1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2013-2015, The Linux Foundation. All rights reserved.
4 * Copyright (c) 2019, Linaro Limited
5 */
6
7 #include <linux/cleanup.h>
8 #include <linux/module.h>
9 #include <linux/err.h>
10 #include <linux/debugfs.h>
11 #include <linux/string.h>
12 #include <linux/kernel.h>
13 #include <linux/list.h>
14 #include <linux/init.h>
15 #include <linux/io.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_domain.h>
21 #include <linux/pm_opp.h>
22 #include <linux/interrupt.h>
23 #include <linux/regmap.h>
24 #include <linux/mfd/syscon.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/clk.h>
27 #include <linux/nvmem-consumer.h>
28
29 /* Register Offsets for RB-CPR and Bit Definitions */
30
31 /* RBCPR Version Register */
32 #define REG_RBCPR_VERSION 0
33 #define RBCPR_VER_2 0x02
34 #define FLAGS_IGNORE_1ST_IRQ_STATUS BIT(0)
35
36 /* RBCPR Gate Count and Target Registers */
37 #define REG_RBCPR_GCNT_TARGET(n) (0x60 + 4 * (n))
38
39 #define RBCPR_GCNT_TARGET_TARGET_SHIFT 0
40 #define RBCPR_GCNT_TARGET_TARGET_MASK GENMASK(11, 0)
41 #define RBCPR_GCNT_TARGET_GCNT_SHIFT 12
42 #define RBCPR_GCNT_TARGET_GCNT_MASK GENMASK(9, 0)
43
44 /* RBCPR Timer Control */
45 #define REG_RBCPR_TIMER_INTERVAL 0x44
46 #define REG_RBIF_TIMER_ADJUST 0x4c
47
48 #define RBIF_TIMER_ADJ_CONS_UP_MASK GENMASK(3, 0)
49 #define RBIF_TIMER_ADJ_CONS_UP_SHIFT 0
50 #define RBIF_TIMER_ADJ_CONS_DOWN_MASK GENMASK(3, 0)
51 #define RBIF_TIMER_ADJ_CONS_DOWN_SHIFT 4
52 #define RBIF_TIMER_ADJ_CLAMP_INT_MASK GENMASK(7, 0)
53 #define RBIF_TIMER_ADJ_CLAMP_INT_SHIFT 8
54
55 /* RBCPR Config Register */
56 #define REG_RBIF_LIMIT 0x48
57 #define RBIF_LIMIT_CEILING_MASK GENMASK(5, 0)
58 #define RBIF_LIMIT_CEILING_SHIFT 6
59 #define RBIF_LIMIT_FLOOR_BITS 6
60 #define RBIF_LIMIT_FLOOR_MASK GENMASK(5, 0)
61
62 #define RBIF_LIMIT_CEILING_DEFAULT RBIF_LIMIT_CEILING_MASK
63 #define RBIF_LIMIT_FLOOR_DEFAULT 0
64
65 #define REG_RBIF_SW_VLEVEL 0x94
66 #define RBIF_SW_VLEVEL_DEFAULT 0x20
67
68 #define REG_RBCPR_STEP_QUOT 0x80
69 #define RBCPR_STEP_QUOT_STEPQUOT_MASK GENMASK(7, 0)
70 #define RBCPR_STEP_QUOT_IDLE_CLK_MASK GENMASK(3, 0)
71 #define RBCPR_STEP_QUOT_IDLE_CLK_SHIFT 8
72
73 /* RBCPR Control Register */
74 #define REG_RBCPR_CTL 0x90
75
76 #define RBCPR_CTL_LOOP_EN BIT(0)
77 #define RBCPR_CTL_TIMER_EN BIT(3)
78 #define RBCPR_CTL_SW_AUTO_CONT_ACK_EN BIT(5)
79 #define RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN BIT(6)
80 #define RBCPR_CTL_COUNT_MODE BIT(10)
81 #define RBCPR_CTL_UP_THRESHOLD_MASK GENMASK(3, 0)
82 #define RBCPR_CTL_UP_THRESHOLD_SHIFT 24
83 #define RBCPR_CTL_DN_THRESHOLD_MASK GENMASK(3, 0)
84 #define RBCPR_CTL_DN_THRESHOLD_SHIFT 28
85
86 /* RBCPR Ack/Nack Response */
87 #define REG_RBIF_CONT_ACK_CMD 0x98
88 #define REG_RBIF_CONT_NACK_CMD 0x9c
89
90 /* RBCPR Result status Register */
91 #define REG_RBCPR_RESULT_0 0xa0
92
93 #define RBCPR_RESULT0_BUSY_SHIFT 19
94 #define RBCPR_RESULT0_BUSY_MASK BIT(RBCPR_RESULT0_BUSY_SHIFT)
95 #define RBCPR_RESULT0_ERROR_LT0_SHIFT 18
96 #define RBCPR_RESULT0_ERROR_SHIFT 6
97 #define RBCPR_RESULT0_ERROR_MASK GENMASK(11, 0)
98 #define RBCPR_RESULT0_ERROR_STEPS_SHIFT 2
99 #define RBCPR_RESULT0_ERROR_STEPS_MASK GENMASK(3, 0)
100 #define RBCPR_RESULT0_STEP_UP_SHIFT 1
101
102 /* RBCPR Interrupt Control Register */
103 #define REG_RBIF_IRQ_EN(n) (0x100 + 4 * (n))
104 #define REG_RBIF_IRQ_CLEAR 0x110
105 #define REG_RBIF_IRQ_STATUS 0x114
106
107 #define CPR_INT_DONE BIT(0)
108 #define CPR_INT_MIN BIT(1)
109 #define CPR_INT_DOWN BIT(2)
110 #define CPR_INT_MID BIT(3)
111 #define CPR_INT_UP BIT(4)
112 #define CPR_INT_MAX BIT(5)
113 #define CPR_INT_CLAMP BIT(6)
114 #define CPR_INT_ALL (CPR_INT_DONE | CPR_INT_MIN | CPR_INT_DOWN | \
115 CPR_INT_MID | CPR_INT_UP | CPR_INT_MAX | CPR_INT_CLAMP)
116 #define CPR_INT_DEFAULT (CPR_INT_UP | CPR_INT_DOWN)
117
118 #define CPR_NUM_RING_OSC 8
119
120 /* CPR eFuse parameters */
121 #define CPR_FUSE_TARGET_QUOT_BITS_MASK GENMASK(11, 0)
122
123 #define CPR_FUSE_MIN_QUOT_DIFF 50
124
125 #define FUSE_REVISION_UNKNOWN (-1)
126
127 enum voltage_change_dir {
128 NO_CHANGE,
129 DOWN,
130 UP,
131 };
132
133 struct cpr_fuse {
134 char *ring_osc;
135 char *init_voltage;
136 char *quotient;
137 char *quotient_offset;
138 };
139
140 struct fuse_corner_data {
141 int ref_uV;
142 int max_uV;
143 int min_uV;
144 int max_volt_scale;
145 int max_quot_scale;
146 /* fuse quot */
147 int quot_offset;
148 int quot_scale;
149 int quot_adjust;
150 /* fuse quot_offset */
151 int quot_offset_scale;
152 int quot_offset_adjust;
153 };
154
155 struct cpr_fuses {
156 int init_voltage_step;
157 int init_voltage_width;
158 struct fuse_corner_data *fuse_corner_data;
159 };
160
161 struct corner_data {
162 unsigned int fuse_corner;
163 unsigned long freq;
164 };
165
166 struct cpr_desc {
167 unsigned int num_fuse_corners;
168 int min_diff_quot;
169 int *step_quot;
170
171 unsigned int timer_delay_us;
172 unsigned int timer_cons_up;
173 unsigned int timer_cons_down;
174 unsigned int up_threshold;
175 unsigned int down_threshold;
176 unsigned int idle_clocks;
177 unsigned int gcnt_us;
178 unsigned int vdd_apc_step_up_limit;
179 unsigned int vdd_apc_step_down_limit;
180 unsigned int clamp_timer_interval;
181
182 struct cpr_fuses cpr_fuses;
183 bool reduce_to_fuse_uV;
184 bool reduce_to_corner_uV;
185 };
186
187 struct acc_desc {
188 unsigned int enable_reg;
189 u32 enable_mask;
190
191 struct reg_sequence *config;
192 struct reg_sequence *settings;
193 int num_regs_per_fuse;
194 };
195
196 struct cpr_acc_desc {
197 const struct cpr_desc *cpr_desc;
198 const struct acc_desc *acc_desc;
199 };
200
201 struct fuse_corner {
202 int min_uV;
203 int max_uV;
204 int uV;
205 int quot;
206 int step_quot;
207 const struct reg_sequence *accs;
208 int num_accs;
209 unsigned long max_freq;
210 u8 ring_osc_idx;
211 };
212
213 struct corner {
214 int min_uV;
215 int max_uV;
216 int uV;
217 int last_uV;
218 int quot_adjust;
219 u32 save_ctl;
220 u32 save_irq;
221 unsigned long freq;
222 struct fuse_corner *fuse_corner;
223 };
224
225 struct cpr_drv {
226 unsigned int num_corners;
227 unsigned int ref_clk_khz;
228
229 struct generic_pm_domain pd;
230 struct device *dev;
231 struct device *attached_cpu_dev;
232 struct mutex lock;
233 void __iomem *base;
234 struct corner *corner;
235 struct regulator *vdd_apc;
236 struct clk *cpu_clk;
237 struct regmap *tcsr;
238 bool loop_disabled;
239 u32 gcnt;
240 unsigned long flags;
