1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/pgalloc_tag.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/atomic.h> 14 #include <linux/debug_locks.h> 15 #include <linux/compiler.h> 16 #include <linux/mm_types.h> 17 #include <linux/mmap_lock.h> 18 #include <linux/range.h> 19 #include <linux/pfn.h> 20 #include <linux/percpu-refcount.h> 21 #include <linux/bit_spinlock.h> 22 #include <linux/shrinker.h> 23 #include <linux/resource.h> 24 #include <linux/page_ext.h> 25 #include <linux/err.h> 26 #include <linux/page-flags.h> 27 #include <linux/page_ref.h> 28 #include <linux/overflow.h> 29 #include <linux/sizes.h> 30 #include <linux/sched.h> 31 #include <linux/pgtable.h> 32 #include <linux/kasan.h> 33 #include <linux/memremap.h> 34 #include <linux/slab.h> 35 #include <linux/cacheinfo.h> 36 #include <linux/rcuwait.h> 37 #include <linux/bitmap.h> 38 #include <linux/bitops.h> 39 #include <linux/iommu-debug-pagealloc.h> 40 41 struct mempolicy; 42 struct anon_vma; 43 struct anon_vma_chain; 44 struct user_struct; 45 struct pt_regs; 46 struct folio_batch; 47 48 void arch_mm_preinit(void); 49 void mm_core_init_early(void); 50 void mm_core_init(void); 51 void init_mm_internals(void); 52 53 extern atomic_long_t _totalram_pages; 54 static inline unsigned long totalram_pages(void) 55 { 56 return (unsigned long)atomic_long_read(&_totalram_pages); 57 } 58 59 static inline void totalram_pages_inc(void) 60 { 61 atomic_long_inc(&_totalram_pages); 62 } 63 64 static inline void totalram_pages_dec(void) 65 { 66 atomic_long_dec(&_totalram_pages); 67 } 68 69 static inline void totalram_pages_add(long count) 70 { 71 atomic_long_add(count, &_totalram_pages); 72 } 73 74 extern void * high_memory; 75 76 /* 77 * Convert between pages and MB 78 * 20 is the shift for 1MB (2^20 = 1MB) 79 * PAGE_SHIFT is the shift for page size (e.g., 12 for 4KB pages) 80 * So (20 - PAGE_SHIFT) converts between pages and MB 81 */ 82 #define PAGES_TO_MB(pages) ((pages) >> (20 - PAGE_SHIFT)) 83 #define MB_TO_PAGES(mb) ((mb) << (20 - PAGE_SHIFT)) 84 85 #ifdef CONFIG_SYSCTL 86 extern int sysctl_legacy_va_layout; 87 #else 88 #define sysctl_legacy_va_layout 0 89 #endif 90 91 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 92 extern const int mmap_rnd_bits_min; 93 extern int mmap_rnd_bits_max __ro_after_init; 94 extern int mmap_rnd_bits __read_mostly; 95 #endif 96 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 97 extern const int mmap_rnd_compat_bits_min; 98 extern const int mmap_rnd_compat_bits_max; 99 extern int mmap_rnd_compat_bits __read_mostly; 100 #endif 101 102 #ifndef DIRECT_MAP_PHYSMEM_END 103 # ifdef MAX_PHYSMEM_BITS 104 # define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1) 105 # else 106 # define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63)) 107 # endif 108 #endif 109 110 #define INVALID_PHYS_ADDR (~(phys_addr_t)0) 111 112 #include <asm/page.h> 113 #include <asm/processor.h> 114 115 #ifndef __pa_symbol 116 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 117 #endif 118 119 #ifndef page_to_virt 120 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 121 #endif 122 123 #ifndef lm_alias 124 #define lm_alias(x) __va(__pa_symbol(x)) 125 #endif 126 127 /* 128 * To prevent common memory management code establishing 129 * a zero page mapping on a read fault. 130 * This macro should be defined within <asm/pgtable.h>. 131 * s390 does this to prevent multiplexing of hardware bits 132 * related to the physical page in case of virtualization. 133 */ 134 #ifndef mm_forbids_zeropage 135 #define mm_forbids_zeropage(X) (0) 136 #endif 137 138 /* 139 * On some architectures it is expensive to call memset() for small sizes. 140 * If an architecture decides to implement their own version of 141 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 142 * define their own version of this macro in <asm/pgtable.h> 143 */ 144 #if BITS_PER_LONG == 64 145 /* This function must be updated when the size of struct page grows above 96 146 * or reduces below 56. The idea that compiler optimizes out switch() 147 * statement, and only leaves move/store instructions. Also the compiler can 148 * combine write statements if they are both assignments and can be reordered, 149 * this can result in several of the writes here being dropped. 150 */ 151 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 152 static inline void __mm_zero_struct_page(struct page *page) 153 { 154 unsigned long *_pp = (void *)page; 155 156 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 157 BUILD_BUG_ON(sizeof(struct page) & 7); 158 BUILD_BUG_ON(sizeof(struct page) < 56); 159 BUILD_BUG_ON(sizeof(struct page) > 96); 160 161 switch (sizeof(struct page)) { 162 case 96: 163 _pp[11] = 0; 164 fallthrough; 165 case 88: 166 _pp[10] = 0; 167 fallthrough; 168 case 80: 169 _pp[9] = 0; 170 fallthrough; 171 case 72: 172 _pp[8] = 0; 173 fallthrough; 174 case 64: 175 _pp[7] = 0; 176 fallthrough; 177 case 56: 178 _pp[6] = 0; 179 _pp[5] = 0; 180 _pp[4] = 0; 181 _pp[3] = 0; 182 _pp[2] = 0; 183 _pp[1] = 0; 184 _pp[0] = 0; 185 } 186 } 187 #else 188 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 189 #endif 190 191 /* 192 * Default maximum number of active map areas, this limits the number of vmas 193 * per mm struct. Users can overwrite this number by sysctl but there is a 194 * problem. 195 * 196 * When a program's coredump is generated as ELF format, a section is created 197 * per a vma. In ELF, the number of sections is represented in unsigned short. 198 * This means the number of sections should be smaller than 65535 at coredump. 199 * Because the kernel adds some informative sections to a image of program at 200 * generating coredump, we need some margin. The number of extra sections is 201 * 1-3 now and depends on arch. We use "5" as safe margin, here. 202 * 203 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 204 * not a hard limit any more. Although some userspace tools can be surprised by 205 * that. 206 */ 207 #define MAPCOUNT_ELF_CORE_MARGIN (5) 208 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 209 210 extern int sysctl_max_map_count; 211 212 extern unsigned long sysctl_user_reserve_kbytes; 213 extern unsigned long sysctl_admin_reserve_kbytes; 214 215 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 216 bool page_range_contiguous(const struct page *page, unsigned long nr_pages); 217 #else 218 static inline bool page_range_contiguous(const struct page *page, 219 unsigned long nr_pages) 220 { 221 return true; 222 } 223 #endif 224 225 /* to align the pointer to the (next) page boundary */ 226 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 227 228 /* to align the pointer to the (prev) page boundary */ 229 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 230 231 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 232 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 233 234 /** 235 * folio_page_idx - Return the number of a page in a folio. 236 * @folio: The folio. 237 * @page: The folio page. 238 * 239 * This function expects that the page is actually part of the folio. 240 * The returned number is relative to the start of the folio. 241 */ 242 static inline unsigned long folio_page_idx(const struct folio *folio, 243 const struct page *page) 244 { 245 return page - &folio->page; 246 } 247 248 static inline struct folio *lru_to_folio(struct list_head *head) 249 { 250 return list_entry((head)->prev, struct folio, lru); 251 } 252 253 void setup_initial_init_mm(void *start_code, void *end_code, 254 void *end_data, void *brk); 255 256 /* 257 * Linux kernel virtual memory manager primitives. 258 * The idea being to have a "virtual" mm in the same way 259 * we have a virtual fs - giving a cleaner interface to the 260 * mm details, and allowing different kinds of memory mappings 261 * (from shared memory to executable loading to arbitrary 262 * mmap() functions). 263 */ 264 265 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 266 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 267 void vm_area_free(struct vm_area_struct *); 268 269 #ifndef CONFIG_MMU 270 extern struct rb_root nommu_region_tree; 271 extern struct rw_semaphore nommu_region_sem; 272 273 extern unsigned int kobjsize(const void *objp); 274 #endif 275 276 /* 277 * vm_flags in vm_area_struct, see mm_types.h. 278 * When changing, update also include/trace/events/mmflags.h 279 */ 280 281 #define VM_NONE 0x00000000 282 283 /** 284 * typedef vma_flag_t - specifies an individual VMA flag by bit number. 285 * 286 * This value is made type safe by sparse to avoid passing invalid flag values 287 * around. 288 */ 289 typedef int __bitwise vma_flag_t; 290 291 #define DECLARE_VMA_BIT(name, bitnum) \ 292 VMA_ ## name ## _BIT = ((__force vma_flag_t)bitnum) 293 #define DECLARE_VMA_BIT_ALIAS(name, aliased) \ 294 VMA_ ## name ## _BIT = (VMA_ ## aliased ## _BIT) 295 enum { 296 DECLARE_VMA_BIT(READ, 0), 297 DECLARE_VMA_BIT(WRITE, 1), 298 DECLARE_VMA_BIT(EXEC, 2), 299 DECLARE_VMA_BIT(SHARED, 3), 300 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 301 DECLARE_VMA_BIT(MAYREAD, 4), /* limits for mprotect() etc. */ 302 DECLARE_VMA_BIT(MAYWRITE, 5), 303 DECLARE_VMA_BIT(MAYEXEC, 6), 304 DECLARE_VMA_BIT(MAYSHARE, 7), 305 DECLARE_VMA_BIT(GROWSDOWN, 8), /* general info on the segment */ 306 #ifdef CONFIG_MMU 307 DECLARE_VMA_BIT(UFFD_MISSING, 9),/* missing pages tracking */ 308 #else 309 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 310 DECLARE_VMA_BIT(MAYOVERLAY, 9), 311 #endif /* CONFIG_MMU */ 312 /* Page-ranges managed without "struct page", just pure PFN */ 313 DECLARE_VMA_BIT(PFNMAP, 10), 314 DECLARE_VMA_BIT(MAYBE_GUARD, 11), 315 DECLARE_VMA_BIT(UFFD_WP, 12), /* wrprotect pages tracking */ 316 DECLARE_VMA_BIT(LOCKED, 13), 317 DECLARE_VMA_BIT(IO, 14), /* Memory mapped I/O or similar */ 318 DECLARE_VMA_BIT(SEQ_READ, 15), /* App will access data sequentially */ 319 DECLARE_VMA_BIT(RAND_READ, 16), /* App will not benefit from clustered reads */ 320 DECLARE_VMA_BIT(DONTCOPY, 17), /* Do not copy this vma on fork */ 321 DECLARE_VMA_BIT(DONTEXPAND, 18),/* Cannot expand with mremap() */ 322 DECLARE_VMA_BIT(LOCKONFAULT, 19),/* Lock pages covered when faulted in */ 323 DECLARE_VMA_BIT(ACCOUNT, 20), /* Is a VM accounted object */ 324 DECLARE_VMA_BIT(NORESERVE, 21), /* should the VM suppress accounting */ 325 DECLARE_VMA_BIT(HUGETLB, 22), /* Huge TLB Page VM */ 326 DECLARE_VMA_BIT(SYNC, 23), /* Synchronous page faults */ 327 DECLARE_VMA_BIT(ARCH_1, 24), /* Architecture-specific flag */ 328 DECLARE_VMA_BIT(WIPEONFORK, 25),/* Wipe VMA contents in child. */ 329 DECLARE_VMA_BIT(DONTDUMP, 26), /* Do not include in the core dump */ 330 DECLARE_VMA_BIT(SOFTDIRTY, 27), /* NOT soft dirty clean area */ 331 DECLARE_VMA_BIT(MIXEDMAP, 28), /* Can contain struct page and pure PFN pages */ 332 DECLARE_VMA_BIT(HUGEPAGE, 29), /* MADV_HUGEPAGE marked this vma */ 333 DECLARE_VMA_BIT(NOHUGEPAGE, 30),/* MADV_NOHUGEPAGE marked this vma */ 334 DECLARE_VMA_BIT(MERGEABLE, 31), /* KSM may merge identical pages */ 335 /* These bits are reused, we define specific uses below. */ 336 DECLARE_VMA_BIT(HIGH_ARCH_0, 32), 337 DECLARE_VMA_BIT(HIGH_ARCH_1, 33), 338 DECLARE_VMA_BIT(HIGH_ARCH_2, 34), 339 DECLARE_VMA_BIT(HIGH_ARCH_3, 35), 340 DECLARE_VMA_BIT(HIGH_ARCH_4, 36), 341 DECLARE_VMA_BIT(HIGH_ARCH_5, 37), 342 DECLARE_VMA_BIT(HIGH_ARCH_6, 38), 343 /* 344 * This flag is used to connect VFIO to arch specific KVM code. It 345 * indicates that the memory under this VMA is safe for use with any 346 * non-cachable memory type inside KVM. Some VFIO devices, on some 347 * platforms, are thought to be unsafe and can cause machine crashes 348 * if KVM does not lock down the memory type. 349 */ 350 DECLARE_VMA_BIT(ALLOW_ANY_UNCACHED, 39), 351 #ifdef CONFIG_PPC32 352 DECLARE_VMA_BIT_ALIAS(DROPPABLE, ARCH_1), 353 #else 354 DECLARE_VMA_BIT(DROPPABLE, 40), 355 #endif 356 DECLARE_VMA_BIT(UFFD_MINOR, 41), 357 DECLARE_VMA_BIT(SEALED, 42), 358 /* Flags that reuse flags above. */ 359 DECLARE_VMA_BIT_ALIAS(PKEY_BIT0, HIGH_ARCH_0), 360 DECLARE_VMA_BIT_ALIAS(PKEY_BIT1, HIGH_ARCH_1), 361 DECLARE_VMA_BIT_ALIAS(PKEY_BIT2, HIGH_ARCH_2), 362 DECLARE_VMA_BIT_ALIAS(PKEY_BIT3, HIGH_ARCH_3), 363 DECLARE_VMA_BIT_ALIAS(PKEY_BIT4, HIGH_ARCH_4), 364 #if defined(CONFIG_X86_USER_SHADOW_STACK) || defined(CONFIG_RISCV_USER_CFI) 365 /* 366 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 367 * support core mm. 368 * 369 * These VMAs will get a single end guard page. This helps userspace 370 * protect itself from attacks. A single page is enough for current 371 * shadow stack archs (x86). See the comments near alloc_shstk() in 372 * arch/x86/kernel/shstk.c for more details on the guard size. 373 */ 374 DECLARE_VMA_BIT_ALIAS(SHADOW_STACK, HIGH_ARCH_5), 375 #elif defined(CONFIG_ARM64_GCS) 376 /* 377 * arm64's Guarded Control Stack implements similar functionality and 378 * has similar constraints to shadow stacks. 379 */ 380 DECLARE_VMA_BIT_ALIAS(SHADOW_STACK, HIGH_ARCH_6), 381 #endif 382 DECLARE_VMA_BIT_ALIAS(SAO, ARCH_1), /* Strong Access Ordering (powerpc) */ 383 DECLARE_VMA_BIT_ALIAS(GROWSUP, ARCH_1), /* parisc */ 384 DECLARE_VMA_BIT_ALIAS(SPARC_ADI, ARCH_1), /* sparc64 */ 385 DECLARE_VMA_BIT_ALIAS(ARM64_BTI, ARCH_1), /* arm64 */ 386 DECLARE_VMA_BIT_ALIAS(ARCH_CLEAR, ARCH_1), /* sparc64, arm64 */ 387 DECLARE_VMA_BIT_ALIAS(MAPPED_COPY, ARCH_1), /* !CONFIG_MMU */ 388 DECLARE_VMA_BIT_ALIAS(MTE, HIGH_ARCH_4), /* arm64 */ 389 DECLARE_VMA_BIT_ALIAS(MTE_ALLOWED, HIGH_ARCH_5),/* arm64 */ 390 #ifdef CONFIG_STACK_GROWSUP 391 DECLARE_VMA_BIT_ALIAS(STACK, GROWSUP), 392 DECLARE_VMA_BIT_ALIAS(STACK_EARLY, GROWSDOWN), 393 #else 394 DECLARE_VMA_BIT_ALIAS(STACK, GROWSDOWN), 395 #endif 396 }; 397 #undef DECLARE_VMA_BIT 398 #undef DECLARE_VMA_BIT_ALIAS 399 400 #define INIT_VM_FLAG(name) BIT((__force int) VMA_ ## name ## _BIT) 401 #define VM_READ INIT_VM_FLAG(READ) 402 #define VM_WRITE INIT_VM_FLAG(WRITE) 403 #define VM_EXEC INIT_VM_FLAG(EXEC) 404 #define VM_SHARED INIT_VM_FLAG(SHARED) 405 #define VM_MAYREAD INIT_VM_FLAG(MAYREAD) 406 #define VM_MAYWRITE INIT_VM_FLAG(MAYWRITE) 407 #define VM_MAYEXEC INIT_VM_FLAG(MAYEXEC) 408 #define VM_MAYSHARE INIT_VM_FLAG(MAYSHARE) 409 #define VM_GROWSDOWN INIT_VM_FLAG(GROWSDOWN) 410 #ifdef CONFIG_MMU 411 #define VM_UFFD_MISSING INIT_VM_FLAG(UFFD_MISSING) 412 #else 413 #define VM_UFFD_MISSING VM_NONE 414 #define VM_MAYOVERLAY INIT_VM_FLAG(MAYOVERLAY) 415 #endif 416 #define VM_PFNMAP INIT_VM_FLAG(PFNMAP) 417 #define VM_MAYBE_GUARD INIT_VM_FLAG(MAYBE_GUARD) 418 #define VM_UFFD_WP INIT_VM_FLAG(UFFD_WP) 419 #define VM_LOCKED INIT_VM_FLAG(LOCKED) 420 #define VM_IO INIT_VM_FLAG(IO) 421 #define VM_SEQ_READ INIT_VM_FLAG(SEQ_READ) 422 #define VM_RAND_READ INIT_VM_FLAG(RAND_READ) 423 #define VM_DONTCOPY INIT_VM_FLAG(DONTCOPY) 424 #define VM_DONTEXPAND INIT_VM_FLAG(DONTEXPAND) 425 #define VM_LOCKONFAULT INIT_VM_FLAG(LOCKONFAULT) 426 #define VM_ACCOUNT INIT_VM_FLAG(ACCOUNT) 427 #define VM_NORESERVE INIT_VM_FLAG(NORESERVE) 428 #define VM_HUGETLB INIT_VM_FLAG(HUGETLB) 429 #define VM_SYNC INIT_VM_FLAG(SYNC) 430 #define VM_ARCH_1 INIT_VM_FLAG(ARCH_1) 431 #define VM_WIPEONFORK INIT_VM_FLAG(WIPEONFORK) 432 #define VM_DONTDUMP INIT_VM_FLAG(DONTDUMP) 433 #ifdef CONFIG_MEM_SOFT_DIRTY 434 #define VM_SOFTDIRTY INIT_VM_FLAG(SOFTDIRTY) 435 #else 436 #define VM_SOFTDIRTY VM_NONE 437 #endif 438 #define VM_MIXEDMAP INIT_VM_FLAG(MIXEDMAP) 439 #define VM_HUGEPAGE INIT_VM_FLAG(HUGEPAGE) 440 #define VM_NOHUGEPAGE INIT_VM_FLAG(NOHUGEPAGE) 441 #define VM_MERGEABLE INIT_VM_FLAG(MERGEABLE) 442 #define VM_STACK INIT_VM_FLAG(STACK) 443 #ifdef CONFIG_STACK_GROWSUP 444 #define VM_STACK_EARLY INIT_VM_FLAG(STACK_EARLY) 445 #else 446 #define VM_STACK_EARLY VM_NONE 447 #endif 448 #ifdef CONFIG_ARCH_HAS_PKEYS 449 #define VM_PKEY_SHIFT ((__force int)VMA_HIGH_ARCH_0_BIT) 450 /* Despite the naming, these are FLAGS not bits. */ 451 #define VM_PKEY_BIT0 INIT_VM_FLAG(PKEY_BIT0) 452 #define VM_PKEY_BIT1 INIT_VM_FLAG(PKEY_BIT1) 453 #define VM_PKEY_BIT2 INIT_VM_FLAG(PKEY_BIT2) 454 #if CONFIG_ARCH_PKEY_BITS > 3 455 #define VM_PKEY_BIT3 INIT_VM_FLAG(PKEY_BIT3) 456 #else 457 #define VM_PKEY_BIT3 VM_NONE 458 #endif /* CONFIG_ARCH_PKEY_BITS > 3 */ 459 #if CONFIG_ARCH_PKEY_BITS > 4 460 #define VM_PKEY_BIT4 INIT_VM_FLAG(PKEY_BIT4) 461 #else 462 #define VM_PKEY_BIT4 VM_NONE 463 #endif /* CONFIG_ARCH_PKEY_BITS > 4 */ 464 #endif /* CONFIG_ARCH_HAS_PKEYS */ 465 #if defined(CONFIG_X86_USER_SHADOW_STACK) || defined(CONFIG_ARM64_GCS) || \ 466 defined(CONFIG_RISCV_USER_CFI) 467 #define VM_SHADOW_STACK INIT_VM_FLAG(SHADOW_STACK) 468 #else 469 #define VM_SHADOW_STACK VM_NONE 470 #endif 471 #if defined(CONFIG_PPC64) 472 #define VM_SAO INIT_VM_FLAG(SAO) 473 #elif defined(CONFIG_PARISC) 474 #define VM_GROWSUP INIT_VM_FLAG(GROWSUP) 475 #elif defined(CONFIG_SPARC64) 476 #define VM_SPARC_ADI INIT_VM_FLAG(SPARC_ADI) 477 #define VM_ARCH_CLEAR INIT_VM_FLAG(ARCH_CLEAR) 478 #elif defined(CONFIG_ARM64) 479 #define VM_ARM64_BTI INIT_VM_FLAG(ARM64_BTI) 480 #define VM_ARCH_CLEAR INIT_VM_FLAG(ARCH_CLEAR) 481 #elif !defined(CONFIG_MMU) 482 #define VM_MAPPED_COPY INIT_VM_FLAG(MAPPED_COPY) 483 #endif 484 #ifndef VM_GROWSUP 485 #define VM_GROWSUP VM_NONE 486 #endif 487 #ifdef CONFIG_ARM64_MTE 488 #define VM_MTE INIT_VM_FLAG(MTE) 489 #define VM_MTE_ALLOWED INIT_VM_FLAG(MTE_ALLOWED) 490 #else 491 #define VM_MTE VM_NONE 492 #define VM_MTE_ALLOWED VM_NONE 493 #endif 494 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 495 #define VM_UFFD_MINOR INIT_VM_FLAG(UFFD_MINOR) 496 #else 497 #define VM_UFFD_MINOR VM_NONE 498 #endif 499 #ifdef CONFIG_64BIT 500 #define VM_ALLOW_ANY_UNCACHED INIT_VM_FLAG(ALLOW_ANY_UNCACHED) 501 #define VM_SEALED INIT_VM_FLAG(SEALED) 502 #else 503 #define VM_ALLOW_ANY_UNCACHED VM_NONE 504 #define VM_SEALED VM_NONE 505 #endif 506 #if defined(CONFIG_64BIT) || defined(CONFIG_PPC32) 507 #define VM_DROPPABLE INIT_VM_FLAG(DROPPABLE) 508 #else 509 #define VM_DROPPABLE VM_NONE 510 #endif 511 512 /* Bits set in the VMA until the stack is in its final location */ 513 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 514 515 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 516 517 /* Common data flag combinations */ 518 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 519 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 520 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 521 VM_MAYWRITE | VM_MAYEXEC) 522 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 523 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 524 525 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 526 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 527 #endif 528 529 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 530 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 531 #endif 532 533 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 534 535 #ifdef CONFIG_MSEAL_SYSTEM_MAPPINGS 536 #define VM_SEALED_SYSMAP VM_SEALED 537 #else 538 #define VM_SEALED_SYSMAP VM_NONE 539 #endif 540 541 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 542 543 /* VMA basic access permission flags */ 544 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 545 546 /* 547 * Special vmas that are non-mergable, non-mlock()able. 548 */ 549 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 550 551 /* 552 * Physically remapped pages are special. Tell the 553 * rest of the world about it: 554 * VM_IO tells people not to look at these pages 555 * (accesses can have side effects). 556 * VM_PFNMAP tells the core MM that the base pages are just 557 * raw PFN mappings, and do not have a "struct page" associated 558 * with them. 559 * VM_DONTEXPAND 560 * Disable vma merging and expanding with mremap(). 