ 4583 int ring_buffer_write(struct trace_buffer *buffer, 4584 unsigned long length, 4585 void *data) 4586 { 4587 struct ring_buffer_per_cpu *cpu_buffer; 4588 struct ring_buffer_event *event; 4589 void *body; 4590 int ret = -EBUSY; 4591 int cpu; 4592 4593 preempt_disable_notrace(); 4594 4595 if (atomic_read(&buffer->record_disabled)) 4596 goto out; 4597 4598 cpu = raw_smp_processor_id(); 4599 4600 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4601 goto out; 4602 4603 cpu_buffer = buffer->buffers[cpu]; 4604 4605 if (atomic_read(&cpu_buffer->record_disabled)) 4606 goto out; 4607 4608 if (length > buffer->max_data_size) 4609 goto out; 4610 4611 if (unlikely(trace_recursive_lock(cpu_buffer))) 4612 goto out; 4613 4614 event = rb_reserve_next_event(buffer, cpu_buffer, length); 4615 if (!event) 4616 goto out_unlock; 4617 4618 body = rb_event_data(event); 4619 4620 memcpy(body, data, length); 4621 4622 rb_commit(cpu_buffer); 4623 4624 rb_wakeups(buffer, cpu_buffer); 4625 4626 ret = 0; 4627 4628 out_unlock: 4629 trace_recursive_unlock(cpu_buffer); 4630 4631 out: 4632 preempt_enable_notrace(); 4633 4634 return ret; 4635 } 4636 EXPORT_SYMBOL_GPL(ring_buffer_write); 4637 4638 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 4639 { 4640 struct buffer_page *reader = cpu_buffer->reader_page; 4641 struct buffer_page *head = rb_set_head_page(cpu_buffer); 4642 struct buffer_page *commit = cpu_buffer->commit_page; 4643 4644 /* In case of error, head will be NULL */ 4645 if (unlikely(!head)) 4646 return true; 4647 4648 /* Reader should exhaust content in reader page */ 4649 if (reader->read != rb_page_size(reader)) 4650 return false; 4651 4652 /* 4653 * If writers are committing on the reader page, knowing all 4654 * committed content has been read, the ring buffer is empty. 4655 */ 4656 if (commit == reader) 4657 return true; 4658 4659 /* 4660 * If writers are committing on a page other than reader page 4661 * and head page, there should always be content to read. 4662 */ 4663 if (commit != head) 4664 return false; 4665 4666 /* 4667 * Writers are committing on the head page, we just need 4668 * to care about there're committed data, and the reader will 4669 * swap reader page with head page when it is to read data. 4670 */ 4671 return rb_page_commit(commit) == 0; 4672 } 4673 4674 /** 4675 * ring_buffer_record_disable - stop all writes into the buffer 4676 * @buffer: The ring buffer to stop writes to. 4677 * 4678 * This prevents all writes to the buffer. Any attempt to write 4679 * to the buffer after this will fail and return NULL. 4680 * 4681 * The caller should call synchronize_rcu() after this. 4682 */ 4683 void ring_buffer_record_disable(struct trace_buffer *buffer) 4684 { 4685 atomic_inc(&buffer->record_disabled); 4686 } 4687 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 4688 4689 /** 4690 * ring_buffer_record_enable - enable writes to the buffer 4691 * @buffer: The ring buffer to enable writes 4692 * 4693 * Note, multiple disables will need the same number of enables 4694 * to truly enable the writing (much like preempt_disable). 4695 */ 4696 void ring_buffer_record_enable(struct trace_buffer *buffer) 4697 { 4698 atomic_dec(&buffer->record_disabled); 4699 } 4700 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 4701 4702 /** 4703 * ring_buffer_record_off - stop all writes into the buffer 4704 * @buffer: The ring buffer to stop writes to. 4705 * 4706 * This prevents all writes to the buffer. Any attempt to write 4707 * to the buffer after this will fail and return NULL. 4708 * 4709 * This is different than ring_buffer_record_disable() as 4710 * it works like an on/off switch, where as the disable() version 4711 * must be paired with a enable(). 4712 */ 4713 void ring_buffer_record_off(struct trace_buffer *buffer) 4714 { 4715 unsigned int rd; 4716 unsigned int new_rd; 4717 4718 rd = atomic_read(&buffer->record_disabled); 4719 do { 4720 new_rd = rd | RB_BUFFER_OFF; 4721 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4722 } 4723 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 4724 4725 /** 4726 * ring_buffer_record_on - restart writes into the buffer 4727 * @buffer: The ring buffer to start writes to. 4728 * 4729 * This enables all writes to the buffer that was disabled by 4730 * ring_buffer_record_off(). 4731 * 4732 * This is different than ring_buffer_record_enable() as 4733 * it works like an on/off switch, where as the enable() version 4734 * must be paired with a disable(). 4735 */ 4736 void ring_buffer_record_on(struct trace_buffer *buffer) 4737 { 4738 unsigned int rd; 4739 unsigned int new_rd; 4740 4741 rd = atomic_read(&buffer->record_disabled); 4742 do { 4743 new_rd = rd & ~RB_BUFFER_OFF; 4744 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4745 } 4746 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 4747 4748 /** 4749 * ring_buffer_record_is_on - return true if the ring buffer can write 4750 * @buffer: The ring buffer to see if write is enabled 4751 * 4752 * Returns true if the ring buffer is in a state that it accepts writes. 4753 */ 4754 bool ring_buffer_record_is_on(struct trace_buffer *buffer) 4755 { 4756 return !atomic_read(&buffer->record_disabled); 4757 } 4758 4759 /** 4760 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 4761 * @buffer: The ring buffer to see if write is set enabled 4762 * 4763 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 4764 * Note that this does NOT mean it is in a writable state. 4765 * 4766 * It may return true when the ring buffer has been disabled by 4767 * ring_buffer_record_disable(), as that is a temporary disabling of 4768 * the ring buffer. 4769 */ 4770 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) 4771 { 4772 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 4773 } 4774 4775 /** 4776 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 4777 * @buffer: The ring buffer to stop writes to. 4778 * @cpu: The CPU buffer to stop 4779 * 4780 * This prevents all writes to the buffer. Any attempt to write 4781 * to the buffer after this will fail and return NULL. 4782 * 4783 * The caller should call synchronize_rcu() after this. 4784 */ 4785 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) 4786 { 4787 struct ring_buffer_per_cpu *cpu_buffer; 4788 4789 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4790 return; 4791 4792 cpu_buffer = buffer->buffers[cpu]; 4793 atomic_inc(&cpu_buffer->record_disabled); 4794 } 4795 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 4796 4797 /** 4798 * ring_buffer_record_enable_cpu - enable writes to the buffer 4799 * @buffer: The ring buffer to enable writes 4800 * @cpu: The CPU to enable. 4801 * 4802 * Note, multiple disables will need the same number of enables 4803 * to truly enable the writing (much like preempt_disable). 4804 */ 4805 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) 4806 { 4807 struct ring_buffer_per_cpu *cpu_buffer; 4808 4809 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4810 return; 4811 4812 cpu_buffer = buffer->buffers[cpu]; 4813 atomic_dec(&cpu_buffer->record_disabled); 4814 } 4815 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 4816 4817 /* 4818 * The total entries in the ring buffer is the running counter 4819 * of entries entered into the ring buffer, minus the sum of 4820 * the entries read from the ring buffer and the number of 4821 * entries that were overwritten. 4822 */ 4823 static inline unsigned long 4824 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 4825 { 4826 return local_read(&cpu_buffer->entries) - 4827 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 4828 } 4829 4830 /** 4831 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 4832 * @buffer: The ring buffer 4833 * @cpu: The per CPU buffer to read from. 4834 */ 4835 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) 4836 { 4837 unsigned long flags; 4838 struct ring_buffer_per_cpu *cpu_buffer; 4839 struct buffer_page *bpage; 4840 u64 ret = 0; 4841 4842 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4843 return 0; 4844 4845 cpu_buffer = buffer->buffers[cpu]; 4846 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4847 /* 4848 * if the tail is on reader_page, oldest time stamp is on the reader 4849 * page 4850 */ 4851 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 4852 bpage = cpu_buffer->reader_page; 4853 else 4854 bpage = rb_set_head_page(cpu_buffer); 4855 if (bpage) 4856 ret = bpage->page->time_stamp; 4857 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4858 4859 return ret; 4860 } 4861 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 4862 4863 /** 4864 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer 4865 * @buffer: The ring buffer 4866 * @cpu: The per CPU buffer to read from. 4867 */ 4868 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) 4869 { 4870 struct ring_buffer_per_cpu *cpu_buffer; 4871 unsigned long ret; 4872 4873 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4874 return 0; 4875 4876 cpu_buffer = buffer->buffers[cpu]; 4877 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 4878 4879 return ret; 4880 } 4881 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 4882 4883 /** 4884 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 4885 * @buffer: The ring buffer 4886 * @cpu: The per CPU buffer to get the entries from. 4887 */ 4888 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) 4889 { 4890 struct ring_buffer_per_cpu *cpu_buffer; 4891 4892 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4893 return 0; 4894 4895 cpu_buffer = buffer->buffers[cpu]; 4896 4897 return rb_num_of_entries(cpu_buffer); 4898 } 4899 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 4900 4901 /** 4902 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 4903 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 4904 * @buffer: The ring buffer 4905 * @cpu: The per CPU buffer to get the number of overruns from 4906 */ 4907 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) 4908 { 4909 struct ring_buffer_per_cpu *cpu_buffer; 4910 unsigned long ret; 4911 4912 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4913 return 0; 4914 4915 cpu_buffer = buffer->buffers[cpu]; 4916 ret = local_read(&cpu_buffer->overrun); 4917 4918 return ret; 4919 } 4920 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 4921 4922 /** 4923 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 4924 * commits failing due to the buffer wrapping around while there are uncommitted 4925 * events, such as during an interrupt storm. 