241
242 struct fuse_corner *fuse_corners;
243 struct corner *corners;
244
245 const struct cpr_desc *desc;
246 const struct acc_desc *acc_desc;
247 const struct cpr_fuse *cpr_fuses;
248
249 struct dentry *debugfs;
250 };
251
cpr_is_allowed(struct cpr_drv * drv)252 static bool cpr_is_allowed(struct cpr_drv *drv)
253 {
254 return !drv->loop_disabled;
255 }
256
cpr_write(struct cpr_drv * drv,u32 offset,u32 value)257 static void cpr_write(struct cpr_drv *drv, u32 offset, u32 value)
258 {
259 writel_relaxed(value, drv->base + offset);
260 }
261
cpr_read(struct cpr_drv * drv,u32 offset)262 static u32 cpr_read(struct cpr_drv *drv, u32 offset)
263 {
264 return readl_relaxed(drv->base + offset);
265 }
266
267 static void
cpr_masked_write(struct cpr_drv * drv,u32 offset,u32 mask,u32 value)268 cpr_masked_write(struct cpr_drv *drv, u32 offset, u32 mask, u32 value)
269 {
270 u32 val;
271
272 val = readl_relaxed(drv->base + offset);
273 val &= ~mask;
274 val |= value & mask;
275 writel_relaxed(val, drv->base + offset);
276 }
277
cpr_irq_clr(struct cpr_drv * drv)278 static void cpr_irq_clr(struct cpr_drv *drv)
279 {
280 cpr_write(drv, REG_RBIF_IRQ_CLEAR, CPR_INT_ALL);
281 }
282
cpr_irq_clr_nack(struct cpr_drv * drv)283 static void cpr_irq_clr_nack(struct cpr_drv *drv)
284 {
285 cpr_irq_clr(drv);
286 cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
287 }
288
cpr_irq_clr_ack(struct cpr_drv * drv)289 static void cpr_irq_clr_ack(struct cpr_drv *drv)
290 {
291 cpr_irq_clr(drv);
292 cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
293 }
294
cpr_irq_set(struct cpr_drv * drv,u32 int_bits)295 static void cpr_irq_set(struct cpr_drv *drv, u32 int_bits)
296 {
297 cpr_write(drv, REG_RBIF_IRQ_EN(0), int_bits);
298 }
299
cpr_ctl_modify(struct cpr_drv * drv,u32 mask,u32 value)300 static void cpr_ctl_modify(struct cpr_drv *drv, u32 mask, u32 value)
301 {
302 cpr_masked_write(drv, REG_RBCPR_CTL, mask, value);
303 }
304
cpr_ctl_enable(struct cpr_drv * drv,struct corner * corner)305 static void cpr_ctl_enable(struct cpr_drv *drv, struct corner *corner)
306 {
307 u32 val, mask;
308 const struct cpr_desc *desc = drv->desc;
309
310 /* Program Consecutive Up & Down */
311 val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
312 val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
313 mask = RBIF_TIMER_ADJ_CONS_UP_MASK | RBIF_TIMER_ADJ_CONS_DOWN_MASK;
314 cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, mask, val);
315 cpr_masked_write(drv, REG_RBCPR_CTL,
316 RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
317 RBCPR_CTL_SW_AUTO_CONT_ACK_EN,
318 corner->save_ctl);
319 cpr_irq_set(drv, corner->save_irq);
320
321 if (cpr_is_allowed(drv) && corner->max_uV > corner->min_uV)
322 val = RBCPR_CTL_LOOP_EN;
323 else
324 val = 0;
325 cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, val);
326 }
327
cpr_ctl_disable(struct cpr_drv * drv)328 static void cpr_ctl_disable(struct cpr_drv *drv)
329 {
330 cpr_irq_set(drv, 0);
331 cpr_ctl_modify(drv, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
332 RBCPR_CTL_SW_AUTO_CONT_ACK_EN, 0);
333 cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST,
334 RBIF_TIMER_ADJ_CONS_UP_MASK |
335 RBIF_TIMER_ADJ_CONS_DOWN_MASK, 0);
336 cpr_irq_clr(drv);
337 cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
338 cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
339 cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, 0);
340 }
341
cpr_ctl_is_enabled(struct cpr_drv * drv)342 static bool cpr_ctl_is_enabled(struct cpr_drv *drv)
343 {
344 u32 reg_val;
345
346 reg_val = cpr_read(drv, REG_RBCPR_CTL);
347 return reg_val & RBCPR_CTL_LOOP_EN;
348 }
349
cpr_ctl_is_busy(struct cpr_drv * drv)350 static bool cpr_ctl_is_busy(struct cpr_drv *drv)
351 {
352 u32 reg_val;
353
354 reg_val = cpr_read(drv, REG_RBCPR_RESULT_0);
355 return reg_val & RBCPR_RESULT0_BUSY_MASK;
356 }
357
cpr_corner_save(struct cpr_drv * drv,struct corner * corner)358 static void cpr_corner_save(struct cpr_drv *drv, struct corner *corner)
359 {
360 corner->save_ctl = cpr_read(drv, REG_RBCPR_CTL);
361 corner->save_irq = cpr_read(drv, REG_RBIF_IRQ_EN(0));
362 }
363
cpr_corner_restore(struct cpr_drv * drv,struct corner * corner)364 static void cpr_corner_restore(struct cpr_drv *drv, struct corner *corner)
365 {
366 u32 gcnt, ctl, irq, ro_sel, step_quot;
367 struct fuse_corner *fuse = corner->fuse_corner;
368 const struct cpr_desc *desc = drv->desc;
369 int i;
370
371 ro_sel = fuse->ring_osc_idx;
372 gcnt = drv->gcnt;
373 gcnt |= fuse->quot - corner->quot_adjust;
374
375 /* Program the step quotient and idle clocks */
376 step_quot = desc->idle_clocks << RBCPR_STEP_QUOT_IDLE_CLK_SHIFT;
377 step_quot |= fuse->step_quot & RBCPR_STEP_QUOT_STEPQUOT_MASK;
378 cpr_write(drv, REG_RBCPR_STEP_QUOT, step_quot);
379
380 /* Clear the target quotient value and gate count of all ROs */
381 for (i = 0; i < CPR_NUM_RING_OSC; i++)
382 cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
383
384 cpr_write(drv, REG_RBCPR_GCNT_TARGET(ro_sel), gcnt);
385 ctl = corner->save_ctl;
386 cpr_write(drv, REG_RBCPR_CTL, ctl);
387 irq = corner->save_irq;
388 cpr_irq_set(drv, irq);
389 dev_dbg(drv->dev, "gcnt = %#08x, ctl = %#08x, irq = %#08x\n", gcnt,
390 ctl, irq);
391 }
392
cpr_set_acc(struct regmap * tcsr,struct fuse_corner * f,struct fuse_corner * end)393 static void cpr_set_acc(struct regmap *tcsr, struct fuse_corner *f,
394 struct fuse_corner *end)
395 {
396 if (f == end)
397 return;
398
399 if (f < end) {
400 for (f += 1; f <= end; f++)
401 regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
402 } else {
403 for (f -= 1; f >= end; f--)
404 regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
405 }
406 }
407
cpr_pre_voltage(struct cpr_drv * drv,struct fuse_corner * fuse_corner,enum voltage_change_dir dir)408 static int cpr_pre_voltage(struct cpr_drv *drv,
409 struct fuse_corner *fuse_corner,
410 enum voltage_change_dir dir)
411 {
412 struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
413
414 if (drv->tcsr && dir == DOWN)
415 cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
416
417 return 0;
418 }
419
cpr_post_voltage(struct cpr_drv * drv,struct fuse_corner * fuse_corner,enum voltage_change_dir dir)420 static int cpr_post_voltage(struct cpr_drv *drv,
421 struct fuse_corner *fuse_corner,
422 enum voltage_change_dir dir)
423 {
424 struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
425
426 if (drv->tcsr && dir == UP)
427 cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
