xref: /linux/drivers/bluetooth/hci_qca.c (revision eba86d86eec8428bd743523ec76932838e0b30f7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Bluetooth Software UART Qualcomm protocol
4  *
5  *  HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
6  *  protocol extension to H4.
7  *
8  *  Copyright (C) 2007 Texas Instruments, Inc.
9  *  Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
10  *
11  *  Acknowledgements:
12  *  This file is based on hci_ll.c, which was...
13  *  Written by Ohad Ben-Cohen <ohad@bencohen.org>
14  *  which was in turn based on hci_h4.c, which was written
15  *  by Maxim Krasnyansky and Marcel Holtmann.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/debugfs.h>
22 #include <linux/delay.h>
23 #include <linux/devcoredump.h>
24 #include <linux/device.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/acpi.h>
30 #include <linux/platform_device.h>
31 #include <linux/pwrseq/consumer.h>
32 #include <linux/regulator/consumer.h>
33 #include <linux/serdev.h>
34 #include <linux/string_choices.h>
35 #include <linux/mutex.h>
36 #include <linux/unaligned.h>
37 
38 #include <net/bluetooth/bluetooth.h>
39 #include <net/bluetooth/hci_core.h>
40 
41 #include "hci_uart.h"
42 #include "btqca.h"
43 
44 /* HCI_IBS protocol messages */
45 #define HCI_IBS_SLEEP_IND	0xFE
46 #define HCI_IBS_WAKE_IND	0xFD
47 #define HCI_IBS_WAKE_ACK	0xFC
48 #define HCI_MAX_IBS_SIZE	10
49 
50 #define IBS_WAKE_RETRANS_TIMEOUT_MS	100
51 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS	200
52 #define IBS_HOST_TX_IDLE_TIMEOUT_MS	2000
53 #define CMD_TRANS_TIMEOUT_MS		100
54 #define MEMDUMP_TIMEOUT_MS		8000
55 #define IBS_DISABLE_SSR_TIMEOUT_MS \
56 	(MEMDUMP_TIMEOUT_MS + FW_DOWNLOAD_TIMEOUT_MS)
57 #define FW_DOWNLOAD_TIMEOUT_MS		3000
58 
59 /* susclk rate */
60 #define SUSCLK_RATE_32KHZ	32768
61 
62 /* Controller debug log header */
63 #define QCA_DEBUG_HANDLE	0x2EDC
64 
65 /* max retry count when init fails */
66 #define MAX_INIT_RETRIES 3
67 
68 /* Controller dump header */
69 #define QCA_SSR_DUMP_HANDLE		0x0108
70 #define QCA_DUMP_PACKET_SIZE		255
71 #define QCA_LAST_SEQUENCE_NUM		0xFFFF
72 #define QCA_CRASHBYTE_PACKET_LEN	1096
73 #define QCA_MEMDUMP_BYTE		0xFB
74 
75 enum qca_flags {
76 	QCA_IBS_DISABLED,
77 	QCA_DROP_VENDOR_EVENT,
78 	QCA_SUSPENDING,
79 	QCA_MEMDUMP_COLLECTION,
80 	QCA_HW_ERROR_EVENT,
81 	QCA_SSR_TRIGGERED,
82 	QCA_BT_OFF,
83 	QCA_ROM_FW,
84 	QCA_DEBUGFS_CREATED,
85 };
86 
87 enum qca_capabilities {
88 	QCA_CAP_WIDEBAND_SPEECH = BIT(0),
89 	QCA_CAP_VALID_LE_STATES = BIT(1),
90 	QCA_CAP_HFP_HW_OFFLOAD  = BIT(2),
91 };
92 
93 /* HCI_IBS transmit side sleep protocol states */
94 enum tx_ibs_states {
95 	HCI_IBS_TX_ASLEEP,
96 	HCI_IBS_TX_WAKING,
97 	HCI_IBS_TX_AWAKE,
98 };
99 
100 /* HCI_IBS receive side sleep protocol states */
101 enum rx_states {
102 	HCI_IBS_RX_ASLEEP,
103 	HCI_IBS_RX_AWAKE,
104 };
105 
106 /* HCI_IBS transmit and receive side clock state vote */
107 enum hci_ibs_clock_state_vote {
108 	HCI_IBS_VOTE_STATS_UPDATE,
109 	HCI_IBS_TX_VOTE_CLOCK_ON,
110 	HCI_IBS_TX_VOTE_CLOCK_OFF,
111 	HCI_IBS_RX_VOTE_CLOCK_ON,
112 	HCI_IBS_RX_VOTE_CLOCK_OFF,
113 };
114 
115 /* Controller memory dump states */
116 enum qca_memdump_states {
117 	QCA_MEMDUMP_IDLE,
118 	QCA_MEMDUMP_COLLECTING,
119 	QCA_MEMDUMP_COLLECTED,
120 	QCA_MEMDUMP_TIMEOUT,
121 };
122 
123 struct qca_memdump_info {
124 	u32 current_seq_no;
125 	u32 received_dump;
126 	u32 ram_dump_size;
127 };
128 
129 struct qca_memdump_event_hdr {
130 	__u8    evt;
131 	__u8    plen;
132 	__u16   opcode;
133 	__le16   seq_no;
134 	__u8    reserved;
135 } __packed;
136 
137 
138 struct qca_dump_size {
139 	__le32 dump_size;
140 } __packed;
141 
142 struct qca_data {
143 	struct hci_uart *hu;
144 	struct sk_buff *rx_skb;
145 	struct sk_buff_head txq;
146 	struct sk_buff_head tx_wait_q;	/* HCI_IBS wait queue	*/
147 	struct sk_buff_head rx_memdump_q;	/* Memdump wait queue	*/
148 	spinlock_t hci_ibs_lock;	/* HCI_IBS state lock	*/
149 	u8 tx_ibs_state;	/* HCI_IBS transmit side power state*/
150 	u8 rx_ibs_state;	/* HCI_IBS receive side power state */
151 	bool tx_vote;		/* Clock must be on for TX */
152 	bool rx_vote;		/* Clock must be on for RX */
153 	struct timer_list tx_idle_timer;
154 	u32 tx_idle_delay;
155 	struct timer_list wake_retrans_timer;
156 	u32 wake_retrans;
157 	struct workqueue_struct *workqueue;
158 	struct work_struct ws_awake_rx;
159 	struct work_struct ws_awake_device;
160 	struct work_struct ws_rx_vote_off;
161 	struct work_struct ws_tx_vote_off;
162 	struct work_struct ctrl_memdump_evt;
163 	struct delayed_work ctrl_memdump_timeout;
164 	struct qca_memdump_info *qca_memdump;
165 	unsigned long flags;
166 	struct completion drop_ev_comp;
167 	wait_queue_head_t suspend_wait_q;
168 	enum qca_memdump_states memdump_state;
169 	struct mutex hci_memdump_lock;
170 
171 	u16 fw_version;
172 	u16 controller_id;
173 	/* For debugging purpose */
174 	u64 ibs_sent_wacks;
175 	u64 ibs_sent_slps;
176 	u64 ibs_sent_wakes;
177 	u64 ibs_recv_wacks;
178 	u64 ibs_recv_slps;
179 	u64 ibs_recv_wakes;
180 	u64 vote_last_jif;
181 	u32 vote_on_ms;
182 	u32 vote_off_ms;
183 	u64 tx_votes_on;
184 	u64 rx_votes_on;
185 	u64 tx_votes_off;
186 	u64 rx_votes_off;
187 	u64 votes_on;
188 	u64 votes_off;
189 };
190 
191 enum qca_speed_type {
192 	QCA_INIT_SPEED = 1,
193 	QCA_OPER_SPEED
194 };
195 
196 /*
197  * Voltage regulator information required for configuring the
198  * QCA Bluetooth chipset
199  */
200 struct qca_vreg {
201 	const char *name;
202 	unsigned int load_uA;
203 };
204 
205 struct qca_device_data {
206 	enum qca_btsoc_type soc_type;
207 	struct qca_vreg *vregs;
208 	size_t num_vregs;
209 	uint32_t capabilities;
210 };
211 
212 /*
213  * Platform data for the QCA Bluetooth power driver.
214  */
215 struct qca_power {
216 	struct device *dev;
217 	struct regulator_bulk_data *vreg_bulk;
218 	int num_vregs;
219 	bool vregs_on;
220 	struct pwrseq_desc *pwrseq;
221 };
222 
223 struct qca_serdev {
224 	struct hci_uart	 serdev_hu;
225 	struct gpio_desc *bt_en;
226 	struct gpio_desc *sw_ctrl;
227 	struct clk	 *susclk;
228 	enum qca_btsoc_type btsoc_type;
229 	struct qca_power *bt_power;
230 	u32 init_speed;
231 	u32 oper_speed;
232 	bool bdaddr_property_broken;
233 	bool support_hfp_hw_offload;
234 	const char *firmware_name[2];
235 };
236 
237 static int qca_regulator_enable(struct qca_serdev *qcadev);
238 static void qca_regulator_disable(struct qca_serdev *qcadev);
239 static void qca_power_shutdown(struct hci_uart *hu);
240 static int qca_power_off(struct hci_dev *hdev);
241 static void qca_controller_memdump(struct work_struct *work);
242 static void qca_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb);
243 
244 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
245 {
246 	enum qca_btsoc_type soc_type;
247 
248 	if (hu->serdev) {
249 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
250 
251 		soc_type = qsd->btsoc_type;
252 	} else {
253 		soc_type = QCA_ROME;
254 	}
255 
256 	return soc_type;
257 }
258 
259 static const char *qca_get_firmware_name(struct hci_uart *hu)
260 {
261 	if (hu->serdev) {
262 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
263 
264 		return qsd->firmware_name[0];
265 	} else {
266 		return NULL;
267 	}
268 }
269 
270 static const char *qca_get_rampatch_name(struct hci_uart *hu)
271 {
272 	if (hu->serdev) {
273 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
274 
275 		return qsd->firmware_name[1];
276 	} else {
277 		return NULL;
278 	}
279 }
280 
281 static void __serial_clock_on(struct tty_struct *tty)
282 {
283 	/* TODO: Some chipset requires to enable UART clock on client
284 	 * side to save power consumption or manual work is required.
285 	 * Please put your code to control UART clock here if needed
286 	 */
287 }
288 
289 static void __serial_clock_off(struct tty_struct *tty)
290 {
291 	/* TODO: Some chipset requires to disable UART clock on client
292 	 * side to save power consumption or manual work is required.
293 	 * Please put your code to control UART clock off here if needed
294 	 */
295 }
296 
297 /* serial_clock_vote needs to be called with the ibs lock held */
298 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
299 {
300 	struct qca_data *qca = hu->priv;
301 	unsigned int diff;
302 
303 	bool old_vote = (qca->tx_vote | qca->rx_vote);
304 	bool new_vote;
305 
306 	switch (vote) {
307 	case HCI_IBS_VOTE_STATS_UPDATE:
308 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
309 
310 		if (old_vote)
311 			qca->vote_off_ms += diff;
312 		else
313 			qca->vote_on_ms += diff;
314 		return;
315 
316 	case HCI_IBS_TX_VOTE_CLOCK_ON:
317 		qca->tx_vote = true;
318 		qca->tx_votes_on++;
319 		break;
320 
321 	case HCI_IBS_RX_VOTE_CLOCK_ON:
322 		qca->rx_vote = true;
323 		qca->rx_votes_on++;
324 		break;
325 
326 	case HCI_IBS_TX_VOTE_CLOCK_OFF:
327 		qca->tx_vote = false;
328 		qca->tx_votes_off++;
329 		break;
330 
331 	case HCI_IBS_RX_VOTE_CLOCK_OFF:
332 		qca->rx_vote = false;
333 		qca->rx_votes_off++;
334 		break;
335 
336 	default:
337 		BT_ERR("Voting irregularity");
338 		return;
339 	}
340 
341 	new_vote = qca->rx_vote | qca->tx_vote;
342 
343 	if (new_vote != old_vote) {
344 		if (new_vote)
345 			__serial_clock_on(hu->tty);
346 		else
347 			__serial_clock_off(hu->tty);
348 
349 		BT_DBG("Vote serial clock %s(%s)", str_true_false(new_vote),
350 		       str_true_false(vote));
351 
352 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
353 
354 		if (new_vote) {
355 			qca->votes_on++;
356 			qca->vote_off_ms += diff;
357 		} else {
358 			qca->votes_off++;
359 			qca->vote_on_ms += diff;
360 		}
361 		qca->vote_last_jif = jiffies;
362 	}
363 }
364 
365 /* Builds and sends an HCI_IBS command packet.