4926 * @buffer: The ring buffer 4927 * @cpu: The per CPU buffer to get the number of overruns from 4928 */ 4929 unsigned long 4930 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) 4931 { 4932 struct ring_buffer_per_cpu *cpu_buffer; 4933 unsigned long ret; 4934 4935 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4936 return 0; 4937 4938 cpu_buffer = buffer->buffers[cpu]; 4939 ret = local_read(&cpu_buffer->commit_overrun); 4940 4941 return ret; 4942 } 4943 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 4944 4945 /** 4946 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 4947 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 4948 * @buffer: The ring buffer 4949 * @cpu: The per CPU buffer to get the number of overruns from 4950 */ 4951 unsigned long 4952 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) 4953 { 4954 struct ring_buffer_per_cpu *cpu_buffer; 4955 unsigned long ret; 4956 4957 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4958 return 0; 4959 4960 cpu_buffer = buffer->buffers[cpu]; 4961 ret = local_read(&cpu_buffer->dropped_events); 4962 4963 return ret; 4964 } 4965 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 4966 4967 /** 4968 * ring_buffer_read_events_cpu - get the number of events successfully read 4969 * @buffer: The ring buffer 4970 * @cpu: The per CPU buffer to get the number of events read 4971 */ 4972 unsigned long 4973 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) 4974 { 4975 struct ring_buffer_per_cpu *cpu_buffer; 4976 4977 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4978 return 0; 4979 4980 cpu_buffer = buffer->buffers[cpu]; 4981 return cpu_buffer->read; 4982 } 4983 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 4984 4985 /** 4986 * ring_buffer_entries - get the number of entries in a buffer 4987 * @buffer: The ring buffer 4988 * 4989 * Returns the total number of entries in the ring buffer 4990 * (all CPU entries) 4991 */ 4992 unsigned long ring_buffer_entries(struct trace_buffer *buffer) 4993 { 4994 struct ring_buffer_per_cpu *cpu_buffer; 4995 unsigned long entries = 0; 4996 int cpu; 4997 4998 /* if you care about this being correct, lock the buffer */ 4999 for_each_buffer_cpu(buffer, cpu) { 5000 cpu_buffer = buffer->buffers[cpu]; 5001 entries += rb_num_of_entries(cpu_buffer); 5002 } 5003 5004 return entries; 5005 } 5006 EXPORT_SYMBOL_GPL(ring_buffer_entries); 5007 5008 /** 5009 * ring_buffer_overruns - get the number of overruns in buffer 5010 * @buffer: The ring buffer 5011 * 5012 * Returns the total number of overruns in the ring buffer 5013 * (all CPU entries) 5014 */ 5015 unsigned long ring_buffer_overruns(struct trace_buffer *buffer) 5016 { 5017 struct ring_buffer_per_cpu *cpu_buffer; 5018 unsigned long overruns = 0; 5019 int cpu; 5020 5021 /* if you care about this being correct, lock the buffer */ 5022 for_each_buffer_cpu(buffer, cpu) { 5023 cpu_buffer = buffer->buffers[cpu]; 5024 overruns += local_read(&cpu_buffer->overrun); 5025 } 5026 5027 return overruns; 5028 } 5029 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 5030 5031 static void rb_iter_reset(struct ring_buffer_iter *iter) 5032 { 5033 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5034 5035 /* Iterator usage is expected to have record disabled */ 5036 iter->head_page = cpu_buffer->reader_page; 5037 iter->head = cpu_buffer->reader_page->read; 5038 iter->next_event = iter->head; 5039 5040 iter->cache_reader_page = iter->head_page; 5041 iter->cache_read = cpu_buffer->read; 5042 iter->cache_pages_removed = cpu_buffer->pages_removed; 5043 5044 if (iter->head) { 5045 iter->read_stamp = cpu_buffer->read_stamp; 5046 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; 5047 } else { 5048 iter->read_stamp = iter->head_page->page->time_stamp; 5049 iter->page_stamp = iter->read_stamp; 5050 } 5051 } 5052 5053 /** 5054 * ring_buffer_iter_reset - reset an iterator 5055 * @iter: The iterator to reset 5056 * 5057 * Resets the iterator, so that it will start from the beginning 5058 * again. 5059 */ 5060 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 5061 { 5062 struct ring_buffer_per_cpu *cpu_buffer; 5063 unsigned long flags; 5064 5065 if (!iter) 5066 return; 5067 5068 cpu_buffer = iter->cpu_buffer; 5069 5070 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5071 rb_iter_reset(iter); 5072 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5073 } 5074 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 5075 5076 /** 5077 * ring_buffer_iter_empty - check if an iterator has no more to read 5078 * @iter: The iterator to check 5079 */ 5080 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 5081 { 5082 struct ring_buffer_per_cpu *cpu_buffer; 5083 struct buffer_page *reader; 5084 struct buffer_page *head_page; 5085 struct buffer_page *commit_page; 5086 struct buffer_page *curr_commit_page; 5087 unsigned commit; 5088 u64 curr_commit_ts; 5089 u64 commit_ts; 5090 5091 cpu_buffer = iter->cpu_buffer; 5092 reader = cpu_buffer->reader_page; 5093 head_page = cpu_buffer->head_page; 5094 commit_page = READ_ONCE(cpu_buffer->commit_page); 5095 commit_ts = commit_page->page->time_stamp; 5096 5097 /* 5098 * When the writer goes across pages, it issues a cmpxchg which 5099 * is a mb(), which will synchronize with the rmb here. 5100 * (see rb_tail_page_update()) 5101 */ 5102 smp_rmb(); 5103 commit = rb_page_commit(commit_page); 5104 /* We want to make sure that the commit page doesn't change */ 5105 smp_rmb(); 5106 5107 /* Make sure commit page didn't change */ 5108 curr_commit_page = READ_ONCE(cpu_buffer->commit_page); 5109 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); 5110 5111 /* If the commit page changed, then there's more data */ 5112 if (curr_commit_page != commit_page || 5113 curr_commit_ts != commit_ts) 5114 return 0; 5115 5116 /* Still racy, as it may return a false positive, but that's OK */ 5117 return ((iter->head_page == commit_page && iter->head >= commit) || 5118 (iter->head_page == reader && commit_page == head_page && 5119 head_page->read == commit && 5120 iter->head == rb_page_size(cpu_buffer->reader_page))); 5121 } 5122 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 5123 5124 static void 5125 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 5126 struct ring_buffer_event *event) 5127 { 5128 u64 delta; 5129 5130 switch (event->type_len) { 5131 case RINGBUF_TYPE_PADDING: 5132 return; 5133 5134 case RINGBUF_TYPE_TIME_EXTEND: 5135 delta = rb_event_time_stamp(event); 5136 cpu_buffer->read_stamp += delta; 5137 return; 5138 5139 case RINGBUF_TYPE_TIME_STAMP: 5140 delta = rb_event_time_stamp(event); 5141 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp); 5142 cpu_buffer->read_stamp = delta; 5143 return; 5144 5145 case RINGBUF_TYPE_DATA: 5146 cpu_buffer->read_stamp += event->time_delta; 5147 return; 5148 5149 default: 5150 RB_WARN_ON(cpu_buffer, 1); 5151 } 5152 } 5153 5154 static void 5155 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 5156 struct ring_buffer_event *event) 5157 { 5158 u64 delta; 5159 5160 switch (event->type_len) { 5161 case RINGBUF_TYPE_PADDING: 5162 return; 5163 5164 case RINGBUF_TYPE_TIME_EXTEND: 5165 delta = rb_event_time_stamp(event); 5166 iter->read_stamp += delta; 5167 return; 5168 5169 case RINGBUF_TYPE_TIME_STAMP: 5170 delta = rb_event_time_stamp(event); 5171 delta = rb_fix_abs_ts(delta, iter->read_stamp); 5172 iter->read_stamp = delta; 5173 return; 5174 5175 case RINGBUF_TYPE_DATA: 5176 iter->read_stamp += event->time_delta; 5177 return; 5178 5179 default: 5180 RB_WARN_ON(iter->cpu_buffer, 1); 5181 } 5182 } 5183 5184 static struct buffer_page * 5185 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 5186 { 5187 struct buffer_page *reader = NULL; 5188 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size); 5189 unsigned long overwrite; 5190 unsigned long flags; 5191 int nr_loops = 0; 5192 bool ret; 5193 5194 local_irq_save(flags); 5195 arch_spin_lock(&cpu_buffer->lock); 5196 5197 again: 5198 /* 5199 * This should normally only loop twice. But because the 5200 * start of the reader inserts an empty page, it causes 5201 * a case where we will loop three times. There should be no 5202 * reason to loop four times (that I know of). 5203 */ 5204 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 5205 reader = NULL; 5206 goto out; 5207 } 5208 5209 reader = cpu_buffer->reader_page; 5210 5211 /* If there's more to read, return this page */ 5212 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 5213 goto out; 5214 5215 /* Never should we have an index greater than the size */ 5216 if (RB_WARN_ON(cpu_buffer, 5217 cpu_buffer->reader_page->read > rb_page_size(reader))) 5218 goto out; 5219 5220 /* check if we caught up to the tail */ 5221 reader = NULL; 5222 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 5223 goto out; 5224 5225 /* Don't bother swapping if the ring buffer is empty */ 5226 if (rb_num_of_entries(cpu_buffer) == 0) 5227 goto out; 5228 5229 /* 5230 * Reset the reader page to size zero. 5231 */ 5232 local_set(&cpu_buffer->reader_page->write, 0); 5233 local_set(&cpu_buffer->reader_page->entries, 0); 5234 local_set(&cpu_buffer->reader_page->page->commit, 0); 5235 cpu_buffer->reader_page->real_end = 0; 5236 5237 spin: 5238 /* 5239 * Splice the empty reader page into the list around the head. 5240 */ 5241 reader = rb_set_head_page(cpu_buffer); 5242 if (!reader) 5243 goto out; 5244 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 5245 cpu_buffer->reader_page->list.prev = reader->list.prev; 5246 5247 /* 5248 * cpu_buffer->pages just needs to point to the buffer, it 5249 * has no specific buffer page to point to. Lets move it out 5250 * of our way so we don't accidentally swap it. 5251 */ 5252 cpu_buffer->pages = reader->list.prev; 5253 5254 /* The reader page will be pointing to the new head */ 5255 rb_set_list_to_head(&cpu_buffer->reader_page->list); 5256 5257 /* 5258 * We want to make sure we read the overruns after we set up our 5259 * pointers to the next object. The writer side does a 5260 * cmpxchg to cross pages which acts as the mb on the writer 5261 * side. Note, the reader will constantly fail the swap 5262 * while the writer is updating the pointers, so this 5263 * guarantees that the overwrite recorded here is the one we 5264 * want to compare with the last_overrun. 5265 */ 5266 smp_mb(); 5267 overwrite = local_read(&(cpu_buffer->overrun)); 5268 5269 /* 5270 * Here's the tricky part. 5271 * 5272 * We need to move the pointer past the header page. 5273 * But we can only do that if a writer is not currently 5274 * moving it. The page before the header page has the 5275 * flag bit '1' set if it is pointing to the page we want. 5276 * but if the writer is in the process of moving it 5277 * than it will be '2' or already moved '0'. 5278 */ 5279 5280 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 5281 5282 /* 5283 * If we did not convert it, then we must try again. 5284 */ 5285 if (!ret) 5286 goto spin; 5287 5288 if (cpu_buffer->ring_meta) 5289 rb_update_meta_reader(cpu_buffer, reader); 5290 5291 /* 5292 * Yay! We succeeded in replacing the page. 5293 * 5294 * Now make the new head point back to the reader page. 5295 */ 5296 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 5297 rb_inc_page(&cpu_buffer->head_page); 5298 5299 local_inc(&cpu_buffer->pages_read); 5300 5301 /* Finally update the reader page to the new head */ 5302 cpu_buffer->reader_page = reader; 5303 cpu_buffer->reader_page->read = 0; 5304 5305 if (overwrite != cpu_buffer->last_overrun) { 5306 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 5307 cpu_buffer->last_overrun = overwrite; 5308 } 5309 5310 goto again; 5311 5312 out: 5313 /* Update the read_stamp on the first event */ 5314 if (reader && reader->read == 0) 5315 cpu_buffer->read_stamp = reader->page->time_stamp; 5316 5317 arch_spin_unlock(&cpu_buffer->lock); 5318 local_irq_restore(flags); 5319 5320 /* 5321 * The writer has preempt disable, wait for it. But not forever 5322 * Although, 1 second is pretty much "forever" 5323 */ 5324 #define USECS_WAIT 1000000 5325 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) { 5326 /* If the write is past the end of page, a writer is still updating it */ 5327 if (likely(!reader || rb_page_write(reader) <= bsize)) 5328 break; 5329 5330 udelay(1); 5331 5332 /* Get the latest version of the reader write value */ 5333 smp_rmb(); 5334 } 5335 5336 /* The writer is not moving forward? Something is wrong */ 5337 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT)) 5338 reader = NULL; 5339 5340 /* 5341 * Make sure we see any padding after the write update 5342 * (see rb_reset_tail()). 