428
429 return 0;
430 }
431
cpr_scale_voltage(struct cpr_drv * drv,struct corner * corner,int new_uV,enum voltage_change_dir dir)432 static int cpr_scale_voltage(struct cpr_drv *drv, struct corner *corner,
433 int new_uV, enum voltage_change_dir dir)
434 {
435 int ret;
436 struct fuse_corner *fuse_corner = corner->fuse_corner;
437
438 ret = cpr_pre_voltage(drv, fuse_corner, dir);
439 if (ret)
440 return ret;
441
442 ret = regulator_set_voltage(drv->vdd_apc, new_uV, new_uV);
443 if (ret) {
444 dev_err_ratelimited(drv->dev, "failed to set apc voltage %d\n",
445 new_uV);
446 return ret;
447 }
448
449 ret = cpr_post_voltage(drv, fuse_corner, dir);
450 if (ret)
451 return ret;
452
453 return 0;
454 }
455
cpr_get_cur_perf_state(struct cpr_drv * drv)456 static unsigned int cpr_get_cur_perf_state(struct cpr_drv *drv)
457 {
458 return drv->corner ? drv->corner - drv->corners + 1 : 0;
459 }
460
cpr_scale(struct cpr_drv * drv,enum voltage_change_dir dir)461 static int cpr_scale(struct cpr_drv *drv, enum voltage_change_dir dir)
462 {
463 u32 val, error_steps, reg_mask;
464 int last_uV, new_uV, step_uV, ret;
465 struct corner *corner;
466 const struct cpr_desc *desc = drv->desc;
467
468 if (dir != UP && dir != DOWN)
469 return 0;
470
471 step_uV = regulator_get_linear_step(drv->vdd_apc);
472 if (!step_uV)
473 return -EINVAL;
474
475 corner = drv->corner;
476
477 val = cpr_read(drv, REG_RBCPR_RESULT_0);
478
479 error_steps = val >> RBCPR_RESULT0_ERROR_STEPS_SHIFT;
480 error_steps &= RBCPR_RESULT0_ERROR_STEPS_MASK;
481 last_uV = corner->last_uV;
482
483 if (dir == UP) {
484 if (desc->clamp_timer_interval &&
485 error_steps < desc->up_threshold) {
486 /*
487 * Handle the case where another measurement started
488 * after the interrupt was triggered due to a core
489 * exiting from power collapse.
490 */
491 error_steps = max(desc->up_threshold,
492 desc->vdd_apc_step_up_limit);
493 }
494
495 if (last_uV >= corner->max_uV) {
496 cpr_irq_clr_nack(drv);
497
498 /* Maximize the UP threshold */
499 reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
500 reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
501 val = reg_mask;
502 cpr_ctl_modify(drv, reg_mask, val);
503
504 /* Disable UP interrupt */
505 cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_UP);
506
507 return 0;
508 }
509
510 if (error_steps > desc->vdd_apc_step_up_limit)
511 error_steps = desc->vdd_apc_step_up_limit;
512
513 /* Calculate new voltage */
514 new_uV = last_uV + error_steps * step_uV;
515 new_uV = min(new_uV, corner->max_uV);
516
517 dev_dbg(drv->dev,
518 "UP: -> new_uV: %d last_uV: %d perf state: %u\n",
519 new_uV, last_uV, cpr_get_cur_perf_state(drv));
520 } else {
521 if (desc->clamp_timer_interval &&
522 error_steps < desc->down_threshold) {
523 /*
524 * Handle the case where another measurement started
525 * after the interrupt was triggered due to a core
526 * exiting from power collapse.
527 */
528 error_steps = max(desc->down_threshold,
529 desc->vdd_apc_step_down_limit);
530 }
531
532 if (last_uV <= corner->min_uV) {
533 cpr_irq_clr_nack(drv);
534
535 /* Enable auto nack down */
536 reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
537 val = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
538
539 cpr_ctl_modify(drv, reg_mask, val);
540
541 /* Disable DOWN interrupt */
542 cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_DOWN);
543
544 return 0;
545 }
546
547 if (error_steps > desc->vdd_apc_step_down_limit)
548 error_steps = desc->vdd_apc_step_down_limit;
549
550 /* Calculate new voltage */
551 new_uV = last_uV - error_steps * step_uV;
552 new_uV = max(new_uV, corner->min_uV);
553
554 dev_dbg(drv->dev,
555 "DOWN: -> new_uV: %d last_uV: %d perf state: %u\n",
556 new_uV, last_uV, cpr_get_cur_perf_state(drv));
557 }
558
559 ret = cpr_scale_voltage(drv, corner, new_uV, dir);
560 if (ret) {
561 cpr_irq_clr_nack(drv);
562 return ret;
563 }
564 drv->corner->last_uV = new_uV;
565
566 if (dir == UP) {
567 /* Disable auto nack down */
568 reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
569 val = 0;
570 } else {
571 /* Restore default threshold for UP */
572 reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
573 reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
574 val = desc->up_threshold;
575 val <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
576 }
577
578 cpr_ctl_modify(drv, reg_mask, val);
579
580 /* Re-enable default interrupts */
581 cpr_irq_set(drv, CPR_INT_DEFAULT);
582
583 /* Ack */
584 cpr_irq_clr_ack(drv);
585
586 return 0;
587 }
588
cpr_irq_handler(int irq,void * dev)589 static irqreturn_t cpr_irq_handler(int irq, void *dev)
590 {
591 struct cpr_drv *drv = dev;
592 const struct cpr_desc *desc = drv->desc;
593 irqreturn_t ret = IRQ_HANDLED;
594 u32 val;
595
596 mutex_lock(&drv->lock);
597
598 val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
599 if (drv->flags & FLAGS_IGNORE_1ST_IRQ_STATUS)
600 val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
601
602 dev_dbg(drv->dev, "IRQ_STATUS = %#02x\n", val);
603
604 if (!cpr_ctl_is_enabled(drv)) {
605 dev_dbg(drv->dev, "CPR is disabled\n");
606 ret = IRQ_NONE;
607 } else if (cpr_ctl_is_busy(drv) && !desc->clamp_timer_interval) {
608 dev_dbg(drv->dev, "CPR measurement is not ready\n");
609 } else if (!cpr_is_allowed(drv)) {
610 val = cpr_read(drv, REG_RBCPR_CTL);
611 dev_err_ratelimited(drv->dev,
612 "Interrupt broken? RBCPR_CTL = %#02x\n",
613 val);
614 ret = IRQ_NONE;
615 } else {
616 /*
617 * Following sequence of handling is as per each IRQ's
618 * priority
619 */
620 if (val & CPR_INT_UP) {
621 cpr_scale(drv, UP);
622 } else if (val & CPR_INT_DOWN) {
623 cpr_scale(drv, DOWN);
624 } else if (val & CPR_INT_MIN) {
625 cpr_irq_clr_nack(drv);
626 } else if (val & CPR_INT_MAX) {
627 cpr_irq_clr_nack(drv);
628 } else if (val & CPR_INT_MID) {
629 /* RBCPR_CTL_SW_AUTO_CONT_ACK_EN is enabled */
630 dev_dbg(drv->dev, "IRQ occurred for Mid Flag\n");
631 } else {
632 dev_dbg(drv->dev,
633 "IRQ occurred for unknown flag (%#08x)\n", val);
634 }
635
636 /* Save register values for the corner */
637 cpr_corner_save(drv, drv->corner);
638 }
639
640 mutex_unlock(&drv->lock);
641
642 return ret;
643 }
644
cpr_enable(struct cpr_drv * drv)645 static int cpr_enable(struct cpr_drv *drv)
646 {
647 int ret;
648
649 ret = regulator_enable(drv->vdd_apc);
650 if (ret)
651 return ret;
652
653 mutex_lock(&drv->lock);
654
655 if (cpr_is_allowed(drv) && drv->corner) {