561 * VM_DONTDUMP 562 * Omit vma from core dump, even when VM_IO turned off. 563 */ 564 #define VM_REMAP_FLAGS (VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP) 565 566 /* This mask prevents VMA from being scanned with khugepaged */ 567 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 568 569 /* This mask defines which mm->def_flags a process can inherit its parent */ 570 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 571 572 /* This mask represents all the VMA flag bits used by mlock */ 573 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 574 575 /* These flags can be updated atomically via VMA/mmap read lock. */ 576 #define VM_ATOMIC_SET_ALLOWED VM_MAYBE_GUARD 577 578 /* Arch-specific flags to clear when updating VM flags on protection change */ 579 #ifndef VM_ARCH_CLEAR 580 #define VM_ARCH_CLEAR VM_NONE 581 #endif 582 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 583 584 /* 585 * Flags which should be 'sticky' on merge - that is, flags which, when one VMA 586 * possesses it but the other does not, the merged VMA should nonetheless have 587 * applied to it: 588 * 589 * VM_SOFTDIRTY - if a VMA is marked soft-dirty, that is has not had its 590 * references cleared via /proc/$pid/clear_refs, any merged VMA 591 * should be considered soft-dirty also as it operates at a VMA 592 * granularity. 593 * 594 * VM_MAYBE_GUARD - If a VMA may have guard regions in place it implies that 595 * mapped page tables may contain metadata not described by the 596 * VMA and thus any merged VMA may also contain this metadata, 597 * and thus we must make this flag sticky. 598 */ 599 #define VM_STICKY (VM_SOFTDIRTY | VM_MAYBE_GUARD) 600 601 /* 602 * VMA flags we ignore for the purposes of merge, i.e. one VMA possessing one 603 * of these flags and the other not does not preclude a merge. 604 * 605 * VM_STICKY - When merging VMAs, VMA flags must match, unless they are 606 * 'sticky'. If any sticky flags exist in either VMA, we simply 607 * set all of them on the merged VMA. 608 */ 609 #define VM_IGNORE_MERGE VM_STICKY 610 611 /* 612 * Flags which should result in page tables being copied on fork. These are 613 * flags which indicate that the VMA maps page tables which cannot be 614 * reconsistuted upon page fault, so necessitate page table copying upon fork. 615 * 616 * Note that these flags should be compared with the DESTINATION VMA not the 617 * source, as VM_UFFD_WP may not be propagated to destination, while all other 618 * flags will be. 619 * 620 * VM_PFNMAP / VM_MIXEDMAP - These contain kernel-mapped data which cannot be 621 * reasonably reconstructed on page fault. 622 * 623 * VM_UFFD_WP - Encodes metadata about an installed uffd 624 * write protect handler, which cannot be 625 * reconstructed on page fault. 626 * 627 * We always copy pgtables when dst_vma has uffd-wp 628 * enabled even if it's file-backed 629 * (e.g. shmem). Because when uffd-wp is enabled, 630 * pgtable contains uffd-wp protection information, 631 * that's something we can't retrieve from page cache, 632 * and skip copying will lose those info. 633 * 634 * VM_MAYBE_GUARD - Could contain page guard region markers which 635 * by design are a property of the page tables 636 * only and thus cannot be reconstructed on page 637 * fault. 638 */ 639 #define VM_COPY_ON_FORK (VM_PFNMAP | VM_MIXEDMAP | VM_UFFD_WP | VM_MAYBE_GUARD) 640 641 /* 642 * mapping from the currently active vm_flags protection bits (the 643 * low four bits) to a page protection mask.. 644 */ 645 646 /* 647 * The default fault flags that should be used by most of the 648 * arch-specific page fault handlers. 649 */ 650 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 651 FAULT_FLAG_KILLABLE | \ 652 FAULT_FLAG_INTERRUPTIBLE) 653 654 /** 655 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 656 * @flags: Fault flags. 657 * 658 * This is mostly used for places where we want to try to avoid taking 659 * the mmap_lock for too long a time when waiting for another condition 660 * to change, in which case we can try to be polite to release the 661 * mmap_lock in the first round to avoid potential starvation of other 662 * processes that would also want the mmap_lock. 663 * 664 * Return: true if the page fault allows retry and this is the first 665 * attempt of the fault handling; false otherwise. 666 */ 667 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 668 { 669 return (flags & FAULT_FLAG_ALLOW_RETRY) && 670 (!(flags & FAULT_FLAG_TRIED)); 671 } 672 673 #define FAULT_FLAG_TRACE \ 674 { FAULT_FLAG_WRITE, "WRITE" }, \ 675 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 676 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 677 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 678 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 679 { FAULT_FLAG_TRIED, "TRIED" }, \ 680 { FAULT_FLAG_USER, "USER" }, \ 681 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 682 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 683 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 684 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 685 686 /* 687 * vm_fault is filled by the pagefault handler and passed to the vma's 688 * ->fault function. The vma's ->fault is responsible for returning a bitmask 689 * of VM_FAULT_xxx flags that give details about how the fault was handled. 690 * 691 * MM layer fills up gfp_mask for page allocations but fault handler might 692 * alter it if its implementation requires a different allocation context. 693 * 694 * pgoff should be used in favour of virtual_address, if possible. 695 */ 696 struct vm_fault { 697 const struct { 698 struct vm_area_struct *vma; /* Target VMA */ 699 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 700 pgoff_t pgoff; /* Logical page offset based on vma */ 701 unsigned long address; /* Faulting virtual address - masked */ 702 unsigned long real_address; /* Faulting virtual address - unmasked */ 703 }; 704 enum fault_flag flags; /* FAULT_FLAG_xxx flags 705 * XXX: should really be 'const' */ 706 pmd_t *pmd; /* Pointer to pmd entry matching 707 * the 'address' */ 708 pud_t *pud; /* Pointer to pud entry matching 709 * the 'address' 710 */ 711 union { 712 pte_t orig_pte; /* Value of PTE at the time of fault */ 713 pmd_t orig_pmd; /* Value of PMD at the time of fault, 714 * used by PMD fault only. 715 */ 716 }; 717 718 struct page *cow_page; /* Page handler may use for COW fault */ 719 struct page *page; /* ->fault handlers should return a 720 * page here, unless VM_FAULT_NOPAGE 721 * is set (which is also implied by 722 * VM_FAULT_ERROR). 723 */ 724 /* These three entries are valid only while holding ptl lock */ 725 pte_t *pte; /* Pointer to pte entry matching 726 * the 'address'. NULL if the page 727 * table hasn't been allocated. 728 */ 729 spinlock_t *ptl; /* Page table lock. 730 * Protects pte page table if 'pte' 731 * is not NULL, otherwise pmd. 732 */ 733 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 734 * vm_ops->map_pages() sets up a page 735 * table from atomic context. 736 * do_fault_around() pre-allocates 737 * page table to avoid allocation from 738 * atomic context. 739 */ 740 }; 741 742 /* 743 * These are the virtual MM functions - opening of an area, closing and 744 * unmapping it (needed to keep files on disk up-to-date etc), pointer 745 * to the functions called when a no-page or a wp-page exception occurs. 746 */ 747 struct vm_operations_struct { 748 void (*open)(struct vm_area_struct * area); 749 /** 750 * @close: Called when the VMA is being removed from the MM. 751 * Context: User context. May sleep. Caller holds mmap_lock. 752 */ 753 void (*close)(struct vm_area_struct * area); 754 /* Called any time before splitting to check if it's allowed */ 755 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 756 int (*mremap)(struct vm_area_struct *area); 757 /* 758 * Called by mprotect() to make driver-specific permission 759 * checks before mprotect() is finalised. The VMA must not 760 * be modified. Returns 0 if mprotect() can proceed. 761 */ 762 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 763 unsigned long end, unsigned long newflags); 764 vm_fault_t (*fault)(struct vm_fault *vmf); 765 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 766 vm_fault_t (*map_pages)(struct vm_fault *vmf, 767 pgoff_t start_pgoff, pgoff_t end_pgoff); 768 unsigned long (*pagesize)(struct vm_area_struct * area); 769 770 /* notification that a previously read-only page is about to become 771 * writable, if an error is returned it will cause a SIGBUS */ 772 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 773 774 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 775 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 776 777 /* called by access_process_vm when get_user_pages() fails, typically 778 * for use by special VMAs. See also generic_access_phys() for a generic 779 * implementation useful for any iomem mapping. 780 */ 781 int (*access)(struct vm_area_struct *vma, unsigned long addr, 782 void *buf, int len, int write); 783 784 /* Called by the /proc/PID/maps code to ask the vma whether it 785 * has a special name. Returning non-NULL will also cause this 786 * vma to be dumped unconditionally. */ 787 const char *(*name)(struct vm_area_struct *vma); 788 789 #ifdef CONFIG_NUMA 790 /* 791 * set_policy() op must add a reference to any non-NULL @new mempolicy 792 * to hold the policy upon return. Caller should pass NULL @new to 793 * remove a policy and fall back to surrounding context--i.e. do not 794 * install a MPOL_DEFAULT policy, nor the task or system default 795 * mempolicy. 796 */ 797 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 798 799 /* 800 * get_policy() op must add reference [mpol_get()] to any policy at 801 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 802 * in mm/mempolicy.c will do this automatically. 803 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 804 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 805 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 806 * must return NULL--i.e., do not "fallback" to task or system default 807 * policy. 808 */ 809 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 810 unsigned long addr, pgoff_t *ilx); 811 #endif 812 #ifdef CONFIG_FIND_NORMAL_PAGE 813 /* 814 * Called by vm_normal_page() for special PTEs in @vma at @addr. This 815 * allows for returning a "normal" page from vm_normal_page() even 816 * though the PTE indicates that the "struct page" either does not exist 817 * or should not be touched: "special". 818 * 819 * Do not add new users: this really only works when a "normal" page 820 * was mapped, but then the PTE got changed to something weird (+ 821 * marked special) that would not make pte_pfn() identify the originally 822 * inserted page. 823 */ 824 struct page *(*find_normal_page)(struct vm_area_struct *vma, 825 unsigned long addr); 826 #endif /* CONFIG_FIND_NORMAL_PAGE */ 827 }; 828 829 #ifdef CONFIG_NUMA_BALANCING 830 static inline void vma_numab_state_init(struct vm_area_struct *vma) 831 { 832 vma->numab_state = NULL; 833 } 834 static inline void vma_numab_state_free(struct vm_area_struct *vma) 835 { 836 kfree(vma->numab_state); 837 } 838 #else 839 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 840 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 841 #endif /* CONFIG_NUMA_BALANCING */ 842 843 /* 844 * These must be here rather than mmap_lock.h as dependent on vm_fault type, 845 * declared in this header. 846 */ 847 #ifdef CONFIG_PER_VMA_LOCK 848 static inline void release_fault_lock(struct vm_fault *vmf) 849 { 850 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 851 vma_end_read(vmf->vma); 852 else 853 mmap_read_unlock(vmf->vma->vm_mm); 854 } 855 856 static inline void assert_fault_locked(const struct vm_fault *vmf) 857 { 858 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 859 vma_assert_locked(vmf->vma); 860 else 861 mmap_assert_locked(vmf->vma->vm_mm); 862 } 863 #else 864 static inline void release_fault_lock(struct vm_fault *vmf) 865 { 866 mmap_read_unlock(vmf->vma->vm_mm); 867 } 868 869 static inline void assert_fault_locked(const struct vm_fault *vmf) 870 { 871 mmap_assert_locked(vmf->vma->vm_mm); 872 } 873 #endif /* CONFIG_PER_VMA_LOCK */ 874 875 static inline bool mm_flags_test(int flag, const struct mm_struct *mm) 876 { 877 return test_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags)); 878 } 879 880 static inline bool mm_flags_test_and_set(int flag, struct mm_struct *mm) 881 { 882 return test_and_set_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags)); 883 } 884 885 static inline bool mm_flags_test_and_clear(int flag, struct mm_struct *mm) 886 { 887 return test_and_clear_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags)); 888 } 889 890 static inline void mm_flags_set(int flag, struct mm_struct *mm) 891 { 892 set_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags)); 893 } 894 895 static inline void mm_flags_clear(int flag, struct mm_struct *mm) 896 { 897 clear_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags)); 898 } 899 900 static inline void mm_flags_clear_all(struct mm_struct *mm) 901 { 902 bitmap_zero(ACCESS_PRIVATE(&mm->flags, __mm_flags), NUM_MM_FLAG_BITS); 903 } 904 905 extern const struct vm_operations_struct vma_dummy_vm_ops; 906 907 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 908 { 909 memset(vma, 0, sizeof(*vma)); 910 vma->vm_mm = mm; 911 vma->vm_ops = &vma_dummy_vm_ops; 912 INIT_LIST_HEAD(&vma->anon_vma_chain); 913 vma_lock_init(vma, false); 914 } 915 916 /* Use when VMA is not part of the VMA tree and needs no locking */ 917 static inline void vm_flags_init(struct vm_area_struct *vma, 918 vm_flags_t flags) 919 { 920 VM_WARN_ON_ONCE(!pgtable_supports_soft_dirty() && (flags & VM_SOFTDIRTY)); 921 vma_flags_clear_all(&vma->flags); 922 vma_flags_overwrite_word(&vma->flags, flags); 923 } 924 925 /* 926 * Use when VMA is part of the VMA tree and modifications need coordination 927 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 928 * it should be locked explicitly beforehand. 929 */ 930 static inline void vm_flags_reset(struct vm_area_struct *vma, 931 vm_flags_t flags) 932 { 933 VM_WARN_ON_ONCE(!pgtable_supports_soft_dirty() && (flags & VM_SOFTDIRTY)); 934 vma_assert_write_locked(vma); 935 vm_flags_init(vma, flags); 936 } 937 938 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 939 vm_flags_t flags) 940 { 941 vma_assert_write_locked(vma); 942 /* 943 * If VMA flags exist beyond the first system word, also clear these. It 944 * is assumed the write once behaviour is required only for the first 945 * system word. 946 */ 947 if (NUM_VMA_FLAG_BITS > BITS_PER_LONG) { 948 unsigned long *bitmap = ACCESS_PRIVATE(&vma->flags, __vma_flags); 949 950 bitmap_zero(&bitmap[1], NUM_VMA_FLAG_BITS - BITS_PER_LONG); 951 } 952 953 vma_flags_overwrite_word_once(&vma->flags, flags); 954 } 955 956 static inline void vm_flags_set(struct vm_area_struct *vma, 957 vm_flags_t flags) 958 { 959 vma_start_write(vma); 960 vma_flags_set_word(&vma->flags, flags); 961 } 962 963 static inline void vm_flags_clear(struct vm_area_struct *vma, 964 vm_flags_t flags) 965 { 966 VM_WARN_ON_ONCE(!pgtable_supports_soft_dirty() && (flags & VM_SOFTDIRTY)); 967 vma_start_write(vma); 968 vma_flags_clear_word(&vma->flags, flags); 969 } 970 971 /* 972 * Use only if VMA is not part of the VMA tree or has no other users and 973 * therefore needs no locking. 974 */ 975 static inline void __vm_flags_mod(struct vm_area_struct *vma, 976 vm_flags_t set, vm_flags_t clear) 977 { 978 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 979 } 980 981 /* 982 * Use only when the order of set/clear operations is unimportant, otherwise 983 * use vm_flags_{set|clear} explicitly. 984 */ 985 static inline void vm_flags_mod(struct vm_area_struct *vma, 986 vm_flags_t set, vm_flags_t clear) 987 { 988 vma_start_write(vma); 989 __vm_flags_mod(vma, set, clear); 990 } 991 992 static inline bool __vma_flag_atomic_valid(struct vm_area_struct *vma, 993 vma_flag_t bit) 994 { 995 const vm_flags_t mask = BIT((__force int)bit); 996 997 /* Only specific flags are permitted */ 998 if (WARN_ON_ONCE(!(mask & VM_ATOMIC_SET_ALLOWED))) 999 return false; 1000 1001 return true; 1002 } 1003 1004 /* 1005 * Set VMA flag atomically. Requires only VMA/mmap read lock. Only specific 1006 * valid flags are allowed to do this. 1007 */ 1008 static inline void vma_flag_set_atomic(struct vm_area_struct *vma, 1009 vma_flag_t bit) 1010 { 1011 unsigned long *bitmap = ACCESS_PRIVATE(&vma->flags, __vma_flags); 1012 1013 vma_assert_stabilised(vma); 1014 if (__vma_flag_atomic_valid(vma, bit)) 1015 set_bit((__force int)bit, bitmap); 1016 } 1017 1018 /* 1019 * Test for VMA flag atomically. Requires no locks. Only specific valid flags 1020 * are allowed to do this. 1021 * 1022 * This is necessarily racey, so callers must ensure that serialisation is 1023 * achieved through some other means, or that races are permissible. 1024 */ 1025 static inline bool vma_flag_test_atomic(struct vm_area_struct *vma, 1026 vma_flag_t bit) 1027 { 1028 if (__vma_flag_atomic_valid(vma, bit)) 1029 return test_bit((__force int)bit, &vma->vm_flags); 1030 1031 return false; 1032 } 1033 1034 static inline void vma_set_anonymous(struct vm_area_struct *vma) 1035 { 1036 vma->vm_ops = NULL; 1037 } 1038 1039 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1040 { 1041 return !vma->vm_ops; 1042 } 1043 1044 /* 1045 * Indicate if the VMA is a heap for the given task; for 1046 * /proc/PID/maps that is the heap of the main task. 1047 */ 1048 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 1049 { 1050 return vma->vm_start < vma->vm_mm->brk && 1051 vma->vm_end > vma->vm_mm->start_brk; 1052 } 1053 1054 /* 1055 * Indicate if the VMA is a stack for the given task; for 1056 * /proc/PID/maps that is the stack of the main task. 1057 */ 1058 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 1059 { 1060 /* 1061 * We make no effort to guess what a given thread considers to be 1062 * its "stack". It's not even well-defined for programs written 1063 * languages like Go. 1064 */ 1065 return vma->vm_start <= vma->vm_mm->start_stack && 1066 vma->vm_end >= vma->vm_mm->start_stack; 1067 } 1068 1069 static inline bool vma_is_temporary_stack(const struct vm_area_struct *vma) 1070 { 1071 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1072 1073 if (!maybe_stack) 1074 return false; 1075 1076 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1077 VM_STACK_INCOMPLETE_SETUP) 1078 return true; 1079 1080 return false; 1081 } 1082 1083 static inline bool vma_is_foreign(const struct vm_area_struct *vma) 1084 { 1085 if (!current->mm) 1086 return true; 1087 1088 if (current->mm != vma->vm_mm) 1089 return true; 1090 1091 return false; 1092 } 1093 1094 static inline bool vma_is_accessible(const struct vm_area_struct *vma) 1095 { 1096 return vma->vm_flags & VM_ACCESS_FLAGS; 1097 } 1098 1099 static inline bool is_shared_maywrite(vm_flags_t vm_flags) 1100 { 1101 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 1102 (VM_SHARED | VM_MAYWRITE); 1103 } 1104 1105 static inline bool vma_is_shared_maywrite(const struct vm_area_struct *vma) 1106 { 1107 return is_shared_maywrite(vma->vm_flags); 1108 } 1109 1110 static inline 1111 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 1112 { 1113 return mas_find(&vmi->mas, max - 1); 1114 } 1115 1116 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 1117 { 1118 /* 1119 * Uses mas_find() to get the first VMA when the iterator starts. 1120 * Calling mas_next() could skip the first entry. 