xref: /linux/arch/x86/kvm/mmu.h (revision 43db1111073049220381944af4a3b8a5400eda71)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_MMU_H
3 #define __KVM_X86_MMU_H
4 
5 #include <linux/kvm_host.h>
6 #include "kvm_cache_regs.h"
7 #include "x86.h"
8 #include "cpuid.h"
9 
10 extern bool __read_mostly enable_mmio_caching;
11 
12 #define PT_WRITABLE_SHIFT 1
13 #define PT_USER_SHIFT 2
14 
15 #define PT_PRESENT_MASK (1ULL << 0)
16 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
17 #define PT_USER_MASK (1ULL << PT_USER_SHIFT)
18 #define PT_PWT_MASK (1ULL << 3)
19 #define PT_PCD_MASK (1ULL << 4)
20 #define PT_ACCESSED_SHIFT 5
21 #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
22 #define PT_DIRTY_SHIFT 6
23 #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
24 #define PT_PAGE_SIZE_SHIFT 7
25 #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
26 #define PT_PAT_MASK (1ULL << 7)
27 #define PT_GLOBAL_MASK (1ULL << 8)
28 #define PT64_NX_SHIFT 63
29 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
30 
31 #define PT_PAT_SHIFT 7
32 #define PT_DIR_PAT_SHIFT 12
33 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
34 
35 #define PT64_ROOT_5LEVEL 5
36 #define PT64_ROOT_4LEVEL 4
37 #define PT32_ROOT_LEVEL 2
38 #define PT32E_ROOT_LEVEL 3
39 
40 #define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_LA57 | \
41 			       X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE)
42 
43 #define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP)
44 #define KVM_MMU_EFER_ROLE_BITS (EFER_LME | EFER_NX)
45 
rsvd_bits(int s,int e)46 static __always_inline u64 rsvd_bits(int s, int e)
47 {
48 	BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s);
49 
50 	if (__builtin_constant_p(e))
51 		BUILD_BUG_ON(e > 63);
52 	else
53 		e &= 63;
54 
55 	if (e < s)
56 		return 0;
57 
58 	return ((2ULL << (e - s)) - 1) << s;
59 }
60 
kvm_mmu_max_gfn(void)61 static inline gfn_t kvm_mmu_max_gfn(void)
62 {
63 	/*
64 	 * Note that this uses the host MAXPHYADDR, not the guest's.
65 	 * EPT/NPT cannot support GPAs that would exceed host.MAXPHYADDR;
66 	 * assuming KVM is running on bare metal, guest accesses beyond
67 	 * host.MAXPHYADDR will hit a #PF(RSVD) and never cause a vmexit
68 	 * (either EPT Violation/Misconfig or #NPF), and so KVM will never
69 	 * install a SPTE for such addresses.  If KVM is running as a VM
70 	 * itself, on the other hand, it might see a MAXPHYADDR that is less
71 	 * than hardware's real MAXPHYADDR.  Using the host MAXPHYADDR
72 	 * disallows such SPTEs entirely and simplifies the TDP MMU.
73 	 */
74 	int max_gpa_bits = likely(tdp_enabled) ? kvm_host.maxphyaddr : 52;
75 
76 	return (1ULL << (max_gpa_bits - PAGE_SHIFT)) - 1;
77 }
78 
79 u8 kvm_mmu_get_max_tdp_level(void);
80 
81 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask);
82 void kvm_mmu_set_mmio_spte_value(struct kvm *kvm, u64 mmio_value);
83 void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask);
84 void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only);
85 
86 void kvm_init_mmu(struct kvm_vcpu *vcpu);
87 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
88 			     unsigned long cr4, u64 efer, gpa_t nested_cr3);
89 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
90 			     int huge_page_level, bool accessed_dirty,
91 			     gpa_t new_eptp);
92 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
93 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
94 				u64 fault_address, char *insn, int insn_len);
95 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
96 					struct kvm_mmu *mmu);
97 
98 int kvm_mmu_load(struct kvm_vcpu *vcpu);
99 void kvm_mmu_unload(struct kvm_vcpu *vcpu);
100 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu);
101 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
102 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu);
103 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new,
104 			 int bytes);
105 
kvm_mmu_reload(struct kvm_vcpu * vcpu)106 static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
107 {
108 	if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
109 		kvm_mmu_free_obsolete_roots(vcpu);
110 
111 	/*
112 	 * Checking root.hpa is sufficient even when KVM has mirror root.