656 cpr_irq_clr(drv);
657 cpr_corner_restore(drv, drv->corner);
658 cpr_ctl_enable(drv, drv->corner);
659 }
660
661 mutex_unlock(&drv->lock);
662
663 return 0;
664 }
665
cpr_disable(struct cpr_drv * drv)666 static int cpr_disable(struct cpr_drv *drv)
667 {
668 mutex_lock(&drv->lock);
669
670 if (cpr_is_allowed(drv)) {
671 cpr_ctl_disable(drv);
672 cpr_irq_clr(drv);
673 }
674
675 mutex_unlock(&drv->lock);
676
677 return regulator_disable(drv->vdd_apc);
678 }
679
cpr_config(struct cpr_drv * drv)680 static int cpr_config(struct cpr_drv *drv)
681 {
682 int i;
683 u32 val, gcnt;
684 struct corner *corner;
685 const struct cpr_desc *desc = drv->desc;
686
687 /* Disable interrupt and CPR */
688 cpr_write(drv, REG_RBIF_IRQ_EN(0), 0);
689 cpr_write(drv, REG_RBCPR_CTL, 0);
690
691 /* Program the default HW ceiling, floor and vlevel */
692 val = (RBIF_LIMIT_CEILING_DEFAULT & RBIF_LIMIT_CEILING_MASK)
693 << RBIF_LIMIT_CEILING_SHIFT;
694 val |= RBIF_LIMIT_FLOOR_DEFAULT & RBIF_LIMIT_FLOOR_MASK;
695 cpr_write(drv, REG_RBIF_LIMIT, val);
696 cpr_write(drv, REG_RBIF_SW_VLEVEL, RBIF_SW_VLEVEL_DEFAULT);
697
698 /*
699 * Clear the target quotient value and gate count of all
700 * ring oscillators
701 */
702 for (i = 0; i < CPR_NUM_RING_OSC; i++)
703 cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
704
705 /* Init and save gcnt */
706 gcnt = (drv->ref_clk_khz * desc->gcnt_us) / 1000;
707 gcnt = gcnt & RBCPR_GCNT_TARGET_GCNT_MASK;
708 gcnt <<= RBCPR_GCNT_TARGET_GCNT_SHIFT;
709 drv->gcnt = gcnt;
710
711 /* Program the delay count for the timer */
712 val = (drv->ref_clk_khz * desc->timer_delay_us) / 1000;
713 cpr_write(drv, REG_RBCPR_TIMER_INTERVAL, val);
714 dev_dbg(drv->dev, "Timer count: %#0x (for %d us)\n", val,
715 desc->timer_delay_us);
716
717 /* Program Consecutive Up & Down */
718 val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
719 val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
720 val |= desc->clamp_timer_interval << RBIF_TIMER_ADJ_CLAMP_INT_SHIFT;
721 cpr_write(drv, REG_RBIF_TIMER_ADJUST, val);
722
723 /* Program the control register */
724 val = desc->up_threshold << RBCPR_CTL_UP_THRESHOLD_SHIFT;
725 val |= desc->down_threshold << RBCPR_CTL_DN_THRESHOLD_SHIFT;
726 val |= RBCPR_CTL_TIMER_EN | RBCPR_CTL_COUNT_MODE;
727 val |= RBCPR_CTL_SW_AUTO_CONT_ACK_EN;
728 cpr_write(drv, REG_RBCPR_CTL, val);
729
730 for (i = 0; i < drv->num_corners; i++) {
731 corner = &drv->corners[i];
732 corner->save_ctl = val;
733 corner->save_irq = CPR_INT_DEFAULT;
734 }
735
736 cpr_irq_set(drv, CPR_INT_DEFAULT);
737
738 val = cpr_read(drv, REG_RBCPR_VERSION);
739 if (val <= RBCPR_VER_2)
740 drv->flags |= FLAGS_IGNORE_1ST_IRQ_STATUS;
741
742 return 0;
743 }
744
cpr_set_performance_state(struct generic_pm_domain * domain,unsigned int state)745 static int cpr_set_performance_state(struct generic_pm_domain *domain,
746 unsigned int state)
747 {
748 struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
749 struct corner *corner, *end;
750 enum voltage_change_dir dir;
751 int ret, new_uV;
752
753 guard(mutex)(&drv->lock);
754
755 dev_dbg(drv->dev, "%s: setting perf state: %u (prev state: %u)\n",
756 __func__, state, cpr_get_cur_perf_state(drv));
757
758 /*
759 * Determine new corner we're going to.
760 * Remove one since lowest performance state is 1.
761 */
762 corner = drv->corners + state - 1;
763 end = &drv->corners[drv->num_corners - 1];
764 if (corner > end || corner < drv->corners)
765 return -EINVAL;
766
767 /* Determine direction */
768 if (drv->corner > corner)
769 dir = DOWN;
770 else if (drv->corner < corner)
771 dir = UP;
772 else
773 dir = NO_CHANGE;
774
775 if (cpr_is_allowed(drv))
776 new_uV = corner->last_uV;
777 else
778 new_uV = corner->uV;
779
780 if (cpr_is_allowed(drv))
781 cpr_ctl_disable(drv);
782
783 ret = cpr_scale_voltage(drv, corner, new_uV, dir);
784 if (ret)
785 return ret;
786
787 if (cpr_is_allowed(drv)) {
788 cpr_irq_clr(drv);
789 if (drv->corner != corner)
790 cpr_corner_restore(drv, corner);
791 cpr_ctl_enable(drv, corner);
792 }
793
794 drv->corner = corner;
795
796 return 0;
797 }
798
799 static int
cpr_populate_ring_osc_idx(struct cpr_drv * drv)800 cpr_populate_ring_osc_idx(struct cpr_drv *drv)
801 {
802 struct fuse_corner *fuse = drv->fuse_corners;
803 struct fuse_corner *end = fuse + drv->desc->num_fuse_corners;
804 const struct cpr_fuse *fuses = drv->cpr_fuses;
805 u32 data;
806 int ret;
807
808 for (; fuse < end; fuse++, fuses++) {
809 ret = nvmem_cell_read_variable_le_u32(drv->dev, fuses->ring_osc, &data);
810 if (ret)
811 return ret;
812 fuse->ring_osc_idx = data;
813 }
814
815 return 0;
816 }
817
cpr_read_fuse_uV(const struct cpr_desc * desc,const struct fuse_corner_data * fdata,const char * init_v_efuse,int step_volt,struct cpr_drv * drv)818 static int cpr_read_fuse_uV(const struct cpr_desc *desc,
819 const struct fuse_corner_data *fdata,
820 const char *init_v_efuse,
821 int step_volt,
822 struct cpr_drv *drv)
823 {
824 int step_size_uV, steps, uV;
825 u32 bits = 0;
826 int ret;
827
828 ret = nvmem_cell_read_variable_le_u32(drv->dev, init_v_efuse, &bits);
829 if (ret)
830 return ret;
831
832 steps = bits & ~BIT(desc->cpr_fuses.init_voltage_width - 1);
833 /* Not two's complement.. instead highest bit is sign bit */
834 if (bits & BIT(desc->cpr_fuses.init_voltage_width - 1))
835 steps = -steps;
836
837 step_size_uV = desc->cpr_fuses.init_voltage_step;
838
839 uV = fdata->ref_uV + steps * step_size_uV;
840 return DIV_ROUND_UP(uV, step_volt) * step_volt;
841 }
842
cpr_fuse_corner_init(struct cpr_drv * drv)843 static int cpr_fuse_corner_init(struct cpr_drv *drv)
844 {
845 const struct cpr_desc *desc = drv->desc;
846 const struct cpr_fuse *fuses = drv->cpr_fuses;
847 const struct acc_desc *acc_desc = drv->acc_desc;
848 int i;
849 unsigned int step_volt;
850 struct fuse_corner_data *fdata;
851 struct fuse_corner *fuse, *end;
852 int uV;
853 const struct reg_sequence *accs;
854 int ret;
855
856 accs = acc_desc->settings;
857
858 step_volt = regulator_get_linear_step(drv->vdd_apc);
859 if (!step_volt)
860 return -EINVAL;
861
862 /* Populate fuse_corner members */
863 fuse = drv->fuse_corners;
864 end = &fuse[desc->num_fuse_corners - 1];
865 fdata = desc->cpr_fuses.fuse_corner_data;
866
867 for (i = 0; fuse <= end; fuse++, fuses++, i++, fdata++) {
868 /*
869 * Update SoC voltages: platforms might choose a different
870 * regulators than the one used to characterize the algorithms
871 * (ie, init_voltage_step).