366  * These are very simple packets with only 1 cmd byte.
367  */
368 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
369 {
370 	int err = 0;
371 	struct sk_buff *skb = NULL;
372 	struct qca_data *qca = hu->priv;
373 
374 	BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
375 
376 	skb = bt_skb_alloc(1, GFP_ATOMIC);
377 	if (!skb) {
378 		BT_ERR("Failed to allocate memory for HCI_IBS packet");
379 		return -ENOMEM;
380 	}
381 
382 	/* Assign HCI_IBS type */
383 	skb_put_u8(skb, cmd);
384 
385 	skb_queue_tail(&qca->txq, skb);
386 
387 	return err;
388 }
389 
390 static void qca_wq_awake_device(struct work_struct *work)
391 {
392 	struct qca_data *qca = container_of(work, struct qca_data,
393 					    ws_awake_device);
394 	struct hci_uart *hu = qca->hu;
395 	unsigned long retrans_delay;
396 	unsigned long flags;
397 
398 	BT_DBG("hu %p wq awake device", hu);
399 
400 	/* Vote for serial clock */
401 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
402 
403 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
404 
405 	/* Send wake indication to device */
406 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
407 		BT_ERR("Failed to send WAKE to device");
408 
409 	qca->ibs_sent_wakes++;
410 
411 	/* Start retransmit timer */
412 	retrans_delay = msecs_to_jiffies(qca->wake_retrans);
413 	mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
414 
415 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
416 
417 	/* Actually send the packets */
418 	hci_uart_tx_wakeup(hu);
419 }
420 
421 static void qca_wq_awake_rx(struct work_struct *work)
422 {
423 	struct qca_data *qca = container_of(work, struct qca_data,
424 					    ws_awake_rx);
425 	struct hci_uart *hu = qca->hu;
426 	unsigned long flags;
427 
428 	BT_DBG("hu %p wq awake rx", hu);
429 
430 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
431 
432 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
433 	qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
434 
435 	/* Always acknowledge device wake up,
436 	 * sending IBS message doesn't count as TX ON.
437 	 */
438 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
439 		BT_ERR("Failed to acknowledge device wake up");
440 
441 	qca->ibs_sent_wacks++;
442 
443 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
444 
445 	/* Actually send the packets */
446 	hci_uart_tx_wakeup(hu);
447 }
448 
449 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
450 {
451 	struct qca_data *qca = container_of(work, struct qca_data,
452 					    ws_rx_vote_off);
453 	struct hci_uart *hu = qca->hu;
454 
455 	BT_DBG("hu %p rx clock vote off", hu);
456 
457 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
458 }
459 
460 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
461 {
462 	struct qca_data *qca = container_of(work, struct qca_data,
463 					    ws_tx_vote_off);
464 	struct hci_uart *hu = qca->hu;
465 
466 	BT_DBG("hu %p tx clock vote off", hu);
467 
468 	/* Run HCI tx handling unlocked */
469 	hci_uart_tx_wakeup(hu);
470 
471 	/* Now that message queued to tty driver, vote for tty clocks off.
472 	 * It is up to the tty driver to pend the clocks off until tx done.
473 	 */
474 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
475 }
476 
477 static void hci_ibs_tx_idle_timeout(struct timer_list *t)
478 {
479 	struct qca_data *qca = timer_container_of(qca, t, tx_idle_timer);
480 	struct hci_uart *hu = qca->hu;
481 	unsigned long flags;
482 
483 	BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
484 
485 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
486 				 flags, SINGLE_DEPTH_NESTING);
487 
488 	switch (qca->tx_ibs_state) {
489 	case HCI_IBS_TX_AWAKE:
490 		/* TX_IDLE, go to SLEEP */
491 		if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
492 			BT_ERR("Failed to send SLEEP to device");
493 			break;
494 		}
495 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
496 		qca->ibs_sent_slps++;
497 		queue_work(qca->workqueue, &qca->ws_tx_vote_off);
498 		break;
499 
500 	case HCI_IBS_TX_ASLEEP:
501 	case HCI_IBS_TX_WAKING:
502 	default:
503 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
504 		break;
505 	}
506 
507 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
508 }
509 
510 static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
511 {
512 	struct qca_data *qca = timer_container_of(qca, t, wake_retrans_timer);
513 	struct hci_uart *hu = qca->hu;
514 	unsigned long flags, retrans_delay;
515 	bool retransmit = false;
516 
517 	BT_DBG("hu %p wake retransmit timeout in %d state",
518 		hu, qca->tx_ibs_state);
519 
520 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
521 				 flags, SINGLE_DEPTH_NESTING);
522 
523 	/* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
524 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
525 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
526 		return;
527 	}
528 
529 	switch (qca->tx_ibs_state) {
530 	case HCI_IBS_TX_WAKING:
531 		/* No WAKE_ACK, retransmit WAKE */
532 		retransmit = true;
533 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
534 			BT_ERR("Failed to acknowledge device wake up");
535 			break;
536 		}
537 		qca->ibs_sent_wakes++;
538 		retrans_delay = msecs_to_jiffies(qca->wake_retrans);
539 		mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
540 		break;
541 
542 	case HCI_IBS_TX_ASLEEP:
543 	case HCI_IBS_TX_AWAKE:
544 	default:
545 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
546 		break;
547 	}
548 
549 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
550 
551 	if (retransmit)
552 		hci_uart_tx_wakeup(hu);
553 }
554 
555 
556 static void qca_controller_memdump_timeout(struct work_struct *work)
557 {
558 	struct qca_data *qca = container_of(work, struct qca_data,
559 					ctrl_memdump_timeout.work);
560 	struct hci_uart *hu = qca->hu;
561 
562 	mutex_lock(&qca->hci_memdump_lock);
563 	if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
564 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
565 		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
566 			/* Inject hw error event to reset the device
567 			 * and driver.
568 			 */
569 			hci_reset_dev(hu->hdev);
570 		}
571 	}
572 
573 	mutex_unlock(&qca->hci_memdump_lock);
574 }
575 
576 
577 /* Initialize protocol */
578 static int qca_open(struct hci_uart *hu)
579 {
580 	struct qca_serdev *qcadev;
581 	struct qca_data *qca;
582 
583 	BT_DBG("hu %p qca_open", hu);
584 
585 	if (!hci_uart_has_flow_control(hu))
586 		return -EOPNOTSUPP;
587 
588 	qca = kzalloc(sizeof(*qca), GFP_KERNEL);
589 	if (!qca)
590 		return -ENOMEM;
591 
592 	skb_queue_head_init(&qca->txq);
593 	skb_queue_head_init(&qca->tx_wait_q);
594 	skb_queue_head_init(&qca->rx_memdump_q);
595 	spin_lock_init(&qca->hci_ibs_lock);
596 	mutex_init(&qca->hci_memdump_lock);
597 	qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
598 	if (!qca->workqueue) {
599 		BT_ERR("QCA Workqueue not initialized properly");
600 		kfree(qca);
601 		return -ENOMEM;
602 	}
603 
604 	INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
605 	INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
606 	INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
607 	INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
608 	INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
609 	INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout,
610 			  qca_controller_memdump_timeout);
611 	init_waitqueue_head(&qca->suspend_wait_q);
612 
613 	qca->hu = hu;
614 	init_completion(&qca->drop_ev_comp);
615 
616 	/* Assume we start with both sides asleep -- extra wakes OK */
617 	qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
618 	qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
619 
620 	qca->vote_last_jif = jiffies;
621 
622 	hu->priv = qca;
623 
624 	if (hu->serdev) {
625 		qcadev = serdev_device_get_drvdata(hu->serdev);
626 
627 		switch (qcadev->btsoc_type) {
628 		case QCA_WCN3950:
629 		case QCA_WCN3988:
630 		case QCA_WCN3990:
631 		case QCA_WCN3991:
632 		case QCA_WCN3998:
633 		case QCA_WCN6750:
634 			hu->init_speed = qcadev->init_speed;
635 			break;
636 
637 		default:
638 			break;
639 		}
640 
641 		if (qcadev->oper_speed)
642 			hu->oper_speed = qcadev->oper_speed;
643 	}
644 
645 	timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
646 	qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
647 
648 	timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
649 	qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
650 
651 	BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
652 	       qca->tx_idle_delay, qca->wake_retrans);
653 
654 	return 0;
655 }
656 
657 static void qca_debugfs_init(struct hci_dev *hdev)
658 {
659 	struct hci_uart *hu = hci_get_drvdata(hdev);
660 	struct qca_data *qca = hu->priv;
661 	struct dentry *ibs_dir;
662 	umode_t mode;
663 
664 	if (!hdev->debugfs)
665 		return;
666 
667 	if (test_and_set_bit(QCA_DEBUGFS_CREATED, &qca->flags))
668 		return;
669 
670 	ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
671 
672 	/* read only */
673 	mode = 0444;
674 	debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
675 	debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
676 	debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
677 			   &qca->ibs_sent_slps);
678 	debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
679 			   &qca->ibs_sent_wakes);
680 	debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
681 			   &qca->ibs_sent_wacks);
682 	debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
683 			   &qca->ibs_recv_slps);
684 	debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
685 			   &qca->ibs_recv_wakes);
686 	debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
687 			   &qca->ibs_recv_wacks);
688 	debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
689 	debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
690 	debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
691 	debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
692 	debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
693 	debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
694 	debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
695 	debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
696 	debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
697 	debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
698 
699 	/* read/write */
700 	mode = 0644;
701 	debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
702 	debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
703 			   &qca->tx_idle_delay);
704 }
705 
706 /* Flush protocol data */
707 static int qca_flush(struct hci_uart *hu)
708 {
709 	struct qca_data *qca = hu->priv;
710 
711 	BT_DBG("hu %p qca flush", hu);
712 
713 	skb_queue_purge(&qca->tx_wait_q);
714 	skb_queue_purge(&qca->txq);
715 
716 	return 0;
717 }
718 
719 /* Close protocol */
720 static int qca_close(struct hci_uart *hu)
721 {
722 	struct qca_data *qca = hu->priv;
723 
724 	BT_DBG("hu %p qca close", hu);
725 
726 	serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
727 
728 	skb_queue_purge(&qca->tx_wait_q);
729 	skb_queue_purge(&qca->txq);
730 	skb_queue_purge(&qca->rx_memdump_q);
731 	/*
732 	 * Shut the timers down so they can't be rearmed when
733 	 * destroy_workqueue() drains pending work which in turn might try
734 	 * to arm a timer.  After shutdown rearm attempts are silently
735 	 * ignored by the timer core code.
736 	 */
737 	timer_shutdown_sync(&qca->tx_idle_timer);
738 	timer_shutdown_sync(&qca->wake_retrans_timer);
739 	destroy_workqueue(qca->workqueue);
740 	qca->hu = NULL;
741 
742 	kfree_skb(qca->rx_skb);
743 
744 	hu->priv = NULL;
745 
746 	kfree(qca);
747 
748 	return 0;
749 }
750 
751 /* Called upon a wake-up-indication from the device.
752  */
753 static void device_want_to_wakeup(struct hci_uart *hu)
754 {
755 	unsigned long flags;
756 	struct qca_data *qca = hu->priv;
757 
758 	BT_DBG("hu %p want to wake up", hu);
759 
760 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
761 
762 	qca->ibs_recv_wakes++;
763 
764 	/* Don't wake the rx up when suspending. */
765 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
766 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
767 		return;
768 	}
769 
770 	switch (qca->rx_ibs_state) {
771 	case HCI_IBS_RX_ASLEEP:
772 		/* Make sure clock is on - we may have turned clock off since
773 		 * receiving the wake up indicator awake rx clock.
774 		 */
775 		queue_work(qca->workqueue, &qca->ws_awake_rx);
776 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
777 		return;
778 
779 	case HCI_IBS_RX_AWAKE:
780 		/* Always acknowledge device wake up,
781 		 * sending IBS message doesn't count as TX ON.