5343 * 5344 * In addition, a writer may be writing on the reader page 5345 * if the page has not been fully filled, so the read barrier 5346 * is also needed to make sure we see the content of what is 5347 * committed by the writer (see rb_set_commit_to_write()). 5348 */ 5349 smp_rmb(); 5350 5351 5352 return reader; 5353 } 5354 5355 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 5356 { 5357 struct ring_buffer_event *event; 5358 struct buffer_page *reader; 5359 unsigned length; 5360 5361 reader = rb_get_reader_page(cpu_buffer); 5362 5363 /* This function should not be called when buffer is empty */ 5364 if (RB_WARN_ON(cpu_buffer, !reader)) 5365 return; 5366 5367 event = rb_reader_event(cpu_buffer); 5368 5369 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 5370 cpu_buffer->read++; 5371 5372 rb_update_read_stamp(cpu_buffer, event); 5373 5374 length = rb_event_length(event); 5375 cpu_buffer->reader_page->read += length; 5376 cpu_buffer->read_bytes += length; 5377 } 5378 5379 static void rb_advance_iter(struct ring_buffer_iter *iter) 5380 { 5381 struct ring_buffer_per_cpu *cpu_buffer; 5382 5383 cpu_buffer = iter->cpu_buffer; 5384 5385 /* If head == next_event then we need to jump to the next event */ 5386 if (iter->head == iter->next_event) { 5387 /* If the event gets overwritten again, there's nothing to do */ 5388 if (rb_iter_head_event(iter) == NULL) 5389 return; 5390 } 5391 5392 iter->head = iter->next_event; 5393 5394 /* 5395 * Check if we are at the end of the buffer. 5396 */ 5397 if (iter->next_event >= rb_page_size(iter->head_page)) { 5398 /* discarded commits can make the page empty */ 5399 if (iter->head_page == cpu_buffer->commit_page) 5400 return; 5401 rb_inc_iter(iter); 5402 return; 5403 } 5404 5405 rb_update_iter_read_stamp(iter, iter->event); 5406 } 5407 5408 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 5409 { 5410 return cpu_buffer->lost_events; 5411 } 5412 5413 static struct ring_buffer_event * 5414 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 5415 unsigned long *lost_events) 5416 { 5417 struct ring_buffer_event *event; 5418 struct buffer_page *reader; 5419 int nr_loops = 0; 5420 5421 if (ts) 5422 *ts = 0; 5423 again: 5424 /* 5425 * We repeat when a time extend is encountered. 5426 * Since the time extend is always attached to a data event, 5427 * we should never loop more than once. 5428 * (We never hit the following condition more than twice). 5429 */ 5430 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 5431 return NULL; 5432 5433 reader = rb_get_reader_page(cpu_buffer); 5434 if (!reader) 5435 return NULL; 5436 5437 event = rb_reader_event(cpu_buffer); 5438 5439 switch (event->type_len) { 5440 case RINGBUF_TYPE_PADDING: 5441 if (rb_null_event(event)) 5442 RB_WARN_ON(cpu_buffer, 1); 5443 /* 5444 * Because the writer could be discarding every 5445 * event it creates (which would probably be bad) 5446 * if we were to go back to "again" then we may never 5447 * catch up, and will trigger the warn on, or lock 5448 * the box. Return the padding, and we will release 5449 * the current locks, and try again. 5450 */ 5451 return event; 5452 5453 case RINGBUF_TYPE_TIME_EXTEND: 5454 /* Internal data, OK to advance */ 5455 rb_advance_reader(cpu_buffer); 5456 goto again; 5457 5458 case RINGBUF_TYPE_TIME_STAMP: 5459 if (ts) { 5460 *ts = rb_event_time_stamp(event); 5461 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp); 5462 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 5463 cpu_buffer->cpu, ts); 5464 } 5465 /* Internal data, OK to advance */ 5466 rb_advance_reader(cpu_buffer); 5467 goto again; 5468 5469 case RINGBUF_TYPE_DATA: 5470 if (ts && !(*ts)) { 5471 *ts = cpu_buffer->read_stamp + event->time_delta; 5472 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 5473 cpu_buffer->cpu, ts); 5474 } 5475 if (lost_events) 5476 *lost_events = rb_lost_events(cpu_buffer); 5477 return event; 5478 5479 default: 5480 RB_WARN_ON(cpu_buffer, 1); 5481 } 5482 5483 return NULL; 5484 } 5485 EXPORT_SYMBOL_GPL(ring_buffer_peek); 5486 5487 static struct ring_buffer_event * 5488 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 5489 { 5490 struct trace_buffer *buffer; 5491 struct ring_buffer_per_cpu *cpu_buffer; 5492 struct ring_buffer_event *event; 5493 int nr_loops = 0; 5494 5495 if (ts) 5496 *ts = 0; 5497 5498 cpu_buffer = iter->cpu_buffer; 5499 buffer = cpu_buffer->buffer; 5500 5501 /* 5502 * Check if someone performed a consuming read to the buffer 5503 * or removed some pages from the buffer. In these cases, 5504 * iterator was invalidated and we need to reset it. 5505 */ 5506 if (unlikely(iter->cache_read != cpu_buffer->read || 5507 iter->cache_reader_page != cpu_buffer->reader_page || 5508 iter->cache_pages_removed != cpu_buffer->pages_removed)) 5509 rb_iter_reset(iter); 5510 5511 again: 5512 if (ring_buffer_iter_empty(iter)) 5513 return NULL; 5514 5515 /* 5516 * As the writer can mess with what the iterator is trying 5517 * to read, just give up if we fail to get an event after 5518 * three tries. The iterator is not as reliable when reading 5519 * the ring buffer with an active write as the consumer is. 5520 * Do not warn if the three failures is reached. 5521 */ 5522 if (++nr_loops > 3) 5523 return NULL; 5524 5525 if (rb_per_cpu_empty(cpu_buffer)) 5526 return NULL; 5527 5528 if (iter->head >= rb_page_size(iter->head_page)) { 5529 rb_inc_iter(iter); 5530 goto again; 5531 } 5532 5533 event = rb_iter_head_event(iter); 5534 if (!event) 5535 goto again; 5536 5537 switch (event->type_len) { 5538 case RINGBUF_TYPE_PADDING: 5539 if (rb_null_event(event)) { 5540 rb_inc_iter(iter); 5541 goto again; 5542 } 5543 rb_advance_iter(iter); 5544 return event; 5545 5546 case RINGBUF_TYPE_TIME_EXTEND: 5547 /* Internal data, OK to advance */ 5548 rb_advance_iter(iter); 5549 goto again; 5550 5551 case RINGBUF_TYPE_TIME_STAMP: 5552 if (ts) { 5553 *ts = rb_event_time_stamp(event); 5554 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp); 5555 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 5556 cpu_buffer->cpu, ts); 5557 } 5558 /* Internal data, OK to advance */ 5559 rb_advance_iter(iter); 5560 goto again; 5561 5562 case RINGBUF_TYPE_DATA: 5563 if (ts && !(*ts)) { 5564 *ts = iter->read_stamp + event->time_delta; 5565 ring_buffer_normalize_time_stamp(buffer, 5566 cpu_buffer->cpu, ts); 5567 } 5568 return event; 5569 5570 default: 5571 RB_WARN_ON(cpu_buffer, 1); 5572 } 5573 5574 return NULL; 5575 } 5576 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 5577 5578 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 5579 { 5580 if (likely(!in_nmi())) { 5581 raw_spin_lock(&cpu_buffer->reader_lock); 5582 return true; 5583 } 5584 5585 /* 5586 * If an NMI die dumps out the content of the ring buffer 5587 * trylock must be used to prevent a deadlock if the NMI 5588 * preempted a task that holds the ring buffer locks. If 5589 * we get the lock then all is fine, if not, then continue 5590 * to do the read, but this can corrupt the ring buffer, 5591 * so it must be permanently disabled from future writes. 5592 * Reading from NMI is a oneshot deal. 5593 */ 5594 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 5595 return true; 5596 5597 /* Continue without locking, but disable the ring buffer */ 5598 atomic_inc(&cpu_buffer->record_disabled); 5599 return false; 5600 } 5601 5602 static inline void 5603 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 5604 { 5605 if (likely(locked)) 5606 raw_spin_unlock(&cpu_buffer->reader_lock); 5607 } 5608 5609 /** 5610 * ring_buffer_peek - peek at the next event to be read 5611 * @buffer: The ring buffer to read 5612 * @cpu: The cpu to peak at 5613 * @ts: The timestamp counter of this event. 5614 * @lost_events: a variable to store if events were lost (may be NULL) 5615 * 5616 * This will return the event that will be read next, but does 5617 * not consume the data. 5618 */ 5619 struct ring_buffer_event * 5620 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, 5621 unsigned long *lost_events) 5622 { 5623 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5624 struct ring_buffer_event *event; 5625 unsigned long flags; 5626 bool dolock; 5627 5628 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5629 return NULL; 5630 5631 again: 5632 local_irq_save(flags); 5633 dolock = rb_reader_lock(cpu_buffer); 5634 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 5635 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5636 rb_advance_reader(cpu_buffer); 5637 rb_reader_unlock(cpu_buffer, dolock); 5638 local_irq_restore(flags); 5639 5640 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5641 goto again; 5642 5643 return event; 5644 } 5645 5646 /** ring_buffer_iter_dropped - report if there are dropped events 5647 * @iter: The ring buffer iterator 5648 * 5649 * Returns true if there was dropped events since the last peek. 5650 */ 5651 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) 5652 { 5653 bool ret = iter->missed_events != 0; 5654 5655 iter->missed_events = 0; 5656 return ret; 5657 } 5658 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); 5659 5660 /** 5661 * ring_buffer_iter_peek - peek at the next event to be read 5662 * @iter: The ring buffer iterator 5663 * @ts: The timestamp counter of this event. 5664 * 5665 * This will return the event that will be read next, but does 5666 * not increment the iterator. 5667 */ 5668 struct ring_buffer_event * 5669 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 5670 { 5671 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5672 struct ring_buffer_event *event; 5673 unsigned long flags; 5674 5675 again: 5676 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5677 event = rb_iter_peek(iter, ts); 5678 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5679 5680 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5681 goto again; 5682 5683 return event; 5684 } 5685 5686 /** 5687 * ring_buffer_consume - return an event and consume it 5688 * @buffer: The ring buffer to get the next event from 5689 * @cpu: the cpu to read the buffer from 5690 * @ts: a variable to store the timestamp (may be NULL) 5691 * @lost_events: a variable to store if events were lost (may be NULL) 5692 * 5693 * Returns the next event in the ring buffer, and that event is consumed. 5694 * Meaning, that sequential reads will keep returning a different event, 5695 * and eventually empty the ring buffer if the producer is slower. 