872 */
873 fdata->min_uV = roundup(fdata->min_uV, step_volt);
874 fdata->max_uV = roundup(fdata->max_uV, step_volt);
875
876 /* Populate uV */
877 uV = cpr_read_fuse_uV(desc, fdata, fuses->init_voltage,
878 step_volt, drv);
879 if (uV < 0)
880 return uV;
881
882 fuse->min_uV = fdata->min_uV;
883 fuse->max_uV = fdata->max_uV;
884 fuse->uV = clamp(uV, fuse->min_uV, fuse->max_uV);
885
886 if (fuse == end) {
887 /*
888 * Allow the highest fuse corner's PVS voltage to
889 * define the ceiling voltage for that corner in order
890 * to support SoC's in which variable ceiling values
891 * are required.
892 */
893 end->max_uV = max(end->max_uV, end->uV);
894 }
895
896 /* Populate target quotient by scaling */
897 ret = nvmem_cell_read_variable_le_u32(drv->dev, fuses->quotient, &fuse->quot);
898 if (ret)
899 return ret;
900
901 fuse->quot *= fdata->quot_scale;
902 fuse->quot += fdata->quot_offset;
903 fuse->quot += fdata->quot_adjust;
904 fuse->step_quot = desc->step_quot[fuse->ring_osc_idx];
905
906 /* Populate acc settings */
907 fuse->accs = accs;
908 fuse->num_accs = acc_desc->num_regs_per_fuse;
909 accs += acc_desc->num_regs_per_fuse;
910 }
911
912 /*
913 * Restrict all fuse corner PVS voltages based upon per corner
914 * ceiling and floor voltages.
915 */
916 for (fuse = drv->fuse_corners, i = 0; fuse <= end; fuse++, i++) {
917 if (fuse->uV > fuse->max_uV)
918 fuse->uV = fuse->max_uV;
919 else if (fuse->uV < fuse->min_uV)
920 fuse->uV = fuse->min_uV;
921
922 ret = regulator_is_supported_voltage(drv->vdd_apc,
923 fuse->min_uV,
924 fuse->min_uV);
925 if (!ret) {
926 dev_err(drv->dev,
927 "min uV: %d (fuse corner: %d) not supported by regulator\n",
928 fuse->min_uV, i);
929 return -EINVAL;
930 }
931
932 ret = regulator_is_supported_voltage(drv->vdd_apc,
933 fuse->max_uV,
934 fuse->max_uV);
935 if (!ret) {
936 dev_err(drv->dev,
937 "max uV: %d (fuse corner: %d) not supported by regulator\n",
938 fuse->max_uV, i);
939 return -EINVAL;
940 }
941
942 dev_dbg(drv->dev,
943 "fuse corner %d: [%d %d %d] RO%hhu quot %d squot %d\n",
944 i, fuse->min_uV, fuse->uV, fuse->max_uV,
945 fuse->ring_osc_idx, fuse->quot, fuse->step_quot);
946 }
947
948 return 0;
949 }
950
cpr_calculate_scaling(const char * quot_offset,struct cpr_drv * drv,const struct fuse_corner_data * fdata,const struct corner * corner)951 static int cpr_calculate_scaling(const char *quot_offset,
952 struct cpr_drv *drv,
953 const struct fuse_corner_data *fdata,
954 const struct corner *corner)
955 {
956 u32 quot_diff = 0;
957 unsigned long freq_diff;
958 int scaling;
959 const struct fuse_corner *fuse, *prev_fuse;
960 int ret;
961
962 fuse = corner->fuse_corner;
963 prev_fuse = fuse - 1;
964
965 if (quot_offset) {
966 ret = nvmem_cell_read_variable_le_u32(drv->dev, quot_offset, "_diff);
967 if (ret)
968 return ret;
969
970 quot_diff *= fdata->quot_offset_scale;
971 quot_diff += fdata->quot_offset_adjust;
972 } else {
973 quot_diff = fuse->quot - prev_fuse->quot;
974 }
975
976 freq_diff = fuse->max_freq - prev_fuse->max_freq;
977 freq_diff /= 1000000; /* Convert to MHz */
978 scaling = 1000 * quot_diff / freq_diff;
979 return min(scaling, fdata->max_quot_scale);
980 }
981
cpr_interpolate(const struct corner * corner,int step_volt,const struct fuse_corner_data * fdata)982 static int cpr_interpolate(const struct corner *corner, int step_volt,
983 const struct fuse_corner_data *fdata)
984 {
985 unsigned long f_high, f_low, f_diff;
986 int uV_high, uV_low, uV;
987 u64 temp, temp_limit;
988 const struct fuse_corner *fuse, *prev_fuse;
989
990 fuse = corner->fuse_corner;
991 prev_fuse = fuse - 1;
992
993 f_high = fuse->max_freq;
994 f_low = prev_fuse->max_freq;
995 uV_high = fuse->uV;
996 uV_low = prev_fuse->uV;
997 f_diff = fuse->max_freq - corner->freq;
998
999 /*
1000 * Don't interpolate in the wrong direction. This could happen
1001 * if the adjusted fuse voltage overlaps with the previous fuse's
1002 * adjusted voltage.
1003 */
1004 if (f_high <= f_low || uV_high <= uV_low || f_high <= corner->freq)
1005 return corner->uV;
1006
1007 temp = f_diff * (uV_high - uV_low);
1008 temp = div64_ul(temp, f_high - f_low);
1009
1010 /*
1011 * max_volt_scale has units of uV/MHz while freq values
1012 * have units of Hz. Divide by 1000000 to convert to.
1013 */
1014 temp_limit = f_diff * fdata->max_volt_scale;
1015 do_div(temp_limit, 1000000);
1016
1017 uV = uV_high - min(temp, temp_limit);
1018 return roundup(uV, step_volt);
1019 }
1020
cpr_get_fuse_corner(struct dev_pm_opp * opp)1021 static unsigned int cpr_get_fuse_corner(struct dev_pm_opp *opp)
1022 {
1023 struct device_node *np;
1024 unsigned int fuse_corner = 0;
1025
1026 np = dev_pm_opp_get_of_node(opp);
1027 if (of_property_read_u32(np, "qcom,opp-fuse-level", &fuse_corner))
1028 pr_err("%s: missing 'qcom,opp-fuse-level' property\n",
1029 __func__);
1030
1031 of_node_put(np);
1032
1033 return fuse_corner;
1034 }
1035
cpr_get_opp_hz_for_req(struct dev_pm_opp * ref,struct device * cpu_dev)1036 static unsigned long cpr_get_opp_hz_for_req(struct dev_pm_opp *ref,
1037 struct device *cpu_dev)
1038 {
1039 struct device_node *ref_np __free(device_node) = NULL;
1040 struct device_node *desc_np __free(device_node) =
1041 dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1042
1043 if (!desc_np)
1044 return 0;
1045
1046 ref_np = dev_pm_opp_get_of_node(ref);
1047 if (!ref_np)
1048 return 0;
1049
1050 for_each_available_child_of_node_scoped(desc_np, child_np) {
1051 struct device_node *child_req_np __free(device_node) =
1052 of_parse_phandle(child_np, "required-opps", 0);
1053
1054 if (child_req_np == ref_np) {
1055 u64 rate = 0;
1056
1057 of_property_read_u64(child_np, "opp-hz", &rate);
1058 return (unsigned long) rate;
1059 }
1060 }
1061
1062 return 0;
1063 }
1064
cpr_corner_init(struct cpr_drv * drv)1065 static int cpr_corner_init(struct cpr_drv *drv)
1066 {
1067 const struct cpr_desc *desc = drv->desc;
1068 const struct cpr_fuse *fuses = drv->cpr_fuses;
1069 int i, level, scaling = 0;
1070 unsigned int fnum, fc;
1071 const char *quot_offset;
1072 struct fuse_corner *fuse, *prev_fuse;
1073 struct corner *corner, *end;
1074 struct corner_data *cdata;
1075 const struct fuse_corner_data *fdata;
1076 bool apply_scaling;
1077 unsigned long freq_diff, freq_diff_mhz;
1078 unsigned long freq;
1079 int step_volt = regulator_get_linear_step(drv->vdd_apc);
1080 struct dev_pm_opp *opp;
1081
1082 if (!step_volt)
1083 return -EINVAL;
1084
1085 corner = drv->corners;
1086 end = &corner[drv->num_corners - 1];
1087
1088 cdata = devm_kcalloc(drv->dev, drv->num_corners,
1089 sizeof(struct corner_data),
1090 GFP_KERNEL);
1091 if (!cdata)
1092 return -ENOMEM;
1093
1094 /*
1095 * Store maximum frequency for each fuse corner based on the frequency