1121 */ 1122 return mas_find(&vmi->mas, ULONG_MAX); 1123 } 1124 1125 static inline 1126 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 1127 { 1128 return mas_next_range(&vmi->mas, ULONG_MAX); 1129 } 1130 1131 1132 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 1133 { 1134 return mas_prev(&vmi->mas, 0); 1135 } 1136 1137 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1138 unsigned long start, unsigned long end, gfp_t gfp) 1139 { 1140 __mas_set_range(&vmi->mas, start, end - 1); 1141 mas_store_gfp(&vmi->mas, NULL, gfp); 1142 if (unlikely(mas_is_err(&vmi->mas))) 1143 return -ENOMEM; 1144 1145 return 0; 1146 } 1147 1148 /* Free any unused preallocations */ 1149 static inline void vma_iter_free(struct vma_iterator *vmi) 1150 { 1151 mas_destroy(&vmi->mas); 1152 } 1153 1154 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1155 struct vm_area_struct *vma) 1156 { 1157 vmi->mas.index = vma->vm_start; 1158 vmi->mas.last = vma->vm_end - 1; 1159 mas_store(&vmi->mas, vma); 1160 if (unlikely(mas_is_err(&vmi->mas))) 1161 return -ENOMEM; 1162 1163 vma_mark_attached(vma); 1164 return 0; 1165 } 1166 1167 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1168 { 1169 mas_pause(&vmi->mas); 1170 } 1171 1172 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1173 { 1174 mas_set(&vmi->mas, addr); 1175 } 1176 1177 #define for_each_vma(__vmi, __vma) \ 1178 while (((__vma) = vma_next(&(__vmi))) != NULL) 1179 1180 /* The MM code likes to work with exclusive end addresses */ 1181 #define for_each_vma_range(__vmi, __vma, __end) \ 1182 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1183 1184 #ifdef CONFIG_SHMEM 1185 /* 1186 * The vma_is_shmem is not inline because it is used only by slow 1187 * paths in userfault. 1188 */ 1189 bool vma_is_shmem(const struct vm_area_struct *vma); 1190 bool vma_is_anon_shmem(const struct vm_area_struct *vma); 1191 #else 1192 static inline bool vma_is_shmem(const struct vm_area_struct *vma) { return false; } 1193 static inline bool vma_is_anon_shmem(const struct vm_area_struct *vma) { return false; } 1194 #endif 1195 1196 int vma_is_stack_for_current(const struct vm_area_struct *vma); 1197 1198 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1199 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1200 1201 struct mmu_gather; 1202 struct inode; 1203 1204 extern void prep_compound_page(struct page *page, unsigned int order); 1205 1206 static inline unsigned int folio_large_order(const struct folio *folio) 1207 { 1208 return folio->_flags_1 & 0xff; 1209 } 1210 1211 #ifdef NR_PAGES_IN_LARGE_FOLIO 1212 static inline unsigned long folio_large_nr_pages(const struct folio *folio) 1213 { 1214 return folio->_nr_pages; 1215 } 1216 #else 1217 static inline unsigned long folio_large_nr_pages(const struct folio *folio) 1218 { 1219 return 1L << folio_large_order(folio); 1220 } 1221 #endif 1222 1223 /* 1224 * compound_order() can be called without holding a reference, which means 1225 * that niceties like page_folio() don't work. These callers should be 1226 * prepared to handle wild return values. For example, PG_head may be 1227 * set before the order is initialised, or this may be a tail page. 1228 * See compaction.c for some good examples. 1229 */ 1230 static inline unsigned int compound_order(const struct page *page) 1231 { 1232 const struct folio *folio = (struct folio *)page; 1233 1234 if (!test_bit(PG_head, &folio->flags.f)) 1235 return 0; 1236 return folio_large_order(folio); 1237 } 1238 1239 /** 1240 * folio_order - The allocation order of a folio. 1241 * @folio: The folio. 1242 * 1243 * A folio is composed of 2^order pages. See get_order() for the definition 1244 * of order. 1245 * 1246 * Return: The order of the folio. 1247 */ 1248 static inline unsigned int folio_order(const struct folio *folio) 1249 { 1250 if (!folio_test_large(folio)) 1251 return 0; 1252 return folio_large_order(folio); 1253 } 1254 1255 /** 1256 * folio_reset_order - Reset the folio order and derived _nr_pages 1257 * @folio: The folio. 1258 * 1259 * Reset the order and derived _nr_pages to 0. Must only be used in the 1260 * process of splitting large folios. 1261 */ 1262 static inline void folio_reset_order(struct folio *folio) 1263 { 1264 if (WARN_ON_ONCE(!folio_test_large(folio))) 1265 return; 1266 folio->_flags_1 &= ~0xffUL; 1267 #ifdef NR_PAGES_IN_LARGE_FOLIO 1268 folio->_nr_pages = 0; 1269 #endif 1270 } 1271 1272 #include <linux/huge_mm.h> 1273 1274 /* 1275 * Methods to modify the page usage count. 1276 * 1277 * What counts for a page usage: 1278 * - cache mapping (page->mapping) 1279 * - private data (page->private) 1280 * - page mapped in a task's page tables, each mapping 1281 * is counted separately 1282 * 1283 * Also, many kernel routines increase the page count before a critical 1284 * routine so they can be sure the page doesn't go away from under them. 1285 */ 1286 1287 /* 1288 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1289 */ 1290 static inline int put_page_testzero(struct page *page) 1291 { 1292 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1293 return page_ref_dec_and_test(page); 1294 } 1295 1296 static inline int folio_put_testzero(struct folio *folio) 1297 { 1298 return put_page_testzero(&folio->page); 1299 } 1300 1301 /* 1302 * Try to grab a ref unless the page has a refcount of zero, return false if 1303 * that is the case. 1304 * This can be called when MMU is off so it must not access 1305 * any of the virtual mappings. 1306 */ 1307 static inline bool get_page_unless_zero(struct page *page) 1308 { 1309 return page_ref_add_unless(page, 1, 0); 1310 } 1311 1312 static inline struct folio *folio_get_nontail_page(struct page *page) 1313 { 1314 if (unlikely(!get_page_unless_zero(page))) 1315 return NULL; 1316 return (struct folio *)page; 1317 } 1318 1319 extern int page_is_ram(unsigned long pfn); 1320 1321 enum { 1322 REGION_INTERSECTS, 1323 REGION_DISJOINT, 1324 REGION_MIXED, 1325 }; 1326 1327 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1328 unsigned long desc); 1329 1330 /* Support for virtually mapped pages */ 1331 struct page *vmalloc_to_page(const void *addr); 1332 unsigned long vmalloc_to_pfn(const void *addr); 1333 1334 /* 1335 * Determine if an address is within the vmalloc range 1336 * 1337 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1338 * is no special casing required. 1339 */ 1340 #ifdef CONFIG_MMU 1341 extern bool is_vmalloc_addr(const void *x); 1342 extern int is_vmalloc_or_module_addr(const void *x); 1343 #else 1344 static inline bool is_vmalloc_addr(const void *x) 1345 { 1346 return false; 1347 } 1348 static inline int is_vmalloc_or_module_addr(const void *x) 1349 { 1350 return 0; 1351 } 1352 #endif 1353 1354 /* 1355 * How many times the entire folio is mapped as a single unit (eg by a 1356 * PMD or PUD entry). This is probably not what you want, except for 1357 * debugging purposes or implementation of other core folio_*() primitives. 1358 */ 1359 static inline int folio_entire_mapcount(const struct folio *folio) 1360 { 1361 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1362 if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1)) 1363 return 0; 1364 return atomic_read(&folio->_entire_mapcount) + 1; 1365 } 1366 1367 static inline int folio_large_mapcount(const struct folio *folio) 1368 { 1369 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); 1370 return atomic_read(&folio->_large_mapcount) + 1; 1371 } 1372 1373 /** 1374 * folio_mapcount() - Number of mappings of this folio. 1375 * @folio: The folio. 1376 * 1377 * The folio mapcount corresponds to the number of present user page table 1378 * entries that reference any part of a folio. Each such present user page 1379 * table entry must be paired with exactly on folio reference. 1380 * 1381 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts 1382 * exactly once. 1383 * 1384 * For hugetlb folios, each abstracted "hugetlb" user page table entry that 1385 * references the entire folio counts exactly once, even when such special 1386 * page table entries are comprised of multiple ordinary page table entries. 1387 * 1388 * Will report 0 for pages which cannot be mapped into userspace, such as 1389 * slab, page tables and similar. 1390 * 1391 * Return: The number of times this folio is mapped. 1392 */ 1393 static inline int folio_mapcount(const struct folio *folio) 1394 { 1395 int mapcount; 1396 1397 if (likely(!folio_test_large(folio))) { 1398 mapcount = atomic_read(&folio->_mapcount) + 1; 1399 if (page_mapcount_is_type(mapcount)) 1400 mapcount = 0; 1401 return mapcount; 1402 } 1403 return folio_large_mapcount(folio); 1404 } 1405 1406 /** 1407 * folio_mapped - Is this folio mapped into userspace? 1408 * @folio: The folio. 1409 * 1410 * Return: True if any page in this folio is referenced by user page tables. 1411 */ 1412 static inline bool folio_mapped(const struct folio *folio) 1413 { 1414 return folio_mapcount(folio) >= 1; 1415 } 1416 1417 /* 1418 * Return true if this page is mapped into pagetables. 1419 * For compound page it returns true if any sub-page of compound page is mapped, 1420 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1421 */ 1422 static inline bool page_mapped(const struct page *page) 1423 { 1424 return folio_mapped(page_folio(page)); 1425 } 1426 1427 static inline struct page *virt_to_head_page(const void *x) 1428 { 1429 struct page *page = virt_to_page(x); 1430 1431 return compound_head(page); 1432 } 1433 1434 static inline struct folio *virt_to_folio(const void *x) 1435 { 1436 struct page *page = virt_to_page(x); 1437 1438 return page_folio(page); 1439 } 1440 1441 void __folio_put(struct folio *folio); 1442 1443 void split_page(struct page *page, unsigned int order); 1444 void folio_copy(struct folio *dst, struct folio *src); 1445 int folio_mc_copy(struct folio *dst, struct folio *src); 1446 1447 unsigned long nr_free_buffer_pages(void); 1448 1449 /* Returns the number of bytes in this potentially compound page. */ 1450 static inline unsigned long page_size(const struct page *page) 1451 { 1452 return PAGE_SIZE << compound_order(page); 1453 } 1454 1455 /* Returns the number of bits needed for the number of bytes in a page */ 1456 static inline unsigned int page_shift(struct page *page) 1457 { 1458 return PAGE_SHIFT + compound_order(page); 1459 } 1460 1461 /** 1462 * thp_order - Order of a transparent huge page. 1463 * @page: Head page of a transparent huge page. 1464 */ 1465 static inline unsigned int thp_order(struct page *page) 1466 { 1467 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1468 return compound_order(page); 1469 } 1470 1471 /** 1472 * thp_size - Size of a transparent huge page. 1473 * @page: Head page of a transparent huge page. 1474 * 1475 * Return: Number of bytes in this page. 1476 */ 1477 static inline unsigned long thp_size(struct page *page) 1478 { 1479 return PAGE_SIZE << thp_order(page); 1480 } 1481 1482 #ifdef CONFIG_MMU 1483 /* 1484 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1485 * servicing faults for write access. In the normal case, do always want 1486 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1487 * that do not have writing enabled, when used by access_process_vm. 1488 */ 1489 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1490 { 1491 if (likely(vma->vm_flags & VM_WRITE)) 1492 pte = pte_mkwrite(pte, vma); 1493 return pte; 1494 } 1495 1496 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page); 1497 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1498 struct page *page, unsigned int nr, unsigned long addr); 1499 1500 vm_fault_t finish_fault(struct vm_fault *vmf); 1501 #endif 1502 1503 /* 1504 * Multiple processes may "see" the same page. E.g. for untouched 1505 * mappings of /dev/null, all processes see the same page full of 1506 * zeroes, and text pages of executables and shared libraries have 1507 * only one copy in memory, at most, normally. 1508 * 1509 * For the non-reserved pages, page_count(page) denotes a reference count. 1510 * page_count() == 0 means the page is free. page->lru is then used for 1511 * freelist management in the buddy allocator. 1512 * page_count() > 0 means the page has been allocated. 1513 * 1514 * Pages are allocated by the slab allocator in order to provide memory 1515 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1516 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1517 * unless a particular usage is carefully commented. (the responsibility of 1518 * freeing the kmalloc memory is the caller's, of course). 1519 * 1520 * A page may be used by anyone else who does a __get_free_page(). 1521 * In this case, page_count still tracks the references, and should only 1522 * be used through the normal accessor functions. The top bits of page->flags 1523 * and page->virtual store page management information, but all other fields 1524 * are unused and could be used privately, carefully. The management of this 1525 * page is the responsibility of the one who allocated it, and those who have 1526 * subsequently been given references to it. 1527 * 1528 * The other pages (we may call them "pagecache pages") are completely 1529 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1530 * The following discussion applies only to them. 1531 * 1532 * A pagecache page contains an opaque `private' member, which belongs to the 1533 * page's address_space. Usually, this is the address of a circular list of 1534 * the page's disk buffers. PG_private must be set to tell the VM to call 1535 * into the filesystem to release these pages. 1536 * 1537 * A folio may belong to an inode's memory mapping. In this case, 1538 * folio->mapping points to the inode, and folio->index is the file 1539 * offset of the folio, in units of PAGE_SIZE. 1540 * 1541 * If pagecache pages are not associated with an inode, they are said to be 1542 * anonymous pages. These may become associated with the swapcache, and in that 1543 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1544 * 1545 * In either case (swapcache or inode backed), the pagecache itself holds one 1546 * reference to the page. Setting PG_private should also increment the 1547 * refcount. The each user mapping also has a reference to the page. 1548 * 1549 * The pagecache pages are stored in a per-mapping radix tree, which is 1550 * rooted at mapping->i_pages, and indexed by offset. 1551 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1552 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1553 * 1554 * All pagecache pages may be subject to I/O: 1555 * - inode pages may need to be read from disk, 1556 * - inode pages which have been modified and are MAP_SHARED may need 1557 * to be written back to the inode on disk, 1558 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1559 * modified may need to be swapped out to swap space and (later) to be read 1560 * back into memory. 1561 */ 1562 1563 /* 127: arbitrary random number, small enough to assemble well */ 1564 #define folio_ref_zero_or_close_to_overflow(folio) \ 1565 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1566 1567 /** 1568 * folio_get - Increment the reference count on a folio. 1569 * @folio: The folio. 1570 * 1571 * Context: May be called in any context, as long as you know that 1572 * you have a refcount on the folio. If you do not already have one, 1573 * folio_try_get() may be the right interface for you to use. 1574 */ 1575 static inline void folio_get(struct folio *folio) 1576 { 1577 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1578 folio_ref_inc(folio); 1579 } 1580 1581 static inline void get_page(struct page *page) 1582 { 1583 struct folio *folio = page_folio(page); 1584 if (WARN_ON_ONCE(folio_test_slab(folio))) 1585 return; 1586 if (WARN_ON_ONCE(folio_test_large_kmalloc(folio))) 1587 return; 1588 folio_get(folio); 1589 } 1590 1591 static inline __must_check bool try_get_page(struct page *page) 1592 { 1593 page = compound_head(page); 1594 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1595 return false; 1596 page_ref_inc(page); 1597 return true; 1598 } 1599 1600 /** 1601 * folio_put - Decrement the reference count on a folio. 1602 * @folio: The folio. 1603 * 1604 * If the folio's reference count reaches zero, the memory will be 1605 * released back to the page allocator and may be used by another 1606 * allocation immediately. Do not access the memory or the struct folio 1607 * after calling folio_put() unless you can be sure that it wasn't the 1608 * last reference. 1609 * 1610 * Context: May be called in process or interrupt context, but not in NMI 1611 * context. May be called while holding a spinlock. 1612 */ 1613 static inline void folio_put(struct folio *folio) 1614 { 1615 if (folio_put_testzero(folio)) 1616 __folio_put(folio); 1617 } 1618 1619 /** 1620 * folio_put_refs - Reduce the reference count on a folio. 1621 * @folio: The folio. 1622 * @refs: The amount to subtract from the folio's reference count. 1623 * 1624 * If the folio's reference count reaches zero, the memory will be 1625 * released back to the page allocator and may be used by another 1626 * allocation immediately. Do not access the memory or the struct folio 1627 * after calling folio_put_refs() unless you can be sure that these weren't 1628 * the last references. 1629 * 1630 * Context: May be called in process or interrupt context, but not in NMI 1631 * context. May be called while holding a spinlock. 1632 */ 1633 static inline void folio_put_refs(struct folio *folio, int refs) 1634 { 1635 if (folio_ref_sub_and_test(folio, refs)) 1636 __folio_put(folio); 1637 } 1638 1639 void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1640 1641 /* 1642 * union release_pages_arg - an array of pages or folios 1643 * 1644 * release_pages() releases a simple array of multiple pages, and 1645 * accepts various different forms of said page array: either 1646 * a regular old boring array of pages, an array of folios, or 1647 * an array of encoded page pointers. 1648 * 1649 * The transparent union syntax for this kind of "any of these 1650 * argument types" is all kinds of ugly, so look away. 1651 */ 1652 typedef union { 1653 struct page **pages; 1654 struct folio **folios; 1655 struct encoded_page **encoded_pages; 1656 } release_pages_arg __attribute__ ((__transparent_union__)); 1657 1658 void release_pages(release_pages_arg, int nr); 1659 1660 /** 1661 * folios_put - Decrement the reference count on an array of folios. 1662 * @folios: The folios. 1663 * 1664 * Like folio_put(), but for a batch of folios. This is more efficient 1665 * than writing the loop yourself as it will optimise the locks which need 1666 * to be taken if the folios are freed. The folios batch is returned 1667 * empty and ready to be reused for another batch; there is no need to 1668 * reinitialise it. 1669 * 1670 * Context: May be called in process or interrupt context, but not in NMI 1671 * context. May be called while holding a spinlock. 1672 */ 1673 static inline void folios_put(struct folio_batch *folios) 1674 { 1675 folios_put_refs(folios, NULL); 1676 } 1677 1678 static inline void put_page(struct page *page) 1679 { 1680 struct folio *folio = page_folio(page); 1681 1682 if (folio_test_slab(folio) || folio_test_large_kmalloc(folio)) 1683 return; 1684 1685 folio_put(folio); 1686 } 1687 1688 /* 1689 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1690 * the page's refcount so that two separate items are tracked: the original page 1691 * reference count, and also a new count of how many pin_user_pages() calls were 1692 * made against the page. ("gup-pinned" is another term for the latter). 1693 * 1694 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1695 * distinct from normal pages. As such, the unpin_user_page() call (and its 1696 * variants) must be used in order to release gup-pinned pages. 