782 		 */
783 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
784 			BT_ERR("Failed to acknowledge device wake up");
785 			break;
786 		}
787 		qca->ibs_sent_wacks++;
788 		break;
789 
790 	default:
791 		/* Any other state is illegal */
792 		BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
793 		       qca->rx_ibs_state);
794 		break;
795 	}
796 
797 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
798 
799 	/* Actually send the packets */
800 	hci_uart_tx_wakeup(hu);
801 }
802 
803 /* Called upon a sleep-indication from the device.
804  */
805 static void device_want_to_sleep(struct hci_uart *hu)
806 {
807 	unsigned long flags;
808 	struct qca_data *qca = hu->priv;
809 
810 	BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
811 
812 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
813 
814 	qca->ibs_recv_slps++;
815 
816 	switch (qca->rx_ibs_state) {
817 	case HCI_IBS_RX_AWAKE:
818 		/* Update state */
819 		qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
820 		/* Vote off rx clock under workqueue */
821 		queue_work(qca->workqueue, &qca->ws_rx_vote_off);
822 		break;
823 
824 	case HCI_IBS_RX_ASLEEP:
825 		break;
826 
827 	default:
828 		/* Any other state is illegal */
829 		BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
830 		       qca->rx_ibs_state);
831 		break;
832 	}
833 
834 	wake_up_interruptible(&qca->suspend_wait_q);
835 
836 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
837 }
838 
839 /* Called upon wake-up-acknowledgement from the device
840  */
841 static void device_woke_up(struct hci_uart *hu)
842 {
843 	unsigned long flags, idle_delay;
844 	struct qca_data *qca = hu->priv;
845 	struct sk_buff *skb = NULL;
846 
847 	BT_DBG("hu %p woke up", hu);
848 
849 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
850 
851 	qca->ibs_recv_wacks++;
852 
853 	/* Don't react to the wake-up-acknowledgment when suspending. */
854 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
855 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
856 		return;
857 	}
858 
859 	switch (qca->tx_ibs_state) {
860 	case HCI_IBS_TX_AWAKE:
861 		/* Expect one if we send 2 WAKEs */
862 		BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
863 		       qca->tx_ibs_state);
864 		break;
865 
866 	case HCI_IBS_TX_WAKING:
867 		/* Send pending packets */
868 		while ((skb = skb_dequeue(&qca->tx_wait_q)))
869 			skb_queue_tail(&qca->txq, skb);
870 
871 		/* Switch timers and change state to HCI_IBS_TX_AWAKE */
872 		timer_delete(&qca->wake_retrans_timer);
873 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
874 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
875 		qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
876 		break;
877 
878 	case HCI_IBS_TX_ASLEEP:
879 	default:
880 		BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
881 		       qca->tx_ibs_state);
882 		break;
883 	}
884 
885 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
886 
887 	/* Actually send the packets */
888 	hci_uart_tx_wakeup(hu);
889 }
890 
891 /* Enqueue frame for transmission (padding, crc, etc) may be called from
892  * two simultaneous tasklets.
893  */
894 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
895 {
896 	unsigned long flags = 0, idle_delay;
897 	struct qca_data *qca = hu->priv;
898 
899 	BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
900 	       qca->tx_ibs_state);
901 
902 	if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
903 		/* As SSR is in progress, ignore the packets */
904 		bt_dev_dbg(hu->hdev, "SSR is in progress");
905 		kfree_skb(skb);
906 		return 0;
907 	}
908 
909 	/* Prepend skb with frame type */
910 	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
911 
912 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
913 
914 	/* Don't go to sleep in middle of patch download or
915 	 * Out-Of-Band(GPIOs control) sleep is selected.
916 	 * Don't wake the device up when suspending.
917 	 */
918 	if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
919 	    test_bit(QCA_SUSPENDING, &qca->flags)) {
920 		skb_queue_tail(&qca->txq, skb);
921 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
922 		return 0;
923 	}
924 
925 	/* Act according to current state */
926 	switch (qca->tx_ibs_state) {
927 	case HCI_IBS_TX_AWAKE:
928 		BT_DBG("Device awake, sending normally");
929 		skb_queue_tail(&qca->txq, skb);
930 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
931 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
932 		break;
933 
934 	case HCI_IBS_TX_ASLEEP:
935 		BT_DBG("Device asleep, waking up and queueing packet");
936 		/* Save packet for later */
937 		skb_queue_tail(&qca->tx_wait_q, skb);
938 
939 		qca->tx_ibs_state = HCI_IBS_TX_WAKING;
940 		/* Schedule a work queue to wake up device */
941 		queue_work(qca->workqueue, &qca->ws_awake_device);
942 		break;
943 
944 	case HCI_IBS_TX_WAKING:
945 		BT_DBG("Device waking up, queueing packet");
946 		/* Transient state; just keep packet for later */
947 		skb_queue_tail(&qca->tx_wait_q, skb);
948 		break;
949 
950 	default:
951 		BT_ERR("Illegal tx state: %d (losing packet)",
952 		       qca->tx_ibs_state);
953 		dev_kfree_skb_irq(skb);
954 		break;
955 	}
956 
957 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
958 
959 	return 0;
960 }
961 
962 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
963 {
964 	struct hci_uart *hu = hci_get_drvdata(hdev);
965 
966 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
967 
968 	device_want_to_sleep(hu);
969 
970 	kfree_skb(skb);
971 	return 0;
972 }
973 
974 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
975 {
976 	struct hci_uart *hu = hci_get_drvdata(hdev);
977 
978 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
979 
980 	device_want_to_wakeup(hu);
981 
982 	kfree_skb(skb);
983 	return 0;
984 }
985 
986 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
987 {
988 	struct hci_uart *hu = hci_get_drvdata(hdev);
989 
990 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
991 
992 	device_woke_up(hu);
993 
994 	kfree_skb(skb);
995 	return 0;
996 }
997 
998 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
999 {
1000 	/* We receive debug logs from chip as an ACL packets.
1001 	 * Instead of sending the data to ACL to decode the
1002 	 * received data, we are pushing them to the above layers
1003 	 * as a diagnostic packet.
1004 	 */
1005 	if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
1006 		return hci_recv_diag(hdev, skb);
1007 
1008 	return hci_recv_frame(hdev, skb);
1009 }
1010 
1011 static void qca_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb)
1012 {
1013 	struct hci_uart *hu = hci_get_drvdata(hdev);
1014 	struct qca_data *qca = hu->priv;
1015 	char buf[80];
1016 
1017 	snprintf(buf, sizeof(buf), "Controller Name: 0x%x\n",
1018 		qca->controller_id);
1019 	skb_put_data(skb, buf, strlen(buf));
1020 
1021 	snprintf(buf, sizeof(buf), "Firmware Version: 0x%x\n",
1022 		qca->fw_version);
1023 	skb_put_data(skb, buf, strlen(buf));
1024 
1025 	snprintf(buf, sizeof(buf), "Vendor:Qualcomm\n");
1026 	skb_put_data(skb, buf, strlen(buf));
1027 
1028 	snprintf(buf, sizeof(buf), "Driver: %s\n",
1029 		hu->serdev->dev.driver->name);
1030 	skb_put_data(skb, buf, strlen(buf));
1031 }
1032 
1033 static void qca_controller_memdump(struct work_struct *work)
1034 {
1035 	struct qca_data *qca = container_of(work, struct qca_data,
1036 					    ctrl_memdump_evt);
1037 	struct hci_uart *hu = qca->hu;
1038 	struct sk_buff *skb;
1039 	struct qca_memdump_event_hdr *cmd_hdr;
1040 	struct qca_memdump_info *qca_memdump = qca->qca_memdump;
1041 	struct qca_dump_size *dump;
1042 	u16 seq_no;
1043 	u32 rx_size;
1044 	int ret = 0;
1045 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1046 
1047 	while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
1048 
1049 		mutex_lock(&qca->hci_memdump_lock);
1050 		/* Skip processing the received packets if timeout detected
1051 		 * or memdump collection completed.
1052 		 */
1053 		if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1054 		    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1055 			mutex_unlock(&qca->hci_memdump_lock);
1056 			return;
1057 		}
1058 
1059 		if (!qca_memdump) {
1060 			qca_memdump = kzalloc(sizeof(*qca_memdump), GFP_ATOMIC);
1061 			if (!qca_memdump) {
1062 				mutex_unlock(&qca->hci_memdump_lock);
1063 				return;
1064 			}
1065 
1066 			qca->qca_memdump = qca_memdump;
1067 		}
1068 
1069 		qca->memdump_state = QCA_MEMDUMP_COLLECTING;
1070 		cmd_hdr = (void *) skb->data;
1071 		seq_no = __le16_to_cpu(cmd_hdr->seq_no);
1072 		skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
1073 
1074 		if (!seq_no) {
1075 
1076 			/* This is the first frame of memdump packet from
1077 			 * the controller, Disable IBS to receive dump
1078 			 * with out any interruption, ideally time required for
1079 			 * the controller to send the dump is 8 seconds. let us
1080 			 * start timer to handle this asynchronous activity.
1081 			 */
1082 			set_bit(QCA_IBS_DISABLED, &qca->flags);
1083 			set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1084 			dump = (void *) skb->data;
1085 			qca_memdump->ram_dump_size = __le32_to_cpu(dump->dump_size);
1086 			if (!(qca_memdump->ram_dump_size)) {
1087 				bt_dev_err(hu->hdev, "Rx invalid memdump size");
1088 				kfree(qca_memdump);
1089 				kfree_skb(skb);
1090 				mutex_unlock(&qca->hci_memdump_lock);
1091 				return;
1092 			}
1093 
1094 			queue_delayed_work(qca->workqueue,
1095 					   &qca->ctrl_memdump_timeout,
1096 					   msecs_to_jiffies(MEMDUMP_TIMEOUT_MS));
1097 			skb_pull(skb, sizeof(qca_memdump->ram_dump_size));
1098 			qca_memdump->current_seq_no = 0;
1099 			qca_memdump->received_dump = 0;
1100 			ret = hci_devcd_init(hu->hdev, qca_memdump->ram_dump_size);
1101 			bt_dev_info(hu->hdev, "hci_devcd_init Return:%d",
1102 				    ret);
1103 			if (ret < 0) {
1104 				kfree(qca->qca_memdump);
1105 				qca->qca_memdump = NULL;
1106 				qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1107 				cancel_delayed_work(&qca->ctrl_memdump_timeout);
1108 				clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1109 				clear_bit(QCA_IBS_DISABLED, &qca->flags);
1110 				mutex_unlock(&qca->hci_memdump_lock);
1111 				return;
1112 			}
1113 
1114 			bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
1115 				    qca_memdump->ram_dump_size);
1116 
1117 		}
1118 
1119 		/* If sequence no 0 is missed then there is no point in
1120 		 * accepting the other sequences.
1121 		 */
1122 		if (!test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
1123 			bt_dev_err(hu->hdev, "QCA: Discarding other packets");
1124 			kfree(qca_memdump);
1125 			kfree_skb(skb);
1126 			mutex_unlock(&qca->hci_memdump_lock);
1127 			return;
1128 		}
1129 		/* There could be chance of missing some packets from
1130 		 * the controller. In such cases let us store the dummy
1131 		 * packets in the buffer.
1132 		 */
1133 		/* For QCA6390, controller does not lost packets but
1134 		 * sequence number field of packet sometimes has error
1135 		 * bits, so skip this checking for missing packet.