1096 * plan
1097 */
1098 for (level = 1; level <= drv->num_corners; level++) {
1099 opp = dev_pm_opp_find_level_exact(&drv->pd.dev, level);
1100 if (IS_ERR(opp))
1101 return -EINVAL;
1102 fc = cpr_get_fuse_corner(opp);
1103 if (!fc) {
1104 dev_pm_opp_put(opp);
1105 return -EINVAL;
1106 }
1107 fnum = fc - 1;
1108 freq = cpr_get_opp_hz_for_req(opp, drv->attached_cpu_dev);
1109 if (!freq) {
1110 dev_pm_opp_put(opp);
1111 return -EINVAL;
1112 }
1113 cdata[level - 1].fuse_corner = fnum;
1114 cdata[level - 1].freq = freq;
1115
1116 fuse = &drv->fuse_corners[fnum];
1117 dev_dbg(drv->dev, "freq: %lu level: %u fuse level: %u\n",
1118 freq, dev_pm_opp_get_level(opp) - 1, fnum);
1119 if (freq > fuse->max_freq)
1120 fuse->max_freq = freq;
1121 dev_pm_opp_put(opp);
1122 }
1123
1124 /*
1125 * Get the quotient adjustment scaling factor, according to:
1126 *
1127 * scaling = min(1000 * (QUOT(corner_N) - QUOT(corner_N-1))
1128 * / (freq(corner_N) - freq(corner_N-1)), max_factor)
1129 *
1130 * QUOT(corner_N): quotient read from fuse for fuse corner N
1131 * QUOT(corner_N-1): quotient read from fuse for fuse corner (N - 1)
1132 * freq(corner_N): max frequency in MHz supported by fuse corner N
1133 * freq(corner_N-1): max frequency in MHz supported by fuse corner
1134 * (N - 1)
1135 *
1136 * Then walk through the corners mapped to each fuse corner
1137 * and calculate the quotient adjustment for each one using the
1138 * following formula:
1139 *
1140 * quot_adjust = (freq_max - freq_corner) * scaling / 1000
1141 *
1142 * freq_max: max frequency in MHz supported by the fuse corner
1143 * freq_corner: frequency in MHz corresponding to the corner
1144 * scaling: calculated from above equation
1145 *
1146 *
1147 * + +
1148 * | v |
1149 * q | f c o | f c
1150 * u | c l | c
1151 * o | f t | f
1152 * t | c a | c
1153 * | c f g | c f
1154 * | e |
1155 * +--------------- +----------------
1156 * 0 1 2 3 4 5 6 0 1 2 3 4 5 6
1157 * corner corner
1158 *
1159 * c = corner
1160 * f = fuse corner
1161 *
1162 */
1163 for (apply_scaling = false, i = 0; corner <= end; corner++, i++) {
1164 fnum = cdata[i].fuse_corner;
1165 fdata = &desc->cpr_fuses.fuse_corner_data[fnum];
1166 quot_offset = fuses[fnum].quotient_offset;
1167 fuse = &drv->fuse_corners[fnum];
1168 if (fnum)
1169 prev_fuse = &drv->fuse_corners[fnum - 1];
1170 else
1171 prev_fuse = NULL;
1172
1173 corner->fuse_corner = fuse;
1174 corner->freq = cdata[i].freq;
1175 corner->uV = fuse->uV;
1176
1177 if (prev_fuse && cdata[i - 1].freq == prev_fuse->max_freq) {
1178 scaling = cpr_calculate_scaling(quot_offset, drv,
1179 fdata, corner);
1180 if (scaling < 0)
1181 return scaling;
1182
1183 apply_scaling = true;
1184 } else if (corner->freq == fuse->max_freq) {
1185 /* This is a fuse corner; don't scale anything */
1186 apply_scaling = false;
1187 }
1188
1189 if (apply_scaling) {
1190 freq_diff = fuse->max_freq - corner->freq;
1191 freq_diff_mhz = freq_diff / 1000000;
1192 corner->quot_adjust = scaling * freq_diff_mhz / 1000;
1193
1194 corner->uV = cpr_interpolate(corner, step_volt, fdata);
1195 }
1196
1197 corner->max_uV = fuse->max_uV;
1198 corner->min_uV = fuse->min_uV;
1199 corner->uV = clamp(corner->uV, corner->min_uV, corner->max_uV);
1200 corner->last_uV = corner->uV;
1201
1202 /* Reduce the ceiling voltage if needed */
1203 if (desc->reduce_to_corner_uV && corner->uV < corner->max_uV)
1204 corner->max_uV = corner->uV;
1205 else if (desc->reduce_to_fuse_uV && fuse->uV < corner->max_uV)
1206 corner->max_uV = max(corner->min_uV, fuse->uV);
1207
1208 dev_dbg(drv->dev, "corner %d: [%d %d %d] quot %d\n", i,
1209 corner->min_uV, corner->uV, corner->max_uV,
1210 fuse->quot - corner->quot_adjust);
1211 }
1212
1213 return 0;
1214 }
1215
cpr_get_fuses(struct cpr_drv * drv)1216 static const struct cpr_fuse *cpr_get_fuses(struct cpr_drv *drv)
1217 {
1218 const struct cpr_desc *desc = drv->desc;
1219 struct cpr_fuse *fuses;
1220 int i;
1221
1222 fuses = devm_kcalloc(drv->dev, desc->num_fuse_corners,
1223 sizeof(struct cpr_fuse),
1224 GFP_KERNEL);
1225 if (!fuses)
1226 return ERR_PTR(-ENOMEM);
1227
1228 for (i = 0; i < desc->num_fuse_corners; i++) {
1229 char tbuf[32];
1230
1231 snprintf(tbuf, 32, "cpr_ring_osc%d", i + 1);
1232 fuses[i].ring_osc = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
1233 if (!fuses[i].ring_osc)
1234 return ERR_PTR(-ENOMEM);
1235
1236 snprintf(tbuf, 32, "cpr_init_voltage%d", i + 1);
1237 fuses[i].init_voltage = devm_kstrdup(drv->dev, tbuf,
1238 GFP_KERNEL);
1239 if (!fuses[i].init_voltage)
1240 return ERR_PTR(-ENOMEM);
1241
1242 snprintf(tbuf, 32, "cpr_quotient%d", i + 1);
1243 fuses[i].quotient = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
1244 if (!fuses[i].quotient)
1245 return ERR_PTR(-ENOMEM);
1246
1247 snprintf(tbuf, 32, "cpr_quotient_offset%d", i + 1);
1248 fuses[i].quotient_offset = devm_kstrdup(drv->dev, tbuf,
1249 GFP_KERNEL);
1250 if (!fuses[i].quotient_offset)
1251 return ERR_PTR(-ENOMEM);
1252 }
1253
1254 return fuses;
1255 }
1256
cpr_set_loop_allowed(struct cpr_drv * drv)1257 static void cpr_set_loop_allowed(struct cpr_drv *drv)
1258 {
1259 drv->loop_disabled = false;
1260 }
1261
cpr_init_parameters(struct cpr_drv * drv)1262 static int cpr_init_parameters(struct cpr_drv *drv)
1263 {
1264 const struct cpr_desc *desc = drv->desc;
1265 struct clk *clk;
1266
1267 clk = clk_get(drv->dev, "ref");
1268 if (IS_ERR(clk))
1269 return PTR_ERR(clk);
1270
1271 drv->ref_clk_khz = clk_get_rate(clk) / 1000;
1272 clk_put(clk);
1273
1274 if (desc->timer_cons_up > RBIF_TIMER_ADJ_CONS_UP_MASK ||
1275 desc->timer_cons_down > RBIF_TIMER_ADJ_CONS_DOWN_MASK ||
1276 desc->up_threshold > RBCPR_CTL_UP_THRESHOLD_MASK ||
1277 desc->down_threshold > RBCPR_CTL_DN_THRESHOLD_MASK ||
1278 desc->idle_clocks > RBCPR_STEP_QUOT_IDLE_CLK_MASK ||
1279 desc->clamp_timer_interval > RBIF_TIMER_ADJ_CLAMP_INT_MASK)
1280 return -EINVAL;
1281
1282 dev_dbg(drv->dev, "up threshold = %u, down threshold = %u\n",
1283 desc->up_threshold, desc->down_threshold);
1284
1285 return 0;
1286 }
1287
cpr_find_initial_corner(struct cpr_drv * drv)1288 static int cpr_find_initial_corner(struct cpr_drv *drv)
1289 {
1290 unsigned long rate;
1291 const struct corner *end;
1292 struct corner *iter;
1293 unsigned int i = 0;
1294
1295 if (!drv->cpu_clk) {
1296 dev_err(drv->dev, "cannot get rate from NULL clk\n");
1297 return -EINVAL;
1298 }
1299
1300 end = &drv->corners[drv->num_corners - 1];
1301 rate = clk_get_rate(drv->cpu_clk);
1302
1303 /*
1304 * Some bootloaders set a CPU clock frequency that is not defined
1305 * in the OPP table. When running at an unlisted frequency,
1306 * cpufreq_online() will change to the OPP which has the lowest
1307 * frequency, at or above the unlisted frequency.