5696 */ 5697 struct ring_buffer_event * 5698 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, 5699 unsigned long *lost_events) 5700 { 5701 struct ring_buffer_per_cpu *cpu_buffer; 5702 struct ring_buffer_event *event = NULL; 5703 unsigned long flags; 5704 bool dolock; 5705 5706 again: 5707 /* might be called in atomic */ 5708 preempt_disable(); 5709 5710 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5711 goto out; 5712 5713 cpu_buffer = buffer->buffers[cpu]; 5714 local_irq_save(flags); 5715 dolock = rb_reader_lock(cpu_buffer); 5716 5717 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 5718 if (event) { 5719 cpu_buffer->lost_events = 0; 5720 rb_advance_reader(cpu_buffer); 5721 } 5722 5723 rb_reader_unlock(cpu_buffer, dolock); 5724 local_irq_restore(flags); 5725 5726 out: 5727 preempt_enable(); 5728 5729 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5730 goto again; 5731 5732 return event; 5733 } 5734 EXPORT_SYMBOL_GPL(ring_buffer_consume); 5735 5736 /** 5737 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 5738 * @buffer: The ring buffer to read from 5739 * @cpu: The cpu buffer to iterate over 5740 * @flags: gfp flags to use for memory allocation 5741 * 5742 * This performs the initial preparations necessary to iterate 5743 * through the buffer. Memory is allocated, buffer resizing 5744 * is disabled, and the iterator pointer is returned to the caller. 5745 * 5746 * After a sequence of ring_buffer_read_prepare calls, the user is 5747 * expected to make at least one call to ring_buffer_read_prepare_sync. 5748 * Afterwards, ring_buffer_read_start is invoked to get things going 5749 * for real. 5750 * 5751 * This overall must be paired with ring_buffer_read_finish. 5752 */ 5753 struct ring_buffer_iter * 5754 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) 5755 { 5756 struct ring_buffer_per_cpu *cpu_buffer; 5757 struct ring_buffer_iter *iter; 5758 5759 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5760 return NULL; 5761 5762 iter = kzalloc(sizeof(*iter), flags); 5763 if (!iter) 5764 return NULL; 5765 5766 /* Holds the entire event: data and meta data */ 5767 iter->event_size = buffer->subbuf_size; 5768 iter->event = kmalloc(iter->event_size, flags); 5769 if (!iter->event) { 5770 kfree(iter); 5771 return NULL; 5772 } 5773 5774 cpu_buffer = buffer->buffers[cpu]; 5775 5776 iter->cpu_buffer = cpu_buffer; 5777 5778 atomic_inc(&cpu_buffer->resize_disabled); 5779 5780 return iter; 5781 } 5782 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 5783 5784 /** 5785 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 5786 * 5787 * All previously invoked ring_buffer_read_prepare calls to prepare 5788 * iterators will be synchronized. Afterwards, read_buffer_read_start 5789 * calls on those iterators are allowed. 5790 */ 5791 void 5792 ring_buffer_read_prepare_sync(void) 5793 { 5794 synchronize_rcu(); 5795 } 5796 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 5797 5798 /** 5799 * ring_buffer_read_start - start a non consuming read of the buffer 5800 * @iter: The iterator returned by ring_buffer_read_prepare 5801 * 5802 * This finalizes the startup of an iteration through the buffer. 5803 * The iterator comes from a call to ring_buffer_read_prepare and 5804 * an intervening ring_buffer_read_prepare_sync must have been 5805 * performed. 5806 * 5807 * Must be paired with ring_buffer_read_finish. 5808 */ 5809 void 5810 ring_buffer_read_start(struct ring_buffer_iter *iter) 5811 { 5812 struct ring_buffer_per_cpu *cpu_buffer; 5813 unsigned long flags; 5814 5815 if (!iter) 5816 return; 5817 5818 cpu_buffer = iter->cpu_buffer; 5819 5820 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5821 arch_spin_lock(&cpu_buffer->lock); 5822 rb_iter_reset(iter); 5823 arch_spin_unlock(&cpu_buffer->lock); 5824 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5825 } 5826 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 5827 5828 /** 5829 * ring_buffer_read_finish - finish reading the iterator of the buffer 5830 * @iter: The iterator retrieved by ring_buffer_start 5831 * 5832 * This re-enables resizing of the buffer, and frees the iterator. 5833 */ 5834 void 5835 ring_buffer_read_finish(struct ring_buffer_iter *iter) 5836 { 5837 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5838 unsigned long flags; 5839 5840 /* Use this opportunity to check the integrity of the ring buffer. */ 5841 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5842 rb_check_pages(cpu_buffer); 5843 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5844 5845 atomic_dec(&cpu_buffer->resize_disabled); 5846 kfree(iter->event); 5847 kfree(iter); 5848 } 5849 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 5850 5851 /** 5852 * ring_buffer_iter_advance - advance the iterator to the next location 5853 * @iter: The ring buffer iterator 5854 * 5855 * Move the location of the iterator such that the next read will 5856 * be the next location of the iterator. 5857 */ 5858 void ring_buffer_iter_advance(struct ring_buffer_iter *iter) 5859 { 5860 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5861 unsigned long flags; 5862 5863 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5864 5865 rb_advance_iter(iter); 5866 5867 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5868 } 5869 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); 5870 5871 /** 5872 * ring_buffer_size - return the size of the ring buffer (in bytes) 5873 * @buffer: The ring buffer. 5874 * @cpu: The CPU to get ring buffer size from. 5875 */ 5876 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) 5877 { 5878 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5879 return 0; 5880 5881 return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages; 5882 } 5883 EXPORT_SYMBOL_GPL(ring_buffer_size); 5884 5885 /** 5886 * ring_buffer_max_event_size - return the max data size of an event 5887 * @buffer: The ring buffer. 5888 * 5889 * Returns the maximum size an event can be. 5890 */ 5891 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer) 5892 { 5893 /* If abs timestamp is requested, events have a timestamp too */ 5894 if (ring_buffer_time_stamp_abs(buffer)) 5895 return buffer->max_data_size - RB_LEN_TIME_EXTEND; 5896 return buffer->max_data_size; 5897 } 5898 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size); 5899 5900 static void rb_clear_buffer_page(struct buffer_page *page) 5901 { 5902 local_set(&page->write, 0); 5903 local_set(&page->entries, 0); 5904 rb_init_page(page->page); 5905 page->read = 0; 5906 } 5907 5908 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer) 5909 { 5910 struct trace_buffer_meta *meta = cpu_buffer->meta_page; 5911 5912 if (!meta) 5913 return; 5914 5915 meta->reader.read = cpu_buffer->reader_page->read; 5916 meta->reader.id = cpu_buffer->reader_page->id; 5917 meta->reader.lost_events = cpu_buffer->lost_events; 5918 5919 meta->entries = local_read(&cpu_buffer->entries); 5920 meta->overrun = local_read(&cpu_buffer->overrun); 5921 meta->read = cpu_buffer->read; 5922 5923 /* Some archs do not have data cache coherency between kernel and user-space */ 5924 flush_dcache_folio(virt_to_folio(cpu_buffer->meta_page)); 5925 } 5926 5927 static void 5928 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 5929 { 5930 struct buffer_page *page; 5931 5932 rb_head_page_deactivate(cpu_buffer); 5933 5934 cpu_buffer->head_page 5935 = list_entry(cpu_buffer->pages, struct buffer_page, list); 5936 rb_clear_buffer_page(cpu_buffer->head_page); 5937 list_for_each_entry(page, cpu_buffer->pages, list) { 5938 rb_clear_buffer_page(page); 5939 } 5940 5941 cpu_buffer->tail_page = cpu_buffer->head_page; 5942 cpu_buffer->commit_page = cpu_buffer->head_page; 5943 5944 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 5945 INIT_LIST_HEAD(&cpu_buffer->new_pages); 5946 rb_clear_buffer_page(cpu_buffer->reader_page); 5947 5948 local_set(&cpu_buffer->entries_bytes, 0); 5949 local_set(&cpu_buffer->overrun, 0); 5950 local_set(&cpu_buffer->commit_overrun, 0); 5951 local_set(&cpu_buffer->dropped_events, 0); 5952 local_set(&cpu_buffer->entries, 0); 5953 local_set(&cpu_buffer->committing, 0); 5954 local_set(&cpu_buffer->commits, 0); 5955 local_set(&cpu_buffer->pages_touched, 0); 5956 local_set(&cpu_buffer->pages_lost, 0); 5957 local_set(&cpu_buffer->pages_read, 0); 5958 cpu_buffer->last_pages_touch = 0; 5959 cpu_buffer->shortest_full = 0; 5960 cpu_buffer->read = 0; 5961 cpu_buffer->read_bytes = 0; 5962 5963 rb_time_set(&cpu_buffer->write_stamp, 0); 5964 rb_time_set(&cpu_buffer->before_stamp, 0); 5965 5966 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp)); 5967 5968 cpu_buffer->lost_events = 0; 5969 cpu_buffer->last_overrun = 0; 5970 5971 rb_head_page_activate(cpu_buffer); 5972 cpu_buffer->pages_removed = 0; 5973 5974 if (cpu_buffer->mapped) { 5975 rb_update_meta_page(cpu_buffer); 5976 if (cpu_buffer->ring_meta) { 5977 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 5978 meta->commit_buffer = meta->head_buffer; 5979 } 5980 } 5981 } 5982 5983 /* Must have disabled the cpu buffer then done a synchronize_rcu */ 5984 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 5985 { 5986 unsigned long flags; 5987 5988 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5989 5990 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 5991 goto out; 5992 5993 arch_spin_lock(&cpu_buffer->lock); 5994 5995 rb_reset_cpu(cpu_buffer); 5996 5997 arch_spin_unlock(&cpu_buffer->lock); 5998 5999 out: 6000 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 6001 } 6002 6003 /** 6004 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 6005 * @buffer: The ring buffer to reset a per cpu buffer of 6006 * @cpu: The CPU buffer to be reset 6007 */ 6008 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) 6009 { 6010 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 6011 struct ring_buffer_meta *meta; 6012 6013 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6014 return; 6015 6016 /* prevent another thread from changing buffer sizes */ 6017 mutex_lock(&buffer->mutex); 6018 6019 atomic_inc(&cpu_buffer->resize_disabled); 6020 atomic_inc(&cpu_buffer->record_disabled); 6021 6022 /* Make sure all commits have finished */ 6023 synchronize_rcu(); 6024 6025 reset_disabled_cpu_buffer(cpu_buffer); 6026 6027 atomic_dec(&cpu_buffer->record_disabled); 6028 atomic_dec(&cpu_buffer->resize_disabled); 6029 6030 /* Make sure persistent meta now uses this buffer's addresses */ 6031 meta = rb_range_meta(buffer, 0, cpu_buffer->cpu); 6032 if (meta) 6033 rb_meta_init_text_addr(meta); 6034 6035 mutex_unlock(&buffer->mutex); 6036 } 6037 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 6038 6039 /* Flag to ensure proper resetting of atomic variables */ 6040 #define RESET_BIT (1 << 30) 6041 6042 /** 6043 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer 6044 * @buffer: The ring buffer to reset a per cpu buffer of 6045 */ 6046 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer) 6047 { 6048 struct ring_buffer_per_cpu *cpu_buffer; 6049 struct ring_buffer_meta *meta; 6050 int cpu; 6051 6052 /* prevent another thread from changing buffer sizes */ 6053 mutex_lock(&buffer->mutex); 6054 6055 for_each_online_buffer_cpu(buffer, cpu) { 6056 cpu_buffer = buffer->buffers[cpu]; 6057 6058 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled); 6059 atomic_inc(&cpu_buffer->record_disabled); 6060 } 6061 6062 /* Make sure all commits have finished */ 6063 synchronize_rcu(); 6064 6065 for_each_buffer_cpu(buffer, cpu) { 6066 cpu_buffer = buffer->buffers[cpu]; 6067 6068 /* 6069 * If a CPU came online during the synchronize_rcu(), then 6070 * ignore it. 6071 */ 6072 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT)) 6073 continue; 6074 6075 reset_disabled_cpu_buffer(cpu_buffer); 6076 6077 /* Make sure persistent meta now uses this buffer's addresses */ 6078 meta = rb_range_meta(buffer, 0, cpu_buffer->cpu); 6079 if (meta) 6080 rb_meta_init_text_addr(meta); 6081 6082 atomic_dec(&cpu_buffer->record_disabled); 6083 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled); 6084 } 6085 6086 mutex_unlock(&buffer->mutex); 6087 } 6088 6089 /** 6090 * ring_buffer_reset - reset a ring buffer 6091 * @buffer: The ring buffer to reset all cpu buffers 6092 */ 6093 void ring_buffer_reset(struct trace_buffer *buffer) 6094 { 6095 struct ring_buffer_per_cpu *cpu_buffer; 6096 int cpu; 6097 6098 /* prevent another thread from changing buffer sizes */ 6099 mutex_lock(&buffer->mutex); 6100 6101 for_each_buffer_cpu(buffer, cpu) { 6102 cpu_buffer = buffer->buffers[cpu]; 6103 6104 atomic_inc(&cpu_buffer->resize_disabled); 6105 atomic_inc(&cpu_buffer->record_disabled); 6106 } 6107 6108 /* Make sure all commits have finished */ 6109 synchronize_rcu(); 6110 6111 for_each_buffer_cpu(buffer, cpu) { 6112 cpu_buffer = buffer->buffers[cpu]; 6113 6114 reset_disabled_cpu_buffer(cpu_buffer); 6115 6116 atomic_dec(&cpu_buffer->record_disabled); 6117 atomic_dec(&cpu_buffer->resize_disabled); 6118 } 6119 6120 mutex_unlock(&buffer->mutex); 6121 } 6122 EXPORT_SYMBOL_GPL(ring_buffer_reset); 6123 6124 /** 6125 * ring_buffer_empty - is the ring buffer empty? 