1136 		 */
1137 		while ((seq_no > qca_memdump->current_seq_no + 1) &&
1138 			(soc_type != QCA_QCA6390) &&
1139 			seq_no != QCA_LAST_SEQUENCE_NUM) {
1140 			bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
1141 				   qca_memdump->current_seq_no);
1142 			rx_size = qca_memdump->received_dump;
1143 			rx_size += QCA_DUMP_PACKET_SIZE;
1144 			if (rx_size > qca_memdump->ram_dump_size) {
1145 				bt_dev_err(hu->hdev,
1146 					   "QCA memdump received %d, no space for missed packet",
1147 					   qca_memdump->received_dump);
1148 				break;
1149 			}
1150 			hci_devcd_append_pattern(hu->hdev, 0x00,
1151 				QCA_DUMP_PACKET_SIZE);
1152 			qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
1153 			qca_memdump->current_seq_no++;
1154 		}
1155 
1156 		rx_size = qca_memdump->received_dump  + skb->len;
1157 		if (rx_size <= qca_memdump->ram_dump_size) {
1158 			if ((seq_no != QCA_LAST_SEQUENCE_NUM) &&
1159 			    (seq_no != qca_memdump->current_seq_no)) {
1160 				bt_dev_err(hu->hdev,
1161 					   "QCA memdump unexpected packet %d",
1162 					   seq_no);
1163 			}
1164 			bt_dev_dbg(hu->hdev,
1165 				   "QCA memdump packet %d with length %d",
1166 				   seq_no, skb->len);
1167 			hci_devcd_append(hu->hdev, skb);
1168 			qca_memdump->current_seq_no += 1;
1169 			qca_memdump->received_dump = rx_size;
1170 		} else {
1171 			bt_dev_err(hu->hdev,
1172 				   "QCA memdump received no space for packet %d",
1173 				    qca_memdump->current_seq_no);
1174 		}
1175 
1176 		if (seq_no == QCA_LAST_SEQUENCE_NUM) {
1177 			bt_dev_info(hu->hdev,
1178 				"QCA memdump Done, received %d, total %d",
1179 				qca_memdump->received_dump,
1180 				qca_memdump->ram_dump_size);
1181 			hci_devcd_complete(hu->hdev);
1182 			cancel_delayed_work(&qca->ctrl_memdump_timeout);
1183 			kfree(qca->qca_memdump);
1184 			qca->qca_memdump = NULL;
1185 			qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1186 			clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1187 		}
1188 
1189 		mutex_unlock(&qca->hci_memdump_lock);
1190 	}
1191 
1192 }
1193 
1194 static int qca_controller_memdump_event(struct hci_dev *hdev,
1195 					struct sk_buff *skb)
1196 {
1197 	struct hci_uart *hu = hci_get_drvdata(hdev);
1198 	struct qca_data *qca = hu->priv;
1199 
1200 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1201 	skb_queue_tail(&qca->rx_memdump_q, skb);
1202 	queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
1203 
1204 	return 0;
1205 }
1206 
1207 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1208 {
1209 	struct hci_uart *hu = hci_get_drvdata(hdev);
1210 	struct qca_data *qca = hu->priv;
1211 
1212 	if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
1213 		struct hci_event_hdr *hdr = (void *)skb->data;
1214 
1215 		/* For the WCN3990 the vendor command for a baudrate change
1216 		 * isn't sent as synchronous HCI command, because the
1217 		 * controller sends the corresponding vendor event with the
1218 		 * new baudrate. The event is received and properly decoded
1219 		 * after changing the baudrate of the host port. It needs to
1220 		 * be dropped, otherwise it can be misinterpreted as
1221 		 * response to a later firmware download command (also a
1222 		 * vendor command).
1223 		 */
1224 
1225 		if (hdr->evt == HCI_EV_VENDOR)
1226 			complete(&qca->drop_ev_comp);
1227 
1228 		kfree_skb(skb);
1229 
1230 		return 0;
1231 	}
1232 	/* We receive chip memory dump as an event packet, With a dedicated
1233 	 * handler followed by a hardware error event. When this event is
1234 	 * received we store dump into a file before closing hci. This
1235 	 * dump will help in triaging the issues.
1236 	 */
1237 	if ((skb->data[0] == HCI_VENDOR_PKT) &&
1238 	    (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
1239 		return qca_controller_memdump_event(hdev, skb);
1240 
1241 	return hci_recv_frame(hdev, skb);
1242 }
1243 
1244 #define QCA_IBS_SLEEP_IND_EVENT \
1245 	.type = HCI_IBS_SLEEP_IND, \
1246 	.hlen = 0, \
1247 	.loff = 0, \
1248 	.lsize = 0, \
1249 	.maxlen = HCI_MAX_IBS_SIZE
1250 
1251 #define QCA_IBS_WAKE_IND_EVENT \
1252 	.type = HCI_IBS_WAKE_IND, \
1253 	.hlen = 0, \
1254 	.loff = 0, \
1255 	.lsize = 0, \
1256 	.maxlen = HCI_MAX_IBS_SIZE
1257 
1258 #define QCA_IBS_WAKE_ACK_EVENT \
1259 	.type = HCI_IBS_WAKE_ACK, \
1260 	.hlen = 0, \
1261 	.loff = 0, \
1262 	.lsize = 0, \
1263 	.maxlen = HCI_MAX_IBS_SIZE
1264 
1265 static const struct h4_recv_pkt qca_recv_pkts[] = {
1266 	{ H4_RECV_ACL,             .recv = qca_recv_acl_data },
1267 	{ H4_RECV_SCO,             .recv = hci_recv_frame    },
1268 	{ H4_RECV_EVENT,           .recv = qca_recv_event    },
1269 	{ H4_RECV_ISO,             .recv = hci_recv_frame    },
1270 	{ QCA_IBS_WAKE_IND_EVENT,  .recv = qca_ibs_wake_ind  },
1271 	{ QCA_IBS_WAKE_ACK_EVENT,  .recv = qca_ibs_wake_ack  },
1272 	{ QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
1273 };
1274 
1275 static int qca_recv(struct hci_uart *hu, const void *data, int count)
1276 {
1277 	struct qca_data *qca = hu->priv;
1278 
1279 	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1280 		return -EUNATCH;
1281 
1282 	qca->rx_skb = h4_recv_buf(hu, qca->rx_skb, data, count,
1283 				  qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
1284 	if (IS_ERR(qca->rx_skb)) {
1285 		int err = PTR_ERR(qca->rx_skb);
1286 		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1287 		qca->rx_skb = NULL;
1288 		return err;
1289 	}
1290 
1291 	return count;
1292 }
1293 
1294 static struct sk_buff *qca_dequeue(struct hci_uart *hu)
1295 {
1296 	struct qca_data *qca = hu->priv;
1297 
1298 	return skb_dequeue(&qca->txq);
1299 }
1300 
1301 static uint8_t qca_get_baudrate_value(int speed)
1302 {
1303 	switch (speed) {
1304 	case 9600:
1305 		return QCA_BAUDRATE_9600;
1306 	case 19200:
1307 		return QCA_BAUDRATE_19200;
1308 	case 38400:
1309 		return QCA_BAUDRATE_38400;
1310 	case 57600:
1311 		return QCA_BAUDRATE_57600;
1312 	case 115200:
1313 		return QCA_BAUDRATE_115200;
1314 	case 230400:
1315 		return QCA_BAUDRATE_230400;
1316 	case 460800:
1317 		return QCA_BAUDRATE_460800;
1318 	case 500000:
1319 		return QCA_BAUDRATE_500000;
1320 	case 921600:
1321 		return QCA_BAUDRATE_921600;
1322 	case 1000000:
1323 		return QCA_BAUDRATE_1000000;
1324 	case 2000000:
1325 		return QCA_BAUDRATE_2000000;
1326 	case 3000000:
1327 		return QCA_BAUDRATE_3000000;
1328 	case 3200000:
1329 		return QCA_BAUDRATE_3200000;
1330 	case 3500000:
1331 		return QCA_BAUDRATE_3500000;
1332 	default:
1333 		return QCA_BAUDRATE_115200;
1334 	}
1335 }
1336 
1337 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
1338 {
1339 	struct hci_uart *hu = hci_get_drvdata(hdev);
1340 	struct qca_data *qca = hu->priv;
1341 	struct sk_buff *skb;
1342 	u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
1343 
1344 	if (baudrate > QCA_BAUDRATE_3200000)
1345 		return -EINVAL;
1346 
1347 	cmd[4] = baudrate;
1348 
1349 	skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1350 	if (!skb) {
1351 		bt_dev_err(hdev, "Failed to allocate baudrate packet");
1352 		return -ENOMEM;
1353 	}
1354 
1355 	/* Assign commands to change baudrate and packet type. */
1356 	skb_put_data(skb, cmd, sizeof(cmd));
1357 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1358 
1359 	skb_queue_tail(&qca->txq, skb);
1360 	hci_uart_tx_wakeup(hu);
1361 
1362 	/* Wait for the baudrate change request to be sent */
1363 
1364 	while (!skb_queue_empty(&qca->txq))
1365 		usleep_range(100, 200);
1366 
1367 	if (hu->serdev)
1368 		serdev_device_wait_until_sent(hu->serdev,
1369 		      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1370 
1371 	/* Give the controller time to process the request */
1372 	switch (qca_soc_type(hu)) {
1373 	case QCA_WCN3950:
1374 	case QCA_WCN3988:
1375 	case QCA_WCN3990:
1376 	case QCA_WCN3991:
1377 	case QCA_WCN3998:
1378 	case QCA_WCN6750:
1379 	case QCA_WCN6855:
1380 	case QCA_WCN7850:
1381 		usleep_range(1000, 10000);
1382 		break;
1383 
1384 	default:
1385 		msleep(300);
1386 	}
1387 
1388 	return 0;
1389 }
1390 
1391 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
1392 {
1393 	if (hu->serdev)
1394 		serdev_device_set_baudrate(hu->serdev, speed);
1395 	else
1396 		hci_uart_set_baudrate(hu, speed);
1397 }
1398 
1399 static int qca_send_power_pulse(struct hci_uart *hu, bool on)
1400 {
1401 	int ret;
1402 	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
1403 	u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
1404 
1405 	/* These power pulses are single byte command which are sent
1406 	 * at required baudrate to wcn3990. On wcn3990, we have an external
1407 	 * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1408 	 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1409 	 * and also we use the same power inputs to turn on and off for
1410 	 * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1411 	 * we send a power on pulse at 115200 bps. This algorithm will help to
1412 	 * save power. Disabling hardware flow control is mandatory while
1413 	 * sending power pulses to SoC.
1414 	 */
1415 	bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
1416 
1417 	serdev_device_write_flush(hu->serdev);
1418 	hci_uart_set_flow_control(hu, true);
1419 	ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1420 	if (ret < 0) {
1421 		bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
1422 		return ret;
1423 	}
1424 
1425 	serdev_device_wait_until_sent(hu->serdev, timeout);
1426 	hci_uart_set_flow_control(hu, false);
1427 
1428 	/* Give to controller time to boot/shutdown */
1429 	if (on)
1430 		msleep(100);
1431 	else
1432 		usleep_range(1000, 10000);
1433 
1434 	return 0;
1435 }
1436 
1437 static unsigned int qca_get_speed(struct hci_uart *hu,
1438 				  enum qca_speed_type speed_type)
1439 {
1440 	unsigned int speed = 0;
1441 
1442 	if (speed_type == QCA_INIT_SPEED) {
1443 		if (hu->init_speed)
1444 			speed = hu->init_speed;
1445 		else if (hu->proto->init_speed)
1446 			speed = hu->proto->init_speed;
1447 	} else {
1448 		if (hu->oper_speed)
1449 			speed = hu->oper_speed;
1450 		else if (hu->proto->oper_speed)
1451 			speed = hu->proto->oper_speed;
1452 	}
1453 
1454 	return speed;
1455 }
1456 
1457 static int qca_check_speeds(struct hci_uart *hu)
1458 {
1459 	switch (qca_soc_type(hu)) {
1460 	case QCA_WCN3950:
1461 	case QCA_WCN3988:
1462 	case QCA_WCN3990:
1463 	case QCA_WCN3991:
1464 	case QCA_WCN3998:
1465 	case QCA_WCN6750:
1466 	case QCA_WCN6855:
1467 	case QCA_WCN7850:
1468 		if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1469 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1470 			return -EINVAL;
1471 		break;
1472 
1473 	default:
1474 		if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1475 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1476 			return -EINVAL;
1477 	}
1478 
1479 	return 0;
1480 }
1481 
1482 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1483 {
1484 	unsigned int speed, qca_baudrate;
1485 	struct qca_data *qca = hu->priv;
1486 	int ret = 0;
1487 
1488 	if (speed_type == QCA_INIT_SPEED) {
1489 		speed = qca_get_speed(hu, QCA_INIT_SPEED);
1490 		if (speed)
1491 			host_set_baudrate(hu, speed);
1492 	} else {
1493 		enum qca_btsoc_type soc_type = qca_soc_type(hu);
1494 
1495 		speed = qca_get_speed(hu, QCA_OPER_SPEED);
1496 		if (!speed)
1497 			return 0;
1498 
1499 		/* Disable flow control for wcn3990 to deassert RTS while
1500 		 * changing the baudrate of chip and host.