1697 * 1698 * Choice of value: 1699 * 1700 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1701 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1702 * simpler, due to the fact that adding an even power of two to the page 1703 * refcount has the effect of using only the upper N bits, for the code that 1704 * counts up using the bias value. This means that the lower bits are left for 1705 * the exclusive use of the original code that increments and decrements by one 1706 * (or at least, by much smaller values than the bias value). 1707 * 1708 * Of course, once the lower bits overflow into the upper bits (and this is 1709 * OK, because subtraction recovers the original values), then visual inspection 1710 * no longer suffices to directly view the separate counts. However, for normal 1711 * applications that don't have huge page reference counts, this won't be an 1712 * issue. 1713 * 1714 * Locking: the lockless algorithm described in folio_try_get_rcu() 1715 * provides safe operation for get_user_pages(), folio_mkclean() and 1716 * other calls that race to set up page table entries. 1717 */ 1718 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1719 1720 void unpin_user_page(struct page *page); 1721 void unpin_folio(struct folio *folio); 1722 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1723 bool make_dirty); 1724 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1725 bool make_dirty); 1726 void unpin_user_pages(struct page **pages, unsigned long npages); 1727 void unpin_user_folio(struct folio *folio, unsigned long npages); 1728 void unpin_folios(struct folio **folios, unsigned long nfolios); 1729 1730 static inline bool is_cow_mapping(vm_flags_t flags) 1731 { 1732 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1733 } 1734 1735 #ifndef CONFIG_MMU 1736 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1737 { 1738 /* 1739 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1740 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1741 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1742 * underlying memory if ptrace is active, so this is only possible if 1743 * ptrace does not apply. Note that there is no mprotect() to upgrade 1744 * write permissions later. 1745 */ 1746 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1747 } 1748 #endif 1749 1750 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1751 #define SECTION_IN_PAGE_FLAGS 1752 #endif 1753 1754 /* 1755 * The identification function is mainly used by the buddy allocator for 1756 * determining if two pages could be buddies. We are not really identifying 1757 * the zone since we could be using the section number id if we do not have 1758 * node id available in page flags. 1759 * We only guarantee that it will return the same value for two combinable 1760 * pages in a zone. 1761 */ 1762 static inline int page_zone_id(struct page *page) 1763 { 1764 return (page->flags.f >> ZONEID_PGSHIFT) & ZONEID_MASK; 1765 } 1766 1767 #ifdef NODE_NOT_IN_PAGE_FLAGS 1768 int memdesc_nid(memdesc_flags_t mdf); 1769 #else 1770 static inline int memdesc_nid(memdesc_flags_t mdf) 1771 { 1772 return (mdf.f >> NODES_PGSHIFT) & NODES_MASK; 1773 } 1774 #endif 1775 1776 static inline int page_to_nid(const struct page *page) 1777 { 1778 return memdesc_nid(PF_POISONED_CHECK(page)->flags); 1779 } 1780 1781 static inline int folio_nid(const struct folio *folio) 1782 { 1783 return memdesc_nid(folio->flags); 1784 } 1785 1786 #ifdef CONFIG_NUMA_BALANCING 1787 /* page access time bits needs to hold at least 4 seconds */ 1788 #define PAGE_ACCESS_TIME_MIN_BITS 12 1789 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1790 #define PAGE_ACCESS_TIME_BUCKETS \ 1791 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1792 #else 1793 #define PAGE_ACCESS_TIME_BUCKETS 0 1794 #endif 1795 1796 #define PAGE_ACCESS_TIME_MASK \ 1797 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1798 1799 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1800 { 1801 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1802 } 1803 1804 static inline int cpupid_to_pid(int cpupid) 1805 { 1806 return cpupid & LAST__PID_MASK; 1807 } 1808 1809 static inline int cpupid_to_cpu(int cpupid) 1810 { 1811 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1812 } 1813 1814 static inline int cpupid_to_nid(int cpupid) 1815 { 1816 return cpu_to_node(cpupid_to_cpu(cpupid)); 1817 } 1818 1819 static inline bool cpupid_pid_unset(int cpupid) 1820 { 1821 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1822 } 1823 1824 static inline bool cpupid_cpu_unset(int cpupid) 1825 { 1826 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1827 } 1828 1829 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1830 { 1831 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1832 } 1833 1834 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1835 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1836 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1837 { 1838 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1839 } 1840 1841 static inline int folio_last_cpupid(struct folio *folio) 1842 { 1843 return folio->_last_cpupid; 1844 } 1845 static inline void page_cpupid_reset_last(struct page *page) 1846 { 1847 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1848 } 1849 #else 1850 static inline int folio_last_cpupid(struct folio *folio) 1851 { 1852 return (folio->flags.f >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1853 } 1854 1855 int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1856 1857 static inline void page_cpupid_reset_last(struct page *page) 1858 { 1859 page->flags.f |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1860 } 1861 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1862 1863 static inline int folio_xchg_access_time(struct folio *folio, int time) 1864 { 1865 int last_time; 1866 1867 last_time = folio_xchg_last_cpupid(folio, 1868 time >> PAGE_ACCESS_TIME_BUCKETS); 1869 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1870 } 1871 1872 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1873 { 1874 unsigned int pid_bit; 1875 1876 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1877 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1878 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1879 } 1880 } 1881 1882 bool folio_use_access_time(struct folio *folio); 1883 #else /* !CONFIG_NUMA_BALANCING */ 1884 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1885 { 1886 return folio_nid(folio); /* XXX */ 1887 } 1888 1889 static inline int folio_xchg_access_time(struct folio *folio, int time) 1890 { 1891 return 0; 1892 } 1893 1894 static inline int folio_last_cpupid(struct folio *folio) 1895 { 1896 return folio_nid(folio); /* XXX */ 1897 } 1898 1899 static inline int cpupid_to_nid(int cpupid) 1900 { 1901 return -1; 1902 } 1903 1904 static inline int cpupid_to_pid(int cpupid) 1905 { 1906 return -1; 1907 } 1908 1909 static inline int cpupid_to_cpu(int cpupid) 1910 { 1911 return -1; 1912 } 1913 1914 static inline int cpu_pid_to_cpupid(int nid, int pid) 1915 { 1916 return -1; 1917 } 1918 1919 static inline bool cpupid_pid_unset(int cpupid) 1920 { 1921 return true; 1922 } 1923 1924 static inline void page_cpupid_reset_last(struct page *page) 1925 { 1926 } 1927 1928 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1929 { 1930 return false; 1931 } 1932 1933 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1934 { 1935 } 1936 static inline bool folio_use_access_time(struct folio *folio) 1937 { 1938 return false; 1939 } 1940 #endif /* CONFIG_NUMA_BALANCING */ 1941 1942 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1943 1944 /* 1945 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1946 * setting tags for all pages to native kernel tag value 0xff, as the default 1947 * value 0x00 maps to 0xff. 1948 */ 1949 1950 static inline u8 page_kasan_tag(const struct page *page) 1951 { 1952 u8 tag = KASAN_TAG_KERNEL; 1953 1954 if (kasan_enabled()) { 1955 tag = (page->flags.f >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1956 tag ^= 0xff; 1957 } 1958 1959 return tag; 1960 } 1961 1962 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1963 { 1964 unsigned long old_flags, flags; 1965 1966 if (!kasan_enabled()) 1967 return; 1968 1969 tag ^= 0xff; 1970 old_flags = READ_ONCE(page->flags.f); 1971 do { 1972 flags = old_flags; 1973 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1974 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1975 } while (unlikely(!try_cmpxchg(&page->flags.f, &old_flags, flags))); 1976 } 1977 1978 static inline void page_kasan_tag_reset(struct page *page) 1979 { 1980 if (kasan_enabled()) 1981 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1982 } 1983 1984 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1985 1986 static inline u8 page_kasan_tag(const struct page *page) 1987 { 1988 return 0xff; 1989 } 1990 1991 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1992 static inline void page_kasan_tag_reset(struct page *page) { } 1993 1994 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1995 1996 static inline struct zone *page_zone(const struct page *page) 1997 { 1998 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1999 } 2000 2001 static inline pg_data_t *page_pgdat(const struct page *page) 2002 { 2003 return NODE_DATA(page_to_nid(page)); 2004 } 2005 2006 static inline pg_data_t *folio_pgdat(const struct folio *folio) 2007 { 2008 return NODE_DATA(folio_nid(folio)); 2009 } 2010 2011 static inline struct zone *folio_zone(const struct folio *folio) 2012 { 2013 return &folio_pgdat(folio)->node_zones[folio_zonenum(folio)]; 2014 } 2015 2016 #ifdef SECTION_IN_PAGE_FLAGS 2017 static inline void set_page_section(struct page *page, unsigned long section) 2018 { 2019 page->flags.f &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 2020 page->flags.f |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 2021 } 2022 2023 static inline unsigned long memdesc_section(memdesc_flags_t mdf) 2024 { 2025 return (mdf.f >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 2026 } 2027 #else /* !SECTION_IN_PAGE_FLAGS */ 2028 static inline unsigned long memdesc_section(memdesc_flags_t mdf) 2029 { 2030 return 0; 2031 } 2032 #endif /* SECTION_IN_PAGE_FLAGS */ 2033 2034 /** 2035 * folio_pfn - Return the Page Frame Number of a folio. 2036 * @folio: The folio. 2037 * 2038 * A folio may contain multiple pages. The pages have consecutive 2039 * Page Frame Numbers. 2040 * 2041 * Return: The Page Frame Number of the first page in the folio. 2042 */ 2043 static inline unsigned long folio_pfn(const struct folio *folio) 2044 { 2045 return page_to_pfn(&folio->page); 2046 } 2047 2048 static inline struct folio *pfn_folio(unsigned long pfn) 2049 { 2050 return page_folio(pfn_to_page(pfn)); 2051 } 2052 2053 #ifdef CONFIG_MMU 2054 static inline pte_t mk_pte(const struct page *page, pgprot_t pgprot) 2055 { 2056 return pfn_pte(page_to_pfn(page), pgprot); 2057 } 2058 2059 /** 2060 * folio_mk_pte - Create a PTE for this folio 2061 * @folio: The folio to create a PTE for 2062 * @pgprot: The page protection bits to use 2063 * 2064 * Create a page table entry for the first page of this folio. 2065 * This is suitable for passing to set_ptes(). 2066 * 2067 * Return: A page table entry suitable for mapping this folio. 2068 */ 2069 static inline pte_t folio_mk_pte(const struct folio *folio, pgprot_t pgprot) 2070 { 2071 return pfn_pte(folio_pfn(folio), pgprot); 2072 } 2073 2074 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2075 /** 2076 * folio_mk_pmd - Create a PMD for this folio 2077 * @folio: The folio to create a PMD for 2078 * @pgprot: The page protection bits to use 2079 * 2080 * Create a page table entry for the first page of this folio. 2081 * This is suitable for passing to set_pmd_at(). 2082 * 2083 * Return: A page table entry suitable for mapping this folio. 2084 */ 2085 static inline pmd_t folio_mk_pmd(const struct folio *folio, pgprot_t pgprot) 2086 { 2087 return pmd_mkhuge(pfn_pmd(folio_pfn(folio), pgprot)); 2088 } 2089 2090 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 2091 /** 2092 * folio_mk_pud - Create a PUD for this folio 2093 * @folio: The folio to create a PUD for 2094 * @pgprot: The page protection bits to use 2095 * 2096 * Create a page table entry for the first page of this folio. 2097 * This is suitable for passing to set_pud_at(). 2098 * 2099 * Return: A page table entry suitable for mapping this folio. 2100 */ 2101 static inline pud_t folio_mk_pud(const struct folio *folio, pgprot_t pgprot) 2102 { 2103 return pud_mkhuge(pfn_pud(folio_pfn(folio), pgprot)); 2104 } 2105 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 2106 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2107 #endif /* CONFIG_MMU */ 2108 2109 static inline bool folio_has_pincount(const struct folio *folio) 2110 { 2111 if (IS_ENABLED(CONFIG_64BIT)) 2112 return folio_test_large(folio); 2113 return folio_order(folio) > 1; 2114 } 2115 2116 /** 2117 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 2118 * @folio: The folio. 2119 * 2120 * This function checks if a folio has been pinned via a call to 2121 * a function in the pin_user_pages() family. 2122 * 2123 * For small folios, the return value is partially fuzzy: false is not fuzzy, 2124 * because it means "definitely not pinned for DMA", but true means "probably 2125 * pinned for DMA, but possibly a false positive due to having at least 2126 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 2127 * 2128 * False positives are OK, because: a) it's unlikely for a folio to 2129 * get that many refcounts, and b) all the callers of this routine are 2130 * expected to be able to deal gracefully with a false positive. 2131 * 2132 * For most large folios, the result will be exactly correct. That's because 2133 * we have more tracking data available: the _pincount field is used 2134 * instead of the GUP_PIN_COUNTING_BIAS scheme. 2135 * 2136 * For more information, please see Documentation/core-api/pin_user_pages.rst. 2137 * 2138 * Return: True, if it is likely that the folio has been "dma-pinned". 2139 * False, if the folio is definitely not dma-pinned. 2140 */ 2141 static inline bool folio_maybe_dma_pinned(struct folio *folio) 2142 { 2143 if (folio_has_pincount(folio)) 2144 return atomic_read(&folio->_pincount) > 0; 2145 2146 /* 2147 * folio_ref_count() is signed. If that refcount overflows, then 2148 * folio_ref_count() returns a negative value, and callers will avoid 2149 * further incrementing the refcount. 2150 * 2151 * Here, for that overflow case, use the sign bit to count a little 2152 * bit higher via unsigned math, and thus still get an accurate result. 2153 */ 2154 return ((unsigned int)folio_ref_count(folio)) >= 2155 GUP_PIN_COUNTING_BIAS; 2156 } 2157 2158 /* 2159 * This should most likely only be called during fork() to see whether we 2160 * should break the cow immediately for an anon page on the src mm. 2161 * 2162 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 2163 */ 2164 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 2165 struct folio *folio) 2166 { 2167 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 2168 2169 if (!mm_flags_test(MMF_HAS_PINNED, vma->vm_mm)) 2170 return false; 2171 2172 return folio_maybe_dma_pinned(folio); 2173 } 2174 2175 /** 2176 * is_zero_page - Query if a page is a zero page 2177 * @page: The page to query 2178 * 2179 * This returns true if @page is one of the permanent zero pages. 2180 */ 2181 static inline bool is_zero_page(const struct page *page) 2182 { 2183 return is_zero_pfn(page_to_pfn(page)); 2184 } 2185 2186 /** 2187 * is_zero_folio - Query if a folio is a zero page 2188 * @folio: The folio to query 2189 * 2190 * This returns true if @folio is one of the permanent zero pages. 2191 */ 2192 static inline bool is_zero_folio(const struct folio *folio) 2193 { 2194 return is_zero_page(&folio->page); 2195 } 2196 2197 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 2198 #ifdef CONFIG_MIGRATION 2199 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2200 { 2201 #ifdef CONFIG_CMA 2202 int mt = folio_migratetype(folio); 2203 2204 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 2205 return false; 2206 #endif 2207 /* The zero page can be "pinned" but gets special handling. */ 2208 if (is_zero_folio(folio)) 2209 return true; 2210 2211 /* Coherent device memory must always allow eviction. */ 2212 if (folio_is_device_coherent(folio)) 2213 return false; 2214 2215 /* 2216 * Filesystems can only tolerate transient delays to truncate and 2217 * hole-punch operations 2218 */ 2219 if (folio_is_fsdax(folio)) 2220 return false; 2221 2222 /* Otherwise, non-movable zone folios can be pinned. */ 2223 return !folio_is_zone_movable(folio); 2224 2225 } 2226 #else 2227 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2228 { 2229 return true; 2230 } 2231 #endif 2232 2233 static inline void set_page_zone(struct page *page, enum zone_type zone) 2234 { 2235 page->flags.f &= ~(ZONES_MASK << ZONES_PGSHIFT); 2236 page->flags.f |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2237 } 2238 2239 static inline void set_page_node(struct page *page, unsigned long node) 2240 { 2241 page->flags.f &= ~(NODES_MASK << NODES_PGSHIFT); 2242 page->flags.f |= (node & NODES_MASK) << NODES_PGSHIFT; 2243 } 2244 2245 static inline void set_page_links(struct page *page, enum zone_type zone, 2246 unsigned long node, unsigned long pfn) 2247 { 2248 set_page_zone(page, zone); 2249 set_page_node(page, node); 2250 #ifdef SECTION_IN_PAGE_FLAGS 2251 set_page_section(page, pfn_to_section_nr(pfn)); 2252 #endif 2253 } 2254 2255 /** 2256 * folio_nr_pages - The number of pages in the folio. 2257 * @folio: The folio. 2258 * 2259 * Return: A positive power of two. 2260 */ 2261 static inline unsigned long folio_nr_pages(const struct folio *folio) 2262 { 2263 if (!folio_test_large(folio)) 2264 return 1; 2265 return folio_large_nr_pages(folio); 2266 } 2267 2268 #if !defined(CONFIG_HAVE_GIGANTIC_FOLIOS) 2269 /* 2270 * We don't expect any folios that exceed buddy sizes (and consequently 2271 * memory sections). 2272 */ 2273 #define MAX_FOLIO_ORDER MAX_PAGE_ORDER 2274 #elif defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 2275 /* 2276 * Only pages within a single memory section are guaranteed to be 2277 * contiguous. By limiting folios to a single memory section, all folio 2278 * pages are guaranteed to be contiguous. 2279 */ 2280 #define MAX_FOLIO_ORDER PFN_SECTION_SHIFT 2281 #elif defined(CONFIG_HUGETLB_PAGE) 2282 /* 2283 * There is no real limit on the folio size. We limit them to the maximum we 2284 * currently expect (see CONFIG_HAVE_GIGANTIC_FOLIOS): with hugetlb, we expect 2285 * no folios larger than 16 GiB on 64bit and 1 GiB on 32bit. 2286 */ 2287 #define MAX_FOLIO_ORDER get_order(IS_ENABLED(CONFIG_64BIT) ? SZ_16G : SZ_1G) 2288 #else 2289 /* 2290 * Without hugetlb, gigantic folios that are bigger than a single PUD are 2291 * currently impossible. 2292 */ 2293 #define MAX_FOLIO_ORDER PUD_ORDER 2294 #endif 2295 2296 #define MAX_FOLIO_NR_PAGES (1UL << MAX_FOLIO_ORDER) 2297 2298 /* 2299 * compound_nr() returns the number of pages in this potentially compound 2300 * page. compound_nr() can be called on a tail page, and is defined to 2301 * return 1 in that case. 2302 */ 2303 static inline unsigned long compound_nr(const struct page *page) 2304 { 2305 const struct folio *folio = (struct folio *)page; 2306 2307 if (!test_bit(PG_head, &folio->flags.f)) 2308 return 1; 2309 return folio_large_nr_pages(folio); 2310 } 2311 2312 /** 2313 * folio_next - Move to the next physical folio. 2314 * @folio: The folio we're currently operating on. 2315 * 2316 * If you have physically contiguous memory which may span more than 2317 * one folio (eg a &struct bio_vec), use this function to move from one 2318 * folio to the next. Do not use it if the memory is only virtually 2319 * contiguous as the folios are almost certainly not adjacent to each 2320 * other. This is the folio equivalent to writing ``page++``. 