113 	 * We can have either:
114 	 * (1) mirror_root_hpa = INVALID_PAGE, root.hpa = INVALID_PAGE
115 	 * (2) mirror_root_hpa = root,         root.hpa = INVALID_PAGE
116 	 * (3) mirror_root_hpa = root1,        root.hpa = root2
117 	 * We don't ever have:
118 	 *     mirror_root_hpa = INVALID_PAGE, root.hpa = root
119 	 */
120 	if (likely(vcpu->arch.mmu->root.hpa != INVALID_PAGE))
121 		return 0;
122 
123 	return kvm_mmu_load(vcpu);
124 }
125 
kvm_get_pcid(struct kvm_vcpu * vcpu,gpa_t cr3)126 static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
127 {
128 	BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
129 
130 	return kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)
131 	       ? cr3 & X86_CR3_PCID_MASK
132 	       : 0;
133 }
134 
kvm_get_active_pcid(struct kvm_vcpu * vcpu)135 static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
136 {
137 	return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
138 }
139 
kvm_get_active_cr3_lam_bits(struct kvm_vcpu * vcpu)140 static inline unsigned long kvm_get_active_cr3_lam_bits(struct kvm_vcpu *vcpu)
141 {
142 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LAM))
143 		return 0;
144 
145 	return kvm_read_cr3(vcpu) & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57);
146 }
147 
kvm_mmu_load_pgd(struct kvm_vcpu * vcpu)148 static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
149 {
150 	u64 root_hpa = vcpu->arch.mmu->root.hpa;
151 
152 	if (!VALID_PAGE(root_hpa))
153 		return;
154 
155 	kvm_x86_call(load_mmu_pgd)(vcpu, root_hpa,
156 				   vcpu->arch.mmu->root_role.level);
157 }
158 
kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)159 static inline void kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
160 						    struct kvm_mmu *mmu)
161 {
162 	/*
163 	 * When EPT is enabled, KVM may passthrough CR0.WP to the guest, i.e.
164 	 * @mmu's snapshot of CR0.WP and thus all related paging metadata may
165 	 * be stale.  Refresh CR0.WP and the metadata on-demand when checking
166 	 * for permission faults.  Exempt nested MMUs, i.e. MMUs for shadowing
167 	 * nEPT and nNPT, as CR0.WP is ignored in both cases.  Note, KVM does
168 	 * need to refresh nested_mmu, a.k.a. the walker used to translate L2
169 	 * GVAs to GPAs, as that "MMU" needs to honor L2's CR0.WP.
170 	 */
171 	if (!tdp_enabled || mmu == &vcpu->arch.guest_mmu)
172 		return;
173 
174 	__kvm_mmu_refresh_passthrough_bits(vcpu, mmu);
175 }
176 
177 /*
178  * Check if a given access (described through the I/D, W/R and U/S bits of a
179  * page fault error code pfec) causes a permission fault with the given PTE
180  * access rights (in ACC_* format).
181  *
182  * Return zero if the access does not fault; return the page fault error code
183  * if the access faults.
184  */
permission_fault(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,unsigned pte_access,unsigned pte_pkey,u64 access)185 static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
186 				  unsigned pte_access, unsigned pte_pkey,
187 				  u64 access)
188 {
189 	/* strip nested paging fault error codes */
190 	unsigned int pfec = access;
191 	unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
192 
193 	/*
194 	 * For explicit supervisor accesses, SMAP is disabled if EFLAGS.AC = 1.
195 	 * For implicit supervisor accesses, SMAP cannot be overridden.
196 	 *
197 	 * SMAP works on supervisor accesses only, and not_smap can
198 	 * be set or not set when user access with neither has any bearing
199 	 * on the result.
200 	 *
201 	 * We put the SMAP checking bit in place of the PFERR_RSVD_MASK bit;
202 	 * this bit will always be zero in pfec, but it will be one in index
203 	 * if SMAP checks are being disabled.
204 	 */
205 	u64 implicit_access = access & PFERR_IMPLICIT_ACCESS;
206 	bool not_smap = ((rflags & X86_EFLAGS_AC) | implicit_access) == X86_EFLAGS_AC;
207 	int index = (pfec | (not_smap ? PFERR_RSVD_MASK : 0)) >> 1;
208 	u32 errcode = PFERR_PRESENT_MASK;
209 	bool fault;
210 
211 	kvm_mmu_refresh_passthrough_bits(vcpu, mmu);
212 
213 	fault = (mmu->permissions[index] >> pte_access) & 1;
214 
215 	WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
216 	if (unlikely(mmu->pkru_mask)) {
217 		u32 pkru_bits, offset;
218 
219 		/*
220 		* PKRU defines 32 bits, there are 16 domains and 2
221 		* attribute bits per domain in pkru.  pte_pkey is the
222 		* index of the protection domain, so pte_pkey * 2 is
223 		* is the index of the first bit for the domain.