1501 		 */
1502 		switch (soc_type) {
1503 		case QCA_WCN3950:
1504 		case QCA_WCN3988:
1505 		case QCA_WCN3990:
1506 		case QCA_WCN3991:
1507 		case QCA_WCN3998:
1508 		case QCA_WCN6750:
1509 		case QCA_WCN6855:
1510 		case QCA_WCN7850:
1511 			hci_uart_set_flow_control(hu, true);
1512 			break;
1513 
1514 		default:
1515 			break;
1516 		}
1517 
1518 		switch (soc_type) {
1519 		case QCA_WCN3990:
1520 			reinit_completion(&qca->drop_ev_comp);
1521 			set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1522 			break;
1523 
1524 		default:
1525 			break;
1526 		}
1527 
1528 		qca_baudrate = qca_get_baudrate_value(speed);
1529 		bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1530 		ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1531 		if (ret)
1532 			goto error;
1533 
1534 		host_set_baudrate(hu, speed);
1535 
1536 error:
1537 		switch (soc_type) {
1538 		case QCA_WCN3950:
1539 		case QCA_WCN3988:
1540 		case QCA_WCN3990:
1541 		case QCA_WCN3991:
1542 		case QCA_WCN3998:
1543 		case QCA_WCN6750:
1544 		case QCA_WCN6855:
1545 		case QCA_WCN7850:
1546 			hci_uart_set_flow_control(hu, false);
1547 			break;
1548 
1549 		default:
1550 			break;
1551 		}
1552 
1553 		switch (soc_type) {
1554 		case QCA_WCN3990:
1555 			/* Wait for the controller to send the vendor event
1556 			 * for the baudrate change command.
1557 			 */
1558 			if (!wait_for_completion_timeout(&qca->drop_ev_comp,
1559 						 msecs_to_jiffies(100))) {
1560 				bt_dev_err(hu->hdev,
1561 					   "Failed to change controller baudrate\n");
1562 				ret = -ETIMEDOUT;
1563 			}
1564 
1565 			clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1566 			break;
1567 
1568 		default:
1569 			break;
1570 		}
1571 	}
1572 
1573 	return ret;
1574 }
1575 
1576 static int qca_send_crashbuffer(struct hci_uart *hu)
1577 {
1578 	struct qca_data *qca = hu->priv;
1579 	struct sk_buff *skb;
1580 
1581 	skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
1582 	if (!skb) {
1583 		bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
1584 		return -ENOMEM;
1585 	}
1586 
1587 	/* We forcefully crash the controller, by sending 0xfb byte for
1588 	 * 1024 times. We also might have chance of losing data, To be
1589 	 * on safer side we send 1096 bytes to the SoC.
1590 	 */
1591 	memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
1592 	       QCA_CRASHBYTE_PACKET_LEN);
1593 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1594 	bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
1595 	skb_queue_tail(&qca->txq, skb);
1596 	hci_uart_tx_wakeup(hu);
1597 
1598 	return 0;
1599 }
1600 
1601 static void qca_wait_for_dump_collection(struct hci_dev *hdev)
1602 {
1603 	struct hci_uart *hu = hci_get_drvdata(hdev);
1604 	struct qca_data *qca = hu->priv;
1605 
1606 	wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
1607 			    TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
1608 
1609 	clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1610 }
1611 
1612 static void qca_hw_error(struct hci_dev *hdev, u8 code)
1613 {
1614 	struct hci_uart *hu = hci_get_drvdata(hdev);
1615 	struct qca_data *qca = hu->priv;
1616 
1617 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1618 	set_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1619 	bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
1620 
1621 	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1622 		/* If hardware error event received for other than QCA
1623 		 * soc memory dump event, then we need to crash the SOC
1624 		 * and wait here for 8 seconds to get the dump packets.
1625 		 * This will block main thread to be on hold until we
1626 		 * collect dump.
1627 		 */
1628 		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1629 		qca_send_crashbuffer(hu);
1630 		qca_wait_for_dump_collection(hdev);
1631 	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1632 		/* Let us wait here until memory dump collected or
1633 		 * memory dump timer expired.
1634 		 */
1635 		bt_dev_info(hdev, "waiting for dump to complete");
1636 		qca_wait_for_dump_collection(hdev);
1637 	}
1638 
1639 	mutex_lock(&qca->hci_memdump_lock);
1640 	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1641 		bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
1642 		hci_devcd_abort(hu->hdev);
1643 		if (qca->qca_memdump) {
1644 			kfree(qca->qca_memdump);
1645 			qca->qca_memdump = NULL;
1646 		}
1647 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1648 		cancel_delayed_work(&qca->ctrl_memdump_timeout);
1649 	}
1650 	mutex_unlock(&qca->hci_memdump_lock);
1651 
1652 	if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1653 	    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1654 		cancel_work_sync(&qca->ctrl_memdump_evt);
1655 		skb_queue_purge(&qca->rx_memdump_q);
1656 	}
1657 
1658 	/*
1659 	 * If the BT chip's bt_en pin is connected to a 3.3V power supply via
1660 	 * hardware and always stays high, driver cannot control the bt_en pin.
1661 	 * As a result, during SSR (SubSystem Restart), QCA_SSR_TRIGGERED and
1662 	 * QCA_IBS_DISABLED flags cannot be cleared, which leads to a reset
1663 	 * command timeout.
1664 	 * Add an msleep delay to ensure controller completes the SSR process.
1665 	 *
1666 	 * Host will not download the firmware after SSR, controller to remain
1667 	 * in the IBS_WAKE state, and the host needs to synchronize with it
1668 	 *
1669 	 * Since the bluetooth chip has been reset, clear the memdump state.
1670 	 */
1671 	if (!hci_test_quirk(hu->hdev, HCI_QUIRK_NON_PERSISTENT_SETUP)) {
1672 		/*
1673 		 * When the SSR (SubSystem Restart) duration exceeds 2 seconds,
1674 		 * it triggers host tx_idle_delay, which sets host TX state
1675 		 * to sleep. Reset tx_idle_timer after SSR to prevent
1676 		 * host enter TX IBS_Sleep mode.
1677 		 */
1678 		mod_timer(&qca->tx_idle_timer, jiffies +
1679 				  msecs_to_jiffies(qca->tx_idle_delay));
1680 
1681 		/* Controller reset completion time is 50ms */
1682 		msleep(50);
1683 
1684 		clear_bit(QCA_SSR_TRIGGERED, &qca->flags);
1685 		clear_bit(QCA_IBS_DISABLED, &qca->flags);
1686 
1687 		qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
1688 		qca->memdump_state = QCA_MEMDUMP_IDLE;
1689 	}
1690 
1691 	clear_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1692 }
1693 
1694 static void qca_reset(struct hci_dev *hdev)
1695 {
1696 	struct hci_uart *hu = hci_get_drvdata(hdev);
1697 	struct qca_data *qca = hu->priv;
1698 
1699 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1700 	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1701 		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1702 		qca_send_crashbuffer(hu);
1703 		qca_wait_for_dump_collection(hdev);
1704 	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1705 		/* Let us wait here until memory dump collected or
1706 		 * memory dump timer expired.
1707 		 */
1708 		bt_dev_info(hdev, "waiting for dump to complete");
1709 		qca_wait_for_dump_collection(hdev);
1710 	}
1711 
1712 	mutex_lock(&qca->hci_memdump_lock);
1713 	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1714 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1715 		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
1716 			/* Inject hw error event to reset the device
1717 			 * and driver.
1718 			 */
1719 			hci_reset_dev(hu->hdev);
1720 		}
1721 	}
1722 	mutex_unlock(&qca->hci_memdump_lock);
1723 }
1724 
1725 static bool qca_wakeup(struct hci_dev *hdev)
1726 {
1727 	struct hci_uart *hu = hci_get_drvdata(hdev);
1728 	bool wakeup;
1729 
1730 	if (!hu->serdev)
1731 		return true;
1732 
1733 	/* BT SoC attached through the serial bus is handled by the serdev driver.
1734 	 * So we need to use the device handle of the serdev driver to get the
1735 	 * status of device may wakeup.
1736 	 */
1737 	wakeup = device_may_wakeup(&hu->serdev->ctrl->dev);
1738 	bt_dev_dbg(hu->hdev, "wakeup status : %d", wakeup);
1739 
1740 	return wakeup;
1741 }
1742 
1743 static int qca_port_reopen(struct hci_uart *hu)
1744 {
1745 	int ret;
1746 
1747 	/* Now the device is in ready state to communicate with host.
1748 	 * To sync host with device we need to reopen port.
1749 	 * Without this, we will have RTS and CTS synchronization
1750 	 * issues.
1751 	 */
1752 	serdev_device_close(hu->serdev);
1753 	ret = serdev_device_open(hu->serdev);
1754 	if (ret) {
1755 		bt_dev_err(hu->hdev, "failed to open port");
1756 		return ret;
1757 	}
1758 
1759 	hci_uart_set_flow_control(hu, false);
1760 
1761 	return 0;
1762 }
1763 
1764 static int qca_regulator_init(struct hci_uart *hu)
1765 {
1766 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1767 	struct qca_serdev *qcadev;
1768 	int ret;
1769 	bool sw_ctrl_state;
1770 
1771 	/* Check for vregs status, may be hci down has turned
1772 	 * off the voltage regulator.
1773 	 */
1774 	qcadev = serdev_device_get_drvdata(hu->serdev);
1775 
1776 	if (!qcadev->bt_power->vregs_on) {
1777 		serdev_device_close(hu->serdev);
1778 		ret = qca_regulator_enable(qcadev);
1779 		if (ret)
1780 			return ret;
1781 
1782 		ret = serdev_device_open(hu->serdev);
1783 		if (ret) {
1784 			bt_dev_err(hu->hdev, "failed to open port");
1785 			return ret;
1786 		}
1787 	}
1788 
1789 	switch (soc_type) {
1790 	case QCA_WCN3950:
1791 	case QCA_WCN3988:
1792 	case QCA_WCN3990:
1793 	case QCA_WCN3991:
1794 	case QCA_WCN3998:
1795 		/* Forcefully enable wcn399x to enter in to boot mode. */
1796 		host_set_baudrate(hu, 2400);
1797 		ret = qca_send_power_pulse(hu, false);
1798 		if (ret)
1799 			return ret;
1800 		break;
1801 
1802 	default:
1803 		break;
1804 	}
1805 
1806 	/* For wcn6750 need to enable gpio bt_en */
1807 	if (qcadev->bt_en) {
1808 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
1809 		msleep(50);
1810 		gpiod_set_value_cansleep(qcadev->bt_en, 1);
1811 		msleep(50);
1812 		if (qcadev->sw_ctrl) {
1813 			sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
1814 			bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
1815 		}
1816 	}
1817 
1818 	qca_set_speed(hu, QCA_INIT_SPEED);
1819 
1820 	switch (soc_type) {
1821 	case QCA_WCN3950:
1822 	case QCA_WCN3988:
1823 	case QCA_WCN3990:
1824 	case QCA_WCN3991:
1825 	case QCA_WCN3998:
1826 		ret = qca_send_power_pulse(hu, true);
1827 		if (ret)
1828 			return ret;
1829 		break;
1830 
1831 	default:
1832 		break;
1833 	}
1834 
1835 	return qca_port_reopen(hu);
1836 }
1837 
1838 static int qca_power_on(struct hci_dev *hdev)
1839 {
1840 	struct hci_uart *hu = hci_get_drvdata(hdev);
1841 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1842 	struct qca_serdev *qcadev;
1843 	struct qca_data *qca = hu->priv;
1844 	int ret = 0;
1845 
1846 	/* Non-serdev device usually is powered by external power
1847 	 * and don't need additional action in driver for power on
1848 	 */
1849 	if (!hu->serdev)
1850 		return 0;
1851 
1852 	switch (soc_type) {
1853 	case QCA_WCN3950:
1854 	case QCA_WCN3988:
1855 	case QCA_WCN3990:
1856 	case QCA_WCN3991:
1857 	case QCA_WCN3998:
1858 	case QCA_WCN6750:
1859 	case QCA_WCN6855:
1860 	case QCA_WCN7850:
1861 	case QCA_QCA6390:
1862 		ret = qca_regulator_init(hu);
1863 		break;
1864 
1865 	default:
1866 		qcadev = serdev_device_get_drvdata(hu->serdev);
1867 		if (qcadev->bt_en) {
1868 			gpiod_set_value_cansleep(qcadev->bt_en, 1);
1869 			/* Controller needs time to bootup. */
1870 			msleep(150);
1871 		}
1872 	}
1873 
1874 	clear_bit(QCA_BT_OFF, &qca->flags);
1875 	return ret;
1876 }
1877 
1878 static void hci_coredump_qca(struct hci_dev *hdev)
1879 {
1880 	int err;
1881 	static const u8 param[] = { 0x26 };
1882 
1883 	err = __hci_cmd_send(hdev, 0xfc0c, 1, param);
1884 	if (err < 0)
1885 		bt_dev_err(hdev, "%s: trigger crash failed (%d)", __func__, err);
1886 }
1887 
1888 static int qca_get_data_path_id(struct hci_dev *hdev, __u8 *data_path_id)
1889 {
1890 	/* QCA uses 1 as non-HCI data path id for HFP */
1891 	*data_path_id = 1;
1892 	return 0;
1893 }
1894 
1895 static int qca_configure_hfp_offload(struct hci_dev *hdev)
1896 {
1897 	bt_dev_info(hdev, "HFP non-HCI data transport is supported");
1898 	hdev->get_data_path_id = qca_get_data_path_id;
1899 	/* Do not need to send HCI_Configure_Data_Path to configure non-HCI
1900 	 * data transport path for QCA controllers, so set below field as NULL.