2321 * 2322 * Context: We assume that the folios are refcounted and/or locked at a 2323 * higher level and do not adjust the reference counts. 2324 * Return: The next struct folio. 2325 */ 2326 static inline struct folio *folio_next(struct folio *folio) 2327 { 2328 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2329 } 2330 2331 /** 2332 * folio_shift - The size of the memory described by this folio. 2333 * @folio: The folio. 2334 * 2335 * A folio represents a number of bytes which is a power-of-two in size. 2336 * This function tells you which power-of-two the folio is. See also 2337 * folio_size() and folio_order(). 2338 * 2339 * Context: The caller should have a reference on the folio to prevent 2340 * it from being split. It is not necessary for the folio to be locked. 2341 * Return: The base-2 logarithm of the size of this folio. 2342 */ 2343 static inline unsigned int folio_shift(const struct folio *folio) 2344 { 2345 return PAGE_SHIFT + folio_order(folio); 2346 } 2347 2348 /** 2349 * folio_size - The number of bytes in a folio. 2350 * @folio: The folio. 2351 * 2352 * Context: The caller should have a reference on the folio to prevent 2353 * it from being split. It is not necessary for the folio to be locked. 2354 * Return: The number of bytes in this folio. 2355 */ 2356 static inline size_t folio_size(const struct folio *folio) 2357 { 2358 return PAGE_SIZE << folio_order(folio); 2359 } 2360 2361 /** 2362 * folio_maybe_mapped_shared - Whether the folio is mapped into the page 2363 * tables of more than one MM 2364 * @folio: The folio. 2365 * 2366 * This function checks if the folio maybe currently mapped into more than one 2367 * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single 2368 * MM ("mapped exclusively"). 2369 * 2370 * For KSM folios, this function also returns "mapped shared" when a folio is 2371 * mapped multiple times into the same MM, because the individual page mappings 2372 * are independent. 2373 * 2374 * For small anonymous folios and anonymous hugetlb folios, the return 2375 * value will be exactly correct: non-KSM folios can only be mapped at most once 2376 * into an MM, and they cannot be partially mapped. KSM folios are 2377 * considered shared even if mapped multiple times into the same MM. 2378 * 2379 * For other folios, the result can be fuzzy: 2380 * #. For partially-mappable large folios (THP), the return value can wrongly 2381 * indicate "mapped shared" (false positive) if a folio was mapped by 2382 * more than two MMs at one point in time. 2383 * #. For pagecache folios (including hugetlb), the return value can wrongly 2384 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2385 * cover the same file range. 2386 * 2387 * Further, this function only considers current page table mappings that 2388 * are tracked using the folio mapcount(s). 2389 * 2390 * This function does not consider: 2391 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2392 * pagecache, temporary unmapping for migration). 2393 * #. If the folio is mapped differently (VM_PFNMAP). 2394 * #. If hugetlb page table sharing applies. Callers might want to check 2395 * hugetlb_pmd_shared(). 2396 * 2397 * Return: Whether the folio is estimated to be mapped into more than one MM. 2398 */ 2399 static inline bool folio_maybe_mapped_shared(struct folio *folio) 2400 { 2401 int mapcount = folio_mapcount(folio); 2402 2403 /* Only partially-mappable folios require more care. */ 2404 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) 2405 return mapcount > 1; 2406 2407 /* 2408 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ... 2409 * simply assume "mapped shared", nobody should really care 2410 * about this for arbitrary kernel allocations. 2411 */ 2412 if (!IS_ENABLED(CONFIG_MM_ID)) 2413 return true; 2414 2415 /* 2416 * A single mapping implies "mapped exclusively", even if the 2417 * folio flag says something different: it's easier to handle this 2418 * case here instead of on the RMAP hot path. 2419 */ 2420 if (mapcount <= 1) 2421 return false; 2422 return test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids); 2423 } 2424 2425 /** 2426 * folio_expected_ref_count - calculate the expected folio refcount 2427 * @folio: the folio 2428 * 2429 * Calculate the expected folio refcount, taking references from the pagecache, 2430 * swapcache, PG_private and page table mappings into account. Useful in 2431 * combination with folio_ref_count() to detect unexpected references (e.g., 2432 * GUP or other temporary references). 2433 * 2434 * Does currently not consider references from the LRU cache. If the folio 2435 * was isolated from the LRU (which is the case during migration or split), 2436 * the LRU cache does not apply. 2437 * 2438 * Calling this function on an unmapped folio -- !folio_mapped() -- that is 2439 * locked will return a stable result. 2440 * 2441 * Calling this function on a mapped folio will not result in a stable result, 2442 * because nothing stops additional page table mappings from coming (e.g., 2443 * fork()) or going (e.g., munmap()). 2444 * 2445 * Calling this function without the folio lock will also not result in a 2446 * stable result: for example, the folio might get dropped from the swapcache 2447 * concurrently. 2448 * 2449 * However, even when called without the folio lock or on a mapped folio, 2450 * this function can be used to detect unexpected references early (for example, 2451 * if it makes sense to even lock the folio and unmap it). 2452 * 2453 * The caller must add any reference (e.g., from folio_try_get()) it might be 2454 * holding itself to the result. 2455 * 2456 * Returns the expected folio refcount. 2457 */ 2458 static inline int folio_expected_ref_count(const struct folio *folio) 2459 { 2460 const int order = folio_order(folio); 2461 int ref_count = 0; 2462 2463 if (WARN_ON_ONCE(page_has_type(&folio->page) && !folio_test_hugetlb(folio))) 2464 return 0; 2465 2466 /* One reference per page from the swapcache. */ 2467 ref_count += folio_test_swapcache(folio) << order; 2468 2469 if (!folio_test_anon(folio)) { 2470 /* One reference per page from the pagecache. */ 2471 ref_count += !!folio->mapping << order; 2472 /* One reference from PG_private. */ 2473 ref_count += folio_test_private(folio); 2474 } 2475 2476 /* One reference per page table mapping. */ 2477 return ref_count + folio_mapcount(folio); 2478 } 2479 2480 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2481 static inline int arch_make_folio_accessible(struct folio *folio) 2482 { 2483 return 0; 2484 } 2485 #endif 2486 2487 /* 2488 * Some inline functions in vmstat.h depend on page_zone() 2489 */ 2490 #include <linux/vmstat.h> 2491 2492 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2493 #define HASHED_PAGE_VIRTUAL 2494 #endif 2495 2496 #if defined(WANT_PAGE_VIRTUAL) 2497 static inline void *page_address(const struct page *page) 2498 { 2499 return page->virtual; 2500 } 2501 static inline void set_page_address(struct page *page, void *address) 2502 { 2503 page->virtual = address; 2504 } 2505 #define page_address_init() do { } while(0) 2506 #endif 2507 2508 #if defined(HASHED_PAGE_VIRTUAL) 2509 void *page_address(const struct page *page); 2510 void set_page_address(struct page *page, void *virtual); 2511 void page_address_init(void); 2512 #endif 2513 2514 static __always_inline void *lowmem_page_address(const struct page *page) 2515 { 2516 return page_to_virt(page); 2517 } 2518 2519 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2520 #define page_address(page) lowmem_page_address(page) 2521 #define set_page_address(page, address) do { } while(0) 2522 #define page_address_init() do { } while(0) 2523 #endif 2524 2525 static inline void *folio_address(const struct folio *folio) 2526 { 2527 return page_address(&folio->page); 2528 } 2529 2530 /* 2531 * Return true only if the page has been allocated with 2532 * ALLOC_NO_WATERMARKS and the low watermark was not 2533 * met implying that the system is under some pressure. 2534 */ 2535 static inline bool page_is_pfmemalloc(const struct page *page) 2536 { 2537 /* 2538 * lru.next has bit 1 set if the page is allocated from the 2539 * pfmemalloc reserves. Callers may simply overwrite it if 2540 * they do not need to preserve that information. 2541 */ 2542 return (uintptr_t)page->lru.next & BIT(1); 2543 } 2544 2545 /* 2546 * Return true only if the folio has been allocated with 2547 * ALLOC_NO_WATERMARKS and the low watermark was not 2548 * met implying that the system is under some pressure. 2549 */ 2550 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2551 { 2552 /* 2553 * lru.next has bit 1 set if the page is allocated from the 2554 * pfmemalloc reserves. Callers may simply overwrite it if 2555 * they do not need to preserve that information. 2556 */ 2557 return (uintptr_t)folio->lru.next & BIT(1); 2558 } 2559 2560 /* 2561 * Only to be called by the page allocator on a freshly allocated 2562 * page. 2563 */ 2564 static inline void set_page_pfmemalloc(struct page *page) 2565 { 2566 page->lru.next = (void *)BIT(1); 2567 } 2568 2569 static inline void clear_page_pfmemalloc(struct page *page) 2570 { 2571 page->lru.next = NULL; 2572 } 2573 2574 /* 2575 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2576 */ 2577 extern void pagefault_out_of_memory(void); 2578 2579 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2580 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2581 2582 /* 2583 * Parameter block passed down to zap_pte_range in exceptional cases. 2584 */ 2585 struct zap_details { 2586 struct folio *single_folio; /* Locked folio to be unmapped */ 2587 bool even_cows; /* Zap COWed private pages too? */ 2588 bool reclaim_pt; /* Need reclaim page tables? */ 2589 zap_flags_t zap_flags; /* Extra flags for zapping */ 2590 }; 2591 2592 /* 2593 * Whether to drop the pte markers, for example, the uffd-wp information for 2594 * file-backed memory. This should only be specified when we will completely 2595 * drop the page in the mm, either by truncation or unmapping of the vma. By 2596 * default, the flag is not set. 2597 */ 2598 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2599 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2600 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2601 2602 #ifdef CONFIG_MMU 2603 extern bool can_do_mlock(void); 2604 #else 2605 static inline bool can_do_mlock(void) { return false; } 2606 #endif 2607 extern int user_shm_lock(size_t, struct ucounts *); 2608 extern void user_shm_unlock(size_t, struct ucounts *); 2609 2610 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2611 pte_t pte); 2612 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2613 pte_t pte); 2614 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2615 unsigned long addr, pmd_t pmd); 2616 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2617 pmd_t pmd); 2618 struct page *vm_normal_page_pud(struct vm_area_struct *vma, unsigned long addr, 2619 pud_t pud); 2620 2621 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2622 unsigned long size); 2623 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2624 unsigned long size, struct zap_details *details); 2625 static inline void zap_vma_pages(struct vm_area_struct *vma) 2626 { 2627 zap_page_range_single(vma, vma->vm_start, 2628 vma->vm_end - vma->vm_start, NULL); 2629 } 2630 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2631 struct vm_area_struct *start_vma, unsigned long start, 2632 unsigned long end, unsigned long tree_end); 2633 2634 struct mmu_notifier_range; 2635 2636 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2637 unsigned long end, unsigned long floor, unsigned long ceiling); 2638 int 2639 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2640 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2641 void *buf, int len, int write); 2642 2643 struct follow_pfnmap_args { 2644 /** 2645 * Inputs: 2646 * @vma: Pointer to @vm_area_struct struct 2647 * @address: the virtual address to walk 2648 */ 2649 struct vm_area_struct *vma; 2650 unsigned long address; 2651 /** 2652 * Internals: 2653 * 2654 * The caller shouldn't touch any of these. 2655 */ 2656 spinlock_t *lock; 2657 pte_t *ptep; 2658 /** 2659 * Outputs: 2660 * 2661 * @pfn: the PFN of the address 2662 * @addr_mask: address mask covering pfn 2663 * @pgprot: the pgprot_t of the mapping 2664 * @writable: whether the mapping is writable 2665 * @special: whether the mapping is a special mapping (real PFN maps) 2666 */ 2667 unsigned long pfn; 2668 unsigned long addr_mask; 2669 pgprot_t pgprot; 2670 bool writable; 2671 bool special; 2672 }; 2673 int follow_pfnmap_start(struct follow_pfnmap_args *args); 2674 void follow_pfnmap_end(struct follow_pfnmap_args *args); 2675 2676 extern void truncate_pagecache(struct inode *inode, loff_t new); 2677 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2678 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2679 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2680 int generic_error_remove_folio(struct address_space *mapping, 2681 struct folio *folio); 2682 2683 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2684 unsigned long address, struct pt_regs *regs); 2685 2686 #ifdef CONFIG_MMU 2687 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2688 unsigned long address, unsigned int flags, 2689 struct pt_regs *regs); 2690 extern int fixup_user_fault(struct mm_struct *mm, 2691 unsigned long address, unsigned int fault_flags, 2692 bool *unlocked); 2693 void unmap_mapping_pages(struct address_space *mapping, 2694 pgoff_t start, pgoff_t nr, bool even_cows); 2695 void unmap_mapping_range(struct address_space *mapping, 2696 loff_t const holebegin, loff_t const holelen, int even_cows); 2697 #else 2698 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2699 unsigned long address, unsigned int flags, 2700 struct pt_regs *regs) 2701 { 2702 /* should never happen if there's no MMU */ 2703 BUG(); 2704 return VM_FAULT_SIGBUS; 2705 } 2706 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2707 unsigned int fault_flags, bool *unlocked) 2708 { 2709 /* should never happen if there's no MMU */ 2710 BUG(); 2711 return -EFAULT; 2712 } 2713 static inline void unmap_mapping_pages(struct address_space *mapping, 2714 pgoff_t start, pgoff_t nr, bool even_cows) { } 2715 static inline void unmap_mapping_range(struct address_space *mapping, 2716 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2717 #endif 2718 2719 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2720 loff_t const holebegin, loff_t const holelen) 2721 { 2722 unmap_mapping_range(mapping, holebegin, holelen, 0); 2723 } 2724 2725 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2726 unsigned long addr); 2727 2728 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2729 void *buf, int len, unsigned int gup_flags); 2730 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2731 void *buf, int len, unsigned int gup_flags); 2732 2733 #ifdef CONFIG_BPF_SYSCALL 2734 extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 2735 void *buf, int len, unsigned int gup_flags); 2736 #endif 2737 2738 long get_user_pages_remote(struct mm_struct *mm, 2739 unsigned long start, unsigned long nr_pages, 2740 unsigned int gup_flags, struct page **pages, 2741 int *locked); 2742 long pin_user_pages_remote(struct mm_struct *mm, 2743 unsigned long start, unsigned long nr_pages, 2744 unsigned int gup_flags, struct page **pages, 2745 int *locked); 2746 2747 /* 2748 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2749 */ 2750 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2751 unsigned long addr, 2752 int gup_flags, 2753 struct vm_area_struct **vmap) 2754 { 2755 struct page *page; 2756 struct vm_area_struct *vma; 2757 int got; 2758 2759 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2760 return ERR_PTR(-EINVAL); 2761 2762 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2763 2764 if (got < 0) 2765 return ERR_PTR(got); 2766 2767 vma = vma_lookup(mm, addr); 2768 if (WARN_ON_ONCE(!vma)) { 2769 put_page(page); 2770 return ERR_PTR(-EINVAL); 2771 } 2772 2773 *vmap = vma; 2774 return page; 2775 } 2776 2777 long get_user_pages(unsigned long start, unsigned long nr_pages, 2778 unsigned int gup_flags, struct page **pages); 2779 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2780 unsigned int gup_flags, struct page **pages); 2781 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2782 struct page **pages, unsigned int gup_flags); 2783 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2784 struct page **pages, unsigned int gup_flags); 2785 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 2786 struct folio **folios, unsigned int max_folios, 2787 pgoff_t *offset); 2788 int folio_add_pins(struct folio *folio, unsigned int pins); 2789 2790 int get_user_pages_fast(unsigned long start, int nr_pages, 2791 unsigned int gup_flags, struct page **pages); 2792 int pin_user_pages_fast(unsigned long start, int nr_pages, 2793 unsigned int gup_flags, struct page **pages); 2794 void folio_add_pin(struct folio *folio); 2795 2796 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2797 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2798 const struct task_struct *task, bool bypass_rlim); 2799 2800 struct kvec; 2801 struct page *get_dump_page(unsigned long addr, int *locked); 2802 2803 bool folio_mark_dirty(struct folio *folio); 2804 bool folio_mark_dirty_lock(struct folio *folio); 2805 bool set_page_dirty(struct page *page); 2806 int set_page_dirty_lock(struct page *page); 2807 2808 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2809 2810 /* 2811 * Flags used by change_protection(). For now we make it a bitmap so 2812 * that we can pass in multiple flags just like parameters. However 2813 * for now all the callers are only use one of the flags at the same 2814 * time. 2815 */ 2816 /* 2817 * Whether we should manually check if we can map individual PTEs writable, 2818 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2819 * PTEs automatically in a writable mapping. 2820 */ 2821 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2822 /* Whether this protection change is for NUMA hints */ 2823 #define MM_CP_PROT_NUMA (1UL << 1) 2824 /* Whether this change is for write protecting */ 2825 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2826 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2827 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2828 MM_CP_UFFD_WP_RESOLVE) 2829 2830 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2831 pte_t pte); 2832 extern long change_protection(struct mmu_gather *tlb, 2833 struct vm_area_struct *vma, unsigned long start, 2834 unsigned long end, unsigned long cp_flags); 2835 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2836 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2837 unsigned long start, unsigned long end, vm_flags_t newflags); 2838 2839 /* 2840 * doesn't attempt to fault and will return short. 2841 */ 2842 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2843 unsigned int gup_flags, struct page **pages); 2844 2845 static inline bool get_user_page_fast_only(unsigned long addr, 2846 unsigned int gup_flags, struct page **pagep) 2847 { 2848 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2849 } 2850 /* 2851 * per-process(per-mm_struct) statistics. 