224 		*/
225 		pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
226 
227 		/* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
228 		offset = (pfec & ~1) | ((pte_access & PT_USER_MASK) ? PFERR_RSVD_MASK : 0);
229 
230 		pkru_bits &= mmu->pkru_mask >> offset;
231 		errcode |= -pkru_bits & PFERR_PK_MASK;
232 		fault |= (pkru_bits != 0);
233 	}
234 
235 	return -(u32)fault & errcode;
236 }
237 
238 bool kvm_mmu_may_ignore_guest_pat(struct kvm *kvm);
239 
240 int kvm_mmu_post_init_vm(struct kvm *kvm);
241 void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
242 
kvm_shadow_root_allocated(struct kvm * kvm)243 static inline bool kvm_shadow_root_allocated(struct kvm *kvm)
244 {
245 	/*
246 	 * Read shadow_root_allocated before related pointers. Hence, threads
247 	 * reading shadow_root_allocated in any lock context are guaranteed to
248 	 * see the pointers. Pairs with smp_store_release in
249 	 * mmu_first_shadow_root_alloc.
250 	 */
251 	return smp_load_acquire(&kvm->arch.shadow_root_allocated);
252 }
253 
254 #ifdef CONFIG_X86_64
255 extern bool tdp_mmu_enabled;
256 #else
257 #define tdp_mmu_enabled false
258 #endif
259 
260 bool kvm_tdp_mmu_gpa_is_mapped(struct kvm_vcpu *vcpu, u64 gpa);
261 int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code, u8 *level);
262 
kvm_memslots_have_rmaps(struct kvm * kvm)263 static inline bool kvm_memslots_have_rmaps(struct kvm *kvm)
264 {
265 	return !tdp_mmu_enabled || kvm_shadow_root_allocated(kvm);
266 }
267 
gfn_to_index(gfn_t gfn,gfn_t base_gfn,int level)268 static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
269 {
270 	/* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */
271 	return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
272 		(base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
273 }
274 
275 static inline unsigned long
__kvm_mmu_slot_lpages(struct kvm_memory_slot * slot,unsigned long npages,int level)276 __kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, unsigned long npages,
277 		      int level)
278 {
279 	return gfn_to_index(slot->base_gfn + npages - 1,
280 			    slot->base_gfn, level) + 1;
281 }
282 
283 static inline unsigned long
kvm_mmu_slot_lpages(struct kvm_memory_slot * slot,int level)284 kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, int level)
285 {
286 	return __kvm_mmu_slot_lpages(slot, slot->npages, level);
287 }
288 
kvm_update_page_stats(struct kvm * kvm,int level,int count)289 static inline void kvm_update_page_stats(struct kvm *kvm, int level, int count)
290 {
291 	atomic64_add(count, &kvm->stat.pages[level - 1]);
292 }
293 
294 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
295 			   struct x86_exception *exception);
296 
kvm_translate_gpa(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gpa_t gpa,u64 access,struct x86_exception * exception)297 static inline gpa_t kvm_translate_gpa(struct kvm_vcpu *vcpu,
298 				      struct kvm_mmu *mmu,
299 				      gpa_t gpa, u64 access,
300 				      struct x86_exception *exception)
301 {
302 	if (mmu != &vcpu->arch.nested_mmu)
303 		return gpa;
304 	return translate_nested_gpa(vcpu, gpa, access, exception);
305 }
306 
kvm_has_mirrored_tdp(const struct kvm * kvm)307 static inline bool kvm_has_mirrored_tdp(const struct kvm *kvm)
308 {
309 	return kvm->arch.vm_type == KVM_X86_TDX_VM;
310 }
311 
kvm_gfn_direct_bits(const struct kvm * kvm)312 static inline gfn_t kvm_gfn_direct_bits(const struct kvm *kvm)
313 {
314 	return kvm->arch.gfn_direct_bits;
315 }
316 
kvm_is_addr_direct(struct kvm * kvm,gpa_t gpa)317 static inline bool kvm_is_addr_direct(struct kvm *kvm, gpa_t gpa)
318 {
319 	gpa_t gpa_direct_bits = gfn_to_gpa(kvm_gfn_direct_bits(kvm));
320 
321 	return !gpa_direct_bits || (gpa & gpa_direct_bits);
322 }
323 
kvm_is_gfn_alias(struct kvm * kvm,gfn_t gfn)324 static inline bool kvm_is_gfn_alias(struct kvm *kvm, gfn_t gfn)
325 {
326 	return gfn & kvm_gfn_direct_bits(kvm);
327 }
328 #endif
329