1901 	 */
1902 	hdev->get_codec_config_data = NULL;
1903 	return 0;
1904 }
1905 
1906 static int qca_setup(struct hci_uart *hu)
1907 {
1908 	struct hci_dev *hdev = hu->hdev;
1909 	struct qca_data *qca = hu->priv;
1910 	unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1911 	unsigned int retries = 0;
1912 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1913 	const char *firmware_name = qca_get_firmware_name(hu);
1914 	const char *rampatch_name = qca_get_rampatch_name(hu);
1915 	int ret;
1916 	struct qca_btsoc_version ver;
1917 	struct qca_serdev *qcadev = serdev_device_get_drvdata(hu->serdev);
1918 	const char *soc_name;
1919 
1920 	ret = qca_check_speeds(hu);
1921 	if (ret)
1922 		return ret;
1923 
1924 	clear_bit(QCA_ROM_FW, &qca->flags);
1925 	/* Patch downloading has to be done without IBS mode */
1926 	set_bit(QCA_IBS_DISABLED, &qca->flags);
1927 
1928 	/* Enable controller to do both LE scan and BR/EDR inquiry
1929 	 * simultaneously.
1930 	 */
1931 	hci_set_quirk(hdev, HCI_QUIRK_SIMULTANEOUS_DISCOVERY);
1932 
1933 	switch (soc_type) {
1934 	case QCA_QCA2066:
1935 		soc_name = "qca2066";
1936 		break;
1937 
1938 	case QCA_WCN3950:
1939 	case QCA_WCN3988:
1940 	case QCA_WCN3990:
1941 	case QCA_WCN3991:
1942 	case QCA_WCN3998:
1943 		soc_name = "wcn399x";
1944 		break;
1945 
1946 	case QCA_WCN6750:
1947 		soc_name = "wcn6750";
1948 		break;
1949 
1950 	case QCA_WCN6855:
1951 		soc_name = "wcn6855";
1952 		break;
1953 
1954 	case QCA_WCN7850:
1955 		soc_name = "wcn7850";
1956 		break;
1957 
1958 	default:
1959 		soc_name = "ROME/QCA6390";
1960 	}
1961 	bt_dev_info(hdev, "setting up %s", soc_name);
1962 
1963 	qca->memdump_state = QCA_MEMDUMP_IDLE;
1964 
1965 retry:
1966 	ret = qca_power_on(hdev);
1967 	if (ret)
1968 		goto out;
1969 
1970 	clear_bit(QCA_SSR_TRIGGERED, &qca->flags);
1971 
1972 	switch (soc_type) {
1973 	case QCA_WCN3950:
1974 	case QCA_WCN3988:
1975 	case QCA_WCN3990:
1976 	case QCA_WCN3991:
1977 	case QCA_WCN3998:
1978 	case QCA_WCN6750:
1979 	case QCA_WCN6855:
1980 	case QCA_WCN7850:
1981 		if (qcadev->bdaddr_property_broken)
1982 			hci_set_quirk(hdev, HCI_QUIRK_BDADDR_PROPERTY_BROKEN);
1983 
1984 		hci_set_aosp_capable(hdev);
1985 
1986 		ret = qca_read_soc_version(hdev, &ver, soc_type);
1987 		if (ret)
1988 			goto out;
1989 		break;
1990 
1991 	default:
1992 		qca_set_speed(hu, QCA_INIT_SPEED);
1993 	}
1994 
1995 	/* Setup user speed if needed */
1996 	speed = qca_get_speed(hu, QCA_OPER_SPEED);
1997 	if (speed) {
1998 		ret = qca_set_speed(hu, QCA_OPER_SPEED);
1999 		if (ret)
2000 			goto out;
2001 
2002 		qca_baudrate = qca_get_baudrate_value(speed);
2003 	}
2004 
2005 	switch (soc_type) {
2006 	case QCA_WCN3950:
2007 	case QCA_WCN3988:
2008 	case QCA_WCN3990:
2009 	case QCA_WCN3991:
2010 	case QCA_WCN3998:
2011 	case QCA_WCN6750:
2012 	case QCA_WCN6855:
2013 	case QCA_WCN7850:
2014 		break;
2015 
2016 	default:
2017 		/* Get QCA version information */
2018 		ret = qca_read_soc_version(hdev, &ver, soc_type);
2019 		if (ret)
2020 			goto out;
2021 	}
2022 
2023 	/* Setup patch / NVM configurations */
2024 	ret = qca_uart_setup(hdev, qca_baudrate, soc_type, ver,
2025 			firmware_name, rampatch_name);
2026 	if (!ret) {
2027 		clear_bit(QCA_IBS_DISABLED, &qca->flags);
2028 		qca_debugfs_init(hdev);
2029 		hu->hdev->hw_error = qca_hw_error;
2030 		hu->hdev->reset = qca_reset;
2031 		if (hu->serdev) {
2032 			if (device_can_wakeup(hu->serdev->ctrl->dev.parent))
2033 				hu->hdev->wakeup = qca_wakeup;
2034 		}
2035 	} else if (ret == -ENOENT) {
2036 		/* No patch/nvm-config found, run with original fw/config */
2037 		set_bit(QCA_ROM_FW, &qca->flags);
2038 		ret = 0;
2039 	} else if (ret == -EAGAIN) {
2040 		/*
2041 		 * Userspace firmware loader will return -EAGAIN in case no
2042 		 * patch/nvm-config is found, so run with original fw/config.
2043 		 */
2044 		set_bit(QCA_ROM_FW, &qca->flags);
2045 		ret = 0;
2046 	}
2047 
2048 out:
2049 	if (ret && retries < MAX_INIT_RETRIES) {
2050 		bt_dev_warn(hdev, "Retry BT power ON:%d", retries);
2051 		qca_power_shutdown(hu);
2052 		if (hu->serdev) {
2053 			serdev_device_close(hu->serdev);
2054 			ret = serdev_device_open(hu->serdev);
2055 			if (ret) {
2056 				bt_dev_err(hdev, "failed to open port");
2057 				return ret;
2058 			}
2059 		}
2060 		retries++;
2061 		goto retry;
2062 	}
2063 
2064 	/* Setup bdaddr */
2065 	if (soc_type == QCA_ROME)
2066 		hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
2067 	else
2068 		hu->hdev->set_bdaddr = qca_set_bdaddr;
2069 
2070 	if (qcadev->support_hfp_hw_offload)
2071 		qca_configure_hfp_offload(hdev);
2072 
2073 	qca->fw_version = le16_to_cpu(ver.patch_ver);
2074 	qca->controller_id = le16_to_cpu(ver.rom_ver);
2075 	hci_devcd_register(hdev, hci_coredump_qca, qca_dmp_hdr, NULL);
2076 
2077 	return ret;
2078 }
2079 
2080 static const struct hci_uart_proto qca_proto = {
2081 	.id		= HCI_UART_QCA,
2082 	.name		= "QCA",
2083 	.manufacturer	= 29,
2084 	.init_speed	= 115200,
2085 	.oper_speed	= 3000000,
2086 	.open		= qca_open,
2087 	.close		= qca_close,
2088 	.flush		= qca_flush,
2089 	.setup		= qca_setup,
2090 	.recv		= qca_recv,
2091 	.enqueue	= qca_enqueue,
2092 	.dequeue	= qca_dequeue,
2093 };
2094 
2095 static const struct qca_device_data qca_soc_data_wcn3950 __maybe_unused = {
2096 	.soc_type = QCA_WCN3950,
2097 	.vregs = (struct qca_vreg []) {
2098 		{ "vddio", 15000  },
2099 		{ "vddxo", 60000  },
2100 		{ "vddrf", 155000 },
2101 		{ "vddch0", 585000 },
2102 	},
2103 	.num_vregs = 4,
2104 };
2105 
2106 static const struct qca_device_data qca_soc_data_wcn3988 __maybe_unused = {
2107 	.soc_type = QCA_WCN3988,
2108 	.vregs = (struct qca_vreg []) {
2109 		{ "vddio", 15000  },
2110 		{ "vddxo", 80000  },
2111 		{ "vddrf", 300000 },
2112 		{ "vddch0", 450000 },
2113 	},
2114 	.num_vregs = 4,
2115 };
2116 
2117 static const struct qca_device_data qca_soc_data_wcn3990 __maybe_unused = {
2118 	.soc_type = QCA_WCN3990,
2119 	.vregs = (struct qca_vreg []) {
2120 		{ "vddio", 15000  },
2121 		{ "vddxo", 80000  },
2122 		{ "vddrf", 300000 },
2123 		{ "vddch0", 450000 },
2124 	},
2125 	.num_vregs = 4,
2126 };
2127 
2128 static const struct qca_device_data qca_soc_data_wcn3991 __maybe_unused = {
2129 	.soc_type = QCA_WCN3991,
2130 	.vregs = (struct qca_vreg []) {
2131 		{ "vddio", 15000  },
2132 		{ "vddxo", 80000  },
2133 		{ "vddrf", 300000 },
2134 		{ "vddch0", 450000 },
2135 	},
2136 	.num_vregs = 4,
2137 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2138 };
2139 
2140 static const struct qca_device_data qca_soc_data_wcn3998 __maybe_unused = {
2141 	.soc_type = QCA_WCN3998,
2142 	.vregs = (struct qca_vreg []) {
2143 		{ "vddio", 10000  },
2144 		{ "vddxo", 80000  },
2145 		{ "vddrf", 300000 },
2146 		{ "vddch0", 450000 },
2147 	},
2148 	.num_vregs = 4,
2149 };
2150 
2151 static const struct qca_device_data qca_soc_data_qca2066 __maybe_unused = {
2152 	.soc_type = QCA_QCA2066,
2153 	.num_vregs = 0,
2154 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES |
2155 			QCA_CAP_HFP_HW_OFFLOAD,
2156 };
2157 
2158 static const struct qca_device_data qca_soc_data_qca6390 __maybe_unused = {
2159 	.soc_type = QCA_QCA6390,
2160 	.num_vregs = 0,
2161 };
2162 
2163 static const struct qca_device_data qca_soc_data_wcn6750 __maybe_unused = {
2164 	.soc_type = QCA_WCN6750,
2165 	.vregs = (struct qca_vreg []) {
2166 		{ "vddio", 5000 },
2167 		{ "vddaon", 26000 },
2168 		{ "vddbtcxmx", 126000 },
2169 		{ "vddrfacmn", 12500 },
2170 		{ "vddrfa0p8", 102000 },
2171 		{ "vddrfa1p7", 302000 },
2172 		{ "vddrfa1p2", 257000 },
2173 		{ "vddrfa2p2", 1700000 },
2174 		{ "vddasd", 200 },
2175 	},
2176 	.num_vregs = 9,
2177 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2178 };
2179 
2180 static const struct qca_device_data qca_soc_data_wcn6855 __maybe_unused = {
2181 	.soc_type = QCA_WCN6855,
2182 	.vregs = (struct qca_vreg []) {
2183 		{ "vddio", 5000 },
2184 		{ "vddbtcxmx", 126000 },
2185 		{ "vddrfacmn", 12500 },
2186 		{ "vddrfa0p8", 102000 },
2187 		{ "vddrfa1p7", 302000 },
2188 		{ "vddrfa1p2", 257000 },
2189 	},
2190 	.num_vregs = 6,
2191 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES |
2192 			QCA_CAP_HFP_HW_OFFLOAD,
2193 };
2194 
2195 static const struct qca_device_data qca_soc_data_wcn7850 __maybe_unused = {
2196 	.soc_type = QCA_WCN7850,
2197 	.vregs = (struct qca_vreg []) {
2198 		{ "vddio", 5000 },
2199 		{ "vddaon", 26000 },
2200 		{ "vdddig", 126000 },
2201 		{ "vddrfa0p8", 102000 },
2202 		{ "vddrfa1p2", 257000 },
2203 		{ "vddrfa1p9", 302000 },
2204 	},
2205 	.num_vregs = 6,
2206 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES |
2207 			QCA_CAP_HFP_HW_OFFLOAD,
2208 };
2209 
2210 static void qca_power_shutdown(struct hci_uart *hu)
2211 {
2212 	struct qca_serdev *qcadev;
2213 	struct qca_data *qca = hu->priv;
2214 	unsigned long flags;
2215 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
2216 	bool sw_ctrl_state;
2217 	struct qca_power *power;
2218 
2219 	/* From this point we go into power off state. But serial port is
2220 	 * still open, stop queueing the IBS data and flush all the buffered
2221 	 * data in skb's.