1308 * Since cpufreq_online() always "rounds up" in the case of an
1309 * unlisted frequency, this function always "rounds down" in case
1310 * of an unlisted frequency. That way, when cpufreq_online()
1311 * triggers the first ever call to cpr_set_performance_state(),
1312 * it will correctly determine the direction as UP.
1313 */
1314 for (iter = drv->corners; iter <= end; iter++) {
1315 if (iter->freq > rate)
1316 break;
1317 i++;
1318 if (iter->freq == rate) {
1319 drv->corner = iter;
1320 break;
1321 }
1322 if (iter->freq < rate)
1323 drv->corner = iter;
1324 }
1325
1326 if (!drv->corner) {
1327 dev_err(drv->dev, "boot up corner not found\n");
1328 return -EINVAL;
1329 }
1330
1331 dev_dbg(drv->dev, "boot up perf state: %u\n", i);
1332
1333 return 0;
1334 }
1335
1336 static const struct cpr_desc qcs404_cpr_desc = {
1337 .num_fuse_corners = 3,
1338 .min_diff_quot = CPR_FUSE_MIN_QUOT_DIFF,
1339 .step_quot = (int []){ 25, 25, 25, },
1340 .timer_delay_us = 5000,
1341 .timer_cons_up = 0,
1342 .timer_cons_down = 2,
1343 .up_threshold = 1,
1344 .down_threshold = 3,
1345 .idle_clocks = 15,
1346 .gcnt_us = 1,
1347 .vdd_apc_step_up_limit = 1,
1348 .vdd_apc_step_down_limit = 1,
1349 .cpr_fuses = {
1350 .init_voltage_step = 8000,
1351 .init_voltage_width = 6,
1352 .fuse_corner_data = (struct fuse_corner_data[]){
1353 /* fuse corner 0 */
1354 {
1355 .ref_uV = 1224000,
1356 .max_uV = 1224000,
1357 .min_uV = 1048000,
1358 .max_volt_scale = 0,
1359 .max_quot_scale = 0,
1360 .quot_offset = 0,
1361 .quot_scale = 1,
1362 .quot_adjust = 0,
1363 .quot_offset_scale = 5,
1364 .quot_offset_adjust = 0,
1365 },
1366 /* fuse corner 1 */
1367 {
1368 .ref_uV = 1288000,
1369 .max_uV = 1288000,
1370 .min_uV = 1048000,
1371 .max_volt_scale = 2000,
1372 .max_quot_scale = 1400,
1373 .quot_offset = 0,
1374 .quot_scale = 1,
1375 .quot_adjust = -20,
1376 .quot_offset_scale = 5,
1377 .quot_offset_adjust = 0,
1378 },
1379 /* fuse corner 2 */
1380 {
1381 .ref_uV = 1352000,
1382 .max_uV = 1384000,
1383 .min_uV = 1088000,
1384 .max_volt_scale = 2000,
1385 .max_quot_scale = 1400,
1386 .quot_offset = 0,
1387 .quot_scale = 1,
1388 .quot_adjust = 0,
1389 .quot_offset_scale = 5,
1390 .quot_offset_adjust = 0,
1391 },
1392 },
1393 },
1394 };
1395
1396 static const struct acc_desc qcs404_acc_desc = {
1397 .settings = (struct reg_sequence[]){
1398 { 0xb120, 0x1041040 },
1399 { 0xb124, 0x41 },
1400 { 0xb120, 0x0 },
1401 { 0xb124, 0x0 },
1402 { 0xb120, 0x0 },
1403 { 0xb124, 0x0 },
1404 },
1405 .config = (struct reg_sequence[]){
1406 { 0xb138, 0xff },
1407 { 0xb130, 0x5555 },
1408 },
1409 .num_regs_per_fuse = 2,
1410 };
1411
1412 static const struct cpr_acc_desc qcs404_cpr_acc_desc = {
1413 .cpr_desc = &qcs404_cpr_desc,
1414 .acc_desc = &qcs404_acc_desc,
1415 };
1416
cpr_power_off(struct generic_pm_domain * domain)1417 static int cpr_power_off(struct generic_pm_domain *domain)
1418 {
1419 struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
1420
1421 return cpr_disable(drv);
1422 }
1423
cpr_power_on(struct generic_pm_domain * domain)1424 static int cpr_power_on(struct generic_pm_domain *domain)
1425 {
1426 struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
1427
1428 return cpr_enable(drv);
1429 }
1430
cpr_pd_attach_dev(struct generic_pm_domain * domain,struct device * dev)1431 static int cpr_pd_attach_dev(struct generic_pm_domain *domain,
1432 struct device *dev)
1433 {
1434 struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
1435 const struct acc_desc *acc_desc = drv->acc_desc;
1436 int ret;
1437
1438 guard(mutex)(&drv->lock);
1439
1440 dev_dbg(drv->dev, "attach callback for: %s\n", dev_name(dev));
1441
1442 /*
1443 * This driver only supports scaling voltage for a CPU cluster
1444 * where all CPUs in the cluster share a single regulator.
1445 * Therefore, save the struct device pointer only for the first
1446 * CPU device that gets attached. There is no need to do any
1447 * additional initialization when further CPUs get attached.
1448 */
1449 if (drv->attached_cpu_dev)
1450 return 0;
1451
1452 /*
1453 * cpr_scale_voltage() requires the direction (if we are changing
1454 * to a higher or lower OPP). The first time
1455 * cpr_set_performance_state() is called, there is no previous
1456 * performance state defined. Therefore, we call
1457 * cpr_find_initial_corner() that gets the CPU clock frequency
1458 * set by the bootloader, so that we can determine the direction
1459 * the first time cpr_set_performance_state() is called.
1460 */
1461 drv->cpu_clk = devm_clk_get(dev, NULL);
1462 if (IS_ERR(drv->cpu_clk))
1463 return dev_err_probe(drv->dev, PTR_ERR(drv->cpu_clk),
1464 "could not get cpu clk\n");
1465
1466 drv->attached_cpu_dev = dev;
1467
1468 dev_dbg(drv->dev, "using cpu clk from: %s\n",
1469 dev_name(drv->attached_cpu_dev));
1470
1471 /*
1472 * Everything related to (virtual) corners has to be initialized
1473 * here, when attaching to the power domain, since we need to know
1474 * the maximum frequency for each fuse corner, and this is only
1475 * available after the cpufreq driver has attached to us.
1476 * The reason for this is that we need to know the highest
1477 * frequency associated with each fuse corner.