6126 * @buffer: The ring buffer to test 6127 */ 6128 bool ring_buffer_empty(struct trace_buffer *buffer) 6129 { 6130 struct ring_buffer_per_cpu *cpu_buffer; 6131 unsigned long flags; 6132 bool dolock; 6133 bool ret; 6134 int cpu; 6135 6136 /* yes this is racy, but if you don't like the race, lock the buffer */ 6137 for_each_buffer_cpu(buffer, cpu) { 6138 cpu_buffer = buffer->buffers[cpu]; 6139 local_irq_save(flags); 6140 dolock = rb_reader_lock(cpu_buffer); 6141 ret = rb_per_cpu_empty(cpu_buffer); 6142 rb_reader_unlock(cpu_buffer, dolock); 6143 local_irq_restore(flags); 6144 6145 if (!ret) 6146 return false; 6147 } 6148 6149 return true; 6150 } 6151 EXPORT_SYMBOL_GPL(ring_buffer_empty); 6152 6153 /** 6154 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 6155 * @buffer: The ring buffer 6156 * @cpu: The CPU buffer to test 6157 */ 6158 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) 6159 { 6160 struct ring_buffer_per_cpu *cpu_buffer; 6161 unsigned long flags; 6162 bool dolock; 6163 bool ret; 6164 6165 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6166 return true; 6167 6168 cpu_buffer = buffer->buffers[cpu]; 6169 local_irq_save(flags); 6170 dolock = rb_reader_lock(cpu_buffer); 6171 ret = rb_per_cpu_empty(cpu_buffer); 6172 rb_reader_unlock(cpu_buffer, dolock); 6173 local_irq_restore(flags); 6174 6175 return ret; 6176 } 6177 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 6178 6179 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 6180 /** 6181 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 6182 * @buffer_a: One buffer to swap with 6183 * @buffer_b: The other buffer to swap with 6184 * @cpu: the CPU of the buffers to swap 6185 * 6186 * This function is useful for tracers that want to take a "snapshot" 6187 * of a CPU buffer and has another back up buffer lying around. 6188 * it is expected that the tracer handles the cpu buffer not being 6189 * used at the moment. 6190 */ 6191 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, 6192 struct trace_buffer *buffer_b, int cpu) 6193 { 6194 struct ring_buffer_per_cpu *cpu_buffer_a; 6195 struct ring_buffer_per_cpu *cpu_buffer_b; 6196 int ret = -EINVAL; 6197 6198 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 6199 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 6200 goto out; 6201 6202 cpu_buffer_a = buffer_a->buffers[cpu]; 6203 cpu_buffer_b = buffer_b->buffers[cpu]; 6204 6205 /* It's up to the callers to not try to swap mapped buffers */ 6206 if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) { 6207 ret = -EBUSY; 6208 goto out; 6209 } 6210 6211 /* At least make sure the two buffers are somewhat the same */ 6212 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 6213 goto out; 6214 6215 if (buffer_a->subbuf_order != buffer_b->subbuf_order) 6216 goto out; 6217 6218 ret = -EAGAIN; 6219 6220 if (atomic_read(&buffer_a->record_disabled)) 6221 goto out; 6222 6223 if (atomic_read(&buffer_b->record_disabled)) 6224 goto out; 6225 6226 if (atomic_read(&cpu_buffer_a->record_disabled)) 6227 goto out; 6228 6229 if (atomic_read(&cpu_buffer_b->record_disabled)) 6230 goto out; 6231 6232 /* 6233 * We can't do a synchronize_rcu here because this 6234 * function can be called in atomic context. 6235 * Normally this will be called from the same CPU as cpu. 6236 * If not it's up to the caller to protect this. 6237 */ 6238 atomic_inc(&cpu_buffer_a->record_disabled); 6239 atomic_inc(&cpu_buffer_b->record_disabled); 6240 6241 ret = -EBUSY; 6242 if (local_read(&cpu_buffer_a->committing)) 6243 goto out_dec; 6244 if (local_read(&cpu_buffer_b->committing)) 6245 goto out_dec; 6246 6247 /* 6248 * When resize is in progress, we cannot swap it because 6249 * it will mess the state of the cpu buffer. 6250 */ 6251 if (atomic_read(&buffer_a->resizing)) 6252 goto out_dec; 6253 if (atomic_read(&buffer_b->resizing)) 6254 goto out_dec; 6255 6256 buffer_a->buffers[cpu] = cpu_buffer_b; 6257 buffer_b->buffers[cpu] = cpu_buffer_a; 6258 6259 cpu_buffer_b->buffer = buffer_a; 6260 cpu_buffer_a->buffer = buffer_b; 6261 6262 ret = 0; 6263 6264 out_dec: 6265 atomic_dec(&cpu_buffer_a->record_disabled); 6266 atomic_dec(&cpu_buffer_b->record_disabled); 6267 out: 6268 return ret; 6269 } 6270 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 6271 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 6272 6273 /** 6274 * ring_buffer_alloc_read_page - allocate a page to read from buffer 6275 * @buffer: the buffer to allocate for. 6276 * @cpu: the cpu buffer to allocate. 6277 * 6278 * This function is used in conjunction with ring_buffer_read_page. 6279 * When reading a full page from the ring buffer, these functions 6280 * can be used to speed up the process. The calling function should 6281 * allocate a few pages first with this function. Then when it 6282 * needs to get pages from the ring buffer, it passes the result 6283 * of this function into ring_buffer_read_page, which will swap 6284 * the page that was allocated, with the read page of the buffer. 6285 * 6286 * Returns: 6287 * The page allocated, or ERR_PTR 6288 */ 6289 struct buffer_data_read_page * 6290 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) 6291 { 6292 struct ring_buffer_per_cpu *cpu_buffer; 6293 struct buffer_data_read_page *bpage = NULL; 6294 unsigned long flags; 6295 struct page *page; 6296 6297 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6298 return ERR_PTR(-ENODEV); 6299 6300 bpage = kzalloc(sizeof(*bpage), GFP_KERNEL); 6301 if (!bpage) 6302 return ERR_PTR(-ENOMEM); 6303 6304 bpage->order = buffer->subbuf_order; 6305 cpu_buffer = buffer->buffers[cpu]; 6306 local_irq_save(flags); 6307 arch_spin_lock(&cpu_buffer->lock); 6308 6309 if (cpu_buffer->free_page) { 6310 bpage->data = cpu_buffer->free_page; 6311 cpu_buffer->free_page = NULL; 6312 } 6313 6314 arch_spin_unlock(&cpu_buffer->lock); 6315 local_irq_restore(flags); 6316 6317 if (bpage->data) 6318 goto out; 6319 6320 page = alloc_pages_node(cpu_to_node(cpu), 6321 GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO, 6322 cpu_buffer->buffer->subbuf_order); 6323 if (!page) { 6324 kfree(bpage); 6325 return ERR_PTR(-ENOMEM); 6326 } 6327 6328 bpage->data = page_address(page); 6329 6330 out: 6331 rb_init_page(bpage->data); 6332 6333 return bpage; 6334 } 6335 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 6336 6337 /** 6338 * ring_buffer_free_read_page - free an allocated read page 6339 * @buffer: the buffer the page was allocate for 6340 * @cpu: the cpu buffer the page came from 6341 * @data_page: the page to free 6342 * 6343 * Free a page allocated from ring_buffer_alloc_read_page. 6344 */ 6345 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, 6346 struct buffer_data_read_page *data_page) 6347 { 6348 struct ring_buffer_per_cpu *cpu_buffer; 6349 struct buffer_data_page *bpage = data_page->data; 6350 struct page *page = virt_to_page(bpage); 6351 unsigned long flags; 6352 6353 if (!buffer || !buffer->buffers || !buffer->buffers[cpu]) 6354 return; 6355 6356 cpu_buffer = buffer->buffers[cpu]; 6357 6358 /* 6359 * If the page is still in use someplace else, or order of the page 6360 * is different from the subbuffer order of the buffer - 6361 * we can't reuse it 6362 */ 6363 if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order) 6364 goto out; 6365 6366 local_irq_save(flags); 6367 arch_spin_lock(&cpu_buffer->lock); 6368 6369 if (!cpu_buffer->free_page) { 6370 cpu_buffer->free_page = bpage; 6371 bpage = NULL; 6372 } 6373 6374 arch_spin_unlock(&cpu_buffer->lock); 6375 local_irq_restore(flags); 6376 6377 out: 6378 free_pages((unsigned long)bpage, data_page->order); 6379 kfree(data_page); 6380 } 6381 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 6382 6383 /** 6384 * ring_buffer_read_page - extract a page from the ring buffer 6385 * @buffer: buffer to extract from 6386 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 6387 * @len: amount to extract 6388 * @cpu: the cpu of the buffer to extract 6389 * @full: should the extraction only happen when the page is full. 6390 * 6391 * This function will pull out a page from the ring buffer and consume it. 6392 * @data_page must be the address of the variable that was returned 6393 * from ring_buffer_alloc_read_page. This is because the page might be used 6394 * to swap with a page in the ring buffer. 6395 * 6396 * for example: 6397 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 6398 * if (IS_ERR(rpage)) 6399 * return PTR_ERR(rpage); 6400 * ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0); 6401 * if (ret >= 0) 6402 * process_page(ring_buffer_read_page_data(rpage), ret); 6403 * ring_buffer_free_read_page(buffer, cpu, rpage); 6404 * 6405 * When @full is set, the function will not return true unless 6406 * the writer is off the reader page. 6407 * 6408 * Note: it is up to the calling functions to handle sleeps and wakeups. 6409 * The ring buffer can be used anywhere in the kernel and can not 6410 * blindly call wake_up. The layer that uses the ring buffer must be 6411 * responsible for that. 6412 * 6413 * Returns: 6414 * >=0 if data has been transferred, returns the offset of consumed data. 6415 * <0 if no data has been transferred. 6416 */ 6417 int ring_buffer_read_page(struct trace_buffer *buffer, 6418 struct buffer_data_read_page *data_page, 6419 size_t len, int cpu, int full) 6420 { 6421 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 6422 struct ring_buffer_event *event; 6423 struct buffer_data_page *bpage; 6424 struct buffer_page *reader; 6425 unsigned long missed_events; 6426 unsigned long flags; 6427 unsigned int commit; 6428 unsigned int read; 6429 u64 save_timestamp; 6430 int ret = -1; 6431 6432 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6433 goto out; 6434 6435 /* 6436 * If len is not big enough to hold the page header, then 6437 * we can not copy anything. 