2852 */ 2853 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2854 { 2855 return percpu_counter_read_positive(&mm->rss_stat[member]); 2856 } 2857 2858 static inline unsigned long get_mm_counter_sum(struct mm_struct *mm, int member) 2859 { 2860 return percpu_counter_sum_positive(&mm->rss_stat[member]); 2861 } 2862 2863 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2864 2865 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2866 { 2867 percpu_counter_add(&mm->rss_stat[member], value); 2868 2869 mm_trace_rss_stat(mm, member); 2870 } 2871 2872 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2873 { 2874 percpu_counter_inc(&mm->rss_stat[member]); 2875 2876 mm_trace_rss_stat(mm, member); 2877 } 2878 2879 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2880 { 2881 percpu_counter_dec(&mm->rss_stat[member]); 2882 2883 mm_trace_rss_stat(mm, member); 2884 } 2885 2886 /* Optimized variant when folio is already known not to be anon */ 2887 static inline int mm_counter_file(struct folio *folio) 2888 { 2889 if (folio_test_swapbacked(folio)) 2890 return MM_SHMEMPAGES; 2891 return MM_FILEPAGES; 2892 } 2893 2894 static inline int mm_counter(struct folio *folio) 2895 { 2896 if (folio_test_anon(folio)) 2897 return MM_ANONPAGES; 2898 return mm_counter_file(folio); 2899 } 2900 2901 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2902 { 2903 return get_mm_counter(mm, MM_FILEPAGES) + 2904 get_mm_counter(mm, MM_ANONPAGES) + 2905 get_mm_counter(mm, MM_SHMEMPAGES); 2906 } 2907 2908 static inline unsigned long get_mm_rss_sum(struct mm_struct *mm) 2909 { 2910 return get_mm_counter_sum(mm, MM_FILEPAGES) + 2911 get_mm_counter_sum(mm, MM_ANONPAGES) + 2912 get_mm_counter_sum(mm, MM_SHMEMPAGES); 2913 } 2914 2915 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2916 { 2917 return max(mm->hiwater_rss, get_mm_rss(mm)); 2918 } 2919 2920 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2921 { 2922 return max(mm->hiwater_vm, mm->total_vm); 2923 } 2924 2925 static inline void update_hiwater_rss(struct mm_struct *mm) 2926 { 2927 unsigned long _rss = get_mm_rss(mm); 2928 2929 if (data_race(mm->hiwater_rss) < _rss) 2930 data_race(mm->hiwater_rss = _rss); 2931 } 2932 2933 static inline void update_hiwater_vm(struct mm_struct *mm) 2934 { 2935 if (mm->hiwater_vm < mm->total_vm) 2936 mm->hiwater_vm = mm->total_vm; 2937 } 2938 2939 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2940 { 2941 mm->hiwater_rss = get_mm_rss(mm); 2942 } 2943 2944 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2945 struct mm_struct *mm) 2946 { 2947 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2948 2949 if (*maxrss < hiwater_rss) 2950 *maxrss = hiwater_rss; 2951 } 2952 2953 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2954 static inline int pte_special(pte_t pte) 2955 { 2956 return 0; 2957 } 2958 2959 static inline pte_t pte_mkspecial(pte_t pte) 2960 { 2961 return pte; 2962 } 2963 #endif 2964 2965 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP 2966 static inline bool pmd_special(pmd_t pmd) 2967 { 2968 return false; 2969 } 2970 2971 static inline pmd_t pmd_mkspecial(pmd_t pmd) 2972 { 2973 return pmd; 2974 } 2975 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */ 2976 2977 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP 2978 static inline bool pud_special(pud_t pud) 2979 { 2980 return false; 2981 } 2982 2983 static inline pud_t pud_mkspecial(pud_t pud) 2984 { 2985 return pud; 2986 } 2987 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */ 2988 2989 extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2990 spinlock_t **ptl); 2991 2992 #ifdef __PAGETABLE_P4D_FOLDED 2993 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2994 unsigned long address) 2995 { 2996 return 0; 2997 } 2998 #else 2999 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 3000 #endif 3001 3002 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 3003 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 3004 unsigned long address) 3005 { 3006 return 0; 3007 } 3008 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 3009 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 3010 3011 #else 3012 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 3013 3014 static inline void mm_inc_nr_puds(struct mm_struct *mm) 3015 { 3016 if (mm_pud_folded(mm)) 3017 return; 3018 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 3019 } 3020 3021 static inline void mm_dec_nr_puds(struct mm_struct *mm) 3022 { 3023 if (mm_pud_folded(mm)) 3024 return; 3025 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 3026 } 3027 #endif 3028 3029 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 3030 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 3031 unsigned long address) 3032 { 3033 return 0; 3034 } 3035 3036 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 3037 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 3038 3039 #else 3040 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 3041 3042 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 3043 { 3044 if (mm_pmd_folded(mm)) 3045 return; 3046 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 3047 } 3048 3049 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 3050 { 3051 if (mm_pmd_folded(mm)) 3052 return; 3053 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 3054 } 3055 #endif 3056 3057 #ifdef CONFIG_MMU 3058 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 3059 { 3060 atomic_long_set(&mm->pgtables_bytes, 0); 3061 } 3062 3063 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 3064 { 3065 return atomic_long_read(&mm->pgtables_bytes); 3066 } 3067 3068 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 3069 { 3070 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 3071 } 3072 3073 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 3074 { 3075 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 3076 } 3077 #else 3078 3079 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 3080 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 3081 { 3082 return 0; 3083 } 3084 3085 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 3086 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 3087 #endif 3088 3089 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 3090 int __pte_alloc_kernel(pmd_t *pmd); 3091 3092 #if defined(CONFIG_MMU) 3093 3094 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 3095 unsigned long address) 3096 { 3097 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 3098 NULL : p4d_offset(pgd, address); 3099 } 3100 3101 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 3102 unsigned long address) 3103 { 3104 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 3105 NULL : pud_offset(p4d, address); 3106 } 3107 3108 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3109 { 3110 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 3111 NULL: pmd_offset(pud, address); 3112 } 3113 #endif /* CONFIG_MMU */ 3114 3115 enum pt_flags { 3116 PT_kernel = PG_referenced, 3117 PT_reserved = PG_reserved, 3118 /* High bits are used for zone/node/section */ 3119 }; 3120 3121 static inline struct ptdesc *virt_to_ptdesc(const void *x) 3122 { 3123 return page_ptdesc(virt_to_page(x)); 3124 } 3125 3126 /** 3127 * ptdesc_address - Virtual address of page table. 3128 * @pt: Page table descriptor. 3129 * 3130 * Return: The first byte of the page table described by @pt. 3131 */ 3132 static inline void *ptdesc_address(const struct ptdesc *pt) 3133 { 3134 return folio_address(ptdesc_folio(pt)); 3135 } 3136 3137 static inline bool pagetable_is_reserved(struct ptdesc *pt) 3138 { 3139 return test_bit(PT_reserved, &pt->pt_flags.f); 3140 } 3141 3142 /** 3143 * ptdesc_set_kernel - Mark a ptdesc used to map the kernel 3144 * @ptdesc: The ptdesc to be marked 3145 * 3146 * Kernel page tables often need special handling. Set a flag so that 3147 * the handling code knows this ptdesc will not be used for userspace. 3148 */ 3149 static inline void ptdesc_set_kernel(struct ptdesc *ptdesc) 3150 { 3151 set_bit(PT_kernel, &ptdesc->pt_flags.f); 3152 } 3153 3154 /** 3155 * ptdesc_clear_kernel - Mark a ptdesc as no longer used to map the kernel 3156 * @ptdesc: The ptdesc to be unmarked 3157 * 3158 * Use when the ptdesc is no longer used to map the kernel and no longer 3159 * needs special handling. 3160 */ 3161 static inline void ptdesc_clear_kernel(struct ptdesc *ptdesc) 3162 { 3163 /* 3164 * Note: the 'PG_referenced' bit does not strictly need to be 3165 * cleared before freeing the page. But this is nice for 3166 * symmetry. 3167 */ 3168 clear_bit(PT_kernel, &ptdesc->pt_flags.f); 3169 } 3170 3171 /** 3172 * ptdesc_test_kernel - Check if a ptdesc is used to map the kernel 3173 * @ptdesc: The ptdesc being tested 3174 * 3175 * Call to tell if the ptdesc used to map the kernel. 3176 */ 3177 static inline bool ptdesc_test_kernel(const struct ptdesc *ptdesc) 3178 { 3179 return test_bit(PT_kernel, &ptdesc->pt_flags.f); 3180 } 3181 3182 /** 3183 * pagetable_alloc - Allocate pagetables 3184 * @gfp: GFP flags 3185 * @order: desired pagetable order 3186 * 3187 * pagetable_alloc allocates memory for page tables as well as a page table 3188 * descriptor to describe that memory. 3189 * 3190 * Return: The ptdesc describing the allocated page tables. 3191 */ 3192 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 3193 { 3194 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 3195 3196 return page_ptdesc(page); 3197 } 3198 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 3199 3200 static inline void __pagetable_free(struct ptdesc *pt) 3201 { 3202 struct page *page = ptdesc_page(pt); 3203 3204 __free_pages(page, compound_order(page)); 3205 } 3206 3207 #ifdef CONFIG_ASYNC_KERNEL_PGTABLE_FREE 3208 void pagetable_free_kernel(struct ptdesc *pt); 3209 #else 3210 static inline void pagetable_free_kernel(struct ptdesc *pt) 3211 { 3212 __pagetable_free(pt); 3213 } 3214 #endif 3215 /** 3216 * pagetable_free - Free pagetables 3217 * @pt: The page table descriptor 3218 * 3219 * pagetable_free frees the memory of all page tables described by a page 3220 * table descriptor and the memory for the descriptor itself. 3221 */ 3222 static inline void pagetable_free(struct ptdesc *pt) 3223 { 3224 if (ptdesc_test_kernel(pt)) { 3225 ptdesc_clear_kernel(pt); 3226 pagetable_free_kernel(pt); 3227 } else { 3228 __pagetable_free(pt); 3229 } 3230 } 3231 3232 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) 3233 #if ALLOC_SPLIT_PTLOCKS 3234 void __init ptlock_cache_init(void); 3235 bool ptlock_alloc(struct ptdesc *ptdesc); 3236 void ptlock_free(struct ptdesc *ptdesc); 3237 3238 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 3239 { 3240 return ptdesc->ptl; 3241 } 3242 #else /* ALLOC_SPLIT_PTLOCKS */ 3243 static inline void ptlock_cache_init(void) 3244 { 3245 } 3246 3247 static inline bool ptlock_alloc(struct ptdesc *ptdesc) 3248 { 3249 return true; 3250 } 3251 3252 static inline void ptlock_free(struct ptdesc *ptdesc) 3253 { 3254 } 3255 3256 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 3257 { 3258 return &ptdesc->ptl; 3259 } 3260 #endif /* ALLOC_SPLIT_PTLOCKS */ 3261 3262 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 3263 { 3264 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 3265 } 3266 3267 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 3268 { 3269 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); 3270 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); 3271 return ptlock_ptr(virt_to_ptdesc(pte)); 3272 } 3273 3274 static inline bool ptlock_init(struct ptdesc *ptdesc) 3275 { 3276 /* 3277 * prep_new_page() initialize page->private (and therefore page->ptl) 3278 * with 0. Make sure nobody took it in use in between. 3279 * 3280 * It can happen if arch try to use slab for page table allocation: 3281 * slab code uses page->slab_cache, which share storage with page->ptl. 3282 */ 3283 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 3284 if (!ptlock_alloc(ptdesc)) 3285 return false; 3286 spin_lock_init(ptlock_ptr(ptdesc)); 3287 return true; 3288 } 3289 3290 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 3291 /* 3292 * We use mm->page_table_lock to guard all pagetable pages of the mm. 3293 */ 3294 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 3295 { 3296 return &mm->page_table_lock; 3297 } 3298 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 3299 { 3300 return &mm->page_table_lock; 3301 } 3302 static inline void ptlock_cache_init(void) {} 3303 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 3304 static inline void ptlock_free(struct ptdesc *ptdesc) {} 3305 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 3306 3307 static inline unsigned long ptdesc_nr_pages(const struct ptdesc *ptdesc) 3308 { 3309 return compound_nr(ptdesc_page(ptdesc)); 3310 } 3311 3312 static inline void __pagetable_ctor(struct ptdesc *ptdesc) 3313 { 3314 pg_data_t *pgdat = NODE_DATA(memdesc_nid(ptdesc->pt_flags)); 3315 3316 __SetPageTable(ptdesc_page(ptdesc)); 3317 mod_node_page_state(pgdat, NR_PAGETABLE, ptdesc_nr_pages(ptdesc)); 3318 } 3319 3320 static inline void pagetable_dtor(struct ptdesc *ptdesc) 3321 { 3322 pg_data_t *pgdat = NODE_DATA(memdesc_nid(ptdesc->pt_flags)); 3323 3324 ptlock_free(ptdesc); 3325 __ClearPageTable(ptdesc_page(ptdesc)); 3326 mod_node_page_state(pgdat, NR_PAGETABLE, -ptdesc_nr_pages(ptdesc)); 3327 } 3328 3329 static inline void pagetable_dtor_free(struct ptdesc *ptdesc) 3330 { 3331 pagetable_dtor(ptdesc); 3332 pagetable_free(ptdesc); 3333 } 3334 3335 static inline bool pagetable_pte_ctor(struct mm_struct *mm, 3336 struct ptdesc *ptdesc) 3337 { 3338 if (mm != &init_mm && !ptlock_init(ptdesc)) 3339 return false; 3340 __pagetable_ctor(ptdesc); 3341 return true; 3342 } 3343 3344 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 3345 3346 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 3347 { 3348 return __pte_offset_map(pmd, addr, NULL); 3349 } 3350 3351 pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3352 unsigned long addr, spinlock_t **ptlp); 3353 3354 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd, 3355 unsigned long addr, spinlock_t **ptlp); 3356 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd, 3357 unsigned long addr, pmd_t *pmdvalp, 3358 spinlock_t **ptlp); 3359 3360 #define pte_unmap_unlock(pte, ptl) do { \ 3361 spin_unlock(ptl); \ 3362 pte_unmap(pte); \ 3363 } while (0) 3364 3365 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 3366 3367 #define pte_alloc_map(mm, pmd, address) \ 3368 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 3369 3370 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 3371 (pte_alloc(mm, pmd) ? \ 3372 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 3373 3374 #define pte_alloc_kernel(pmd, address) \ 3375 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3376 NULL: pte_offset_kernel(pmd, address)) 3377 3378 #if defined(CONFIG_SPLIT_PMD_PTLOCKS) 3379 3380 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3381 { 3382 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3383 return virt_to_page((void *)((unsigned long) pmd & mask)); 3384 } 3385 3386 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3387 { 3388 return page_ptdesc(pmd_pgtable_page(pmd)); 3389 } 3390 3391 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3392 { 3393 return ptlock_ptr(pmd_ptdesc(pmd)); 3394 } 3395 3396 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3397 { 3398 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3399 ptdesc->pmd_huge_pte = NULL; 3400 #endif 3401 return ptlock_init(ptdesc); 3402 } 3403 3404 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3405 3406 #else 3407 3408 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3409 { 3410 return &mm->page_table_lock; 3411 } 3412 3413 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3414 3415 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3416 3417 #endif 3418 3419 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3420 { 3421 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3422 spin_lock(ptl); 3423 return ptl; 3424 } 3425 3426 static inline bool pagetable_pmd_ctor(struct mm_struct *mm, 3427 struct ptdesc *ptdesc) 3428 { 3429 if (mm != &init_mm && !pmd_ptlock_init(ptdesc)) 3430 return false; 3431 ptdesc_pmd_pts_init(ptdesc); 3432 __pagetable_ctor(ptdesc); 3433 return true; 3434 } 3435 3436 /* 3437 * No scalability reason to split PUD locks yet, but follow the same pattern 3438 * as the PMD locks to make it easier if we decide to. The VM should not be 3439 * considered ready to switch to split PUD locks yet; there may be places 3440 * which need to be converted from page_table_lock. 3441 */ 3442 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3443 { 3444 return &mm->page_table_lock; 3445 } 3446 3447 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3448 { 3449 spinlock_t *ptl = pud_lockptr(mm, pud); 3450 3451 spin_lock(ptl); 3452 return ptl; 3453 } 3454 3455 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3456 { 3457 __pagetable_ctor(ptdesc); 3458 } 3459 3460 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc) 3461 { 3462 __pagetable_ctor(ptdesc); 3463 } 3464 3465 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc) 3466 { 3467 __pagetable_ctor(ptdesc); 3468 } 3469 3470 extern void __init pagecache_init(void); 3471 extern void free_initmem(void); 3472 3473 /* 3474 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3475 * into the buddy system. The freed pages will be poisoned with pattern 3476 * "poison" if it's within range [0, UCHAR_MAX]. 3477 * Return pages freed into the buddy system. 3478 */ 3479 extern unsigned long free_reserved_area(void *start, void *end, 3480 int poison, const char *s); 3481 3482 extern void adjust_managed_page_count(struct page *page, long count); 3483 3484 extern void reserve_bootmem_region(phys_addr_t start, 3485 phys_addr_t end, int nid); 3486 3487 /* Free the reserved page into the buddy system, so it gets managed. */ 3488 void free_reserved_page(struct page *page); 3489 3490 static inline void mark_page_reserved(struct page *page) 3491 { 3492 SetPageReserved(page); 3493 adjust_managed_page_count(page, -1); 3494 } 3495 3496 static inline void free_reserved_ptdesc(struct ptdesc *pt) 3497 { 3498 free_reserved_page(ptdesc_page(pt)); 3499 } 3500 3501 /* 3502 * Default method to free all the __init memory into the buddy system. 3503 * The freed pages will be poisoned with pattern "poison" if it's within 3504 * range [0, UCHAR_MAX]. 3505 * Return pages freed into the buddy system. 3506 */ 3507 static inline unsigned long free_initmem_default(int poison) 3508 { 3509 extern char __init_begin[], __init_end[]; 3510 3511 return free_reserved_area(&__init_begin, &__init_end, 3512 poison, "unused kernel image (initmem)"); 3513 } 3514 3515 static inline unsigned long get_num_physpages(void) 3516 { 3517 int nid; 3518 unsigned long phys_pages = 0; 3519 3520 for_each_online_node(nid) 3521 phys_pages += node_present_pages(nid); 3522 3523 return phys_pages; 3524 } 3525 3526 /* 3527 * FIXME: Using memblock node mappings, an architecture may initialise its 3528 * zones, allocate the backing mem_map and account for memory holes in an 3529 * architecture independent manner. 