1478 */
1479 ret = dev_pm_opp_get_opp_count(&drv->pd.dev);
1480 if (ret < 0) {
1481 dev_err(drv->dev, "could not get OPP count\n");
1482 return ret;
1483 }
1484 drv->num_corners = ret;
1485
1486 if (drv->num_corners < 2) {
1487 dev_err(drv->dev, "need at least 2 OPPs to use CPR\n");
1488 return -EINVAL;
1489 }
1490
1491 drv->corners = devm_kcalloc(drv->dev, drv->num_corners,
1492 sizeof(*drv->corners),
1493 GFP_KERNEL);
1494 if (!drv->corners)
1495 return -ENOMEM;
1496
1497 ret = cpr_corner_init(drv);
1498 if (ret)
1499 return ret;
1500
1501 cpr_set_loop_allowed(drv);
1502
1503 ret = cpr_init_parameters(drv);
1504 if (ret)
1505 return ret;
1506
1507 /* Configure CPR HW but keep it disabled */
1508 ret = cpr_config(drv);
1509 if (ret)
1510 return ret;
1511
1512 ret = cpr_find_initial_corner(drv);
1513 if (ret)
1514 return ret;
1515
1516 if (acc_desc->config)
1517 regmap_multi_reg_write(drv->tcsr, acc_desc->config,
1518 acc_desc->num_regs_per_fuse);
1519
1520 /* Enable ACC if required */
1521 if (acc_desc->enable_mask)
1522 regmap_update_bits(drv->tcsr, acc_desc->enable_reg,
1523 acc_desc->enable_mask,
1524 acc_desc->enable_mask);
1525
1526 dev_info(drv->dev, "driver initialized with %u OPPs\n",
1527 drv->num_corners);
1528
1529 return 0;
1530 }
1531
cpr_debug_info_show(struct seq_file * s,void * unused)1532 static int cpr_debug_info_show(struct seq_file *s, void *unused)
1533 {
1534 u32 gcnt, ro_sel, ctl, irq_status, reg, error_steps;
1535 u32 step_dn, step_up, error, error_lt0, busy;
1536 struct cpr_drv *drv = s->private;
1537 struct fuse_corner *fuse_corner;
1538 struct corner *corner;
1539
1540 corner = drv->corner;
1541 fuse_corner = corner->fuse_corner;
1542
1543 seq_printf(s, "corner, current_volt = %d uV\n",
1544 corner->last_uV);
1545
1546 ro_sel = fuse_corner->ring_osc_idx;
1547 gcnt = cpr_read(drv, REG_RBCPR_GCNT_TARGET(ro_sel));
1548 seq_printf(s, "rbcpr_gcnt_target (%u) = %#02X\n", ro_sel, gcnt);
1549
1550 ctl = cpr_read(drv, REG_RBCPR_CTL);
1551 seq_printf(s, "rbcpr_ctl = %#02X\n", ctl);
1552
1553 irq_status = cpr_read(drv, REG_RBIF_IRQ_STATUS);
1554 seq_printf(s, "rbcpr_irq_status = %#02X\n", irq_status);
1555
1556 reg = cpr_read(drv, REG_RBCPR_RESULT_0);
1557 seq_printf(s, "rbcpr_result_0 = %#02X\n", reg);
1558
1559 step_dn = reg & 0x01;
1560 step_up = (reg >> RBCPR_RESULT0_STEP_UP_SHIFT) & 0x01;
1561 seq_printf(s, " [step_dn = %u", step_dn);
1562
1563 seq_printf(s, ", step_up = %u", step_up);
1564
1565 error_steps = (reg >> RBCPR_RESULT0_ERROR_STEPS_SHIFT)
1566 & RBCPR_RESULT0_ERROR_STEPS_MASK;
1567 seq_printf(s, ", error_steps = %u", error_steps);
1568
1569 error = (reg >> RBCPR_RESULT0_ERROR_SHIFT) & RBCPR_RESULT0_ERROR_MASK;
1570 seq_printf(s, ", error = %u", error);
1571
1572 error_lt0 = (reg >> RBCPR_RESULT0_ERROR_LT0_SHIFT) & 0x01;
1573 seq_printf(s, ", error_lt_0 = %u", error_lt0);
1574
1575 busy = (reg >> RBCPR_RESULT0_BUSY_SHIFT) & 0x01;
1576 seq_printf(s, ", busy = %u]\n", busy);
1577
1578 return 0;
1579 }
1580 DEFINE_SHOW_ATTRIBUTE(cpr_debug_info);
1581
cpr_debugfs_init(struct cpr_drv * drv)1582 static void cpr_debugfs_init(struct cpr_drv *drv)
1583 {
1584 drv->debugfs = debugfs_create_dir("qcom_cpr", NULL);
1585
1586 debugfs_create_file("debug_info", 0444, drv->debugfs,
1587 drv, &cpr_debug_info_fops);
1588 }
1589
cpr_probe(struct platform_device * pdev)1590 static int cpr_probe(struct platform_device *pdev)
1591 {
1592 struct device *dev = &pdev->dev;
1593 struct cpr_drv *drv;
1594 int irq, ret;
1595 const struct cpr_acc_desc *data;
1596 struct device_node *np;
1597 u32 cpr_rev = FUSE_REVISION_UNKNOWN;
1598
1599 data = of_device_get_match_data(dev);
1600 if (!data || !data->cpr_desc || !data->acc_desc)
1601 return -EINVAL;
1602
1603 drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL);
1604 if (!drv)
1605 return -ENOMEM;
1606 drv->dev = dev;
1607 drv->desc = data->cpr_desc;
1608 drv->acc_desc = data->acc_desc;
1609
1610 drv->fuse_corners = devm_kcalloc(dev, drv->desc->num_fuse_corners,
1611 sizeof(*drv->fuse_corners),
1612 GFP_KERNEL);
1613 if (!drv->fuse_corners)
1614 return -ENOMEM;
1615
1616 np = of_parse_phandle(dev->of_node, "acc-syscon", 0);
1617 if (!np)
1618 return -ENODEV;
1619
1620 drv->tcsr = syscon_node_to_regmap(np);
1621 of_node_put(np);
1622 if (IS_ERR(drv->tcsr))
1623 return PTR_ERR(drv->tcsr);
1624
1625 drv->base = devm_platform_ioremap_resource(pdev, 0);
1626 if (IS_ERR(drv->base))
1627 return PTR_ERR(drv->base);
1628
1629 irq = platform_get_irq(pdev, 0);
1630 if (irq < 0)
1631 return -EINVAL;
1632
1633 drv->vdd_apc = devm_regulator_get(dev, "vdd-apc");
1634 if (IS_ERR(drv->vdd_apc))
1635 return PTR_ERR(drv->vdd_apc);
1636
1637 /*
1638 * Initialize fuse corners, since it simply depends
1639 * on data in efuses.
1640 * Everything related to (virtual) corners has to be
1641 * initialized after attaching to the power domain,
1642 * since it depends on the CPU's OPP table.
1643 */
1644 ret = nvmem_cell_read_variable_le_u32(dev, "cpr_fuse_revision", &cpr_rev);
1645 if (ret)
1646 return ret;
1647
1648 drv->cpr_fuses = cpr_get_fuses(drv);
1649 if (IS_ERR(drv->cpr_fuses))
1650 return PTR_ERR(drv->cpr_fuses);
1651
1652 ret = cpr_populate_ring_osc_idx(drv);
1653 if (ret)
1654 return ret;
1655
1656 ret = cpr_fuse_corner_init(drv);
1657 if (ret)
1658 return ret;
1659
1660 mutex_init(&drv->lock);
1661
1662 ret = devm_request_threaded_irq(dev, irq, NULL,
1663 cpr_irq_handler,
1664 IRQF_ONESHOT | IRQF_TRIGGER_RISING,
1665 "cpr", drv);
1666 if (ret)
1667 return ret;
1668
1669 drv->pd.name = devm_kstrdup_const(dev, dev->of_node->full_name,
1670 GFP_KERNEL);
1671 if (!drv->pd.name)
1672 return -EINVAL;
1673
1674 drv->pd.power_off = cpr_power_off;
1675 drv->pd.power_on = cpr_power_on;
1676 drv->pd.set_performance_state = cpr_set_performance_state;
1677 drv->pd.attach_dev = cpr_pd_attach_dev;
1678
1679 ret = pm_genpd_init(&drv->pd, NULL, true);
1680 if (ret)
1681 return ret;
1682
1683 ret = of_genpd_add_provider_simple(dev->of_node, &drv->pd);
1684 if (ret)
1685 goto err_remove_genpd;
1686
1687 platform_set_drvdata(pdev, drv);
1688 cpr_debugfs_init(drv);
1689
1690 return 0;
1691
1692 err_remove_genpd:
1693 pm_genpd_remove(&drv->pd);
1694 return ret;
1695 }
1696
cpr_remove(struct platform_device * pdev)1697 static void cpr_remove(struct platform_device *pdev)
1698 {
1699 struct cpr_drv *drv = platform_get_drvdata(pdev);
1700
1701 if (cpr_is_allowed(drv)) {
1702 cpr_ctl_disable(drv);
1703 cpr_irq_set(drv, 0);
1704 }
1705
1706 of_genpd_del_provider(pdev->dev.of_node);
1707 pm_genpd_remove(&drv->pd);
1708
1709 debugfs_remove_recursive(drv->debugfs);
1710 }
1711
1712 static const struct of_device_id cpr_match_table[] = {
1713 { .compatible = "qcom,qcs404-cpr", .data = &qcs404_cpr_acc_desc },
1714 { }
1715 };
1716 MODULE_DEVICE_TABLE(of, cpr_match_table);
1717
1718 static struct platform_driver cpr_driver = {
1719 .probe = cpr_probe,
1720 .remove_new = cpr_remove,
1721 .driver = {
1722 .name = "qcom-cpr",
1723 .of_match_table = cpr_match_table,
1724 },
1725 };
1726 module_platform_driver(cpr_driver);
1727
1728 MODULE_DESCRIPTION("Core Power Reduction (CPR) driver");
1729 MODULE_LICENSE("GPL v2");
1730