6438 */ 6439 if (len <= BUF_PAGE_HDR_SIZE) 6440 goto out; 6441 6442 len -= BUF_PAGE_HDR_SIZE; 6443 6444 if (!data_page || !data_page->data) 6445 goto out; 6446 if (data_page->order != buffer->subbuf_order) 6447 goto out; 6448 6449 bpage = data_page->data; 6450 if (!bpage) 6451 goto out; 6452 6453 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 6454 6455 reader = rb_get_reader_page(cpu_buffer); 6456 if (!reader) 6457 goto out_unlock; 6458 6459 event = rb_reader_event(cpu_buffer); 6460 6461 read = reader->read; 6462 commit = rb_page_size(reader); 6463 6464 /* Check if any events were dropped */ 6465 missed_events = cpu_buffer->lost_events; 6466 6467 /* 6468 * If this page has been partially read or 6469 * if len is not big enough to read the rest of the page or 6470 * a writer is still on the page, then 6471 * we must copy the data from the page to the buffer. 6472 * Otherwise, we can simply swap the page with the one passed in. 6473 */ 6474 if (read || (len < (commit - read)) || 6475 cpu_buffer->reader_page == cpu_buffer->commit_page || 6476 cpu_buffer->mapped) { 6477 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 6478 unsigned int rpos = read; 6479 unsigned int pos = 0; 6480 unsigned int size; 6481 6482 /* 6483 * If a full page is expected, this can still be returned 6484 * if there's been a previous partial read and the 6485 * rest of the page can be read and the commit page is off 6486 * the reader page. 6487 */ 6488 if (full && 6489 (!read || (len < (commit - read)) || 6490 cpu_buffer->reader_page == cpu_buffer->commit_page)) 6491 goto out_unlock; 6492 6493 if (len > (commit - read)) 6494 len = (commit - read); 6495 6496 /* Always keep the time extend and data together */ 6497 size = rb_event_ts_length(event); 6498 6499 if (len < size) 6500 goto out_unlock; 6501 6502 /* save the current timestamp, since the user will need it */ 6503 save_timestamp = cpu_buffer->read_stamp; 6504 6505 /* Need to copy one event at a time */ 6506 do { 6507 /* We need the size of one event, because 6508 * rb_advance_reader only advances by one event, 6509 * whereas rb_event_ts_length may include the size of 6510 * one or two events. 6511 * We have already ensured there's enough space if this 6512 * is a time extend. */ 6513 size = rb_event_length(event); 6514 memcpy(bpage->data + pos, rpage->data + rpos, size); 6515 6516 len -= size; 6517 6518 rb_advance_reader(cpu_buffer); 6519 rpos = reader->read; 6520 pos += size; 6521 6522 if (rpos >= commit) 6523 break; 6524 6525 event = rb_reader_event(cpu_buffer); 6526 /* Always keep the time extend and data together */ 6527 size = rb_event_ts_length(event); 6528 } while (len >= size); 6529 6530 /* update bpage */ 6531 local_set(&bpage->commit, pos); 6532 bpage->time_stamp = save_timestamp; 6533 6534 /* we copied everything to the beginning */ 6535 read = 0; 6536 } else { 6537 /* update the entry counter */ 6538 cpu_buffer->read += rb_page_entries(reader); 6539 cpu_buffer->read_bytes += rb_page_size(reader); 6540 6541 /* swap the pages */ 6542 rb_init_page(bpage); 6543 bpage = reader->page; 6544 reader->page = data_page->data; 6545 local_set(&reader->write, 0); 6546 local_set(&reader->entries, 0); 6547 reader->read = 0; 6548 data_page->data = bpage; 6549 6550 /* 6551 * Use the real_end for the data size, 6552 * This gives us a chance to store the lost events 6553 * on the page. 6554 */ 6555 if (reader->real_end) 6556 local_set(&bpage->commit, reader->real_end); 6557 } 6558 ret = read; 6559 6560 cpu_buffer->lost_events = 0; 6561 6562 commit = local_read(&bpage->commit); 6563 /* 6564 * Set a flag in the commit field if we lost events 6565 */ 6566 if (missed_events) { 6567 /* If there is room at the end of the page to save the 6568 * missed events, then record it there. 6569 */ 6570 if (buffer->subbuf_size - commit >= sizeof(missed_events)) { 6571 memcpy(&bpage->data[commit], &missed_events, 6572 sizeof(missed_events)); 6573 local_add(RB_MISSED_STORED, &bpage->commit); 6574 commit += sizeof(missed_events); 6575 } 6576 local_add(RB_MISSED_EVENTS, &bpage->commit); 6577 } 6578 6579 /* 6580 * This page may be off to user land. Zero it out here. 6581 */ 6582 if (commit < buffer->subbuf_size) 6583 memset(&bpage->data[commit], 0, buffer->subbuf_size - commit); 6584 6585 out_unlock: 6586 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 6587 6588 out: 6589 return ret; 6590 } 6591 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 6592 6593 /** 6594 * ring_buffer_read_page_data - get pointer to the data in the page. 6595 * @page: the page to get the data from 6596 * 6597 * Returns pointer to the actual data in this page. 6598 */ 6599 void *ring_buffer_read_page_data(struct buffer_data_read_page *page) 6600 { 6601 return page->data; 6602 } 6603 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data); 6604 6605 /** 6606 * ring_buffer_subbuf_size_get - get size of the sub buffer. 6607 * @buffer: the buffer to get the sub buffer size from 6608 * 6609 * Returns size of the sub buffer, in bytes. 6610 */ 6611 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer) 6612 { 6613 return buffer->subbuf_size + BUF_PAGE_HDR_SIZE; 6614 } 6615 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get); 6616 6617 /** 6618 * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page. 6619 * @buffer: The ring_buffer to get the system sub page order from 6620 * 6621 * By default, one ring buffer sub page equals to one system page. This parameter 6622 * is configurable, per ring buffer. The size of the ring buffer sub page can be 6623 * extended, but must be an order of system page size. 6624 * 6625 * Returns the order of buffer sub page size, in system pages: 6626 * 0 means the sub buffer size is 1 system page and so forth. 6627 * In case of an error < 0 is returned. 6628 */ 6629 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer) 6630 { 6631 if (!buffer) 6632 return -EINVAL; 6633 6634 return buffer->subbuf_order; 6635 } 6636 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get); 6637 6638 /** 6639 * ring_buffer_subbuf_order_set - set the size of ring buffer sub page. 6640 * @buffer: The ring_buffer to set the new page size. 6641 * @order: Order of the system pages in one sub buffer page 6642 * 6643 * By default, one ring buffer pages equals to one system page. This API can be 6644 * used to set new size of the ring buffer page. The size must be order of 6645 * system page size, that's why the input parameter @order is the order of 6646 * system pages that are allocated for one ring buffer page: 6647 * 0 - 1 system page 6648 * 1 - 2 system pages 6649 * 3 - 4 system pages 6650 * ... 6651 * 6652 * Returns 0 on success or < 0 in case of an error. 6653 */ 6654 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order) 6655 { 6656 struct ring_buffer_per_cpu *cpu_buffer; 6657 struct buffer_page *bpage, *tmp; 6658 int old_order, old_size; 6659 int nr_pages; 6660 int psize; 6661 int err; 6662 int cpu; 6663 6664 if (!buffer || order < 0) 6665 return -EINVAL; 6666 6667 if (buffer->subbuf_order == order) 6668 return 0; 6669 6670 psize = (1 << order) * PAGE_SIZE; 6671 if (psize <= BUF_PAGE_HDR_SIZE) 6672 return -EINVAL; 6673 6674 /* Size of a subbuf cannot be greater than the write counter */ 6675 if (psize > RB_WRITE_MASK + 1) 6676 return -EINVAL; 6677 6678 old_order = buffer->subbuf_order; 6679 old_size = buffer->subbuf_size; 6680 6681 /* prevent another thread from changing buffer sizes */ 6682 mutex_lock(&buffer->mutex); 6683 atomic_inc(&buffer->record_disabled); 6684 6685 /* Make sure all commits have finished */ 6686 synchronize_rcu(); 6687 6688 buffer->subbuf_order = order; 6689 buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE; 6690 6691 /* Make sure all new buffers are allocated, before deleting the old ones */ 6692 for_each_buffer_cpu(buffer, cpu) { 6693 6694 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6695 continue; 6696 6697 cpu_buffer = buffer->buffers[cpu]; 6698 6699 if (cpu_buffer->mapped) { 6700 err = -EBUSY; 6701 goto error; 6702 } 6703 6704 /* Update the number of pages to match the new size */ 6705 nr_pages = old_size * buffer->buffers[cpu]->nr_pages; 6706 nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size); 6707 6708 /* we need a minimum of two pages */ 6709 if (nr_pages < 2) 6710 nr_pages = 2; 6711 6712 cpu_buffer->nr_pages_to_update = nr_pages; 6713 6714 /* Include the reader page */ 6715 nr_pages++; 6716 6717 /* Allocate the new size buffer */ 6718 INIT_LIST_HEAD(&cpu_buffer->new_pages); 6719 if (__rb_allocate_pages(cpu_buffer, nr_pages, 6720 &cpu_buffer->new_pages)) { 6721 /* not enough memory for new pages */ 6722 err = -ENOMEM; 6723 goto error; 6724 } 6725 } 6726 6727 for_each_buffer_cpu(buffer, cpu) { 6728 struct buffer_data_page *old_free_data_page; 6729 struct list_head old_pages; 6730 unsigned long flags; 6731 6732 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6733 continue; 6734 6735 cpu_buffer = buffer->buffers[cpu]; 6736 6737 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 6738 6739 /* Clear the head bit to make the link list normal to read */ 6740 rb_head_page_deactivate(cpu_buffer); 6741 6742 /* 6743 * Collect buffers from the cpu_buffer pages list and the 6744 * reader_page on old_pages, so they can be freed later when not 6745 * under a spinlock. The pages list is a linked list with no 6746 * head, adding old_pages turns it into a regular list with 6747 * old_pages being the head. 6748 */ 6749 list_add(&old_pages, cpu_buffer->pages); 6750 list_add(&cpu_buffer->reader_page->list, &old_pages); 6751 6752 /* One page was allocated for the reader page */ 6753 cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next, 6754 struct buffer_page, list); 6755 list_del_init(&cpu_buffer->reader_page->list); 6756 6757 /* Install the new pages, remove the head from the list */ 6758 cpu_buffer->pages = cpu_buffer->new_pages.next; 6759 list_del_init(&cpu_buffer->new_pages); 6760 6761 cpu_buffer->head_page 6762 = list_entry(cpu_buffer->pages, struct buffer_page, list); 6763 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 6764 6765 cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update; 6766 cpu_buffer->nr_pages_to_update = 0; 6767 6768 old_free_data_page = cpu_buffer->free_page; 6769 cpu_buffer->free_page = NULL; 6770 6771 rb_head_page_activate(cpu_buffer); 6772 6773 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 6774 6775 /* Free old sub buffers */ 6776 list_for_each_entry_safe(bpage, tmp, &old_pages, list) { 6777 list_del_init(&bpage->list); 6778 free_buffer_page(bpage); 6779 } 6780 free_pages((unsigned long)old_free_data_page, old_order); 6781 6782 rb_check_pages(cpu_buffer); 6783 } 6784 6785 atomic_dec(&buffer->record_disabled); 6786 mutex_unlock(&buffer->mutex); 6787 6788 return 0; 6789 6790 error: 6791 buffer->subbuf_order = old_order; 6792 buffer->subbuf_size = old_size; 6793 6794 atomic_dec(&buffer->record_disabled); 6795 mutex_unlock(&buffer->mutex); 6796 6797 for_each_buffer_cpu(buffer, cpu) { 6798 cpu_buffer = buffer->buffers[cpu]; 6799 6800 if (!cpu_buffer->nr_pages_to_update) 