2222 	 */
2223 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
2224 	set_bit(QCA_IBS_DISABLED, &qca->flags);
2225 	qca_flush(hu);
2226 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2227 
2228 	/* Non-serdev device usually is powered by external power
2229 	 * and don't need additional action in driver for power down
2230 	 */
2231 	if (!hu->serdev)
2232 		return;
2233 
2234 	qcadev = serdev_device_get_drvdata(hu->serdev);
2235 	power = qcadev->bt_power;
2236 
2237 	if (power && power->pwrseq) {
2238 		pwrseq_power_off(power->pwrseq);
2239 		set_bit(QCA_BT_OFF, &qca->flags);
2240 		return;
2241         }
2242 
2243 	switch (soc_type) {
2244 	case QCA_WCN3988:
2245 	case QCA_WCN3990:
2246 	case QCA_WCN3991:
2247 	case QCA_WCN3998:
2248 		host_set_baudrate(hu, 2400);
2249 		qca_send_power_pulse(hu, false);
2250 		qca_regulator_disable(qcadev);
2251 		break;
2252 
2253 	case QCA_WCN6750:
2254 	case QCA_WCN6855:
2255 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
2256 		msleep(100);
2257 		qca_regulator_disable(qcadev);
2258 		if (qcadev->sw_ctrl) {
2259 			sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
2260 			bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
2261 		}
2262 		break;
2263 
2264 	default:
2265 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
2266 	}
2267 
2268 	set_bit(QCA_BT_OFF, &qca->flags);
2269 }
2270 
2271 static int qca_power_off(struct hci_dev *hdev)
2272 {
2273 	struct hci_uart *hu = hci_get_drvdata(hdev);
2274 	struct qca_data *qca = hu->priv;
2275 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
2276 
2277 	hu->hdev->hw_error = NULL;
2278 	hu->hdev->reset = NULL;
2279 
2280 	timer_delete_sync(&qca->wake_retrans_timer);
2281 	timer_delete_sync(&qca->tx_idle_timer);
2282 
2283 	/* Stop sending shutdown command if soc crashes. */
2284 	if (soc_type != QCA_ROME
2285 		&& qca->memdump_state == QCA_MEMDUMP_IDLE) {
2286 		qca_send_pre_shutdown_cmd(hdev);
2287 		usleep_range(8000, 10000);
2288 	}
2289 
2290 	qca_power_shutdown(hu);
2291 	return 0;
2292 }
2293 
2294 static int qca_regulator_enable(struct qca_serdev *qcadev)
2295 {
2296 	struct qca_power *power = qcadev->bt_power;
2297 	int ret;
2298 
2299 	if (power->pwrseq)
2300 		return pwrseq_power_on(power->pwrseq);
2301 
2302 	/* Already enabled */
2303 	if (power->vregs_on)
2304 		return 0;
2305 
2306 	BT_DBG("enabling %d regulators)", power->num_vregs);
2307 
2308 	ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
2309 	if (ret)
2310 		return ret;
2311 
2312 	power->vregs_on = true;
2313 
2314 	ret = clk_prepare_enable(qcadev->susclk);
2315 	if (ret)
2316 		qca_regulator_disable(qcadev);
2317 
2318 	return ret;
2319 }
2320 
2321 static void qca_regulator_disable(struct qca_serdev *qcadev)
2322 {
2323 	struct qca_power *power;
2324 
2325 	if (!qcadev)
2326 		return;
2327 
2328 	power = qcadev->bt_power;
2329 
2330 	/* Already disabled? */
2331 	if (!power->vregs_on)
2332 		return;
2333 
2334 	regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
2335 	power->vregs_on = false;
2336 
2337 	clk_disable_unprepare(qcadev->susclk);
2338 }
2339 
2340 static int qca_init_regulators(struct qca_power *qca,
2341 				const struct qca_vreg *vregs, size_t num_vregs)
2342 {
2343 	struct regulator_bulk_data *bulk;
2344 	int ret;
2345 	int i;
2346 
2347 	bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
2348 	if (!bulk)
2349 		return -ENOMEM;
2350 
2351 	for (i = 0; i < num_vregs; i++)
2352 		bulk[i].supply = vregs[i].name;
2353 
2354 	ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
2355 	if (ret < 0)
2356 		return ret;
2357 
2358 	for (i = 0; i < num_vregs; i++) {
2359 		ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
2360 		if (ret)
2361 			return ret;
2362 	}
2363 
2364 	qca->vreg_bulk = bulk;
2365 	qca->num_vregs = num_vregs;
2366 
2367 	return 0;
2368 }
2369 
2370 static int qca_serdev_probe(struct serdev_device *serdev)
2371 {
2372 	struct qca_serdev *qcadev;
2373 	struct hci_dev *hdev;
2374 	const struct qca_device_data *data;
2375 	int err;
2376 	bool power_ctrl_enabled = true;
2377 
2378 	qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
2379 	if (!qcadev)
2380 		return -ENOMEM;
2381 
2382 	qcadev->serdev_hu.serdev = serdev;
2383 	data = device_get_match_data(&serdev->dev);
2384 	serdev_device_set_drvdata(serdev, qcadev);
2385 	device_property_read_string_array(&serdev->dev, "firmware-name",
2386 					 qcadev->firmware_name, ARRAY_SIZE(qcadev->firmware_name));
2387 	device_property_read_u32(&serdev->dev, "max-speed",
2388 				 &qcadev->oper_speed);
2389 	if (!qcadev->oper_speed)
2390 		BT_DBG("UART will pick default operating speed");
2391 
2392 	qcadev->bdaddr_property_broken = device_property_read_bool(&serdev->dev,
2393 			"qcom,local-bd-address-broken");
2394 
2395 	if (data)
2396 		qcadev->btsoc_type = data->soc_type;
2397 	else
2398 		qcadev->btsoc_type = QCA_ROME;
2399 
2400 	switch (qcadev->btsoc_type) {
2401 	case QCA_WCN3950:
2402 	case QCA_WCN3988:
2403 	case QCA_WCN3990:
2404 	case QCA_WCN3991:
2405 	case QCA_WCN3998:
2406 	case QCA_WCN6750:
2407 	case QCA_WCN6855:
2408 	case QCA_WCN7850:
2409 	case QCA_QCA6390:
2410 		qcadev->bt_power = devm_kzalloc(&serdev->dev,
2411 						sizeof(struct qca_power),
2412 						GFP_KERNEL);
2413 		if (!qcadev->bt_power)
2414 			return -ENOMEM;
2415 		break;
2416 	default:
2417 		break;
2418 	}
2419 
2420 	switch (qcadev->btsoc_type) {
2421 	case QCA_WCN6855:
2422 	case QCA_WCN7850:
2423 	case QCA_WCN6750:
2424 		if (!device_property_present(&serdev->dev, "enable-gpios")) {
2425 			/*
2426 			 * Backward compatibility with old DT sources. If the
2427 			 * node doesn't have the 'enable-gpios' property then
2428 			 * let's use the power sequencer. Otherwise, let's
2429 			 * drive everything ourselves.
2430 			 */
2431 			qcadev->bt_power->pwrseq = devm_pwrseq_get(&serdev->dev,
2432 								   "bluetooth");
2433 
2434 			/*
2435 			 * Some modules have BT_EN enabled via a hardware pull-up,
2436 			 * meaning it is not defined in the DTS and is not controlled
2437 			 * through the power sequence. In such cases, fall through
2438 			 * to follow the legacy flow.
2439 			 */
2440 			if (IS_ERR(qcadev->bt_power->pwrseq))
2441 				qcadev->bt_power->pwrseq = NULL;
2442 			else
2443 				break;
2444 		}
2445 		fallthrough;
2446 	case QCA_WCN3950:
2447 	case QCA_WCN3988:
2448 	case QCA_WCN3990:
2449 	case QCA_WCN3991:
2450 	case QCA_WCN3998:
2451 		qcadev->bt_power->dev = &serdev->dev;
2452 		err = qca_init_regulators(qcadev->bt_power, data->vregs,
2453 					  data->num_vregs);
2454 		if (err) {
2455 			BT_ERR("Failed to init regulators:%d", err);
2456 			return err;
2457 		}
2458 
2459 		qcadev->bt_power->vregs_on = false;
2460 
2461 		qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2462 					       GPIOD_OUT_LOW);
2463 		if (IS_ERR(qcadev->bt_en))
2464 			return dev_err_probe(&serdev->dev,
2465 					     PTR_ERR(qcadev->bt_en),
2466 					     "failed to acquire BT_EN gpio\n");
2467 
2468 		if (!qcadev->bt_en &&
2469 		    (data->soc_type == QCA_WCN6750 ||
2470 		     data->soc_type == QCA_WCN6855))
2471 			power_ctrl_enabled = false;
2472 
2473 		qcadev->sw_ctrl = devm_gpiod_get_optional(&serdev->dev, "swctrl",
2474 					       GPIOD_IN);
2475 		if (IS_ERR(qcadev->sw_ctrl) &&
2476 		    (data->soc_type == QCA_WCN6750 ||
2477 		     data->soc_type == QCA_WCN6855 ||
2478 		     data->soc_type == QCA_WCN7850)) {
2479 			dev_err(&serdev->dev, "failed to acquire SW_CTRL gpio\n");
2480 			return PTR_ERR(qcadev->sw_ctrl);
2481 		}
2482 
2483 		qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2484 		if (IS_ERR(qcadev->susclk)) {
2485 			dev_err(&serdev->dev, "failed to acquire clk\n");
2486 			return PTR_ERR(qcadev->susclk);
2487 		}
2488 		break;
2489 
2490 	case QCA_QCA6390:
2491 		if (dev_of_node(&serdev->dev)) {
2492 			qcadev->bt_power->pwrseq = devm_pwrseq_get(&serdev->dev,
2493 								   "bluetooth");
2494 			if (IS_ERR(qcadev->bt_power->pwrseq))
2495 				return PTR_ERR(qcadev->bt_power->pwrseq);
2496 			break;
2497 		}
2498 		fallthrough;
2499 
2500 	default:
2501 		qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2502 					       GPIOD_OUT_LOW);
2503 		if (IS_ERR(qcadev->bt_en)) {
2504 			dev_err(&serdev->dev, "failed to acquire enable gpio\n");
2505 			return PTR_ERR(qcadev->bt_en);
2506 		}
2507 
2508 		if (!qcadev->bt_en)
2509 			power_ctrl_enabled = false;
2510 
2511 		qcadev->susclk = devm_clk_get_optional_enabled_with_rate(
2512 					&serdev->dev, NULL, SUSCLK_RATE_32KHZ);
2513 		if (IS_ERR(qcadev->susclk)) {
2514 			dev_warn(&serdev->dev, "failed to acquire clk\n");
2515 			return PTR_ERR(qcadev->susclk);
2516 		}
2517 	}
2518 
2519 	err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2520 	if (err) {
2521 		BT_ERR("serdev registration failed");
2522 		return err;
2523 	}
2524 
2525 	hdev = qcadev->serdev_hu.hdev;
2526 
2527 	if (power_ctrl_enabled) {
2528 		hci_set_quirk(hdev, HCI_QUIRK_NON_PERSISTENT_SETUP);
2529 		hdev->shutdown = qca_power_off;
2530 	}
2531 
2532 	if (data) {
2533 		/* Wideband speech support must be set per driver since it can't
2534 		 * be queried via hci. Same with the valid le states quirk.