3530 * 3531 * An architecture is expected to register range of page frames backed by 3532 * physical memory with memblock_add[_node]() before calling 3533 * free_area_init() passing in the PFN each zone ends at. At a basic 3534 * usage, an architecture is expected to do something like 3535 * 3536 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3537 * max_highmem_pfn}; 3538 * for_each_valid_physical_page_range() 3539 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3540 * free_area_init(max_zone_pfns); 3541 */ 3542 void arch_zone_limits_init(unsigned long *max_zone_pfn); 3543 unsigned long node_map_pfn_alignment(void); 3544 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3545 unsigned long end_pfn); 3546 extern void get_pfn_range_for_nid(unsigned int nid, 3547 unsigned long *start_pfn, unsigned long *end_pfn); 3548 3549 #ifndef CONFIG_NUMA 3550 static inline int early_pfn_to_nid(unsigned long pfn) 3551 { 3552 return 0; 3553 } 3554 #else 3555 /* please see mm/page_alloc.c */ 3556 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3557 #endif 3558 3559 extern void mem_init(void); 3560 extern void __init mmap_init(void); 3561 3562 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3563 static inline void show_mem(void) 3564 { 3565 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3566 } 3567 extern long si_mem_available(void); 3568 extern void si_meminfo(struct sysinfo * val); 3569 extern void si_meminfo_node(struct sysinfo *val, int nid); 3570 3571 extern __printf(3, 4) 3572 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3573 3574 extern void setup_per_cpu_pageset(void); 3575 3576 /* nommu.c */ 3577 extern atomic_long_t mmap_pages_allocated; 3578 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3579 3580 /* interval_tree.c */ 3581 void vma_interval_tree_insert(struct vm_area_struct *node, 3582 struct rb_root_cached *root); 3583 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3584 struct vm_area_struct *prev, 3585 struct rb_root_cached *root); 3586 void vma_interval_tree_remove(struct vm_area_struct *node, 3587 struct rb_root_cached *root); 3588 struct vm_area_struct *vma_interval_tree_subtree_search(struct vm_area_struct *node, 3589 unsigned long start, unsigned long last); 3590 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3591 unsigned long start, unsigned long last); 3592 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3593 unsigned long start, unsigned long last); 3594 3595 #define vma_interval_tree_foreach(vma, root, start, last) \ 3596 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3597 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3598 3599 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3600 struct rb_root_cached *root); 3601 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3602 struct rb_root_cached *root); 3603 struct anon_vma_chain * 3604 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3605 unsigned long start, unsigned long last); 3606 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3607 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3608 #ifdef CONFIG_DEBUG_VM_RB 3609 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3610 #endif 3611 3612 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3613 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3614 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3615 3616 /* mmap.c */ 3617 extern int __vm_enough_memory(const struct mm_struct *mm, long pages, int cap_sys_admin); 3618 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3619 extern void exit_mmap(struct mm_struct *); 3620 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma, 3621 unsigned long addr, bool write); 3622 3623 static inline int check_data_rlimit(unsigned long rlim, 3624 unsigned long new, 3625 unsigned long start, 3626 unsigned long end_data, 3627 unsigned long start_data) 3628 { 3629 if (rlim < RLIM_INFINITY) { 3630 if (((new - start) + (end_data - start_data)) > rlim) 3631 return -ENOSPC; 3632 } 3633 3634 return 0; 3635 } 3636 3637 extern int mm_take_all_locks(struct mm_struct *mm); 3638 extern void mm_drop_all_locks(struct mm_struct *mm); 3639 3640 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3641 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3642 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3643 extern struct file *get_task_exe_file(struct task_struct *task); 3644 3645 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3646 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3647 3648 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3649 const struct vm_special_mapping *sm); 3650 struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3651 unsigned long addr, unsigned long len, 3652 vm_flags_t vm_flags, 3653 const struct vm_special_mapping *spec); 3654 3655 unsigned long randomize_stack_top(unsigned long stack_top); 3656 unsigned long randomize_page(unsigned long start, unsigned long range); 3657 3658 unsigned long 3659 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3660 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); 3661 3662 static inline unsigned long 3663 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3664 unsigned long pgoff, unsigned long flags) 3665 { 3666 return __get_unmapped_area(file, addr, len, pgoff, flags, 0); 3667 } 3668 3669 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3670 unsigned long len, unsigned long prot, unsigned long flags, 3671 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3672 struct list_head *uf); 3673 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3674 unsigned long start, size_t len, struct list_head *uf, 3675 bool unlock); 3676 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3677 struct mm_struct *mm, unsigned long start, 3678 unsigned long end, struct list_head *uf, bool unlock); 3679 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3680 struct list_head *uf); 3681 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3682 3683 #ifdef CONFIG_MMU 3684 extern int __mm_populate(unsigned long addr, unsigned long len, 3685 int ignore_errors); 3686 static inline void mm_populate(unsigned long addr, unsigned long len) 3687 { 3688 /* Ignore errors */ 3689 (void) __mm_populate(addr, len, 1); 3690 } 3691 #else 3692 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3693 #endif 3694 3695 /* This takes the mm semaphore itself */ 3696 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3697 extern int vm_munmap(unsigned long, size_t); 3698 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3699 unsigned long, unsigned long, 3700 unsigned long, unsigned long); 3701 3702 struct vm_unmapped_area_info { 3703 #define VM_UNMAPPED_AREA_TOPDOWN 1 3704 unsigned long flags; 3705 unsigned long length; 3706 unsigned long low_limit; 3707 unsigned long high_limit; 3708 unsigned long align_mask; 3709 unsigned long align_offset; 3710 unsigned long start_gap; 3711 }; 3712 3713 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3714 3715 /* truncate.c */ 3716 void truncate_inode_pages(struct address_space *mapping, loff_t lstart); 3717 void truncate_inode_pages_range(struct address_space *mapping, loff_t lstart, 3718 uoff_t lend); 3719 void truncate_inode_pages_final(struct address_space *mapping); 3720 3721 /* generic vm_area_ops exported for stackable file systems */ 3722 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3723 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3724 pgoff_t start_pgoff, pgoff_t end_pgoff); 3725 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3726 3727 extern unsigned long stack_guard_gap; 3728 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3729 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3730 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3731 3732 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3733 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3734 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3735 struct vm_area_struct **pprev); 3736 3737 /* 3738 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3739 * NULL if none. Assume start_addr < end_addr. 3740 */ 3741 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3742 unsigned long start_addr, unsigned long end_addr); 3743 3744 /** 3745 * vma_lookup() - Find a VMA at a specific address 3746 * @mm: The process address space. 3747 * @addr: The user address. 3748 * 3749 * Return: The vm_area_struct at the given address, %NULL otherwise. 3750 */ 3751 static inline 3752 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3753 { 3754 return mtree_load(&mm->mm_mt, addr); 3755 } 3756 3757 static inline unsigned long stack_guard_start_gap(const struct vm_area_struct *vma) 3758 { 3759 if (vma->vm_flags & VM_GROWSDOWN) 3760 return stack_guard_gap; 3761 3762 /* See reasoning around the VM_SHADOW_STACK definition */ 3763 if (vma->vm_flags & VM_SHADOW_STACK) 3764 return PAGE_SIZE; 3765 3766 return 0; 3767 } 3768 3769 static inline unsigned long vm_start_gap(const struct vm_area_struct *vma) 3770 { 3771 unsigned long gap = stack_guard_start_gap(vma); 3772 unsigned long vm_start = vma->vm_start; 3773 3774 vm_start -= gap; 3775 if (vm_start > vma->vm_start) 3776 vm_start = 0; 3777 return vm_start; 3778 } 3779 3780 static inline unsigned long vm_end_gap(const struct vm_area_struct *vma) 3781 { 3782 unsigned long vm_end = vma->vm_end; 3783 3784 if (vma->vm_flags & VM_GROWSUP) { 3785 vm_end += stack_guard_gap; 3786 if (vm_end < vma->vm_end) 3787 vm_end = -PAGE_SIZE; 3788 } 3789 return vm_end; 3790 } 3791 3792 static inline unsigned long vma_pages(const struct vm_area_struct *vma) 3793 { 3794 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3795 } 3796 3797 static inline unsigned long vma_desc_size(const struct vm_area_desc *desc) 3798 { 3799 return desc->end - desc->start; 3800 } 3801 3802 static inline unsigned long vma_desc_pages(const struct vm_area_desc *desc) 3803 { 3804 return vma_desc_size(desc) >> PAGE_SHIFT; 3805 } 3806 3807 /** 3808 * mmap_action_remap - helper for mmap_prepare hook to specify that a pure PFN 3809 * remap is required. 3810 * @desc: The VMA descriptor for the VMA requiring remap. 3811 * @start: The virtual address to start the remap from, must be within the VMA. 3812 * @start_pfn: The first PFN in the range to remap. 3813 * @size: The size of the range to remap, in bytes, at most spanning to the end 3814 * of the VMA. 3815 */ 3816 static inline void mmap_action_remap(struct vm_area_desc *desc, 3817 unsigned long start, 3818 unsigned long start_pfn, 3819 unsigned long size) 3820 { 3821 struct mmap_action *action = &desc->action; 3822 3823 /* [start, start + size) must be within the VMA. */ 3824 WARN_ON_ONCE(start < desc->start || start >= desc->end); 3825 WARN_ON_ONCE(start + size > desc->end); 3826 3827 action->type = MMAP_REMAP_PFN; 3828 action->remap.start = start; 3829 action->remap.start_pfn = start_pfn; 3830 action->remap.size = size; 3831 action->remap.pgprot = desc->page_prot; 3832 } 3833 3834 /** 3835 * mmap_action_remap_full - helper for mmap_prepare hook to specify that the 3836 * entirety of a VMA should be PFN remapped. 3837 * @desc: The VMA descriptor for the VMA requiring remap. 3838 * @start_pfn: The first PFN in the range to remap. 3839 */ 3840 static inline void mmap_action_remap_full(struct vm_area_desc *desc, 3841 unsigned long start_pfn) 3842 { 3843 mmap_action_remap(desc, desc->start, start_pfn, vma_desc_size(desc)); 3844 } 3845 3846 /** 3847 * mmap_action_ioremap - helper for mmap_prepare hook to specify that a pure PFN 3848 * I/O remap is required. 3849 * @desc: The VMA descriptor for the VMA requiring remap. 3850 * @start: The virtual address to start the remap from, must be within the VMA. 3851 * @start_pfn: The first PFN in the range to remap. 3852 * @size: The size of the range to remap, in bytes, at most spanning to the end 3853 * of the VMA. 3854 */ 3855 static inline void mmap_action_ioremap(struct vm_area_desc *desc, 3856 unsigned long start, 3857 unsigned long start_pfn, 3858 unsigned long size) 3859 { 3860 mmap_action_remap(desc, start, start_pfn, size); 3861 desc->action.type = MMAP_IO_REMAP_PFN; 3862 } 3863 3864 /** 3865 * mmap_action_ioremap_full - helper for mmap_prepare hook to specify that the 3866 * entirety of a VMA should be PFN I/O remapped. 3867 * @desc: The VMA descriptor for the VMA requiring remap. 3868 * @start_pfn: The first PFN in the range to remap. 3869 */ 3870 static inline void mmap_action_ioremap_full(struct vm_area_desc *desc, 3871 unsigned long start_pfn) 3872 { 3873 mmap_action_ioremap(desc, desc->start, start_pfn, vma_desc_size(desc)); 3874 } 3875 3876 void mmap_action_prepare(struct mmap_action *action, 3877 struct vm_area_desc *desc); 3878 int mmap_action_complete(struct mmap_action *action, 3879 struct vm_area_struct *vma); 3880 3881 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3882 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3883 unsigned long vm_start, unsigned long vm_end) 3884 { 3885 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3886 3887 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3888 vma = NULL; 3889 3890 return vma; 3891 } 3892 3893 static inline bool range_in_vma(const struct vm_area_struct *vma, 3894 unsigned long start, unsigned long end) 3895 { 3896 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3897 } 3898 3899 #ifdef CONFIG_MMU 3900 pgprot_t vm_get_page_prot(vm_flags_t vm_flags); 3901 void vma_set_page_prot(struct vm_area_struct *vma); 3902 #else 3903 static inline pgprot_t vm_get_page_prot(vm_flags_t vm_flags) 3904 { 3905 return __pgprot(0); 3906 } 3907 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3908 { 3909 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3910 } 3911 #endif 3912 3913 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3914 3915 #ifdef CONFIG_NUMA_BALANCING 3916 unsigned long change_prot_numa(struct vm_area_struct *vma, 3917 unsigned long start, unsigned long end); 3918 #endif 3919 3920 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3921 unsigned long addr); 3922 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 3923 unsigned long pfn, unsigned long size, pgprot_t pgprot); 3924 3925 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3926 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3927 struct page **pages, unsigned long *num); 3928 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3929 unsigned long num); 3930 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3931 unsigned long num); 3932 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, 3933 bool write); 3934 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3935 unsigned long pfn); 3936 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3937 unsigned long pfn, pgprot_t pgprot); 3938 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3939 unsigned long pfn); 3940 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3941 unsigned long addr, unsigned long pfn); 3942 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3943 3944 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3945 unsigned long addr, struct page *page) 3946 { 3947 int err = vm_insert_page(vma, addr, page); 3948 3949 if (err == -ENOMEM) 3950 return VM_FAULT_OOM; 3951 if (err < 0 && err != -EBUSY) 3952 return VM_FAULT_SIGBUS; 3953 3954 return VM_FAULT_NOPAGE; 3955 } 3956 3957 #ifndef io_remap_pfn_range_pfn 3958 static inline unsigned long io_remap_pfn_range_pfn(unsigned long pfn, 3959 unsigned long size) 3960 { 3961 return pfn; 3962 } 3963 #endif 3964 3965 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3966 unsigned long addr, unsigned long orig_pfn, 3967 unsigned long size, pgprot_t orig_prot) 3968 { 3969 const unsigned long pfn = io_remap_pfn_range_pfn(orig_pfn, size); 3970 const pgprot_t prot = pgprot_decrypted(orig_prot); 3971 3972 return remap_pfn_range(vma, addr, pfn, size, prot); 3973 } 3974 3975 static inline vm_fault_t vmf_error(int err) 3976 { 3977 if (err == -ENOMEM) 3978 return VM_FAULT_OOM; 3979 else if (err == -EHWPOISON) 3980 return VM_FAULT_HWPOISON; 3981 return VM_FAULT_SIGBUS; 3982 } 3983 3984 /* 3985 * Convert errno to return value for ->page_mkwrite() calls. 3986 * 3987 * This should eventually be merged with vmf_error() above, but will need a 3988 * careful audit of all vmf_error() callers. 3989 */ 3990 static inline vm_fault_t vmf_fs_error(int err) 3991 { 3992 if (err == 0) 3993 return VM_FAULT_LOCKED; 3994 if (err == -EFAULT || err == -EAGAIN) 3995 return VM_FAULT_NOPAGE; 3996 if (err == -ENOMEM) 3997 return VM_FAULT_OOM; 3998 /* -ENOSPC, -EDQUOT, -EIO ... */ 3999 return VM_FAULT_SIGBUS; 4000 } 4001 4002 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 4003 { 4004 if (vm_fault & VM_FAULT_OOM) 4005 return -ENOMEM; 4006 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 4007 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 4008 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 4009 return -EFAULT; 4010 return 0; 4011 } 4012 4013 /* 4014 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 4015 * a (NUMA hinting) fault is required. 4016 */ 4017 static inline bool gup_can_follow_protnone(const struct vm_area_struct *vma, 4018 unsigned int flags) 4019 { 4020 /* 4021 * If callers don't want to honor NUMA hinting faults, no need to 4022 * determine if we would actually have to trigger a NUMA hinting fault. 4023 */ 4024 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 4025 return true; 4026 4027 /* 4028 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 4029 * 4030 * Requiring a fault here even for inaccessible VMAs would mean that 4031 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 4032 * refuses to process NUMA hinting faults in inaccessible VMAs. 4033 */ 4034 return !vma_is_accessible(vma); 4035 } 4036 4037 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 4038 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 4039 unsigned long size, pte_fn_t fn, void *data); 4040 extern int apply_to_existing_page_range(struct mm_struct *mm, 4041 unsigned long address, unsigned long size, 4042 pte_fn_t fn, void *data); 4043 4044 #ifdef CONFIG_PAGE_POISONING 4045 extern void __kernel_poison_pages(struct page *page, int numpages); 4046 extern void __kernel_unpoison_pages(struct page *page, int numpages); 4047 extern bool _page_poisoning_enabled_early; 4048 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 4049 static inline bool page_poisoning_enabled(void) 4050 { 4051 return _page_poisoning_enabled_early; 4052 } 4053 /* 4054 * For use in fast paths after init_mem_debugging() has run, or when a 4055 * false negative result is not harmful when called too early. 4056 */ 4057 static inline bool page_poisoning_enabled_static(void) 4058 { 4059 return static_branch_unlikely(&_page_poisoning_enabled); 4060 } 4061 static inline void kernel_poison_pages(struct page *page, int numpages) 4062 { 4063 if (page_poisoning_enabled_static()) 4064 __kernel_poison_pages(page, numpages); 4065 } 4066 static inline void kernel_unpoison_pages(struct page *page, int numpages) 4067 { 4068 if (page_poisoning_enabled_static()) 4069 __kernel_unpoison_pages(page, numpages); 4070 } 4071 #else 4072 static inline bool page_poisoning_enabled(void) { return false; } 4073 static inline bool page_poisoning_enabled_static(void) { return false; } 4074 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 4075 static inline void kernel_poison_pages(struct page *page, int numpages) { } 4076 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 4077 #endif 4078 4079 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 4080 static inline bool want_init_on_alloc(gfp_t flags) 4081 { 4082 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 4083 &init_on_alloc)) 4084 return true; 4085 return flags & __GFP_ZERO; 4086 } 4087 4088 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 4089 static inline bool want_init_on_free(void) 4090 { 4091 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 4092 &init_on_free); 4093 } 4094 4095 extern bool _debug_pagealloc_enabled_early; 4096 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 4097 4098 static inline bool debug_pagealloc_enabled(void) 4099 { 4100 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 4101 _debug_pagealloc_enabled_early; 4102 } 4103 4104 /* 4105 * For use in fast paths after mem_debugging_and_hardening_init() has run, 4106 * or when a false negative result is not harmful when called too early. 