6801 continue; 6802 6803 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) { 6804 list_del_init(&bpage->list); 6805 free_buffer_page(bpage); 6806 } 6807 } 6808 6809 return err; 6810 } 6811 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set); 6812 6813 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer) 6814 { 6815 struct page *page; 6816 6817 if (cpu_buffer->meta_page) 6818 return 0; 6819 6820 page = alloc_page(GFP_USER | __GFP_ZERO); 6821 if (!page) 6822 return -ENOMEM; 6823 6824 cpu_buffer->meta_page = page_to_virt(page); 6825 6826 return 0; 6827 } 6828 6829 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer) 6830 { 6831 unsigned long addr = (unsigned long)cpu_buffer->meta_page; 6832 6833 free_page(addr); 6834 cpu_buffer->meta_page = NULL; 6835 } 6836 6837 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer, 6838 unsigned long *subbuf_ids) 6839 { 6840 struct trace_buffer_meta *meta = cpu_buffer->meta_page; 6841 unsigned int nr_subbufs = cpu_buffer->nr_pages + 1; 6842 struct buffer_page *first_subbuf, *subbuf; 6843 int id = 0; 6844 6845 subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page; 6846 cpu_buffer->reader_page->id = id++; 6847 6848 first_subbuf = subbuf = rb_set_head_page(cpu_buffer); 6849 do { 6850 if (WARN_ON(id >= nr_subbufs)) 6851 break; 6852 6853 subbuf_ids[id] = (unsigned long)subbuf->page; 6854 subbuf->id = id; 6855 6856 rb_inc_page(&subbuf); 6857 id++; 6858 } while (subbuf != first_subbuf); 6859 6860 /* install subbuf ID to kern VA translation */ 6861 cpu_buffer->subbuf_ids = subbuf_ids; 6862 6863 meta->meta_struct_len = sizeof(*meta); 6864 meta->nr_subbufs = nr_subbufs; 6865 meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE; 6866 meta->meta_page_size = meta->subbuf_size; 6867 6868 rb_update_meta_page(cpu_buffer); 6869 } 6870 6871 static struct ring_buffer_per_cpu * 6872 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu) 6873 { 6874 struct ring_buffer_per_cpu *cpu_buffer; 6875 6876 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6877 return ERR_PTR(-EINVAL); 6878 6879 cpu_buffer = buffer->buffers[cpu]; 6880 6881 mutex_lock(&cpu_buffer->mapping_lock); 6882 6883 if (!cpu_buffer->user_mapped) { 6884 mutex_unlock(&cpu_buffer->mapping_lock); 6885 return ERR_PTR(-ENODEV); 6886 } 6887 6888 return cpu_buffer; 6889 } 6890 6891 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer) 6892 { 6893 mutex_unlock(&cpu_buffer->mapping_lock); 6894 } 6895 6896 /* 6897 * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need 6898 * to be set-up or torn-down. 6899 */ 6900 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer, 6901 bool inc) 6902 { 6903 unsigned long flags; 6904 6905 lockdep_assert_held(&cpu_buffer->mapping_lock); 6906 6907 /* mapped is always greater or equal to user_mapped */ 6908 if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped)) 6909 return -EINVAL; 6910 6911 if (inc && cpu_buffer->mapped == UINT_MAX) 6912 return -EBUSY; 6913 6914 if (WARN_ON(!inc && cpu_buffer->user_mapped == 0)) 6915 return -EINVAL; 6916 6917 mutex_lock(&cpu_buffer->buffer->mutex); 6918 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 6919 6920 if (inc) { 6921 cpu_buffer->user_mapped++; 6922 cpu_buffer->mapped++; 6923 } else { 6924 cpu_buffer->user_mapped--; 6925 cpu_buffer->mapped--; 6926 } 6927 6928 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 6929 mutex_unlock(&cpu_buffer->buffer->mutex); 6930 6931 return 0; 6932 } 6933 6934 /* 6935 * +--------------+ pgoff == 0 6936 * | meta page | 6937 * +--------------+ pgoff == 1 6938 * | subbuffer 0 | 6939 * | | 6940 * +--------------+ pgoff == (1 + (1 << subbuf_order)) 6941 * | subbuffer 1 | 6942 * | | 6943 * ... 6944 */ 6945 #ifdef CONFIG_MMU 6946 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer, 6947 struct vm_area_struct *vma) 6948 { 6949 unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff; 6950 unsigned int subbuf_pages, subbuf_order; 6951 struct page **pages; 6952 int p = 0, s = 0; 6953 int err; 6954 6955 /* Refuse MP_PRIVATE or writable mappings */ 6956 if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC || 6957 !(vma->vm_flags & VM_MAYSHARE)) 6958 return -EPERM; 6959 6960 subbuf_order = cpu_buffer->buffer->subbuf_order; 6961 subbuf_pages = 1 << subbuf_order; 6962 6963 if (subbuf_order && pgoff % subbuf_pages) 6964 return -EINVAL; 6965 6966 /* 6967 * Make sure the mapping cannot become writable later. Also tell the VM 6968 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND). 6969 */ 6970 vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP, 6971 VM_MAYWRITE); 6972 6973 lockdep_assert_held(&cpu_buffer->mapping_lock); 6974 6975 nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */ 6976 nr_pages = ((nr_subbufs + 1) << subbuf_order) - pgoff; /* + meta-page */ 6977 6978 nr_vma_pages = vma_pages(vma); 6979 if (!nr_vma_pages || nr_vma_pages > nr_pages) 6980 return -EINVAL; 6981 6982 nr_pages = nr_vma_pages; 6983 6984 pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL); 6985 if (!pages) 6986 return -ENOMEM; 6987 6988 if (!pgoff) { 6989 unsigned long meta_page_padding; 6990 6991 pages[p++] = virt_to_page(cpu_buffer->meta_page); 6992 6993 /* 6994 * Pad with the zero-page to align the meta-page with the 6995 * sub-buffers. 6996 */ 6997 meta_page_padding = subbuf_pages - 1; 6998 while (meta_page_padding-- && p < nr_pages) { 6999 unsigned long __maybe_unused zero_addr = 7000 vma->vm_start + (PAGE_SIZE * p); 7001 7002 pages[p++] = ZERO_PAGE(zero_addr); 7003 } 7004 } else { 7005 /* Skip the meta-page */ 7006 pgoff -= subbuf_pages; 7007 7008 s += pgoff / subbuf_pages; 7009 } 7010 7011 while (p < nr_pages) { 7012 struct page *page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]); 7013 int off = 0; 7014 7015 if (WARN_ON_ONCE(s >= nr_subbufs)) { 7016 err = -EINVAL; 7017 goto out; 7018 } 7019 7020 for (; off < (1 << (subbuf_order)); off++, page++) { 7021 if (p >= nr_pages) 7022 break; 7023 7024 pages[p++] = page; 7025 } 7026 s++; 7027 } 7028 7029 err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages); 7030 7031 out: 7032 kfree(pages); 7033 7034 return err; 7035 } 7036 #else 7037 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer, 7038 struct vm_area_struct *vma) 7039 { 7040 return -EOPNOTSUPP; 7041 } 7042 #endif 7043 7044 int ring_buffer_map(struct trace_buffer *buffer, int cpu, 7045 struct vm_area_struct *vma) 7046 { 7047 struct ring_buffer_per_cpu *cpu_buffer; 7048 unsigned long flags, *subbuf_ids; 7049 int err = 0; 7050 7051 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 7052 return -EINVAL; 7053 7054 cpu_buffer = buffer->buffers[cpu]; 7055 7056 mutex_lock(&cpu_buffer->mapping_lock); 7057 7058 if (cpu_buffer->user_mapped) { 7059 err = __rb_map_vma(cpu_buffer, vma); 7060 if (!err) 7061 err = __rb_inc_dec_mapped(cpu_buffer, true); 7062 mutex_unlock(&cpu_buffer->mapping_lock); 7063 return err; 7064 } 7065 7066 /* prevent another thread from changing buffer/sub-buffer sizes */ 7067 mutex_lock(&buffer->mutex); 7068 7069 err = rb_alloc_meta_page(cpu_buffer); 7070 if (err) 7071 goto unlock; 7072 7073 /* subbuf_ids include the reader while nr_pages does not */ 7074 subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL); 7075 if (!subbuf_ids) { 7076 rb_free_meta_page(cpu_buffer); 7077 err = -ENOMEM; 7078 goto unlock; 7079 } 7080 7081 atomic_inc(&cpu_buffer->resize_disabled); 7082 7083 /* 7084 * Lock all readers to block any subbuf swap until the subbuf IDs are 7085 * assigned. 7086 */ 7087 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7088 rb_setup_ids_meta_page(cpu_buffer, subbuf_ids); 7089 7090 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7091 7092 err = __rb_map_vma(cpu_buffer, vma); 7093 if (!err) { 7094 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7095 /* This is the first time it is mapped by user */ 7096 cpu_buffer->mapped++; 7097 cpu_buffer->user_mapped = 1; 7098 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7099 } else { 7100 kfree(cpu_buffer->subbuf_ids); 7101 cpu_buffer->subbuf_ids = NULL; 7102 rb_free_meta_page(cpu_buffer); 7103 } 7104 7105 unlock: 7106 mutex_unlock(&buffer->mutex); 7107 mutex_unlock(&cpu_buffer->mapping_lock); 7108 7109 return err; 7110 } 7111 7112 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu) 7113 { 7114 struct ring_buffer_per_cpu *cpu_buffer; 7115 unsigned long flags; 7116 int err = 0; 7117 7118 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 7119 return -EINVAL; 7120 7121 cpu_buffer = buffer->buffers[cpu]; 7122 7123 mutex_lock(&cpu_buffer->mapping_lock); 7124 7125 if (!cpu_buffer->user_mapped) { 7126 err = -ENODEV; 7127 goto out; 7128 } else if (cpu_buffer->user_mapped > 1) { 7129 __rb_inc_dec_mapped(cpu_buffer, false); 7130 goto out; 7131 } 7132 7133 mutex_lock(&buffer->mutex); 7134 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7135 7136 /* This is the last user space mapping */ 7137 if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped)) 7138 cpu_buffer->mapped--; 7139 cpu_buffer->user_mapped = 0; 7140 7141 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7142 7143 kfree(cpu_buffer->subbuf_ids); 7144 cpu_buffer->subbuf_ids = NULL; 7145 rb_free_meta_page(cpu_buffer); 7146 atomic_dec(&cpu_buffer->resize_disabled); 7147 7148 mutex_unlock(&buffer->mutex); 7149 7150 out: 7151 mutex_unlock(&cpu_buffer->mapping_lock); 7152 7153 return err; 7154 } 7155 7156 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu) 7157 { 7158 struct ring_buffer_per_cpu *cpu_buffer; 7159 struct buffer_page *reader; 7160 unsigned long missed_events; 7161 unsigned long reader_size; 7162 unsigned long flags; 7163 7164 cpu_buffer = rb_get_mapped_buffer(buffer, cpu); 7165 if (IS_ERR(cpu_buffer)) 7166 return (int)PTR_ERR(cpu_buffer); 7167 7168 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7169 7170 consume: 7171 if (rb_per_cpu_empty(cpu_buffer)) 7172 goto out; 7173 7174 reader_size = rb_page_size(cpu_buffer->reader_page); 7175 7176 /* 7177 * There are data to be read on the current reader page, we can 7178 * return to the caller. But before that, we assume the latter will read 7179 * everything. Let's update the kernel reader accordingly. 7180 */ 7181 if (cpu_buffer->reader_page->read < reader_size) { 7182 while (cpu_buffer->reader_page->read < reader_size) 7183 rb_advance_reader(cpu_buffer); 7184 goto out; 7185 } 7186 7187 reader = rb_get_reader_page(cpu_buffer); 7188 if (WARN_ON(!reader)) 7189 goto out; 7190 7191 /* Check if any events were dropped */ 7192 missed_events = cpu_buffer->lost_events; 7193 7194 if (cpu_buffer->reader_page != cpu_buffer->commit_page) { 7195 if (missed_events) { 7196 struct buffer_data_page *bpage = reader->page; 7197 unsigned int commit; 7198 /* 7199 * Use the real_end for the data size, 7200 * This gives us a chance to store the lost events 7201 * on the page. 7202 */ 7203 if (reader->real_end) 7204 local_set(&bpage->commit, reader->real_end); 7205 /* 7206 * If there is room at the end of the page to save the 7207 * missed events, then record it there. 