2535 		 */
2536 		if (data->capabilities & QCA_CAP_WIDEBAND_SPEECH)
2537 			hci_set_quirk(hdev,
2538 				      HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED);
2539 
2540 		if (!(data->capabilities & QCA_CAP_VALID_LE_STATES))
2541 			hci_set_quirk(hdev, HCI_QUIRK_BROKEN_LE_STATES);
2542 
2543 		if (data->capabilities & QCA_CAP_HFP_HW_OFFLOAD)
2544 			qcadev->support_hfp_hw_offload = true;
2545 	}
2546 
2547 	return 0;
2548 }
2549 
2550 static void qca_serdev_remove(struct serdev_device *serdev)
2551 {
2552 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2553 	struct qca_power *power = qcadev->bt_power;
2554 
2555 	switch (qcadev->btsoc_type) {
2556 	case QCA_WCN3988:
2557 	case QCA_WCN3990:
2558 	case QCA_WCN3991:
2559 	case QCA_WCN3998:
2560 	case QCA_WCN6750:
2561 	case QCA_WCN6855:
2562 	case QCA_WCN7850:
2563 		if (power->vregs_on)
2564 			qca_power_shutdown(&qcadev->serdev_hu);
2565 		break;
2566 	default:
2567 		break;
2568 	}
2569 
2570 	hci_uart_unregister_device(&qcadev->serdev_hu);
2571 }
2572 
2573 static void qca_serdev_shutdown(struct device *dev)
2574 {
2575 	int ret;
2576 	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
2577 	struct serdev_device *serdev = to_serdev_device(dev);
2578 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2579 	struct hci_uart *hu = &qcadev->serdev_hu;
2580 	struct hci_dev *hdev = hu->hdev;
2581 	const u8 ibs_wake_cmd[] = { 0xFD };
2582 	const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 };
2583 
2584 	if (qcadev->btsoc_type == QCA_QCA6390) {
2585 		/* The purpose of sending the VSC is to reset SOC into a initial
2586 		 * state and the state will ensure next hdev->setup() success.
2587 		 * if HCI_QUIRK_NON_PERSISTENT_SETUP is set, it means that
2588 		 * hdev->setup() can do its job regardless of SoC state, so
2589 		 * don't need to send the VSC.
2590 		 * if HCI_SETUP is set, it means that hdev->setup() was never
2591 		 * invoked and the SOC is already in the initial state, so
2592 		 * don't also need to send the VSC.
2593 		 */
2594 		if (hci_test_quirk(hdev, HCI_QUIRK_NON_PERSISTENT_SETUP) ||
2595 		    hci_dev_test_flag(hdev, HCI_SETUP))
2596 			return;
2597 
2598 		/* The serdev must be in open state when control logic arrives
2599 		 * here, so also fix the use-after-free issue caused by that
2600 		 * the serdev is flushed or wrote after it is closed.
2601 		 */
2602 		serdev_device_write_flush(serdev);
2603 		ret = serdev_device_write_buf(serdev, ibs_wake_cmd,
2604 					      sizeof(ibs_wake_cmd));
2605 		if (ret < 0) {
2606 			BT_ERR("QCA send IBS_WAKE_IND error: %d", ret);
2607 			return;
2608 		}
2609 		serdev_device_wait_until_sent(serdev, timeout);
2610 		usleep_range(8000, 10000);
2611 
2612 		serdev_device_write_flush(serdev);
2613 		ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd,
2614 					      sizeof(edl_reset_soc_cmd));
2615 		if (ret < 0) {
2616 			BT_ERR("QCA send EDL_RESET_REQ error: %d", ret);
2617 			return;
2618 		}
2619 		serdev_device_wait_until_sent(serdev, timeout);
2620 		usleep_range(8000, 10000);
2621 	}
2622 }
2623 
2624 static int __maybe_unused qca_suspend(struct device *dev)
2625 {
2626 	struct serdev_device *serdev = to_serdev_device(dev);
2627 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2628 	struct hci_uart *hu = &qcadev->serdev_hu;
2629 	struct qca_data *qca = hu->priv;
2630 	unsigned long flags;
2631 	bool tx_pending = false;
2632 	int ret = 0;
2633 	u8 cmd;
2634 	u32 wait_timeout = 0;
2635 
2636 	set_bit(QCA_SUSPENDING, &qca->flags);
2637 
2638 	/* if BT SoC is running with default firmware then it does not
2639 	 * support in-band sleep
2640 	 */
2641 	if (test_bit(QCA_ROM_FW, &qca->flags))
2642 		return 0;
2643 
2644 	/* During SSR after memory dump collection, controller will be
2645 	 * powered off and then powered on.If controller is powered off
2646 	 * during SSR then we should wait until SSR is completed.
2647 	 */
2648 	if (test_bit(QCA_BT_OFF, &qca->flags) &&
2649 	    !test_bit(QCA_SSR_TRIGGERED, &qca->flags))
2650 		return 0;
2651 
2652 	if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
2653 	    test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
2654 		wait_timeout = test_bit(QCA_SSR_TRIGGERED, &qca->flags) ?
2655 					IBS_DISABLE_SSR_TIMEOUT_MS :
2656 					FW_DOWNLOAD_TIMEOUT_MS;
2657 
2658 		/* QCA_IBS_DISABLED flag is set to true, During FW download
2659 		 * and during memory dump collection. It is reset to false,
2660 		 * After FW download complete.
2661 		 */
2662 		wait_on_bit_timeout(&qca->flags, QCA_IBS_DISABLED,
2663 			    TASK_UNINTERRUPTIBLE, msecs_to_jiffies(wait_timeout));
2664 
2665 		if (test_bit(QCA_IBS_DISABLED, &qca->flags)) {
2666 			bt_dev_err(hu->hdev, "SSR or FW download time out");
2667 			ret = -ETIMEDOUT;
2668 			goto error;
2669 		}
2670 	}
2671 
2672 	cancel_work_sync(&qca->ws_awake_device);
2673 	cancel_work_sync(&qca->ws_awake_rx);
2674 
2675 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
2676 				 flags, SINGLE_DEPTH_NESTING);
2677 
2678 	switch (qca->tx_ibs_state) {
2679 	case HCI_IBS_TX_WAKING:
2680 		timer_delete(&qca->wake_retrans_timer);
2681 		fallthrough;
2682 	case HCI_IBS_TX_AWAKE:
2683 		timer_delete(&qca->tx_idle_timer);
2684 
2685 		serdev_device_write_flush(hu->serdev);
2686 		cmd = HCI_IBS_SLEEP_IND;
2687 		ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
2688 
2689 		if (ret < 0) {
2690 			BT_ERR("Failed to send SLEEP to device");
2691 			break;
2692 		}
2693 
2694 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
2695 		qca->ibs_sent_slps++;
2696 		tx_pending = true;
2697 		break;
2698 
2699 	case HCI_IBS_TX_ASLEEP:
2700 		break;
2701 
2702 	default:
2703 		BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
2704 		ret = -EINVAL;
2705 		break;
2706 	}
2707 
2708 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2709 
2710 	if (ret < 0)
2711 		goto error;
2712 
2713 	if (tx_pending) {
2714 		serdev_device_wait_until_sent(hu->serdev,
2715 					      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
2716 		serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
2717 	}
2718 
2719 	/* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
2720 	 * to sleep, so that the packet does not wake the system later.
2721 	 */
2722 	ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
2723 			qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
2724 			msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
2725 	if (ret == 0) {
2726 		ret = -ETIMEDOUT;
2727 		goto error;
2728 	}
2729 
2730 	return 0;
2731 
2732 error:
2733 	clear_bit(QCA_SUSPENDING, &qca->flags);
2734 
2735 	return ret;
2736 }
2737 
2738 static int __maybe_unused qca_resume(struct device *dev)
2739 {
2740 	struct serdev_device *serdev = to_serdev_device(dev);
2741 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2742 	struct hci_uart *hu = &qcadev->serdev_hu;
2743 	struct qca_data *qca = hu->priv;
2744 
2745 	clear_bit(QCA_SUSPENDING, &qca->flags);
2746 
2747 	return 0;
2748 }
2749 
2750 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
2751 
2752 #ifdef CONFIG_OF
2753 static const struct of_device_id qca_bluetooth_of_match[] = {
2754 	{ .compatible = "qcom,qca2066-bt", .data = &qca_soc_data_qca2066},
2755 	{ .compatible = "qcom,qca6174-bt" },
2756 	{ .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390},
2757 	{ .compatible = "qcom,qca9377-bt" },
2758 	{ .compatible = "qcom,wcn3950-bt", .data = &qca_soc_data_wcn3950},
2759 	{ .compatible = "qcom,wcn3988-bt", .data = &qca_soc_data_wcn3988},
2760 	{ .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
2761 	{ .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
2762 	{ .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
2763 	{ .compatible = "qcom,wcn6750-bt", .data = &qca_soc_data_wcn6750},
2764 	{ .compatible = "qcom,wcn6855-bt", .data = &qca_soc_data_wcn6855},
2765 	{ .compatible = "qcom,wcn7850-bt", .data = &qca_soc_data_wcn7850},
2766 	{ /* sentinel */ }
2767 };
2768 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
2769 #endif
2770 
2771 #ifdef CONFIG_ACPI
2772 static const struct acpi_device_id qca_bluetooth_acpi_match[] = {
2773 	{ "QCOM2066", (kernel_ulong_t)&qca_soc_data_qca2066 },
2774 	{ "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2775 	{ "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2776 	{ "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2777 	{ "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2778 	{ },
2779 };
2780 MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match);
2781 #endif
2782 
2783 #ifdef CONFIG_DEV_COREDUMP
2784 static void hciqca_coredump(struct device *dev)
2785 {
2786 	struct serdev_device *serdev = to_serdev_device(dev);
2787 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2788 	struct hci_uart *hu = &qcadev->serdev_hu;
2789 	struct hci_dev  *hdev = hu->hdev;
2790 
2791 	if (hdev->dump.coredump)
2792 		hdev->dump.coredump(hdev);
2793 }
2794 #endif
2795 
2796 static struct serdev_device_driver qca_serdev_driver = {
2797 	.probe = qca_serdev_probe,
2798 	.remove = qca_serdev_remove,
2799 	.driver = {
2800 		.name = "hci_uart_qca",
2801 		.of_match_table = of_match_ptr(qca_bluetooth_of_match),
2802 		.acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match),
2803 		.shutdown = qca_serdev_shutdown,
2804 		.pm = &qca_pm_ops,
2805 #ifdef CONFIG_DEV_COREDUMP
2806 		.coredump = hciqca_coredump,
2807 #endif
2808 	},
2809 };
2810 
2811 int __init qca_init(void)
2812 {
2813 	serdev_device_driver_register(&qca_serdev_driver);
2814 
2815 	return hci_uart_register_proto(&qca_proto);
2816 }
2817 
2818 int __exit qca_deinit(void)
2819 {
2820 	serdev_device_driver_unregister(&qca_serdev_driver);
2821 
2822 	return hci_uart_unregister_proto(&qca_proto);
2823 }
2824