4107 */ 4108 static inline bool debug_pagealloc_enabled_static(void) 4109 { 4110 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 4111 return false; 4112 4113 return static_branch_unlikely(&_debug_pagealloc_enabled); 4114 } 4115 4116 /* 4117 * To support DEBUG_PAGEALLOC architecture must ensure that 4118 * __kernel_map_pages() never fails 4119 */ 4120 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 4121 #ifdef CONFIG_DEBUG_PAGEALLOC 4122 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 4123 { 4124 iommu_debug_check_unmapped(page, numpages); 4125 4126 if (debug_pagealloc_enabled_static()) 4127 __kernel_map_pages(page, numpages, 1); 4128 } 4129 4130 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 4131 { 4132 iommu_debug_check_unmapped(page, numpages); 4133 4134 if (debug_pagealloc_enabled_static()) 4135 __kernel_map_pages(page, numpages, 0); 4136 } 4137 4138 extern unsigned int _debug_guardpage_minorder; 4139 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 4140 4141 static inline unsigned int debug_guardpage_minorder(void) 4142 { 4143 return _debug_guardpage_minorder; 4144 } 4145 4146 static inline bool debug_guardpage_enabled(void) 4147 { 4148 return static_branch_unlikely(&_debug_guardpage_enabled); 4149 } 4150 4151 static inline bool page_is_guard(const struct page *page) 4152 { 4153 if (!debug_guardpage_enabled()) 4154 return false; 4155 4156 return PageGuard(page); 4157 } 4158 4159 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); 4160 static inline bool set_page_guard(struct zone *zone, struct page *page, 4161 unsigned int order) 4162 { 4163 if (!debug_guardpage_enabled()) 4164 return false; 4165 return __set_page_guard(zone, page, order); 4166 } 4167 4168 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); 4169 static inline void clear_page_guard(struct zone *zone, struct page *page, 4170 unsigned int order) 4171 { 4172 if (!debug_guardpage_enabled()) 4173 return; 4174 __clear_page_guard(zone, page, order); 4175 } 4176 4177 #else /* CONFIG_DEBUG_PAGEALLOC */ 4178 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 4179 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 4180 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 4181 static inline bool debug_guardpage_enabled(void) { return false; } 4182 static inline bool page_is_guard(const struct page *page) { return false; } 4183 static inline bool set_page_guard(struct zone *zone, struct page *page, 4184 unsigned int order) { return false; } 4185 static inline void clear_page_guard(struct zone *zone, struct page *page, 4186 unsigned int order) {} 4187 #endif /* CONFIG_DEBUG_PAGEALLOC */ 4188 4189 #ifndef clear_pages 4190 /** 4191 * clear_pages() - clear a page range for kernel-internal use. 4192 * @addr: start address 4193 * @npages: number of pages 4194 * 4195 * Use clear_user_pages() instead when clearing a page range to be 4196 * mapped to user space. 4197 * 4198 * Does absolutely no exception handling. 4199 * 4200 * Note that even though the clearing operation is preemptible, clear_pages() 4201 * does not (and on architectures where it reduces to a few long-running 4202 * instructions, might not be able to) call cond_resched() to check if 4203 * rescheduling is required. 4204 * 4205 * When running under preemptible models this is not a problem. Under 4206 * cooperatively scheduled models, however, the caller is expected to 4207 * limit @npages to no more than PROCESS_PAGES_NON_PREEMPT_BATCH. 4208 */ 4209 static inline void clear_pages(void *addr, unsigned int npages) 4210 { 4211 do { 4212 clear_page(addr); 4213 addr += PAGE_SIZE; 4214 } while (--npages); 4215 } 4216 #endif 4217 4218 #ifndef PROCESS_PAGES_NON_PREEMPT_BATCH 4219 #ifdef clear_pages 4220 /* 4221 * The architecture defines clear_pages(), and we assume that it is 4222 * generally "fast". So choose a batch size large enough to allow the processor 4223 * headroom for optimizing the operation and yet small enough that we see 4224 * reasonable preemption latency for when this optimization is not possible 4225 * (ex. slow microarchitectures, memory bandwidth saturation.) 4226 * 4227 * With a value of 32MB and assuming a memory bandwidth of ~10GBps, this should 4228 * result in worst case preemption latency of around 3ms when clearing pages. 4229 * 4230 * (See comment above clear_pages() for why preemption latency is a concern 4231 * here.) 4232 */ 4233 #define PROCESS_PAGES_NON_PREEMPT_BATCH (SZ_32M >> PAGE_SHIFT) 4234 #else /* !clear_pages */ 4235 /* 4236 * The architecture does not provide a clear_pages() implementation. Assume 4237 * that clear_page() -- which clear_pages() will fallback to -- is relatively 4238 * slow and choose a small value for PROCESS_PAGES_NON_PREEMPT_BATCH. 4239 */ 4240 #define PROCESS_PAGES_NON_PREEMPT_BATCH 1 4241 #endif 4242 #endif 4243 4244 #ifdef __HAVE_ARCH_GATE_AREA 4245 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 4246 extern int in_gate_area_no_mm(unsigned long addr); 4247 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 4248 #else 4249 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 4250 { 4251 return NULL; 4252 } 4253 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 4254 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 4255 { 4256 return 0; 4257 } 4258 #endif /* __HAVE_ARCH_GATE_AREA */ 4259 4260 bool process_shares_mm(const struct task_struct *p, const struct mm_struct *mm); 4261 4262 void drop_slab(void); 4263 4264 #ifndef CONFIG_MMU 4265 #define randomize_va_space 0 4266 #else 4267 extern int randomize_va_space; 4268 #endif 4269 4270 const char * arch_vma_name(struct vm_area_struct *vma); 4271 #ifdef CONFIG_MMU 4272 void print_vma_addr(char *prefix, unsigned long rip); 4273 #else 4274 static inline void print_vma_addr(char *prefix, unsigned long rip) 4275 { 4276 } 4277 #endif 4278 4279 void *sparse_buffer_alloc(unsigned long size); 4280 unsigned long section_map_size(void); 4281 struct page * __populate_section_memmap(unsigned long pfn, 4282 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 4283 struct dev_pagemap *pgmap); 4284 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 4285 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 4286 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 4287 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 4288 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 4289 struct vmem_altmap *altmap, unsigned long ptpfn, 4290 unsigned long flags); 4291 void *vmemmap_alloc_block(unsigned long size, int node); 4292 struct vmem_altmap; 4293 void *vmemmap_alloc_block_buf(unsigned long size, int node, 4294 struct vmem_altmap *altmap); 4295 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 4296 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 4297 unsigned long addr, unsigned long next); 4298 int vmemmap_check_pmd(pmd_t *pmd, int node, 4299 unsigned long addr, unsigned long next); 4300 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 4301 int node, struct vmem_altmap *altmap); 4302 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 4303 int node, struct vmem_altmap *altmap); 4304 int vmemmap_populate(unsigned long start, unsigned long end, int node, 4305 struct vmem_altmap *altmap); 4306 int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node, 4307 unsigned long headsize); 4308 int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node, 4309 unsigned long headsize); 4310 void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node, 4311 unsigned long headsize); 4312 void vmemmap_populate_print_last(void); 4313 #ifdef CONFIG_MEMORY_HOTPLUG 4314 void vmemmap_free(unsigned long start, unsigned long end, 4315 struct vmem_altmap *altmap); 4316 #endif 4317 4318 #ifdef CONFIG_SPARSEMEM_VMEMMAP 4319 static inline unsigned long vmem_altmap_offset(const struct vmem_altmap *altmap) 4320 { 4321 /* number of pfns from base where pfn_to_page() is valid */ 4322 if (altmap) 4323 return altmap->reserve + altmap->free; 4324 return 0; 4325 } 4326 4327 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 4328 unsigned long nr_pfns) 4329 { 4330 altmap->alloc -= nr_pfns; 4331 } 4332 #else 4333 static inline unsigned long vmem_altmap_offset(const struct vmem_altmap *altmap) 4334 { 4335 return 0; 4336 } 4337 4338 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 4339 unsigned long nr_pfns) 4340 { 4341 } 4342 #endif 4343 4344 #define VMEMMAP_RESERVE_NR 2 4345 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 4346 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 4347 struct dev_pagemap *pgmap) 4348 { 4349 unsigned long nr_pages; 4350 unsigned long nr_vmemmap_pages; 4351 4352 if (!pgmap || !is_power_of_2(sizeof(struct page))) 4353 return false; 4354 4355 nr_pages = pgmap_vmemmap_nr(pgmap); 4356 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 4357 /* 4358 * For vmemmap optimization with DAX we need minimum 2 vmemmap 4359 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 4360 */ 4361 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 4362 } 4363 /* 4364 * If we don't have an architecture override, use the generic rule 4365 */ 4366 #ifndef vmemmap_can_optimize 4367 #define vmemmap_can_optimize __vmemmap_can_optimize 4368 #endif 4369 4370 #else 4371 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 4372 struct dev_pagemap *pgmap) 4373 { 4374 return false; 4375 } 4376 #endif 4377 4378 enum mf_flags { 4379 MF_COUNT_INCREASED = 1 << 0, 4380 MF_ACTION_REQUIRED = 1 << 1, 4381 MF_MUST_KILL = 1 << 2, 4382 MF_SOFT_OFFLINE = 1 << 3, 4383 MF_UNPOISON = 1 << 4, 4384 MF_SW_SIMULATED = 1 << 5, 4385 MF_NO_RETRY = 1 << 6, 4386 MF_MEM_PRE_REMOVE = 1 << 7, 4387 }; 4388 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 4389 unsigned long count, int mf_flags); 4390 extern int memory_failure(unsigned long pfn, int flags); 4391 extern int unpoison_memory(unsigned long pfn); 4392 extern atomic_long_t num_poisoned_pages __read_mostly; 4393 extern int soft_offline_page(unsigned long pfn, int flags); 4394 #ifdef CONFIG_MEMORY_FAILURE 4395 /* 4396 * Sysfs entries for memory failure handling statistics. 4397 */ 4398 extern const struct attribute_group memory_failure_attr_group; 4399 extern void memory_failure_queue(unsigned long pfn, int flags); 4400 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4401 bool *migratable_cleared); 4402 void num_poisoned_pages_inc(unsigned long pfn); 4403 void num_poisoned_pages_sub(unsigned long pfn, long i); 4404 #else 4405 static inline void memory_failure_queue(unsigned long pfn, int flags) 4406 { 4407 } 4408 4409 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4410 bool *migratable_cleared) 4411 { 4412 return 0; 4413 } 4414 4415 static inline void num_poisoned_pages_inc(unsigned long pfn) 4416 { 4417 } 4418 4419 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 4420 { 4421 } 4422 #endif 4423 4424 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 4425 extern void memblk_nr_poison_inc(unsigned long pfn); 4426 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 4427 #else 4428 static inline void memblk_nr_poison_inc(unsigned long pfn) 4429 { 4430 } 4431 4432 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 4433 { 4434 } 4435 #endif 4436 4437 #ifndef arch_memory_failure 4438 static inline int arch_memory_failure(unsigned long pfn, int flags) 4439 { 4440 return -ENXIO; 4441 } 4442 #endif 4443 4444 #ifndef arch_is_platform_page 4445 static inline bool arch_is_platform_page(u64 paddr) 4446 { 4447 return false; 4448 } 4449 #endif 4450 4451 /* 4452 * Error handlers for various types of pages. 4453 */ 4454 enum mf_result { 4455 MF_IGNORED, /* Error: cannot be handled */ 4456 MF_FAILED, /* Error: handling failed */ 4457 MF_DELAYED, /* Will be handled later */ 4458 MF_RECOVERED, /* Successfully recovered */ 4459 }; 4460 4461 enum mf_action_page_type { 4462 MF_MSG_KERNEL, 4463 MF_MSG_KERNEL_HIGH_ORDER, 4464 MF_MSG_DIFFERENT_COMPOUND, 4465 MF_MSG_HUGE, 4466 MF_MSG_FREE_HUGE, 4467 MF_MSG_GET_HWPOISON, 4468 MF_MSG_UNMAP_FAILED, 4469 MF_MSG_DIRTY_SWAPCACHE, 4470 MF_MSG_CLEAN_SWAPCACHE, 4471 MF_MSG_DIRTY_MLOCKED_LRU, 4472 MF_MSG_CLEAN_MLOCKED_LRU, 4473 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4474 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4475 MF_MSG_DIRTY_LRU, 4476 MF_MSG_CLEAN_LRU, 4477 MF_MSG_TRUNCATED_LRU, 4478 MF_MSG_BUDDY, 4479 MF_MSG_DAX, 4480 MF_MSG_UNSPLIT_THP, 4481 MF_MSG_ALREADY_POISONED, 4482 MF_MSG_PFN_MAP, 4483 MF_MSG_UNKNOWN, 4484 }; 4485 4486 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4487 void folio_zero_user(struct folio *folio, unsigned long addr_hint); 4488 int copy_user_large_folio(struct folio *dst, struct folio *src, 4489 unsigned long addr_hint, 4490 struct vm_area_struct *vma); 4491 long copy_folio_from_user(struct folio *dst_folio, 4492 const void __user *usr_src, 4493 bool allow_pagefault); 4494 4495 /** 4496 * vma_is_special_huge - Are transhuge page-table entries considered special? 4497 * @vma: Pointer to the struct vm_area_struct to consider 4498 * 4499 * Whether transhuge page-table entries are considered "special" following 4500 * the definition in vm_normal_page(). 4501 * 4502 * Return: true if transhuge page-table entries should be considered special, 4503 * false otherwise. 4504 */ 4505 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4506 { 4507 return vma_is_dax(vma) || (vma->vm_file && 4508 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4509 } 4510 4511 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4512 4513 #if MAX_NUMNODES > 1 4514 void __init setup_nr_node_ids(void); 4515 #else 4516 static inline void setup_nr_node_ids(void) {} 4517 #endif 4518 4519 extern int memcmp_pages(struct page *page1, struct page *page2); 4520 4521 static inline int pages_identical(struct page *page1, struct page *page2) 4522 { 4523 return !memcmp_pages(page1, page2); 4524 } 4525 4526 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 4527 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4528 pgoff_t first_index, pgoff_t nr, 4529 pgoff_t bitmap_pgoff, 4530 unsigned long *bitmap, 4531 pgoff_t *start, 4532 pgoff_t *end); 4533 4534 unsigned long wp_shared_mapping_range(struct address_space *mapping, 4535 pgoff_t first_index, pgoff_t nr); 4536 #endif 4537 4538 #ifdef CONFIG_ANON_VMA_NAME 4539 int set_anon_vma_name(unsigned long addr, unsigned long size, 4540 const char __user *uname); 4541 #else 4542 static inline 4543 int set_anon_vma_name(unsigned long addr, unsigned long size, 4544 const char __user *uname) 4545 { 4546 return -EINVAL; 4547 } 4548 #endif 4549 4550 #ifdef CONFIG_UNACCEPTED_MEMORY 4551 4552 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size); 4553 void accept_memory(phys_addr_t start, unsigned long size); 4554 4555 #else 4556 4557 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4558 unsigned long size) 4559 { 4560 return false; 4561 } 4562 4563 static inline void accept_memory(phys_addr_t start, unsigned long size) 4564 { 4565 } 4566 4567 #endif 4568 4569 static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4570 { 4571 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE); 4572 } 4573 4574 void vma_pgtable_walk_begin(struct vm_area_struct *vma); 4575 void vma_pgtable_walk_end(struct vm_area_struct *vma); 4576 4577 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); 4578 int reserve_mem_release_by_name(const char *name); 4579 4580 #ifdef CONFIG_64BIT 4581 int do_mseal(unsigned long start, size_t len_in, unsigned long flags); 4582 #else 4583 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags) 4584 { 4585 /* noop on 32 bit */ 4586 return 0; 4587 } 4588 #endif 4589 4590 /* 4591 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to 4592 * be zeroed or not. 4593 */ 4594 static inline bool user_alloc_needs_zeroing(void) 4595 { 4596 /* 4597 * for user folios, arch with cache aliasing requires cache flush and 4598 * arc changes folio->flags to make icache coherent with dcache, so 4599 * always return false to make caller use 4600 * clear_user_page()/clear_user_highpage(). 4601 */ 4602 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() || 4603 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 4604 &init_on_alloc); 4605 } 4606 4607 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status); 4608 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status); 4609 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status); 4610 4611 /* 4612 * DMA mapping IDs for page_pool 4613 * 4614 * When DMA-mapping a page, page_pool allocates an ID (from an xarray) and 4615 * stashes it in the upper bits of page->pp_magic. We always want to be able to 4616 * unambiguously identify page pool pages (using page_pool_page_is_pp()). Non-PP 4617 * pages can have arbitrary kernel pointers stored in the same field as pp_magic 4618 * (since it overlaps with page->lru.next), so we must ensure that we cannot 4619 * mistake a valid kernel pointer with any of the values we write into this 4620 * field. 4621 * 4622 * On architectures that set POISON_POINTER_DELTA, this is already ensured, 4623 * since this value becomes part of PP_SIGNATURE; meaning we can just use the 4624 * space between the PP_SIGNATURE value (without POISON_POINTER_DELTA), and the 4625 * lowest bits of POISON_POINTER_DELTA. On arches where POISON_POINTER_DELTA is 4626 * 0, we use the lowest bit of PAGE_OFFSET as the boundary if that value is 4627 * known at compile-time. 4628 * 4629 * If the value of PAGE_OFFSET is not known at compile time, or if it is too 4630 * small to leave at least 8 bits available above PP_SIGNATURE, we define the 4631 * number of bits to be 0, which turns off the DMA index tracking altogether 4632 * (see page_pool_register_dma_index()). 4633 */ 4634 #define PP_DMA_INDEX_SHIFT (1 + __fls(PP_SIGNATURE - POISON_POINTER_DELTA)) 4635 #if POISON_POINTER_DELTA > 0 4636 /* PP_SIGNATURE includes POISON_POINTER_DELTA, so limit the size of the DMA 4637 * index to not overlap with that if set 4638 */ 4639 #define PP_DMA_INDEX_BITS MIN(32, __ffs(POISON_POINTER_DELTA) - PP_DMA_INDEX_SHIFT) 4640 #else 4641 /* Use the lowest bit of PAGE_OFFSET if there's at least 8 bits available; see above */ 4642 #define PP_DMA_INDEX_MIN_OFFSET (1 << (PP_DMA_INDEX_SHIFT + 8)) 4643 #define PP_DMA_INDEX_BITS ((__builtin_constant_p(PAGE_OFFSET) && \ 4644 PAGE_OFFSET >= PP_DMA_INDEX_MIN_OFFSET && \ 4645 !(PAGE_OFFSET & (PP_DMA_INDEX_MIN_OFFSET - 1))) ? \ 4646 MIN(32, __ffs(PAGE_OFFSET) - PP_DMA_INDEX_SHIFT) : 0) 4647 4648 #endif 4649 4650 #define PP_DMA_INDEX_MASK GENMASK(PP_DMA_INDEX_BITS + PP_DMA_INDEX_SHIFT - 1, \ 4651 PP_DMA_INDEX_SHIFT) 4652 4653 /* Mask used for checking in page_pool_page_is_pp() below. page->pp_magic is 4654 * OR'ed with PP_SIGNATURE after the allocation in order to preserve bit 0 for 4655 * the head page of compound page and bit 1 for pfmemalloc page, as well as the 4656 * bits used for the DMA index. page_is_pfmemalloc() is checked in 4657 * __page_pool_put_page() to avoid recycling the pfmemalloc page. 4658 */ 4659 #define PP_MAGIC_MASK ~(PP_DMA_INDEX_MASK | 0x3UL) 4660 4661 #ifdef CONFIG_PAGE_POOL 4662 static inline bool page_pool_page_is_pp(const struct page *page) 4663 { 4664 return (page->pp_magic & PP_MAGIC_MASK) == PP_SIGNATURE; 4665 } 4666 #else 4667 static inline bool page_pool_page_is_pp(const struct page *page) 4668 { 4669 return false; 4670 } 4671 #endif 4672 4673 #define PAGE_SNAPSHOT_FAITHFUL (1 << 0) 4674 #define PAGE_SNAPSHOT_PG_BUDDY (1 << 1) 4675 #define PAGE_SNAPSHOT_PG_IDLE (1 << 2) 4676 4677 struct page_snapshot { 4678 struct folio folio_snapshot; 4679 struct page page_snapshot; 4680 unsigned long pfn; 4681 unsigned long idx; 4682 unsigned long flags; 4683 }; 4684 4685 static inline bool snapshot_page_is_faithful(const struct page_snapshot *ps) 4686 { 4687 return ps->flags & PAGE_SNAPSHOT_FAITHFUL; 4688 } 4689 4690 void snapshot_page(struct page_snapshot *ps, const struct page *page); 4691 4692 #endif /* _LINUX_MM_H */ 4693