7208 */ 7209 commit = rb_page_size(reader); 7210 if (buffer->subbuf_size - commit >= sizeof(missed_events)) { 7211 memcpy(&bpage->data[commit], &missed_events, 7212 sizeof(missed_events)); 7213 local_add(RB_MISSED_STORED, &bpage->commit); 7214 } 7215 local_add(RB_MISSED_EVENTS, &bpage->commit); 7216 } 7217 } else { 7218 /* 7219 * There really shouldn't be any missed events if the commit 7220 * is on the reader page. 7221 */ 7222 WARN_ON_ONCE(missed_events); 7223 } 7224 7225 cpu_buffer->lost_events = 0; 7226 7227 goto consume; 7228 7229 out: 7230 /* Some archs do not have data cache coherency between kernel and user-space */ 7231 flush_dcache_folio(virt_to_folio(cpu_buffer->reader_page->page)); 7232 7233 rb_update_meta_page(cpu_buffer); 7234 7235 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7236 rb_put_mapped_buffer(cpu_buffer); 7237 7238 return 0; 7239 } 7240 7241 /* 7242 * We only allocate new buffers, never free them if the CPU goes down. 7243 * If we were to free the buffer, then the user would lose any trace that was in 7244 * the buffer. 7245 */ 7246 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 7247 { 7248 struct trace_buffer *buffer; 7249 long nr_pages_same; 7250 int cpu_i; 7251 unsigned long nr_pages; 7252 7253 buffer = container_of(node, struct trace_buffer, node); 7254 if (cpumask_test_cpu(cpu, buffer->cpumask)) 7255 return 0; 7256 7257 nr_pages = 0; 7258 nr_pages_same = 1; 7259 /* check if all cpu sizes are same */ 7260 for_each_buffer_cpu(buffer, cpu_i) { 7261 /* fill in the size from first enabled cpu */ 7262 if (nr_pages == 0) 7263 nr_pages = buffer->buffers[cpu_i]->nr_pages; 7264 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 7265 nr_pages_same = 0; 7266 break; 7267 } 7268 } 7269 /* allocate minimum pages, user can later expand it */ 7270 if (!nr_pages_same) 7271 nr_pages = 2; 7272 buffer->buffers[cpu] = 7273 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 7274 if (!buffer->buffers[cpu]) { 7275 WARN(1, "failed to allocate ring buffer on CPU %u\n", 7276 cpu); 7277 return -ENOMEM; 7278 } 7279 smp_wmb(); 7280 cpumask_set_cpu(cpu, buffer->cpumask); 7281 return 0; 7282 } 7283 7284 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 7285 /* 7286 * This is a basic integrity check of the ring buffer. 7287 * Late in the boot cycle this test will run when configured in. 7288 * It will kick off a thread per CPU that will go into a loop 7289 * writing to the per cpu ring buffer various sizes of data. 7290 * Some of the data will be large items, some small. 7291 * 7292 * Another thread is created that goes into a spin, sending out 7293 * IPIs to the other CPUs to also write into the ring buffer. 7294 * this is to test the nesting ability of the buffer. 7295 * 7296 * Basic stats are recorded and reported. If something in the 7297 * ring buffer should happen that's not expected, a big warning 7298 * is displayed and all ring buffers are disabled. 7299 */ 7300 static struct task_struct *rb_threads[NR_CPUS] __initdata; 7301 7302 struct rb_test_data { 7303 struct trace_buffer *buffer; 7304 unsigned long events; 7305 unsigned long bytes_written; 7306 unsigned long bytes_alloc; 7307 unsigned long bytes_dropped; 7308 unsigned long events_nested; 7309 unsigned long bytes_written_nested; 7310 unsigned long bytes_alloc_nested; 7311 unsigned long bytes_dropped_nested; 7312 int min_size_nested; 7313 int max_size_nested; 7314 int max_size; 7315 int min_size; 7316 int cpu; 7317 int cnt; 7318 }; 7319 7320 static struct rb_test_data rb_data[NR_CPUS] __initdata; 7321 7322 /* 1 meg per cpu */ 7323 #define RB_TEST_BUFFER_SIZE 1048576 7324 7325 static char rb_string[] __initdata = 7326 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 7327 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 7328 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 7329 7330 static bool rb_test_started __initdata; 7331 7332 struct rb_item { 7333 int size; 7334 char str[]; 7335 }; 7336 7337 static __init int rb_write_something(struct rb_test_data *data, bool nested) 7338 { 7339 struct ring_buffer_event *event; 7340 struct rb_item *item; 7341 bool started; 7342 int event_len; 7343 int size; 7344 int len; 7345 int cnt; 7346 7347 /* Have nested writes different that what is written */ 7348 cnt = data->cnt + (nested ? 27 : 0); 7349 7350 /* Multiply cnt by ~e, to make some unique increment */ 7351 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 7352 7353 len = size + sizeof(struct rb_item); 7354 7355 started = rb_test_started; 7356 /* read rb_test_started before checking buffer enabled */ 7357 smp_rmb(); 7358 7359 event = ring_buffer_lock_reserve(data->buffer, len); 7360 if (!event) { 7361 /* Ignore dropped events before test starts. */ 7362 if (started) { 7363 if (nested) 7364 data->bytes_dropped += len; 7365 else 7366 data->bytes_dropped_nested += len; 7367 } 7368 return len; 7369 } 7370 7371 event_len = ring_buffer_event_length(event); 7372 7373 if (RB_WARN_ON(data->buffer, event_len < len)) 7374 goto out; 7375 7376 item = ring_buffer_event_data(event); 7377 item->size = size; 7378 memcpy(item->str, rb_string, size); 7379 7380 if (nested) { 7381 data->bytes_alloc_nested += event_len; 7382 data->bytes_written_nested += len; 7383 data->events_nested++; 7384 if (!data->min_size_nested || len < data->min_size_nested) 7385 data->min_size_nested = len; 7386 if (len > data->max_size_nested) 7387 data->max_size_nested = len; 7388 } else { 7389 data->bytes_alloc += event_len; 7390 data->bytes_written += len; 7391 data->events++; 7392 if (!data->min_size || len < data->min_size) 7393 data->max_size = len; 7394 if (len > data->max_size) 7395 data->max_size = len; 7396 } 7397 7398 out: 7399 ring_buffer_unlock_commit(data->buffer); 7400 7401 return 0; 7402 } 7403 7404 static __init int rb_test(void *arg) 7405 { 7406 struct rb_test_data *data = arg; 7407 7408 while (!kthread_should_stop()) { 7409 rb_write_something(data, false); 7410 data->cnt++; 7411 7412 set_current_state(TASK_INTERRUPTIBLE); 7413 /* Now sleep between a min of 100-300us and a max of 1ms */ 7414 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 7415 } 7416 7417 return 0; 7418 } 7419 7420 static __init void rb_ipi(void *ignore) 7421 { 7422 struct rb_test_data *data; 7423 int cpu = smp_processor_id(); 7424 7425 data = &rb_data[cpu]; 7426 rb_write_something(data, true); 7427 } 7428 7429 static __init int rb_hammer_test(void *arg) 7430 { 7431 while (!kthread_should_stop()) { 7432 7433 /* Send an IPI to all cpus to write data! */ 7434 smp_call_function(rb_ipi, NULL, 1); 7435 /* No sleep, but for non preempt, let others run */ 7436 schedule(); 7437 } 7438 7439 return 0; 7440 } 7441 7442 static __init int test_ringbuffer(void) 7443 { 7444 struct task_struct *rb_hammer; 7445 struct trace_buffer *buffer; 7446 int cpu; 7447 int ret = 0; 7448 7449 if (security_locked_down(LOCKDOWN_TRACEFS)) { 7450 pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); 7451 return 0; 7452 } 7453 7454 pr_info("Running ring buffer tests...\n"); 7455 7456 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 7457 if (WARN_ON(!buffer)) 7458 return 0; 7459 7460 /* Disable buffer so that threads can't write to it yet */ 7461 ring_buffer_record_off(buffer); 7462 7463 for_each_online_cpu(cpu) { 7464 rb_data[cpu].buffer = buffer; 7465 rb_data[cpu].cpu = cpu; 7466 rb_data[cpu].cnt = cpu; 7467 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu], 7468 cpu, "rbtester/%u"); 7469 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 7470 pr_cont("FAILED\n"); 7471 ret = PTR_ERR(rb_threads[cpu]); 7472 goto out_free; 7473 } 7474 } 7475 7476 /* Now create the rb hammer! */ 7477 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 7478 if (WARN_ON(IS_ERR(rb_hammer))) { 7479 pr_cont("FAILED\n"); 7480 ret = PTR_ERR(rb_hammer); 7481 goto out_free; 7482 } 7483 7484 ring_buffer_record_on(buffer); 7485 /* 7486 * Show buffer is enabled before setting rb_test_started. 7487 * Yes there's a small race window where events could be 7488 * dropped and the thread wont catch it. But when a ring 7489 * buffer gets enabled, there will always be some kind of 7490 * delay before other CPUs see it. Thus, we don't care about 7491 * those dropped events. We care about events dropped after 7492 * the threads see that the buffer is active. 7493 */ 7494 smp_wmb(); 7495 rb_test_started = true; 7496 7497 set_current_state(TASK_INTERRUPTIBLE); 7498 /* Just run for 10 seconds */; 7499 schedule_timeout(10 * HZ); 7500 7501 kthread_stop(rb_hammer); 7502 7503 out_free: 7504 for_each_online_cpu(cpu) { 7505 if (!rb_threads[cpu]) 7506 break; 7507 kthread_stop(rb_threads[cpu]); 7508 } 7509 if (ret) { 7510 ring_buffer_free(buffer); 7511 return ret; 7512 } 7513 7514 /* Report! */ 7515 pr_info("finished\n"); 7516 for_each_online_cpu(cpu) { 7517 struct ring_buffer_event *event; 7518 struct rb_test_data *data = &rb_data[cpu]; 7519 struct rb_item *item; 7520 unsigned long total_events; 7521 unsigned long total_dropped; 7522 unsigned long total_written; 7523 unsigned long total_alloc; 7524 unsigned long total_read = 0; 7525 unsigned long total_size = 0; 7526 unsigned long total_len = 0; 7527 unsigned long total_lost = 0; 7528 unsigned long lost; 7529 int big_event_size; 7530 int small_event_size; 7531 7532 ret = -1; 7533 7534 total_events = data->events + data->events_nested; 7535 total_written = data->bytes_written + data->bytes_written_nested; 7536 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 7537 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 7538 7539 big_event_size = data->max_size + data->max_size_nested; 7540 small_event_size = data->min_size + data->min_size_nested; 7541 7542 pr_info("CPU %d:\n", cpu); 7543 pr_info(" events: %ld\n", total_events); 7544 pr_info(" dropped bytes: %ld\n", total_dropped); 7545 pr_info(" alloced bytes: %ld\n", total_alloc); 7546 pr_info(" written bytes: %ld\n", total_written); 7547 pr_info(" biggest event: %d\n", big_event_size); 7548 pr_info(" smallest event: %d\n", small_event_size); 7549 7550 if (RB_WARN_ON(buffer, total_dropped)) 7551 break; 7552 7553 ret = 0; 7554 7555 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 7556 total_lost += lost; 7557 item = ring_buffer_event_data(event); 7558 total_len += ring_buffer_event_length(event); 7559 total_size += item->size + sizeof(struct rb_item); 7560 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 7561 pr_info("FAILED!\n"); 7562 pr_info("buffer had: %.*s\n", item->size, item->str); 7563 pr_info("expected: %.*s\n", item->size, rb_string); 7564 RB_WARN_ON(buffer, 1); 7565 ret = -1; 7566 break; 7567 } 7568 total_read++; 7569 } 7570 if (ret) 7571 break; 7572 7573 ret = -1; 7574 7575 pr_info(" read events: %ld\n", total_read); 7576 pr_info(" lost events: %ld\n", total_lost); 7577 pr_info(" total events: %ld\n", total_lost + total_read); 7578 pr_info(" recorded len bytes: %ld\n", total_len); 7579 pr_info(" recorded size bytes: %ld\n", total_size); 7580 if (total_lost) { 7581 pr_info(" With dropped events, record len and size may not match\n" 7582 " alloced and written from above\n"); 7583 } else { 7584 if (RB_WARN_ON(buffer, total_len != total_alloc || 7585 total_size != total_written)) 7586 break; 7587 } 7588 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 7589 break; 7590 7591 ret = 0; 7592 } 7593 if (!ret) 7594 pr_info("Ring buffer PASSED!\n"); 7595 7596 ring_buffer_free(buffer); 7597 return 0; 7598 } 7599 7600 late_initcall(test_ringbuffer); 7601 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 7602